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An Algebraic Analogue of a Formula of Knuth

Lionel Levine
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract. We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph G and its directed
line graph LG. The sandpile group is an abelian group associated to a directed graph, whose order is the number of
oriented spanning trees rooted at a fixed vertex. In the case when G is regular of degree k, we show that the sandpile
group of G is isomorphic to the quotient of the sandpile group of LG by its k-torsion subgroup. As a corollary we
compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and
Kautz graphs.

Résumé. Nous généralisons un théorème de Knuth qui relie les arbres couvrants dirigés d’un graphe orienté G au
graphe adjoint orienté LG. On peut associer à tout graphe orienté un groupe abélien appelé groupe du tas de sable, et
dont l’ordre est le nombre d’arbres couvrants dirigés enracinés en un sommet fixé. Lorsque G est régulier de degré
k, nous montrons que le groupe du tas de sable de G est isomorphe au quotient du groupe du tas de sable de LG par
son sous-groupe de k-torsion. Comme corollaire, nous déterminons les groupes de tas de sable de deux familles de
graphes étudiées en informatique: les graphes de de Bruijn et les graphes de Kautz.

Keywords: critical group, de Bruijn graph, iterated line digraph, Kautz graph, matrix-tree theorem, oriented spanning
tree, weighted Laplacian

1 Introduction
In this extended abstract we discuss some new generalizations of an enumerative formula of Knuth [10].
Proofs omitted here due to space constraints can be found in [11].

Let G = (V,E) be a finite directed graph, which may have loops and multiple edges. Each edge e ∈ E
is directed from its source vertex s(e) to its target vertex t(e). The directed line graph LG = (E,E2) has
as vertices the edges of G, and as edges the set

E2 = {(e1, e2) ∈ E × E | s(e2) = t(e1)}.

For example, if G has just one vertex and n loops, then LG is the complete directed graph on n vertices.
If G has two vertices and no loops, then LG is a bidirected complete bipartite graph.

An oriented spanning tree of G is a subgraph containing all of the vertices of G, having no directed
cycles, in which one vertex, the root, has outdegree 0, and every other vertex has outdegree 1. The
number κ(G) of oriented spanning trees of G is sometimes called the complexity of G.

Our first result relates the numbers κ(LG) and κ(G). Let {xe}e∈E and {xv}v∈V be indeterminates,
and consider the polynomials
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κedge(G,x) =
∑
T

∏
e∈T

xe

κvertex(G,x) =
∑
T

∏
e∈T

xt(e).

The sums are over all oriented spanning trees T of G.
Write

indeg(v) = #{e ∈ E | t(e) = v}

outdeg(v) = #{e ∈ E | s(e) = v}

for the indegree and outdegree of vertex v in G. We say that v is a source if indeg(v) = 0.

Theorem 1.1 Let G = (V,E) be a finite directed graph with no sources. Then

κvertex(LG,x) = κedge(G,x)
∏
v∈V

 ∑
s(e)=v

xe

indeg(v)−1

. (1)

Note that since the vertex set of LG coincides with the edge set of G, both sides of (1) are polynomials
in the same set of variables {xe}e∈E . Setting all xe = 1 yields the product formula

κ(LG) = κ(G)
∏
v∈V

outdeg(v)indeg(v)−1 (2)

due in a slightly different form to Knuth [10]. Special cases of (2) include Cayley’s formula nn−1 for the
number of rooted spanning trees of the complete graph Kn, as well as the formula (m + n)mn−1nm−1

for the number of rooted spanning trees of the complete bipartite graph Km,n. These are respectively the
cases that G has just one vertex with n loops, or G has just two vertices a and b with m edges directed
from a to b and n edges directed from b to a.

Suppose now that G is strongly connected, that is, for any v, w ∈ V there are directed paths in G
from v to w and from w to v. Then associated to any vertex v∗ of G is an abelian group K(G, v∗), the
sandpile group, whose order is the number of oriented spanning trees of G rooted at v∗. Its definition
and basic properties are reviewed in section 3. Other common names for this group are the critical group,
Picard group, Jacobian, and group of components. In the case when G is Eulerian (that is, indeg(v) =
outdeg(v) for all vertices v) the groups K(G, v∗) and K(G, v′∗) are isomorphic for any v∗, v′∗ ∈ V , and
we often denote the sandpile group just by K(G).

When G is Eulerian, we show that there is a natural map from the sandpile group of LG to the sandpile
group of G, descending from the Z-linear map

φ : ZE → ZV

which sends e 7→ t(e).
Let k be a positive integer. We say that G is balanced k-regular if indeg(v) = outdeg(v) = k for every

vertex v.
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Theorem 1.2 Let G = (V,E) be a strongly connected Eulerian directed graph, fix e∗ ∈ E and let
v∗ = t(e∗). The map φ descends to a surjective group homomorphism

φ̄ : K(LG, e∗)→ K(G, v∗).

Moreover, if G is balanced k-regular, then ker(φ̄) is the k-torsion subgroup of K(LG, e∗).

This result extends to directed graphs some of the recent work of Berget, Manion, Maxwell, Potechin
and Reiner [1] on undirected line graphs. If G = (V,E) is an undirected graph, the (undirected) line
graph line(G) of G has vertex set E and edge set

{{e, e′} | e, e′ ∈ E, e ∩ e′ 6= ∅}.

The results of [1] relate the sandpile groups of G and line(G). The undirected case is considerably more
subtle, because although there is still a natural map K(line G)→ K(G) when G is regular, this map may
fail to be surjective.

A particularly interesting family of directed line graphs are the de Bruijn graphs DBn, defined recur-
sively by

DBn = L(DBn−1), n ≥ 1,

where DB0 is the graph with just one vertex and two loops. The 2n vertices of DBn can be identified
with binary words b1 . . . bn of length n; two such sequences b and b′ are joined by a directed edge (b, b′)
if and only if b′i = bi+1 for all i = 1, . . . , n− 1.

Using Theorem 1.2, we obtain the full structure of the sandpile groups of the de Bruijn graphs.

Theorem 1.3

K(DBn) =

n−1⊕
j=1

(Z/2jZ)2
n−1−j

.

Closely related to the de Bruijn graphs are the Kautz graphs, defined by

Kautz1 = ({1, 2, 3}, {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)})

and
Kautzn = L(Kautzn−1), n ≥ 2.

The Kautz graphs are useful in network design because they have close to the maximum possible number
of vertices given their diameter and degree [7] and because they contain many short vertex-disjoint paths
between any pair of vertices [5]. The following result gives the sandpile group of Kautzn.

Theorem 1.4

K(Kautzn) = (Z/3Z)⊕ (Z/2n−1Z)2 ⊕
n−2⊕
j=1

(Z/2jZ)3·2
n−2−j

.

Bidkhori and Kishore [2] have recently generalized Theorems 1.3 and 1.4 to m-regular de Bruijn and
Kautz graphs.

The remainder of the paper is organized as follows. In section 2, we discuss some interesting variants
and special cases of Theorem 1.1. Section 3 begins by defining the sandpile group, and moves on from
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there to the proof of Theorem 1.2. In section 4 we enumerate spanning trees of iterated line digraphs.
Huaxiao, Fuji and Qiongxiang [9] prove that for a balanced k-regular directed graph G on N vertices,

κ(LnG) = κ(G)k(k
n−1)N .

Theorem 4.1 generalizes this formula to an arbitrary directed graph G having no sources. Section 4 also
contains the proofs of Theorems 1.3 and 1.4.

2 Spanning Trees
In this section we discuss a few variants and special cases of Theorem 1.1. We omit the proof due to space
constraints. See [11] for a proof using the matrix-tree theorem. Very recently, Bidkhori and Kishore [2]
have found a bijective proof, and used it to resolve a question of Stanley about de Bruijn sequences.

Theorem 1.1 enumerates all oriented spanning trees of LG, while in many applications one wants to
enumerate spanning trees with a fixed root. Given a vertex v∗ ∈ V , let

κedge(G, v∗,x) =
∑

root(T )=v∗

∏
e∈T

xe

and
κvertex(G, v∗,x) =

∑
root(T )=v∗

∏
e∈T

xt(e).

The following variant of Theorem 1.1 enumerates spanning trees of LG with a fixed root e∗ in terms of
spanning trees of G with root w∗ = s(e∗).

Theorem 2.1 Let G = (V,E) be a finite directed graph, and let e∗ = (w∗, v∗) be an edge of G. If
indeg(v) ≥ 1 for all vertices v ∈ V , and indeg(v∗) ≥ 2, then

κvertex(LG, e∗,x) = κedge(G,w∗,x)xe∗

 ∑
s(e)=v∗

xe

indeg(v∗)−2

×

×
∏
v 6=v∗

 ∑
s(e)=v

xe

indeg(v)−1

.

Setting all xe = 1 in Theorem 2.1 yields the enumeration

κ(LG, e∗) =
κ(G,w∗)

outdeg(v∗)
π(G) (3)

where κ(G,w∗) is the number of oriented spanning trees of G rooted at w∗, and

π(G) =
∏
v∈V

outdeg(v)indeg(v)−1.
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It is interesting to compare this formula to the theorem of Knuth [10], which in our notation reads

κ(LG, e∗) =

κ(G, v∗)−
1

outdeg(v∗)

∑
t(e)=v∗
e 6=e∗

κ(G, s(e))

π(G). (4)

To see directly why the right sides of (3) and (4) are equal, we define a unicycle to be a spanning subgraph
of G which contains a unique directed cycle, and in which every vertex has outdegree 1. If vertex v∗ is on
the unique cycle of a unicycle U , we say that U goes through v∗.

Lemma 2.2
κedge(G, v∗,x)

∑
s(e)=v∗

xe =
∑

t(e)=v∗

κedge(G, s(e),x)xe.

Proof: Removing e gives a bijection from unicycles containing a fixed edge e to spanning trees rooted
at s(e). If U is a unicycle through v∗, then the cycle of U contains a unique edge e with s(e) = v∗ and a
unique edge e′ with t(e′) = v∗, so both sides are equal to∑

U

∏
e∈U

xe

where the sum is over all unicycles U through v∗. 2

Setting all xe = 1 in Lemma 2.2 yields

outdeg(v∗)κ(G, v∗) =
∑

t(e)=v∗

κ(G, s(e)).

Hence the factor appearing in front of π(G) in Knuth’s formula (4) is equal to κ(G,w∗)/outdeg(v∗).
We conclude this section by discussing some interesting examples and special cases of Theorem 1.1.

• Deletion and contraction. Fix e ∈ E and set xf = 1 for all f 6= e. The coefficient of x`e in
κvertex(LG,x) then counts the number of oriented spanning trees T of LG with indegT (e) = `. If
v = s(e) has indegree k and outdegree m, then this coefficient is given by

∏
w 6=v

outdeg(w)indeg(w)−1
((

k − 1
`

)
κ(G \ e)(m− 1)k−1−` +

+

(
k − 1
`− 1

)
κ(G/e)(m− 1)k−`

)
.

Here G \ e and G/e are respectively the graphs resulting from deleting and contracting the edge e.
(There is more than one sensible way to define contraction for directed graphs. By G/e we mean
the graph obtained from G by first deleting all edges f with s(f) = s(e), and then identifying the
vertices s(e) and t(e).)
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• Complete graph. TakingG to be the graph with one vertex and n loops, so that LG is the complete
directed graph ~Kn on n vertices, we obtain the classical formula

κvertex( ~Kn) = (x1 + . . .+ xn)n−1.

For a generalization to forests, see [15, Theorem 5.3.4]. Note that oriented spanning trees of ~Kn

are in bijection with rooted spanning trees of the complete undirected graph Kn, by forgetting
orientation.

• Complete bipartite graph. Taking G to have two vertices, a and b, with m edges directed from a
to b and n edges directed from b to a, we obtain

κvertex( ~Km,n) = (x1 + . . .+ xm)n−1(y1 + . . .+ yn)m−1 ·
· (x1 + . . .+ xm + y1 + . . .+ yn)

where ~Km,n = LG is the bidirected complete bipartite graph on m + n vertices. The variables
x1, . . . , xm correspond to vertices in the first part, and y1, . . . , yn correspond to vertices in the
second part. As with the complete graph, oriented spanning trees of ~Km,n are in bijection with
rooted spanning trees of the undirected complete bipartite graph Km,n by forgetting orientation.

• De Bruijn graphs. The spanning tree enumerators for the first few de Bruijn graphs are

κvertex(DB1) = x0 + x1;

κvertex(DB2) = (x00 + x01)(x10 + x11)(x01 + x10);

κvertex(DB3) = (x000 + x001)(x010 + x011)(x100 + x101)(x110 + x111)×
×
(
x011x110x100 + x010x110x100 + x110x101x001 + x110x100x001 +

+x100x001x011 + x101x001x011 + x001x010x110 + x001x011x110
)
.

3 Sandpile Groups
LetG = (V,E) be a strongly connected finite directed graph, loops and multiple edges allowed. Consider
the free abelian group ZV generated by the vertices of G; we think of its elements as formal linear
combinations of vertices with integer coefficients. For v ∈ V let

∆v =
∑

s(e)=v

(t(e)− v) ∈ ZV

where the sum is over all edges e ∈ E such that s(e) = v. Fixing a vertex v∗ ∈ V , let LV be the subgroup
of ZV generated by v∗ and {∆v}v 6=v∗ . The sandpile group K(G, v∗) is defined as the quotient group

K(G, v∗) = ZV /LV .
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The V ×V integer matrix whose column vectors are {∆v}v∈V is called the Laplacian ofG. Its principal
minor omitting the row and column corresponding to v∗ counts the number κ(G, v∗) of oriented spanning
trees of G rooted at v∗. (This is the matrix-tree theorem, [15, Theorem 5.6.4].) Since this minor is also
the index of LV in ZV , we have

#K(G, v∗) = κ(G, v∗).

Recall that G is Eulerian if indeg(v) = outdeg(v) for every vertex v. If G is Eulerian, then the groups
K(G, v∗) and K(G, v′∗) are isomorphic for any vertices v∗ and v′∗ [8, Lemma 4.12]. In this case we
usually denote the sandpile group just by K(G).

The sandpile group arose independently in several fields, including arithmetic geometry [12, 13], sta-
tistical physics [4] and algebraic combinatorics [3]. Often it is defined for an undirected graph G; to
translate this definition into the present setting of directed graphs, replace each undirected edge by a pair
of directed edges oriented in opposite directions. Sandpiles on directed graphs were first studied in [14].
For a survey of the basic properties of sandpile groups of directed graphs and their proofs, see [8].

The goal of this section is to relate the sandpile groups of an Eulerian graph G and its directed line
graph LG. To that end, let ZE be the free abelian group generated by the edges of G. For e ∈ E let

∆e =
∑

s(f)=t(e)

(f − e) ∈ ZE .

Fix an edge e∗ ∈ E, and let v∗ = t(e∗). Let LE ⊂ ZE be the subgroup generated by e∗ and {∆e}e 6=e∗ .
Then the sandpile group associated to LG and e∗ is

K(LG, e∗) = ZE/LE .

Note that LG may not be Eulerian even when G is Eulerian.

Lemma 3.1 Let φ : ZE → ZV be the Z-linear map sending e 7→ t(e). If G is Eulerian, then φ descends
to a surjective group homomorphism

φ̄ : K(LG, e∗)→ K(G, v∗).

Proof: To show that φ descends, it suffices to show that φ(LE) ⊂ LV . For any e ∈ E, we have

φ(∆e) =
∑

s(f)=t(e)

(t(f)− t(e)) = ∆t(e).

The right side lies in LV by definition if t(e) 6= v∗. Moreover, since G is Eulerian,∑
v∈V

∆v =
∑
e∈E

(t(e)− s(e)) =
∑
v∈V

(indeg(v)− outdeg(v))v = 0,

so ∆v∗ = −
∑

v 6=v∗
∆v also lies in LV . Finally, φ(e∗) = v∗ ∈ LV , and hence φ(LE) ⊂ LV .

SinceG is strongly connected, every vertex has at least one incoming edge, so φ is surjective, and hence
φ̄ is surjective. 2
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Let k be a positive integer. We say that G is balanced k-regular if indeg(v) = outdeg(v) = k for
every vertex v. Note that any balanced k-regular graph is Eulerian; and if G is balanced k-regular, then
its directed line graph LG is also balanced k-regular. In particular, this implies∑

e∈E
∆e = 0

so that ∆e∗ ∈ LE .
Now consider the Z-linear map

ψ : ZV → ZE

sending v 7→
∑

s(e)=v e. For a group Γ, write kΓ = {kg|g ∈ Γ}. The following lemma is proved in [11].

Lemma 3.2 If G is balanced k-regular, then ψ descends to a group isomorphism

ψ̄ : K(G)
'−→ kK(LG).

Proof of Theorem 1.2: If G is Eulerian, then φ descends to a surjective homomorphism of sandpile
groups by Lemma 3.1. If G is balanced k-regular, then ψ̄ is injective by Lemma 3.2, so

ker(φ̄) = ker(ψ̄ ◦ φ̄).

Moreover for any edge e ∈ E

(ψ ◦ φ)(e) =
∑

s(f)=t(e)

f = ke+ ∆e.

Hence ψ̄ ◦ φ̄ is multiplication by k, and ker(φ̄) is the k-torsion subgroup of K(LG).

4 Iterated Line Graphs
Let G = (V,E) be a finite directed graph, loops and multiple edges allowed. The iterated line digraph
LnG = (En, En+1) has as vertices the set

En = {(e1, . . . , en) ∈ En | s(ei+1) = t(ei), i = 1, . . . , n− 1}

of directed paths of n edges in G. The edge set of LnG is En+1, and the incidence is defined by

s(e1, . . . , en+1) = (e1, . . . , en);

t(e1, . . . , en+1) = (e2, . . . , en+1).

(We also set E0 = V , and L0G = G.) For example, the de Bruijn graph DBn is Ln(DB0), where DB0

is the graph with one vertex and two loops.
Our next result relates the number of spanning trees of G and LnG. Given a vertex v ∈ V , let

p(n, v) = #{(e1, . . . , en) ∈ En | t(en) = v}

be the number of directed paths of n edges in G ending at vertex v.
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Theorem 4.1 Let G = (V,E) be a finite directed graph with no sources. Then

κ(LnG) = κ(G)
∏
v∈V

outdeg(v)p(n,v)−1.

Proof: For any j ≥ 0, by Theorem 1.1 applied to LjG with all edge weights 1,

κ(Lj+1G)

κ(LjG)
=

∏
(e1,...,ej)∈Ej

outdeg(t(ej))
indeg(s(e1))−1

=
∏
v∈V

outdeg(v)p(j+1,v)−p(j,v).

Taking the product over j = 0, . . . , n− 1 yields the result. 2

When G is balanced k-regular, we have p(n, v) = kn for all vertices v, so we obtain as a special case
of Theorem 4.1 the result of Huaxiao, Fuji and Qiongxiang [9, Theorem 1]

κ(LnG) = κ(G)k(k
n−1)#V .

In particular, taking G = DB0 yields the classical formula

κ(DBn) = 22
n−1.

Since DBn is Eulerian, the number κ(DBn, v∗) of oriented spanning trees rooted at v∗ does not depend
on v∗, so

κ(DBn, v∗) = 2−nκ(DBn) = 22
n−n−1. (5)

This familiar number counts de Bruijn sequences of order n + 1 (Eulerian tours of DBn) up to cyclic
equivalence. De Bruijn sequences are in bijection with oriented spanning trees of DBn rooted at a fixed
vertex v∗; for more on the connection between spanning trees and Eulerian tours, see [6] and [15, section
5.6].

Perhaps less familiar is the situation when G is not regular. As an example, consider the graph

G = ({0, 1}, {(0, 0), (0, 1), (1, 0)}).

The vertices of its iterated line graph LnG are binary words of length n + 1 containing no two consecu-
tive 1’s. The number of such words is the Fibonacci number Fn+3, and the number of words ending in 0
is Fn+2. By Theorem 4.1, the number of oriented spanning trees of LnG is

κ(LnG) = 2 · 2p(n,0)−1 = 2Fn+2 .

Next we turn to the proofs of Theorems 1.3 and 1.4. If a and b are positive integers, we write Za
b for

the group (Z/bZ)⊕ . . .⊕ (Z/bZ) with a summands.

Proof of Theorem 1.3: Induct on n. From (5) we have

#K(DBn) = 22
n−n−1
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hence
K(DBn) = Za1

2 ⊕ Za2
4 ⊕ Za3

8 ⊕ . . .⊕ Zam
2m

for some nonnegative integers m and a1, . . . , am satisfying

m∑
j=1

jaj = 2n − n− 1. (6)

By Lemma 3.2 and the inductive hypothesis,

Za2
2 ⊕ Za3

4 ⊕ . . .⊕ Zam

2m−1 ' 2K(DBn)

' K(DBn−1)

' Z2n−3

2 ⊕ Z2n−4

4 ⊕ . . .⊕ Z2n−2 .

hence m = n− 1 and
a2 = 2n−3, a3 = 2n−4, . . . , an−1 = 1.

Solving (6) for a1 now yields a1 = 2n−2.
For p prime, by carrying out the same argument on a general balanced p-regular directed graph G on N

vertices, we find that

K(LnG) ' K̃ ⊕
n−1⊕
j=1

(Zpj )p
n−1−j(p−1)2N ⊕ (Zpn)(p−1)N−r−1 ⊕

m⊕
j=1

(Zpn+j )aj

where
Sylowp(K(G)) = (Zp)a1 ⊕ . . .⊕ (Zpm)am ;

K̃ = K(G)/Sylowp(K(G));

r = a1 + . . .+ am.

In particular, taking G = Kautz1 with p = 2, we have K(G) = K̃ = Z3, and we arrive at Theorem 1.4.

5 Concluding Remark
Theorem 1.2 describes a map from the sandpile group K(LG, e∗) to the group K(G, v∗) when G is
an Eulerian directed graph and e∗ = (w∗, v∗) is an edge of G. There is also a suggestive numerical
relationship between the orders of the sandpile groupsK(LG, e∗) andK(G,w∗), which holds even when
G is not Eulerian: by equation (3) we have

κ(G,w∗) |κ(LG, e∗)

whenever G satisfies the hypothesis of Theorem 2.1. This observation leads us to ask whether K(G,w∗)
can be expressed as a subgroup or quotient group of K(LG, e∗).
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