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Abstract. We use a quantum analog of the polynomial ringZ[x1,1, . . . , xn,n] to modify the Kazhdan-Lusztig construction
of irreducible Hn(q)-modules. This modified construction produces exactly the same matrices as the original construction
in [Invent. Math. 53 (1979)], but does not employ the Kazhdan-Lusztig preorders. Our main result is dependent on new
vanishing results for immanants in the quantum polynomial ring.

Résumé. Nous utilisons un analogue quantique de l’anneau Z[x1,1, . . . , xn,n] pour modifier la construction Kazhdan-
Lusztig des modules-Hn(q) irreductibles. Cette construction modifiée produit exactement les mêmes matrices que la con-
struction originale dans [Invent. Math. 53 (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Notre résultat
principal dépend de nouveaux résultats de disparaition pour des immanants dans l’anneau polynôme de quantique.

Resumen. Utilizamos un analog cuántico del anillo Z[x1,1, . . . , xn,n] para modificar la construcción de Kazhdan-Lusztig
de módulos-Hn(q) irreducibles. Esta construcción modificada produce exactamente las mismas matrices que la con-
strucción original en [Invent. Math. 53 (1979)], pero sin emplear los preórdenes de Kazhdan-Lusztig. Nuestro resultado
principal es depende en los nuevos resultados de desaparición para los imanantes en el anillo polinómico del cuántico.
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1 Introduction

In 1979, Kazhdan and Lusztig introduced [8] a family of modules for Coxeter groups and related Hecke
algebras. These modules, which happen to be irreducible for Coxeter groups of type-A and have many
fascinating properties, also aid in the understanding of modules for quantum groups and other algebras.
Important ingredients in the construction of the Kazhdan-Lusztig modules are the computation of certain
polynomials in Z[q] known as Kazhdan-Lusztig polynomials, and the description of preorders on Coxeter
group elements known as the Kazhdan-Lusztig preorders. These two tasks, which present something of an
obstacle to one wishing to construct the modules, have become fascinating research topics in their own right.
Even in the simplest case of a Coxeter group, the symmetric group Sn, the Kazhdan-Lusztig polynomials and
preorders are somewhat poorly understood, see [2, Chp. 6], [13].

As an alternative to the “traditional” Kazhdan-Lusztig construction of type-A modules in terms of sub-
spaces of the type-A Hecke algebra Hn(q), one may construct modules in terms of subspaces of a non-
commutative “quantum polynomial ring”. Theoretically, this alternative offers no special advantage over the
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original construction. On the other hand, a simple modification of this alternative completely eliminates the
need for the Kazhdan-Lusztig preorders in a new construction of Hn(q)-modules.

In Sections 2-3, we review essential definitions for the symmetric group, Hecke algebra, and Kazhdan-
Lusztig modules. In Section 4 we review definitions related to a quantum analog of the polynomial ring
Z[x1,1, . . . , xn,n] and a particular n!-dimensional subspace called the quantum immanant space. In Section 4,
we use the basis of Kazhdan-Lusztig immanants studied in [10] to transfer the traditional Kazhdan-Lusztig
representations of Hn(q) to the immanant space.

Results of Clausen [4] will then motivate us to modify the above representations in Section 5 and to apply
vanishing properties of Kazhdan-Lusztig immanants similar to those obtained in [11]. This leads to our main
result that the resulting representations, which do not rely upon the Kazhdan-Lusztig preorders, have matrices
equal to those corresonding to the original Kazhdan-Lusztig representations in [8].

2 Tableaux and the symmetric group

We call a weakly decreasing sequence λ = (λ1, . . . , λ`) of positive integers with
∑`
i=1 λi = r an integer

partition of r, and we denote this by λ ` r or |λ| = r. A partial ordering on integer partitions of r called
dominance order is given by λ � µ if and only if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi, for all i = 1, . . . , `. (1)

From an integer partition λ we can construct a Ferrers diagram which has λi left justified dots in row i.
When we replace the dots in a diagram with 1, . . . , r we have a Young tableau where the shape of the tableau
is λ. An injective tableau is merely one in which the replacing is performed injectively, i.e. the 1, . . . , r
appear exactly once in the tableau. We call a tableau column-(semi)strict if its entries are (weakly) increasing
downward in columns. A tableau is row-(semi)strict if entries (weakly) increase from left to right in rows.
We call a tableau semistandard if it is column-strict and row-semistrict, and standard if it is semistandard and
injective. We define transposition of partitions λ 7→ λ> (also known as conjugation) and tableaux T 7→ T> in
a manner analogous to matrix transposition. We define a bitableau to be a pair of tableaux of the same shape,
and say that it posesses a certain tableau property if both of its tableaux posess this property.

For each partition λ we define the superstandard tableau of shape λ to be the tableau T (λ) having entries
in reading order. For example,

T ((4, 2, 1)) =
1 2 3 4
5 6
7

. (2)

The standard presentation of Sn is given by generators s1, . . . , sn−1 and relations

s2
i = 1, for i = 1, . . . , n− 1,

sisjsi = sjsisj , if |i− j| = 1,

sisj = sjsi, if |i− j| ≥ 2.

(3)

Let Sn act on rearrangements of the letters [n] = {1, . . . , n} by

si ◦ v1 · · · vn =
def

v1 · · · vi−1vi+1vivi+2 · · · vn. (4)

For each permutation w = si1 · · · si` ∈ Sn we define the one-line notation of w to be the word

w1 · · ·wn =
def

si1 ◦ (· · · (si` ◦ (1 · · ·n)) · · · ). (5)
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For each w ∈ Sn we define two tableaux, P (w), Q(w) which are obtained from the Robinson-Schensted
correspondence using column insertion to the one-line notation of w. (See, e.g., [12, Sec. 3.1].) It is well
known that these tableaux satisfy P (w−1) = Q(w). Since sh(P (w)) = sh(Q(w)) we can define the shape
of a permutation as sh(w) = sh(P (w)).

Given a permutation w ∈ Sn expressed in terms of generators w = si1 · · · si` we say this expression is
reduced if w cannot be expressed as a shorter product of generators of Sn. We call the length of a permu-
tation w ∈ Sn `(w) = `, in the previous equation. We define the Bruhat order on Sn by v ≤ w if some
(equivalently every) reduced expression for w contains a reduced expression for v as a subword (The reader
is referred to [2] for more on this topic). Throughout this paper we will use w0 to denote the unique maximal
element in the Bruhat order. Multiplying a permutation on the right by w0 also changes the bitableau of the
Robinson-Schensted correspondence for that permutation. Specifically, this change can be described in terms
of transposition. (See [2, Appendix].)

Lemma 2.1 If v ∈ Sn, then Q(v) = (Q(vw0))
>.

3 Kazhdan-Lusztig representations

Given an indeterminate q we define the Hecke algebra,Hn(q), to be the Z[q 1
2 , q¯

1
2 ]-algebra with multiplicative

identity T̃e generated by {T̃si}n−1
i=1 with relations

T̃ 2
si = (q

1
2 − q¯1

2 )T̃si + T̃e, for i = 1, . . . , n− 1, (6)

T̃si T̃sj T̃si = T̃sj T̃si T̃sj , if |i− j| = 1, (7)

T̃si T̃sj = T̃sj T̃si , if |i− j| ≥ 2. (8)

We then can define T̃w for any w ∈ Sn by T̃w = T̃si1 · · · T̃sil where w = si1 · · · sil is any reduced
expression. Inverses of generators are given by

T̃−1
si = T̃si − (q

1
2 − q¯1

2 )T̃e = T̃si − q¯
1
2 (q − 1)T̃e. (9)

When q = 1 we see that this presentation is simply that of the symmetric group algebra Z[Sn].
An important involution of the Hecke algebra is the so called bar involution. The involution is defined as∑

w

awT̃w 7→
∑
w

awT̃w =
∑
w

aw T̃w (10)

where
q = q−1, T̃w =

(
T̃w−1

)−1

. (11)

The Kazhdan-Lusztig basis, {C ′w(q) |w ∈ Sn}, is the unique basis of Hn(q) such that the basis elements
are invariant under the bar involution, C ′w(q) = C ′w(q) for all w ∈ Sn, and that C ′w(q) in terms of the
{T̃v | v ∈ Sn} is given by

C ′w(q) =
∑
v≤w

q−1
v,wPv,w(q) T̃v, (12)

where Pv,w(q) are polynomials in q of degree at most `(w)−`(v)−1
2 and where we define the convenient

notation εv,w = (−1)`(w)−`(v), qv,w = (q
1
2 )`(w)−`(v). These polynomials are known as the Kazhdan-Lusztig

polynomials and in fact belong to N[q].
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Kazhdan and Lusztig also introduced another basis {Cw(q) |w ∈ Sn} with similar properties which is
traditionally known as the Kazhdan-Lusztig basis, but for our purposes the {C ′w(q) |w ∈ Sn} basis is more
convenient. Cw(q) and C ′w(q) are related by C ′w(q) = ψ(Cw(q)), where ψ is the semilinear map defined by

ψ : q
1
2 7→ q¯

1
2 and T̃w 7→ εe,wT̃w. (13)

Thus Cw(q) is also bar invariant and its expression in terms of {T̃v | v ∈ Sn} is

Cw(q) =
∑
v≤w

εv,wqv,wPv,w(q)T̃v. (14)

As a preliminary to the proof of the existence and uniqueness of their bases Kazhdan and Lusztig also
defined the following function

µ(u, v) =
def

{
coefficient of q(`(v)−`(u)−1)/2 in Pu,v(q) if u < v,

0 otherwise.
(15)

Note that µ(u, v) = 0 if `(v)−`(u) is even since Pu,v(q) has only integer powers of q. Also, it is well known
that Pu,v(q) = Pw0uw0,w0vw0

(q), and therefore that µ(u, v) = µ(w0uw0, w0vw0). Kazhdan and Lusztig
showed further [8, Cor. 3.2] µ(u, v) = µ(w0v, w0u), even though Pu,v(q) and Pw0v,w0u(q) are not equal in
general.

In the existence proof of the Kazhdan-Lusztig basis in [8, Pf. of Thm. 1.1] an expression for the action of
T̃s, s a basic transposition, on the basis element C ′w(q) is given by

C ′w(q)T̃s =


−q¯1

2C ′w(q) + C ′ws(q) +
∑
v<w
vs<v

µ(v, w)C ′v(q) if ws > w,

q
1
2C ′w(q) if ws < w.

(16)

Along with these bases Kazhdan and Lusztig defined a preorder on Sn in order to construct representations
of Hn(q). This preorder, called the right preorder, is denoted by ≤R and is defined as the transitive closure
of lR where u lR v if C ′u(q) has nonzero coefficient in the expression of C ′v(q)T̃w for some w ∈ Sn. It
follows from a result in [1] that w ≤R v implies sh(v) � sh(w).

We follow the description in [7, Appendix] of the Kazhdan-Lusztig construction of an irreducible Hn(q)-
module indexed by partition λ ` n. Here and henceforth the span will be over the Laurent polynomial ring
Z[q 1

2 , q¯
1
2 ]. Choosing tableau T of shape λ, we allow Hn(q) to act by right multiplication on

Kλ =
def

span{C ′w(q) |Q(w) = T}, (17)

regarded as the quotient

span{C ′v(q) | v ≤R w}/span{C ′v(q) | v ≤R w, v 6≥R w}. (18)

The quotient is necessary because Kλ is not in general closed under the action of Hn(q). In particular, for
λ 6= (1n) we have the containments Kλ ⊂ Hn(q)K

λ ⊆ Kλ ⊕ span{C ′v(q) | v ≤R w, v 6≥R w}.
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4 The quantum polynomial ring and Kazhdan-Lusztig immanants
Let x = (xi,j) be an n × n-matrix of variables. The polynomial ring Z[x] has a natural grading Z[x] =
⊕r≥0Ar, where Ar is the span of all monomials of total degree r. Further decomposing each space Ar, we
define a multigrading

Z[x] =
⊕
r≥0

Ar =
⊕
r≥0

⊕
L,M

AL,M , (19)

where L = {`(1) ≤ . . . ≤ `(r)} and M = {m(1) ≤ . . . ≤ m(r)} are r-element multisets of [n], written as
weakly increasing sequences, and where AL,M is the span of monomials whose row and column indices are
given by L and M , respectively. We define the generalized submatrix of x with respect to (L,M) by

xL,M =


x`(1),m(1) · · · x`(1),m(r)

x`(2),m(1) · · · x`(2),m(r)

...
...

x`(r),m(1) · · · x`(r),m(r)

 . (20)

We refer to the space
A[n],[n] = span{x1,w1

· · ·xn,wn
|w ∈ Sn}, (21)

as the immanant space, and define the notation xu,v = xu1,v1 · · ·xun,vn for permutations u, v ∈ Sn. Im-
manants are a generalization of the determinant and permanent of a matrix introduced in [9].

A natural Sn-action on Z[x] is given by

g(x) ◦ si =
def

g(xsi), (22)

where g ∈ Z[x] and xsi is interpreted as the product of x and the permutation matrix of si.

We now define a generalization of the polynomial ring Z[x] called the quantum polynomial ring, A(n; q).
The ringA(n; q) is a noncommutative Z[q 1

2 , q¯
1
2 ]-algebra on n2 generators x = (x1,1 . . . , xn,n) with relations

(assuming i < j and k < `),

xi,`xi,k = q
1
2xi,kxi,`,

xj,kxi,k = q
1
2xi,kxj,k,

xj,kxi,` = xi,`xj,k,

xj,`xi,k = xi,kxj,` + (q
1
2 − q¯1

2 )xi,`xj,k.

(23)

A natural basis for the quantum polynomial ring consists of the set of monomials in lexicographic order.
Analogous to the multigrading of Z[x] is the multigrading

A(n; q) =
⊕
r≥0

Ar(n; q) =
⊕
r≥0

⊕
L,M

AL,M (n; q), (24)

whereAr(n; q) is the span of all monomials of total degree r, and whereAL,M (n; q) is the span of monomials
whose row and column indices are given by r-element multisets L and M of [n]. We again call the space
A[n],[n](n; q) = span{xe,w |w ∈ Sn} the immanant space of A(n; q) or the quantum immanant space.

Define a right action of the Hecke algebra on A[n],[n](n; q) by

xe,v ◦ T̃si =

{
xe,vsi if vsi > v,

xe,vsi + (q
1
2 − q¯1

2 )xe,v if vsi < v.
(25)
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Related to the bar involution on Hn(q) is another bar involution on A[n],[n](n; q) defined by∑
w

awx
e,w 7→

∑
w

awxe,w =
∑
w

aw xe,w (26)

where
q = q−1, xe,w = xw0,w0w = xn,wn

· · ·x1,w1
. (27)

Lemma 4.1 The bar involutions of (10) and (26) are compatible with the action of Hn(q) on A[n],[n](n; q).
That is,

xe,v ◦ T̃si = xe,v ◦ T̃si (28)

for all v ∈ Sn.

Proof: Omitted. 2

It is known that there is a unique, bar-invariant basis of A[n],[n](n; q) closely related to the Kazhdan-
Lusztig basis of the Hecke algebra. We call the elements of this basis the Kazhdan-Lusztig immanants
{Immv(x; q) | v ∈ Sn}. First appearing in Du [5],[6], this basis has the following theorem-definition. (See,
e.g., [3, Thm. 5.3])

Theorem 4.2 For any v ∈ Sn, there is a unique element Immv(x; q) ∈ A[n],[n](n; q) such that

Immv(x; q) = Immv(x; q) (29)

Immv(x; q) =
∑
w≥v

εv,wq
−1
v,wQv,w(q)x

e,w, (30)

where Qv,w(q) are polynomials in q of degree ≤ `(w)−`(v)−1
2 if v < w and Qv,v(q) = 1.

The polynomialsQu,v(q) above are actually the inverse Kazhdan-Lusztig polynomials, found in [8, Sec. 3].
They are related to the Kazhdan-Lusztig polynomials by

Qu,v(q) = Pw0v,w0u(q) = Pvw0,uw0(q). (31)

We can now describe a right action of Hn(q) on the immanant space by its action on the Kazhdan-Lusztig
immanants.

Corollary 4.3 The right action of the Hecke algebra on A[n],[n](n; q) is described by

Immv(x; q) ◦ T̃si =


q

1
2 Immv(x; q) + Immvsi(x; q) +

∑
w>v
wsi>w

µ(v, w)Immw(x; q) if vsi < v,

−q¯1
2 Immv(x; q) if vsi > v.

(32)

Proof: Omitted. 2

A deeper connection between the Kazhdan-Lusztig immanants and the Kazhdan-Lusztig basis is evident
in the Z[q 1

2 , q¯
1
2 ]-bilinear form on A[n],[n](n; q) × Hn(q) defined by by 〈xe,v, T̃w〉 = δv,w. Specifically, we
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have 〈Immv(x; q), C
′
w(q)〉 = δv,w, so the Kazhdan-Lusztig basis is dual to the basis of Kazhdan-Lusztig

immanants.

In the following lemma we relate the definition of the right preorder in the Hecke algebra with these
Kazhdan-Lusztig immanants. The results in the proof will also be essential in describing the relationship of
the Hn(q)-representations associated with the Kazhdan-Lusztig basis and immanants.

Lemma 4.4 Let v, v′ ∈ Sn. Then v lR v′ if Immv′(x; q) appears with nonzero coefficient in the Kazhdan-
Lusztig immanant expansion of Immv(x; q) ◦ T̃u for some u ∈ Sn.

Proof: Omitted. 2

With Lemma 4.4 we can now express the preorder in terms of the Kazhdan-Lusztig immanants. We can
now construct Hn(q)-modules indexed by λ ` n, as in [7, Appendix], with the Kazhdan-Lusztig immanants.
We choose a tableau T of shape λ and allow Hn(q) to act by right multiplication on

V λ =
def

span{Immw(x; q) |Q(w) = T}, (33)

regarded as the quotient

span{Immv(x; q) | v ≥R w}/span{Immv(x; q) | v ≥R w, v 6≤R w}. (34)

The quotient is necessary because like Kλ, V λ is not in general closed under the action of Hn(q). In
particular, whenever λ 6= (1n) we have the containments

V λ ⊂ Hn(q)V
λ ⊆ V λ ⊕ span{Immv(x; q) | v ≥R w, v 6≤R w}. (35)

5 Generalized submatrices and vanishing properties of immanants

In [11] Rhoades and Skandera stated conditions on immanants Immw(x) in Z[x] and on n × n-matrices
A which imply that Immw(A) = 0. Here we present new, analogous vanishing results for immanants in
A[n],[n](n; q). Specifically we will state conditions on quantum immanants Immw(x; q) in A(n; q) and on
generalized submatrices xL,M of the quantum matrix x, which imply that Immw(xL,M ; q) = 0. Using these
results we can eliminate the quotient needed in the construction (34) of the Hn(q)-modules. This provides a
quantum analog of the authors’ results in [3].

To express the vanishing results we need to define the row repetition partition of an n× n-matrix A by

µ[j](A) =
def

(µ1, . . . , µk), (36)

where k is the number of distinct rows in the n × j-submatrix A[n],[j], and µ1, . . . , µk are the multiplicities
with which distinct rows appear, written in weakly decreasing order. Also we define the permutation w[j] ∈
Sj from w ∈ Sn by arranging 1, . . . , j in the same relative order of the first j terms in the one line notation
of w.

Lemma 5.1 Fix a permutation w ∈ Sn and indices 1 ≤ j ≤ n. If sh(w[j]) � µ[j](xL,[n]), then

Immw(xL,[n]; q) = 0. (37)
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An immediate consequence of this vanishing result follows after defining a partial order found in [11]. A
partial order on standard tableaux is the iterated dominance of tableaux. Given two standard tableau T,U
both having n boxes, we define U /I T if for j = 1, . . . , n we have

sh(U[j]) ≺ sh(T[j]), (38)

where U[j] is the subtableau of U consisting of all entries less than or equal to j.

Corollary 5.2 Fix a partition λ ` n and define the multiset L = 1λ1 · · ·nλn , where nk is shorthand for n
appearing k times. For each permutationw satisfying sh(w) � λ or satisfying sh(w) = λ andQ(w) 6= T (λ),
we have that Immw(xL,[n]) = 0.

Proof: If w satisfies sh(w) � λ then the case with j = n of Lemma 5.1 implies that Immw(xL,[n]; q) = 0.
Suppose that sh(w) = λ and Q(w) 6= T (λ). Since the tableau T (λ) is greatest in iterated dominance among
all tableaux of shape λ, we have that Q(w) /I T (λ) and there exists an index j such that

sh(Q(w)[j]) ≺ sh(T (λ)[j]) = µ[j](xL,[n]). (39)

Then by the fact that sh(w[j]) = sh(Q(w)[j]) we see that sh(w[j]) ≺ µ[j](xL,[n]), which by Lemma 5.1
implies that Immw(xL,[n]; q) = 0. 2

We can define a right action of Hn(q) on AL,[n](n; q) by the formula

(xL,[n])
e,w ◦ T̃s =

{
(xL,[n])

e,ws, ws > w

(xL,[n])
e,ws + (q

1
2 − q¯1

2 )(xL,[n])
e,w, ws < w.

(40)

We can then extend this action for the Kazhdan-Lusztig immanants evaluated at generalized submatrices.

Corollary 5.3 Fix u ∈ Sn and an n-element multiset L of [n]. For a basic transposition s, the right action
of Hn(q) on the element Immu(xL,[n]; q) of AL,[n](n; q) is given by

Immu(xL,[n]; q) ◦ T̃s =
q

1
2 Immu(xL,[n]; q) + Immus(xL,[n]; q) +

∑
w>u
ws>w

µ(u,w)Immw(xL,[n]; q), us < u

−q¯1
2 Immu(xL,[n]; q), us > u.

(41)

Proof: For u ∈ Sn the Kazhdan-Lusztig immanant indexed by u evaluated at the matrix xL,[n] is given by

Immu(xL,[n]; q) =
∑
w≥u

εu,wq
−1
u,wQu,w(q)(xL,[n])

e,w. (42)
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Now we have an action of Hn(q) on the immanants by (40),

Immu(xL,[n]; q) ◦ T̃s =
∑
w≥u

εu,wq
−1
u,wQu,w(q) (xL,[n])

e,w ◦ T̃s

=
∑
w≥u
ws>w

εu,wq
−1
u,wQu,w(q)(xL,[n])

e,ws

+
∑
w≥u
ws<w

εu,wq
−1
u,wQu,w(q)

(
(xL,[n])

e,ws + (q
1
2 − q¯1

2 )(xL,[n])
e,w
)

= −q¯1
2

∑
w≥u
ws>w

εu,wq
−1
u,wQu,ws(q)(xL,[n])

e,w

+
∑
w≥u
ws<w

εu,wq
−1
u,w

(
(q

1
2 − q¯1

2 )Qu,w(q)− q
1
2Qu,ws(q)

)
(xL,[n])

e,w.

(43)

If us > u we know that Qu,w(q) = Qu,ws(q) for any permutation w. Thus we have from (43) the action
of T̃s is

Immu(xL,[n]; q) ◦ T̃s = −q¯
1
2

∑
w≥u
ws>w

εu,wq
−1
u,wQu,w(q)(xL,[n])

e,w

+
∑
w≥u
ws<w

εu,wq
−1
u,w

(
(q

1
2 − q¯1

2 )Qu,w(q)− q
1
2Qu,w(q)

)
(xL,[n])

e,w

= −q¯1
2 Immu(xL,[n]; q), (44)

as we expected.

If us < u we know thatQus,w(q) = Qus,ws(q) for any permutation w. By careful application of the recur-
sive formula for the inverse Kazhdan-Lusztig polynomials we can also observe the following relationships.
If ws > w then we see that

Qu,ws(q) = Qus,w(q)− qQu,w(q) +
∑

u<v≤w
v<vs

qv,wµ(u, v)Qv,w(q). (45)

If ws < w then we see that

Qu,w(q) + qQu,ws(q) = Qus,ws(q) +
∑

u<v≤ws
v<vs

qv,wsµ(u, v)Qv,ws(q) (46)

= Qus,w(q) +
∑

u<v≤ws
v<vs

qv,wsµ(u, v)Qv,ws(q). (47)
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Thus we have from (43) the action of T̃s is

Immu(xL,[n]; q) ◦ T̃s

= −q¯1
2

∑
w≥u
ws>w

εu,wq
−1
u,w

Qus,w(q)− qQu,w(q) + ∑
u<v≤w
v<vs

qv,wµ(u, v)Qv,w(q)

 (xL,[n])
e,w

+
∑
w≥u
ws<w

εu,wq
−1
u,w

q 1
2Qu,w(q)− q¯

1
2

Qus,w(q) + ∑
u<v≤ws
v<vs

qv,wsµ(u, v)Qv,ws(q)


 (xL,[n])

e,w

=
∑
w≥u
ws>w

εu,wq
−1
u,w

q 1
2Qu,w(q)− q¯

1
2Qus,w(q)− q¯

1
2

∑
u<v≤w
v<vs

qv,wµ(u, v)Qv,w(q)

 (xL,[n])
e,w

+
∑
w≥u
ws<w

εu,wq
−1
u,w

q 1
2Qu,w(q)− q¯

1
2Qus,w(q)− q¯

1
2

∑
u<v≤ws
v<vs

qv,wsµ(u, v)Qv,ws(q)

 (xL,[n])
e,w

= q
1
2 Immu(xL,[n]; q) + Immus(xL,[n]; q) +

∑
v>u
v<vs

µ(u, v)Immv(xL,[n]; q), (48)

as we expected. 2

We can now see that the right Hn(q)-action defined in Corollary 5.3 actually describes an Hn(q)-module
if we evaluate the immanants at generalized submatrices.

Theorem 5.4 Let λ ` n and set L = 1λ1 · · ·nλn . Define

Wλ =
def

span{Immw(xL,[n]; q) |Q(w) = T (λ)}, (49)

where T (λ) is the superstandard tableau of shape λ. Then Wλ is an Hn(q)-module.

Proof: By (35) we know that it suffices to show that Immv(xL,[n]; q) = 0 for v >R w where Q(w) = T (λ).
Since v >R w then we know that sh(w) � sh(v). The row multiplicity partition of xL,[n] is µ(xL,[n]) = λ.
So sh(v) ≺ sh(w) = µ(xL,[n]). Thus sh(v) � µ(xL,[n]). Therefore, by Lemma 5.1, Immv(xL,[n]; q) = 0
for all v >R w. 2

The condition for inclusion in the basis of this module is Q(w)> = T (λ) unlike the condition, Q(w) = T
where sh(T ) = λ, used in the definition of V λ above. The need for the change in conditions is due to the
result Corollary 5.2.

We would now like to show that these modules, Wλ, are isomorphic to the modules constructed by the
action Hn(q) on the Kazhdan-Lusztig basis. We shall then show that the action of T̃si on either basis yields
equal matrices, up to ordering of the basis elements. Let ρ1 : Hn(q) → End(Kλ) and ρ2 : Hn(q) →
End(Wλ) be the representations of Hn(q) defined by the right actions described in (16) and Corollary 4.3,
respectively.

Theorem 5.5 Let X1(h), X2(h) be the matrices of ρ1(h), ρ2(h) with respect to the Kazhdan-Lusztig basis
and the Kazhdan-Lusztig immanant basis. Then X1(h) = X2(h).
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Proof: First, we construct Kλ as in (17) with T = T (λ). Let B = {v ∈ Sn |Q(v) = T (λ)}. From Lemma
2.1 we see that if Cw(q) is a basis element of Kλ, i. e. w ∈ B, then Q(ww0)

> = Q(w) = T (λ). Thus
if w ∈ Bw0, then Immw(xL,[n]; q) is a basis element of Wλ, as in (49). Define coefficients asiv,w for each
generators si of Sn and v, w ∈ B so that

C ′v(q)T̃si =
∑
w∈B

asiv,wC
′
w(q). (50)

Then from the proof of Lemma 4.4 and Corollary 5.3 we see that for all v ∈ B

Immvw0(xL,[n]; q) ◦ T̃si =
∑
w∈B

asiv,wImmww0(xL,[n]; q). (51)

Thus X1(T̃si) = X2(T̃si). Since any element of v ∈ Sn is a product of generators we have that X1(T̃v) =

X2(T̃v) and thus for any element h ∈ Hn(q) we have that X1(h) = X2(h). 2

Corollary 5.6 The modules C(q 1
2 ) ⊗Wλ indexed by partitions λ ` n are the irreducible C(q 1

2 ) ⊗Hn(q)-
modules.

This result follows immediately from the fact that the modules Kλ are the irreducible Hn(q)-modules.
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