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Abstract. We introduce k-crossings and k-nestings of permutations. We show that the crossing number and the
nesting number of permutations have a symmetric joint distribution. As a corollary, the number of k-noncrossing
permutations is equal to the number of k-nonnesting permutations. We also provide some enumerative results for
k-noncrossing permutations for some values of k.

Résumé. Nous introduisons les k-chevauchement d’arcs et les k-empilements d’arcs de permutations. Nous mon-
trons que l’index de chevauchement et l’index de empilement ont une distribution conjointe symétrique pour les
permutations de taille n. Comme corollaire, nous obtenons que le nombre de permutations n’ayant pas un k-
chevauchement est égal au nombre de permutations n’ayant un k-empilement. Nous fournissons également quelques
résultats énumératifs.
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1 Introduction
Nestings and crossings are equidistributed in many combinatorial objects, such as matchings, set par-
titions, permutations, and large classes of embedded labelled graphs [2, 3, 5]. More surprising is the
symmetric joint distribution of the crossing and nesting numbers: A set of k arcs forms a k-crossing (re-
spectively nesting) if each of the

(
k
2

)
pairs of arcs cross (resp. nest). The crossing number of an object

is the largest k for which there is a k-crossing, and the nesting number is defined similarly. Chen et
al. [2] proved the symmetric joint distribution of the nesting and crossing numbers for set partitions and
matchings. Although they describe explicit involutions, they do not use simple local operations on the
partitions. Recently, de Mier [5] interpreted the work of Krattenthaler [6] to show that k-crossings and
k-nestings satisfy a similar distribution in embedded labelled graphs.

A hole in this family of results is the extension of the notions of k-crossings and k-nestings to permu-
tations. This note fills this gap. We also give exact enumerative formulas for permutations of size n with
crossing numbers 1 (non-crossing) and dn/2e.
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Aσ =

111087654321 129

Aσ+ = 111087654321 129

Aσ− = 111087654321 129

Fig. 1: An arc diagram representation for the permutation σ = [9 5 6 7 8 3 2 1 4 12 11 10], and its decomposition into
upper and lower arc diagrams (A+

σ , A
−
σ ). In this example, cr(σ) = 4, ne(σ) = 3, and the degree sequence is given

by Dσ = (1, 0)(1, 0)(1, 0)(1, 0)(1, 1)(0, 1)(0, 1)(0, 1)(0, 1)(1, 0)(1, 1)(0, 1).

2 Introducing k-crossings and k-nestings of permutations
2.1 Crossings and nestings
The arc annotated sequence associated to the permutation σ ∈ Sn is the directed graph on the vertex set
V (σ) = {1, . . . , n} with arc set A(σ) = {(a, σ(a)) : 1 ≤ a ≤ n}, drawn in a particular way. It is also
known as the standard representation, or simply, the arc diagram. It is embedded in the plane by drawing
an increasing linear sequence of the vertices, with edges (a, σ(a)) satisfying a ≤ σ(a) drawn above the
vertices (the upper arcs), and the remaining lower arcs satisfying a > σ(a) drawn below. We refer to this
graph as Aσ; the subgraph induced by the upper arcs and V (σ) is A+

σ ; and the subgraph induced by the
lower arcs and V (σ) is A−σ . Additionally, we reverse the orientation of the arcs in A−σ , and view it as a
classic arc diagram above the horizon. Because of these rules, the direction of the arcs is determined, and
hence we simplify our drawings by not showing arrows on the arcs.

These two subgraphs are arc diagrams in their own right: for example A−σ represents a set partition,
and A+

σ is a set partition with some additional loops.
Crossings and nestings are defined for permutations by considering the upper and lower arcs separately.

A crossing is a pair of arcs {(a, σ(a)), (b, σ(b))} satisfying either a < b ≤ σ(a) < σ(b) (an upper
crossing) or σ(a) < σ(b) < a < b (a lower crossing). A nesting is a pair of arcs (a, σ(a)) (b, σ(b))
satisfying a < b ≤ σ(b) < σ(a) (an upper nesting) or σ(a) < σ(b) < b < a (a lower nesting).

There is a slight asymmetry to the treatment of upper and lower arcs in this definition which we shall
see is inconsequential. However, the reader should recall that what is considered a crossing (resp. nesting)
in the upper diagram is elsewhere called an enhanced crossing (resp. enhanced nesting).

Crossings and nestings were defined in this way by Corteel [3] because they represent better known
permutation statistics. Corteel’s Theorem 1 states that the number of top arcs in this representation of a
permutation is equal to the number of weak excedances, the number of arcs on the bottom is the number
of descents, each crossing is equivalent to an occurrence of the pattern 2 − 31, and each nesting is an
occurrence of the pattern 31 − 2. Corteel’s Proposition 4 states nestings and crossings occur in equal
number across all permutations of length n.
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2.2 k-nestings and k-crossings
To generalize Corteel’s work we define k-crossings and k-nestings in the same spirit as set partitions and
matchings. A k-crossing in a permutation ard diagram Aσ is a set of k arcs {(ai, σ(ai)) : 1 ≤ i ≤ k}
that satisfy either the relation a1 < a2 < · · · < ak ≤ σ(a1) < σ(a2) < · · · < σ(ak) (upper k-crossing)
or σ(a1) < σ(a2) < · · · < σ(ak) < a1 < a2 < · · · < ak (lower k-crossing). Similarly, a k-nesting is a
set of k arcs {(ai, σ(ai)) : 1 ≤ i ≤ n} that satisfy either the relation a1 < a2 < · · · < ak ≤ σ(ak) <
· · · < σ(a2) < σ(ak) (upper k-nesting) or σ(a1) < σ(a2) < · · · < σ(ak) < ak < · · · < a2 < a1 (lower
k-nesting).

The crossing number of a permutation σ, denoted by cr(σ), is the size of the largest k such that Aσ
contains a k-crossing. In this case we also say σ is k + 1-noncrossing. Likewise, the nesting number
of a permutation ne(σ) is the size of the largest nesting in Aσ , and define k + 1-noncrossing similarly.
Occasionally we consider the top and lower diagrams in their own right as graphs, and then we use the
definition of deMier [5], and hence distinguish separately the enhanced crossing number of the graphA+

σ

denoted cr∗(A+
σ ) from the permutation crossing number, and likewise for the enhanced nesting number

ne∗. The number of permutations of Sn with crossing number equal to k is Cn(k), and we likewise define
Nn(k) for nestings.

The degree sequence Dg of a graph g is the sequence of indegree and outdegrees of the vertices, when
considered as a directed graph:

Dg ≡ (Dg(i))i =
(
indegreeg(i), outdegreeg(i)

)n
i=1

.

Some sources call these left-right degree sequences since in other arc diagrams the incoming arcs always
come in on the left, and the outgoing arcs go out to the right. As a graph, the degree sequence of a
permutation is trivial: (1, 1)n, since a permutation is a map in which every point has a unique image, and
a unique pre-image. To define a more useful entity, we define the degree sequence of a permutation to
be the degree sequence of only the upper arc diagram: Dσ ≡ DA+

σ
. The degree sequence defined by the

lower arc diagram can be computed coordinate-wise directly from the upper by simple transformations
given in Table 2.2, and we denote this sequence Dσ . (The sums of the vertex degrees is not (1,1) because
the lower arcs have their orientation reversed, and hence the indegree, and the outdegree have switched)
An example is in Figure 1. The vertices with degree (0, 1) are called “openers” and those with degree
(1, 0) are “closers”.

The main theorem can now be stated.

Theorem 1 LetNCn(i, j,D) be the number of permutations of n with crossing number i, nesting number
j, and left-right degree sequence specified by D. Then

NCn(i, j,D) = NCn(j, i,D). (1)

There is an explicit involution behind this enumerative result, and the proof is in Section 4.

2.3 Preliminary enumerative results
The number of permutations of Sn with crossing number equal to k is directly computable for small
values of n and k.

We immediately notice the first column of Table 2, the non-crossing permutations, are counted by
Catalan numbers: Cn(1) = 1

n+1

(
2n
n

)
. This has a simple explanation: non-crossing partitions have long
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Type vertex i Dσ(i) Dσ(i)

opener (1,0) (1,0)

closer (0,1) (0,1)

loop (1,1) (0,0)

upper transient (1,1) (0,0)

lower transient (0,0) (1,1)

Tab. 1: The five vertex types that appear in permutations, and their associated upper degree value, and lower degree
value.

n\k 1 2 3 4 5
1 1
2 2
3 5 1
4 14 10
5 42 76 2
6 132 543 45
7 429 3904 701 6
8 1430 29034 9623 233
9 4862 225753 126327 5914 24

Tab. 2: Cn(k): The number of permutations of Sn with crossing number k. A crossing number of 1 is equivalent to
non-crossing.

been known to be counted by Catalan numbers and there is a simple bijection between non-crossing
permutations and non-crossing partitions. Essentially, to go from a non-crossing permutation to a non-
crossing partition, flip the arc diagram upside down, convert the loops to fixed points, and then remove the
lower arcs. This defines a unique set partition, and is easy to reverse. This bijection is easy to formalize,
but it is not the main topic of this note.
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3 Enumeration of maximum nestings and crossings
To get a sense of how Theorem 1 is proved, and to obtain some new enumerative results, we consider the
set of maximum nestings and crossings. A maximum nesting is the largest possible: a dn/2e-nesting is
maximum in a permutation on n elements. We can compute Nn(dn/2e) explicitly.

Theorem 2 The number of permutations with a maximum nesting satisfies the following formula:

Nn(dn/2e) =

{
m! n = 2m+ 1
2(m+ 1)!− (m− 1)!− 1 n = 2m

. (2)

Proof: We divide the result into a few cases, but each one is resolved the same way: For each permutation
σ ∈ Sn with a maximum nesting, the dn/2e-nesting comes from either A+

σ or A−σ , and in most cases
defines that subgraph. Once one side is fixed, and there is a given degree sequence, it is straightforward to
compute the number of ways to place the remaining arcs. Some cases are over counted, and tallying these
gives the final result.

Odd n: n = 2m + 1 To achieve an m + 1-nesting, it must be an enhanced nesting in the upper arc
diagram, and it uses all vertices, including a loop: σ(i) = n − i + 1 : 1 ≤ i ≤ m. It remains to define
σ(i) for m < i ≤ n. The lower degree sequence is fixed, and so 1 ≤ σ(i) < m for each i, but other than
that there is no restriction. Thus, there are m! possibilities.

Even n: n = 2m The even case is slightly more complicated, owing to the fact that three different ways
to achieve an m-nesting:

1. An m-nesting in A+
σ These permutations satisfy σ(i) = n − i, 1 ≤ i ≤ m. As before, there are m!

ways to define σ(i),m < i ≤ n.

2. An m-nesting in A−σ These permutations satisfy σ(n − i) = i, 1 ≤ i ≤ m. Again, there are m!
possibilities to define σ(i), 1 < i ≤ m. Only the involution [nn − 1 . . . 2 1] is in the intersection
of these sets.

3. An enhanced m-nesting in A+
σ If the m-nesting uses only 2m − 1 vertices, there is one left over. It

must either be a lower transient vertex, or a loop since there is nothing left to connect to it. We
count these by considering the different ways to construct it from a smaller permutation diagram.
Suppose we have a permutation with an m-nesting on 2m − 1 vertices. By the first part, we know
there are (m − 1)! of these. We place it on 2m points, by first selecting our special vertex i, and
placing the permutation on the rest. There are 2m ways to pick this special vertex. Finally, we
create the new permutation σ by connecting the new vertex to the rest of the structure. We choose a
point j to be the value σ(i). We can choose i and thus i is a loop. Otherwise, j must be before the
loop in σ′. We then set σ−1(i) to be σ′−1(j). There are m choices for σ(i).

Over counting we have counted twice the family of diagrams with two loops in the center. There are
(m− 1)! of these.

Putting all of the pieces together, and simplifying the expression we get the formula:

N2m(m) = 2(m+ 1)!− (m− 1)!− 1.
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2

This proof suggests a direct involution on the permutation which switches a maximum nesting for a
maximum crossing, since the degree sequence of a nesting and a crossing have the same shape. Thus
the formula for maximum crossings is the same. However, in certain diagrams, this involution sends a
k-crossing to a k + 1-nesting, and so it can not be used to prove equidistribution for general k.

3.1 Other enumerative questions

From the formula, we see that a very small proportion of permutations have maximum crossings, (≤
2n+1

2 !/n!) or are non-crossing ≈ 4nn−3/2/n!. What can be said of the nature of the distribution, or the
even simply the average crossing number? What is the nature of the generating function P (z;u) where
u marks the crossing number, or even simply the generating function for k-noncrossing permutations?
Bousquet-Mélou and Xin [1] consider this question for partitions: 2-noncrossing partitions are counted
by Catalan numbers, (as we mentioned before), and thus the generating function is algebraic; the counting
sequence for 3-noncrossing partitions is P-recursive, and so the generating function is D-finite, and they
conjecture that the generating function for k-noncrossing partitions, k > 3 are likely not D-finite. How
can these results be adapted to permutations, given the similar structure?

4 Proof of Theorem 1
We restate and prove our main theorem. The proof first decomposes a permutation into its upper and
lower arc diagrams and then applies the results for graphs separately to each part.

Theorem 1 Let NCn(i, j,D) be the number of permutations of n with crossing number i, nesting
number j, and left-right degree sequence specified by D. Then

NCn(i, j,D) = NCn(j, i,D).

Proof: We consider the top and the bottom in turn, and to each apply the consequence of Chen et al.,
that the pair (cr(g),ne(g))) is symmetrically distributed across all arc diagrams g on n vertices with
degree sequence a fixed element of {(0, 0), (0, 1), (1, 0), (1, 1)}n, which is the case for our graphs here.
Furthermore, we apply their degree preserving involution Ψ : Sn → Sn which swaps nesting and
crossing number. That is, Dσ = DΨ(σ), and ne(σ) = cr(Ψ(σ)), cr(σ) = ne(Ψ(σ)).

This consequence can also be seen as an example of de Miers’ Theorem 3.3 [5]. Vertices with maximum
left or right degree at most one avoid multiple edges, as is the case with our graphs, and hence the result
applies. Furthermore, her interpretation of graphs as fillings of growth diagrams apply.

In order to apply the above results, the first step is to re-writeA+
σ so that we only consider proper cross-

ings and nestings instead of enhanced crossing and nestings. This is a common trick, known as inflation.
Essentially, we create the graph g fromA+

σ by adding some supplementary vertices to eliminate loops and
transitory vertices:
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i i' i''

i i' i''

Now each nesting and crossing is proper, and by [5, Lemma 3.4] ne∗(A+
σ ) = ne(g) and cr∗(A+

σ ) =
cr(g).

Let Ψ be the map on embedded labelled graphs described implicitly in de Mier’s proof. Because Ψ
is a left-right degree preserving map, we can identify the supplementary vertices in Ψ(g) to get a graph
with the correct kind of vertices. Call this new graph g′. We now extend the definition of Ψ to A+

σ by
Ψ(A+

σ ) ≡ g′.
Consider the pair of graphs (Ψ(A+

σ ),Ψ(A−σ )).
Proving our main theorem now reduces to showing that there is a unique τ ∈ Sn such that Aτ =

(Ψ(A+
σ ),Ψ(A−σ )), which we do next. For every vertex in Aτ the indegree and the outdegree are equal to

one. This is because the left-right degree sequence of both the top and the bottom are preserved in the
map, and hence the vector sum of their degree sequence is unchanged, i.e. (1, 1)n, and has all the correct
partial sum properties. The map is a bijection and so τ is unique.

This map swaps the upper nesting and the upper crossing number, and also the lower nesting and the
lower crossing number. Thus cr(τ) = max{cr∗(A+

τ ), cr(A−τ )} = max{ne∗(A+
σ ),ne(A−σ )} = ne(σ).

Thus, the crossing and the nesting number are switched under the map Ψ. 2

Figure 2 illustrates our involution on an example. Remark that the degree sequence is fixed.

Aσ =

111087654321 129

AΨ(σ) =

Fig. 2: The permutation σ and its image in the involution Ψ(σ). Note that ne(Ψ(σ)) = 4, cr(Ψ(σ)) = 3.

4.1 Equidistribution in permutation subclasses
Involutions are in bijection with partial matchings, and have thus been previously considered. What of
other subclasses of permutations? The map presented here does not fix involutions, because loops are
mapped to upper transient vertices, but it does fix any class that is closed under degree sequence, for
example, permutations with no lower transitory vertices, or permutations with no upper transitory vertices
nor loops. These conditions have interpretations in terms of other permutation statistics, if we consider
the initial motivations of Corteel.
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5 Conclusions and open questions
The main open question, aside from the enumerative, and probabilistic questions we have already raised,
is to find a direct permutation description of our involution, i.e. a description avoiding the passage through
tableaux or fillings of Ferrers diagrams. Is this involution already part of the vast canon of permutation
automorphisms? de Mier’s original involution for graphs [4] applies in our situation, and is apparently a
different map. How does it compare?

Which subclasses of permutations preserve the symmetric distribution? From our example, we remark
that cycle type is not neccesarily conserved (since loops are always mapped to upper transitory vertices),
but non-intersecting intervals are preserved. Involution permutations are in bijection with partial match-
ings, and so this subclass has this property.

Is there an interpretation of crossing and nesting numbers in terms of other permutations statistics?
Which other statistics does this involution preserve?

Ultimately we have considered a type of graph with two edge colours and strict degree restrictions. Can
this be generalized to a larger class of graphs with fewer degree restrictions? What of a generalization of
graphs with multiple edge colours?
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