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f -vectors of subdivided simplicial complexes
(extended abstract)
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Abstract. We take a geometric point of view on the recent result by Brenti and Welker, who showed that the roots of
the f -polynomials of successive barycentric subdivisions of a finite simplicial complex X converge to fixed values
dependinig only on the dimension of X .
We show that these numbers are roots of a certain polynomial whose coefficients can be computed explicitely. We
observe and prove an interesting symmetry of these roots about the real number −2. This symmetry can be seen via
a nice realization of barycentric subdivision as a simple map on formal power series. We then examine how such a
symmetry extends to more general types of subdivisions. The generalization is formulated in terms of an operator on
the (formal) ring on the set of simplices of the complex.

Résumé. On applie un point de vue géométrique à un récent résultat de Brenti et Welker, qui ont montré que les
racines des polynômes f de subdivisions barycentriques successives d’un complexe simplicial X convergent vers des
valeurs fixes, ne dépendant que de la dimension de X .
On preuve que ces nombres sont en effet eux-mêmes racines d’un polynôme dont les coefficients peuvent être calculés
explicitement. De plus, on observe et on démontre une symétrie particulière de ces nombres autour du numéro −2.
Cette symétrie se révèle en exprimant l’opération de subdivision barycentrique par une fonction sur des séries de
puissances formelles. Une symétrie pareille existe pour des méthodes de subdivision plus générales, où elle s’exprime
par des operateurs sur l’anneau des sommes formelles de simplexes du complexe.
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1 Motivation and setup
This is an extended abstract of our paper Delucchi et al. (2009), to which we refer for a full exposition
and the proofs of the statements. Let us begin here by stating the theorem which motivated our work.

Let X be an arbitrary finite simplicial complex of dimension d − 1, and for convenience assume that
all vectors and matrices are indexed by rows and columns starting at 0. We are interested in roots of the
f -polynomial of X , defined as follows. Let fXi denote the number of i-dimensional faces of X . We
declare that fX−1 = 1, where the (−1)-dimensional face corresponds to the empty face, ∅. The face vector,
or f -vector of X is the vector

fX := (fX−1, f
X
0 , . . . , f

X
d−1).
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Let t denote the column vector of powers of t, (td, td−1, . . . t0)T . The f -polynomial fX(t) encodes the
f -vector as a polynomial:

fX(t) :=

d∑
j=0

fXj−1t
d−j = fXt

We now focus on the recent result of Brenti and Welker Brenti and Welker (2008) that motivated our
investigations. Let X ′ denote the barycentric subdivision of X , and more generally let X(n) denote the
nth barycentric subdivision of X .

Theorem 1.1 Brenti and Welker (2008) Let X be a d-dimensional simplicial complex. Then, as n grows,
the roots of fX

(n)

converge to d− 1 negative real numbers which depend only on d, not on X .

This theorem may be surprising at first: there is no dependence on the initial complex X , only on
the dimension d. However, geometrically this makes perfect sense. Barycentrically subdividing a sim-
plicial complex X over and over again causes the resulting complex X(n) to have far more cells than
the original X . Because higher-dimensional cells contribute more new cells (in every dimension) upon
subdividing than lower-dimensional ones, the top-dimensional cells begin to dominate in their ‘number of
contributions’ to subdivisions.

More precisely, each of the fXd−1 top-dimensional cells of X contribute the same amount of cells
to X(n). Since these cells eventually dominate contributions from smaller-dimensional cells, the f -
polynomial for X(n) can be approximated by fXd−1 times the f -polynomial associated to the n-fold

subdivision of a single top-dimensional cell, σ(n)
d . Since the roots of a polynomial are unaffected by

multiplication by constants, the roots of fX
(n)

converge to the roots of fσ
(n)
d as n increases.

We will see that both these sequences converge to the roots of a specific polynomial, and these roots
satisfy an interesting symmetry.

We begin by observing the effect on f -vectors of barycentric subdivision. One key observation is that
barycentric subdivision multiplies f -vectors by a fixed matrix, Fd:

Definition 1.2 Define f̊Xi to be the number of interior i-faces of X for i ≥ 0. We set f̊X−1 = 1 if the
dimension of X is −1, and 0 otherwise. Let σd denote the standard (d− 1)-dimensional simplex. Define
Fd to be the (d+ 1)× (d+ 1) matrix determined by the interior (j−1)-faces of the subdivided i-simplex:

Fd := [f̊
σ′i
j−1].

With this notation in place, we have the following.

Corollary 1.3 For any n ≥ 0,

fX
(n)

= fXFnd .

Thus, to understand barycentric subdivision, we need to understand the matrix Fd. We will compute
the entries in Fd more explicitly later, but for now we simply observe a formula which follows from
Inclusion-Exclusion:
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Lemma 1.4 If j > i then f̊σ
′
i

j = 0. If j ≤ i, then

f̊
σ′i
j =

i∑
k=0

(−1k)

(
i

k

)
f
σ′i−k

j .

By this lemma, Fd is lower triangular with diagonal entries f̊σ
′
i

i = f
σ′i
i = i!. Thus, the eigenvalues of

Fd are 0!, 1!, 2!, 3!, . . . , d!.

2 Main results
2.1 The limit polynomial
The goal of this section is to prove that the limit values of the roots of the fσ

n
d are themselves roots of

a polynomial of which we can explititely compute the roots. The geometric intuition behing this fact
is obtaining by noticing that, by definition, the coefficients of fσ

(n)
d record the number of cells of each

dimension occurring in σ(n)
d . Moreover, the number of cells in each dimension is bounded by a constant

times the number of top-dimensional cells. Thus, if we normalize fσ
(n)
d by dividing by the number of

top-dimensional cells, we have coefficients which, for each k, record the density of k-cells relative to the
number of top-dimensional cells. As this density is positive but strictly decreases upon subdividing, there
is a limiting value for the coefficient. Thus, there should be a limiting polynomial, with well-defined roots.
Let us make this precise.

By Corollary 1.3, fX
(n)

(t) = fXFnd t. As the greatest eigenvalue of Fd is d!, we normalize fX
(n)

(t)
by dividing by (d!)n - let pXn (t) denote the result:

pXn (t) :=
1

(d!)n
fX

(n)

(t).

Note this normalization does not alter the roots. It will also often be convenient to reverse the order of the
coefficients of pXn (t), with the effect of inverting the roots of pXn (t) (that is, the roots of fX

(n)

(t)) about
the unit circle in the extended complex plane:

qXn (t) := tdpXn (t−1).

To take powers of Fd, we diagonalize,

Fd = PdDdP
−1
d ,

whereDd is the diagonal matrix of eigenvalues 0!, 1!, . . . , d! and Pd is the (lower triangular) diagonalizing
matrix of eigenvectors. Thus, Fnd = PdD

n
dP
−1
d .

Now, let D̃d := 1
d!Dd. Let t denote the column vector t in reverse order, t = (t0, t1, . . . td)T . For any

simplicial complex X , we thus have the following equations:

fX
(n)

(t) = fXPdD
n
dP
−1
d t = (d!)n

(
fXPd

) (
D̃d

)n (
P−1
d

)
t

pXn (t) =
(
fXPd

) (
D̃d

)n (
P−1
d

)
t , qXn (t) =

(
fXPd

) (
D̃d

)n (
P−1
d

)
t
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As the eigenvalues of Fd are 0!, 1!, . . . , d!, for large n,Dn
d is dominated by its dth diagonal entry, (d!)n.

In the limit, the powers of the matrix D̃d = 1
d!Dd converge to the matrix

Md,d :=

0 · · · 0
...

. . .
...

0 · · · 1

 .
Thus, as n grows, the polynomials pXn and qXn respectively approach the polynomials

pX∞(t) :=
(
fXPd

)
Md,d

(
P−1
d

)
t , qX∞(t) :=

(
fXPd

)
Md,d

(
P−1
d

)
t

in the sense that each sequence converges coefficient-wise in the vector space of polynomials of degree at
most d.

By Corollary 1.3 and Lemma 1.4, we know the leading and trailing coefficients of pXn (t) and qXn (t):
pXn (t) = (d!)−ntd + . . .+ fXd−1 and qXn (t) = (d!)−n + . . .+ fXd−1t

d. Hence, in the limit, pX∞(t) does not
have 0 as a root, but has degree less than d (one root of the pXn diverges to −∞), while qX∞(t) is of degree
d with 0 as a root. Because the polynomials qXn (t) converge coefficient-wise to the polynomial qX∞(t) of
the same degree, their roots also converge (see for instance Tyrtyshnikov (1997)):

Because the matrix Pd is lower triangular and Md,d has only one nonzero entry in position (d, d), we
have (

fXPd
)
Md,d = cX,de

T
d ,

where ed is the unit vector with a 1 in the dth row, and cX,d is a constant depending on fX and Pd. As
both fX and Pd do not depend on the amount of subdivision n, the roots of pX∞ and qX∞ do not depend
on the value of cX,d, and thus do not depend on any coefficient of fXd . This leads us to the following
definition:

Definition 2.1 Define the limit p-polynomial and the limit q-polynomial by

pd(t) := eTd Pdt , qd(t) := eTd Pdt.

To summarize:

1. The roots of fX
(n)

(t) are equal to the roots of pXn (t).

2. The roots of qXn (t) (resp. pXn (t) converge to the roots of qd(t) (resp. pXd (t)), and depend only on
the dimension of X .

3. The coefficient of ti in the polynomial pd(t) (resp. qd(t)) is the (d− i)th (resp. the ith) entry in last
row of P−1

d .

In the full paper Delucchi et al. (2009) we derive explicit formulas for the computation of the coef-
ficients of the matrix P−1

d . We reproduce the result of some of these computations in our last section
here.

Using the fact, proved by Brenti and Welker, that the limit of the roots of the f -polynomial are distinct
and all real, we can summarize as follows.

Theorem A Let X be a d-dimensional simplicial complex. Then, as n increases, the roots of fX
(n)

converge to the d−1 (distinct) roots of a polynomial pd(t), whose coefficients can be explicitely computed
and depend only on d, not on X .
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2.2 Symmetry of the limit values
Our result about the symetry of the ’limit roots’ is the following.

Theorem B For any dimension d, the d− 1 ’limit’ roots are invariant under the map x 7→ −x
x+1 .

We will prove the corresponding symmetry for the roots of qd instead of pd, as it becomes a mirror
symmetry instead of a Möbius invariance.

Theorem 2.2 For every dimension d,

q∞(t) = (−1)dq∞(−1− t).

In particular, the roots of q∞(t) are (linearly) symmetric with respect to − 1
2 .

As a first step, note that Lemma 1.4 gives the following expressions.

Lemma 2.3 Let X be a simplicial complex. The f -polynomial of its barycentric subdivision fX
′
(t) and

the corresponding qX1 (t) are given by

fX
′
(t) =

d∑
j=0

∆j{fX(l)}ltd−j , (d!)qX1 (t) =

d∑
k=0

∆k{qX0 (l)}ltk.

This prompts us to consider barycentric subdivision as a function on polynomials in t defined by

b : Z[t]→ Z[t], g(t) 7→
∑
k≥0

∆k{g(l)}ltk,

so that, for a simplicial complex X of dimension d we have then b(qXj (t)) = d!qXj+1(t). The function b is
linear, and thus it is given by its values on monomials, which we arrange in a formal power series in the
variable x over the ring Z[t]. We thus consider a function B on the ring Z[t][[x]] defined as

B :
∑
k≥0

gk(t)xk 7−→
∑
k≥0

b
(
gk(t)

)
xk.

Theorem C In Z[t][[x]], barycentric subdivision satisfies the identity

B(etx) =
1

1− (ex − 1)t
.

To investigate the stated symmetry, we consider the following map

ι : Z[t]→ Z[t], g(t) 7→ g(−1− t).

One readily checks by explicit calculation that ιB(etx) = Bι(etx). This suffices to prove the follwing
key fact.

Lemma 2.4 The map ι is an involution, and it satisfies

ιbι = b.
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Recall that barycentric subdivision has the effect on each p- and q-polynomial of multiplying on the
right by F before the t and t, respectively, and rescaling by dividing by d!. In the limit, the limit p- and
q-polynomials are invariant under barycentric subdivision up to this scaling: thus b

(
q∞(t)

)
= d!q∞(t).

Moreover, since the eigenvalues of F are all distinct, q∞ is characterized by this identity and by having
leading coefficient fXd−1.

A computation based on Lemma 2.4 shows b
(
q∞(−1 − t)

)
= d!

(
q∞(−1 − t)

)
and since the lead

coefficient of q∞(−1− t) is (−1)dfXd−1, the stated symmetry holds.

3 Symmetry for Other Subdivision Methods
In general, given any polynomial g(t) ∈ Z[t], we can consider the polynomial ιg(t) = g(−1 − t). The
coefficient of tk in g(t) contributes (−1)k

(
k
j

)
times itself to the coefficient of tj in ιg(t): this contribution

is exactly the number of (j − 1)-dimensional faces of the (k − 1)-dimensional simplex. Thus, we can
interpret ι as a map on formal sums of simplices, as follows.

Let S be the set of simplices of a given simplicial complex X with vertex set V X . We will think of
every simplex σ ∈ S as a subset of V X . Now we can write

ι : Z[S]→ Z[S], σ 7→ (−1)dimσ+1
∑
τ⊆σ

τ.

We will identify a subdivision of X by the triple (X, X̃, φ), where X̃ is the simplicial complex sub-
dividing X (the ’result’ of the subdivision) and φ : S̃ → S is the function associating to each simplex
σ̃ ∈ S̃ its support in X . Now, a subdivision (X, X̃, φ) induces a linear map

bφ : Z[S]→ Z[S̃], σ 7→
∑

φ(σ̃)=σ

σ̃.

A subdivision method Φ is a collection of subdivisions Φ := {(σn, σ̃n, φn)}n≥0 such that for every
k-face ik : σk → σm of the standard m-simplex, the map φk is the restriction of φm to ikσk. This
ensures that, given any simplicial complex X , the complex Φ(X), called subdivision of X according to
the rule Φ is uniquely defined by requiring that every n-simplex of X is subdivided as (σn, σ̃n, φn) ∈ Φ.
A subdivision method is nontrivial in dimension n if φk is not the identity map for some k ≤ n. Clearly
if a subdivision is nontrivial in dimension n, then φn is not the identity map.

Given a subdivision method Φ, in view of the linearity of bφ for each subdivision, it makes sense to
write

bΦ(
∑
σ∈X

σ) =
∑
σ∈X

bΦσ.

As with the map b given by barycentric subdivision, for any subdivision method the induced map bΦ
always commutes with the map ι:

Lemma 3.1 For any subdivision method Φ, ιbΦ = bΦι.

This commutativity was the key step in proving the symmetry for the barycentric subdivision, together
with the fact that Fd had a dominating eigenvalue with geometric multiplicity 1. The latter property holds
for the matrix realizing any subdivision method that is nontrivial in the top dimension. We thus have the
desired result.
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Theorem D For any dimension n and any subdivision method Φ which is nontrivial in dimension n,
there exists a unique ‘limit polynomial’ pn,Φ(t), such that, for any d-dimensional simplicial complex X ,
the roots of fΦk(X)(t) converge to the roots of pn,Φ(t) as k increases. The roots of pn,Φ(t) are invariant
under the Möbius transformation x 7→ −x

x+1 .

Remark 3.2 Since the above interpretation is on the level of formal sums of simplices, the most natural
context in which to study it seems to be the Stanley-Reisner ring K[X], defined by any simplicial complex
X and any field K. A good introduction to these rings can be found in Stanley (1996), where some
properties of the Stanley-Reisner ring of a subdivision of a simplicial complex are explored. This brings
us to ask the following question.

Question 3.3 Is there a (multi-)complex in each dimension whose f -polynomial is related to the limit
polynomials pX∞(t) or qX∞(t)? More generally, is there a geometric interpretation of the coefficients or the
roots of pX∞(t) (equivalently, qX∞(t))?

Brenti and Welker raise the question of defining a general concept of ”barycentric subdivision” for a
standard graded algebra. We can broaden the question to involve all subdivision methods, and ask whether
the formulas developed in (Delucchi et al., 2009, Section 5) can be taken as a starting point to answer this
question.

3.1 Computations
Our method allows us to explicitly compute the coefficients of pd(t), of qd(t), and thus also the limit
roots. We carry out these computations in our full paper. As a sample, we give the values of the roots of
qd(t) for d ≤ 10 (computations which take less than 1 second of processor time using the formulae we
derive in Delucchi et al. (2009)). The roots of qd(t) are, for d ≤ 10, approximated by:

d = 2 : −1 0
d = 3 : −1 −.5 0
d = 4 : −1 −.76112 −.23888 0
d = 5 : −1 −.88044 −.5 −.11956 0
d = 6 : −1 −.93787 −.68002 −.31998 −.06213 0
d = 7 : −1 −.9668 −.79492 −.5 −.20508 −.0332 0
d = 8 : −1 −.98189 −.86737 −.63852 −.36148 −.13263 −.01811 0
d = 9 : −1 −.98996 −.91332 −.73961 −.5 −.26039 −.08668 −.01004 0
d = 10 : −1 −.99437 −.94277 −.81205 −.61285 −.38715 −.18795 −.05723 −.00563 0
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