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Combinatorial formulas for double parabolic
R-polynomials

Justin Lambright and Mark Skandera
Lehigh University, Bethlehem, PA, USA

Abstract. The well-known R-polynomials in Z[q], which appear in Hecke algebra computations, are closely related to
certain modified R-polynomials in N[q] whose coefficients have simple combinatorial interpretations. We generalize
this second family of polynomials, providing combinatorial interpretations for expressions arising in a much broader
class of computations. In particular, we extend results of Brenti, Deodhar, and Dyer to new settings which include
parabolic Hecke algebra modules and the quantum polynomial ring.

Résumé. Les bien connues polynômes-R en Z[q], qui apparaissent dans les calcules d’algébre de Hecke, sont re-
lationés à certaines polynômes-R modifiés en N[q], dont les coefficients ont simples interprétations combinatoires.
Nous généralisons cette deuxième famille de polynômes, fournissant des interprétations combinatoires pour les ex-
pressions qui se posent dans une catégorie beaucoup plus vaste de calculs. En particulier, nous étendons des résultats
de Brenti, Deodhar, et Dyer à des situations nouvelles, qui comprennent modules paraboliques pour l’algébre de
Hecke, et l’anneau des polynômes quantiques.

Resumen. Los ilustres polinomios-R en Z[q], que aparecen en los cálculos del álgebra de Hecke, están relacionados
con ciertos polinomios-R modificados en N[q], cuyos coeficientes tienen interpretaciones combinatorias sencillas.
Generalizamos esta segunda familia de polinomios, proporcionando interpretaciones combinatorias para las expre-
siones que surgen en una clase de cálculos más amplia. En particular, se amplian unos resultados de Brenti, Deodhar,
y Dyer a nuevas situaciones que incluyen los módulos parabólicos del álgebra de Hecke, y el anillo de polinomios
cuánticos.
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1 Introduction
An important ingredient in the definition of Kazhdan and Lusztig’s basis [KL79] for the Hecke algebra
Hn(q) of a Coxeter group W is a map now known as the bar involution. Applying this involution to a
natural basis of the algebra, one obtains a second basis, related to the first by polynomials {Ru,v(q) |u, v ∈
W} in Z[q] now known as R-polynomials. Alternatively, one may relate this second basis to the first by
polynomials {R̃u,v(q) |u, v ∈ W} in N[q] which we call modified R-polynomials. Coefficients of the
modifiedR-polynomials and their combinatorial interpretations were studied by Brenti [Bre94], [Bre97a],
[Bre97b], [Bre98], [Bre02], Deodhar [Deo85], and Dyer [Dye93].

Certain C[q 1
2 , q¯

1
2 ]-submodules of Hn(q) called double parabolic modules inherit a bar involution from

Hn(q), and therefore inherit analogs of R-polynomials called parabolic R-polynomials. Also belonging
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to Z[q], these parabolic R-polynomials appear in numerous papers, yet somehow have not received the
modification and combinatorial interpretation granted to their nonparabolic syblings.

Related to the bar involutions on the type-A Hecke algebra and its parabolic modules is another in-
volution on a certain noncommutative polynomial ring A(n; q) which we call the quantum polynomial
ring. This last involution, also called the bar involution, is an important ingredient in the definition of a
certain dual canonical basis of the quantum polynomial ring, related by Hopf algebra duality to Kashi-
wara’s [Kas91] and Lusztig’s [Lus90] canonical basis of sl(n,C). Again, applying this involution to a
natural basis of A(n; q), one obtains a second basis, related to the first by inverse R-polynomials and
inverse parabolic R-polynomials (equivalently, by modifications of these).

To summarize, we have several algebras with the property that a natural basis and its bar image are
related by a transition matrix whose entries are variations of R-polynomials. Using an elementary family
of bases ofA(n; q), we show that in all cases, the above entries have simple combinatorial interpretations
in terms of walks in the Bruhat order. These interpretations enable us to express all double parabolic
analogs of R-polynomials as sums of the nonparabolic polynomials. In all sections, we work specifically
in type A, but many of our results carry over to Hecke algebras of other types.

In Section 2 we review definitions concerning the symmetric group Sn and Hecke algebra Hn(q) of
type A. We define the bar involution on Hn(q), R-polynomials, and modified R-polynomials. We also
define double parabolic analogs of these, thus extending one of the two parabolic conventions appearing
in the literature. These polynomials are easily seen to be sums of nonparabolic R-polynomials and mod-
ified R-polynomials. In Section 3, we define the quantum polynomial ring A(n; q), its bar involution,
inverse R-polynomials, and modified inverse R-polynomials. We also define double parabolic analogs
of these, thus extending the second of the two parabolic conventions appearing in the literature. These
polynomials are not easily seen to be sums of nonparabolic inverse R-polynomials and modified inverse
R-polynomials. In Section 4, we consider various bases of the so-called immanant subspace of A(n; q)
and provide combinatorial interpretations for the transition matrices relating these to the natural basis
of the subspace. These lead to interpretations in Section 5 for all variations of the R-polyomials men-
tioned above, and to our main result which expresses double parabolic inverse R-polynomials as sums of
nonparabolic inverse R-polynomials.

2 The symmetric group and Hecke algebra
Let Sn be the Coxeter group of type An−1, i.e., the symmetric group on n letters. Sn is generated by the
standard adjacent transpositions s1, . . . , sn−1, subject to the relations

si
2 = e for i = 1, . . . , n− 1,

sisjsi = sjsisj for |i− j| = 1,

sisj = sjsi for |i− j| ≥ 2.

(2.1)

A standard action of Sn on rearrangements of the word 1 · · ·n is defined by letting si swap the letters in
positions i and i+ 1,

si ◦ a1 · · · an = a1 · · · ai+1ai · · · an. (2.2)

For each element v = si1 · · · si` ∈ Sn, we define the one-line notation of v to be the word v1 · · · vn =
v ◦ 1 · · ·n. Thus the one-line notation of the identity permutation e is 12 · · ·n. Using this convention, the
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one-line notation of vw is

(vw)1 · · · (vw)n = v ◦ (w ◦ 1 · · ·n) = wv1
· · ·wvn . (2.3)

Let `(w) be the minimum length of an expression for w in terms of generators, and let w0 denote the
longest word in Sn. Let ≤ denote the Bruhat order on Sn , i.e., v ≤ w if every reduced expression for w
contains a reduced expression for v as a subword.

The (Iwahori-)Hecke algebra Hn(q) of Sn is the C[q 1
2 , q¯

1
2 ]-algebra generated by the set of (modified)

natural generators, T̃s1 , . . . , T̃sn−1
, subject to the relations

T̃ 2
si = (q

1
2 − q¯1

2 )T̃si + 1 for i = 1, . . . , n− 1,

T̃si T̃sj T̃si = T̃sj T̃si T̃sj for |i− j| = 1,

T̃si T̃sj = T̃sj T̃si for |i− j| ≥ 2.

(2.4)

(We follow the notation of [Lus85], using modified generators T̃si instead of the more common generators
Tsi = q

1
2 T̃si .) If si1 · · · si` is a reduced expression for w ∈ Sn we define T̃w = T̃si1 · · · T̃si` , where

T̃e = 1. It is known that the definition of T̃w does not depend upon the choice of a reduced expression for
w. We shall call the elements {T̃w | w ∈ Sn} the (modified) natural basis of Hn(q). For u, v ∈ Sn, we
define εu,v = (−1)`(v)−`(u) and qu,v = (q

1
2 )`(v)−`(u).

An involutive automorphism on Hn(q) commonly known as the bar involution is defined by

q
1
2 = q¯

1
2 , T̃w = (T̃w−1)−1. (2.5)

Taking the bar involution of an element of Hn(q) and expanding in terms of the natural basis [KL79],
we have

T̃w =
∑
v≤w

εv,wq
−1
v,wRv,w(q)T̃v, (2.6)

where {Rv,w(q) | v, w ∈ Sn} are polynomials in Z[q], which are commonly called R-polynomials.
Modifying the R-polynomials by

q−1
v,wRv,w(q) = R̃v,w(q

1
2 − q¯1

2 ) (2.7)

gives us the modified R-polynomials {R̃v,w(q) | v, w ∈ Sn}, which belong to N[q]. Thus we may rewrite
(2.6) as

T̃w =
∑
v≤w

εv,wR̃v,w(q
1
2 − q¯1

2 )T̃v. (2.8)

Often appearing in the literature are C[q 1
2 , q¯

1
2 ]-submodules of Hn(q) spanned by sums of natural basis

elements corresponding to cosets of Sn. For a subset I of generators of Sn, the subgroup WI of Sn

generated by I is said to be parabolic. Note that we have W∅ = {e} and W{s1,...,sn−1} = Sn.
Two parabolic subgroups WI and WJ partition Sn into double cosets of the form WIwWJ . If J = ∅

or I = ∅, these cosets are denoted WIw and wWJ , respectively. Thus, ordinary single cosets are special
cases of double cosets. It is known that each double coset is an interval in the Bruhat order, containing a
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unique maximal element and a unique minimal element. Denote the collections of maximal and minimal
coset representatives by W I,J

+ and W I,J
− , respectively. Denote the longest element of a subgroup WI by

wI0 .
The C[q 1

2 , q¯
1
2 ]-submodule of Hn(q) corresponding to parabolic subgroups WI , WJ and their double

cosets WIwWJ is the span of certain double coset sums. For each permutation w ∈ W I,J
+ , define the

element
T̃ ′WIwWJ

=
∑

v∈WIwWJ

(−q 1
2 )`(w)−`(v)T̃v. (2.9)

Let H ′I,J denote the submodule of Hn(q) spanned by these elements,

H ′I,J = span
C[q

1
2 ,q¯

1
2 ]
{T̃ ′WIwWJ

| w ∈W I,J
+ }. (2.10)

The bar involution on Hn(q) induces a bar involution on H ′I,J . Curtis [Cur85] and Du [Du94] showed

that the elements {T̃ ′WIwWJ
| w ∈ W I,J

+ } form a basis of H ′I,J . Expanding this basis in terms of the
natural basis, Du showed that we have

T̃ ′WIwWJ
=

∑
v∈W I,J

+

v≤w

(q
1
2 )`(w)−`(v)RI,Jv,w(q

−1)T̃ ′WIvWJ
, (2.11)

where {RI,Jv,w | v, w ∈ W
I,J
+ } are polynomials belonging to Z[q]. When I = ∅ or J = ∅, we call these

single parabolic R-polynomials and if neither are empty we call them double parabolic R-polynomials.
Douglass [Dou90] and Deodhar [Deo87] looked at the single parabolic R-polynomials, while Du was
probably the first to mention the double parabolic versions. Applying the bar involution to both sides
of (2.9) and comparing terms, one sees that double parabolic R-polynomials are related to ordinary R-
polynomials by

RI,Ju,w(q) =
∑

v∈WIwWJ

Rv,w(q). (2.12)

It is often necessary to factor a permutation w in Sn in terms of elements of WI , WJ , and a minimal
or maximal representative of the coset WIwWJ . For instance, each element v of a single coset WIv has
a unique factorization v = uw with u ∈ WI and v ∈ W I,∅

− . Similarly, each element v of a single coset
vWJ has a unique factorization v = wu with u ∈ WJ and v ∈ W ∅,J− . Factorization in double cosets
is a bit more complicated. For v ∈ WIwWJ , there is not always a unique h ∈ WI and k ∈ WJ such
that v = hwk. On the other hand, we can define a canonical factorization in terms of a third parabolic
subgroup of Sn. For every u ∈W I,J

− we define a set of generators

K ′ = K ′(u) = {si ∈ I | siu = usjfor some sj ∈ J}, (2.13)

By definitionWK′ is contained inWI and thus we can construct single cosets of the formwWK′ within
WI . As before, there are unique maximal and minimal representatives for each coset wWK′ ⊂ WI .
Denote the sets of maximal and minimal coset representatives by (WI)

∅,K′
+ and (WI)

∅,K′
− , respectively.

It follows that for u ∈W I,J
− each double coset factors as

WIuWJ = (WI)
∅,K′
− WK′uWJ . (2.14)
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In other words each element v of the double coset WIuWJ has a unique factorization v = vI−uv
J satis-

fying
vI− ∈ (WI)

∅,K′
− , vJ ∈WJ . (2.15)

Furthermore the length of the word is the sum of the lengths of the factors.

3 The quantum polynomial ring
For each n > 0, let the quantum polynomial ring A(n; q) be the noncommutative C[q 1

2 , q¯
1
2 ]-algebra

generated by n2 variables x = (x1,1, . . . , xn,n) representing matrix entries, subject to the relations

xi,`xi,k = q
1
2xi,kxi,`,

xj,kxi,k = q
1
2xi,kxj,k,

xj,kxi,` = xi,`xj,k,

xj,`xi,k = xi,kxj,` + (q
1
2 − q¯1

2 )xi,`xj,k,

(3.1)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n. A(n; q) often arises in conjunction with the the
quantum group Oq(SL(n,C)). In particular, we have

Oq(SL(n,C)) ∼= A(n; q)/(detq(x)− 1), (3.2)

where
detq(x) =

def

∑
w∈Sn

(−q¯1
2 )`(w)x1,w1

· · ·xn,wn
(3.3)

is the quantum determinant. Notice that A(n; 1) is the commutative polynomial ring C[x1,1, . . . , xn,n].
We can use the relations above to convert any monomial into a linear combination of monomials in

lexicographic order. Thus as a C[q 1
2 , q¯

1
2 ]-module, A(n; q) is spanned by monomials in lexicographic

order. A(n; q) has a natural grading by degree,

A(n; q) =
⊕
r≥0

Ar(n; q), (3.4)

where Ar(n; q) consists of the homogeneous degree r polynomials within A(n; q). Furthermore, we
may decompose each homogeneous component Ar(n; q) by considering pairs (L,M) of multisets of r
integers, written as weakly increasing sequences 1 ≤ `1 ≤ · · · ≤ `r ≤ n, and 1 ≤ m1 ≤ · · · ≤ mr ≤
n. Let AL,M (n; q) be the C[q 1

2 , q¯
1
2 ]-span of monomials whose row indices and column indices (with

multiplicity) are equal to the multisets L and M , respectively. This leads to the multigrading

A(n; q) =
⊕
r≥0

⊕
L,M

AL,M (n; q). (3.5)

The graded component A[n],[n](n; q) is spanned by the monomials

{x1,w1
· · ·xn,wn

| w ∈ Sn}. (3.6)
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Defining xu,v = xu1,v1
· · ·xun,vn for any u, v ∈ Sn, we may express the above basis as {xe,w | w ∈

Sn}. We will call elements of this submodule (quantum) immanants and we will call the module itself
the (immanant space) of A(n; q).

In general, AL,M (n; q) is the C[q 1
2 , q¯

1
2 ]-submodule of A(n; q) spanned by the monomials

{x`1,mw1
· · ·x`r,mwr

| w ∈ Sr} = {(xL,M )e,w | w ∈ Sr}, (3.7)

where the generalized submatrix xL,M of x is defined by

xL,M =


x`1,m1 x`1,m2 · · · x`1,mr

x`2,m1 x`2,m2 · · · x`2,mr

...
...

...
x`r,m1

x`r,m2
· · · x`n,mr

 . (3.8)

An involutive automorphism on A(n; q) commonly known as the bar involution is defined by by q
1
2 =

q¯
1
2 , xi,j = xi,j and

xa1,b1 · · ·xar,br = (q
1
2 )α(a)−α(b)xar,br · · ·xa1,b1 , (3.9)

where α(a) is the number of pairs i < j for which ai = aj . Equivalently, for xa1,b1 · · ·xar,br ∈
AL,M (n; q), we have

xa1,b1 · · ·xar,br = qwJ
0 ,w

I
0
xar,br · · ·xa1,b1 , (3.10)

where
I = I(L) = {si ∈ Sr | `i = `i+1}

J = J(M) = {sj ∈ Sr | mj = mj+1}.
(3.11)

In the immanant space, the bar involution reduces to

xe,v = xn,vn · · ·x1,v1
= xw0,w0v. (3.12)

Taking the bar involution of an element of A[n],[n](n; q) and expanding in terms of the natural basis,
we have

xe,v =
∑
w≥v

q−1
v,wSv,w(q)x

e,w, (3.13)

where {Sv,w(q) | v, w ∈ Sn} are polynomials in Z[q], which we call inverse R-polynomials. Modifying
these polynomials by

q−1
v,wSv,w(q) = S̃v,w(q

1
2 − q¯1

2 ) (3.14)

gives us the modified inverse R-polynomials {S̃v,w(q) | v, w ∈ Sn}, which belong to N[q]. Thus we may
rewrite (3.13) as

xe,v =
∑
w≥v

S̃v,w(q
1
2 − q¯1

2 )xe,w. (3.15)

In an arbitrary multigraded component AL,M (n; q) of A(n; q), for v ∈W I,J
+ we have

(xL,M )e,v =
∑

w∈W I,J
+

w≥v

εv,wqv,wS
I,J
v,w(q

−1)xe,w, (3.16)
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where {SI,Jv,w(q) | v, w ∈W
I,J
+ } are polynomials in Z[q], which we call parabolic inverseR-polynomials.

Modifying these polynomials in an analogous way as in the immanant space creates some difficulty, since
they must be expressed as functions of two variables, q

1
2 −q¯1

2 and q¯
1
2 . The algebraic relationship between

these two variables causes problems when we try to define modified parabolic inverse R-polynomials in
a manner analogous to (3.14). Instead for all v, w ∈ W I,J

+ , given any reduced expression si1 · · · sik for
u, let us define the polynomials {S̃I,Jv,w(q1, q2) ∈ N[q1, q2] | v, w ∈ W I,J

+ } to be the polynomials whose
coefficient of qa1q

b
2 is equal to the number of sequences (π(0), . . . , π(k)) of permutations satisfying

1. π(0) = w0v, π
(k) ∈WIwWJ ,

2. π(j) ∈ {π(j−1), sijπ
(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly a indices j,

5. `(w)− `(π(k)) = b.

It will be shown later that this definition will lead to

(xL,M )e,v =
∑

w∈W I,J
+

w≥v

S̃I,Jv,w(q
1
2 − q¯1

2 , q¯
1
2 )xe,w, (3.17)

and therefore
εv,wqv,wS

I,J
v,w(q

−1) = S̃I,Jv,w(q
1
2 − q¯1

2 , q¯
1
2 ), (3.18)

as desired.
Unlike the double parabolic R-polynomials {RI,Jv,w(q) | v, w ∈ W I,J

+ }, the double parabolic inverse
R-polynomials {SI,Jv,w(q) | v, w ∈W

I,J
+ } can not readily be written as sums of nonparabolic polynomials

{Sv,w(q) | v, w ∈ Sn}. That is, we know of no identity in AL,M (n; q) analogous Equation (2.9)
which might lead to an analog of Equation (2.12) for inverse parabolic R-polynomials. While actions of
Hn(q) on submodules of A(n; q) corresponding to L = [n] or M = [n] can help produce identities for
polynomials of the forms SI,∅u,v(q) and S∅,Ju,v (q), this method fails in the general double parabolic setting.

Nevertheless, we will succeed in expressing a polynomial S̃I,Jv,w(q) in terms of nonparabolic polynomi-
als. To do so we will consider various bases of the immanant space A[n],[n](n; q).

4 A family of bases for the quantum immanant space
Working in the quantum immanant space A[n],[n](n; q), one often obtains a monomial of the form xu,v

and wishes to express it in terms of the natural basis. The relations (3.1) imply that we have

xu,v ∈ xe,u
−1v +

∑
w>u−1v

N[q
1
2 − q¯1

2 ]xe,w. (4.1)

It follows that for each permutation u ∈ Sn, the set {xu,v | v ∈ Sn} is a basis for A[n],[n](n; q).
Indeed the natural basis and barred natural basis are special cases corresponding to u = e and u = w0,
respectively.
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To state transition matrices relating all of these bases to the natural basis, let us define polynomials
pu,v,w(q) in N[q] by the equations

xu,v =
∑

w≥u−1v

pu,v,w(q
1
2 − q¯1

2 )xe,w. (4.2)

Apparently we have the special cases

pe,v,w(q) =

{
1 if v = w

0 otherwise,
pw0,w0v,w(q) = S̃v,w(q). (4.3)

The polynomials {pu,v,w(q) | u, v, w ∈ Sn} have an elementary combinatorial interpretation. The
following result generalizes those of Deodhar [Deo85] and Dyer [Dye93], for the special case u = w0.

Theorem 4.1 Given any reduced expression si1 · · · si` for u, the coefficient of qk in pu,v,w(q) is equal to
the number of sequences (π(0), . . . , π(`)) of permutations satisfying

1. π(0) = v, π(`) = w.

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , `.

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1).

4. π(j) = π(j−1) for exactly k values of j.

Proof: Omitted. 2

These sequences of permutations can be thought of as walks in the Bruhat order from v to w, with steps
up, steps down, and repeated vertices constrained by the fixed reduced expression for u. We remark that
since the definition (4.2) does not depend on the chosen reduced expression for u, Theorem 4.1 implies
several sets of walks in the Bruhat order are equinumerous.

Problem 4.2 Find bijections between the sets of walks in Theorem 4.1 which correspond to different
reduced expressions for u.

An alternate basis for the immanant space consists of the monomials

{xw
−1,e | w ∈ Sn}. (4.4)

Using this fact, we obtain the following identity.

Proposition 4.3 For all u, v, w ∈ Sn, we have

pv,u,w−1(q) = pu,v,w(q). (4.5)

Proof: Omitted. 2

Theorem 4.1 then implies that two sets of walks in the Bruhat order are equinumerous.

Problem 4.4 Find a bijective proof of the identity in Proposition 4.3.
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A straightforward argument shows that the polynomials {pu,v,w(q) | u, v, w ∈ Sn} also describe the
expansions of certain products of natural basis elements of Hn(q).

Corollary 4.5 For u, v in Sn, we have

T̃u−1 T̃v =
∑

w≥u−1v

pu,v,w(q
1
2 − q¯1

2 )T̃w. (4.6)

Proof: Omitted. 2

5 Main results
The double parabolic inverse R-polynomials {SI,Jv,w(q) | u, v ∈W

I,J
+ } and the modified double parabolic

inverse R-polynomials {S̃I,Jv,w(q1, q2) | u, v ∈W I,J
+ } satisfy

SI,Ju,w(q) =
∑

v∈WIwWJ

εv,wq
2
v,wSu,v(q),

S̃I,Ju,w(q
1
2 − q¯1

2 , q¯
1
2 ) =

∑
v∈WIwWJ

q−1
v,wS̃u,v(q

1
2 − q¯1

2 ).
(5.1)

As we have already mentioned, these identies are not easily seen unless I = ∅ or J = ∅. Following the
results in Section 4, we will obtain these identities by considering various bases of AL,M (n; q).

The relations (3.1) imply that we have

(xL,M )u,v ∈ q k
2 (xL,M )e,u

−1v +
∑

w∈W I,J
+

w>u−1v

N[q
1
2 − q¯1

2 , q¯
1
2 ](xL,M )e,w. (5.2)

It follows that for each permutation u ∈ Sn, the set {(xL,M )u,v | u−1v ∈ W I,J
+ } is a basis for

AL,M (n; q). Indeed the natural basis and barred natural basis are special cases corresponding to u = e
and u = w0, respectively.

To state transition matrices relating all of these bases to the natural basis, for all u ∈ Sn, v ∈ W ∅,J−
and w ∈ W I,J

+ , given any reduced expression si1 · · · sik for u, let us define the Laurent polynomi-
als pI,Ju,v,w(q1, q2) to be the polynomials whose coefficient of qa1q

b
2 is equal to the number of sequences

(π(0), . . . , π(k)) of permutations satisfying

1. π(0) = v, π(k) ∈WIwWJ ,

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly a values of j,

5. `(wI−)− `
(
(π(k))I−

)
− `
(
(π(k))J

)
+ `(uI) = b.
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We remark that this definition of pI,Ju,v,w(q1, q2) depends upon the chosen reduced expression for u, unlike
our definition (4.2) of pu,v,w(q). Nevertheless, we will suppress this dependence from the notation.

These sequences of permutations can be thought of as walks in the Bruhat order from v to any per-
mutation in WIwWJ , with steps up, steps down, and repeated vertices constrained by the fixed reduced
expression for u. Apparently we have the special cases

pI,Je,v,w(q1, q2) =

{
1 if v = w

0 otherwise,
pI,Jw0,w0v,w(q1, q2) = q

`(wI
0)−`(wJ

0 )
2 S̃I,Jv,w(q1, q2). (5.3)

Using the relations (3.1) and facts about double cosets of Sn, we can show that certan transition
matrices consist of the polynomials {pI,Ju,v,w(q1, q2) | u ∈ Sn, v ∈ W ∅,J− , w ∈ W I,J

+ } evaluated at
q1 = q

1
2 − q¯1

2 and q2 = q¯
1
2 .

Theorem 5.1 For u ∈ Sn, any reduced expression for u, and v ∈W ∅,J− ,

(xL,M )u,v =
∑

w∈W I,J
+

pI,Ju,v,w(q
1
2 − q¯1

2 , q¯
1
2 )(xL,M )e,w. (5.4)

Proof: Omitted. 2

Problem 5.2 Modify the definition of pI,Ju,v,w(q1, q2) to include all v ∈ Sn in such a way that Theorem 5.1
holds for all u, v ∈ Sn.

The combinatorial defintion above leads to the following identity connecting the parabolic and non-
parabolic polynomials.

Corollary 5.3 For all u, v ∈ Sn and w ∈W I,J
+ ,

pI,Ju,v,w(q
1
2 − q¯1

2 , q¯
1
2 ) =

∑
z∈WIwWJ

(q¯
1
2 )`(w

I
0w

K′
0 )−`(zI−)−`(zJ )+`(uI)pu,v,z(q

1
2 − q¯1

2 ). (5.5)

Proof: Omitted. 2

Now, using Equation (5.3) and Theorem 5.1 we can derive the desired identity (3.17) relating double
parabolic inverse R-polynomials and modified double parabolic inverse R-polynomials.

Theorem 5.4 For all v ∈W I,J
+

(xL,M )e,v =
∑

w∈W I,J
+

w≥v

S̃I,Jv,w(q
1
2 − q¯1

2 , q¯
1
2 )(xL,M )e,w. (5.6)

Proof: Omitted. 2

Finally, using the previous theorem along with Theorem 4.1 and Equations (4.3) and (5.3) we can derive
the desired identity (5.1) relating double parabolic and nonparabolic inverse R-polynomials.
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Theorem 5.5 The double parabolic inverse R-polynomials {SI,Jv,w(q) | u, v ∈W
I,J
+ } and their modifica-

tions {S̃I,Jv,w(q1, q2) | u, v ∈W I,J
+ } satisfy

SI,Ju,w(q) =
∑

v∈WIwWJ

εv,wq
2
v,wSu,v(q),

S̃I,Ju,w(q
1
2 − q¯1

2 , q¯
1
2 ) =

∑
v∈WIwWJ

q−1
v,wS̃u,v(q

1
2 − q¯1

2 ).
(5.7)

Proof: Omitted. 2
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