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On γ-vectors satisfying the Kruskal-Katona
inequalities

E. Nevo1†and T. K. Petersen2

1Department of Mathematics, Cornell University, Ithaca USA
2Department of Mathematical Sciences, DePaul University, Chicago USA

Abstract. We present examples of flag homology spheres whose γ-vectors satisfy the Kruskal-Katona inequalities.
This includes several families of well-studied simplicial complexes, including Coxeter complexes and the simplicial
complexes dual to the associahedron and to the cyclohedron. In these cases, we construct explicit flag simplicial
complexes whose f -vectors are the γ-vectors in question, and so a result of Frohmader shows that the γ-vectors
satisfy not only the Kruskal-Katona inequalities but also the stronger Frankl-Füredi-Kalai inequalities. In another
direction, we show that if a flag (d − 1)-sphere has at most 2d + 3 vertices its γ-vector satisfies the Frankl-Füredi-
Kalai inequalities. We conjecture that if ∆ is a flag homology sphere then γ(∆) satisfies the Kruskal-Katona, and
further, the Frankl-Füredi-Kalai inequalities. This conjecture is a significant refinement of Gal’s conjecture, which
asserts that such γ-vectors are nonnegative.

Résumé. Nous présentons des exemples de sphères d’homologie flag dont γ-vecteurs satisfaire les inégalités de
Kruskal-Katona. Cela comprend plusieurs familles de bien étudiés simplicial complexes, y compris les complexes de
Coxeter et les complexes simpliciaux dual de l’associahedron et à la cyclohedron. Dans ces cas, nous construisons ex-
plicite flag simplicial complexes dont f -vecteurs sont les γ-vecteurs en question, et ainsi de suite de Frohmader mon-
tre que le γ-vecteurs de satisfaire non seulement les inégalités de Kruskal-Katona mais aussi la plus fortes inégalités
Frankl-Füredi-Kalai. Dans une autre direction, nous montrons que, si un flag (d−1)-sphère a au plus 2d+3 ses som-
mets γ-vecteur satisfait aux inégalités de Frankl-Füredi-Kalai. Nous conjecture que, si ∆ est une sphère d’homologie
flag alors γ(∆) satisfait aux inégalités de Kruskal-Katona, en outre, les de Frankl-Füredi-Kalai. Cette conjecture est
un raffinement significative de la conjecture de Gal, qui affirme que ces γ-vecteurs sont nonnégatifs.
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1 Introduction
In [Ga] Gal gave counterexamples to the real-root conjecture for flag spheres and conjectured a weaker
statement which still implies the Charney-Davis conjecture. The conjecture is phrased in terms of the
so-called γ-vector.

Conjecture 1.1 (Gal) [Ga, Conjecture 2.1.7] If ∆ is a flag homology sphere then γ(∆) is nonnegative.
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This conjecture is known to hold for the order complex of a Gorenstein∗ poset [Kar], all Coxeter
complexes (see [Ste], and references therein), and for the (dual simplicial complexes of the) “chordal
nestohedra” of [PoRWi]—a class containing the associahedron, permutahedron, and other well-studied
polytopes.

If ∆ has a nonnegative γ-vector, one may ask what these nonnegative integers count. In certain cases
(the type A Coxeter complex, say), the γ-vector has a very explicit combinatorial description. We will
exploit such descriptions to show that not only are these numbers nonnegative, but they satisfy certain
non-trivial inequalities known as the Kruskal-Katona inequalities. Put another way, such a γ-vector is the
f -vector of a simplicial complex. Our main result is the following.

Theorem 1.2 The γ-vector of ∆ satisfies the Kruskal-Katona inequalities for each of the following classes
of flag spheres:

(a) ∆ is a Coxeter complex.

(b) ∆ is the simplicial complex dual to an associahedron.

(c) ∆ is the simplicial complex dual to a cyclohedron (type B associahedron).

Note that the type A Coxeter complex is dual to the permutahedron, and for types B and D there is a
similarly defined polytope—the “Coxeterhedron” of Reiner and Ziegler [RZ].

We prove Theorem 1.2 by constructing, for each such ∆, a simplicial complex whose faces correspond
to the combinatorial objects enumerated by γ(∆).

In a different direction, we are also able to show that if ∆ is a flag sphere with few vertices relative to
its dimension, then its γ-vector satisfies the Kruskal-Katona inequalities.

Theorem 1.3 Let ∆ be a (d−1)-dimensional flag homology sphere with at most 2d+3 vertices, i.e., with
γ1(∆) ≤ 3. Then γ(∆) satisfies the Kruskal-Katona inequalities. Moreover, all possible γ-polynomials
with γ1 ≤ 3 that satisfy the Kruskal-Katona inequalities, except for 1 + 3t + 3t2, occur as γ(∆; t) for
some flag sphere ∆.

The proof of Theorem 1.3 can be found in [NPe]. It characterizes the structure of such flag spheres.
Computer evidence suggests that Theorems 1.2 and 1.3 may be enlarged significantly. We make the

following strengthening of Gal’s conjecture.

Conjecture 1.4 If ∆ is a flag homology sphere then γ(∆) satisfies the Kruskal-Katona inequalities.

This conjecture is true, but not sharp, for flag homology 3- (or 4-) spheres. Indeed, Gal showed that
0 ≤ γ2(∆) ≤ γ1(∆)2/4 must hold for flag homology 3- (or 4-) spheres [Ga], which implies the Kruskal-
Katona inequality γ2(∆) ≤

(
γ1(∆)

2

)
. Our stronger Conjecture 5.3 is sharp for flag homology spheres of

dimension at most 4.
In Section 2 we review some key definitions. Section 3 collects some known results describing the com-

binatorial objects enumerated by the γ-vectors of Theorem 1.2. Section 4 constructs simplicial complexes
based on these combinatorial objects and proves Theorem 1.2. Finally, Section 5 describes a strengthening
of Theorem 1.2 by showing that under the same hypotheses the stronger Frankl-Füredi-Kalai inequalities
hold for the γ-vector. A stronger companion to Conjecture 1.4 is also presented, namely Conjecture 5.3.

This paper is an abridged version of [NPe]. Full definitions and proofs can be found there.
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2 Terminology
We assume the reader has a basic familiarity with abstract simplicial complexes.

We say that ∆ is flag if all the minimal subsets of V which are not in ∆ have size 2; equivalently F ∈ ∆
if and only if all the edges of F (two element subsets) are in ∆.

The f -polynomial of a (d − 1)-dimensional simplicial complex ∆ is the generating function for the
dimensions of the faces of the complex:

f(∆; t) :=
∑
F∈∆

tdimF+1 =
∑

0≤i≤d

fi(∆)ti.

The f -vector
f(∆) := (f0, f1, . . . , fd)

is the sequence of coefficients of the f -polynomial.
The h-polynomial of ∆ is a transformation of the f -polynomial:

h(∆; t) := (1− t)df(∆; t/(1− t)) =
∑

0≤i≤d

hi(∆)ti,

and the h-vector is the corresponding sequence of coefficients,

h(∆) := (h0, h1, . . . , hd).

Though they contain the same information, often the h-polynomial is easier to work with than the f -
polynomial. For instance, if ∆ is a homology sphere, then the Dehn-Sommerville relations guarantee that
the h-vector is symmetric, i.e., hi = hd−i for all 0 ≤ i ≤ d.

When referring to the f - or h-polynomial of a simple polytope, we mean the f - or h-polynomial of the
boundary complex of its dual. So, for instance, we refer to the h-vector of the type A Coxeter complex
and the permutahedron interchangeably.

Whenever a polynomial of degree d has symmetric integer coefficients, it has an integer expansion in
the basis {ti(1 + t)d−2i : 0 ≤ i ≤ d/2}. Specifically, if ∆ is a (d − 1)-dimensional homology sphere
then there exist integers γi(∆) such that

h(∆; t) =
∑

0≤i≤d/2

γi(∆)ti(1 + t)d−2i.

We refer to the sequence γ(∆) := (γ0, γ1, . . .) as the γ-vector of ∆, and the corresponding generating
function γ(∆; t) =

∑
γit

i is the γ-polynomial. Our goal is to show that under the hypotheses of Theorems
1.2 and 1.3 the γ-vector for ∆ is seen to be the f -vector for some other simplicial complex.

A result of Schützenberger, Kruskal and Katona (all independently), characterizes the f -vectors of
simplicial complexes. (See [Sta, Ch. II.2].) By convention we call the conditions characterizing these
f -vectors the Kruskal-Katona inequalities.

We will use the Kruskal-Katona inequalities directly for Theorem 1.3 and for checking the Coxeter
complexes of exceptional type in part (a) of Theorem 1.2. (See Table 1.) For the remainder of Theorem
1.2 we construct explicit simplicial complexes with the desired f -vectors.
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W γ(W )

E6 (1, 1266, 7104, 3104)
E7 (1, 17628, 221808, 282176)
E8 (1, 881744, 23045856, 63613184, 17111296)
F4 (1, 232, 208)
G2 (1, 8)
H3 (1, 56)
H4 (1, 2632, 3856)
I2(m) (1, 2m− 4)

Tab. 1: The γ-vectors for finite Coxeter complexes of exceptional type.

3 Combinatorial descriptions of γ-nonnegativity
Here we provide combinatorial descriptions (mostly already known) for the γ-vectors of the complexes
described in Theorem 1.2.

3.1 Type A Coxeter complex

We begin by describing the combinatorial objects enumerated by the γ-vector of the type An−1 Coxeter
complex, or equivalently, the permutahedron. (For the reader looking for more background on the Coxeter
complex itself, we refer to [H, Section 1.15]; for the permutahedron see [Z, Example 0.10].)

Recall that a descent of a permutation w = w1w2 · · ·wn ∈ Sn is a position i ∈ [n − 1] such that
wi > wi+1. A peak (resp. valley) is a position i ∈ [2, n − 1] such that wi−1 < wi > wi+1 (resp.
wi−1 > wi < wi+1). We let des(w) denote the number of descents of w, and we let peak(w) denote the
number of peaks. It is well known that the h-polynomial of the type An−1 Coxeter complex is expressed
as:

h(An−1; t) =
∑
w∈Sn

tdes(w).

Foata and Schützenberger were the first to demonstrate the γ-nonnegativity of this polynomial (better
known as the Eulerian polynomial), showing h(An−1; t) =

∑
γit

i(1 + t)n−1−2i, where γi = the number
of equivalence classes of permutations of n with i+ 1 peaks [FoSch]. (Two permutations are in the same
equivalence class if they have the same sequence of values at their peaks and valleys.) See also Shapiro,
Woan, and Getu [ShWoGe] and, in a broader context, Brändén [B] and Stembridge [Ste].

Following Postnikov, Reiner, and Williams [PoRWi], we choose the following set of representatives for
these classes:

Ŝn = {w ∈ Sn : wn−1 < wn, and if wi−1 > wi then wi < wi+1}.

In other words, Ŝn is the set of permutations w with no double descents and no final descent, or those for
which des(w) = peak(0w0)− 1. We now phrase the γ-nonnegativity of the type An−1 Coxeter complex
in this language.
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Theorem 3.1 (Foata-Schützenberger) [FoSch, Théorème 5.6] The h-polynomial of the type An−1 Cox-
eter complex can be expressed as follows:

h(An−1; t) =
∑
w∈Ŝn

tdes(w)(1 + t)n−1−2des(w).

We now can state precisely that the type An−1 Coxeter complex (permutahedron) has γ(An−1) =
(γ0, γ1, . . . , γbn−1

2 c
), where

γi(An−1) = |{w ∈ Ŝn : des(w) = i}|.

The permutahedron is an example of a chordal nestohedron. Following [PoRWi], a chordal nestohedron
PB is characterized by its building set, B. Each building set B on [n] has associated to it a set of B-
permutations, Sn(B) ⊂ Sn, and we similarly define Ŝn(B) = Sn(B) ∩ Ŝn. See [PoRWi] for details.
The following is a main result of Postnikov, Reiner, and Williams [PoRWi].

Theorem 3.2 (Postnikov, Reiner, Williams) [PoRWi, Theorem 11.6] If B is a connected chordal build-
ing set on [n], then

h(PB; t) =
∑

w∈Ŝn(B)

tdes(w)(1 + t)n−1−2des(w).

Thus, for a chordal nestohedron, γi(PB) = |{w ∈ Ŝn(B) : des(w) = i}|.

3.2 Type B Coxeter complex
We now turn our attention to the typeBn Coxeter complex. The framework of [PoRWi] no longer applies,
so we must discuss a new, if similar, combinatorial model.

In type Bn, the γ-vector is given by γi = 4i times the number of permutations w of Sn such that
peak(0w) = i. See Petersen [Pe] and Stembridge [Ste]. We define the set of decorated permutations
Decn as follows. A decorated permutation w ∈ Decn is a permutation w ∈ Sn with bars following the
peak positions (with w0 = 0). Moreover these bars come in four colors: {| = |0, |1, |2, |3}. Thus for each
w ∈ Sn we have 4peak(0w) decorated permutations in Decn. For example, Dec9 includes elements such
as

4|238|176519, 4|3238|276519, 25|137|169|284.

(Note that Ŝn ⊂ Decn.) Let peak(w) = peak(0w) denote the number of bars in w. In this context we
have the following result.

Theorem 3.3 (Petersen) [Pe, Proposition 4.15] The h-polynomial of the type Bn Coxeter complex can
be expressed as follows:

h(Bn; t) =
∑

w∈Decn

tpeak(w)(1 + t)n−2peak(w).

Thus,
γi(Bn) = |{w ∈ Decn : peak(w) = i}|.
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3.3 Type D Coxeter complex
We now describe how to view the elements enumerated by the γ-vector of the type D Coxeter complex in
terms of a subset of decorated permutations. Define a subset DecDn ⊂ Decn as follows:

DecDn = {w = w1 · · · |c1wi1 · · ·|c2 · · · ∈ Decn such that w1 < w2 < w3, or,
both max{w1, w2, w3} 6= w3 and c1 ∈ {0, 1}}.

In other words, we remove from Decn all elements whose underlying permutations have w2 < w1 < w3,
then for what remains we dictate that bars in the first or second positions can only come in one of two
colors. Stembridge [Ste] gives an expression for the h-polynomial of the typeDn Coxeter complex, which
we now phrase in the following manner.

Theorem 3.4 (Stembridge) [Ste, Corollary A.5]. The h-polynomial of the type Dn Coxeter complex can
be expressed as follows:

h(Dn; t) =
∑

w∈DecDn

tpeak(w)(1 + t)n−2peak(w).

Thus,
γi(Dn) = |{w ∈ DecDn : peak(w) = i}|.

3.4 The associahedron
The associahedron Assocn is an example of a chordal nestohedron, so Theorem 3.2 applies. Following
[PoRWi, Section 10.2], the B-permutations of Assocn are precisely the 312-avoiding permutations. Let
Sn(312) denote the set of all w ∈ Sn such that there is no triple i < j < k with wj < wk < wi. Then
we have:

h(Assocn; t) =
∑

w∈Ŝn(312)

tdes(w)(1 + t)n−1−2des(w),

where Ŝn(312) = Sn(312) ∩ Ŝn. Hence,

γi(Assocn) = |{w ∈ Ŝn(312) : des(w) = i}|.

3.5 The cyclohedron
The cyclohedron Cycn, or type B associahedron, is a nestohedron, though not a chordal nestohedron and
hence Theorem 3.2 does not apply. Its γ-vector can be explicitly computed from its h-vector as described
in [PoRWi, Proposition 11.15]. We have γi(Cycn) =

(
n

i,i,n−2i

)
. Define

Pn = {(L,R) ⊆ [n]× [n] : |L| = |R|, L ∩R = ∅}.

It is helpful to think of elements of Pn as follows. For σ = (L,R) with |L| = |R| = k, write σ as a
k × 2 array with the elements of L written in increasing order in the first column, the elements of R in
increasing order in the second column. That is, if L = {l1 < · · · < lk} and R = {r1 < · · · < rk}, we
write

σ =

 l1 r1

...
...

lk rk

 .
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For σ ∈ Pn, let ρ(σ) = |L| = |R|. Then we can write

h(Cycn; t) =
∑
σ∈Pn

tρ(σ)(1 + t)n−2ρ(σ).

Thus,
γi(Cycn) = |{σ ∈ Pn : ρ(σ) = i}|.

4 The Γ-complexes
We will now describe simplicial complexes whose f -vectors are the γ-vectors described in Section 3.

4.1 Coxeter complexes
Notice that if

w = w1|c1 · · · |ci−1wi|ciwi+1|ci+1 · · · |cl−1wl,

is a decorated permutation, then each word wi = wi,1 . . . wi,k has some j such that:

wi,1 > wi,2 > · · · > wi,j > wi,j+1 < wi,j+2 < · · · < wi,k.

We saywi is a down-up word. We call ẁi = wi,1 · · ·wi,j the decreasing part ofwi and ẃi = wi,j+1 · · ·wi,k
the increasing part of wi. Note that the decreasing part may be empty, whereas the increasing part is
nonempty if i 6= l. Also, the rightmost block of w may be strictly decreasing (in which case wl = ẁl)
and the leftmost block is always increasing, even if it is a singleton.

Define the vertex set
VDecn := {v ∈ Decn : peak(v) = 1}.

The adjacency of two such vertices is defined as follows. Let

u = ú1|cù2ú2

and
v = v́1|dv̀2v́2

be two vertices with |ú1| < |v́1|. We define u and v to be adjacent if and only if there is an element
w ∈ Decn such that

w = ú1|cù2á|dv̀2v́2,

where á is the letters of ú2 ∩ v́1 written in increasing order. Such an element w exists if, as sets:

• ú1 ∪ ù2 ⊂ v́1 (⇔ v̀2 ∪ v́2 ⊂ ú2),

• min ú2 ∩ v́1 < min ù2, and

• max ú2 ∩ v́1 > max v̀2. (Note that ú2 ∩ v́1 is nonempty by the first condition.)

Definition 4.1 Let Γ(Decn) be the collection of all subsets F of VDecn such that every two distinct
vertices in F are adjacent.
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Note that by definition Γ(Decn) is a flag complex. It remains to show that the faces of Γ(Decn)
correspond to decorated permutations.

Let φ : Decn → Γ(Decn) be the map defined as follows. If

w = w1|c1 · · · |ci−1wi|ciwi+1|ci+1 · · · |cl−1wl,

then
φ(w) = {w1|c1ẁ2b́1, . . . , ái|ciẁi+1b́i, . . . , ál−1|cl−1ẁlb́l−1},

where ái is the set of letters to the left of ẁi+1 in w written in increasing order and b́i is the set of letters
to the right of ẁi+1 in w written in increasing order.

Proposition 4.2 The map φ is a bijection between faces of Γ(Decn) and decorated permutations inDecn.

The proof of Proposition 4.2 is not difficult; it can be found in [NPe].
We now make explicit how to realize Decn as the face poset of Γ(Decn). We say w covers u if and

only if u can be obtained from w by removing a bar |ci and reordering the word wiwi+1 = ẁiẃiwi+1

as a down-up word ẁia where a is the word formed by writing the letters of ẃiwi+1 in increasing order.
Then (Decn,≤) is a poset graded by number of bars and we have the following result.

Proposition 4.3 The map φ is an isomorphism of graded posets from (Decn,≤) to (Γ(Decn),⊆).

We now claim that the γ-objects for the type An−1 and type Dn Coxeter complexes form flag subcom-
plexes of Γ(Decn). Let S ∈ {Ŝn, Dec

D
n }. To show Γ(S) is a subcomplex, by Proposition 4.3 it suffices

to show that (S,≤) is a lower ideal in (Decn,≤). To show that Γ(S) is flag, we show that it is the flag
complex generated by the elements of S with exactly one bar. Both facts are straightforward to verify for
either choice of S.

Proposition 4.4 For S ∈ {Ŝn, Dec
D
n } the image Γ(S) := φ(S) is a flag subcomplex of Γ(Decn).

In light of the results of Sections 3.1, 3.2, and 3.3, and because the dimension of faces corresponds to
the number of bars, we have the following result, which, along with Table 1 implies part (a) of Theorem
1.2.

Corollary 4.5 We have:

1. γ(An−1) = f(Γ(Ŝn)),

2. γ(Bn) = f(Γ(Decn), and

3. γ(Dn) = f(Γ(DecDn ).

In particular, the γ-vectors of the type An−1, Bn, and Dn Coxeter complexes satisfy the Kruskal-Katona
inequalities.

Remark 4.6 In view of Theorem 3.2, we can observe that if B is a connected chordal building set such
that (Ŝn(B),≤) is a lower ideal in (Decn,≤), then a result such as Corollary 4.5 applies. That is, we
would have γ(PB) = f(φ(Ŝn(B))). In particular, we would like to apply such an approach to the γ-
vector of the associahedron. However, Ŝn(312) is not generally a lower ideal in Decn. For example,
with n = 5, we have w = 3|14|25 > 3|1245 = u. While w is 312-avoiding, u is clearly not.
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4.2 The associahedron
First we give a useful characterization of the set Ŝn(312).

Observation 4.7 If w ∈ Ŝn(312), it has the form

w = á1 j1i1 á2 j2i2 · · · ák jkik ák+1, (1)

where:

• j1 < · · · < jk,

• js > is for all s, and

• ás is the word formed by the letters of {r ∈ [n]\{i1, j1, . . . , ik, jk} : js−1 < r < js} (with j0 = 0,
jk+1 = n+ 1) written in increasing order.

In particular, since w has no double descents and no final descent, we see that ák+1 is always nonempty
and wn = n. We refer to (is, js) as a descent pair of w.

Given distinct integers a, b, c, d with a < b and c < d, we say the pairs (a, b) and (c, d) are crossing if
either of the following statements are true:

• a < c < b < d or

• c < a < d < b.

Otherwise, we say the pairs are noncrossing. For example, (1, 5) and (4, 7) are crossing, whereas both the
pairs (1, 5) and (2, 4) and the pairs (1, 5) and (6, 7) are noncrossing.

Define the vertex set
VŜn(312) := {(a, b) : 1 ≤ a < b ≤ n− 1}.

Definition 4.8 Let Γ(Ŝn(312)) be the collection of subsets F of VŜn(312) such that every two distinct
vertices in F are noncrossing.

By definition Γ(Ŝn(312)) is a flag simplicial complex, and so the task remains to show that the faces
of the complex correspond to the elements of Ŝn(312).

Define a map π : Ŝn(312)→ Γ(Ŝn(312)) as follows:

π(w) = {(wi+1, wi) : wi > wi+1}.

Suppose w is as in (1). We claim that the descent pairs (is, js) and (it, jt) (with js < jt, say) are
noncrossing. Indeed, if is < it < js < jt, then the subword jsisit forms the pattern 312. Therefore (and
because wn = n) we see the map π(w) = {(i1, j1), . . . , (ik, jk)} is well-defined. Using Observation 4.7,
the following is straightforward to prove.

Proposition 4.9 The map π is a bijection between faces of Γ(Ŝn(312)) and Ŝn(312).

By construction, we have |π(w)| = des(w), and therefore the results of Section 3.4 imply the following
result, proving part (b) of Theorem 1.2.
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Corollary 4.10 We have:

γ(Assocn) = f(Γ(Ŝn(312))).

In particular, the γ-vector of the associahedron satisfies the Kruskal-Katona inequalities.

Remark 4.11 It is well known that the h-vector of the associahedron has a combinatorial interpretation
given by noncrossing partitions. Simion and Ullmann [SiU] give a particular decomposition of the lattice
of noncrossing partitions that can be used to describe γ(Assocn) in (essentially) the same way.

4.3 The cyclohedron

For the cyclohedron, let

VPn := {(l, r) ∈ [n]× [n] : l 6= r}.

Two vertices (l1, r1) and (l2, r2) are adjacent if and only if:

• l1, l2, r1, r2 are distinct and

• l1 < l2 if and only if r1 < r2.

Define Γ(Pn) to be the flag complex whose faces F are all subsets of VPn such that every two distinct
vertices in F are adjacent.

We let ψ : Pn → Γ(Pn) be defined as follows. If

σ =

 l1 r1

...
...

lk rk


is an element of Pn, then ψ(σ) is simply the set of rows of σ:

ψ(σ) = {(l1, r1), . . . , (lk, rk)}.

Clearly this map is invertible, for we can list a set of pairwise adjacent vertices in increasing order (by li
or by ri) to obtain an element of Pn. We have the following.

Proposition 4.12 The map ψ is a bijection between faces of Γ(Pn) and the elements of Pn.

We are now able to complete the proof of Theorem 1.2, as the following implies part (c).

Corollary 4.13 We have

γ(Cycn) = f(Γ(Pn)).

In particular, the γ-vector of the cyclohedron satisfies the Kruskal-Katona inequalities.
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5 Stronger inequalities
A (d − 1)-dimensional simplicial complex ∆ on a vertex set V is balanced if there is a coloring of its
vertices c : V → [d] such that for every face F ∈ ∆ the restriction map c : F → [d] is injective. That is,
every face has distinctly colored vertices.

Frohmader [Fro] proved that the f -vectors of flag complexes form a (proper) subset of the f -vectors
of balanced complexes. (This was conjectured earlier by Eckhoff and Kalai, independently.) Further, a
characterization of the f -vectors of balanced complexes is known [FraFüKal], yielding stronger upper
bounds on fi+1 in terms of fi than the Kruskal-Katona inequalities, namely the Frankl-Füredi-Kalai
inequalities. For example, a balanced 1-dimensional complex is a bipartite graph, hence satisfies f2 ≤
f2

1 /4, while the complete graph has f2 =
(
f1
2

)
. See [FraFüKal] for the general description of the Frankl-

Füredi-Kalai inequalities.
Because the Γ-complexes of Section 4 are flag complexes, Frohmader’s result shows that the γ-vectors

of Theorem 1.2 satisfy the Frankl-Füredi-Kalai inequalities. The same is easily verified for the γ-vectors
given by Theorem 1.3 and in Table 1 for the exceptional Coxeter complexes. We obtain the following
strengthening of Theorem 1.2.

Theorem 5.1 The γ-vector of ∆ satisfies the Frankl-Füredi-Kalai inequalities for each of the following
classes of flag spheres:

(a) ∆ is a Coxeter complex.

(b) ∆ is the simplicial complex dual to an associahedron.

(c) ∆ is the simplicial complex dual to a cyclohedron.

(d) ∆ has γ1(∆) ≤ 3.

Remark 5.2 The complexes Γ(S) where S ∈ {Decn, Ŝn, Dec
D
n } are balanced. The color of a vertex v

with a peak at position i is d i2e.

Similarly this suggests the following strengthening of Conjecture 1.4.

Conjecture 5.3 If ∆ is a flag homology sphere then γ(∆) satisfies the Frankl-Füredi-Kalai inequalities.

As mentioned in the Introduction, this conjecture is true for flag homology spheres of dimension at
most 4. We do not have a counterexample to the following possible strengthening of this conjecture.

Problem 5.4 If ∆ is a flag homology sphere, then γ(∆) is the f -vector of a flag complex.
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