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Abstract. In Section 1 we overview combinatorial results on normal polytopes, old and new. These polytopes rep-
resent central objects of study in the contemporary discrete convex geometry, on the crossroads of combinatorics,
commutative algebra, and algebraic geometry. In Sections 2 and 3 we describe two very different possible ways of
advancing the theory of normal polytopes to next essential level, involving arithmetic and topological aspects.
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1 Normal polytopes: old and new
All our polytopes are assumed to be convex.

Let P ⊂ Rd be a lattice polytope and denote by L the affine lattice in Zd, generated by the lattice points
in P ; i. e., L = v +

∑
x,y∈P∩Zd Z(x − y) ⊂ Zd, where v is some (equivalently, any) lattice point in P .

Observe, P ∩ L = P ∩ Zd. Here is the central definition:
(a) P is integrally closed if the following condition is satisfied:

c ∈ N, z ∈ cP ∩ Zd =⇒ ∃x1, . . . , xc ∈ P ∩ Zd x1 + · · ·+ xc = z.

(b) P is normal if the following condition is satisfied:

c ∈ N, z ∈ cP ∩ L =⇒ ∃x1, . . . , xc ∈ P ∩ L x1 + · · ·+ xc = z.

The normality property is invariant under affine-lattice isomorphisms of lattice polytopes, and the prop-
erty of being integrally closed is invariant under an affine change of coordinates, leaving the lattice struc-
ture Zd ⊂ Rd invariant.

A lattice polytope P ⊂ Rd is integrally closed if and only if it is normal and L is a direct summand of
Zd. Obvious examples of normal but not integrally closed polytopes are the s. c. empty lattice simplices
of large volume. No classification of such simplices is known in dimensions≥ 5, the main difficulty being
the lack of satisfactory characterization of their lattice widths; see [13, 20].

A normal polytope P ⊂ Rd can be made into a full-dimensional integrally closed polytope by changing
the lattice of reference Zd to L and the ambient Euclidean space Rd to the subspace RL. In particular,
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normal and integrally closed polytopes refer to same isomorphism classes of lattice polytopes. In the
combinatorial literature the difference between ‘normal’ and ‘integrally closed’ is sometimes blurred.

Normal/integrally closed polytopes enjoy popularity in algebraic combinatorics and they have been
showcased on recent workshops ([1, 2]). These polytopes represent the homogeneous case of the Hilbert
bases of finite positive rational cones and the connection to algebraic geometry is that they define projec-
tively normal embeddings of toric varieties. There are many challenges of number theoretic, ring theoretic,
homological, and K-theoretic nature, concerning the associated objects: Ehrhart series’, rational cones,
toric rings, and toric varieties; see [7].

If a lattice polytope is covered by (in particular, subdivided into) integrally closed polytopes then it is
integrally closed as well. The simplest integrally closed polytopes one can think of are unimodular sim-
plices, i. e., the lattice simplices ∆ = conv(x1, . . . , xk) ⊂ Rd, dim ∆ = k−1, with x1−xj , . . . , xj−1−
xj , xj+1 − xj , . . . , xk − xj a part of a basis of Zd for some (equivalently, every) j.

Unimodular simplices are the smallest ‘atoms’ in the world of normal polytopes. But the latter is not
built out exclusively of these atoms: not all 4-dimensional integrally closed polytopes are triangulated into
unimodular simplices [9, Prop. 1.2.4], and not all 5-dimensional integrally closed polytopes are covered
by unimodular simplices [5] – contrary to what had been conjectured before [19]. Further ‘negative’
results, such as [4] and [8] (the latter disproving a conjecture from [10]), contributed to the current thinking
in the area that there is no succinct geometric characterization of the normality property. One could even
conjecture that in higher dimensions the situation gets as bad as it can; see Section 2 for details.

‘Positive’ results in the field mostly concern special classes of lattice polytopes that are normal, or have
unimodular triangulations or unimodular covers. Knudsen-Mumford’s classical theorem ([7, Sect. 3B],
[14, Chap. III], ) says that every lattice polytope P has a multiple cP for some c ∈ N that is triangulated
into unimodular simplices. The existence of a dimensionally uniform lower bound for such c seems to
be a very hard problem. More recently, it was shown in [6] that there exists a dimensionally uniform
exponential lower bound for unimodularly covered multiple polytopes. By improving one crucial step in
[6], von Thaden was able to cut down the bound to a degree 6 polynomial function in the dimension [7,
Sect. 3C], [22].

The results above on multiple polytopes yield no new examples of normal polytopes, though. In fact,
an easy argument ensures that for any lattice d-polytope P the multiples cP , c ≥ d − 1, are integrally
closed [9, Prop. 1.3.3], [11]. One should remark that there is no algebraic obstruction to the existence of
(even quadratic regular) unimodular triangulations for all multiples cP , c ≥ d− 1: the nice homological
properties that the corresponding toric rings would have (according to Sturmfels’ theory [21]) should such
triangulations existed, are all present [9].

Lattice polytopes with long edges of independent length are considered in [12], where it is shown that
if the edges of a lattice d-polytope P have lattice lengths ≥ 2d2(d + 1) then P is integrally closed. In
the special case when P is a simplex one can do better: P is covered by lattice parallelepipeds, provided
the edges of P have lattice lengths ≥ d(d + 1). Lattice parallelepipeds are the simplest integrally closed
polytopes after unimodular simplices.

Currently, one problem attracts much attention in the field. Namely, Oda’s question asks whether all
smooth polytopes are integrally closed. A lattice polytope P ⊂ Rd is called smooth if the primitive edge
vectors at every vertex of P define a part of a basis of Zd. Smooth polytopes correspond to projective
embeddings of smooth projective toric varieties. Oda’s question remains (as of writing this) wide open
– so far no smooth polytope just without a unimodular triangulation has been found. The research was
triggered by a faulty attempt in the mid 1990s to answer the question in the positive. The Frobenius
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splitting techniques that was used then was recently revived in Payne’s work, leading to new classes of
normal (and even Koszul) polytopes, associated to root systems of various types [17].

For further classes of polytopes, associated to root systems and admitting unimodulaar triangulations
as certificate of normality, see [3, 15, 16, 18].

In the next two sections we describe two very different possible ways of advancing the theory of normal
polytopes to next essential level.

2 Carathéodory rank
What follows next is the homogeneous special case of a more general story that concerns rational positive
cones and their Hilbert bases.

An arithmetic version of a unimodular cover is the integral Carathéodory property (ICP): a lattice
d-polytope P has (ICP) if for every natural number c and every lattice point z ∈ cP there exist lattice
points x1, . . . , xd+1 ∈ P and integers a1, . . . , ad+1 ≥ 0 such that z = a1x1 + · · · + ad+1xd+1 and
a1 + · · ·+ ad+1 = c.

For a lattice polytope P its Carathéodory rank, denoted by CR(P ), is the smallest natural number k
such that for every natural number c and every lattice point z ∈ cP there exist lattice points x1, . . . , xk ∈
P and integers a1, . . . , ak ≥ 0 such that z = a1x1 + · · ·+ akxk and a1 + · · ·+ ak = c.

Sebö has shown [19] that CR(P ) ≤ 2 dimP for arbitrary integrally closed polytope P . If P has
a unimodular cover then it has (ICP) too, i. e., CR(P ) = dimP + 1. It is known that (ICP) implies
‘integrally closed’ [5]. The converse is not true: there are integrally closed 5-polytopes without (ICP) [8].
That (ICP) and the existence of a unimodular cover are different conditions was discovered only recently:
there are 5-polytopes with (ICP) but without unimodular cover [4].

We conjecture that Sëbo’s estimate for Carathéodory rank is asymptotically sharp:

lim
d→∞

d−1 maxCR(P ) = 2,

where, for each fixed d, P runs over the integrally closed d-polytopes. This conjecture, in particular, says
that there are essentially new types of counterexamples to (ICP) in higher dimensions, not obtained by
trivial extensions of counterexamples in lower dimensions.

3 Do normal polytopes model quantum states?
The method, by which counterexamples to the unimodular cover property and (ICP) were found, was to
check s. c. tight polytopes for these properties. An integrally closed polytope P ⊂ Rd is called tight if,
whatever lattice point x ∈ P ∩Zd we choose, the convex hull of

(
P ∩ Zd

)
\{x} in Rd is not an integrally

closed polytope. This moves center stage the descending sequences of lattice integrally closed polytopes
in Rd of type

P1 ⊃ P2 ⊃ · · · ⊃ Pk, #
(
Pi ∩ Zd

)
= #

(
Pi+1 ∩ Zd

)
+ 1, i = 1, . . . , k − 1.

That such a sequence may halt at all at a positive dimensional polytope, or equivalently, that there exist
nontrivial tight polytopes is already something not quite obvious. This phenomenon shows up in dimen-
sions ≥ 4. There are no tight polygons, and the existence of tight 3-polytopes is not known.
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Consider the poset Pol(d) of lattice integrally closed polytopes in Rd, where the order relation is gen-
erated by the elementary relations of type P < Q, #

(
Q ∩ Zd

)
= #

(
P ∩ Zd

)
+ 1. Minimal elements

of Pol(d) are exactly the tight polytopes in Rd. Informally, the poset Pol(d) offers a global picture of the
interaction of polytopal shapes in Rd with the integer lattice Zd.

Here is a list of a several interesting questions one can ask about Pol(d): Do there exist maximal
elements in Pol(d)? What is the homotopy type of Pol(d)? Is it contractible? Does it have isolated
points?

We suggest the following game: think of the chains in Pol(d) as quantum processes, individual poly-
topes as quantum states, and elementary relations P < Q as quantum jumps. The vocabulary can be
extended to accommodate such terminology as energy and time (both discrete), observables, entangle-
ment, tunneling, uncertainty principle, fluctuations. Real fun starts when one thinks of the potentially
nontrivial homotopy groups of Pol(d) as a force that permeates all of the geometric realization space of
Pol(d) and keeps the world of integrally closed polytopes from collapsing into a point.

References
[1] Workshop: Combinatorial Challenges in Toric Varieties. The workshop held April 27 to May 1,

2009, Organized by Joseph Gubeladze, Christian Haase, and Diane Maclagan, American Institute of
Mathematics, Palo Alto. http://www.aimath.org/pastworkshops/toricvarieties.html.

[2] Mini-Workshop: Projective Normality of Smooth Toric Varieties. Oberwolfach Rep., 4(3):2283–
2319, 2007. Abstracts from the mini-workshop held August 12–18, 2007, Organized by Christian
Haase, Takayuki Hibi and Diane Maclagan, Oberwolfach Reports. Vol. 4, no. 3.
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