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We were very pleased to receive a record number of submissions this year covering the spectrum of com-
binatorics and its applications. The presentations will cover many exciting new results and build connections
between research areas. We hope you will be able to attend all the lectures and the two poster sessions.
We encourage you to ask questions, discuss the material during breaks and participate fully in the FPSAC
experience.

Our thanks goes out to everyone attending FPSAC 2010, and especially the members of the Program and
Organizing Committees. We also thank the following organizations for their financial support: the National
Science Foundation, the National Security Agency, the San Francisco State University College of Science and
Engineering and Department of Mathematics, the Fields Institute, Elsevier, and Lindo Systems. Finally,
we hope everyone will join us in thanking Federico Ardila and Matthias Beck for taking on the huge job of
co-chairing the Organizing Committee.

Sara Billey & Vic Reiner
Program Committee co-chairs

Department of Mathematics

College of Science & Engineering
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Recent developments on log-concavity and
q-log-concavity of combinatorial polynomials

Bill Chen
Nankai University, China

Abstract. In this talk, I wish to report some recent work with my students and colleagues at Nankai University on
log-concavity and q-log-concavity of combinatorial polynomials. While this is a classical subject of algebraic com-
binatorics, interesting problems and techniques continue to emerge.
(1) We proved the unimodality conjecture on balanced colorings of the n-cube proposed by Palmer, Read and Robin-
son, and obtained a log-concavity theorem for sufficiently large n.
(2) We proved the ratio monotone property of the Boros-Moll polynomials which is stronger than the log-concavity.
We further proved the 2-log-concavity which was considered as a difficult problem. The 2-log-convexity of the Apery
numbers has been established. We obtained the reverse ultra log-concavity of the Boros-Moll polynomials, and con-
firmed Moll’s minimum conjecture. A combinatorial approach has been found to justify the log-concavity and other
properties of the Boros-Moll polynomials.
(3) By using the Littlewood-Richardson rule, we obtained certain Schur positivity results that lead to a proof of the
q-log-convexity conjecture for the Narayana polynomials.
(4) By establishing the strong q-log-concavity of q-Narayana numbers Nq(n, k) for fixed k, we confirmed the 2-fold
case of the q-log-concavity conjecture for the Gaussian coefficients proposed by McNamara and Sagan.
(5) We found a unified approach to the q-log-convexity of the Bell polynomials, the Bessel polynomials, the Ramanu-
jan polynomials and the Dowling polynomials.
(6) We shall also mention some open problems.
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A probabalistic interpretation of the
Macdonald polynomials

Persi Diaconis
Stanford University, USA

Abstract. The two-parameter Macdonald polynomials are a central object of study in algebraic combinatorics. Arun
Ram and I have found a simple Markov chain on partitions (with stationary distributon the Macdonald weight) whose
eigenfunctions are the co-efficients of the Macdonald polynomials when expanded in the power sums. In turn, this
Markov chain is a special case of classical algorithms in statistical mechanics (Swedsen-Wang and auxiliary vari-
able algorithms). The wealth of knowledge about Macdonald polynomials allows a sharp analysis of the rate of
convergence of the Markov chain to stationarity.
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Hypergeometric series with
algebro-geometric dressing

Alicia Dickenstein
Universidad de Buenos Aires, Argentina

Abstract. Important classical functions as well as generating functions associated to combinatorial objects are given
by series whose coefficients satisfy hypergeometric recurrences. Following Gelfand, Kapranov and Zelevinsky, who
defined A-hypergeometric systems satisfied by suitable homogeneous versions of classical hypergeometric functions,
we will present joint work with Eduardo Cattani, Laura Matusevich, Fernando Rodrguez Villegas, Timur Sadykov
and Bernd Sturmfels, to describe the structure of rational hypergeometric series in two variables and the ocurrence of
finite solutions to hypergeometric recurrences.
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Normal polytopes

Joseph Gubeladze †

Department of Mathematics, San Francisco State University, San Francisco, CA 94132, USA

Abstract. In Section 1 we overview combinatorial results on normal polytopes, old and new. These polytopes rep-
resent central objects of study in the contemporary discrete convex geometry, on the crossroads of combinatorics,
commutative algebra, and algebraic geometry. In Sections 2 and 3 we describe two very different possible ways of
advancing the theory of normal polytopes to next essential level, involving arithmetic and topological aspects.

Keywords: lattice polytopes, normal polytopes, tight polytopes, unimodular cover, integral Carathéodory property

1 Normal polytopes: old and new
All our polytopes are assumed to be convex.

Let P ⊂ Rd be a lattice polytope and denote by L the affine lattice in Zd, generated by the lattice points
in P ; i. e., L = v +

∑
x,y∈P∩Zd Z(x − y) ⊂ Zd, where v is some (equivalently, any) lattice point in P .

Observe, P ∩ L = P ∩ Zd. Here is the central definition:
(a) P is integrally closed if the following condition is satisfied:

c ∈ N, z ∈ cP ∩ Zd =⇒ ∃x1, . . . , xc ∈ P ∩ Zd x1 + · · ·+ xc = z.

(b) P is normal if the following condition is satisfied:

c ∈ N, z ∈ cP ∩ L =⇒ ∃x1, . . . , xc ∈ P ∩ L x1 + · · ·+ xc = z.

The normality property is invariant under affine-lattice isomorphisms of lattice polytopes, and the prop-
erty of being integrally closed is invariant under an affine change of coordinates, leaving the lattice struc-
ture Zd ⊂ Rd invariant.

A lattice polytope P ⊂ Rd is integrally closed if and only if it is normal and L is a direct summand of
Zd. Obvious examples of normal but not integrally closed polytopes are the s. c. empty lattice simplices
of large volume. No classification of such simplices is known in dimensions≥ 5, the main difficulty being
the lack of satisfactory characterization of their lattice widths; see [13, 20].

A normal polytope P ⊂ Rd can be made into a full-dimensional integrally closed polytope by changing
the lattice of reference Zd to L and the ambient Euclidean space Rd to the subspace RL. In particular,

†Supported by NSF grant DMS - 1000641
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normal and integrally closed polytopes refer to same isomorphism classes of lattice polytopes. In the
combinatorial literature the difference between ‘normal’ and ‘integrally closed’ is sometimes blurred.

Normal/integrally closed polytopes enjoy popularity in algebraic combinatorics and they have been
showcased on recent workshops ([1, 2]). These polytopes represent the homogeneous case of the Hilbert
bases of finite positive rational cones and the connection to algebraic geometry is that they define projec-
tively normal embeddings of toric varieties. There are many challenges of number theoretic, ring theoretic,
homological, and K-theoretic nature, concerning the associated objects: Ehrhart series’, rational cones,
toric rings, and toric varieties; see [7].

If a lattice polytope is covered by (in particular, subdivided into) integrally closed polytopes then it is
integrally closed as well. The simplest integrally closed polytopes one can think of are unimodular sim-
plices, i. e., the lattice simplices ∆ = conv(x1, . . . , xk) ⊂ Rd, dim ∆ = k−1, with x1−xj , . . . , xj−1−
xj , xj+1 − xj , . . . , xk − xj a part of a basis of Zd for some (equivalently, every) j.

Unimodular simplices are the smallest ‘atoms’ in the world of normal polytopes. But the latter is not
built out exclusively of these atoms: not all 4-dimensional integrally closed polytopes are triangulated into
unimodular simplices [9, Prop. 1.2.4], and not all 5-dimensional integrally closed polytopes are covered
by unimodular simplices [5] – contrary to what had been conjectured before [19]. Further ‘negative’
results, such as [4] and [8] (the latter disproving a conjecture from [10]), contributed to the current thinking
in the area that there is no succinct geometric characterization of the normality property. One could even
conjecture that in higher dimensions the situation gets as bad as it can; see Section 2 for details.

‘Positive’ results in the field mostly concern special classes of lattice polytopes that are normal, or have
unimodular triangulations or unimodular covers. Knudsen-Mumford’s classical theorem ([7, Sect. 3B],
[14, Chap. III], ) says that every lattice polytope P has a multiple cP for some c ∈ N that is triangulated
into unimodular simplices. The existence of a dimensionally uniform lower bound for such c seems to
be a very hard problem. More recently, it was shown in [6] that there exists a dimensionally uniform
exponential lower bound for unimodularly covered multiple polytopes. By improving one crucial step in
[6], von Thaden was able to cut down the bound to a degree 6 polynomial function in the dimension [7,
Sect. 3C], [22].

The results above on multiple polytopes yield no new examples of normal polytopes, though. In fact,
an easy argument ensures that for any lattice d-polytope P the multiples cP , c ≥ d − 1, are integrally
closed [9, Prop. 1.3.3], [11]. One should remark that there is no algebraic obstruction to the existence of
(even quadratic regular) unimodular triangulations for all multiples cP , c ≥ d− 1: the nice homological
properties that the corresponding toric rings would have (according to Sturmfels’ theory [21]) should such
triangulations existed, are all present [9].

Lattice polytopes with long edges of independent length are considered in [12], where it is shown that
if the edges of a lattice d-polytope P have lattice lengths ≥ 2d2(d + 1) then P is integrally closed. In
the special case when P is a simplex one can do better: P is covered by lattice parallelepipeds, provided
the edges of P have lattice lengths ≥ d(d + 1). Lattice parallelepipeds are the simplest integrally closed
polytopes after unimodular simplices.

Currently, one problem attracts much attention in the field. Namely, Oda’s question asks whether all
smooth polytopes are integrally closed. A lattice polytope P ⊂ Rd is called smooth if the primitive edge
vectors at every vertex of P define a part of a basis of Zd. Smooth polytopes correspond to projective
embeddings of smooth projective toric varieties. Oda’s question remains (as of writing this) wide open
– so far no smooth polytope just without a unimodular triangulation has been found. The research was
triggered by a faulty attempt in the mid 1990s to answer the question in the positive. The Frobenius
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splitting techniques that was used then was recently revived in Payne’s work, leading to new classes of
normal (and even Koszul) polytopes, associated to root systems of various types [17].

For further classes of polytopes, associated to root systems and admitting unimodulaar triangulations
as certificate of normality, see [3, 15, 16, 18].

In the next two sections we describe two very different possible ways of advancing the theory of normal
polytopes to next essential level.

2 Carathéodory rank
What follows next is the homogeneous special case of a more general story that concerns rational positive
cones and their Hilbert bases.

An arithmetic version of a unimodular cover is the integral Carathéodory property (ICP): a lattice
d-polytope P has (ICP) if for every natural number c and every lattice point z ∈ cP there exist lattice
points x1, . . . , xd+1 ∈ P and integers a1, . . . , ad+1 ≥ 0 such that z = a1x1 + · · · + ad+1xd+1 and
a1 + · · ·+ ad+1 = c.

For a lattice polytope P its Carathéodory rank, denoted by CR(P ), is the smallest natural number k
such that for every natural number c and every lattice point z ∈ cP there exist lattice points x1, . . . , xk ∈
P and integers a1, . . . , ak ≥ 0 such that z = a1x1 + · · ·+ akxk and a1 + · · ·+ ak = c.

Sebö has shown [19] that CR(P ) ≤ 2 dimP for arbitrary integrally closed polytope P . If P has
a unimodular cover then it has (ICP) too, i. e., CR(P ) = dimP + 1. It is known that (ICP) implies
‘integrally closed’ [5]. The converse is not true: there are integrally closed 5-polytopes without (ICP) [8].
That (ICP) and the existence of a unimodular cover are different conditions was discovered only recently:
there are 5-polytopes with (ICP) but without unimodular cover [4].

We conjecture that Sëbo’s estimate for Carathéodory rank is asymptotically sharp:

lim
d→∞

d−1 maxCR(P ) = 2,

where, for each fixed d, P runs over the integrally closed d-polytopes. This conjecture, in particular, says
that there are essentially new types of counterexamples to (ICP) in higher dimensions, not obtained by
trivial extensions of counterexamples in lower dimensions.

3 Do normal polytopes model quantum states?
The method, by which counterexamples to the unimodular cover property and (ICP) were found, was to
check s. c. tight polytopes for these properties. An integrally closed polytope P ⊂ Rd is called tight if,
whatever lattice point x ∈ P ∩Zd we choose, the convex hull of

(
P ∩ Zd

)
\{x} in Rd is not an integrally

closed polytope. This moves center stage the descending sequences of lattice integrally closed polytopes
in Rd of type

P1 ⊃ P2 ⊃ · · · ⊃ Pk, #
(
Pi ∩ Zd

)
= #

(
Pi+1 ∩ Zd

)
+ 1, i = 1, . . . , k − 1.

That such a sequence may halt at all at a positive dimensional polytope, or equivalently, that there exist
nontrivial tight polytopes is already something not quite obvious. This phenomenon shows up in dimen-
sions ≥ 4. There are no tight polygons, and the existence of tight 3-polytopes is not known.
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Consider the poset Pol(d) of lattice integrally closed polytopes in Rd, where the order relation is gen-
erated by the elementary relations of type P < Q, #

(
Q ∩ Zd

)
= #

(
P ∩ Zd

)
+ 1. Minimal elements

of Pol(d) are exactly the tight polytopes in Rd. Informally, the poset Pol(d) offers a global picture of the
interaction of polytopal shapes in Rd with the integer lattice Zd.

Here is a list of a several interesting questions one can ask about Pol(d): Do there exist maximal
elements in Pol(d)? What is the homotopy type of Pol(d)? Is it contractible? Does it have isolated
points?

We suggest the following game: think of the chains in Pol(d) as quantum processes, individual poly-
topes as quantum states, and elementary relations P < Q as quantum jumps. The vocabulary can be
extended to accommodate such terminology as energy and time (both discrete), observables, entangle-
ment, tunneling, uncertainty principle, fluctuations. Real fun starts when one thinks of the potentially
nontrivial homotopy groups of Pol(d) as a force that permeates all of the geometric realization space of
Pol(d) and keeps the world of integrally closed polytopes from collapsing into a point.
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Combinatorial representation theory of
algebras: the example of j-trivial monoids

Florent Hivert
Université de Rouen, France

Abstract. The representation theory of algebras is a very important source of interesting combinatorics. The sym-
metric groups leading to the combinatorics of tableaux is certainly the most striking example, but it is far from being
unique: other examples include the various Hecke algebras, descent algebras... Another interesting feature of the
representation theory of the finite dimensional algebras is that it is mostly effective. As a consequence, with the
appropriate tools one can very easily use computers for exploration.

The goal of the talk is to discuss these features together with the simple remark that several recently studied algebras
are in fact monoid algebras: examples are 0-Hecke algebras, degenerated Ariki-Koiki algebras, Solomon-Tits alge-
bras. Apparently, the fact that they are indeed monoid algebras wasn’t used in those studies. However, from recent
results in semigroups theory it seem that a lot of representation theory of a semigroup algebra is of combinatorial
nature (provided the representation theory of groups is known). One can expect, for example, that for aperiodic semi-
group (semigroup which doesn’t contains non trivial groups), most of the combinatorial information (dimensions of
the simple/projective indecomposable, induction/restriction constants/Cartan’s invariants) can be computed without
using any linear algebra.

In this talk, we will focus on the so-called J-trivial monoids, which are the monoids M such that the product has the
following triangular properties: there exists a partial ordering≤ on M such that for a x, y ∈M , one had xy ≤ x and
xy ≤ y. A typical example is the 0-Hecke monoid of a Coxeter group. We will show that for such a monoid, most
of the combinatorial data of the representation theory including the Cartan’s invariant matrix and the quiver can be
expressed by counting particular kinds of elements in the monoid itself.

This is a joint work with Tom Denton, Anne Schilling and Nicolas Thiéry.
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The discrete geometry of moment polytopes

Tara Holm
Cornell University, USA

Abstract. Moment polytopes are convex polytopes associated to Hamiltonian systems in symplectic geometry. The
discrete geometry of the moment polytope can tell us a good deal about the global geometry and topology of the
corresponding system. I will give a brief introduction to symplectic geometry to show how moment polytopes arise,
followed by a survey demonstrating how combinatorial techniques can be brought to bear on topological questions.
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Posets and curvature

Jon McCammond
University of California, Santa Barbara, USA

Abstract. It is extremely common to convert a partially ordered set into a simplicial complex and to correlate the
topology of the resulting space with the structure of the original poset. In this talk, I discuss how the adding a metric
perspective and introducing notions such as curvature from geometric group theory help to enhance this connection.
(Joint work with Tom Brady)
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Rigidity, sparsity and pebble games

Ileana Streinu
Smith College, USA

Abstract. A famous open problem, going back to the work of James Clerk Maxwell in 1864, is to give a combinatorial
characterization for generically rigid frameworks made from bars connected by rotatable joints. The same question
can be asked for a long list of other geometrically constrained systems, but only very few answers are known. They
include bar-and-joint frameworks in dimensions one and two, body-and-bar structures in arbitrary dimensions and a
few other isolated instances such as skeleta of triangulated 3D polyhedra. The underlying combinatorial structure, in
all these cases, is a graph satisfying some linear sparsity conditions. The pebble games are simple construction rules
characterizing exactly those classes of sparse (hyper)graphs which are matroids. On the other hand, for Maxwell’s
problem the necessary (but not sufficient) sparsity condition falls “just below” the matroidal range. This talk will
present these varied facets of combinatorial rigidity (accompanied by a variety of visual and physical props), and will
conclude with some recent results.



13

The Worm order and its applications

Peter Winkler
Dartmouth College, USA

Abstract. Let x and y be two words in a linearly-ordered alphabet (such as the real numbers). We say that x is below
y in the worm order if they can be “scheduled” in such a way that x is always less than or equal to y. It turns out
that in any submodular system there is a maximal chain that is minimal in the worm order, among all paths from 0
to 1. One consequence is a set of general conditions under which parallel scheduling can be done without backward
steps. Among the applications are a fast algorithm for scheduling multiple processes without overusing a resource; a
theorem about searching for a lost child in a forest; and a closed-form expression for the probability of escaping from
the origin in a form of coordinate percolation. Joint work in part with Graham Brightwell (LSE) and in part with Lizz
Moseman (USMA).
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A Pieri rule for skew shapes

Sami H. Assaf1†and Peter R. W. McNamara2

1Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA
02139, USA
2Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
sassaf@math.mit.edu, peter.mcnamara@bucknell.edu

Abstract. The Pieri rule expresses the product of a Schur function and a single row Schur function in terms of Schur
functions. We extend the classical Pieri rule by expressing the product of a skew Schur function and a single row
Schur function in terms of skew Schur functions. Like the classical rule, our rule involves simple additions of boxes
to the original skew shape. Our proof is purely combinatorial and extends the combinatorial proof of the classical
case.

Résumé. La règle de Pieri exprime le produit d’une fonction de Schur et de la fonction de Schur d’une seule ligne en
termes de fonctions de Schur. Nous étendons la règle classique de Pieri en exprimant le produit d’un fonction gauche
de Schur et de la fonction de Schur d’une ligne en termes de fonctions gauches de Schur. Comme la règle classique,
notre règle implique l’ajout de cases à la forme gauche initiale. Notre preuve est purement combinatoire et étend celle
du cas classique.

Keywords: Pieri rule, skew Schur functions, Robinson-Schensted

1 Introduction
The basis of Schur functions is arguably the most interesting and important basis for the ring of symmetric
functions. This is due not just to their elegant combinatorial definition, but more broadly to their connec-
tions to other areas of mathematics. For example, they are intimately tied to the cohomology ring of the
Grassmannian, and they appear in the representation theory of the symmetric group and of the general
and special linear groups.

It is therefore natural to consider the expansion of the product sλsµ of two Schur functions in the basis
of Schur functions. The Littlewood-Richardson rule [LR34, Sch77, Tho74, Tho78], which now comes
in many different forms ([Sta99] is one starting point), allows us to determine this expansion. However,
more basic than the Littlewood-Richardson rule is the Pieri rule, which gives a simple, beautiful and more
intuitive answer for the special case when µ = (n), a partition of length 1. Though we will postpone
the preliminary definitions to Section 2 and the statement of the Pieri rule to Section 3, stating the rule
in a rough form will give its flavor. For a partition λ and a positive integer n, the Pieri rule states that

†Supported by NSF Postdoctoral Fellowship DMS-0703567

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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sλsn is a sum of Schur functions sλ+ , where λ+ is obtainable by adding cells to the diagram of λ ac-
cording to a certain simple rule. The Pieri rule’s prevalence is highlighted by its adaptions to many other
settings, including Schubert polynomials [LS82, LS07, Man98, Sot96, Win98], Hall-Littlewood polyno-
mials [Mor64], Jack polynomials [Las89, Sta89], LLT polynomials [Lam05], and Macdonald polynomials
[Koo88, Mac87, Mac95].

It is therefore surprising that there does not appear to be a known adaption of the Pieri rule to the
most well-known generalization of Schur functions, namely skew Schur functions. We fill this gap in the
literature with a natural extension of the Pieri rule to the skew setting. Reflecting the simplicity of the
classical Pieri rule, the skew Pieri rule states that for a skew shape λ/µ and a positive integer n, sλ/µsn is
a signed sum of skew Schur functions sλ+/µ− , where λ+/µ− is obtainable by adding cells to the diagram
of λ/µ according to a certain simple rule. Our proof is purely combinatorial, using a sign-reversing
involution that reflects the combinatorial proof of the classical Pieri rule.

After reading an early version of the full version [AM09] of this manuscript, which included an alge-
braic proof of the case n = 1 due to Richard Stanley, Thomas Lam provided a complete algebraic proof
of our skew Pieri rule, which is included as an appendix to [AM09]. It is natural to ask if our skew Pieri
rule can be extended to give a “skew” version of the Littlewood-Richardson rule, and we included such a
rule as a conjecture in [AM09]. This conjecture has been proved by Lam, Aaron Lauve and Frank Sottile
in [LLS09] using Hopf algebras. It remains an open problem to find a combinatorial proof of the skew
Littlewood-Richardson rule.

The remainder of this paper is organized as follows. In Section 2, we give the necessary symmetric
function background. In Section 3, we state the classical Pieri rule and introduce our skew Pieri rule.
In Section 4, we give a variation from [SS90] of the Robinson-Schensted-Knuth algorithm, along with
relevant properties. This algorithm is then used in Section 5 to define the sign-reversing involution that
proves the skew Pieri rule.

1.1 Acknowledgments
We are grateful to a number of experts for informing us that they too were surprised by the existence of
the skew Pieri rule, and particularly to Richard Stanley for providing an algebraic proof of the n = 1 case
that preceded our combinatorial proof. This research was performed while the second author was visiting
MIT, and he thanks the mathematics department for their hospitality. Computations were performed using
[Buc99, Ste].

2 Preliminaries
We follow the terminology and notation of [Mac95, Sta99] for partitions and tableaux, except where
specified. Letting N denote the nonnegative integers, a partition λ of n ∈ N is a weakly decreasing
sequence (λ1, λ2, . . . λl) of positive integers whose sum is n. It will be convenient to set λk = 0 for
k > l. We also let ∅ denote the unique partition with l = 0. We will identify λ with its Young diagram in
“French notation”: represent the partition λ by the unit square cells with top-right corners (i, j) ∈ N× N
such that 1 ≤ i ≤ λj . For example, the partition (4, 2, 1), which we abbreviate as 421, has Young diagram

.
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Define the conjugate or transpose λt of λ to be the partition with λi cells in column i. For example,
421t = 3211. For another partition µ, we write µ ⊆ λ whenever µ is contained within λ (as Young
diagrams); equivalently µi ≤ λi for all i. In this case, we define the skew shape λ/µ to be the set theoretic
difference λ− µ. In particular, the partition λ is the skew shape λ/∅. We call the number of cells of λ/µ
its size, denoted |λ/µ|. We say that a skew shape forms a horizontal strip (respectively vertical strip) if it
contains no two cells in the same column (resp. row). A k-horizontal strip is a horizontal strip of size k,
and similarly for vertical strips. For example, the skew shape 421/21 is a 4-horizontal strip:

.

With another skew shape σ/τ , we let (λ/µ) ∗ (σ/τ) denote the skew shape obtained by positioning λ/µ
so that its bottom right cell is immediately above and left of the top left cell of σ/τ . For example, the
horizontal strip 421/21 above could alternatively be written as (21/1) ∗ (2) or as (1) ∗ (31/1).

A Young tableau of shape λ/µ is a map from the cells of λ/µ to the positive integers. A semistandard
Young tableau (SSYT) is such a filling which is weakly increasing from left-to-right along each row and
strictly increasing up each column, such as

1 2 7
3 3 5
5

.

The content of an SSYT T is the sequence π such that T has πi cells with entry i; in this case π =
(1, 1, 2, 0, 2, 0, 1).

We let Λ denote the ring of symmetric functions in the variables x = (x1, x2, . . .) over Q, say. We will
use three familiar bases from [Mac95, Sta99] for Λ: the elementary symmetric functions eλ, the complete
homogeneous symmetric functions hλ and, most importantly, the Schur functions sλ. The Schur functions
form an orthonormal basis for Λ with respect to the Hall inner product and may be defined in terms of
SSYTs by

sλ =
∑

T∈SSYT(λ)

xT , (2.1)

where the sum is over all SSYTs of shape λ and where xT denotes the monomial xπ1
1 xπ2

2 · · · when T has
content π. Replacing λ by λ/µ in (2.1) gives the definition of the skew Schur function sλ/µ, where the
sum is now over all SSYTs of shape λ/µ. For example, the SSYT shown above contributes the monomial
x1x2x

2
3x

2
5x7 to s431/1.

3 The skew Pieri rule
The celebrated Pieri rule gives an elegant method for expanding the product sλsn in the Schur basis. This
rule was originally stated in [Pie93] in the setting of Schubert Calculus. Recall that the single row Schur
function sn equals the complete homogeneous symmetric function hn. Recall also the involution ω on Λ,
which may be defined by sending the Schur function sλ to sλt or equivalently by sending hk to ek. Thus
the Schur function s1n equals the elementary symmetric function en, where 1n denotes a single column
of size n.
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Theorem 3.1 ([Pie93]) For any partition λ and positive integer n, we have

sλsn = sλhn =
∑

λ+/λ n-hor. strip

sλ+ , (3.1)

where the sum is over all partitions λ+ such that λ+/λ is a horizontal strip of size n.

Applying the involution ω to (3.1), we get the dual version of the Pieri rule:

sλs1n = sλen =
∑

λ+/λ n-vert. strip

sλ+ , (3.2)

where the sum is now over all partitions λ+ such that λ+/λ is a vertical strip of size n.
A simple application of Theorem 3.1 gives

s322s2 = s3222 + s3321 + s4221 + s432 + s522,

as represented diagrammatically in Figure 1.

+= + + +

Fig. 1: The expansion of s322s2 by the Pieri rule.

Given the simplicity of (3.1), it is natural to hope for a simple expression for sλ/µsn in terms of skew
Schur functions. This brings us to our main result.

Theorem 3.2 For any skew shape λ/µ and positive integer n, we have

sλ/µsn = sλ/µhn =

n∑

k=0

(−1)k
∑

λ+/λ (n−k)-hor. strip
µ/µ− k-vert. strip

sλ+/µ− , (3.3)

where the second sum is over all partitions λ+ and µ− such that λ+/λ is a horizontal strip of size n− k
and µ/µ− is a vertical strip of size k.

Observe that when µ = ∅, Theorem 3.2 specializes to Theorem 3.1. Again, we can apply the ω
transformation to obtain the dual version of the skew Pieri rule.

Corollary 3.3 For any skew shape λ/µ and any positive integer k, we have

sλ/µs1n = sλ/µen =
n∑

k=0

(−1)k
∑

λ+/λ (n−k)-vert. strip
µ/µ− k-hor. strip

sλ+/µ− ,

where the sum is over all partitions λ+ and µ− such that λ+/λ is a vertical strip of size n− k and µ/µ−

is a horizontal strip of size k.
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Example 3.4 A direct application of Theorem 3.2 gives

s322/11s2 = s3222/11 + s3321/11 + s4221/11 + s432/11 + s522/11

− s3221/1 − s332/1 − s422/1 + s322,

as represented diagrammatically in Figure 2.

+

+

= + + +

Fig. 2: The expansion of s322/11s2 by the skew Pieri rule.

As (3.3) contains negative signs, our approach to proving Theorem 3.2 will be to construct a sign-
reversing involution on SSYTs of shapes of the form λ+/µ−. We will then provide a bijection between
SSYTs of shape λ+/µ− that are fixed under the involution and SSYTs of shape (λ/µ) ∗ (n). The result
then follows from the fact that s(λ/µ)∗(n) = sλ/µsn.

4 Row insertion
In order to describe our sign-reversing involution, we will need the Robinson-Schensted-Knuth (RSK)
row insertion algorithm on SSYTs [Rob38, Sch61, Knu70]. For a thorough treatment of this algorithm
along with many applications, we recommend [Sta99]. In fact, we will use an analogue of the algorithm
for SSYTs of skew shape from [SS90]. There, row insertion comes in two forms, external and internal
row insertion. External row insertion, which we now define, is just like the classical RSK insertion.

Definition 4.1 Let T be an SSYT of arbitrary skew shape and choose a positive integer k. Define the
external row insertion of k into T , denoted T ←0 k, as follows: if k is weakly larger than all entries in
row 1 of T , then add k to the right end of the row and terminate the process. Otherwise, find the leftmost
cell in row 1 of T whose entry, say k′, is greater than k. Replace this entry by k and then row insert k′

into T at row 2 using the procedure just described. Repeat the process until some entry comes to rest at
the right end of a row.

Example 4.2 Let λ/µ = 7541/32 and λ+/µ− = 7542/31 so that the outlined entries below are those in
λ/µ. The result of externally row inserting a 2 is shown below, with changed cells circled.

4 5 ©
2 2 7© 7

1 2 3 4©
2 2 3© 6

←0 2 =
4 5 7©
2 2 4© 7

1 2 3 3©
2 2 2© 6

(4.1)
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An inside corner (resp. outside corner) of an SSYT T is a cell that has no cell of T immediately below
or to its left (resp. above or to its right). Therefore, inside and outside corners are those individual cells
whose removal from T still yields an SSYT of skew shape.

Definition 4.3 Let T be an SSYT of arbitrary skew shape and let T have an inside corner in row r with
entry k. Define the internal row insertion of k from row r into T , denoted T ←r k, as the removal of
k from row r and its insertion, using the rules for external row insertion, into row r + 1. The insertion
proceeds until some entry comes to rest at the right end of a row.

We could regard external insertions as internal insertions from row 0, explaining our notation. We will
simply write T ← k when specifying the type or row of the insertion is unnecessarily cumbersome.

Example 4.4 Taking T as the SSYT on the right in (4.1), the result of internally row inserting the 1 from
row 2 is shown below.

©
4© 5 7
2© 2 4 7

1© 2 3 3
2 2 2 6

←2 1 =

4©
5 72©
2 4 71©
© 2 3 3

2 2 2 6

(4.2)

For both types of insertion, we must be a little careful when inserting an entry into an empty row, say
row i: in this case λi = µi and the entry must be placed in column λi + 1.

Note that an internal insertion results in the same multiset of entries while an external insertion adds an
entry. It is not difficult to check that either operation results in an SSYT.

We will also need to invert row insertions, again for skew shapes and following [SS90].

Definition 4.5 Let T be an SSYT of arbitrary skew shape and choose an outside corner c of T , say with
entry k. Define the reverse row insertion of c from T , denoted T → c, by deleting c from T and reverse
inserting k into the row below, say row r, as follows: if r = 0, then the procedure terminates. Otherwise,
if k is weakly smaller than all entries in row r, then place k at the left end of row r and terminate the
procedure. Otherwise, find the rightmost cell in row r whose entry, say k′, is less than k. Replace this
entry by k and then reverse row insert k′ into row r − 1 using the procedure just described.

Example 4.6 In (4.1), reverse row insertion of the cell containing the circled 7 from the SSYT on the right
results in the SSYT on the left, and similarly in (4.2) for the circled 4.

As with row insertion, it follows from the definition that the resulting array will again be an SSYT.
Observe that the first type of termination mentioned in Definition 4.5 corresponds to reverse external row
insertion, and we then say that k lands in row 0. The second type of termination corresponds to reverse
internal row insertion, and we then say that k lands in row r. In both cases, we will call the entry k left
at the end of the procedure the final entry of T → c. The following lemma, which follows immediately
from Definitions 4.1, 4.3 and 4.5, formalizes the bijectivity of row and reverse row insertion.

Lemma 4.7 Let T be an SSYT of skew shape.

a. If S is the result of T ← k for some positive integer k, then S → c results in T , where c is the
unique non-empty cell of S that is empty in T .
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b. If S is the result of T → c for some removable cell c of T and the final entry k of T → c lands in
row r ≥ 0, then S ←r k results in T .

For both row insertion and reverse row insertion, we will often want to track the cells affected by the
procedure. Therefore define the bumping path of the row insertion T ← k (resp. the reverse bumping
path of a reverse row insertion T → c) to be the set of cells in T , as well as those empty cells, where the
entries differ from the corresponding entries in T ← k (resp. T → c). The cells of the bumping paths for
row insertion and reverse row insertion are circled in (4.1) and (4.2). Note that the fact that the bumping
path and reverse bumping path are equal in each of these examples is a consequence of Lemma 4.7.

It is easy to see that the bumping paths always move weakly right from top to bottom in the case
of column-strict tableaux. The following bumping lemma will play a crucial role in defining our sign-
reversing involution and in proving its relevant properties.

Lemma 4.8 Let T be an SSYT of skew shape and let k, k′ be positive integers. LetB be the bumping path
of T ← k and let B′ be the bumping path of (T ← k)← k′.

a. If B is strictly left of B′ in any row r, then B is strictly left of B′ in every row they both occupy.
Moreover, the top cells of B and B′ form a horizontal strip.

b. If both row insertions are external, then B is strictly left of B′ in every row they both occupy if and
only if k ≤ k′.

c. Suppose C ′ is the reverse bumping path of T → c′ with final entry k′ and C is the reverse bumping
path of (T → c′)→ c with final entry k. If c is strictly left of c′, then C is strictly left of C ′ in every
row they both occupy. If, in addition, both reverse row insertions land in row 0, then k ≤ k′.

To foreshadow the role of Lemma 4.8 in the following section, we give a proof of the classical Pieri
rule using this result.

Proof of Theorem 3.1: The formula is proved if we can give a bijection between SSYTs of shape λ ∗ (n)
and SSYTs of shape λ+ such that λ+/λ is a horizontal strip of size n. Let k1 ≤ · · · ≤ kn be entries of
(n) from left to right. Repeated applications of (a) and (b) of Lemma 4.8 ensure that row inserting these
entries into an SSYT of shape λ will add a horizontal strip of size n to λ. By Lemma 4.7, this establishes
a bijection where the inverse map is given by reverse row inserting the cells of λ+/λ from right to left. 2

5 A sign-reversing involution
Throughout this section, fix a skew shape λ/µ. We will be interested in SSYTs of shape λ+/µ−, where
we always assume that λ+/λ is a horizontal strip, µ/µ− is a vertical strip, and |λ+/λ| + |µ/µ−| = n.
Our goal is to construct a sign-reversing involution on SSYTs whose shapes take the form λ+/µ−, such
that the fixed points are in bijection with SSYTs of shape (λ/µ) ∗ (n).

Our involution is reminiscent of the proof of the classical Pieri rule given in Section 4. By Lemma 4.7,
reverse row insertion gives a bijective correspondence provided we record the final entry and its landing
row. Our strategy, then, is to reverse row insert the cells of λ+/λ from right to left, recording the entries
as we go. If at some stage we land in row r ≥ 1, we will then re-insert all the previous final entries. More
formally, we have the following definition of a downward slide of T .
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Definition 5.1 Let T be an SSYT of shape λ+/µ−. Define the downward slide of T , denoted D(T ), as
follows: construct T → c1 where c1 is the rightmost cell of λ+/λ, and let k1 denote the final entry.
If k1 lands in row 0, then continue with c2 the second rightmost cell of λ+/λ and k2 the final entry of
(T → c1) → c2. Continue until the first time km lands in row r ≥ 1 and set m′ = m − 1, or set
m = m′ = |λ+/λ| if no such km exists. Then D(T ) is given by

(· · · (((· · · (T → c1)→ c2 · · · )→ cm)← km′) · · · )← k1.

Example 5.2 With T shown on the left below, we exhibit the construction of D(T ) in two steps. We find
that m = 4 and the middle SSYT shows the result of (((T → c1) → c2) → c3) → c4. The entries that
land in row 0 are recorded in the dashed box. Then the SSYT on the right is D(T ). The significance of the
circles will be explained later.

9
3 5© 7 7
2 2© 3 4

1© 2 2 3 6
© 1 2 2 5

9
3
2 5 7 7

2 2 3 4
1 2 2 3 6

1 2 5

9

3 5 7
2 3 4 7

2 2 2 3 6
1 1 2 2 5

(5.1)

Alternatively, if T is the SSYT shown on the left below, we find that m = 3 and that all three final entries
land in row 0. Then m′ = |λ+/λ| and Lemma 4.7 ensures that D(T ) = T . Below in the middle, we have
shown ((T → c1)→ c2)→ c3. The position of the dashed box is intended to be suggestive: together with
the entries in the outlined shape, we see that we have an SSYT of shape (λ/µ) ∗ (n) = (653/21) ∗ (3).

2
5

6
1 3 3
4

1 1
3 7
2 3 3

2 5 6
1 3 3 4

1 1 3 7
2 3 3

2
5

6
1 3 3
4

1 1
3 7
2 3 3

The final reverse bumping path in a downward slide will play an important role in the sign-reversing
involution. Therefore, with notation as in Definition 5.1, if m < |λ+/λ|, then we refer to the reverse
bumping path of T → cm as the downward path of T . The cells of the downward path of T are circled
above. Say that the downward path of T exits right if its bottom cell (which may be empty) is strictly
below the bottom cell µ/µ−. Our terminology is justified since one can show that the exits right condition
is equivalent to the bottom cell of the downward path being weakly right of the bottom cell of µ/µ−. The
importance of the exits right condition is revealed by the following result.

Proposition 5.3 Suppose T is an SSYT of shape λ+/µ− such that the downward path of T , if it exists,
exits right. Then D(T ) is an SSYT of shape λ′/µ′, where λ′/λ (resp. µ/µ′) is a horizontal (resp. vertical)
strip.
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Supposing D(S) = T with T 6= S, the next step is to invert the downward slides for such T . Since any
such T necessarily has µ− 6= µ, the idea is to internally row insert the bottom cell of µ/µ−. However,
before doing this we must reverse row insert certain cells of λ+/λ, as in a downward slide. To describe
which cells to reverse insert, we define the upward path of T to be the bumping path that would result
from internal row insertion of the entry in the bottom cell of µ/µ−. Roughly, we will reverse row insert
anything that is weakly right of this upward path.

Definition 5.4 Let T be an SSYT of shape λ+/µ− such that µ− 6= µ. Define the upward slide of T ,
denoted U(T ), as follows: construct T → c1 where c1 is the rightmost cell of λ+/λ, and let k1 denote
its final entry and B1 its bumping path. If B1 fails to stay weakly right of the upward path of T , then
set m = m′ = 0. Otherwise, consider c2, the second rightmost cell of λ+/λ, and k2, the final entry
of (T → c1) → c2, and B2, the corresponding bumping path. Continue until the last time Bm stays
weakly right of the upward path of T or until no cell of λ+/λ remains. Suppose that after the reverse row
insertions, the bottom cell of µ/µ− is in row r and has entry k. Then U(T ) is given by

(· · · ((((· · · (T → c1)→ c2 · · · )→ cm)←r k)← km′) · · · )← k1 (5.2)

where we set m′ = m if km lands in row 0, and m′ = m− 1 otherwise.

Example 5.5 Letting T be the rightmost SSYT of (5.1), the cells of the upward path of T are circled
below. We determine U(T ) in three steps. We find that m = 3 and the middle SSYT of (5.1) shows
((T → c1)→ c2)→ c3. Then (((T → c1)→ c2)→ c3)← k is shown in the middle below, while U(T )
is shown on the right. Comparing with Example 5.2, we observe that the upward slide in this case does
indeed invert the downward slide.

©
9©
3 5© 7
2 3© 4 7

2© 2 2 3 6
1© 1 2 2 5

9
3 5
2 2 7 7

1 2 3 4
2 2 3 6

1 2 5

9
3 5 7 7
2 2 3 4

1 2 2 3 6
1 2 2 5

There are also instances where the entry k of Definition 5.4 is different from the entry originally at the
bottom of the upward path. For example, the same three-step process for constructing U(T ) is shown
below for an example with m = 2. There, k = 2, even though the original upward path of T had 1 as its
bottom entry.

3© 3
2© 2
1© 1

−→ 3 3
2 2

1 1

−→
3

32
2

1 1

−→
3 3
2 2

1 1
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As with downward slides and before presenting our involution, we must ensure that the result of an
upward slide is always a tableau of the appropriate skew shape.

Proposition 5.6 Suppose T is an SSYT of shape λ+/µ− such that in the upward slide of T , all the final
entries of the reverse row insertions land in row 0. Then U(T ) is an SSYT of shape λ′/µ′, where λ′/λ
(resp. µ/µ′) is a horizontal (resp. vertical) strip.

Our involution will consist of either applying a downward slide or an upward slide. The decision for
which slide to apply is roughly based on which of the downward path of T or the upward path of T lies
further to the right.

Definition 5.7 Consider the set of SSYTs T of shape λ+/µ− such that that λ+/λ is a horizontal strip and
µ/µ− is a vertical strip. Define a map φ on such T by

φ(T ) =





D(T ) if T has no upward path or
the downward path of T exists and exits right,

U(T ) otherwise.

Theorem 5.8 The map φ defines an involution on the set of SSYTs with shapes of the form λ+/µ− where
λ+/λ is a horizontal strip and µ/µ− is a vertical strip.

We now have all the ingredients needed to prove the skew Pieri rule.

Proof of Theorem 3.2: Using the expansion of sλ+/µ− in terms of SSYTs as in (2.1), observe that if
φ(T ) 6= T , then the T and φ(T ) occur with different signs in the right-hand side of (3.3). Since φ
clearly preserves the monomial associated to an SSYT, the monomials corresponding to T and φ(T ) in
the right-hand side of (3.3) will cancel out. Because sλ/µsn = s(λ/µ)∗(n), it remains to show that there is
a monomial-preserving bijection from fixed points of φ to SSYTs of shape (λ/µ) ∗ (n).

Note that T is a fixed point of φ only if T has neither an upward path nor a downward path. This
happens if and only if µ− = µ and when reverse row inserting the cells of λ+/λ from right to left, every
final entry lands in row 0. In particular, the entries of T remaining after reverse row inserting the cells of
λ+/λ form an SSYT of shape λ/µ. Say the final entries of the reverse row insertions are kn, . . . , k1 in the
order removed. By Lemma 4.8(c), since λ+/λ is a horizontal strip, we have k1 ≤ · · · ≤ kn and so these
entries form an SSYT of shape (n). By Lemma 4.7, this process is invertible and therefore establishes the
desired bijection. 2

Remark 5.9 We proved Theorem 3.2 by working with SSYTs. In particular, we showed that the two
sides of (3.3) were equal when expanded in terms of monomials. Alternatively, we could consider the
expansions of both sides of (3.3) in terms of Schur functions. The Littlewood-Richardson rule states
that the coefficient of sν in the expansion of any skew Schur function sλ/µ is the number of Littlewood-
Richardson fillings (LR-fillings) of shape λ/µ and content ν. (The interested reader unfamiliar with
LR-fillings can find the definition in [Sta99].) It is not hard to check that our maps D and U send LR-
fillings to LR-fillings, and bumping within LR-fillings has some nice properties. For example, the entries
along a (reverse) bumping path are always 1, 2, . . . , r from bottom to top for some r.

However, we chose to give our proof in terms of SSYTs because one does not need to invoke the power
of the Littlewood-Richardson rule to prove the classical Pieri rule, and we wanted the same to apply to
the skew Pieri rule.



24 Sami H. Assaf and Peter R. W. McNamara

References
[AM09] Sami H. Assaf and Peter R. W. McNamara. A Pieri rule for skew shapes. Preprint. With an

appendix by Thomas Lam. arXiv:0908.0345, 2009.

[Buc99] Anders S. Buch. Littlewood-Richardson calculator, 1999. Available from http://www.
math.rutgers.edu/˜asbuch/lrcalc.

[Knu70] Donald E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J. Math.,
34:709–727, 1970.

[Koo88] Tom H. Koornwinder. Self-duality for q-ultraspherical polynomials associated with root
system an. Unpublished manuscript. http://staff.science.uva.nl/˜thk/art/
informal/dualmacdonald.pdf, 1988.

[Lam05] Thomas Lam. Ribbon tableaux and the Heisenberg algebra. Math. Z., 250(3):685–710, 2005.

[Las89] Michel Lassalle. Une formule de Pieri pour les polynômes de Jack. C. R. Acad. Sci. Paris Sér.
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Abstract. A combinatorial expansion of the Hall-Littlewood functions into the Schur basis of symmetric functions
was first given by Lascoux and Schützenberger, with their discovery of the charge statistic. A combinatorial expansion
of stable Grassmannian Grothendieck polynomials into monomials was first given by Buch, using set-valued tableaux.
The dual basis of the stable Grothendieck polynomials was given a combinatorial expansion into monomials by Lam
and Pylyavskyy using reverse plane partitions. We generalize charge to set-valued tableaux and use all of these
combinatorial ideas to give a nice expansion of Hall-Littlewood polynomials into the dual Grothendieck basis.

Résumé. En associant une charge à un tableau, une formule combinatoire donnant le développement des polynômes
de Hall-Littlewood en termes des fonctions de Schur a été obtenue par Lascoux et Schützenberger. Une formule
combinatoire donnant le développement des polynômes de Grothendieck Grassmanniens stables en termes des fonc-
tions monomiales a quant à elle été obtenue par Buch à l’aide de tableaux à valeurs sur des ensembles. Finalement,
une formule faisant intervenir des partitions planaires inverses a été obtenue par Lam et Pylyavskyy pour donner le
développement de la base duale aux polynômes de Grothendieck stables en termes de monômes. Nous généralisons
le concept de charge aux tableaux à valeurs sur des ensembles et, en nous servant de toutes ces notions combinatoires,
nous obtenons une formule élégante donnant le développement des polynômes de Hall-Littlewood en termes de la
base de Grothendieck duale.

Keywords: symmetric functions, Hall-Littlewood polynomials, Grothendieck polynomials, charge statistic

1 Introduction
The Hall-Littlewood functions are symmetric functions with a wealth of applications. In various forms,
they interpolate between the complete homogeneous and Schur basis of symmetric functions, provide
a polynomial realization of the Hall algebra, and have several interpretations as characters of represen-
tations. Lascoux and Schützenberger gave an expansion of the Hall-Littlewood functions into Schur
functions, in terms of a statistic on tableaux called charge [LS78]. We write this expansion as

Hµ[X; t] =
∑

λ

∑

T∈SST (λ,µ)

tch(T )sλ (1)

where SST (λ, µ) is the set of all semi-standard tableaux of shape λ and evaluation µ. From this expan-
sion, the following properties of the Hall-Littlewood function are more or less immediate:

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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• the coefficient of sλ is a polynomial in t with non-negative integer coefficients,

• specializing t = 1 gives Hµ[X; 1] = hµ, the complete homogeneous symmetric function, and

• specializing t = 0 gives Hµ[X; 0] = sµ.

See [Mac95] for more details about Hall-Littlewood functions.
The Grothendieck polynomials were introduced by Lascoux and Schützenberger [LS83] as power se-

ries representatives for the K-theory classes of the structure sheaves of Schubert varieties. The stable
Grothendieck polynomials introduced by Fomin and Kirillov [FK94] are the stable limit of these as the
number of variables approaches infinity. These functions, written Gλ, are non-homogeneous symmet-
ric functions, which cannot be written as a finite sum of Schur functions. The function Gλ is equal
to sλ in its lowest degree homogeneous component, and (in terms of Schur functions or monomials) is
sign-alternating by degree in the higher homogeneous components. Buch gave an expansion of the sta-
ble Grothendieck polynomials into monomial symmetric functions by introducing set-valued tableaux
[Buc02]. We write this expansion as

Gλ =
∑

µ

(−1)|µ|−|λ|kλ,µmµ (2)

where kλ,µ denotes the number of set-valued tableaux of shape λ and evaluation µ.
Lam and Pylyavskyy studied the dual basis to the stable Grothendieck polynomials under the Hall

inner product [LP07]. They expanded these into monomials using a special evaluation of reverse plane
partitions. We denote the dual basis to {Gλ} by {gλ}. These are Schur positive, non-homogeneous
symmetric functions, with gλ equal to sλ in the top degree. We note that equation 2 and a simple fact
about dual bases immediately implies

hµ =
∑

λ

(−1)|µ|−|λ|kλ,µgλ . (3)

In this work, we give a generalization of the charge statistic to set-valued tableaux. In particular, we
define the reading word of a set-valued tableau, and then define the charge to be the charge of the reading
word. We then prove the common generalization of equations 1 and 3:

Hµ[X; t] =
∑

λ

(−1)|µ|−|λ|
∑

T∈SV T (λ,µ)

tch(T )gλ (4)

where SV T (λ, µ) denotes the set of set-valued tableaux of shape λ and evaluation µ. We find it re-
markable that such a nice formula exists, as we are unaware of any direct connection between the Hall-
Littlewood functions and K-theory.

2 Definitions and notation
2.1 Symmetric function basics
We begin by setting our notation with some standard definitions. An introduction to symmetric functions
can be found in [Mac95] or [Sta99].
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Definition 1 The Young diagram of a partition λ = (λ1, λ2, · · · , λk) is a left- and bottom-justified array
of 1 × 1 square cells in the first quadrant of the coordinate plane, with λi cells in the ith row from the
bottom.

Example 1 The Young diagram of the partition (3, 2) is .

Definition 2 A semi-standard tableau of shape λ is a filling of the cells in the Young diagram of λ with
positive integers, such that the entries

• are weakly increasing while moving rightward across any row, and

• are strictly increasing while moving up any column.

Example 2 A semi-standard tableau of shape (3, 2) is 2 3
1 1 2

.

The evaluation of a semi-standard tableau is the sequence (αi)i∈N where αi is the number of cells
containing i. The evaluation of the tableau in example 2 is (2, 2, 1) (trailing 0’s have been omitted, as is
customary). We use the notation SST (λ) to mean the set of all semi-standard tableaux of shape λ, and
SST (λ, µ) to mean the set of all semi-standard tableaux of shape λ and evaluation µ.

The Schur functions have many definitions, one of which is in terms of semi-standard tableaux.

Definition 3 The Schur function sλ is defined by

sλ =
∑

T∈SST (λ)

xev(T ) .

The notation xev(T ) means xα1
1 xα2

2 · · · , where (α1, α2, · · · ) is the evaluation of T . The Schur functions
are elements of C[[x1, x2, · · · ]], the power series ring in infinitely many variables, and are well known to
be a basis for the symmetric functions (i.e., those elements of C[[x1, x2, · · · ]] which are invariant under
any permutation of their indices).

Example 3 The Schur function s(2,1) can be written as

s(2,1) = x21x2 + x1x
2
2 + 2x1x2x3 + · · ·

corresponding to the tableaux
2
1 1

2
1 2

3
1 2

2
1 3

· · · .

Another basis for the symmetric functions is the monomial symmetric functions.

Definition 4 The monomial symmetric function mλ is defined by

mλ =
∑

α

xα ,

where the sum is over all sequences α which are a rearrangement of the parts of λ. (Here λ is thought of
as having finitely many non-zero parts, followed by infinitely many 0 parts.)
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Example 4 The monomial symmetric function m(2,1) can be written as

m(2,1) = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 + . . . .

The Kostka numbers give the change of basis matrix between the Schur and monomial symmetric
functions. For two partitions λ, µ, we define the number Kλ,µ to be number of semi-standard tableaux of
shape λ and evaluation µ. From the previous definitions, one can see that a consequence of the symmetry
of the Schur functions is that

sλ =
∑

µ

Kλ,µmµ . (5)

There is a standard inner product on the vector space of symmetric functions (known as the Hall inner
product), defined by setting

〈sλ, sµ〉 =
{
1 if λ = µ

0 otherwise.

The following proposition is a basic, but very useful, fact of linear algebra.

Proposition 1 If ({fλ} , {f∗λ}) and ({gλ} , {g∗λ}) are two pairs of dual bases for an inner-product space,
and

fλ =
∑

µ

Mλ,µgµ ,

then
g∗µ =

∑

λ

Mλ,µf
∗
λ .

We define the set of homogeneous symmetric functions, {hλ}, to be the dual-basis to the monomial
symmetric functions. An immediate consequence of proposition 1 is that

hµ =
∑

λ

Kλ,µsλ . (6)

2.2 Hall-Littlewood symmetric functions
The Hall-Littlewood functions belong to the space C[t][[x1, x2, . . . ]] of formal power series in infinitely
many variables with coefficients in the polynomial ring C[t]. There are multiple (unequal, but related)
definitions of these functions in the literature. The version we concern ourselves with here are most
commonly written as Hλ or Q′λ. In [LS78], Lascoux and Schützenberger found a purely combinatorial
presentation of these functions. The key notion is a statistic on semi-standard tableaux known as charge.
Before defining charge, we need the notion of the reading word of a tableau.

Definition 5 The reading word of a tableau T , which we denote byw(T ), is the sequence (w1, w2, . . . , wn)
obtained by listing the elements of T starting from the top-left corner, and reading across each row and
then continuing down the rows.

Example 5 We have w
(

2 3
1 1 2

)
= (2, 3, 1, 1, 2).
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We will first define the charge of a word, and then define the charge of a tableau to be the charge of
its reading word. For our purposes, it will be sufficient to define charge only on words whose evaluation
is a partition. While this can be extended to all semi-standard tableau, this requires a substantially more
complicated definition. We begin by defining the charge of a permutation; this is a word with evaluation
(1, 1, . . . , 1). If w is a permutation of length n, then the charge of w is given by

∑n
i=1 ci(w) where

c1(w) = 0 and ci(w) is defined recursively as

ci(w) = ci−1(w) + χ (i appears to the right of i− 1 in w) . (7)

Here we use the notation that when P is a proposition, χ(P ) is equal to 1 if P is true and 0 if P is false.

Example 6 A straightforward computation shows that

ch(3, 5, 1, 4, 2) = 0 + 1 + 1 + 2 + 2 = 6.

We will now describe the decomposition of a word with partition content into charge subwords, each of
which are permutations. The charge of a word will then be defined as the sum of the charge of its charge
subwords. To find the first charge subword w(1) of a word w, we begin at the right of w (i.e., at the last
element of w) and move leftward through the word, marking the first 1 that we see. After marking a 1, we
continue to travel to the left, now marking the first 2 that we see. If we reach the beginning of the word,
we loop back to the end. We continue in this manner, marking successively larger elements, until we
have marked the largest letter in w, at which point we stop. The subword of w consisting of the marked
elements (with relative order preserved) is the first charge subword. We then remove the marked elements
from w to obtain a word w′. The process then continues iteratively, with the second charge subword being
the first charge subword of w′, and so on.

Example 7 We illustrate the first charge subword of w = (5, 2, 3, 4, 4, 1, 1, 1, 2, 2, 3) by labeling the
relevant elements in bold: (5,2, 3, 4,4, 1, 1,1, 2, 2,3). If we remove the bold letters, and bold the second
charge subword, we obtain (3,4, 1,1, 2,2). It is now easy to see that the third and final charge subword
is (1,2). Thus we have the following computation of the charge of w:

ch(w) = ch(5, 2, 4, 1, 3) + ch(3, 4, 1, 2) + ch(1, 2)

= (0 + 0 + 1 + 1 + 1) + (0 + 1 + 1 + 2) + (0 + 1)

= 8

We can now define the Hall-Littlewood polynomials.

Definition 6 The Hall-Littlewood polynomial Hλ[X; t] is defined by

Hµ[X; t] =
∑

λ

∑

T∈SST (λ,µ)

tch(T )sλ

Note the similarity of this definition and equation (6). In particular, if we set t = 1 in definition 6, we
obtain equation (6) exactly.
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2.3 Grothendieck polynomials
To define the Grothendieck polynomials, we need first need a definition of set-valued tableaux, due to
Buch [Buc02].

Definition 7 A set-valued tableau of shape λ is a filling of the cells in the Young diagram of λ with sets of
positive integers, such that

• the maximum element in any cell is weakly smaller than the minimum element of the cell to its right,
and

• the maximum element in any cell is strictly smaller than the minimum entry of the cell above it.

Another way to think about this definition is that if we select a single element from each cell (in any
possible way) we will always end up with a semi-standard tableau.

Example 8

A set-valued tableau of shape (3, 2) is
3 4, 5, 6

1, 2 2, 3 3

.

We have omitted the set braces, ‘{’ and ‘}’, here and throughout for clarity.
The evaluation of a set-valued tableaux S is the composition α = (αi)i≥1 where αi is the total number

of times i appears in S. For example, the evaluation of the tableau in example 8 is (1, 2, 3, 1, 1, 1). The
collection of all set-valued tableaux of shape λ will be denoted SV T (λ) and the collection of all set-
valued tableaux of shape λ and evaluation α will be denoted SV T (λ, α). We write kλ,µ for the number
of set-valued tableaux of shape λ and evaluation µ.

We will use set-valued tableaux to define the Grothendieck polynomials.

Definition 8 We define the polynomials Gλ(X) by

Gλ =
∑

µ

(−1)|µ|−|λ|kλ,µmµ

We note that when |µ| = |λ|, we must have one element in every cell; hence Gλ is equal to sλ plus higher
degree terms. Since the Gλ are known to be symmetric functions, they must therefore form a basis.

Applying proposition 1 to this definition gives

hµ =
∑

µ

(−1)|µ|−|λ|kλ,µgλ (8)

where the {gλ} are the dual basis to the {Gλ}.
The dual Grothendieck polynomials gλ were studied by Lam and Pylyavskyy [LP07]. They gave an

expansion of the gλ into monomials via reverse plane partitions.

Definition 9 A reverse plane partition of shape λ is a filling of the cells in the Young diagram of λ with
positive integers, such that the entries are weakly increasing in rows and columns.
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Example 9 A reverse plane partition of shape (3, 2) is 1 2
1 1 2

.

Following Lam and Pylyavskyy (and differing from some other conventions) we define the evaluation
of a reverse plane partition P to be the composition α = (αi)i≥1 where αi is the total number of columns
in which i appears. For example, the evaluation of the reverse plane partition in example 9 is (2, 2). The
collection of all reverse plane partitions of shape λ will be denoted RPP (λ) and the collection of all
reverse plane partitions of shape λ and evaluation α will be denoted RPP (λ, α).

Theorem 1 (Lam-Pylyavskyy) The polynomials gλ have the expansion

gλ =
∑

T∈RPP (λ)

xev(P ) .

We note that when |µ| = |λ|, the entries must be strictly increasing up columns; hence gλ is equal to sλ
plus lower degree terms.

3 Main result
Before we can state our result, we must define the charge of a set-valued tableau. This is accomplished
by defining the reading word of a set-valued tableau.

Definition 10 The reading word of a set-valued tableau T , which we denote by w(T ), is the sequence
(w1, w2, . . . , wn) obtained by listing the elements of T starting from the top-left corner, and reading each
row according to the following procedure and then continuing down the rows. In each row, we first ignore
the smallest element of each cell, and read the remaining elements from right to left, and from largest to
smallest within each cell. Then we read the smallest element of each cell from left to right, and proceed
to the next row.

Example 10 The reading word of

3 4, 5, 6

1, 2 2, 3 3

is (6, 5, 3, 4, 3, 2, 1, 2, 3).

We now define the charge of set-valued tableau to be the charge of its reading word. We may now state
our main theorem.

Theorem 2 We have the following expansion of Hall-Littlewood functions into dual Grothendieck func-
tions:

Hµ[X; t] =
∑

λ

(−1)|µ|−|λ|
∑

S∈SV T (λ,µ)

tch(S)gλ . (9)
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As this is an extended abstract, we provide only a sketch of the proof. Expanding the sλ on the right
hand side of equation 1 gives

Hµ[X; t] =
∑

λ

∑

T∈SSY T (λ,µ)

tch(T )sλ (10)

=
∑

λ

∑

T∈SSY T (λ,µ)

tch(T )
∑

Q∈SSY T (λ)

xev(Q). (11)

If we expand the gλ in (9) according to theorem 1, we obtain

Hµ[X; t] =
∑

λ

(−1)|µ|−|λ|
∑

S∈SV T (λ,µ)

tch(S)
∑

R∈RPP (λ)

xev(R) . (12)

Now we define Sµ to be the set of pairs (S,R) where S is a set-valued tableau of evaluation µ and R is
a reverse plane-partition of the same shape as S. We define the sign of such a pair to be (−1)|µ|−|λ| (where
λ is the mutual shape of S and R) and the weight of such a pair to be tch(S)xev(R). Comparing (10) and
(12), we see that we can complete the proof by finding a sign-reversing, weight-preserving involution on
Sµ whose fixed points are pairs (S,R) where both S and R are semi-standard in the usual sense. We
describe this involution below.

3.1 Definition of the involution
Given a pair (S,R) we wish to construct a pair ι(S,R) = (S′, R′) of opposite sign and equal weight. We
start from the top of both tableaux and work our way down until we find the first row where at least one
of the following conditions hold:

1. A cell in S contains more than one element.

2. A cell in R contains the same element as the cell immediately above it.

If no such row exists, the pair is a fixed point. Otherwise, we define row(S,R) to be this row. If only
condition (1) holds in row(S,R), we will perform an operation we call expansion to define (S′, R′).
Alternatively, if only condition (2) holds in row(S,R), we perform an operation called contraction to
define (S′, R′). If both conditions hold, we will either expand or contract; the method for determining
which will be described following the description of the operations.

We first describe expansion, beginning with the construction of S′. Let i = row(S,R), and define
x(S,R) to be the largest element in row i of S which is contained in a multi-element cell (henceforth,
multicell). Let Ŝ be the semi-standard tableau consisting of the rows of S which are strictly above row i.
We form S′ from S by removing x(S,R) from the multi-cell in row i which contains it, and replacing Ŝ
with the Schensted insertion x(S,R) → Ŝ. Let c be the cell S′ \ S. We form R′ from R by placing an
empty marker in the cell c and sliding this marker to the south-west using jeu-de-taquin. When the marker
reaches row i of R, we replace it with the entry in the cell directly above it. This is R′.

We now describe contraction, beginning with the construction of R′. Again, we let i = row(S,R). We
begin by replacing with an empty marker the rightmost cell in row i + 1 of R which has the same value
as the cell immediately below it. Using reverse jeu-de-taquin, slide this marker up and to the right until it
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exits the diagram. This isR′. Let c be the cellR\R′. To construct S′, we again let Ŝ be the semi-standard
tableau consisting of the rows of S which are strictly above row i. Then we perform reverse Schensted
insertion on the element in cell c to get a semi-standard tableaux Ŝ′ and an element y(S,R). Finally, we
place y(S,R) inside an existing cell in row i; there will be a unique cell in this row into which we can
place y(S,R) so that the result is a valid set-valued row. S′ is then defined by placing Ŝ′ on top of this
modified row i, on top of the remaining lower rows of S.

If both conditions 1 and 2 hold in row row(S,R), we must decide whether to perform expansion or
contraction. We expand if x(S,R) ≥ y(S,R) and contract otherwise. This justifies the claim that, in the
contraction case, there is a unique cell in row i into which we can place the element y(S,R); there will
never be an element ≥ y(S,R) in a multi-cell in row i. Thus y(S,R) can placed (and must be placed) in
the rightmost cell such that all of its elements are ≤ y(S,R). Such a cell must exist since in S, y(S,R)
was an element of row i+ 1.

As this is an extended abstract, we omit the proof that this is a weight-preserving sign-reversing invo-
lution. However, we give a simple example below.

Example 11 The involution ι exchanges the two pairs below:

(
3, 4 5

1 1, 2 2
,
1 2

1 1 2

)
↔




4

3 5

1 1, 2 2

,

1

1 2

1 1 2




These pairs have opposite sign, and common weight t2x21x
2
2.
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algébrique, pages 183–189. DIMACS, Piscataway, NJ, 1994.

[LP07] Thomas Lam and Pavlo Pylyavskyy. Combinatorial Hopf algebras and K-homology of Grass-
mannians. Int. Math. Res. Not. IMRN, (24):Art. ID rnm125, 48, 2007.

[LS78] Alain Lascoux and Marcel-Paul Schützenberger. Sur une conjecture de H. O. Foulkes. C. R.
Acad. Sci. Paris Sér. A-B, 286(7):A323–A324, 1978.

[LS83] Alain Lascoux and Marcel-Paul Schützenberger. Symmetry and flag manifolds. In Invariant
theory (Montecatini, 1982), volume 996 of Lecture Notes in Math., pages 118–144. Springer,
Berlin, 1983.

[Mac95] Ian G. Macdonald. Symmetric Functions and Hall Polynomials. The Clarendon Press, Oxford
University Press, New York, second edition, 1995. With contributions by A. Zelevinsky.

[Sta99] Richard P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, Cam-
bridge, United Kingdom, 1999.



FPSAC 2010, San Francisco, USA DMTCS proc. AN, 2010, 35–46

Counting unicellular maps on non-orientable
surfaces
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Abstract. A unicellular map is the embedding of a connected graph in a surface in such a way that the complement
of the graph is a topological disk. In this paper we give a bijective operation that relates unicellular maps on a non-
orientable surface to unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a
recurrence equation that leads to (new) explicit counting formulas for non-orientable precubic (all vertices of degree
1 or 3) unicellular maps of fixed topology. We also determine asymptotic formulas for the number of all unicellular
maps of fixed topology, when the number of edges goes to infinity. Our strategy is inspired by recent results obtained
for the orientable case [Chapuy, PTRF 2010], but significant novelties are introduced: in particular we construct an
involution which, in some sense, “averages” the effects of non-orientability.

Résumé. Une carte unicellulaire est le plongement d’un graphe connexe dans une surface, tel que le complémentaire
du graphe est un disque topologique. On décrit une opération bijective qui relie les cartes unicellulaires sur une surface
non-orientable aux cartes unicellulaires de type topologique inférieur, avec des sommets marqués. On en déduit une
récurrence qui conduit à de (nouvelles) formules closes d’énumération pour les cartes unicellulaires précubiques
(sommets de degré 1 ou 3) de topologie fixée. On obtient aussi des formules asymptotiques pour le nombre total de
cartes unicellulaires de topologie fixée, quand le nombre d’arêtes tend vers l’infini. Notre stratégie est motivée par
de récents résultats dans le cas orientable [Chapuy, PTRF, 2010], mais d’importantes nouveautés sont introduites: en
particulier, on construit une involution qui, en un certain sens, “moyenne” les effets de la non-orientabilité.

Keywords: One-face map, ribbon graph, non-orientable surface, bijection, involution

1 Introduction
A map is an embedding of a connected graph in a (2-dimensional, compact, connected) surface considered
up to homeomorphism. By embedding, we mean that the graph is drawn on the surface in such a way that
the edges do not intersect and the faces (connected components of the complementary of the graph) are
simply connected. Maps are sometimes referred to as ribbon graphs, fat-graphs, and can be defined
combinatorially rather than topologically as is recalled in Section 2. A map is unicellular if is has a single
face. For instance, the unicellular maps on the sphere are the plane trees.
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In this paper we consider the problem of counting unicellular maps by the number of edges, when the
topology of the surface is fixed. In the orientable case, this question has a respectable history. The first
formula for the number εg(n) of orientable unicellular maps with n edges and n+ 1− 2g vertices (hence
genus g) was given by Lehman and Walsh in [WL72], as a sum over the integer partitions of size g.
Independently, Harer and Zagier found a simple recurrence formula for the numbers εg(n) [HZ86]. Part
of their proof relied on expressing the generating function of unicellular maps as a matrix integral. Other
proofs of Harer-Zagier’s formula were given in [Las01, GN05]. Recently, Chapuy [Cha09], extending
previous results for cubic maps [Cha10], gave a bijective construction that relates unicellular maps of a
given genus to unicellular maps of a smaller genus, hence leading to a new recurrence equation for the
numbers εg(n). In particular, the construction in[Cha09] gives a combinatorial interpretation of the fact
that for each g the number εg(n) is the product of a polynomial in n times the n-th Catalan number.

For non-orientable surfaces, results are more recent. The interpretation of matrix integrals over the
Gaussian Orthogonal Ensemble (space of real symmetric matrices) in terms of maps was made explicit in
[GJ97]. Ledoux [Led09], by means of matrix integrals and orthogonal polynomials, obtained for unicel-
lular maps on general surfaces a recurrence relation which is similar to the Harer-Zagier one. As far as we
know, no direct combinatorial nor bijective technique have successfully been used for the enumeration of
a family of non-orientable maps until now.

A unicellular map is precubic if it has only vertices of degree 1 and 3: precubic unicellular maps are
a natural generalization of binary trees to general surfaces. In this paper, we show that for all h ∈ 1

2N,
the number of precubic unicellular maps of size m on the non-orientable surface of Euler Characteristic
2 − 2h is given by an explicit formula, which has the form of a polynomial in m times the mth Catalan
number for h ∈ N, and of a polynomial times 4m if h 6∈ N. These formulas, and our main results, are
presented in Section 3. Our approach, which is completely combinatorial, is based on two ingredients.
The first one, inspired from the orientable case [Cha10, Cha09], is to consider some special vertices called
intertwined nodes, whose deletion reduces the topological type h of a map. The second ingredient is of
a different nature: we show that, among non-orientable maps of a given topology and size, the average
number of intertwined nodes per map can be determined explicitly. This is done thanks to an averaging
involution, which is described in Section 4. This enables us to find a simple recurrence equation for the
number of precubic unicellular maps by the number of edges and the topological type. As in the orientable
case, an important feature of our recurrence is that it is recursive only on the topological type, contrarily
to equations of the Harer-Zagier type [HZ86, Led09], where also the number of edges vary. It is then easy
to iterate the recurrence, to obtain the promised counting formulas for precubic maps.

In the case of general (not necessarily precubic) unicellular maps, our approach does not work exactly,
but it does work, in some sense, asymptotically. We obtain, with the same technique, the asymptotic
number of non-orientable unicellular maps of fixed topology, when the number of edges tends to infinity.
As far as we know, these formulas, and the ones for precubic maps, never appeared before in the literature.

2 Topological considerations
2.1 Classical definitions of surfaces and maps
Surfaces. Our surfaces are compact, connected, 2-dimensional manifolds. We consider surfaces up to
homeomorphism. For any non-negative integer g, we denote by Sg the g-torus, that is, the orientable
surface obtained by adding g handles to the sphere. For any positive half-integer h, we denote by Nh
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the non-orientable surface obtained by adding 2h cross-caps to the sphere. Hence, S0 is the sphere, S1
is the torus, N1/2 is the projective plane and N1 is the Klein bottle. The type of the surface Sh or Nh is
the number h ∈ {0, 12 , 1, 32 , . . .} By the theorem of classification, each orientable surface is homeomor-
phic to one of the Sg and each non-orientable surface is homeomorphic to one of the Nh (see e.g. [MT01]).

Maps as graphs embedding. Our graphs are finite and undirected; loops and multiple edges are allowed.
A map is an embedding (without edge-crossings) of a connected graph into a surface, in such a way that
the faces (connected components of the complement of the graph) are simply connected. Maps are always
considered up to homeomorphism. A map is unicellular if it has a single face.

Each edge in a map is made of two half-edges, obtained by removing its middle-point. The degree of a
vertex is the number of incident half-edges. A leaf is a vertex of degree 1. A corner in a map is an angular
sector determined by a vertex, and two half-edges which are consecutive around it. The total number of
corners in a map equals the number of half-edges which is twice the number of edges. A map is rooted
if it carries a distinguished half-edge called the root, together with a distinguished side of this half-edge.
The vertex incident to the root is the root vertex. The unique corner incident to the root half-edge and its
distinguished side is the root corner. From now on, all maps are rooted.

The type of a map is the type of the underlying surface. If m is a map, we let v(m), e(m), f(m) and
h(m) be its numbers of vertices, edges, faces, and its type. These quantities satisfy the Euler formula:

e(m) = v(m) + f(m) + 2− 2h(m). (1)

Maps as graphs with rotation systems and twists. Let G be a graph. To each edge e of G correspond
two half-edges, each of them incident to an endpoint of e (they are both incident to the same vertex if
e is a loop). A rotation system for G is the choice, for each vertex v of G, of a cyclic ordering of the
half-edges incident to v. We now explain the relation between maps and rotation systems. Our surfaces
are locally orientable and an orientation convention for a map m is the choice of an orientation, called
counterclockwise orientation, in the vicinity of each vertex. Any orientation convention for the map m
induces a rotation system on the underlying graph, by taking the counterclockwise ordering of appearance
of the half-edges around each vertex. Given an orientation convention, an edge e = (v1, v2) of m is a twist
if the orientation conventions in the vicinity of the endpoints v1 and v2 are not simultaneously extendable
to an orientation of a vicinity of the edge e; this happens exactly when the two sides of e appear in the
same order when crossed clockwise around v1 and clockwise around v2. Therefore a map together with
an orientation convention defines both a rotation system and a subset of edges (the twists). The flip of a
vertex v consists in inverting the orientation convention at that vertex. This changes the rotation system
at v by inverting the cyclic order on the half-edges incident to v, and changes the set of twists by the fact
that non-loop edges incident to e become twist if and only if they were not twist (while the status of the
other edges remain unchanged). The next lemma is a classical topological result (see e.g. [MT01]).

Lemma 1 A map (and the underlying surface) is entirely determined by the triple consisting of its (con-
nected) graph, its rotation system, and the subset of its edges which are twists. Conversely, two triples
define the same map if and only if one can be obtained from the other by flipping some vertices.

By the lemma above, we can represent maps of positive types on a sheet of paper as follows: we draw
the graph (with possible edge crossings) in such a way that the rotation system at each vertex is given by
the counterclockwise order of the half-edges, and we indicate the twists by marking them by a cross (see
e.g. Figure 1). The faces of the map are in bijection with the borders of that drawing, which are obtained
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by walking along the edge-sides of the graph, and using the crosses in the middle of twisted edges as
”crosswalks” that change the side of the edge along which one is walking (Figure 1). Observe that the
number of faces of the map gives the type of the underlying surface using Euler formula.

Fig. 1: A representation of a map on the Klein bottle with three
faces. The border of one of them is distinguished in dotted lines.

tour

tour

(a) (b)

(c)

border of
the face

Fig. 2: (a) a twist; (b) a left corner; (c) a right
corner.

2.2 Unicellular maps, tours, and canonical rotation system
Tours of unicellular maps. Let m be a unicellular map. By definition, m has a unique face. The tour of
the map m is done by following the edges of m starting from the root corner along the distinguished side
of the root half-edge, until returning to the root-corner. Since m is unicellular, every corner is visited once
during the tour. An edge is said two-ways if it is followed in two different directions during the tour of
the map (this is always the case on orientable surfaces), and is said one-way otherwise. The tour induces
an order of appearance on the set of corners, for which the root corner is the least element. We denote by
c < d if the corner c appears before the corner d along the tour. Lastly, given an orientation convention,
a corner is said left if it lies on the left of the walker during the tour of map, and right otherwise (Figure 2).

Canonical rotation-system. As explained above, the rotation system associated to a map is defined up
to the choice of an orientation convention. We now explain how to choose a particular convention which
will be well-suited for our purposes. A map is said precubic if all its vertices have degree 1 or 3, and its
root-vertex has degree 1. Let m be a precubic unicellular map. Since the vertices of m all have an odd
degree, there exists a unique orientation convention at each vertex such that the number of left corners
is more than the number of right corners (indeed, by flipping a vertex we exchange its left and right
corners). We call canonical this orientation convention. From now on, we will always use the canonical
orientation convention. This defines canonically a rotation system, a set of twists, and a set of left/right
corners. Observe that the root corner is a left corner (as is any corner incident to a leaf) and that vertices
of degree 3 are incident to either 2 or 3 left corners. We have the following additional property.

Lemma 2 In a (canonically oriented) precubic unicellular map, two-ways edges are incident to left cor-
ners only and are not twists.

Proof: Let e be a two-ways edge, and let c1, c2 be two corners incident to the same vertex and separated
by e (c1 and c2 coincide if v has degree 1). Since e is two-ways, the corners c1, c2 are either simultaneously
left or simultaneously right. By definition of the canonical orientation, they have to be simultaneously
left. Thus two-way edges are only incident to left corners. Therefore two-ways edges are not twists since
following a twisted edge always leads from a left corner to a right corner or the converse. 2
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2.3 Intertwined nodes.
We now define a notion of intertwined node which generalizes the definition given in [Cha10] for precubic
maps on orientable surfaces.

Definition 1 Let m be a (canonically oriented) precubic unicellular map, let v be a vertex of degree 3,
and let c1, c2, c3 be the incident corners in counterclockwise order around v, with the convention that c1
is the first of these corners to appear during the tour of m.

• The vertex v is an intertwined node if c3 appears before c2 during the tour of m.
• Moreover, we say that v has flavor A if it is incident to three left corners. Otherwise, v is incident to

exactly one right corner, and we say that v is of flavor B, C, or D respectively, according to whether
the right corner is c1, c2 or c3.

Observe that the definition of the canonical orientation was a prerequisite to define intertwined nodes. We
will now show that intertwined nodes are exactly the ones whose deletion decreases the type of the map
without disconnecting it.

The opening of an intertwined node of a map m is the operation consisting in splitting this vertex into
three (marked) vertices of degree 1, as in Figure 3. That is, we define a rotation system and set of twists
of the embedded graph n obtained in this way (we refrain from calling it a map yet, since it is unclear that
it is connected) as the rotation system and set of twists inherited from the original map m.

v

opening

map m map n

Fig. 3: Opening an intertwined node.

c1

c3 c2 d1

d3d2

from w1

to w2

to w3

to w4

from w2

from w3

from w1

to w3to w2

from w3

to w4

from w2

w(m)=w1c1w2c3w3c2w4 w(n)=w1d1w3d2w2d3w4

Fig. 4: The tours of m and n, in the case of flavor B.

Proposition 1 Let n be a positive integer and let g be in {1, 3/2, 2, 5/2, . . .}. For each flavor F in
{A,B,C,D}, the opening operation gives a bijection between the set of precubic unicellular maps with
n edges, type h, and a distinguished intertwined node of flavor F , and the set of precubic unicellular maps
with n edges, type h− 1 and three distinguished vertices of degree 1. The converse bijection is called the
gluing of flavor F .

Moreover, if a precubic unicellular map m is obtained from a precubic unicellular map n of lower type
by a gluing of flavor F , then m is orientable if and only if n is orientable and F = A.

We omit the proof of the Proposition. However, let us give a ”picture” of what happens, in the case of
flavor B. If m is a unicellular map, and v is an intertwined node of m, then the sequence of corners appear-
ing during the tour of m has the form w(m) = w1c1w2c3w3c2w4, where c1, c2, c3 are as in Definition 1,
and w1, w2, w3, w4 are sequences of corners. Now, let n be the map obtained by opening m at v. If v
has flavor B, then by following the edges of the map n, starting from the root, one gets the sequence of
corners w(n) = w1d1w3d2w2d3w4, where w3 is the mirror word of w3, as can be seen from Figure 4
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(we used three new letters d1, d2, d3 for the three corners of degree 1 appearing after the opening). Since
this sequence contains all the corners of n, we know that n is a unicellular map, and since it has two more
vertices than m, its type is h(n) = h(m)− 1 (by Euler’s formula).

Conversely, given a unicellular map n with three distinguished leaves d1, d2, d3, the gluing of flavor B
can be defined by identifying these three vertices to a single vertex v, and then choosing the rotation
system and the twisted edges at v appropriately to ensure that the resulting map m is unicellular, and
that v is an intertwined node of flavor B in m.

The last statement of the Proposition is a consequence of the fact that a precubic unicellular map is
orientable if and only if it has left-corners only in its canonical orientation.

3 Main results.
3.1 The number of precubic unicellular maps.
In this section, we present our main results, which rely on two facts. The first one is Proposition 1, which
enables us to express the number of precubic unicellular maps of type h carrying a distinguished inter-
twined node in terms of the number of maps of a smaller type. The second one is the fact that, among
maps of type h and fixed size, the average number of intertwined nodes in a map is 2h − 1. This last
fact, which is technically the most difficult part of this paper, relies on the existence of an “averaging
involution”, which will be described in Section 4.

Let h ≥ 1 be an element of 1
2N, and letm ≥ 1 be an integer. Givenm and h, we let n = 2m+1h∈N, and

we let Oh(m) and Nh(m), respectively, be the sets of orientable and non-orientable precubic unicellular
maps of type h with n edges. We let ξh(m) and ηh(m), respectively, be the cardinality of Oh(m) and
Nh(m).

In order to use Proposition 1, we first need the following easy consequence of Euler’s formula:

Lemma 3 Let l ∈ 1
2N and let m be a precubic unicellular map of type l with n = 2m+1l∈N edges. Then

m has m+ (−1)2l − 3blc non-root leaves, where blc = l − 1
21l 6∈N denotes the integer part of l.

From the lemma and Proposition 1, the number ηinterh (m) of non-orientable unicellular precubic maps
of type h with n edges carrying a distinguished intertwined node equals:

ηinterh (m) = 4

(
m′ − 3bh− 1c

3

)
ηh−1(m) + 3

(
m′ − 3bh− 1c

3

)
ξh−1(m), (2)

where m′ = m + (−1)2h. Here, the first term accounts for intertwined nodes obtained by gluing three
leaves in a non-orientable map of type h− 1 (in which case the flavor of the gluing can be either A, B, C
or D), and the second term corresponds to the case where the starting map of type h− 1 is orientable (in
which case the gluing has to be of flavor B, C or D to destroy the orientability).

The keystone of this paper, which will be discussed in the next section, is the following result:

Proposition 2 There exists and involution Φ of Nh(m) such that for all maps m ∈ Nh(m), the total
number of intertwined nodes in the maps m and Φ(m) is 4h − 2. In particular, the average number of
intertwined nodes of elements of Nh(m) is (2h− 1), and one has ηinterh (m) = (2h− 1)ηh(m).

It is interesting to compare Proposition 2 with the analogous result in [Cha10]: in the orientable case,
each map of genus h has exactly 2h intertwined nodes, whereas here the quantity (2h − 1) is only an
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average value. For example, Figure 5 shows two maps on the Klein bottle (h = 1) which are related by
the involution Φ: they have respectively 2 and 0 intertwined nodes.

As a direct corollary of Proposition 2 and Equation (2), we can state our main result:

Theorem 1 The numbers ηh(m) of non-orientable precubic unicellular maps of type h with 2m+ 1h∈N
edges obey the following recursion:

(2h− 1) · ηh(m) = 4

(
m′ − 3bh− 1c

3

)
ηh−1(m) + 3

(
m′ − 3bh− 1c

3

)
ξh−1(m), (3)

wherem′ = m+(−1)2h, and where ξh(m) is the number of orientable precubic unicellular maps of genus
h with 2m+ 1h∈N edges, which is 0 if h 6∈ N, and is given by the following formula otherwise [Cha09]:

ξh(m) =
1

(2h)!!

(
m+ 1

3, 3, . . . , 3,m+ 1− 3h

)
Cat(m) =

(2m)!

12hh!m!(m+ 1− 3h)!
. (4)

The theorem implies explicit formulas for the numbers ηh(m), as shown by the two next corollaries:

Corollary 1 (the case h ∈ N) Let h ∈ N and m ∈ N, m ≥ 3h − 1. Then the number of non-orientable
precubic unicellular maps of type h with 2m+ 1 edges equals:

ηh(m) = ch

(
m+ 1

3, 3, . . . , 3,m+ 1− 3h

)
Cat(m) =

ch · (2m)!

6hm!(m+ 1− 3h)!
(5)

where ch = 3 · 23h−2 h!

(2h)!

h−1∑

l=0

(
2l

l

)
16−l.

Corollary 2 (the case h 6∈ N) Let h ∈ 1
2 + N and m ∈ N, m ≥ 3bhc + 1. Then the number of non-

orientable precubic unicellular maps of type h with 2m edges equals:

ηh(m) =
4bhc

(2h− 1)(2h− 3) . . . 1

(
m− 1

3, 3, . . . , 3,m− 1− 3bhc

)
× η1/2(m)

=
4m+bhc−1(m− 1)!

6bhc(2h− 1)!!(m− 1− 3bhc)! .

Proof of Corollary 1: It follows by induction and Equations (3) and (4) that the statement of Equation (5)
holds, with the constant ch defined by the recurrence c0 = 0 and ch = ah−1 + bh−1ch−1, with ah−1 =

3
2h−1(h−1)!(2h−1) and bh−1 = 4

2h−1 . The solution of this recurrence is ch =
∑h−1
l=0 albl+1bl+2 . . . bh−1.

Now, by definition, we have albl+1bl+2 . . . bh−1 =
3 · 4h−1−l

2ll!(2l + 1)(2l + 3)(2l + 5) . . . (2h− 1)
. Using the

expression
1

(2l + 1)(2l + 3) . . . (2h− 1)
=

2hh!(2l)!

(2h)!2ll!
and reporting it in the sum gives the expression

of ch given in Corollary 1. 2

Proof of Corollary 2: Since for non-integer h we have ξh−1(m) = 0, the first equality is a direct
consequence of an iteration of the theorem. Therefore the only thing to prove is that η1/2(m) = 4m−1.
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This can be done easily by induction via an adaptation of Rémy’s bijection [Rém85], as follows. For
m = 1, we have η1/2(m) = 1, since the only precubic projective unicellular map with two edges is ”the
twisted loop with a hanging leaf”. For the induction step, observe that precubic projective unicellular
maps with one distinguished non-root leaf are in bijection with precubic projective unicellular maps with
one leaf less and a distinguished edge-side: too see that, delete the distinguished leaf, transform the
remaining vertex of degree 2 into an edge, and remember the side of that edge on which the original leaf
was attached. Since a projective precubic unicellular map with 2k edges has k− 1 non-root leaves and 4k
edge-sides, we obtain for all m ≥ 1 that mη1/2(m+ 1) = 4mη1/2(m), and the result follows. 2

left-to-right

right-to-left

root root

(a) (b)

Fig. 5: Two maps on the Klein Bottle. (a) TLR(m) = 1, TRL(m) = 1; (b)
TLR(m) = 2, TRL(m) = 0.

opening

m n

Fig. 6: The opening, in the case of
dominant unicellular maps.

3.2 The asymptotic number of rooted unicellular maps.
Though our results do not apply to the general case of all unicellular maps of given type (i.e., not neces-
sarily precubic), they do hold, in some sense, asymptotically. This is what we explain in this section.

If m is a unicellular map, its core is the map obtained by deleting recursively all the leaves of m, until
having only vertices of degree 2 or more left. Therefore the core is a unicellular map formed by chains of
vertices of degree 2 attached together at vertices of degree at least 3. The scheme of m is the map obtained
by replacing each of these chains by an edge. Hence, in the scheme, all vertices have degree at least 3. We
say that a unicellular map is dominant if all the vertices of its scheme have degree 3. This terminology,
borrowed from [Cha10], comes from the next proposition.

Proposition 3 ([CMS09, BR09]) Let h ∈ 1
2N. Then, among non-orientable unicellular maps of type h

with n edges, the proportion of maps which are dominant tends to 1 when n tends to infinity.

The idea behind that proposition is the following. Given a scheme s, one can easily compute the generat-
ing series of all unicellular maps of scheme s, by observing that these maps are obtained by substituting
each edge of the scheme with a ”branch of tree”. From that, it follows that this generating series has a
unique principal singularity at z = 1

4 , with dominating term (1 − 4z)−e(s)/2−1, up to a multiplicative
constant. Therefore, the schemes with the greatest contribution are those which have the maximal number
of edges, which for a given type, is achieved by schemes whose all vertices have degree 3.

Now, most of the combinatorics defined in this paper still apply to dominant unicellular maps. Given
a dominant map m of type h and scheme s, and v an intertwined node of s, we can define the opening
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operation of m at v by splitting the vertex v in three, and deciding on a convention on the redistribution
of the three ”subtrees” attached to the scheme at this point (Figure 6): one obtains a dominant map n of
type h − 1 with three distinguished vertices. These vertices are not any three vertices: they have to be
in ”general position” in n (i.e., they cannot be part of the core, and none can lie on a path from one to
another), but again, in the asymptotic case this does not make a big difference: when n tends to infinity,
the proportion of triples of vertices which are in ”general position” tends to 1. We do not state here the
asymptotic estimates that can make the previous claims precise (they can be copied almost verbatim from
the orientable case [Cha10]), but rather we state now our asymptotic theorem:

Theorem 2 Let κh(n) be the number of non-orientable rooted unicellular maps of type h with n edges.
Then one has, when n tends to infinity:

(2h− 1)κh(n) ∼ 4
n3

3!
κh−1(n) + 3

n3

3!
εh−1(n)

where εh(n) denotes the number of orientable rooted unicellular maps of genus h with n edges.

Using that εh(n) = 0 if h 6∈ N, that εh(n) ∼ 1
12hh!

√
π
n3h−

3
2 otherwise, and that κ1/2(n) ∼ 1

24n [BCR88],
we obtain:

Corollary 3 Let h ∈ 1
2N. Then one has, when n tends to infinity:

κh(n) ∼ ch√
π6h

n3h−
3
2 4n if h ∈ N , κh(n) ∼ 4bhc

2 · 6bhc(2h− 1)!!
n3h−

3
2 4n if h 6∈ N.

where the constant ch is defined in Corollary 1.

4 The average number of intertwined nodes
In this section we prove Proposition 2, and in particular the key result that the average number of inter-
twined nodes per map, among precubic unicellular maps of type h and size m is (2h− 1):

ηinterh (m) = (2h− 1)ηh(m). (6)

Let us emphasize the fact that the number of intertwined nodes is not a constant over the set of unicel-
lular precubic maps of given type and number of edges. For instance among the six maps with 5 edges
on the Klein bottle N1, three maps have 2 intertwined nodes, and three maps have none; see Figure 7. As
stated in Proposition 2, our strategy to prove Equation (6) is to exhibit a bijection Φ from the set Nh(m)
to itself, such that for any given map m, the total number of intertwined nodes in the maps m, Φ(m) is
4h(m)− 2. Observe from Figure 7 that the involution Φ cannot be a simple re-rooting of the map m.

Before defining the mapping Φ, we relate the number of intertwined nodes of a map to certain properties
of its twists. Let m be a (canonically oriented) precubic map, and let e be an an edge of m which is a twist.
Let c be the corner incident to e which appears first in the tour of m. We say that e is left-to-right if c is a
left-corner, and that it is right-to-left otherwise (see Figure 5). In other words, the twist e is left-to-right if
it changes the side of the corners from left, to right, when it is crossed for the first time in the tour of the
map (and the converse is true for right-to-left twists). We omit the proof of the next lemma:
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Fig. 7: The precubic unicellular maps with 5 edges on the Klein bottle (the root in the unique leaf corner). Intertwined
nodes are indicated as white vertices.

Lemma 4 Let m be a precubic unicellular map of type h(m), considered in its canonical orientation.
Then its numbers τ(m) of intertwined nodes, TLR(m) of left-to-right twists, and TRL(m) of right-to-left
twists are related by the formula:

2h(m) = τ(m) + TLR(m)− TRL(m). (7)

We now define the promised mapping Φ averaging the number of intertwined nodes. Let m be a unicel-
lular precubic map on a non-orientable surface. We consider the canonical orientation convention for the
map m, which defines a rotation system and set of twists. The set of twists is non-empty since the map m
lives on a non-orientable surface. By cutting every twist of m at their middle point, one obtains a graph
together with a rotation system and some dangling half-edges that we call buds. The resulting embedded
graph with buds, which we denote by m̂, can have several connected components and each component
(which is a map with buds) can have several faces; see Figure 8. We set a convention for the direction in
which one turns around a face of m̂: the edges are followed in such a way that every corner is left (this is
possible since m̂ has no twist). For any bud b of m̂, we let σ(b) be the bud following bwhen turning around
the face of m̂ containing b. Clearly, the mapping σ is a permutation on the set of buds. We now define
Φ(m) to be the graph with rotation system and twists obtained from m̂ by gluing together into a twist the
buds σ(b) and σ(b′) for every pair of buds b, b′ forming a twist of m. The mapping Φ is represented in
Figure 8.

Before proving that Φ(m) is a unicellular map, we set some additional notations. We denote by k the
number of twists of m and we denote by w(m) = w1w2 · · ·w2k+1 the sequence of corners encountered
during the tour of m, where the subsequences wi and wi+1 are separated by the traversal of a twist for
i = 1 . . . 2k. Observe that corners in wi are left corners of m if i is odd, and right corners if i is even
(since following a twist leads from a left to a right corner or the converse). Hence, the sequence of
corners encountered between two buds around a face of m̂ are one of the sequences w′1, w

′
2, . . . , w

′
2k,

where w′1 = w2k+1w1, and for i > 1, w′i = wi if i is odd and w′i = wi otherwise (where wi is the mirror
sequence of wi obtained by reading wi backwards). We identify the buds of m̂ (i.e. the half-twists of m
or m̂) with the integers in {1, . . . , 2k} by calling i the bud following the sequence of corners w′i around
the faces of m̂. The permutation σ can then be considered as a permutation of {1, . . . , 2k} and we denote
r = σ−1(1). The map in Figure 8 gives σ = (1, 8, 13, 2, 9, 14, 3, 10)(4, 11, 6, 5)(7, 12) and r = 10.

Lemma 5 The embedded graph Φ(m) is a unicellular map. Moreover, the rotation system and set of
twists of Φ(m) inherited from m correspond to the canonical orientation convention of Φ(m). Lastly, the
sequence of corners encountered during the tour of Φ(m) reads v1v2 . . . v2k+1, where the subsequences
vi separated twist traversals are given by vi = wσ(r+1−i) for i = 1, . . . , r, vi = wσ(2n+r+1−i) for
i = r+1, . . . , 2k, and v2k+1 = w2k+1.
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Fig. 8: A unicellular map m and its image by the mapping Φ. The twists are indicated by (partially) dotted lines,
while the map m̂ is represented in solid lines.

Lemma 6 Let m be a positive integer and h be in {1/2, 1, 3/2, . . .}. The mapping Φ is a bijection from
the set Nh(m) to itself. Moreover, for every map m in Nh(m), the total number of intertwined nodes in
the maps m and Φ(m) is 4h− 2.

Proof of Lemma 6: Clearly, the maps m and Φ(m) have the same number of edges and vertices. Hence,
they have the same type by Euler formula. Moreover, they both have k > 0 twists (for their canonical
convention) hence are non-orientable. Thus, Φ maps the set Nh(m) to itself. To prove the bijectivity (i.e.
injectivity) of Φ, observe that for any map m, the embedded graphs m̂ and Φ̂(m) are equal; this is because
the canonical rotation system and set of twists of m and Φ(m) coincide. In particular, the permutation σ
on the half-twists of m can be read from Φ(m). Hence, the twists of m are easily recovered from those of
Φ(m): the buds i and j form a twist of m if σ(i) and σ(j) form a twist of Φ(m).

We now proceed to prove that the total number of intertwined nodes in m and Φ(m) is 4h − 2. By
Lemma 4, this amounts to proving that TLR(m)− TRL(m) + TLR(Φ(m))− TRL(Φ(m)) = 2. Since m and
Φ(m) both have k twists, TLR(m)−TRL(m) +TLR(Φ(m))−TRL(Φ(m)) = 2(TLR(m) +TLR(Φ(m))−k).
Hence, we have to prove TLR(m) + TLR(Φ(m)) = k + 1.

Let i be a bud of m̂, let t be the twist of m containing i, and let c, c′ be the corners preceding and
following i in counterclockwise order around the vertex incident to i. By definition, the twist t of m is
left-to-right if and only if c appears before c′ during the tour of m. Given that the corners c and c′ belong
respectively to the subsequences wi and wσ(i) (except if i = r in which case σ(i) = 1 and c′ is in w2k+1),
the twist t is left-to right if and only if i < σ(i) or i = r.

Before going on, let us introduce a notation: for an integer i we denote by i the representative of
i modulo 2k belonging to {1, . . . , 2k}. Let us now examine under which circumstances the bud σ(i)
is part of a left-to-right twist of Φ(m). The corners d and d′ preceding and following the bud σ(i) in
counterclockwise order around the vertex incident to σ(i) belong respectively to wσ(i) and wσσ(i) (except
if σ(i) = r, in which case σσ(i) = 1 and c′ belongs to w2k+1). By Lemma 5, wσ(i) = vr+1−i for
i = 1 . . . 2k. Therefore, the twist t′ of Φ(m) containing σ(i) is left-to-right if and only if r + 1− i <
r + 1− σ(i) or σ(i) = r.

The two preceding points gives the number TLR(m) + TLR(Φ(m)) of left-to right twists as

TLR(m) + TLR(Φ(m)) = 1 + 1
2

∑2k
i=1 δ(i),
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where δ(i) = 1i<σ(i)+1r+1−i<r+1−σ(i) is the sum of two indicator functions (the factor 1/2 accounts for
the fact that a twist has two halves). The contribution δ(i) is equal to 2 if i ≤ r < σ(i), 0 if σ(i) ≤ r < i,
and 1 otherwise. Finally, there are as many integers i such that i ≤ r < σ(i) as integers such that
σ(i) ≤ r < i (true for each cycle of σ). Thus,

∑2k
i=1 δ(i) = 2k, and TLR(m) + TLR(Φ(m)) = k + 1. 2

The last lemma is sufficient to establish Equation (6), and the enumerative results of Section 3. How-
ever, Proposition 2 was saying a little bit more, namely that the bijection Φ can be chosen as an involution:

Proof of Proposition 2: Observe that, as we defined it, the bijection Φ is not an involution. But one
can easily define an involution from Φ, as the mapping acting as Φ on elements m of Nh(m) such that
τ(m) > 2h− 1, acting as Φ−1 if τ(m) < 2h− 1, and as the identity if τ(m) = 2h− 1. 2

References
[BCR88] E. A. Bender, E. R. Canfield, and R. W. Robinson. The enumeration of maps on the torus and

the projective plane. Canad. Math. Bull., 31:257–271, 1988.
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A canonical basis for Garsia-Procesi modules
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Abstract. We identify a subalgebra Ĥ +
n of the extended affine Hecke algebra Ĥn of type A. The subalgebra Ĥ +

n

is a u-analogue of the monoid algebra of Sn n Zn≥0 and inherits a canonical basis from that of Ĥn. We show that its
left cells are naturally labeled by tableaux filled with positive integer entries having distinct residues mod n, which
we term positive affine tableaux (PAT).

We then exhibit a cellular subquotient R1n of Ĥ +
n that is a u-analogue of the ring of coinvariants C[y1, . . . , yn]/(e1, . . . , en)

with left cells labeled by PAT that are essentially standard Young tableaux with cocharge labels. Multiplying canon-
ical basis elements by a certain element π ∈ Ĥ +

n corresponds to rotations of words, and on cells corresponds to
cocyclage. We further show that R1n has cellular quotients Rλ that are u-analogues of the Garsia-Procesi modules
Rλ with left cells labeled by (a PAT version of) the λ-catabolizable tableaux.

Résumé. On définit une sous-algèbre Ĥ +
n de l’extension affine de l’algèbre de Hecke Ĥn de type A. La sous-

algèbre Ĥ +
n est u-analogue à l’algèbre monoı̈de de SnnZn≥0 et hérite d’une base canonique de Ĥn. On montre que

ses cellules gauches sont naturellement classées par des tableaux remplis d’entiers naturels ayant chacun des restes
différents modulo n, que l’on nomme Positive Affine Tableaux (PAT).

On montre ensuite qu’un sous-quotient cellulaire R1n de Ĥ +
n est une u-analogue de l’anneau des co-invariants

C[y1, . . . , yn]/(e1, . . . , en) avec des cellules gauches classées PAT qui sont essentiellement des tableaux de Young
standards avec des labels cochargés. Multiplier les éléments de la base canonique par un certain élément π ∈ Ĥ +

n

correspond à des rotations de mots, et par rapport aux cellules cela correspond à un cocyclage. Plus loin, on montre
que R1n a pour quotients cellulaires Rλ qui sont u- analogues aux modules de Garsia-Procesi Rλ avec des cellules
gauches définies par (une version PAT) des tableaux λ-catabolisable.

Keywords: Garsia-Procesi modules, affine Hecke algebra, canonical basis, symmetric group, k-atoms

1 Introduction
It is well-known that the ring of coinvariants R1n = C[y1, . . . , yn]/(e1, . . . , en), thought of as a CSn-
module with Sn acting by permuting the variables, is a graded version of the regular representation.
However, how a decomposition of this module into irreducibles is compatible with multiplication by the
yi remains a mystery.

A precise question one can ask along these lines goes as follows. Let E ⊆ Rd be an Sn-irreducible,
where Rd is the d-th graded part of the polynomial ring R = C[y1, . . . , yn]. Suppose that the isotypic
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component of Rd containing E is E itself. Then define I ⊆ R to be the sum of all homogeneous ideals
J ⊆ R that are left stable under the Sn-action and satisfy J ∩E = 0. The quotient R/I contains E as the
unique Sn-irreducible of top degree d. It is natural to ask

What is the graded character of R/I?

The most familiar examples of such quotients are the Garsia-Procesi modules Rλ (see [5]), which
correspond to the case that E is of shape λ and d = n(λ) =

∑
i(i − 1)λi; refer to this representation

E ⊆ Rn(λ) as the Garnir representation of shape λ or, more briefly, Gλ. Combining the work of Hotta-
Springer (see [6]) and Lascoux [10] (see also [15]) gives the Frobenius series

FRλ(t) =
∑

T∈SY T
ctype(T )Dλ

tcocharge(T )ssh(T ), (1)

where ctype(T ) is the catabolizability of T (see §4).
Though this interpretation of the character of Rλ has been known for some time, the only proofs were

difficult and indirect. One of the goals of this research, towards which we have been partially successful,
was to give a more transparent explanation of the appearance of catabolism in the combinatorics of the
coinvariants.

More recent work suggests that there are other combinatorial mysteries hiding in the ring of coinvari-
ants. We strongly suspect that modules with graded characters corresponding to the k-atoms of Lascoux,
Lapointe, and Morse [9] and a generalization of k-atoms due to Li-Chung Chen [4] sit inside the coinvari-
ants as subquotients. It is also natural to conjecture that the generalization of catabolism due to Shimozono
and Weyman [15] gives a combinatorial description of certain subquotients of the coinvariants which are
graded versions of induction products of Sn-irreducibles.

This paper describes an approach to these problems using canonical bases, which has so far been quite
successful and will hopefully help solve some of the difficult conjectures in this area. After briefly review-
ing Weyl groups, Hecke algebras, and cells (§2), we introduce the central algebraic object of our work,
a subalgebra Ĥ + of the extended affine Hecke algebra which is a u-analogue of the monoid algebra of
Sn n Zn≥0. In §3, we establish some basic properties of this subalgebra and describe its left cells. It turns
out that these cells are naturally labeled by tableaux filled with positive integer entries having distinct
residues mod n, which we term positive affine tableaux (PAT). Our investigations have convinced us that
these are excellent combinatorial objects for describing graded Sn-modules.

After some preparatory combinatorics in §4, we go on to show in §5 that Ĥ + has a cellular quotient
R1n that is a u-analogue of R1n . The module R1n has a canonical basis labeled by affine words that are
essentially standard words with cocharge labels, with left cells labeled by PAT that are essentially standard
tableaux with cocharge labels. Multiplying canonical basis elements by a certain element π ∈ Ĥ +

corresponds to rotations of words, and on left cells corresponds to cocyclage.
In this cellular picture of the coinvariants, Gλ corresponds to a left cell of R1n labeled by a PAT of

shape λ, termed the Garnir tableau of shape λ, again denoted Gλ. In §6, we identify u-analogues Rλ of
the Rλ and show that Rλ is cellular and its left cells are labeled by (a PAT version of) the λ-catabolizable
tableaux.

Detailed proofs as well as conjectures relating cellular subquotients of Ĥ + to k-atoms and Chen’s
atoms and conjectures describing cellular subquotients of Ĥ + outside of R1n are presented in a full
version of this extended abstract [1].
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2 Hecke algebras and cells
We begin by briefly reviewing Weyl groups and Hecke algebras, referring the reader to [7] for a thorough
treatment.

LetWf ,Wa,We, Y, Y+ be the finite Weyl group, affine Weyl group, extended affine Weyl group, weight
lattice, and dominant weights associated to the root system specifying the algebraic group GLn(C) (see
[7]). The finite Weyl group Wf is the symmetric group Sn. It acts on the weight lattice Y = Zn =
〈ε1, . . . , εn〉 by permuting coordinates.

Let S = {s1, . . . , sn−1} be the simple reflections of Wf and K = {s0, . . . , sn−1} be those of Wa and
We. The pairs (Wf , S) and (Wa,K) are Coxeter groups, and (We,K) is an extended Coxeter group. The
length function ` and partial order ≤ on Wa extend to We = Π nWa: `(πv) = `(v), and πv ≤ π′v′ if
and only if π = π′ and v ≤ v′, where π, π′ ∈ Π, v, v′ ∈ W . For any J ⊆ K, the parabolic subgroup
WeJ = WaJ is the subgroup of We generated by J . Each left (resp. right) coset wWeJ (resp. WeJw)
of WeJ contains a unique element of minimal length called a minimal coset representative. The set of all
such elements is denoted We

J (resp. JWe).
We will make use of three descriptions of We. First, We = Y oWf ; elements of Y ⊆ We will be

denoted by the multiplicative notation yλ, λ ∈ Y and yi := yεi . Second, We = Π nWa, where Π ∼= Z;
the element π = y1s1s2 . . . sn−1 is a generator of Π. This satisfies the relation πsi = si+1π, where, here
and from now on, the subscripts of the si are taken mod n.

The third description of We, due to Lusztig, identifies it with the group of permutations w : Z → Z
satisfying w(i + n) = w(i) + n and

∑n
i=1(w(i) − i) ≡ 0 mod n. The identification takes si to the

permutation transposing i+ kn and i+ 1 + kn for all k ∈ Z, and takes π to the permutation k 7→ k + 1
for all k ∈ Z. We take the convention of specifying the permutation of an element w ∈We by the word

n+ 1− w−1(1) n+ 1− w−1(2) . . . n+ 1− w−1(n).

We refer to this as the affine word or word of w, and it will be written as w1w2 · · ·wn; this is understood
to be part of an infinite word so that wi = î− i+wî, where ·̂ : Z→ [n] is the map sending an integer i to
the integer in [n] it is congruent to mod n. For example, if n = 4 and w = π2s2s0s1, then the word of w
is 8 3 5 2, thought of as part of the infinite word . . . 12 7 9 6 8 3 5 2 4 -1 1 -2 . . . . We adopt the convention
of writing ab in place of na+ b (a, b ∈ Z). With this convention, the word of w above is written 14 3 11 2.

LetA = Z[u, u−1] be the ring of Laurent polynomials in the indeterminate u. Let H (W ) be the Hecke
algebra of the (extended) Coxeter group W over the ground ring A with standard basis {Tw : w ∈ W}.
Set H = H (Wf ), Ĥ = H (We), which will sometimes be decorated with a subscript n to emphasize
that they correspond to type An−1 or Ãn−1. The Hecke algebra of an extended Coxeter group has the
same relations as the usual Hecke algebra using the length function defined above.

Corresponding to the description Y oWf of We, there is a presentation of Ĥ due to Bernstein. For
any λ ∈ Y there exist µ, ν ∈ Y+ such that λ = µ− ν. Define Y λ := Tyµ(Tyν )−1, which is independent
of the choice of µ and ν. The algebra Ĥ has A-basis

{Y λTw : w ∈Wf , λ ∈ Y }
and is equal to the A-algebra generated by the Yi and Tsi with relations that are fairly simple to describe.

The canonical basis or Kazhdan-Lusztig basis of H (W ) [8] is an A-basis for H (W ), denoted {C ′w :
w ∈ W}, having nice properties for the action of the Hecke algebra on itself. This action is nice because
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certain subsets of the canonical basis called cells give rise to representations that are often irreducible.
Cells can be defined for any H (W )-module E with a distinguished basis Γ: first, the preorder ≤Γ (also
denoted ≤E) on the set Γ is that generated by the relations/edges

δ ←−
Γ
γ

if there is an h ∈H (W ) such that δ appears with non-zero
coefficient in the expansion of hγ in the basis Γ.

(2)

The left cells of Γ (or of E, if Γ ⊆ E is understood) are then the equivalence classes of ≤Γ. The
preorder ≤Γ gives rise to a partial order on left cells, also denoted ≤Γ. A cellular subquotient of E is a
subset Λ of Γ such that there does not exist γ ∈ Γ\Λ and δ, δ′ ∈ Λ satisfying δ ≤Γ γ ≤Γ δ′. A cellular
subquotient of E is necessarily a union of left cells and gives rise to a subquotient of E. We are most
interested in the case where Γ is a W -graph as defined in [8].

3 The positive part of Ĥ

Here we introduce a subalgebra Ĥ + of Ĥ and positive affine tableaux (PAT), which label left cells of
Ĥ +. These play a crucial role in our goal of relating subquotients of R to tableau combinatorics.

The subset Y + := Zn≥0 of the weight lattice Y is left stable under the action of the Weyl group Wf .
Thus Y + oWf is a submonoid of We. We remark that this only works in type A, and this is the main
barrier preventing the results of this paper to be generalized to other types.

Proposition-Definition 3.1 The positive part of We, denoted W+
e , has the following three equivalent

descriptions:
(1) Y + oWf ,
(2) The submonoid of We generated by π and Wf ,
(3) {w ∈We : wi > 0 for all i ∈ [n]}.

The inclusion of monoids W+
e ⊆We gives rise to an inclusion of algebras Ĥ + ⊆ Ĥ :

Proposition-Definition 3.2 The subalgebra Ĥ + of Ĥ has the following four equivalent descriptions:
(i) A{Y λTw : λ ∈ Y +, w ∈Wf},
(ii) A{Tw : w ∈W+

e },
(iii) A{C ′w : w ∈W+

e },
(iv) the subalgebra of Ĥ generated by π and H .

Write ≤
Ĥ + for the preorder on the canonical basis of Ĥ + coming from considering Ĥ + as a left

Ĥ +-module. We say that this canonical basis is the W+
e -graph ΓW+

e
. The preorder ≤

Ĥ + is difficult to
compute, but there are two kinds of easy edges: the edgesC ′πw ≤Ĥ + C ′w, which we refer to as corotation-
edges; the corresponding edges between cells are cocyclage-edges (we will soon see that cocyclage-edges
are a generalization of cocyclage for standard Young tableaux). The edges C ′sw ≤Ĥ + C ′w if sw > w and
s ∈ S are ascent-edges.

The work of Kazhdan and Lusztig [8] shows that the left cells of H are in bijection with the set of
SYT and the left cell containing C ′w corresponds to the insertion tableau of w under this bijection (keep
in mind our unusual convention from §2 for the word of w). The left cell containing those C ′w such that
w has insertion tableau P is the left cell labeled by P , denoted ΓP .
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Definition 3.3 A positive affine tableau (PAT) of size n is a semistandard Young tableau filled with positive
integer entries that have distinct residues mod n.

For w ∈ We, the word w1w2 · · ·wn may be inserted into a tableau, and the result is a tableau, denoted
P (w). It is a positive affine tableau exactly when w ∈ W+

e . Let Q be a positive affine tableau and let
QS be the standard tableau obtained from Q by replacing its entries with the numbers 1, . . . , n so that
the relative order of the entries in Q and QS agree. The set of w ∈ We inserting to Q is {vx : v ∈
Wf and P (v) = QS}, where the word of x is obtained from Q by sorting its entries in decreasing order.
For any x ∈ SWe, define

ΓQ := {C ′vx : v ∈Wf , P (v) = QS} = {C ′w : w ∈We, P (w) = Q}. (3)

By the following result, ΓQ is a left cell of ΓW+
e

, which we refer to as the left cell labeled by Q. The
following is an easy consequence of results of Roichman on restricting W -graphs that originated in the
work of Barbasch and Vogan on primitive ideals (see [14]).

Proposition 3.4 For any x ∈ S
W+
e , the set {C ′wx : w ∈ Wf} is a cellular subquotient of Ĥ +. This set,

restricted to be a Wf -graph, is isomorphic to the Wf -graph on H . In particular,

ΓW+
e

=
⊔

Q∈PAT
ΓQ

is the decomposition of ΓW+
e

into left cells.

4 Cocyclage and catabolism
Before going deeper into the study of the canonical basis of Ĥ +, we introduce combinatorics originating
in [10, 11] (see also [15]) that will be used to describe cellular subquotients of Ĥ +.

The cocharge labeling of a word v, denoted vcc, is a (non-standard) word of the same length as v, and
its numbers are thought of as labels of the numbers of v. It is obtained from v by reading the numbers of
v in increasing order, labeling the 1 of v with a 0, and if the i of v is labeled by k, then labeling the i+ 1
of v with a k (resp. k + 1) if the i + 1 in v appears to the right (resp. left) of the i in v. For example,
the cocharge labeling of 614352 is 302120; also see Example 5.3. Define the cocharge labeling T cc of a
tableau T to be the insertion tableau of vcc for any (every) v inserting to inserting to T .

The sum of the numbers in the cocharge labeling of a standard word v (resp. standard tableau T ) is the
cocharge of v (resp. T ) or cocharge(v) (resp. cocharge(T )).

For a word w and number a 6= 1, aw is a corotation of wa. There is a cocyclage from the tableau T to
the tableau T ′, written T cc−→ T ′, if there exist words u, v such that v is the corotation of u and P (u) = T

and P (v) = T ′. Rephrasing this condition solely in terms of tableaux, T cc−→ T ′ if there exists a corner
square (r, c) of T and uninserting the square (r, c) from T yields a tableau Q and number a such that T ′

is the result of column-inserting a into Q.
The cocyclage poset CCP(SYT) is the poset on the set of SYT generated by the relation cc−→. Similarly,

define CCP(PAT ) to be the poset on the set of PAT generated by cocyclage-edges. The covering relations
of CCP(SYT) (resp. CCP(PAT )) are exactly cocyclages (resp. cocyclage-edges). We consider the
covering relation T cc−→ T ′ to be colored by the following additional datum: the set of outer corners of T
that result in a cocyclage to T ′. Note that this set can only have more than one element if sh(T ) = sh(T ′).
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Catabolizability of standard tableaux is a subtle combinatorial statistic, which we will not define in the
usual way here. In [3], we show that the catabolizability of a standard tableau T , denoted ctype(T ), can
be computed from any word v inserting to T using the following catabolism insertion algorithm.

Algorithm 4.1 (Catabolism insertion) Let f be the function below, which takes a pair consisting of a
(non-standard) word and a partition to another such pair. Let x = ya, y a word and a a number.

f(x, ν) =

{
(y, ν + εa+1) if ν + εa+1 is a partition,
(a+ 1 y, ν) otherwise.

(4)

Given the input standard word v, first determine the cocharge labeling z of v. Next, apply f to (z, ∅)
repeatedly until the word of the pair is empty. Output the partition of this final pair.

Example 4.2 The sequence of word-partition pairs produced by the algorithm run on v = 1 6 8 4 2 9 5 7 3
is (reading from left to right and then top to bottom)

(023103120, ∅) (02310312, (1)) (30231031, (1)) (3023103, (1, 1)) (4302310, (1, 1))
(430231, (2, 1)) (43023, (2, 2)) (44302, (2, 2)) (4430, (2, 2, 1)) (443, (3, 2, 1))
(44, (3, 2, 1, 1)) (4, (3, 2, 1, 1, 1)) (5, (3, 2, 1, 1, 1)) (∅, (3, 2, 1, 1, 1, 1))

5 A W+
e -graph version of the coinvariants

We exhibit a cellular subquotient R1n of Ĥ + which is a W+
e -graph version of the ring of coinvariants

R1n . Under a natural identification of the left cells of R1n with SYT, the subposet of ≤R1n
consisting of

the cocyclage-edges is exactly the cocyclage poset on SYT.
There are two important theorems that give the canonical basis of Ĥ a more explicit description.
The dominant weights Y+ are weakly decreasing n-tuples of integers; put Y +

+ = Y + ∩ Y+. As is
customary, let w0 denote the longest element of Wf . If λ ∈ Y+, then w0y

λ is maximal in its double coset
Wfy

λWf . For λ ∈ Y +
+ , let sλ(Y ) ∈ Ĥ denote the Schur function of shape λ in the Bernstein generators

Yi.

Theorem 5.1 (Lusztig [12, Proposition 8.6]) For any λ ∈ Y +
+ , the canonical basis element C ′w0yλ

can
be expressed in terms of the Bernstein generators as

C ′w0yλ
= sλ(Y )C ′w0

= C ′w0
sλ(Y ).

Let v be an element of Wf , thought of as a standard word. Thinking of the cocharge labeling vcc as an
element of Y +, let D ⊂ Y + denote the set of cocharge labelings, which is in bijection with Wf . The set
{yβ : β ∈ D} are the descent monomials. Next, put

DS := {yβv : β ∈ D and v ∈Wf such that yβv is minimal in yβWf},
DSw0 := {yβv : β ∈ D and v ∈Wf such that yβv is maximal in yβWf}. (5)

The set DSw0 will index a canonical basis of the coinvariants.
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Proposition 5.2 There is a bijection Wf → DSw0, v 7→ w, defined by setting the word of w to be
wi = nvcc

i + vi. Its inverse has the two descriptions

wS ← [ w (6)
ŵ1ŵ2 . . . ŵn ← [ w (7)

where ŵi is the residue of wi as defined in §2 and wS is the standard word such that the relative order of
the entries in wS and w agree.

Example 5.3 For the v ∈ S9 given by its word below, the corresponding vcc and w follow.

v = 1 6 8 4 2 9 5 7 3,
vcc = 0 2 3 1 0 3 1 2 0,

w = nvcc + v = 1 26 38 14 2 39 15 27 3.

As preparation for the next theorem, we have a proposition giving the factorization of any w ∈ W+
e

with w maximal in wWf in terms of descent monomials.

Proposition 5.4 ([2, Proposition 3.7]) For any w ∈ W+
e such that w is maximal in wWf , there is a

unique expression for w of the form
w = u · w0y

λ,

where u ∈ DS and λ ∈ Y +
+ .

The next theorem simplifying the canonical basis of Ĥ + is a special case of a result of Xi ([17, Corol-
lary 2.11]), also found independently by the author. We state here a combination of Lusztig’s theorem
(Theorem 5.1) and Xi’s theorem.

Theorem 5.5 For w = u · w0y
λ as in Proposition 5.4, we have the factorization

C ′w = sλ(Y )C ′uw0
.

Remark 5.6 The general version of this theorem holds for the entire lowest two-sided cell of We and
in arbitrary type. The general version for type A is used in the full version of this paper [1] to prove
analogues of the results below for Ĥ +, rather than just Ĥ +e+.

Let e+ = C ′w0
. Then Ae+ is the one-dimensional trivial left-module of H in which the Ti act by u for

i ∈ [n − 1]. The Ĥ +-module Ĥ +e+ = Ĥ + ⊗H e+ is a u-analogue of the polynomial ring R. It can
be identified with the cellular submodule of Ĥ + spanned by {C ′w : w maximal in wWf}.

Let R denote the subalgebra of Ĥ + generated by the Bernstein generators Yi. It is known that R ∼= R

as algebras. Write (Y +)
Wf

≥d ⊆ R for the set of Wf -invariant polynomials of degree at least d. Now

Theorem 5.5 applied to the canonical basis of Ĥ +e+ yields the following corollary, which gives a u-
analogue of the ring of coinvariants.

Corollary 5.7 The Ĥ +
n -module Ĥ +

n e+ has a cellular quotient equal to

R1n := Ĥ +
n e+/Ĥ +

n (Y +)Sn≥1e
+

with canonical basis {C ′w : w ∈ DSw0}.
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Fig. 1: On the left is the W+
e -graph of R13 with three labels for each canonical basis element. The bottom labels are

affine words. On the right are the corresponding left cells and the partial order ≤R
13

on left cells.

Example 5.8 The W+
e -graph R13 is drawn in Figure 1. Arrows indicate relations in the preorder ≤R1n

and those with a downward component are exactly the corotation-edges. Figure 2 depicts the left cells of
the W+

e -graph on R15 and the partial order ≤R15
on left cells.

These examples and the next proposition show that the partial order ≤R1n
contains strictly more infor-

mation than the cocyclage poset on SYT.
Let CCP(R1n) be the subposet of CCP(PAT ) on the set of tableaux corresponding to the cells of

R1n and let T + T ′ denote the entry-wise sum of two tableau T, T ′ of the same shape. Using Proposition
5.2, we deduce the following

Proposition 5.9 The map CCP(SY T )→ CCP(R1n), T 7→ nT cc+T is a color-preserving isomorphism
of cocyclage posets.

For a PAT P labeling a cell of R1n , let ctype(P ) be ctype(T ), where T is the SYT corresponding to
P in the bijection above.

6 A W+
e -graph version of the Garsia-Procesi modules

The Garsia-Procesi approach to understanding the Rλ = R/Iλ realizes Iλ as the ideal of leading forms of
functions vanishing on an orbit Sna, for certain a ∈ Cn = SpecR. We adapt this approach to the Hecke
algebra setting using certain representations of Ĥ studied by Bernstein and Zelevinsky in order to prove
our main result, Theorem 6.6, which shows that the u-analogues Rλ of the Rλ are actually cellular.

Let CZn (resp. C+Z
n ) be the category of finite-dimensional Ĥn-modules (resp. Ĥ +

n -modules) in which
the Yi’s have their eigenvalues in u2Z. See [16] for many of the known results about the category CZn .
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Fig. 2: The cells of the W+
e -graph on R15 . Edges are the covering relations of the partial order on cells.
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For η = (η1, η2, . . . , ηr) an r-composition of n, write lj =
∑j−1
i=1 ηi, j ∈ [r+ 1] for the partial sums of

η (where the empty sum is defined to be 0). Let Bj be the interval [lj + 1, lj+1], j ∈ [r], and define

Jη = {si : {i, i+ 1} ⊆ Bj for some j} (8)

so that SnJη ∼= Sη1 × · · · × Sηr .

Let Ĥ +
η
∼= Ĥ +

η1 × · · · × Ĥ +
ηr be the subalgebra of Ĥ + generated by HJη and Yi, i ∈ [n]. For

a = (a1, . . . , ar) ∈ Zr, let Cη,a be the 1-dimensional representation of Ĥ +
η on which HJη ⊆ Ĥ +

η acts
trivially (Ti acts by u for si ∈ Jη) and Yli+1 acts by u2ai , i ∈ [r]. The relations in Ĥ +

η demand that
Yli+k acts by u2(ai−k+1) for li + k ∈ Bi.

Next define Mη,a to be the induced module

Mη,a = Ĥ +
n ⊗Ĥ +

η
Cη,a. (9)

For M in C+Z
n , the points of M are the joint generalized eigenspaces for the action of the Yi. The

coordinates of a point v of M is the tuple (c1, . . . , cn) of generalized eigenvalues, also identified with the
word c1 c2 · · · cn. The next proposition follows from a special case of well-known results about CZn .

Proposition 6.1 If the intervals [ai − ηi, ai] are disjoint, then the points of Mη,a are 1-dimensional and
are the shuffles of the words

u2a1 u2(a1−1) · · ·u2(a1−η1), u2a2 · · ·u2(a2−η2), . . . , u2ar u2(ar−1) · · ·u2(ar−ηr).

An essential part of the Garsia-Procesi approach is that the ideal of leading forms of functions vanishing
on Sna affords the same Sn-representation as the ideal of functions vanishing on Sna. The analogous fact
in this setting is

Proposition 6.2 Let Mη,a be as above. If Mη,a is irreducible, then it contains an element v+ such that,
setting N = Ann v+, Ĥ +e+/Ne+ ∼= Mη,a as Ĥ +-modules. It follows that Ĥ +e+/gr(N)e+ ∼=
Ĥ +e+/Ne+ ∼= Mη,a as H -modules.

The ideals Iλ are generated by certain elementary symmetric functions in subsets variables, also known
as Tanisaki generators (see [5, 6]). By the next theorem, certain C ′w ∈ R1n are essentially these genera-
tors. This will relate the ideals gr(AnnMη,a)e+ to the canonical basis of Ĥ +e+.

Theorem 6.3 For k, d ∈ [n] such that d ≤ k, let w be the maximal element of yk−d+1yk−d+2 . . . ykWf .
Then

C ′w = ud(k−n)s1d(Y1, . . . , Yk)C ′w0
. (10)

Suppose d, k ∈ [n], d ≤ k. Consider the following property of a partition λ ` n:

d > k − n+ λ′1 + · · ·+ λ′n−k, (11)

where λ′ is the partition conjugate to λ.
A result of Garsia-Procesi ([5, Proposition 3.1]) carries over to this setting virtually unchanged. For a

composition η, let η+ denote the partition obtained from η by sorting its parts in decreasing order.
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Proposition 6.4 Suppose η is an r-composition of n with λ := η+, and k, d ∈ [n], d ≤ k, such that (11)
holds. If Mη,a satisfies the hypotheses of Proposition 6.1, then

s1d(Y1, . . . , Yk) ∈ gr(AnnMη,a).

For h ∈ Ĥ +, write [C ′w]h for the coefficient of C ′w of h written as an A-linear combination of {C ′w :

w ∈W+
e }. Define 〈, 〉λ : Ĥ + × Ĥ +e+ → A by

〈h1, h2〉λ = [C ′gλ ]h1h2, (12)

where gλ is the row reading word of Gλ.
Through the work of Kazhdan-Lusztig and Beilinson-Bernstein-Deligne-Gabber we know (see, for

instance, [13]) that the structure coefficients of the C ′’s are nonnegative. Using this, we prove

Corollary 6.5 If γ ∈ Ipair
λ , γ ∈ ΓW+

e
, then δ ≤

Ĥ + γ (δ ∈ ΓW+
e

) implies δ ∈ Ipair
λ , i.e., the cellular

submodule generated by γ is contained in Ipair
λ .

We now come to our main result.

Theorem 6.6 SupposeMη,a satisfies the hypotheses of Propositions 6.1 and 6.2 and maintain the notation
of Proposition 6.2. Then the following submodules of Ĥ +e+ are equal.

(i) Io
λ := gr(Ann v+)e+,

(ii) IT
λ := Ĥ +{s1d(Y1, . . . , Yk) : d, k, λ satisfy (11)}e+,

(iii) Ipair
λ := {v ∈ Ĥ +e+ : 〈Ĥ +, v〉λ = 0},

(iv) Icell
λ := The maximal cellular submodule of Ĥ +e+ not containing ΓGλ ,

(v) Icat
λ := A{C ′w : ctype(P (w)) D λ}.

The abbreviations o, T, pair, are shorthand for orbit, Tanisaki, and pairing. Also note that modules
Mη,a satisfying the hypotheses of Propositions 6.1 and 6.2 exist by the general theory. For instance, if
|ai − aj | >> 0 for all i 6= j, then these hypotheses are satisfied.

Proof sketch: The inclusion IT
λ ⊆ Io

λ follows from Proposition 6.4. An argument of a similar flavor to
Proposition 6.4 together with Proposition 6.2 yields Io

λ ⊆ I
pair
λ . Next, the inclusion IT

λ ⊆ I
pair
λ together

with Theorem 6.3 and Corollary 6.5 show that IT
λ is cellular, implying IT

λ ⊆ Icell
λ . It follows from the

catabolism insertion algorithm (Algorithm 4.1) for anyw satisfying ctype(P (w)) D λ, there is a sequence
of ascent-edges and corotation-edges from w to gλ . This proves Icell

λ ⊆ Icat
λ . Finally, a dimension

counting argument using the u = 1 results of Garsia-Procesi and Bergeron-Garsia (see [6]) and the
standardization map of Lascoux (see [15]) completes the proof. 2

Given the theorem, define Rλ to be Ĥ +e+/Iλ for Iλ equal to any (all) of the submodules above. By
description (iv), Rλ is the minimal cellular quotient of Ĥ +e+ containing ΓGλ . By description (iii) and
the description of Rλ from the introduction, Rλ is a u-analogue of Rλ.
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Computing Node Polynomials for Plane
Curves

Florian Block †

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.

Abstract. According to the Göttsche conjecture (now a theorem), the degree Nd,δ of the Severi variety of plane
curves of degree d with δ nodes is given by a polynomial in d, provided d is large enough. These “node polynomials”
Nδ(d) were determined by Vainsencher and Kleiman–Piene for δ ≤ 6 and δ ≤ 8, respectively. Building on ideas of
Fomin and Mikhalkin, we develop an explicit algorithm for computing all node polynomials, and use it to compute
Nδ(d) for δ ≤ 14. Furthermore, we improve the threshold of polynomiality and verify Göttsche’s conjecture on
the optimal threshold up to δ ≤ 14. We also determine the first 9 coefficients of Nδ(d), for general δ, settling and
extending a 1994 conjecture of Di Francesco and Itzykson.

Résumé. Selon la Conjecture de Göttsche (maintenant un Théorème), le degréNd,δ de la variété de Severi des courbes
planes de degré d avec δ noeuds est donné par un polynôme en d, pour d assez grand. Ces polynômes de noeudsNδ(d)
ont été déterminés par Vainsencher et Kleiman–Piene pour δ ≤ 6 et δ ≤ 8, respectivement. S’appuyant sur les idées de
Fomin et Mikhalkin, nous développons un algorithme explicite permettant de calculer tous les polynômes de noeuds,
et l’utilisons pour calculer Nδ(d), pour δ ≤ 14. De plus, nous améliorons le seuil de polynomialité et vérifions la
Conjecture de Göttsche sur le seuil optimal jusqu’à δ ≤ 14. Nous déterminons aussi les 9 premiers coéfficients de
Nδ(d), pour un δ quelconque, confirmant et étendant la Conjecture de Di Francesco et Itzykson de 1994.

Keywords: Severi degree, curve enumeration, plane curve, node polynomial, labeled floor diagram.

1 Introduction and Main Results
Node Polynomials
Counting algebraic plane curves is a very old problem. In 1848, J. Steiner determined that the number of
curves of degree d with 1 node through d(d+3)

2 − 1 generic points in the complex projective plane P2 is
3(d− 1)2. Much effort has since been put forth towards answering the following question:

How many (possibly reducible) degree d nodal curves with
δ nodes pass through d(d+3)

2 − δ generic points in P2?

The answer to this question is the Severi degree Nd,δ , the degree of the corresponding Severi variety.
In 1994, P. Di Francesco and C. Itzykson [DFI95] conjectured that Nd,δ is given by a polynomial in d
(assuming δ is fixed and d is sufficiently large). It is not hard to see that, if such a polynomial exists, it
has to be of degree 2δ.

†The author was partially supported by the NSF grant DMS-055588.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Recently, S. Fomin and G. Mikhalkin [FM, Theorem 5.1] established the polynomiality of Nd,δ using
tropical geometry and floor decompositions. More precisely, they showed that there exists, for every
δ ≥ 1, a node polynomial Nδ(d) which satisfies Nd,δ = Nδ(d) for all d ≥ 2δ. (The δ = 0 case is trivial
as Nd,0 = 1 for all d ≥ 1.)

For δ = 1, 2, 3, the polynomiality of the Severi degrees and the formulas for Nδ(d) were determined
in the 19th century. For δ = 4, 5, 6, this was only achieved by I. Vainsencher [Vai95] in 1995. In 2001,
S. Kleiman and R. Piene [KP04] settled the cases δ = 7, 8. Earlier, L. Göttsche [Göt98] conjectured a
more detailed (still not entirely explicit) description of these polynomials for counting curves on arbitrary
projective algebraic surfaces.

Main Results
In this paper we develop, building on ideas of S. Fomin and G. Mikhalkin [FM], an explicit algorithm for
computing the node polynomials Nδ(d) for an arbitrary δ. This algorithm is then used to calculate the
node polynomials for all δ ≤ 14.

Theorem 1.1 The node polynomials Nδ(d), for δ ≤ 14, are as listed in [Blo10, Appendix A].

A list of allNδ(d) for δ ≤ 14 is implicitly given in Theorem 3.1 of this paper using generating functions.
P. Di Francesco and C. Itzykson [DFI95] conjectured the first seven terms of the node polynomial Nδ(d),
for arbitrary δ. We confirm and extend their assertion. The first two terms already appeared in [KP04].

Theorem 1.2 The first nine coefficients of Nδ(d) are given by

Nδ(d) =
3δ

δ!

[
d2δ − 2δd2δ−1 − δ(δ − 4)

3
d2δ−2 +

δ(δ − 1)(20δ − 13)

6
d2δ−3+

− δ(δ − 1)(69δ2 − 85δ + 92)

54
d2δ−4 − δ(δ − 1)(δ − 2)(702δ2 − 629δ − 286)

270
d2δ−5+

+
δ(δ − 1)(δ − 2)(6028δ3 − 15476δ2 + 11701δ + 4425)

3240
d2δ−6+

+
δ(δ − 1)(δ − 2)(δ − 3)(13628δ3 − 6089δ2 − 29572δ − 24485)

11340
d2δ−7+

− δ(δ − 1)(δ − 2)(δ − 3)(282855δ4 − 931146δ3 + 417490δ2 + 425202δ + 1141616)

204120
d2δ−8 + · · ·

]
.

(1.1)

Let d∗(δ) denote the polynomiality threshold for Severi degrees, i.e., the smallest positive integer d∗ =
d∗(δ) such that Nδ(d) = Nd,δ for d ≥ d∗. As mentioned above S. Fomin and G. Mikhalkin showed that
d∗ ≤ 2δ. We improve this as follows:

Theorem 1.3 For δ ≥ 1, we have d∗(δ) ≤ δ.

In other words, Nd,δ = Nδ(d) provided d ≥ δ ≥ 1. L. Göttsche [Göt98, Conjecture 4.1] conjectured
that d∗ ≤

⌈
δ
2

⌉
+ 1 for δ ≥ 1. This was verified for δ ≤ 8 by S. Kleiman and R. Piene [KP04]. By direct

computation we can push it further.

Proposition 1.4 For 3 ≤ δ ≤ 14, we have d∗(δ) =
⌈
δ
2

⌉
+ 1.

That is, Göttsche’s threshold is correct and sharp for 3 ≤ δ ≤ 14. For δ = 1, 2 it is easy to see that
d∗(1) = 1 and d∗(2) = 1.

P. Di Francesco and C. Itzykson [DFI95] hypothesized that d∗(δ) ≤
⌈

3
2 +

√
2δ + 1

4

⌉
(which is equiv-

alent to δ ≤ (d∗−1)(d∗−2)
2 ). However, our computations show that this fails for δ = 13 as d∗(13) = 8.
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The main techniques of this paper are combinatorial. By the celebrated Correspondence Theorem of
G. Mikhalkin [Mik05, Theorem 1] one can replace the algebraic curve count by an enumeration of certain
tropical curves. E. Brugallé and G. Mikhalkin [BM07, BM09] introduced some purely combinatorial
gadgets, called (marked) labeled floor diagrams (see Section 2), which, if counted correctly, are equinu-
merous to these tropical curves. Recently, S. Fomin and G. Mikhalkin [FM] enhanced Brugallé’s and
Mikhalkin’s definition and introduced a template decomposition of labeled floor diagrams which is cru-
cial in the proofs of all results in this paper, as is the reformulation of algebraic plane curve counts in
terms of labeled floor diagrams (see Theorem 2.5).

This paper is organized as follows: In Section 2 we review labeled floor diagrams, their markings, and
their relationship with the enumeration of plane algebraic curves. The proofs of Theorems 1.1 and 1.2
are algorithmic in nature and involve a computer computation. We describe both algorithms in detail in
Sections 3 and 5, respectively. The first algorithm computes the node polynomials Nδ(d) for arbitrary
δ, the second determines a prescribed number of leading terms of Nδ(d). The latter algorithm relies on
the polynomiality of solutions of certain polynomial difference equations: This polynomiality has been
verified for pertinent values of δ (see Section 5). Proposition 1.4 is proved by comparison of the numerical
values ofNδ(d) andNd,δ for various d and δ (see Appendices A and B of [Blo]). Theorem 1.3 is discussed
in Section 4. For complete proofs of all statements see [Blo].

Additional Comments
In principle, once polynomiality of the Severi degrees Nd,δ is established with some threshold, one could
use the Caporaso-Harris recursion [CH98] to compute the node polynomials using simple interpolation.
This method, together with the threshold proved in Section 4 of this paper, can in principle be used to
compute Nδ(d) for larger values of δ, and also to increase the upper bound in Proposition 1.4.

The Gromov-Witten invariantNd,g enumerates irreducible plane curves of degree d and genus g through
3d + g − 1 generic points in P2. Algorithm 1 (with minor adjustments, cf. Theorem 2.5(2)) can be used
to directly compute Nd,g , without resorting to a recursion involving relative Gromov-Witten invariants à
la Caporaso–Harris [CH98].

By extending ideas of S. Fomin and G. Mikhalkin [FM] and of the present paper, we can obtain poly-
nomiality results for relative Severi degrees, associated with counting curves satisfying given tangency
conditions to a fixed line. This will be discussed in the forthcoming paper [Blo10].

A. Gathmann, H. Markwig and the author [BGM] define Psi-floor diagrams which enumerate plane
curves which satisfy point and tangency conditions, and conditions given by Psi-classes. We prove a
Caporaso-Harris type recursion for Psi-floor diagrams, and show that relative descendant Gromov-Witten
invariants equal their tropical counterparts.

Acknowledgements
I am thankful to Sergey Fomin for suggesting this problem and fruitful guidance. I also thank Erwan
Brugallé and Grigory Mikhalkin for valuable comments and suggestions, and Gregg Musiker and the two
referees for helpful comments on an earlier version of this paper. Part of this work was accomplished at the
MSRI (Mathematical Sciences Research Institute) in Berkeley, CA, USA, during the semester program
on tropical geometry. I thank MSRI for hospitality.

2 Labeled Floor Diagrams
Labeled floor diagrams are combinatorial gadgets which, if counted correctly, enumerate plane curves
with certain prescribed properties. E. Brugallé and G. Mikhalkin introduced them in [BM07] (in slightly
different notation) and studied them further in [BM09]. To keep this paper self-contained and to fix
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notation we review them and their markings following [FM] where the framework that best suits our
purposes was introduced.

Definition 2.1 A labeled floor diagram D on a vertex set {1, . . . , d} is a directed graph (possibly with
multiple edges) with positive integer edge weights w(e) satisfying:

1. The edge directions respect the order of the vertices, i.e., for each edge i→ j of D we have i < j.

2. (Divergence Condition) For each vertex j of D, we have

div(j)
def
=

∑

edges e

j
e→ k

w(e)−
∑

edges e

i
e→ j

w(e) ≤ 1. (2.1)

This means that at every vertex of D the total weight of the outgoing edges is larger by at most 1 than the
total weight of the incoming edges.

The degree of a labeled floor diagram D is the number of its vertices. It is connected if its underlying
graph is. Note that in [FM] labeled floor diagrams are required to be connected. IfD is connected its genus
is the genus of the underlying graph (or the first Betti number of the underlying topological space). The
cogenus of a connected labeled floor diagramD of degree d and genus g is given by δ(D) = (d−1)(d−2)

2 −
g. If D is not connected, let d1, d2, . . . and δ1, δ2, . . . be the degrees and cogenera, respectively, of its
connected components. Then the cogenus ofD is

∑
j δj +

∑
j<j′ djdj′ . Via the correspondence between

algebraic curves and labeled floor diagrams ([FM, Theorem 3.9]) these notions correspond literally to the
respective analogues for algebraic curves. Connectedness corresponds to irreducibility. Lastly, a labeled
floor diagram D has multiplicity(i)

µ(D) =
∏

edges e

w(e)2. (2.2)

We draw labeled floor diagrams using the convention that vertices in increasing order are arranged left
to right. Edge weights of 1 are omitted.

Example 2.2 An example of a labeled floor diagram of degree d = 4, genus g = 1, cogenus δ = 2,
divergences 1, 1, 0,−2, and multiplicity µ = 4 is drawn below.

g g g g2- - j
*

To enumerate algebraic curves via labeled floor diagrams we need the notion of markings of such
diagrams.

Definition 2.3 A marking of a labeled floor diagram D is defined by the following three step process
which we illustrate in the case of Example 2.2.

Step 1: For each vertex j of D create 1 − div(j) many new vertices and connect them to j with new
edges directed away from j. g g g g2- - j

*@@@@R w @@
HHHH
PPPPPP
@RHHj
PPPqw w w

(i) If floor diagrams are viewed as floor contractions of tropical plane curves this corresponds to the notion of multiplicity of tropical
plane curves.
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Step 2: Subdivide each edge of the original labeled floor diagram D into two directed edges by in-
troducing a new vertex for each edge. The new edges inherit their weights and orientations. Call the
resulting graph D̃.

g g g g2 2- - - - j
*

*
j

w w ww@@@@R @@
HHHH
PPPPPP
@RHHj
PPPqw w w w

Step 3: Linearly order the vertices of D̃ extending the order of the vertices of the original labeled floor
diagram D such that, as before, each edge is directed from a smaller vertex to a larger vertex.

2 2g g g gw w w w ww w w- - - - -

-

-

-
- -

-
-

The extended graph D̃ together with the linear order on its vertices is called a marked floor diagram,
or a marking of the original labeled floor diagram D.

We want to count marked floor diagrams up to equivalence. Two markings D̃1, D̃2 of a labeled floor
diagramD are equivalent if there exists an automorphism of weighted graphs which preserves the vertices
of D and maps D̃1 to D̃2. The number of markings ν(D) is the number of marked floor diagrams D̃ up to
equivalence.

Example 2.4 The labeled floor diagram D of Example 2.2 has ν(D) = 7 markings (up to equivalence):
In step 3 the extra 1-valent vertex connected to the third white vertex from the left can be inserted in three
ways between the third and fourth white vertex (up to equivalence) and in four ways right of the fourth
white vertex (again up to equivalence).

Now we can make precise how to rephrase the initial question of this paper in terms of combinatorics
of labeled floor diagrams.

Theorem 2.5 (Corollary 1.9 of [FM]) The Severi degree Nd,δ , i.e., the number of (possibly reducible)
nodal curves in P2 of degree d with δ nodes through d(d+3)

2 − δ generic points, is equal to

Nd,δ =
∑

D
µ(D)ν(D), (2.3)

where D runs over all (possibly disconnected) labeled floor diagrams of degree d and cogenus δ.

3 Computing Node Polynomials
In this section we give an explicit algorithm that symbolically computes the node polynomials Nδ(d), for
given δ ≥ 1. (As Nd,0 = 1 for d ≥ 1, we put N0(d) = 1.) An implementation of this algorithm was used
to prove Theorem 1.1 and Proposition 1.4. We mostly follow the notation in [FM, Section 5]. First, we
rephrase Theorem 1.1 in more compact notation. For δ ≤ 8 one recovers [KP04, Theorem 3.1].

Theorem 3.1 The node polynomialsNδ(d), for δ ≤ 14, are given by the generating function
∑
δ≥0Nδ(d)xδ

via the transformation
∑

δ≥0

Nδ(d)xδ = exp

(∑

δ≥0

Qδ(d)xδ
)
, (3.1)
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where

Q0(d) = 1,

Q1(d) = 3(d− 1)2,

Q2(d) =
−3
2
(d− 1)(14d− 25),

Q3(d) =
1
3
(690d2 − 2364d+ 1899),

Q4(d) =
1
4
(−12060d2 + 47835d− 45207),

Q5(d) =
1
5
(217728d2 − 965646d+ 1031823),

Q6(d) =
1
6
(−4010328d2 + 19451628d− 22907925),

Q7(d) =
1
7
(74884932d2 − 391230216d+ 499072374),

Q8(d) =
1
8
(−1412380980d2 + 7860785643d− 10727554959),

Q9(d) =
1
9
(26842726680d2 − 157836614730d+ 228307435911),

Q10(d) =
1
10
(−513240952752d2 + 3167809665372d− 4822190211285),

Q11(d) =
1
11
(9861407170992d2 − 63560584231524d+ 101248067530602),

Q12(d) =
1
12
(−190244562607008d2 + 1275088266948600d− 2115732543025293),

Q13(d) =
1
13
(3682665360521280d2 − 25576895657724768d+ 44039919476860362),

Q14(d) =
1
14
(−71494333556133600d2 + 513017995615177680d− 913759995239314452).

In particular, all Qδ(d), for 1 ≤ δ ≤ 14, are quadratic.

L. Göttsche [Göt98] conjectured that all Qδ(d) are quadratic. This theorem proves his conjecture for
δ ≤ 14.

The basic idea of the algorithm (see [FM, Section 5]) is to decompose labeled floor diagrams into
smaller building blocks. These gadgets will be crucial in the proofs of all theorems in this paper.

Definition 3.2 A template Γ is a directed graph (with possibly multiple edges) on vertices {0, . . . , l}, for
l ≥ 1, and edge weights w(e) ∈ Z>0, satisfying:

1. If i→ j is an edge then i < j.

2. Every edge i e→ i+ 1 has weight w(e) ≥ 2. (No “short edges.”)

3. For each vertex j, 1 ≤ j ≤ l − 1, there is an edge “covering” it, i.e., there exists an edge i → k
with i < j < k.

Every template Γ comes with some numerical data associated with it. Its length l(Γ) is the number of
vertices minus 1. The product of squares of the edge weights is its multiplicity µ(Γ). Its cogenus δ(Γ) is

δ(Γ) =
∑

i
e→j

[
(j − i)w(e)− 1

]
. (3.2)

For 1 ≤ j ≤ l(Γ) let κj = κj(Γ) denote the sum of the weights of edges i → k with i < j ≤ k and
define

kmin(Γ) = max
1≤j≤l

(κj − j + 1). (3.3)
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This makes kmin(Γ) the smallest positive integer k such that Γ can appear in a floor diagram on {1, 2, . . . }
with left-most vertex k. Lastly, set

ε(Γ) =

{
1 if all edges arriving at l have weight 1,
0 otherwise. (3.4)

For a list of all templates with δ ≤ 2 see [FM, Figure 10].
A labeled floor diagram D with d vertices decomposes into an ordered collection (Γ1, . . . ,Γm) of

templates as follows: First, add an additional vertex d + 1 (> d) to D along with, for every vertex j of
D, 1 − div(j) new edges of weight 1 from j to the new vertex d + 1. The resulting floor diagram D′
has divergence 1 at every vertex coming from D. Now remove all short edges from D′, that is, all edges
of weight 1 between consecutive vertices. The result is an ordered collection of templates (Γ1, . . . ,Γm),
listed left to right, and it is not hard to see that

∑
δ(Γi) = δ(D). This process is reversible once we record

the smallest vertex ki of each template Γi (see Example 3.3).

Example 3.3 An example of the decomposition of a labeled floor diagram into templates is illustrated
below. Here, k1 = 2 and k2 = 4.

d d d d d2- - -j
*

3- ↔ d d d d d d2- - -j
*

3- -
-

j
* ↔ d d d d d d( )

2- 3-
-

To each template Γ we associate a polynomial that records the number of “markings of Γ:” For k ∈ Z>0

let Γ(k) denote the graph obtained from Γ by first adding k+ i− 1−κi short edges connecting i− 1 to i,
for 1 ≤ i ≤ l(Γ), and then subdividing each edge of the resulting graph by introducing one new vertex for
each edge. By [FM, Lemma 5.6] the number of linear extensions (up to equivalence) of the vertex poset
of the graph Γ(k) extending the vertex order of Γ is a polynomial in k, if k ≥ kmin(Γ), which we denote
by P (Γ, k) (see [FM, Figure 10]). The number of markings of a labeled floor diagram D decomposing
into templates (Γ1, . . . ,Γm) is then

ν(D) =
m∏

i=1

P (Γi, ki), (3.5)

where ki is the smallest vertex of Γi in D. The algorithm is based on

Theorem 3.4 ([FM], (5.13)) The Severi degreeNd,δ , for d, δ ≥ 1, is given by the template decomposition
formula

∑

(Γ1,...,Γm)

m∏

i=1

µ(Γi)

d−l(Γm)+ε(Γm)∑

km=kmin(Γm)

P (Γm, km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P (Γ1, k1), (3.6)

where the first sum is over all ordered collections of templates (Γ1, . . . ,Γm), for all m ≥ 1, with∑m
i=1 δ(Γi) = δ, and the sums indexed by ki, for 1 ≤ i < m, are over kmin(Γi) ≤ ki ≤ ki+1 − l(Γi),

Expression (3.6) can be evaluated symbolically, using the following two lemmata. The first is Faul-
haber’s formula [Knu93] from 1631 for discrete integration of polynomials. The second treats lower
limits of iterated discrete integrals and its proof is straightforward. Here Bj denotes the jth Bernoulli
number with the convention that B1 = + 1

2 .

Lemma 3.5 ([Knu93]) Let f(k) =
∑d
i=0 cik

i be a polynomial in k. Then, for n ≥ 0,

F (n)
def
=

n∑

k=0

f(k) =

d∑

s=0

cs
s+ 1

s∑

j=0

(
s+ 1

j

)
Bjn

s+1−j . (3.7)
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Data: The cogenus δ.
Result: The node polynomial Nδ(d).
begin

Generate all templates Γ with δ(Γ) ≤ δ;
Nδ(d)← 0;
forall the ordered collections of templates Γ̃ = (Γ1, . . . ,Γm) with

∑m
i=1 δ(Γi) = δ do

i← 1;
Q1 ← 1;
while i ≤ m do

ai ← max
(
kmin(Γi), kmin(Γi−1) + l(Γi−1), . . . , kmin(Γ1) + l(Γ1) + · · ·+ l(Γi−1)

)
;

end
while i ≤ m− 1 do

Qi+1(ki+1)←∑ki+1−l(Γi)
ki=ai

P (Γi, ki)Qi(ki);
i← i+ 1;

end
QΓ̃(d)←∑d−l(Γm)+ε(Γm)

km=am
P (Γm, km)Qm(km);

QΓ̃(d)←∏m
i=1 µ(Γi) ·QΓ̃(d);

Nδ(d)← Nδ(d) +QΓ̃(d);
end

end
Algorithm 1: Algorithm to compute node polynomials.

In particular, deg(F ) = deg(f) + 1.

Lemma 3.6 Let f(k1) and g(k2) be polynomials in k1 and k2, respectively, and let a1, b1, a2, b2 ∈ Z≥0.
Furthermore, let F (k2) =

∑k2−b1
k1=a1

f(k1) be a discrete anti-derivative of f(k1), where k2 ≥ a1 + b1.
Then, for n ≥ max(a1 + b1 + b2, a2 + b2),

n−b2∑

k2=a2

g(k2)

k2−b1∑

k1=a1

f(k1) =

n−b2∑

k2=max(a1+b1,a2)

g(k2)F (k2). (3.8)

Using these results Algorithm 1 can be used to compute node polynomials Nδ(d) for an arbitrary
number of nodes δ. The first step, the template enumeration, is explained in [Blo, Section 3].

Proof of Correctness of Algorithm 1.: The algorithm is a direct implementation of Theorem 3.4.
The m-fold discrete integral is evaluated symbolically, one sum at a time, using Faulhaber’s formula
(Lemma 3.5). The lower limit ai of the ith sum is given by an iterated application of Lemma 3.6. 2

As Algorithm 1 is stated its termination in reasonable time is hopeless for δ ≥ 8 or 9. The novelty of
this section, together with an explicit formulation, is how to implement the algorithm efficiently. This is
explained in Remark 3.7.

Remark 3.7 The running time of the algorithm can be improved vastly as follows: As the limits of sum-
mation in (3.6) only depend on kmin(Γi), l(Γi) and ε(Γm), we can replace the template polynomials
P (Γi, ki) by

∑
P (Γi, ki), where the sum is over all templates Γi with prescribed (kmin, l, ε). After this

transformation the first sum in (3.6) is over all combinations of those tuples. This reduces the computation
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drastically as, for example, the 167885753 templates of cogenus 14 make up only 343 equivalence classes.
Also, in (3.6) we can distribute the template multiplicities µ(Γi) and replace P (Γi, ki) by µ(Γi)P (Γi, ki)
and thereby eliminate

∏
µ(Γi). Another speed-up is to compute all discrete integrals of monomials using

Lemma 3.5 in advance.

The generation of the templates is the bottleneck of the algorithm. Their number grows rapidly with δ
as can be seen from Figure 1. However, their generation can be parallelized easily (see [Blo]).

Algorithm 1 has been implemented in Maple. Computing N14(d) on a machine with two quad-core
Intel(R) Xeon(R) CPU L5420 @ 2.50GHz, 6144 KB cache, and 24 GB RAM took about 70 days.

Remark 3.8 We can use Algorithm 1 to compute the values of the Severi degrees Nd,δ for prescribed
values of d and δ. After we specify a degree d and a number of nodes δ all sums in our algorithm become
finite and can be evaluated numerically. See [Blo, Appendix B] for all values of Nd,δ for 0 ≤ δ ≤ 14 and
1 ≤ d ≤ 13.

δ # of templates δ # of templates δ # of templates
1 2 6 1711 11 2233572
2 7 7 7135 12 9423100
3 26 8 29913 13 39769731
4 102 9 125775 14 167885753
5 414 10 529755

Fig. 1: The number of templates with cogenera δ ≤ 14.

4 Threshold Values
S. Fomin and G. Mikhalkin [FM, Theorem 5.1] proved polynomiality of Severi degrees Nd,δ in d, for
fixed δ, if d is sufficiently large. More precisely, they showed that Nδ(d) = Nd,δ for d ≥ 2δ. Here we
show that their threshold can be improved to d ≥ δ (Theorem 1.3).

We need the following elementary observation about robustness of discrete anti-derivatives of polyno-
mials whose continuous counterpart is the well known fact that

∫ a−1

a−1
f(x)dx = 0.

Lemma 4.1 For a polynomial f(k) and a ∈ Z>0 let F (n) =
∑n
k=a f(k) be the polynomial in n uniquely

determined by large enough values of n. (F (n) is a polynomial by Lemma 3.5.) Then F (a − 1) = 0. In
particular,

∑n
k=a f(k) is a polynomial in n, for n ≥ a− 1.

The lemma is non-trivial as, in general, F (a− 2) 6= 0.

Proof of Theorem 1.3 (Sketch): This follows from Equation (3.6) and repeated application of Lemma 3.6
and Lemma 4.1 as d ≥ δ simultaneously implies

d ≥l(Γm)− ε(Γm) + kmin(Γm)− 1,

d ≥l(Γm)− ε(Γm) + l(Γm−1) + kmin(Γm−1)− 2,

...
d ≥l(Γm)− ε(Γm) + l(Γm−1) + · · ·+ l(Γ1) + kmin(Γ1)−m,

(4.1)

for all collections of templates (Γ1, . . . ,Γm) with
∑m
i=1 δ(Γi) = δ. For details see [Blo]. 2
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5 Coefficients of Node Polynomials
The goal of this section is to present an algorithm for the computation of the coefficients of Nδ(d), for
general δ. The algorithm can be used to prove Theorem 1.2 and thereby confirm and extend a conjecture
of P. Di Francesco and C. Itzykson in [DFI95] where they conjectured the 7 terms of Nδ(d) of largest
degree.

Our algorithm should be able to find formulas for arbitrarily many coefficients of Nδ(d). We prove
correctness of our algorithm in this section. The algorithm rests on the polynomiality of solutions of
certain polynomial difference equations (see [Blo, (5.7)]).

First, we fix some notation building on terminology of Section 3. By Remark 3.7 we can replace the
polynomials P (Γ, k) in (3.6) by the product µ(Γ)P (Γ, k), thereby removing the product

∏
µ(Γi) of the

template multiplicities. In this section we write P ∗(Γ, k) for µ(Γ)P (Γ, k). For integers i ≥ 0 and a ≥ 0
let Mi(a) denote the matrix of the linear map

f(k) 7→
∑

Γ:δ(Γ)=i

n−l(Γ)∑

k=kmin(Γ)

P ∗(Γ, k) · f(k), (5.1)

where f(k) = c0k
a+c1k

a−1+· · · , a polynomial of degree a, is mapped to the polynomialMi(a)(f(k)) =
d0n

a+i+1+d1n
a+i+· · · in n. (By Lemma 3.5 and the proof of Lemma 5.1 the image has degree a+i+1.)

Hence Mi(a)c = d. Similarly, define M end
i (a) to be the matrix of the linear map

f(k) 7→
∑

Γ:δ(Γ)=i

n−l(Γ)+ε(Γ)∑

k=kmin(Γ)

P ∗(Γ, k) · f(k). (5.2)

Later we will consider square sub-matrices of Mi(a) and M end
i (a) by restriction to the first few rows

and columns which will be denoted Mi(a) and M end
i (a) as well. Note that Mi(a) and M end

i (a) are lower
triangular. The following observation is key to our algorithm.

Lemma 5.1 The first a+ i rows of Mi(a) and M end
i (a) are independent of the lower limits of summation

in (5.1) and (5.2), respectively.

The basic idea of the algorithm is that templates with higher cogenera do not contribute to higher
degree terms of the node polynomial. With this in mind we define, for each finite collection (Γ1, . . . ,Γm)
of templates, its type τ = (τ2, τ3, . . . ), where τi is the number of templates in (Γ1, . . . ,Γm) with cogenus
equal to i, for i ≥ 2. Note that we do not record the number of templates with cogenus equal to 1.

To collect the contributions of all collections of templates with a given type τ , let τ = (τ2, τ3, . . . ) and
fix δ ≥∑j≥2 τj (so that there exist template collections (Γ1, . . . ,Γm) of type τ with

∑
δ(Γj) = δ). We

define two (column) vectors Cτ (δ) and Cend
τ (δ) as the coefficient vectors, listed in decreasing order, of

the polynomials
∑

(Γ1,...,Γm)

n−l(Γm)∑

km=kmin(Γm)

P ∗(Γm, km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P ∗(Γ1, k1) (5.3)

and
∑

(Γ1,...,Γm)

n−l(Γm)+ε(Γ)∑

km=kmin(Γm)

P ∗(Γm, km)

km−l(Γm−1)∑

km−1=kmin(Γm−1)

· · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P ∗(Γ1, k1) (5.4)
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Data: A positive integer N .
Result: The coefficient vector C of the first N coefficients of Nδ(d).
begin

Compute all templates Γ with δ(Γ) ≤ N ;
forall the types τ with def(τ) < N do

Compute initial values Cτ (δ0(τ)) using (5.3), with δ0(τ) as in Proposition 5.3;
Solve recursion (5.5) for first N − def(τ) coordinates of Cτ (δ);
Set

Cend
τ (δ)←

∑

i:τi 6=0

M end
i

(
2δ − i− 1− def(τ)

)
Cτ↓i(δ − i)

+M end
1

(
2δ − 2− def(τ)

)
Cτ (δ − 1);

end
C ← 0;
forall the types τ with def(τ) < N do

Shift the entries of Cend
τ (δ) down by def(τ);

C ← C + shifted Cend
τ (δ);

end
end

Algorithm 2: Computation of the leading coefficients of the node polynomial.

in the indeterminate n, where the respective first sums are over all ordered collections of templates of type
τ .

Before we can state the main recursion we need two more notations. For a type τ = (τ2, τ3, . . . ) and
i ≥ 2 with τi > 0 define a new type τ↓i via (τ↓i)i = τi − 1 and (τ↓i)j = τj for j 6= i. Furthermore, let
def(τ) =

∑
j≥2(j − 1)τj be the defect of τ . The following lemma justifies this terminology. Its proof is

elementary and can be found in [Blo].

Lemma 5.2 The polynomials (5.3) and (5.4) are of degree 2δ − def(τ).

The last lemma makes precise which collections of templates contribute to which coefficients ofNδ(d).
Namely, the first N coefficients of Nδ(d) of largest degree depend only on collections of templates with
types τ such that def(τ) < N . The following recursion is the heart of the algorithm.

Proposition 5.3 For every type τ and integer δ large enough, it holds that

Cτ (δ) =
∑

i:τi 6=0

Mi

(
2δ − i− 1− def(τ)

)
Cτ↓i(δ − i)

+M1

(
2δ − 2− def(τ)

)
Cτ (δ − 1).

(5.5)

More precisely, if we restrict all matrices Mi to be square of size N − def(τ) and all Cτ to be vectors of
length N − def(τ), then recursion (5.5) holds for

δ ≥ max



⌈
N + 1

2

⌉
,
∑

j≥2

jτj


 . (5.6)
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We propose Algorithm 2 for the computation of the coefficients of the node polynomial Nδ(d). Due to
spacial constrains we explain the step which requires a solution of recursion (5.5) in [Blo].

As in Section 3 (Remark 3.7), Algorithm 2 can be improved significantly by summing the template
polynomials P (Γ, k) for templates Γ with fixed

(
kmin(Γ), l(Γ), ε(Γ)

)
in advance. Algorithm 2 has been

implemented in Maple. Once the templates are known the bottleneck of the algorithm is the initial value
computation. With an improved implementation this should become faster than the template enumeration.
Hence we expect Algorithm 2 to be able to compute the first 14 terms of Nδ(d) in reasonable time.
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Abstract. We study the expected distance of a two-dimensional walk in the plane with unit steps in random directions.
A series evaluation and recursions are obtained making it possible to explicitly formulate this distance for small num-
ber of steps. Formulae for all the moments of a 2-step and a 3-step walk are given, and an expression is conjectured
for the 4-step walk. The paper makes use of the combinatorical features exhibited by the even moments which, for
instance, lead to analytic continuations of the underlying integral.

Résumé. Nous étudions la distance espérée d’une marche aléatoire à deux dimensions et à pas unité dans des direc-
tions aléatoires. Nous obtenons une évaluation des séries et des récurrences qui permettent de formuler explicitement
cette distance pour un petit nombre de pas. Nous donnons des formules pour tous les moments d’une marche aléatoire
à 2 et à 3 pas et nous formulons une conjecture pour l’expression d’une marche à 4 pas. Pour les moments pairs, nous
utilisons des relations combinatoires qui, par example, permettent le prolongement analytique des intégrales.

Resumen. Se estudia la expectación de la distancia recorrida por una marcha aleatoria en dimensión 2 con pasos de
longitud 1. Se presenta una expresión en forma de series y recursiones que permiten encontrar formulas explı́citas
para la distancia mencionada para un número pequeño de pasos. Fórmulas para todos los momentos en dimensiones
2 y 3 son dadas y se conjectura una expresión analı́tica para el caso de dimensión 4. Este artı́culo emplea aspectos de
la combinatoria que aparecen en los momentos de order par, para producir una continuación analı́tica de la integral
asociada con este proceso.

Keywords: random walks, hypergeometric functions, high-dimensional integration, analytic continuation

1 Introduction and Preliminaries
This is an extended abstract of (BNSW09) which contains the exposition given here complemented with
much more detail. In particular, we often refer to (BNSW09) for full proofs of statements that we present.

Throughout, we consider the n-dimensional integral

Wn(s) :=

∫

[0,1]n

∣∣∣∣∣
n∑

k=1

e2πxki

∣∣∣∣∣

s

dx (1)
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which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step
is taken in a random direction, see Figure 1. As such, the integral (1) expresses the sth moment of the
distance to the origin after n steps. Particularly interesting is the special case of the expected distance
Wn(1) after n steps.

A lot is known about the one-dimensional random walk. E.g., its expected distance after n unit-steps is
(n − 1)!!/(n − 2)!! when n is even and n!!/(n − 1)!! when n is odd (and asymptotically this distance is√

2n/π). For the two-dimensional walk no such explicit expressions were known, although the term ran-
dom walk first appears in a (related) question by Karl Pearson in Nature in 1905 (Pea1905) for explicitly
this two-dimensional walk under consideration. Pearson triggered answers by Lord Rayleigh (Ray1905)
on the asymptotic behaviour of the probability for n very large and by Benett (referred to in (Pea1905b))
for the case n = 2, after which he concluded that there still was a large interest for the unresolved case of
small n which is dramatically different from the case of large n. Note that the expected value for the root-
mean-square distance is well known to be just

√
n (in that case the implicit square root in (1) disappears

which greatly simplifies the problem).

(a) Several 4-step walks (b) A 500-step walk

Fig. 1: Random walks in the plane.

We picked up the special case s = 1 of (1) from the whiteboard in the common room at UNSW where
it was written as a generalization of a discrete problem in a cryptographic context by Peter Donovan,
discussed in (Don09). However, the problem in itself appears in numerous applications, e.g., in problems
involving Brownian motion in physics. Numerical values of Wn evaluated at integers can be seen in
Tables 1 and 2. One immediately notices the apparent integer sequences for the even moments—which are
the moments of the squared expected distance (thus the square root for s = 2 gives the root-mean-square
distance

√
n). By experimentation and some sketchy arguments we quickly conjectured and believed that,

for k a nonnegative integer,

W3(k) = Re 3F2

( 1
2 ,−k2 ,−k2

1, 1

∣∣∣∣4
)
. (2)

(In fact, (2) also holds for negative odd integers.) This was for long a mystery, but it will be proven in the
final section of the paper.
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n s = 2 s = 4 s = 6 s = 8 s = 10 (Slo09)
2 2 6 20 70 252 A000984
3 3 15 93 639 4653 A002893
4 4 28 256 2716 31504 A002895
5 5 45 545 7885 127905
6 6 66 996 18306 384156

Tab. 1: Wn(s) at even integers.

n s = 1 s = 3 s = 5 s = 7 s = 9
2 1.27324 3.39531 10.8650 37.2514 132.449
3 1.57460 6.45168 36.7052 241.544 1714.62
4 1.79909 10.1207 82.6515 822.273 9169.62
5 2.00816 14.2896 152.316 2037.14 31393.1
6 2.19386 18.9133 248.759 4186.19 82718.9

Tab. 2: Wn(s) at odd integers.

In Section 2 we develop an infinite series expression for Wn(s) which holds for all real s > 0, see
Theorem 2.1. From this it then follows in Corollary 2.2 that the even moments of Wn(s) are given by
integer sequences. The combinatorial features of fn(k) := Wn(2k), k a nonnegative integer, are studied
in Section 3. We show that there is a recurrence relation for the numbers fn(k) and confirm that indeed,
an observation from Table 1, the last digit in the column for s = 10 is always n modulo 10.

In Section 4 some analytic and numerical results for n = 1, 2, 3 are given and we lift the recursion for
fn(k) to Wn(s) by the use of Carlson’s theorem. The recursions for n = 2, 3, 4 are given explicitly as an
example. These recursions then give further information on the poles of the analytic continuations of Wn

(graphs of Wn for n = 3, 4, 5, 6 and their analytic continuations are shown in Figure 2). From here we
conjecture the recursion

W2n(s)
?
=
∑

j>0

(
s/2

j

)2

W2n−1(s− 2j),

based on analytic continuations, and the explicit form, related to (2),

W4(k)
?
= Re

∑

j>0

(
s/2

j

)2

3F2

( 1
2 ,−k2 + j,−k2 + j

1, 1

∣∣∣∣4
)
.

for k a positive integer. High precision numerical evaluations for n = 3 and n = 4 are given.

In the final section we explore the underlying probability model more closely, starting with another
answer to Pearson, this time by Kluyver (Klu1906). Finally, considering conditional densities, we are
able to give an alternative form for W3(s) which eventually leads to a proof of (2).
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(d) W6

Fig. 2: Various Wn and their analytic continuations.

2 A Series Evaluation of Wn(s)

Theorem 2.1 For Re s > 0,

Wn(s) = ns
∑

m>0
(−1)m

(
s/2

m

) m∑

k=0

(−1)k
(
m

k

){
n−2k

∑

a1+···+an=k

(
k

a1, . . . , an

)2
}
. (3)

Proof: We first exploit the binomial theorem to show that

Wn(s) = ns
∑

m>0
(−1)m

(
s/2

m

)
n−2m

∫

[0,1]n


4

∑

16i<j6n
sin2(π(xj − xi))



m

dx. (4)

Next we evaluate the trigonometric integral in (4). To this end, we show that it is the constant term of

(n2 − (x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))m.

The details appear in (BNSW09). Alternatively, one may start with the observation that Wn(s) is the
constant term of

((x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))
s/2 (5)

which follows directly from the integral definition. 2

From Theorem 2.1 and the fact that the binomial transform is an involution we additionally learn that
the even moments are integer sequences as detailed by the following corollary.

Corollary 2.2 For nonnegative integers k,

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (6)

An outline of the genesis of these evaluations is also given in (BNSW09).
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3 Further Combinatorial Features
In light of Corollary 2.2, we consider the combinatorial sums fn(k) := Wn(2k) of multinomial coef-
ficients squared. These numbers also appear in (RS09) in the following way: fn(k) counts the number
of abelian squares of length 2k over an alphabet with n letters (that is strings xx′ of length 2k from an
alphabet with n letters such that x′ is a permutation of x). It is not hard to see that, (Bar64),

fn1+n2(k) =

k∑

j=0

(
k

j

)2

fn1(j) fn2(k − j), (7)

for two non-overlapping alphabets with n1 and n2 letters. In particular, we may use (7) to obtain f1(k) =
1, f2(k) =

(
2k
k

)
, as well as

f3(k) =
k∑

j=0

(
k

j

)2(
2j

j

)
= 3F2

( 1
2 ,−k,−k

1, 1

∣∣∣∣4
)

=

(
2k

k

)
3F2

(−k,−k,−k
1,−k + 1

2

∣∣∣∣
1

4

)
, (8)

f4(k) =

k∑

j=0

(
k

j

)2(
2j

j

)(
2(k − j)
k − j

)
=

(
2k

k

)
4F3

(
1
2 ,−k,−k,−k
1, 1,−k + 1

2

∣∣∣∣1
)
. (9)

Here and below pFq denotes the hypergeometric function.
The following result is established in (Bar64) with the recursions for n 6 6 given explicitly.

Theorem 3.1 For fixed n > 2, the sequence fn(k) satisfies a recurrence of order λ := dn/2e with
polynomial coefficients of degree n− 1:

cn,0(k)fn(k) + · · ·+ cn,λ(k)fn(k + λ) = 0.

Remark 3.2 For fixed k, the map n 7→ fn(k) is a polynomial of degree k. This follows from

fn(k) =
k∑

j=0

(
n

j

) ∑

a1+···+aj=k
ai>0

(
k

a1, . . . , aj

)2

, (10)

because the right-hand side is a linear combination (with positive coefficients only depending on k) of
the polynomials

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
k

)
of respective degrees 0, 1, . . . , k. From (10) the coefficient of

(
n
k

)
is

seen to be (k!)2. We therefore obtain the first-order approximation Wn(s) ≈n ns/2Γ(s/2 + 1) for n
approaching infinity, see also (Klu1906). In particular, Wn(1) ≈n

√
πn/2. Similarly, the coefficient of(

n
k−1
)

is k−1
4 (k!)2 which gives rise to the second-order approximation

(k!)2
(
n

k

)
+
k − 1

4
(k!)2

(
n

k − 1

)
= k!nk − k(k − 1)

4
k!nk−1 +O(nk−2).

of fn(k). We therefore obtain

Wn(s) ≈n ns/2−1
{(

n− 1

2

)
Γ
(s

2
+ 1
)

+ Γ
(s

2
+ 2
)
− 1

4
Γ
(s

2
+ 3
)}

,



76 Jonathan M. Borwein and Dirk Nuyens and Armin Straub and James Wan

which is exact for s = 0, 2, 4. In particular, Wn(1) ≈n
√
πn/2 +

√
π/n/32. More general approxima-

tions are given in (Cra09). 3

Remark 3.3 It follows straight from (6) that, for primes p, fn(p) ≡ n modulo p. Further, for k > 1,
fn(k) ≡ n modulo 2. This may be derived inductively from the recurrence (7) since, assuming that
fn(k) ≡ n modulo 2 for some n and all k > 1,

fn+1(k) =
k∑

j=0

(
k

j

)2

fn(j) ≡ 1 +
k∑

j=1

(
k

j

)
n = 1 + n(2k − 1) ≡ n+ 1 (mod 2).

Hence for odd primes p,
fn(p) ≡ n (mod 2p). (11)

The congruence (11) also holds for p = 2 since fn(2) = (2n− 1)n, compare (10). 3

Remark 3.4 The integers f3(k) (respectively f4(k)), the first of which are given in Table 1, also arise
in physics, see for instance (BBBG08), and are referred to as hexagonal (respectively diamond) lattice
integers. The following formulae (BBBG08, (186)–(188)) relate these sequences in non-obvious ways:


∑

k>0
f3(k)(−x)k




2

=
∑

k>0
f2(k)3

x3k

((1 + x)3(1 + 9x))k+
1
2

=
∑

k>0
f2(k)f3(k)

(−x(1 + x)(1 + 9x))k

((1− 3x)(1 + 3x))2k+1

=
∑

k>0
f4(k)

xk

((1 + x)(1 + 9x))k+1
.

It would be instructive to similarly engage f5(k). 3

4 Analytic and Numerical Results
We start with investigating the analyticity of Wn(s) for a given n. In (BNSW09), we show that Wn(s),
as defined in (1), is analytic at least for Re s > 0. It is then shown (based on the results of Section 4.2)
that (1) is indeed finite and analytic for Re s > −2 for each n > 3 (compare Figure 2).

4.1 Small number of steps
The case n = 1 is trivial: it follows straight from the integral definition (1) that W1(s) = 1.

In the case n = 2, direct integration of (18) with n = 2 yields

W2(s) = 2s+1

∫ 1/2

0

cos(πt)s dt =

(
s

s/2

)
, (12)
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which may also be obtained using (3).
For n = 3, based on (8) we define

V3(s) := 3F2

( 1
2 ,− s2 ,− s2

1, 1

∣∣∣∣4
)
, (13)

so that by Corollary 2.2 and (8), W3(2k) = V3(2k) for nonnegative integers k. This led us to explore
V3(s) more generally numerically and so to conjecture the following which we prove in the penultimate
section:

Theorem 4.1 For nonnegative even integers and all odd integers k:

W3(k) = ReV3(k). (14)

From here, we derive the following equivalent expressions for W3(1):

W3(1) =
4
√

3

3

(
3F2

(− 1
2 ,− 1

2 ,− 1
2

1, 1

∣∣∣∣
1

4

)
− 1

π

)
+

√
3

24
3F2

( 1
2 ,

1
2 ,

1
2

2, 2

∣∣∣∣
1

4

)

= 2
√

3
K2 (k3)

π2
+
√

3
1

K2 (k3)

=
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
.

These rely on using Legendre’s identity and several Clausen-like product formulae, plus Legendre’s eval-
uation of K(k3) where k3 :=

√
3−1
2
√
2

is the third singular value as in (BB87). Similar expressions can be
given for W3 evaluated at any odd integer.

4.2 Carlson’s Theorem
We may lift the recursive structure of fn, defined in Section 3, to Wn to a fair degree on appealing to
Carlson’s theorem (Tit39, 5.81):

Theorem 4.2 (Carlson) Let f be analytic in the right half-plane Re z > 0 and of exponential type (mean-
ing that |f(z)| 6Mec|z| for some M and c), with the additional requirement that

|f(z)| 6Med|z|

for some d < π on the imaginary axis Re z = 0. If f(k) = 0 for k = 0, 1, 2, . . . then f(z) = 0 identically.

By verifying that Carlson’s theorem applies, we get:

Theorem 4.3 Given that fn(k) satisfies a recurrence

cn,0(k)fn(k) + · · ·+ cn,λ(k)fn(k + λ) = 0

with polynomial coefficients cn,j(k) (see Theorem 3.1) then Wn(s) satisfies the corresponding functional
equation

cn,0(s/2)Wn(s) + · · ·+ cn,λ(s/2)Wn(s+ 2λ) = 0,

for Re s > 0.
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Example 4.4 For n = 2, 3, 4 we find

(s+ 2)W2(s+ 2)− 4(s+ 1)W2(s) = 0,

(s+ 4)2W3(s+ 4)− 2(5s2 + 30s+ 46)W3(s+ 2) + 9(s+ 2)2W3(s) = 0,

(s+ 4)3W4(s+ 4)− 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2) + 64(s+ 2)3W4(s) = 0.

Note that for all complex s, the function V3(s) defined in (13) also satisfies the recursion given above
for W3(s)—as is routine to prove symbolically. 3

We note that in each case the recursion lets us determine significant information about the nature and
position of any poles of Wn. Details appear in (BNSW09). In particular, for n > 3, the recursion
guaranteed by Theorem 4.3 provides an analytic continuation of Wn to all of the complex plane with
poles at certain negative integers. Here, we confine ourselves to show the continuations of W3, W4, W5,
and W6 on the negative real axis in Figure 2. These illustrate the fact that, e.g., W3 and W5 have simple
poles at −2,−4,−6, . . . whereas W4 has double poles at these integers. It is further shown in (BNSW09)
that, for instance, Res−2(W3) = 2√

3π
.

Our next somewhat audacious conjecture is (it is now much less audacious as David Broadhurst (Bro09)
using a new expression for Wn, namely (20), has been able to verify the statement for n = 2, 3, 4, 5 and
odd s < 50 to a precision of 50 digits):

Conjecture 4.5 For positive integers n and complex s,

W2n(s)
?
=
∑

j>0

(
s/2

j

)2

W2n−1(s− 2j). (15)

It is understood that the right-hand side of (15) refers to the analytic continuation of Wn. By (7)
Conjecture 4.5 clearly holds for s an even positive integer. Further, it follows from (12) that the conjecture
holds for n = 1.

Recall that the real part of V3(k) as defined in (13) gives W3(k) for nonnegative integers k. Define

V4(s) :=
∑

j>0

(
s/2

j

)2

V3(s− 2j) =
∑

j>0

(
s/2

j

)2

3F2

( 1
2 ,− s2 + j,− s2 + j

1, 1

∣∣∣∣4
)

(16)

This combines with the much better substantiated special case n = 2 of Conjecture 4.5 to provide:

Conjecture 4.6 For all integers k,
W4(k)

?
= ReV4(k). (17)

4.3 Numerical Evaluations
Note that the following one-dimensional reduction of the integral may be achieved by taking periodicity
into account.

Wn(s) =

∫

[0,1]n−1

∣∣∣∣∣1 +

n−1∑

k=1

e2πxki

∣∣∣∣∣

s

d(x1, . . . , xn−1). (18)
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n = 3 Using this reduction, David Bailey (running tanh-sinh integration on a 256-core LBNL system
for roughly 15 minutes) has confirmed that the first 175 digits of W3(1) are given by

W3(1) ≈ 1.5745972375518936574946921830765196902216661807585191701936930983
018311805944543821310853133622419530649842236115540882056173012611
081031331499438143442975115786527521008424458.

This agreed with the evaluation W3(1) = ReV3(1) originally conjectured in (14). He has also confirmed
175 digits for W3(s) = ReV3(s) for s = 2, . . . , 7.

n = 4 Using Conjecture 4.6 we provide the approximation

W4(1) ≈ 1.7990924798428510335326028458461089100662820032916204566266417735
988542669321205752411619305734748280560170144445179836872885.

It is worthwhile observing that this level of approximation is made possible by the fact that, roughly, one
correct digit is added by each term of the sum.

5 More Probability
As noted such problems have a long lineage. For example, in response to the question posed by Pearson in
Nature, Kluyver (Klu1906) makes a lovely analysis of the cumulative distribution function of the distance
traveled by a “rambler” in the plane for various step lengths. In particular, for our uniform walk Kluyver
provides the Bessel representation

Pn(t) = t

∫ ∞

0

J1(xt) Jn0 (x) dx. (19)

Thus, Wn(s) =
∫ n
0
ts pn(t) dt, where pn = P ′n. From here, David Broadhurst (Bro09) obtains

Wn(s) = 2s+1−k Γ(1 + s
2 )

Γ(k − s
2 )

∫ ∞

0

x2k−s−1
(
− 1

x

d

dx

)k
Jn0 (x) dx (20)

for real s with 2k > s > max(−2,−n2 ). (20) enables Broadhurst (Bro09) to verify Conjecture 4.5 for
n = 2, 3, 4, 5 and odd s < 50 to a precision of 50 digits.

Remark 5.1 For n = 3, 4, symbolic integration in Mathematica of (20) leads to interesting analytic
continuations (Cra09) such as

W3(s) =
1

22s+1
tan

(πs
2

)( s
s−1
2

)2

3F2

(
1
2 ,

1
2 ,

1
2

s+3
2 , s+3

2

∣∣∣∣
1

4

)
+

(
s
s
2

)
3F2

(
− s2 ,− s2 ,− s2

1,− s−12

∣∣∣∣
1

4

)
, (21)

and

W4(s) =
1

22s
tan

(πs
2

)( s
s−1
2

)3

4F3

(
1
2 ,

1
2 ,

1
2 ,

s
2 + 1

s+3
2 , s+3

2 , s+3
2

∣∣∣∣1
)

+

(
s
s
2

)
4F3

(
1
2 ,− s2 ,− s2 ,− s2

1, 1,− s−12

∣∣∣∣1
)
. (22)

We note that for s a positive even integer the first term in (21) (resp. (22)) is zero and the second is a term
also appearing in (8) (resp. (9)). 3
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Herein, we will take a related probabilistic approach so as to be able to express our quantities of interest
in terms of special functions which allows us to explicitly resolve W3(2k + 1) for all odd values.

It is elementary to express the distance y of an (n+ 1)-step walk conditioned on a given distance x of
an n-step walk. Since, by a simple application of the cosine rule we find

y2 = x2 + 1 + 2x cos(θ), (23)

where θ is the outside angle of the triangle with sides x, 1, y. It follows, for details see (BNSW09), that
the conditional density for the distance y of an (n + 1)-step walk as an extension of an n-step walk with
distance x is

hx(y) =
2y

π
√

4x2 − (y2 − x2 − 1)2
(24)

which, of course, is independent of n.
We therefore have the following trivial evaluation

Wn+1(s) = E(ys) = E (E (ys | x)) =

∫ n

0

(∫ x+1

|x−1|
ys hx(y) dy

)
pn(x) dx, (25)

under the assumption that the probability density pn for the n-step walk is known. Clearly, for the 1-step
walk we have p1(x) = δ1(x), a Dirac delta at x = 1. It then follows immediately that the probability
density for a 2-step walk is given by p2(x) = 2

π
√
4−x2

for 0 6 x 6 1 and 0 otherwise.

5.1 Applications to W3

The explicit form of p2(x) leads to some alternative probabilistically inspired expressions for W3(s). The
inner integral in (25) is in fact expressible in terms of the hypergeometric function with details appearing
in (BNSW09). For instance, in the case s = 1 we find

∫ x+1

|x−1|
y hx(y) dy =

2(x+ 1)

π
E

(
2
√
x

x+ 1

)
, (26)

(for x > 0 and x 6= 1) where E(k) = π
2 2F1( 1

2 ,− 1
2 ; 1; k2) denotes the complete elliptic integral of the

second kind with parameter k. This leads to the following expression for the 3-step walk:

W3(1) =

∫ 2

0

4(x+ 1)

π2
√

4− x2
E

(
2
√
x

x+ 1

)
dx. (27)

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1: It remains to prove the result for odd integers. Since, as noted, for all complex s,
the function V3(s) defined in (13) also satisfies the recursion given for W3(s) in Example 4.4, it suffices
to show that the values given for s = 1 and s = −1 are correct. First, (BB87, Exercise 1c), p. 16) allows
us to write

(x+ 1)E

(
2

√
x

x+ 1

)
= Re

(
2E(x)−

(
1− x2

)
K(x)

)
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for 0 < x < ∞ where we have used Jacobi’s imaginary transformations (BB87, Exercises 7a) & 8b), p.
73) to introduce the real part for x > 1. Thus, from (27),

W3(1) =
4

π2
Re

∫ π/2

0

(
2E(2 sin(t))− (1− 4 sin2(t))K(2 sin(t))

)
dt

=
4

π2
Re

∫ π/2

0

∫ π/2

0

2

√
1− 4 sin2(t) sin2(r) dtdr

− 4

π2
Re

∫ π/2

0

∫ π/2

0

1− 4 sin2(t)√
1− 4 sin2(t) sin2(r)

dtdr.

Joining up the two last integrals and parameterizing, we consider

Q(a) :=
4

π2

∫ π/2

0

∫ π/2

0

1 + a2 sin2(t)− 2 a2 sin2(t) sin2(r)√
1− a2 sin2(t) sin2(r)

dtdr. (28)

We now use the binomial theorem to integrate (28) term-by-term for |a| < 1 and substitute

2

π

∫ π/2

0

sin2m(t) dt = (−1)m
(−1/2

m

)

throughout. Moreover, (−1)m
(−α
m

)
= (α)m/m! where the later denoted the Pochhammer symbol. Eval-

uation of the consequent infinite sum produces:

Q(a) =
∑

k>0
(−1)k

(−1/2

k

)(
a2k
(−1/2

k

)2

− a2k+2

(−1/2

k

)(−1/2

k + 1

)
− 2a2k+2

(−1/2

k + 1

)2
)

=
∑

k>0
(−1)ka2k

(−1/2

k

)3
1

(1− 2k)2

= 3F2

(− 1
2 ,− 1

2 ,
1
2

1, 1

∣∣∣∣a2
)
.

Analytic continuation to a = 2 yields the claimed result as per formula (13) for s = 1. The case s = −1
is similar, see (BNSW09). 2

6 Conclusion
The behaviour of these two-dimensional walks provides a fascinating blend of probabilistic, analytic,
algebraic and combinatorial challenges. Work on understanding Conjectures 4.5 and 4.6 is in progress.
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Three notions of tropical rank for symmetric
matrices

Dustin Cartwright 1 and Melody Chan1†

1Dept. of Mathematics, University of California, Berkeley, CA 94720, USA

Abstract. We introduce and study three different notions of tropical rank for symmetric matrices and dissimilarity
matrices in terms of minimal decompositions into rank 1 symmetric matrices, star tree matrices, and tree matrices.
Our results provide a close study of the tropical secant sets of certain nice tropical varieties, including the tropical
Grassmannian. In particular, we determine the dimension of each secant set, the convex hull of the variety, and in
most cases, the smallest secant set which is equal to the convex hull.

Résumé. Nous introduisons et étudions trois notions différentes de rang tropical pour des matrices symétriques et
des matrices de dissimilarité, en utilisant des décompositions minimales en matrices symétriques de rang 1, en ma-
trices d’arbres étoiles, et en matrices d’arbres. Nos résultats donnent lieu à une étude détaillée des ensembles des
sécantes tropicales de certaines jolies variétés tropicales, y compris la grassmannienne tropicale. En particulier, nous
déterminons la dimension de chaque ensemble des sécantes, l’enveloppe convexe de la variété, ainsi que, dans la
plupart des cas, le plus petit ensemble des sécantes qui est égal à l’enveloppe convexe.

Resumen. Introducimos y estudiamos tres nociones diferentes de rango tropical para matrices simétricas y matrices
de disimilaridad, utilizando las decomposiciones minimales en matrices simétricas de rango 1 en matrices de árboles
estrella y en matrices de árboles. Nuestros resultados brindan un estudio detallado de conjuntos de secantes de ciertas
variedades tropicales clásicas, incluyendo la grassmanniana tropical. En particular, determinamos la dimensión de
cada conjunto de dichas secantes, la cápsula convexa de la variedad, y también, en la mayoridad de los casos, el
conjunto más pequeño de secantes que coincide con la cápsula convexa.

Keywords: tropical geometry, tropical convexity, secant varieties, rank, symmetric matrices, hypergraph coloring

1 Introduction
In this paper, we study tropical secant sets and rank for symmetric matrices. Our setting is the tropical
semiring (R ∪ {∞},⊕,�), where tropical addition is given by x⊕ y = min(x, y) and tropical multipli-
cation is given by x� y = x+ y. The kth tropical secant set of a subset V of RN is defined to be the set
of points

{x ∈ RN : x = v1 ⊕ · · · ⊕ vk, vi ∈ V },
where ⊕ denotes coordinate-wise minimum. This set is typically not a tropical variety and thus we prefer
the term “secant set” to “secant variety,” which has appeared previously in the literature. The rank of a
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point x ∈ RN with respect to V is the smallest integer k such that x lies in the kth tropical secant set of
V , or∞ if there is no such k.

In [3], Develin, Santos, and Sturmfels define the Barvinok rank of a matrix, not necessarily symmetric,
to be the rank with respect to the subset of n × n rank 1 matrices, and their definition serves as a model
for ours. In addition, they define two other notions of rank, Kapranov rank and tropical rank, for which
there are no analogues in this paper. Further examination of min-plus ranks of matrices can be found in
the review article [1].

We give a careful examination of secant sets and rank with respect to three families of tropical varieties
in the space of symmetric matrices and the space of dissimilarity matrices. By a n × n dissimilarity
matrix we simply mean a function from

(
[n]
2

)
to R, which we will write as a symmetric matrix with the

placeholder symbol ∗ along the diagonal. There is a natural projection from n× n symmetric matrices to
n× n dissimilarity matrices which we denote by π. For example,

M =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 and π(M) =




∗ 1 0 0
1 ∗ 0 0
0 0 ∗ 1
0 0 1 ∗


 (1)

are a symmetric matrix and dissimilarity matrix respectively.
Our first family is the tropical Veronese of degree 2, which is the tropicalization of the classical space

of symmetric matrices of rank 1. It is a classical linear subspace of the space of symmetric matrices
consisting of those matrices which can be written as vT � v for some row vector v. The rank of a matrix
with respect to the tropical Veronese is called symmetric Barvinok rank, because it is the symmetric
analogue of Barvinok rank.

Second, we consider the space of star trees, which is the image of the tropical Veronese under the
projection π. Equivalently, it can be obtained by first projecting the classical Veronese onto its off-diagonal
entries and then tropicalizing. The classical variety and its secant varieties were studied in a statistical
context in [5]. The tropical variety is a classical linear subspace of the space of dissimilarity matrices, and
we call the corresponding notion of rank star tree rank. The name reflects the fact that the matrices with
star tree rank 1 are precisely those points of the tropical Grassmannian which correspond to trees with no
internal edges, i.e. star trees, in in the identification below.

Third, we consider the tropical Grassmannian G2,n, which is the tropicalization of the Grassmannian
of 2-dimensional subspaces in an n-dimensional vector space, and was first studied in [9]. It consists of
exactly those dissimilarity matrices arising as the distance matrix of a weighted tree with n leaves in which
internal edges have negative weights. Therefore, we call the points in the tropical Grassmannian tree
matrices, and call rank with respect to the tropical Grassmannian the tree rank. Note that our definition
of tree rank differs from that in [7, Ch. 3], which uses a different notion of mixtures.

We use our examples of M and π(M) from (1) to illustrate our three notions of rank. Proposition 4
tells us that the symmetric Barvinok rank of M is 4. Theorem 8 tells us that the star tree rank of π(M)
is 2. Explicitly, we have

π(M) =




∗ 1 0 0
1 ∗ 2 2
0 2 ∗ 1
0 2 1 ∗


⊕




∗ 1 2 2
1 ∗ 0 0
2 0 ∗ 1
2 0 1 ∗


 .
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Finally, the tree rank of π(M) is 1 by Proposition 13. This example shows that all three of our notions of
rank can be different.

However, for any n× n symmetric matrix M , we have

symmetric Barvinok rank(M) ≥ star tree rank(π(M)) ≥ tree rank(π(M)). (2)

The first inequality follows from the fact that the set of dissimilarity matrices of star tree rank 1 is the
projection of the set of matrices of symmetric Barvinok rank 1. The second inequality follows from the
fact that the space of star trees is contained in the tropical Grassmannian.

The rest of the paper is organized as follows. In Section 2, we present a technique for proving lower
bounds on rank. We introduce a hypergraph whose chromatic number is a lower bound on rank. We
examine symmetric Barvinok rank, star tree rank, and tree rank in Sections 3, 4, and 5 respectively. We
prove upper bounds on the rank in each case, and with the exception of tree rank, our upper bounds are
sharp. We show that the symmetric Barvinok rank of an n× n symmetric matrix can be infinite, but even
when the rank is finite it can exceed n, and in fact can grow quadratically in n (Theorem 5). For each
notion of rank, the set of matrices with rank at most k is a union of polyhedral cones, and we compute the
dimension of these sets, defined as the dimension of the largest cone. In each case, the dimension of the
tropical secant set equals the dimension of the clasical secant variety, confirming Draisma’s observation
that tropical geometry provides useful lower bounds for the dimensions of classical secant varieties [4].
We also give a combinatorial characterization of each notion of rank for a 0/1 matrix in terms of graph
covers. Finally, in Section 6, we explicitly characterize the stratification of the 5×5 dissimilarity matrices
by star tree rank and tree rank respectively, and show that the lower bounds from the chromatic number in
Section 2 are exact in these cases.

2 Lower bounds on rank via hypergraph coloring
We begin by giving a general combinatorial construction: a hypergraph whose chromatic number yields a
lower bound on rank.

Recall that a hypergraph consists of a ground set, called vertices, and a set of subsets of the ground set,
called hyperedges. The chromatic number of a hypergraph H , denoted χ(H), is the smallest number r
such that the vertices ofH can be partitioned into r color classes with no hyperedge ofH monochromatic.
In particular, if H contains a hyperedge of size 1, then χ(H) is∞.

Now, suppose we have a tropical prevariety V ⊆ RN . Recall that a tropical polynomial

p(x1, . . . , xN ) =
t⊕

i=1

ai � xci11 � · · · � xciNN (3)

defines a tropical hypersurface consisting of those vectors x ∈ RN such that the minimum in evaluating
p(x) is achieved at least twice. A tropical prevariety is the intersection of finitely many tropical hypersur-
faces, and we call the set of tropical polynomials defining the prevariety V a defining set.

Now, given a point w ∈ RN and a defining set S for V , we construct a hypergraph on ground set [N ]
as follows. Let p from (3) be a tropical polynomial in S, with all exponents cij ≥ 0. If the minimum is
achieved uniquely when p is evaluated atw, then we add a hyperedgeE whose elements correspond to the
coordinates that appear with non-zero exponent in the unique minimal term. The deficiency hypergraph
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of w with respect to V and S consists of hyperedges coming from all polynomials in S with a unique min-
imum at w. In particular, the deficiency hypergraph has no hyperedges (and thus has chromatic number
1) if and only if w is in V .

Proposition 1 IfH is the deficiency hypergraph constructed above, then the rank ofw ∈ RN with respect
to V ⊆ RN is at least χ(H).

Corollary 2 If the deficiency hypergraph H has a hyperedge of size 1, then the rank of w with respect to
V is infinite.

The lower bound in Proposition 1 may be strict, such as with S = {xz ⊕ y2, xw ⊕ yz} and w =
(0, 0, 0, 1). The rank ofw with respect to the variety defined by S is infinite, but the deficiency hypergraph
is 2-colorable.

For the varieties considered in this paper, we will take quadratic tropical bases as our defining tropical
polynomials, and thus the deficiency hypergraph will always be a graph (possibly with loops). Accord-
ingly, we will call it the deficiency graph.

3 Symmetric Barvinok rank
The symmetric Barvinok rank of a symmetric matrix M is the smallest number r such that M can be
written as the sum of r rank 1 symmetric matrices. The 2 × 2 minors xijxkl ⊕ xilxkj of M for i 6= k
and l 6= j form a tropical basis for the variety of rank 1 symmetric matrices. We will always construct our
deficiency graph with respect to this tropical basis.

Our first observation is that the symmetric Barvinok rank of a matrix can be infinite. More precisely,

Proposition 3 If M is a symmetric matrix and 2Mij < Mii +Mjj for some i and j, then the symmetric
Barvinok rank of M is infinite.

Proof: The tropical polynomial x2ij ⊕ xiixjj is in the tropical basis, so if 2Mij < Mii + Mjj for some
i and j, then the deficiency graph for M has a loop at the node ij. Therefore, M has infinite rank by
Corollary 2. 2

In fact, the converse to Proposition 3 is also true; see Theorem 5.
Next, we give a graph-theoretic characterization of the symmetric Barvinok rank of 0/1-matrices. We

define a clique cover of a simple graph G to be a collection of r complete subgraphs such that every edge
and every vertex of G is in some element of the collection. Given an n×n symmetric 0/1 matrix M with
zeroes on the diagonal, define GM to be the graph whose vertices are the integers [n], and which has an
edge between i and j if and only if Mij = 0.

Proposition 4 Suppose M is a symmetric 0/1 matrix with zeroes on the diagonal. Then the symmetric
Barvinok rank of M is the size of a smallest clique cover of GM .

On the other hand, suppose that M is a symmetric 0/1 matrix with at least one entry of 1 on the
diagonal. If there exist i and j such that Mii = 1 and Mij = 0, then the symmetric Barvinok rank
of M is infinite. Otherwise, let M ′ be the maximal principal submatrix with zeroes on the diagonal. The
symmetric Barvinok rank of M is one greater than the symmetric Barvionk rank of M ′.

This characterization gives us two families of matrices which have rank n and bn2/4c respectively,
namely those corresponding to the trivial graph with n isolated vertices and the complete bipartite graph
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Kbn/2c,dn/2e. In the latter case, Kbn/2c,dn/2e is triangle-free, so no clique can consist of more than one
edge. On the other hand, there are bn2/4c edges in the graph, so bn2/4c cliques are needed in a cover. In
fact, these two examples have the maximum possible rank for n× n matrices.

Theorem 5 Suppose that M is a symmetric n× n matrix with Mii +Mjj ≤ 2Mij for all i and j. Then
the symmetric Barvinok rank ofM is at most max{n, bn2/4c}, and this bound is tight. Thus, every matrix
with finite rank has rank at most max{n, bn2/4c}.

The next theorem shows that the dimensions of the tropical secant sets and their classical secant varieties
agree.

Theorem 6 The dimension of the space of symmetric n×nmatrices of symmetric Barvinok rank at most r
is
(
n+1
2

)
−
(
n−r+1

2

)
, which is the dimension of the classical secant variety, i.e. the space of classical

symmetric matrices of classical rank at most r.

Proof: Let D =
(
n+1
2

)
−
(
n−r+1

2

)
. The tropical secant set is contained in the tropicalization of the

classical secant variety, so the dimension is at most D, by the Bieri-Groves Theorem [2, Thm. A]. Thus, it
is sufficient to find an open neighborhood in which the tropical secant set has dimension D. For i from 1
to r, let vi = (C, . . . , C, vi,i, . . . , vi,n) be a vector withC for the first i−1 entries. Choose the coordinates
vi+1,j to be smaller than all the vi,j and let C be very large. Then,

vT1 � v1 ⊕ · · · ⊕ vTr � vr =




2v11 v11 + v12 · · · v11 + v1n
v11 + v12 2v22 · · · v22 + v2n

...
...

...
v11 + v1n v22 + v2n . . . 2vrn




This matrix is an injective function of the vector entries vij for i ≤ r and j ≥ i. Thus, it defines a
neighborhood of the rth secant set of the desired dimension

n+ (n− 1) + · · ·+ (n− r + 1) =

(
n+ 1

2

)
−
(
n− r + 1

2

)
= D.

2

In the case n = 3, we can explicitly describe the stratification of symmetric matrices by symmetric
Barvinok rank. By Theorem 5, the symmetric Barvinok rank of a 3 × 3 matrix is at most 3, and the
locus of rank 1 matrices is the tropical variety defined by the 2 × 2 minors, so it suffices to characterize
the matrices of rank at most 2. Following [3], we call a square matrix tropically singular if it lies in the
tropical variety of the determinant.

Proposition 7 Let M be a symmetric 3× 3 matrix. Then the following are equivalent:

1. M has symmetric Barvinok rank at most 2;

2. The deficiency graph of M is 2-colorable;

3. M is tropically singular and Mii +Mjj ≤ 2Mij for all 1 ≤ i, j ≤ 3.

We remark that for larger matrices, the symmetric Barvinok rank does not have as simple a characteri-
zation as the third condition in Proposition 7. A necessary condition for a symmetric n×n matrix to have
rank at most r is that Mii +Mjj ≤ 2Mij and all the (r+ 1)× (r+ 1) submatrices are tropically singular,
but one can show that this condition is not sufficient for n ≥ 4.
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4 Star tree rank
A star tree matrix is a dissimilarity matrix which can be written as π(vT � v) for v ∈ Rn a row vector.
The star tree matrices form a classical linear space in the space of n× n dissimilarity matrices defined by
the tropical polynomials

xijxkl ⊕ xikxjl for i, j, k, and l distinct integers. (4)

In this section, the deficiency graph will always be taken with respect to this tropical basis.
Unlike the case of symmetric Barvinok rank, the star tree rank is always finite.

Theorem 8 For n at least 3, the star tree rank of a n × n dissimilarity matrix M is at most n − 2, and
this bound is sharp. In particular, the dissimilarity matrix defined by Mij = min{i, j} has star tree rank
n− 2.

Note that the matrix with maximal star tree rank in Theorem 8 is in fact in the Grassmannian, i.e. it has
tree rank 1. Indeed, one may check that the four-point condition (5) holds.

We can also give a graph-theoretic characterization of the star tree rank of 0/1-matrices. For M a 0/1
dissimilarity matrix, we define GM to be the graph whose edges correspond to the zeroes of M . As in the
case of symmetric Barvinok rank, we can characterize the star tree rank of M in terms of covers of GM ,
this time by both cliques and star trees. We will also say that a cover of GM by cliques and star trees is a
solid cover if for every pair of distinct vertices i and j either:

1. there is an edge between i and j,

2. either i or j belongs to a clique in the cover,

3. either i or j is the center of a star tree in the cover, or

4. both i and j are leaves of the same star tree.

Proposition 9 Let M be a 0/1 dissimilarity matrix. Let r be the minimal number of graphs in a cover of
GM by cliques and star trees, such that every edge (but not necessarily every vertex) is in some element
of the cover. Then M has star tree rank either r or r + 1.

Moreover, if GM has a solid cover by r graphs, then M has star tree rank r.

In contrast to symmetric Barvinok rank, the upper bound of n − 2 on the star tree rank of an n × n
dissimilarity matrix cannot be achieved by a 0/1 matrix for large n. Recall that the Ramsey number
R(k, k) is the smallest integer such that any graph on at least R(k, k) vertices has either a clique or a
independent set of size k. Then we have the following stronger bound on the star tree rank of a 0/1
matrix.

Proposition 10 For n ≥ R(k, k), any n×n 0/1 dissimilarity matrix has star tree rank at most n−k+1.

Proof: By the assumption on n, the graphGM has either a clique of size k or an independent set of size k.
In the former case, we can cover GM by a star tree centered at each vertex not part of the clique, together
with the clique itself. This gives a solid cover by n− k + 1 subgraphs. In the latter case, we can just take
the star trees centered at the vertices not in the independent set, giving a cover of GM by n−k subgraphs.
In either case, Proposition 9 shows that M has rank at most n− k + 1. 2
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Corollary 11 For n ≥ 18, every n× n 0/1 dissimilarity matrix has star tree rank at most n− 3.

Proof: The Ramsey number R(4, 4) is 18 [8]. 2

In [5, Theorem 2], Drton, Sturmfels, and Sullivant prove a dimension theorem for the secant varieties
of the classical Veronese projected to off-diagonal entries. Here, we prove the tropical analogue of their
result.

Theorem 12 Let r and n be positive integers. Then the dimension of the space of dissimilarity n × n
matrices of star tree rank at most r is

min

{(
n+ 1

2

)
−
(
n− r + 1

2

)
,

(
n

2

)}
.

In fact, the difficult part of Theorem 2 in [5] is proving the lower bound on the dimension of the classical
secant variety. Our computation of the dimension of the tropical secant set, combined with the Bieri-
Groves Theorem [2, Theorem A], provides an alternative proof of this lower bound.

5 Tree rank
The tropical Grassmannian G2,n is the tropical variety defined by the 3-term Plücker relations:

xijxk` ⊕ xikxj` ⊕ xi`xjk for all i < j < k < `. (5)

This condition is equivalent to coming from the distances along a weighted tree which has negative
weights along the internal edges [9, Sec. 4]. In this section, we will always take the deficiency graph
to be with respect to the Plücker relations in (5).

As with the previous notions of rank, the tree rank of a 0/1 matrix can be characterized in terms of
covers of graphs. For any disjoint subsets I1, . . . , Ik ⊂ [n] (not necessarily a partition), the complete
k-partite graph is the graph which has an edge between the elements of Ii and Ij for all i 6= j. Complete
k-partite graphs are characterized by the property that among vertices which are incident to some edge,
the relation of having a non-edge is a transitive relation.

Note that the complete k-partite graphs defined above are exactly those graphs whose edge set forms
the set of bases of a rank 2 matroid on n elements. The transitivity of being a non-edge is equivalent
to the basis exchange axiom. Alternatively, each of the sets I1, . . . , Ik partition the set of non-loops in
the matroid into parallel classes. See [6] for definitions of these terms. In the following proposition, we
will see that the Plücker relations imply the basis exchange axiom for the 0 entries of a non-negative tree
matrix.

Proposition 13 Let M be an n × n 0/1 dissimilarity matrix and let r be smallest size of a cover of GM
by complete k-partite subgraphs. As in Proposition 9, we only require every edge to be in the cover, not
necessarily every vertex. If GM has at most one isolated vertex then M has tree rank r. Otherwise, M
has tree rank r + 1.

Note that by taking the Ii in the definition of k-partite graph to be singletons, we get complete graphs,
and by taking k = 2 with I1 a singleton and I2 any set disjoint from I1, we get star trees. Together with
Propositions 9 and 13, this confirms, for 0/1-matrices, the second inequality in (2).

Again, we can show that the tropical secant sets and classical secant varieties agree in dimension:
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n maximum tree rank example
3 1
4 2
5 3 0/1 matrix corresponding to 5-cycle
6 3
7 4
8 5
9 6 M in (6)
10 6 or 7 Any extension of M in (6)
9k between 6k and 9k − 3 Mk from discussion following (6)

Tab. 1: Maximum possible tree rank of an n×n dissimilarity matrix, to the best of our knowledge. The upper bounds
come from Theorems 8 and 15. The examples have the largest tree ranks that are known to us. The omitted examples
can be provided by taking a principal submatrix of a larger example, by Lemma 16.

Proposition 14 The dimension of the set of dissimilarity n × n matrices of tree rank at most r is the
dimension of the classical secant variety,

(
n

2

)
−
(
n− 2r

2

)
if r ≤ n

2
,

(
n

2

)
if r ≥ n− 1

2
.

Unlike the cases of symmetric Barvinok rank and star tree rank, we do not know the maximum tree
rank of a n× n dissimilarity matrix for large n. We have an upper bound of n− 2 by Theorem 8, and we
can improve on this slightly:

Theorem 15 For n ≥ 6, an n× n dissimilarity matrix M has tree rank at most n− 3.

Beginning with n = 10, we don’t know whether or not the bound in Theorem 15 is sharp. For the
following 9 × 9 matrix, found by random search, the deficiency graph was computed to have chromatic
number 6:

M =




∗ 1 6 7 2 3 8 9 6
1 ∗ 2 7 9 7 5 7 1
6 2 ∗ 6 0 6 1 7 1
7 7 6 ∗ 3 3 8 5 3
2 9 0 3 ∗ 5 7 5 7
3 7 6 3 5 ∗ 9 3 9
8 5 1 8 7 9 ∗ 2 3
9 7 7 5 5 3 2 ∗ 8
6 1 1 3 7 9 3 8 ∗




(6)

Together with Theorem 15, this computation shows that M has tree rank 6. For any k ≥ 1, we can form
an 9k × 9k matrix Mk by putting M in blocks along the diagonal and setting all other entries to 10. The
deficiency graph of Mk includes k copies of the deficiency graph of M , and all edges between distinct
copies. Therefore, the chromatic number, and thus the tree rank, are at least 6k.
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On the other hand, in order to provide examples of an n× n matrix with tree rank n− 3 for all n ≤ 9,
we have the following lemma.

Lemma 16 Let M be an n × n matrix. If any (n −m) × (n −m) principal submatrix has tree rank r,
then M has tree rank at most r +m.

Proof: Fix a decomposition of the (n −m) × (n −m) principal submatrix into r tree matrices. We can
extend each tree matrix to an n × n tree matrix by adding leaf edges with large positive weights. For
each index i not in the principal submatrix, define vi to be the vector which is C + Mij in the jth entry
and −C in the ith entry, where C is a large real number. Then, the extended tree matrices, together with
π(vTi � vi) for all i not in the principal submatrix, give a decomposition of M into r + m tree matrices,
as desired. 2

These results on the maximum tree rank are summarized in Table 1.

6 Star tree rank and tree rank for n = 5
In this section, we characterize the secant sets of the space of star trees and of the tropical Grassmannian
in the case n = 5. Both give examples where the lower bound of Proposition 1 is actually an equality.

6.1 Star tree rank for n = 5

From Theorem 8, we know that the maximum star tree rank of a 5× 5 matrix is 3. On the other hand, the
set of dissimilarity matrices of star tree rank 1 is defined by the 2× 2 minors. Thus, our task is to describe
the second secant set of the space of star trees, i.e. the set of dissimilarity matrices of star tree rank 2.

First, we recall the defining ideal of the classical secant variety. The space of star trees is the tropi-
calization of the projection of the rank 1 symmetric matrices onto their off-diagonal entries. Its second
secant variety is a hypersurface in C10 defined by the following 12-term quintic, known as the pentad [5]:

x12x13x24x35x45 − x12x13x25x34x45 − x12x14x23x35x45 + x12x14x25x34x35

+ x12x15x23x34x45 − x12x15x24x34x35 + x13x14x23x25x45 − x13x14x24x25x35
− x13x15x23x24x45 + x13x15x24x25x34 − x14x15x23x25x34 + x14x15x23x24x35

Note that the 12 terms of the pentad correspond to the 12 different cycles on 5 vertices. The second secant
set of the space of star trees is contained in the tropicalization of the pentad, but the containment is proper.
Nonetheless, the terms of the pentad play a fundamental role in characterizing matrices of rank at most 2.

Theorem 17 Let M be a 5× 5 dissimilarity matrix. The following are equivalent:

1. M has star tree rank at most 2;

2. The deficiency graph of M is 2-colorable;

3. The minimum of the terms of the pentad is achieved at two terms which satisfy the following:

(a) The terms differ by a transposition;
(b) Assuming, without loss of generality, that the minimized terms are x12x23x34x45x15 and

x13x23x24x45x15, then we have that M14 +M23 ≤M12 +M34 = M13 +M24.

The proof is similar in spirit to the proof of Theorem 18 below, and we omit it.
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6.2 Tree rank for n = 5

We now turn our attention to tree rank of 5 × 5 dissimilarity matrices. As in the case of star tree rank,
the maximum tree rank is 3, and so it suffices to characterize 5 × 5 dissimilarity matrices of tree rank at
most 2. Unlike the previous case, the second classical secant variety is already all of C10, so there is no
classical polynomial whose tropicalization gives us a clue to the tropical secant set. However, the tropical
pentad again shows up in our characterization.

First, here is a simple example of a 5 × 5 0/1 dissimilarity matrix with tree rank 3. Consider the 0/1
matrix corresponding to the 5-cycle C5. Now, C5 cannot be covered by fewer than 3 k-partite graphs, and
so the matrix has tree rank at least 3 by Proposition 13. On the other hand, it has tree rank at most 3 by
Theorem 8 and the inequality in (2). We will see in Remark 1 that this matrix is, in a certain sense, the
only such example.

Let P be the tropical polynomial in variables {xij : 1 ≤ i < j ≤ 5} which is the tropical sum of the 22
tropical monomials of degree 5 in which each i ∈ {1, . . . , 5} appears in a subscript exactly twice. Thus P
has 12 monomials of the form x12x23x34x45x15, forming the terms of the pentad, and 10 new monomials
of the form x12x23x31x

2
45. Let us call terms of the former kind pentagons, and terms of the latter kind

triangles.

Theorem 18 Let M be a 5× 5 dissimilarity matrix. Then the following are equivalent:

1. M has tree rank at most 2;

2. The deficiency graph is 2-colorable;

3. The tropical polynomial P achieves its minimum at a triangle.

Proof: First, (1) implies (2) by Proposition 1.
For (2) implies (3), we prove the contrapositive. Suppose the minimal terms of P are all pentagons;

without loss of generality, we assume that x12x23x34x45x15 is a minimal term. Since x14x45x15x223 is
not minimal, we have M12 +M34 < M14 +M23. Similarly, we have,

M12 +M23 +M34 +M45 +M15 < 2M15 +M23 +M34 +M24, and
M12 +M23 +M34 +M45 +M15 < 2M45 +M12 +M23 +M13.

Adding these together and cancelling, we get M12 + M34 < M13 + M24. Thus, 12 and 34 are adjacent
in the deficiency graph. By similar reasoning, we have adjacencies 12 − 34 − 15 − 23 − 45 − 12 in the
deficiency graph, so it has a five cycle and is not 2-colorable.

Finally, we prove that (3) implies (1). Assume without loss of generality that x34x35x45x212 is among
the terms minimizing P . This implies that x12x34, x12x35, and x12x45 are each minimal terms in their
respective Plücker equations. Then we can use Lemmas 19 and 20, whose proofs we omit, to obtain a
decomposition of M into two tree matrices.

Lemma 19 For any 5×5 dissimilarity matrixM such that x12x34, x12x35, and x12x45 are each minimal
terms in their respective Plücker equations, there exists some 5 × 5 tree matrix T , such that for every
ij ∈

(
[5]
2

)
, we have Tij ≥Mij , with equality if ij ∈ {12, 13, 14, 15, 23, 24, 25}.

Lemma 20 For any 5 × 5 dissimilarity matrix M , there exists some 5 × 5 tree matrix T ′ such that for
every pair of indices i and j, we have T ′ij ≥Mij , with equality if ij ∈ {34, 35, 45}.
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We can now finish the proof of Theorem 18. Let T be as given in Lemma 19 and let T ′ be as given in
Lemma 20. Then M = T ⊕ T ′ and so M has tree rank at most 2. 2

In fact, we can describe precisely which subgraphs of the Petersen graph arise as deficiency graphs ∆M

for n = 5. There are 5 tropical Plücker relations on a 5 × 5 matrix, each containing 3 terms. Each term
is the tropical product of terms with disjoint entries. Thus, ∆M is a subgraph with at most 5 edges of the
Petersen graph.

23
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1523
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45

15

Fig. 1: The two 2-colorable possibilities for ∆M .

Theorem 21 Let M be a 5 × 5 dissimilarity matrix. Then the deficiency graph ∆M is precisely one of
the following:

1. The trivial graph, in which case M has tree rank 1.

2. A non-trivial graph with fewer than 5 edges, in which case M has tree rank 2.

3. Up to relabeling, either of the two graphs in Figure 1, in which case M has tree rank 2.

4. A 5-cycle, in which case M has tree rank 3.

Proof: The matrix M is a tree matrix if and only if the four-point condition holds for all 4-tuples, i.e. if
and only if ∆M is trivial. This is the first case.

Now suppose that ∆M is a non-trivial graph with at most 4 edges. Then, at least one four-point con-
dition holds, so Lemma 16 implies that M has tree rank at most 2. However, at least one four-point
condition is violated, so M must have tree rank exactly 2. We omit the case analysis that shows that, up
to relabeling, the only two possibilities for ∆M , assuming that it is 2-colorable, are those in Figure 1.

Finally, if ∆M is not 2-colorable, then it must have an odd cycle. The Petersen graph has no 3-cycles,
so ∆M must be a 5-cycle, since it has at most 5 edges. 2
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Remark 1 If M is the 0/1 matrix corresponding to the 5-cycle C5, then ∆M is also a 5-cycle by The-
orem 21. Explicitly, ∆M has an edge for each non-adjacent pair of edges in the graph C5. Moreover,
Theorem 21 tells us that any other matrix N with tree rank 3 must have the same deficiency graph (up to
relabeling). In this sense, M is the only example of a 5× 5 dissimilarity matrix with tree rank 3.
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Abstract. A finite subgroup G of GL(n,C) is involutory if the sum of the dimensions of its irreducible complex
representations is given by the number of absolute involutions in the group, i.e. elements g ∈ G such that gḡ = 1,
where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional
irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irre-
ducible Coxeter groups. If G is a classical Weyl group this result is much refined in a way which is compatible with
the Robinson-Schensted correspondence on involutions.

Résumé. Un sousgroupe fini G de GL(n,C) est dit involutoire si la somme des dimensions de ses representations
irréductibles complexes est donné par le nombre de involutions absolues dans le groupe, c’est-a-dire le nombre de
éléments g ∈ G tels que gḡ = 1, où le bar dénotes la conjugaison complexe. Un model combinatoire uniform est
construit pour tous les groupes de réflexions complexes irréductibles qui sont involutoires, en comprenant, toutes les
familles de groupes de Coxeter finis irreductibles. Si G est un groupe de Weyl ce resultat peut se raffiner dans une
manière compatible avec la correspondence de Robinson-Schensted sur les involutions.

Keywords: Complex reflection groups, Gelfand models, Classical Weyl groups

1 Introduction
In their paper [7] Bernstein, Gelfand and Gelfand introduced the problem of the construction of a model
of a group G, i.e. a representation which is the direct sum of all irreducible complex representations of
G with multiplicity one. We can find several constructions of models in the literature for the symmetric
group [2, 3, 13, 15, 16, 17] and for some other special classes of complex reflection groups [1, 4, 5, 6].
A complex reflection group, or simply a reflection group, is a subgroup of GL(V ), where V is a fi-
nite dimensional complex vector space, generated by reflections, i.e. by elements of finite order which
fix a hyperplane pointwise. There is a well-known classification of irreducible reflection groups due to
Shephard-Todd [20] including an infinite family G(r, p, n) depending on 3 parameters together with 34
exceptional cases. As mentioned above one can find in the literature models for some reflection groups
such as the wreath product groups G(r, 1, n) as well as the groups G(2, 2, n), which are better known as
the Weyl groups of type D.
If G is a finite subgroup of GL(n,C), a specialization of a theorem of Bump and Ginzburg [8] gives a

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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combinatorial description of the character of a model of the group G if its dimension is given by the num-
ber of absolute involutions of G (i.e. elements g ∈ G such that gḡ = 1). We say that a group satisfying
this condition is involutory. It turns out that a complex reflection group G(r, p, n) is involutory if and
only if GCD(p, n) = 1, 2 and that one can construct an explicit model for all these groups in a uniform
way. This construction involves in a crucial way the theory of projective reflection groups developed in
[9]. Indeed a byproduct of this construction is also a model for some related projective reflection groups.

The model of the groupG considered in this paper has a basis indexed by the absolute involutions of the
dual group G∗ (see §2) and it is clear from the definition that the subspace spanned by the basis elements
indexed by the absolute involutions in a symmetric conjugacy class is a submodule. IfG is a classical Weyl
group we show that any such submodule is given by the sum of all irreducible representations indexed
by the shapes corresponding to the indexing involutions by means of the projective Robinson-Schensted
correspondence. This decomposition becomes particularly interesting for Weyl groups of type D with
respect to the so-called split representations.

The paper is organized as follows. In §2 we collect the notation and the preliminary results which are
needed. In §3 we classify all projective reflection groups of the formG(r, p, q, n) (see §2 for the definition)
which are involutory. In §4 we show an explicit model for all involutory reflection groups. In §5 a first
decomposition is given for the model of the generic involutory reflection group G(r, p, n), which reflects
the existence of the split representations. In §6 and §7 a finer decomposition is given for the groups of
type Bn and Dn.

2 Notation and preliminaries
In this section we collect the notations that are used in this paper as well as the preliminary results that are
needed.

We let Z be the set of integer numbers and N be the set of nonnegative integer numbers. For a, b ∈ Z,
with a ≤ b we let [a, b]

def
= {a, a + 1, . . . , b} and, for n ∈ N we let [n]

def
= [1, n]. For r ∈ N we let

Zr
def
= Z/rZ. If r ∈ N, r > 0, we denote by ζr the primitive r-th root of unity ζr

def
= e

2πi
r .

The main subject of this work are the complex reflection groups, or simply reflection groups, with
particular attention to their combinatorial representation theory. The most important example of a complex
reflection group is the group of permutations of [n], known as the symmetric group, that we denote by Sn.
We know by the work of Shephard-Todd [20] that all but a finite number of irreducible reflection groups
are the groupsG(r, p, n) that we are going to describe. IfA is a matrix with complex entries we denote by
|A| the real matrix whose entries are the absolute values of the entries of A. The wreath product groups
G(r, n) = G(r, 1, n) are given by all n× n matrices satysfying the following conditions:

• the non-zero entries are r-th roots of unity;

• there is exactly one non-zero entry in every row and every column (i.e. |A| is a permutation matrix).

If p divides r then the reflection group G(r, p, n) is the subgroup of G(r, n) given by all matrices
A ∈ G(r, n) such that detA

det |A| is a r
p -th root of unity.

Following [9], a projective reflection group is a quotient of a reflection group by a scalar subgroup. Ob-
serve that a scalar subgroup of G(r, n) is necessarily a cyclic group of the form Cq =< ζqI > of order q,
for some q|r.
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It is also easy to characterize all possible scalar subgroups of the groups G(r, p, n): in fact the scalar
matrix ζqI belongs to G(r, p, n) if and only if q|r and pq|rn. In this case we let G(r, p, q, n)

def
=

G(r, p, n)/Cq . If G = G(r, p, q, n) then the projective reflection group G∗
def
= G(r, q, p, n), where

the roles of the parameters p and q are interchanged, is always well-defined. We say that G∗ is the dual
of G and we refer the reader to [9] for the main properties of this duality. In this work we will see another
important occurrence of the relationship between a group G and its dual G∗.

If the non-zero entry in the i-th row of g ∈ G(r, n) is ζzir we let zi(g)
def
= zi ∈ Zr and say that

z1(g), . . . , zn(g) are the colors of g. We can also note that g belongs to G(r, p, n) if and only if z(g)
def
=∑

zi(g) ≡ 0 mod p.
For g ∈ G(r, n) we let |g| ∈ Sn be the permutation defined by |g|(i) = j if gi,j 6= 0. We may observe

that an element g ∈ G(r, n) is uniquely determined by the permutation |g| and by its colors zi(g) for all
i ∈ [n].
If g ∈ G(r, n) we let ḡ ∈ G(r, n) be the complex conjugate of g. We can also observe that ḡ is determined
by the conditions |ḡ| = |g| and zi(ḡ) = −zi(g) for all i ∈ [n]. Since the bar operator stabilizes the cyclic
subgroup Cq =< ζqI > it is well-defined also on the projective reflection groups G(r, p, q, n).
In [9] we can find a parametrization of the irreducible representations of the groups G(r, p, q, n), that
we briefly recall for the reader’s convenience. Given a partition λ = (λ1, . . . , λl) of n, the Ferrers
diagram of shape λ is a collection of boxes, arranged in left-justified rows, with λi boxes in row i. We
denote by Fer(r, n) the set of r-tuples (λ(0), . . . , λ(r−1)) of Ferrers diagrams such that

∑ |λ(i)| = n. If
µ ∈ Fer(r, n) we define the color of µ by z(µ) =

∑
i i|λ(i)| and, if p|r we let Fer(r, p, n)

def
= {µ ∈

Fer(r, n) : z(µ) ≡ 0 mod p}. If q ∈ N is such that q|r and pq|nr then the cyclic group Cq acts on
Fer(r, p, n) by a shift of r/q positions of its elements (see [9, Lemma 6.1]). Paralleling the definition for
the projective reflection groups we denote the corresponding quotient set by Fer(r, p, q, n). We denote by
(Cp)µ the stabilizer of µ in Cp. For example, if

µ =

[
, , ,

]
and µ′ =

[
, , ,

]
,

then µ and µ′ are elements in Fer(4, 2, 8) which represent the same class in Fer(4, 2, 4, 8). We also
observe that in this case the stabilizer in C4(µ) = C4(µ′) is the cyclic group C2 of order 2.

Proposition 2.1 The irreducible complex representations of G(r, p, q, n) can be parametrized by pairs
(µ, ρ), where µ ∈ Fer(r, q, p, n) and ρ ∈ (Cp)µ, where (Cp)µ is the stabilizer of any element in the class
µ by the action of Cp.

If µ ∈ Fer(r, n) we denote by ST µ the set of all possible fillings of the boxes in µ with all the numbers
from 1 to n appearing once, in such way that rows are increasing from left to right and columns are
incresing from top to bottom in every single Ferrers diagram of µ. We let ST (r, n)

def
= ∪µ∈Fer(r,n)ST µ

and we define ST (r, p, n) and ST (r, p, q, n) as already done for Ferrers diagrams. For example, the two
elements

T =

[
, , ,2 8

4
1 3 5

7
6
]

and T ′ =

[
, , ,6 2

4
8 1 3

7
5
]

belong to ST (4, 2, 8) and represent the same class in ST (4, 2, 4, 8).
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The classical Robinson-Schensted correspondence [22, §7.11] for the symmetric groups was general-
ized to the Stanton-White correspondence [23] for the wreath products G(r, n). A further generalization
of the correspondence, which is valid for all projective reflection groupsG(r, p, q, n), is explicitely shown
in [9, §10]. We refer to this correspondence as the projective Robinson-Schensted correspondence. We do
not describe this correspondence explicitly, but we briefly state it for future reference.

Theorem 2.2 There exists an explicit map

G(r, p, q, n) −→ ST (r, p, q, n)× ST (r, p, q, n)

g 7−→ [P (g), Q(g)],

satisfying the following properties:

1. P (g) and Q(g) have the same shape in Fer(r, p, q, n) for all g ∈ G(r, p, q, n);

2. if P,Q ∈ ST (r, p, q, n) have the same shape µ ∈ Fer(r, p, q, n) then

|{g ∈ G(r, p, q, n) : P (g) = P and Q(g) = Q}| = |(Cq)µ|,

(Cq)µ being, as above, the stabilizer in Cq of any element in the class µ.

If G is a finite group we let Irr(G) be the set of irreducible complex representations of G. If M is a
complex vector space and ρ : G → GL(M) is a representation of G we say that the pair (M,ρ) is a
G-model if the character χρ is the sum of the characters of all irreducible representations of G over C,
i.e. M is isomorphic as a G-module to the direct sum of all irreducible modules of G with multiplicity
one. Sometimes we simply say that M is a G-model if we do not need to know the map ρ explicitly or
if it is clear from the context. It is clear that two G-models are always isomorphic as G-modules, and so
we can also speak about “the” G-model. The last result in this section is a beautiful theorem of Bump
and Ginzburg, which generalizes a classical theorem of Frobenius and Schur [11], and allows us in some
cases to determine the character of the model of a finite group if we know its dimension.

Theorem 2.3 ([8], Theorem 7) Let G be a finite group, τ ∈ Aut(G) with τ2 = 1 and M be a G-model.
Assume that

dim(M) = #{g ∈ G : gτ(g) = z},
where z is a central element in G such that z2 = 1. Then

χM (g) = #{u ∈ G : uτ(u) = gz}.

3 Involutory projective reflection groups
In this section we start the investigation of a model for the projective reflection groups G(r, p, q, n).
The main result here is the characterization of the groups G(r, p, q, n) such that the dimension of a
G(r, p, q, n)-model is equal to the number of absolute involutions in G(r, p, q, n). In these groups we
can directly apply Theorem 2.3 to obtain a combinatorial description of the character of the model. The
next result relates the dimension of a model with the projective Robinson-Schensted correspondence.

Proposition 3.1 Let G = G(r, p, q, n). The dimension of a G-model is equal to the number of elements
g in the dual group G∗ which correspond by means of the projective Robinson-Schensted correspondence
to pairs of the form [P, P ], for some P ∈ ST (r, q, p, n).
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The next target is to show that absolute involutions in G∗ correspond to pairs of the form [P, P ] under
the projective Robinson-Schensted correspondence, and then to characterize those groups for which the
converse holds, i.e. the groups where the fact that v 7→ [P, P ] implies that v is an absolute involution.

If g ∈ G(r, p, q, n), we say that g is a symmetric element if any (equivalently every) lift of g in G(r, n)
is a symmetric matrix. We similarly define antisymmetric elements in G(r, p, q, n). Observe that we
can have antisymmetric elements only if r is even. The following result is a characterization of absolute
involutions in G(r, p, q, n).

Lemma 3.2 Let g ∈ G(r, p, q, n). Then g is an absolute involution, i.e. gḡ = 1, if and only if either g is
symmetric or q is even and g is antisymmetric.

We denote by I(r, p, q, n) the set of absolute involutions in G(r, p, q, n).

Theorem 3.3 Let G = G(r, p, q, n). Then

∑

φ∈Irr(G)

dimφ ≥ |I(r, q, p, n)|

and equality holds if and only if either GCD(p, n) = 1, 2, or GCD(p, n) = 4 and r ≡ p ≡ q ≡ n ≡ 4
mod 8.

We conclude this section by observing that a projective reflection group G = G(r, p, q, n) and its dual
group G∗ always have the same number of absolute involutions. This fact will be the keypoint in the
description of the character of the model for the groups satisfying the conditions of Theorem 3.3.

Proposition 3.4 We always have |I(r, p, q, n)| = |I(r, q, p, n)|.
The proof of this proposition is by direct computation. A “nice” bijective proof is desirable.

We say that a projective reflection group G = G(r, p, q, n) is involutory if the dimension of a model
of G is equal to the number of absolute involutions in G. By Proposition 3.4 we have that G(r, p, q, n) is
involutory if and only if it satisfies the conditions in Theorem 3.3.
If we restrict our attention to standard reflection groups we may note that a group G(r, p, n) is involutory
if and only if GCD(p, n) = 1, 2. In particular all infinite families of finite irreducible Coxeter groups
(these are An = G(1, 1, n), Bn = G(2, 1, n), Dn = G(2, 2, n), I2(r) = G(r, r, 2)) are involutory. In the
next section we establish a unified construction of a model for all involutory reflection groups (and the
corresponding quotients).

The fact that G(r, p, n) is involutory if GCD(p, n) = 1, 2 can also be deduced from known results in
the following alternative way. From the characterization of automorphism of complex reflection groups
appearing in [18, §1] one can deduce that, under these hypothesis, any irreducible representation φ of
G(r, p, n) can be realized by a matrix representation φ : G(r, p, n) → GLn(C) satisfying φ(ḡ) = φ(g).
Then a straightforward application of the twisted Schur-Frobenius theory developed in [14] implies that
G(r, p, n) is involutory.

4 Models
From the results of the previous section we have that the dimension of the model of an involutory reflection
groupG, is equal to the number of absolute involutions ofG and also to the number of absolute involutions
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of G∗. In this section we show how we can give the structure of a G-model to the formal vector space
having a basis indexed by the absolute involutions in G∗.

Unless otherwise stated, we let G = G(r, p, n) be an involutory reflection group, i.e. such that
GCD(p, n) = 1, 2. By Theorem 2.3 we have that the character χ of a G-model is given by

χ(g) = |{u ∈ G : uū = g}|.

Once we have an algebraic-combinatorial description of the dimension and of the character of a model for
G(r, p, n) we have two of the main ingredients of the proof of our main result. Before stating it, we need
some more definitions. If σ, τ ∈ Sn with τ2 = 1 we let

Inv(σ) = {{i, j} : (j − i)(σ(j)− σ(i)) < 0} and Pair(τ) = {{i, j} : τ(i) = j 6= i}.

If g ∈ G(r, p, n) and v ∈ I(r, p, n)∗ we let

s(g, v) = #
(
Inv(|g|) ∩ Pair(|v|)

)

a(g, v) = z1(ṽ)− z|g|−1(1)(ṽ) ∈ Zr

where ṽ is any lift of v in G(r, n). Note that since a(g, v) is the difference of two colors of ṽ it is
well-defined. Furthermore, given g, g′ ∈ G(r, n), we let

< g, g′ >=
∑

i

zi(g)zi(g
′) ∈ Zr.

Also, it is easy to see that, given g ∈ G = G(r, p, n), the function of the dual group G∗ = G(r, 1, p, n)

Tg : G(r, 1, p, n)→ Zr
g′ 7→< g, g′ >

is well defined, i.e., taken any two lifts ḡ and ĝ of g′ in G(r, n), we have < g, ḡ >≡< g, ĝ > mod r.
We denote by I(r, p, n)∗ = I(r, 1, p, n) the set of absolute involutions in G∗ and we recall (Lemma 3.2)
that these elements can be either symmetric or antisymmetric.

Theorem 4.1 Let GCD(p, n) = 1, 2 and let

M(r, p, n)∗
def
=

⊕

v∈I(r,p,n)∗

CCv

and % : G(r, p, n)→ GL(M(r, p, n)∗) be defined by

%(g)(Cv)
def
=

{
ζ<g,v>r (−1)s(g,v)C|g|v|g|−1 if v is symmetric
ζ<g,v>r ζ

a(g,v)
r C|g|v|g|−1 if v is antisymmetric.

(1)

Then (M(r, p, n)∗, %) is a G(r, p, n)-model.

The proof of this theorem consists in the explicit and rather involved computation of the character of this
representation, and in verifying that this character agrees with the character described in Theorem 2.3.

If q|r and pq|rn (i.e. the group G(r, p, q, n) is defined) we can consider the submodule M(r, q, p, n) ⊆
M(r, p, n)∗ spanned by all elementsCv such that v ∈ I(r, q, p, n). The next result shows thatM(r, q, p, n)
is the sum of all irreducible representations of G(r, p, n) indexed by elements µ ∈ Fer(r, q, p, n).
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Corollary 4.2 Let GCD(p, n) = 1, 2. Then the pair (M(r, q, p, n), %), where

% : G(r, p, q, n)→ GL(M(r, q, p, n))

is defined as in Theorem 4.1, is a G(r, p, q, n)-model.

We will see in the following sections several important generalizations of these results if the group G is a
classical Weyl group.

5 Splitting split representations
If GCD(p, n) = 2, there is another natural decomposition ofM(r, p, n)∗ into twoG(r, p, n)-submodules.
The submodule Sym(r, p, n)∗ spanned by symmetric elements and the submodule Asym(r, p, n)∗ spanned
by antisymmetric elements. Recall from Proposition 2.1 that an irreducible representation µ of G(r, n)
when restricted to G(r, p, n) either remains irreducible if the stabilizer (Cp)µ is trivial, or splits into two
irreducible representations of G(r, p, n) if (Cp)µ has two elements (note that there are no other possi-
bilities since GCD(p, n) = 2), and that all irreducible representations of G(r, p, n) are obtained in this
way.

Theorem 5.1 Let χ be the character of Sym(r, p, n)∗ and φ be an irreducible representation of G(r, n).
If φ does not split inG(r, p, n) then< χ,χφ >= 1. If φ splits into two irreducible representations φ+, φ−

of G(r, p, n) then
< χ,χφ+ >= 1⇐⇒< χ,χφ− >= 0.

If we restrict our attention to the case of Weyl groups Dn = G(2, 2, n), the proof of this result is based on
the following observation which is a direct consequence of the explicit formulas for the split characters of
the groups Dn (see [21, 19]).

Proposition 5.2 Let g ∈ Sn be of cycle-type 2α. Then one can label the split representations of Dn by
(λ, λ)+ and (λ, λ)− so that

∑

λ`n/2
(χ(λ,λ)+ − χ(λ,λ)−)(g) = 2`(α)χM (α),

where χM is the character of the model for Sn/2.

Consider now the two representations of Dn (Asym(2, 2, n)∗, ρ+) and (Asym(2, 2, n)∗, ρ−), given by

ρ+(g)(Cv)
def
= (−1)<g,v>C|g|v|g|−1 , ρ−(g)(Cv)

def
= (−1)<g,v>(−1)a(g,v)C|g|v|g|−1

(notice that ρ−(g) = %(g)|Asym(2,2,n)∗ ). An explicit computation of the characters of the representations
ρ+ and ρ− and Proposition 5.2 show that

∑

λ`n/2
χ(λ,λ)+(g)−

∑

λ`n/2
χ(λ,λ)−(g) = χρ+(g)− χρ−(g) ∀ g ∈ Dn.

Comparing the dimensions of the representations involved, and recalling the linear independence of char-
acters, we can conclude that

χρ+(g) =
∑

λ`n/2
χ(λ,λ)+(g) and χρ−(g) =

∑

λ`n/2
χ(λ,λ)−(g) :

this means that (Asym(2, 2, n)∗, %) ∼=
⊕

λ`n/2(λ, λ)−, as claimed.
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6 Refinement for Bn

Let us have a closer look at the model (M,%) for G = G(r, n). There is an immediate decomposition of
M into submodules that we are going to describe.

Let g, h ∈ G(r, n). We say that g and h are Sn-conjugate if there exists σ ∈ Sn such that g = σhσ−1.
If c is an Sn-conjugacy class of absolute involutions in G we denote by M(c) the subspace of M spanned
by the elements in c, and it is clear that

M =
⊕

c

M(c) as G-modules,

where the sum runs through all Sn-conjugacy classes of absolute involutions. It is natural to ask if we can
describe the irreducible decomposition of the submodules M(c). This decomposition is known if G is
the symmetric group Sn (see [1, 13]). We will focus on the case of Bn and we show that the irreducible
decompositions of these submodules are well behaved with respect to the RS correspondences, a problem
which was raised in [2]. The meaning of ’well behaved with respect to the RS correspondence’ will be
clarified in Theorem 6.1.

Let v be an involution of Bn. We denote by R(v) the element of Fer(2, n) which is the shape of the
tableaux of the image of v via the Robinson-Schensted correspondence. Namely R(v)

def
= (λ, µ), where

v
RS−→ [P, P ], P ∈ ST (2, n), P of shape (λ, µ).

For notational convenience we letR(c) = ∪v∈cR(v). The main goal of this section is the following result.

Theorem 6.1 Let c be an Sn-conjugacy class of involutions in Bn. Then the following decomposition
holds:

M(c) ∼=
⊕

(λ,µ)∈R(c)

ρλ,µ.

In order to prove Theorem 6.1, first of all we need to parametrize the Sn-conjugacy classes of involutions
explicitly. With this purpose we let

• fix(v)
def
= #{i : i > 0 and v(i) = i}

• fix−(v)
def
= #{i : i > 0 and v(i) = −i}

• pair(v)
def
= #{(i, j) : 0 < i < j, v(i) = j and v(j) = i}

• pair−(v)
def
= #{(i, j) : 0 < i < j, v(i) = −j and v(j) = −i}.

Proposition 6.2 Two involutions v, w in Bn are Sn-conjugate if and only if

fix(v) = fix(w), pair(v) = pair(w),

fix−(v) = fix−(w), pair−(v) = pair−(w).

Furthermore, given an involution v in Bn, let R(v) = (λ, µ). Then λ has fix(v) odd columns and
fix(v) + 2 pair(v) boxes, while µ has fix−(v) odd columns and fix−(v) + 2 pair−(v) boxes.
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We can thus name the Sn-conjugacy classes of the involutions of Bn in this way:

cf0,f1,p0,p1
def
= {v : fix(v) = f0; fix−(v) = f1; pair(v) = p0; pair−(v) = p1}.

The description given for the Sn-conjugacy classes ensures that the subspace M0 of M generated by the
involutions v ∈ Bn with fix(v) = fix−(v) = 0, is a Bn-submodule. The crucial step in the proof of
Theorem 6.1 is the following partial result regarding this submodule (we observe that in this case n is
necessarily even, n = 2m): M0 is the direct sum of all the irreducible representations of B2m indexed by
pairs of diagrams whose columns have an even number of boxes, each of such representations occurring
once. To show this we need the following argument which generalizes an idea appearing in [13].

Lemma 6.3 Let Πm be representations of B2m, m ranging in N. Then the following are equivalent:

a) for every m, Πm is the direct sum of all the irreducible representations of B2m indexed by pairs
of diagrams whose columns have an even number of boxes, each of such representations occurring
once;

b) for every m,

(b0) Π0 is unidimensional;

(b1) the following isomorphism holds:

Πm ↓B2m−1
∼= Πm−1 ↑B2m−1 ; (2)

(b2) the module Πm contains all the irreducible representations of B2m indexed by the pairs of
diagrams (12j , 12(m−j)), j ∈ [0,m], where 1k is the single Ferrers diagram with one column
of length k.

This lemma can be proved constructively by means of a generalization to Bn of the branching rule (see
[12]). The implication b)⇒ a) of the preceding lemma can be applied to the case Πm = M0.

The group B0 is the identity group so property b0) is trivially verified.
Let us denote by N0 the B2m−2-module constructed in the same way. To check property b1), we have

to show that
M0 ↓B2m−1

∼= N0 ↑B2m−1 . (3)

The following argument is used. LetMh
0 be the submodule ofM0 generated by the involutions v satisfying

fix(v) = fix−(v) = 0, pair(v) = h and pair−(v) = m − h. Each Mh
0 , once restricted to B2m−1, splits

into two submodules according to the color of 2m. We denote by Mh,+
0 the submodule of Mh

0 containing
involutions v such that z2m(v) = 0, and similarly for Mh,−

0 . So we have

M0 ↓B2m−1=

m⊕

h=0

(
Mh,+

0

⊕
Mh,−

0

)
.

One checks that Nh
0 ↑B2m−1∼= Mh+1,+

0 ⊕Mh,−
0 and property (b1) follows.

As for property (b2) one can proceed as follows. For any S ⊆ [2m] let CS =
∑
Cv , where the sum

is over all involutions v ∈ B2m with fix(v) = fix−(v) = 0 and such that zi(v) = 0 if and only if
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i ∈ S. Then one can check that the subspace spanned by all CS with |S| = 2h affords the represen-
tation parametrized by the single-rowed diagrams (2h, 2(n − h)). From this it is possible to derive the
representation (12h, 12(m−h)).

Let us now turn to the case of the general submodule M(c). For every k ∈ [0, n], let f0, f1, p0, p1 be
nonnegative integers such that f0 + f1 = k, 2(p0 + p1) = n − k. By means of Proposition 6.2 we have
to show that

M(cf0,f1,p0,p1) ∼=
⊕

(λ,µ)∈R(cf0,f1,p0,p1 )

%λ,µ,

where

R(cf0,f1,p0,p1) = {(λ, µ) such that λ ` f0 + 2p0, µ ` f1 + 2p1,

λ has f0 odd columns, µ has f1 odd columns}.

Generalizing the ideas developed for M0, one shows that

M(cf0,f1,p0,p1) ∼= IndB
n

Bn−(f0+f1)×Bf0+f1
(M0 ⊗ %ιf0 ,ιf1 ),

where M0 is the Bn−(f0+f1)-module constructed as above, and ιk is the single-rowed Ferrers diagram of
length k. This isomorphism can be achieved by standard representation theory, while the rest of the proof
can be carried out by applying the partial result obtained on M0 and a generalization of the Littlewood-
Richardson rule to the case of Bn.

Example 6.4 Let v ∈ B6 given by |v| = [6, 4, 3, 2, 5, 1] and z(v) = [1, 0, 0, 0, 1, 1]. Then f0 = f1 =
p0 = p1 = 1 and the Sn-conjugacy class c of v has 180 elements. Then the B6-module M(c) is given
by the sum of the irreducible representations indexed by (λ, µ) ∈ Fer(2, 6) such that both λ and µ are
partitions of 3 and have exactly one column of odd length. In particular

M(c) ∼= ρ(
,

) ⊕ ρ(
,

) ⊕ ρ(
,

) ⊕ ρ(
,

).

7 Refinement for Dn

We have already seen that in an involutory reflection group G(r, p, n) the submodule generated by the
antisymmetric absolute involutions Asym(r, p, n)∗ is isomorphic to the multiplicity-free sum of all the
irreducible representations ρ(λ,λ)− , while all the other irreducible representations of G(r, p, n) are af-
forded by Sym(r, p, n)∗. We will make use of what was proved for Bn to give a finer decomposition of
Sym(2, 2, n)∗ for the groups Dn.

Let v̄ be a symmetric involution of D∗n = Bn/ ± I and v and −v be its lifts in Bn. We also denote
by c̄ the Sn-conjugacy class of v̄ in D∗n and by c and c′ the Sn-conjugacy classes of v and −v in Bn.
Generalizing the notation used in §6 we let R(v̄) be the element of Fer(2, 1, 2, n) which is the shape of
the tableaux of the image of v̄ via the projective Robinson-Schensted correspondence. Namely R(v̄)

def
=

(λ, µ), where
v
RS−→ [P, P ], P ∈ ST (2, 1, 2, n), P of shape (λ, µ).

We also let
R(c̄) =

⋃

w̄∈c̄
R(w̄).
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One can verify that the restrictions of the Bn-modules M(c) and M(c′) to Dn are isomorphic. If v and
−v are not Sn-conjugate then a direct application of Theorem 6.1 provides

M(c̄) ∼=
⊕

(λ,µ)∈R(c̄)

ρλ,µ.

Note that in this case we obtain unsplit representations only sinceR(v) = (λ, µ) impliesR(−v) = (µ, λ).
If v and −v are Sn-conjugate, using Theorems 6.1 and 5.1 we can conclude that

M(c̄) ∼=
⊕

(λ,µ)∈R(c̄):
λ6=µ

ρλ,µ ⊕
⊕

(λ,λ)∈R(c̄)

ρ(λ,λ)+ .

Example 7.1 Let v ∈ B6 given by |v| = [6, 4, 3, 2, 5, 1] and z(v) = [1, 0, 0, 0, 1, 1]. Then c̄, the Sn-
conjugacy class of v̄, has 90 elements and the decomposition of the Dn-module M(c̄) is given by all
representations indexed by (λ, µ) ∈ Fer(2, 1, 2, 6) where both λ and µ are partitions of 3 and have
exactly one column of odd length, with the additional condition that if λ = µ the split representation to
be considered is (λ, λ)+. Therefore

M(c̄) ∼= ρ(
,

) ⊕ ρ(
,

)+ ⊕ ρ(
,

)+ .
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Résumé. Les nombres de Hurwitz doubles dénombrent les revêtements de la sphère par une surface de genre g
avec ramifications prescrites en 0 et ∞, et dont les autres valeurs critiques sont non dégénérées et fixées. Goulden,
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1 Introduction
Hurwitz theory studies holomorphic maps between Riemann surfaces with specified ramification. Dou-
ble Hurwitz numbers count covers of P1 with assigned ramification profiles over 0 and ∞, and simple
ramification over a fixed branch divisor.

A systematic study of double Hurwitz numbers in Goulden et al. (2005) shows double Hurwitz numbers
are piecewise polynomial in the entries of the partitions defining the special ramification. In Shadrin et al.
(2008), this result was investigated further in genus 0; the regions of polynomiality are determined, and a
recursive wall crossing formula for how the polynomials change is obtained. This paper gives a unified
approach to these results that strengthens them in several ways - the most important being the extension
of the results of Shadrin et al. (2008) to positive genus.

This extended abstract is based on Cavalieri et al. (2009).

2 Statement of Results
The double Hurwitz number Hg(x) (where x = (x1, . . . , xn)) counts the number of maps π : C → P1,
where C is a connected, genus g curve and π has profiles x0 := {xi|xi > 0} (resp. x∞ := {xi|xi < 0})
over 0 (resp. ∞), and simple ramification over r = 2g − 2 + n fixed other points. The preimages of
0 and ∞ are marked. Each cover is counted with weight 1/|Aut(π)|. Since r and g are related by the
Riemann-Hurwitz formula, we sometimes use Hr(x) to denote Hg(x) when it makes formulas more
attractive.

A ramified cover is essentially equivalent information to a monodromy representation; an equivalent
definition of Hurwitz number counts the number of homomorphisms ϕ from the fundamental group Π1

of P1 \ {0,∞, p1, . . . , pr} to the symmetric group Sd such that:

• the image of a loop around 0 has cycle type x0;

• the image of a loop around∞ has cycle type x∞;

• the image of a loop around pi is a transposition;

• the subgroup ϕ(Π1) acts transitively on the set {1, . . . , d}.

This number is divided by |Sd|, to account both for automorphisms and for different monodromy repre-
sentations corresponding to the same cover. One organizes this count in terms of graphs as in (Cavalieri
et al., Lemma 4.1), a fact which is the starting point of our investigation (see Section 3).

LetH be the hyperplaneH = {∑i xi = 0} ⊂ Rn. We think of Hg (equiv. Hr) as a map

Hg : H ∩ Zn → Q : x 7→ Hg(x).

Our first result is a new proof of the following theorem in Goulden et al. (2005):

Theorem 2.1 (GJV) The function Hg(x) is a piecewise polynomial function of degree 4g − 3 + n.

Our techniques allow us to extend this result and answer a question implicit in the work of Goulden,
Jackson and Vakil:

Theorem 2.2 Hg(x) is either even or odd, depending on the parity of the leading degree 4g − 3 + n.
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We then extend the results of Shadrin et al. (2008) to all genera. We determine the regions on which
Hg(x) is polynomial:

Theorem 2.3 The chambers of polynomiality of Hg(x) are bounded by walls corresponding to the reso-
nance hyperplanes WI , given by the equation WI =

{
xI =

∑
i∈I xi = 0

}
, for any I ⊂ {1, . . . , n}.

We then describe wall crossing formulas for general genus. Denote the chambers of the resonance
arrangement as H-chambers;

Definition 2.4 Let C1 and C2 be two H-chambers adjacent along the wall WI , with C1 being the cham-
ber with xI < 0. The Hurwitz number Hr(x) is given by polynomials, say P1(x) and P2(x), on these
two regions. By a wall crossing formula, we mean a formula for the polynomial

WCrI (x) = P2(x)− P1(x).

With the notation WCrI (x) there is no ambiguity about which direction we cross the wall. Since x lies
on the hyperplane

∑n
i=1 xi = 0, each wall has two possible labels: WI and WIc . We choose the name so

that xI is increasing.
We use Hr•(x) to denote Hurwitz numbers with potentially disconnected covers. Our main theorem

is:

Theorem 2.5 (Wall crossing formula)

WCrI (x) =
∑

s+t+u=r

∑

|y|=|z|=|xI |
(−1)t

(
r

s, t, u

)∏
yi

`(y)!

∏
zj

`(z)!
Hs(xI ,y)Ht•(−y, z)Hu(xIc ,−z) (1)

Here y is an ordered tuple of `(y) positive integers with sum |y|, and similarly with z.

The walls WI correspond to values of x where the cover could potentially be disconnected, or where
xi = 0. Crossing this second type of wall corresponds to moving a ramification between 0 and∞. In the
traditional view of double Hurwitz numbers, the number of ramification points over 0 and∞ were fixed
separately, rather than just the total number of ramification points. Theorem 2.5 suggests that it is natural
to treat them as part of the same problem: the wall crossing formula for xi = 0 is identical to the other
wall crossing formulas.

3 Overview of Methods
This paper is an exploration of the consequences of a formula in the author’s previous work, Cavalieri
et al., which expresses double Hurwitz numbers Hg(x) as a sum over certain directed trivalent graphs Γ
with several labelings, which we call monodromy graphs:

Definition 3.1 For fixed g and x = (x1, . . . , xn), a graph Γ is a monodromy graph if:

• Γ is a connected, genus g, directed graph.

• Γ has n 1-valent vertices called leaves; the edges leading to them are ends. All ends are directed
inward, and are labeled by the weights x1, . . . , xn. If xi > 0, we say it is an in-end, otherwise it is
an out-end.
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• All other vertices of Γ are 3-valent, and are called internal vertices. Edges that are not ends are
called internal edges.

• After reversing the orientation of the out-ends, Γ does not have directed loops, sinks or sources. (i).

• The internal vertices are ordered compatibly with the partial ordering induced by the directions of
the edges.

• Every internal edge e of the graph is equipped with a weight w(e) ∈ N. The weights satisfy the
balancing condition at each internal vertex: the sum of all weights of incoming edges equals the
sum of the weights of all outgoing edges.

It follows from (Cavalieri et al., Lemma 4.1) that the Hurwitz number is computed as:

Hg(x) =
∑

Γ

1

|Aut(Γ)|
∏

e

w(e), (2)

the sum over all monodromy graphs Γ for g and x, and the product over the interior edges of Γ.
In genus zero, the edge labelings w(e) are determined uniquely by x. This makes the genus zero case

much easier to treat, and the results for this case were already presented in Cavalieri et al.. In higher genus,
if we fix a directed graph and the labels x for the ends (such data will be called a directed x-graph), there
are many ways to assign edge labels w(e) that satisfy the balancing condition.

The crux of this paper is to understand the space of edge labelings (which we call flows) for each
directed x-graph. The space of flows consists of the lattice points in a certain bounded polytope which we
call an F -chamber. The contribution sΓ(d)(x) of a fixed directed x-graph Γ(d) to Hg(x) equals

sΓ(d)(x) =
1

|Aut(Γ(d))| ·m(C) ·
∑

b∈C∩Λ

∏

e

Le(x, b) (3)

where C is the F -chamber associated to Γ(d), Λ denotes the lattice and m(C) equals the number of ways
to order the vertices of Γ(d) as required for a monodromy graph. Here we have written Le(x, b) for w(e),
as the weight of each edge will be a linear function in x and the coordinates of Λ.

We illustrate this in an example that we continue to develop throughout. Consider the directed x-graph
Γ(x, d, v) on the left hand side in Figure 1. In this example, we use the notation Γ(x, d, v) to indicate
that the graph comes with directed edges (d) and with a vertex ordering (v). In the figure, the vertices
are labelled to indicate the vertex ordering. We want to understand all monodromy graphs that equal
Γ(x, d, v) after forgetting the weights of the internal edges. There are no monodromy graphs that equal
Γ(x, d, v) after forgetting the weights if x1 + x3 ≤ 0, so we assume that x1 + x3 > 0.

We have two degrees of freedom to choose weights for the interior edges such that the balancing con-
dition is satisfied, one for each independent cycle of Γ. Once we label one of the interior edges with the
weight i, and another with j, all other weights are determined by the balancing condition, as shown in the
right hand side of Figure 1. All possible collections of edge labels are indexed by the lattice points in the
polytope defined requiring these labels to be nonnegative:

i ≥ 0, j ≥ 0, j + i− x2 ≥ 0,−x4 − i− j ≥ 0,−x4 − j ≥ 0, j − x2 ≥ 0.

(i) We do not consider leaves to be sinks or sources.
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Fig. 1: A directed x-graph and the weights of internal edges determined by the balancing condition

Fig. 2: The F -chamber corresponding to Γ(x, d, v)

Figure 2 shows all hyperplanes w(e) = 0 with a normal vector indicating on which side of the hyper-
plane the inequality w(e) > 0 is satisfied; this defines the F -chamber corresponding to Γ(x, d, v).

The contribution of Γ(x, d, v) to Hg(x) is given by

(x1 + x3) ·
−x4−x2∑

i=0

−i−x4∑

j=x2

i · j · (j + i− x2) · (−x4 − i− j) · (−x4 − j) · (j − x2)

where the sum goes over all lattice points (i, j) in the polygon above (Γ(x, d, v) has no automorphisms).
Theorem 2.1 follows from Equation 3 and the general theory of lattice points in polytopes. As we

change x, the facets of F -chamber C translate (their normal directions remain constant). Since for all
integral x, the vertices of the F -chamber C are integers, our sums are piecewise polynomial, and the walls
occur when the topology of C changes.

In the general setup of the theory the resulting polynomials need not be odd or even, so Theorem 2.2
is more subtle: it is related to Ehrhart reciprocity, and depends essentially on the fact that the polynomial
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Fig. 3: Labels w′(e) for the undirected graph

we are summing over the polytope vanishes on the boundary of the polytope.
To prove Theorems 2.3 and 2.5 requires understanding for what values of x the F -chambers change

topology, and how they change topology, respectively. To answer these questions, it is helpful to notice
that the F -chambers for distinct x-graphs with the same underlying undirected graph Γ fit together as the
set BCΓ(x) of bounded chambers of a natural hyperplane arrangement AΓ(x) associated to Γ and x.

Returning to our example, we can retain the orientation of the edges in Figure 1 as a reference orien-
tation, and the labels w′(e) for the internal edges obtained from the balancing condition as in Figure 3.

We switch to w′(e) instead of w(e) because we do no longer restrict the edge labels to be positive;
instead, any possible value of i and j are allowed. For each edge of Γ, the set of i and j where w′(e) = 0
will give a hyperplane, and together these form the hyperplane arrangement AΓ(x). Inside a chamber of
AΓ(x), a sign for w′(e) is picked for every edge, and thus an orientation for every edge; the chamber will
be the F -chamber for that directed x-graph. Figure 4 shows the hyperplane arrangement AΓ(x), with
each F -chamber labeled by the corresponding directed graphs with the induced orientations. Since the
orientation of the ends and the edge with label x1 + x3 does not depend on i and j, we do not include
these edges in the pictures.

Only the bounded F -chambers (shaded) correspond to directed x-graphs that contribute to the Hurwitz
number. The unbounded F -chambers correspond to graphs with a directed loop, and so the vertices have
no compatible total orderings and the multiplicity of these chambers are zero.

For different chambers, the product
∏
w(e) differs at most by the sign, since the edge weights w(e)

equal plus or minus the edge label w′(e), depending on the side of the hyperplane w′(e) = 0 the F -
chamber is situated. Thus we can define a sign sign(C) for each F -chamber C that is determined by the
number of edges that are reversed when compared to the reference orientation.

Summing all the contributions from directed x-graphs Γ(d) with the same underlying undirected x-
graph Γ, we get the contribution SΓ of the undirected x-graph Γ to the Hurwitz number as

SΓ(x) =
1

|Aut(Γ)|
∑

C
sign(C)m(C)

∑

b∈C∩Λ

∏
Le(x, b),

where the sum goes over all bounded chambers C of AΓ(x).
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Fig. 4: The parameter space for monodromy graphs corresponding to a given x-graph

Remark 3.2 In Equation (2) Γ is a monodromy graph, while here Γ is an x-graph, and so the meaning of
Aut(Γ) is different. An automorphism of a monodromy graph must fix all vertices, while an automorphism
of an x-graph only needs to fix the ends. These extra automorphisms account for the fact that the same
monodromy graph can occur in multiple ways from a single x-graph.

Even for a generic choice of x the arrangementAΓ(x) is not simple - that is, there are hyperplanes that
do not intersect transversally. This follows from the balancing condition: if two edge labels incident to a
vertex are both zero, then the third edge label must be as well. As a consequence, for each vertex we have
three hyperplanes intersecting in codimension two. But for generic x, these are the only nontransverse
intersections. When we pass through a value of x with more nontransverse intersections than expected,
the topology of the arrangement AΓ(x) changes, and so do the Hurwitz polynomials. We prove Theorem
2.3 by showing that if e1, . . . , ek are k edges whose hyperplanes intersect in codimension k − 1 at x,
but generically intersect transversally, then these edges disconnect Γ, and each component will contain at
least one end. Flows in the intersection of the hyperplanes correspond to flows on the graph where the
edges are cut, and so if I is the set of ends on one component, we see that x must have been a point on
the wall WI .

Our main result is the wall crossing formula (Theorem 2.5). The idea of the proof is simple: matching
the contributions to both sides by every directed x-graph. In genus 0, realizing this strategy is straightfor-
ward because there is a natural geometric bijection (Cut) between graphs contributing to the wall crossing
(LHS) and pairs of graphs contributing to the product of Hurwitz numbers on the RHS (the middle term
can easily be seen to equal 1 in genus 0). In higher genus Cut is no longer a function, and a delicate
process of inclusion/exclusion is required, leading us to foray into algebraic combinatorics. While to
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determine the walls it is enough to know where topology of AΓ(x) changes, to derive the wall crossing
formula we must understand how the topology changes; i.e. if x1 and x2 lie in two H-chambers C1 and
C2, adjacent along the wall WI , how does AΓ(x1) differ from AΓ(x2)? This understanding is essential
for relating the difference of the contributions SΓ(x1)− SΓ(x2) to the resp. Hurwitz numbers.

The information how AΓ(x1) differs from AΓ(x2) is conveniently encoded in a linear map

∇12 : R[BCΓ(x1)]→ R[BCΓ(x2)]

called the Gauss-Manin connection. The basic picture is that as x passes through a wall, certain F -
chambers vanish, and others appear. For any F -chamber, the change in shape as x crosses a wall can
be described in terms of adding or subtracting these appearing F -chambers; ∇12 is the map that sends a
given F -chamber to this signed sum of F -chambers. It turns out to be easier to declare F -chambers to
form an orthonormal basis of R[BCΓ(x1)], and study the adjoint ∇∗12 which records which F -chambers
of AΓ(x1) map to a given one in AΓ(x2).

The key point is that integrating a polynomial f over an F -chamber C(x) gives only a piecewise poly-
nomial function; but if we replace C(x) by∇12C(x) when we cross a wall, then we get a globally defined
polynomial. Results of Varchenko (1987) show that if we replace integration by summing over lattice
points, the same result is true if we deal properly with lattice points in the boundary of the polytope. Since
our polynomials vanish there, we don’t have to worry about this, and so ∇12 encodes essentially all the
information for Hurwitz wall crossing.

Returning once more to our running example, in Figure 4 showing AΓ(x), we implicitly assumed that
0 > x2 + x4. The topology of the hyperplane arrangement changes if 0 = x2 + x4. Fix the wall W{2,4}
and let C1 and C2 be two adjacent H-chambers. Assume that in C1, we have 0 < x2 + x4, and in C2,
we have x2 + x4 < 0. Figure 5 shows the hyperplane arrangements AΓ(x1) and AΓ(x2) for two points
x1 ∈ C1 and x2 ∈ C2. The hyperplanes appear with their defining equations. They are drawn with
different line styles in order to emphasize how they move. The bounded F -chambers are labelled with
letters. Since the edge with weight x1 + x3 gives the inequality x1 + x3 > 0 on the right which is not
satisfied on the left, every F -chamber on the right is an appearing chamber, and every F -chamber on the
left is vanishing. This can also be seen from the corresponding graphs: since the top most interior edge
with weight x1 + x3 always points down on the right, there is a flow from top to bottom. Figure 6 shows
the directed x-graphs corresponding to some of the F -chambers.

To understand the Gauss-Manin connection for this example, we pick an appearing F -chamber on the
right, e.g. A, and ask ourselves what F -chambers on the left contain it in their support when carried over
the wall, i.e. we determine∇∗Γ,12(A). To do this, we take chambers on the left, e.g.E, and carry them over,
i.e. we first determine ∇Γ,12(E). When we carry E over, we get B and keep the orientation (we switch
the summation index twice). In the same way, we get ∇Γ,12(F ) = A. If we interpret the inequalities
of G on the right, we have to switch one summation index, and then we end up with A + B + C.
Thus ∇Γ,12(G) = −A − B − C. Finally, H becomes D + B + C. Thus, ∇∗Γ,12(A) = F − G,
∇∗Γ,12(B) = E −G+H ,∇∗Γ,12(C) = −G+H and ∇∗Γ,12(D) = H .

Our key result is that we can express the linear map∇∗12 combinatorially. We define a simple I-cut of a
directed x-graph Γ to be a minimal set of edges E so that E disconnects Γ into exactly two components,
one containing the ends in I , and the other containing all the ends in Ic. An I-cut in general is a union
of simple I-cuts. This could be the empty union, which we call the empty cut. Note that a general I-cut
might be expressible as a union of simple I-cuts in many different ways.
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Fig. 5: The hyperplane arrangements AΓ(x1) and AΓ(x2) for two points x1 and x2 on opposite sides of a wall.

Fig. 6: The directed x-graphs corresponding to the F -chambers B, E, F , G and H of figure 5.

The set of simple I-cuts forms a poset under inclusion, which we denote CΓ(I). As an example, we
show the poset of {1, 3}-cuts of the graph ΓB from above as an example (see Figure 7).

In this case, the CΓ(I) is simply the boolean lattice generated by the simple cuts, although this is not
true in general. A key lemma is in our paper is the following:

Lemma 3.3 CΓ(I) is isomorphic to the face lattice of a certain cone, defined in terms of a different
hyperplane arrangement associated to Γ.

The main importance of Lemma 3.3 is that it shows CΓ(I) is Eulerian, and all Möbius inversion type
questions can be translated into questions about Euler characteristics of subsets of the cone. A more
immediate consequence is that CΓ(I) is ranked; the empty cut has rank zero.

The key step in our proof of the Main Theorem 2.5 is the following theorem, which expresses ∇∗12 in
terms of the poset of cuts CΓ(I).

Theorem 3.4 Let A and B be F -chambers in BCΓ(x2) and BCΓ(x1), respectively. Let ΓA and ΓB
denote the corresponding orientations of the edges of Γ, and let S be the subset of edges of Γ where these
orientations differ. Then

〈∇∗12A,B〉 = (−1)|S|
∑

S⊂C∈CΓA
(I)

(−1)rk(C).

Here the notation means we sum only over the I-cuts of ΓA that contain S.
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Fig. 7: The directed x-graph ΓB and its poset of {1, 3}-cuts

Theorem 3.4 does not depend on the graph being trivalent, and could be of independent interest.
The proof of Theorem 3.4 is the technical heart of the paper, and rests upon the following observations

from Varchenko (1987): cones are preserved by the Gauss-Manin connection, and every chamber can be
written as a signed sum of cones. Thus, it suffices to show∇∗12 preserves cones. We are able to do this by
using the understanding of CΓ(I) afforded by Lemma 3.3.

We now illustrate the statement of Theorem 3.4 in the case of our example. Consider the appearing
chamber B on the right of the wall. We have seen that ∇∗Γ,12(B) = E − G + H , and so we understand
the left hand side of Theorem 3.4. We have also determined the poset of I-cuts of the directed graph ΓB
(Figure 7), and so we are able to compute the right hand side as well.

First, let us verify that Theorem 3.4 gives 〈∇∗12B,E〉 = 1. We see that to get ΓE from ΓB , we must
change the orientation of the edges a, b, c, d, e and f , and so S = {a, b, c, d, e, f}. . There is only one
cut that contains S, the maximal cut. Its rank is four (see Figure 7). Since |S| = 6, Theorem 3.4 gives
〈∇∗12B,E〉 = (−1)6 · (−1)4 = 1.

Similarly, we will verify that Theorem 3.4 gives 〈∇∗12B,G〉 = −1. In this case, the set S of edges
where the orientations of ΓG and ΓB differ is {a, b, c, e}. There are three cuts that cut these edges,
namely abcde and abcef , both of rank three, and abcdef of rank four. Since |S| = 4, Theorem 3.4 gives
〈∇∗12B,G〉 = (−1)4 · ((−1)3 + (−1)3 + (−1)4) = −1.

Additionally, chambers that do not appear in∇∗12B should appear with coefficient zero in the right hand
side of Theorem 3.4. Let us check that we get 〈∇∗12B,F 〉 = 0. To get ΓF from ΓB , the set S of edges we
must reverse is {a, b, c, e, f}. The cuts that contain S are abcef of rank three and abcdef of rank four,
and so we get (−1)5 · ((−1)3 + (−1)4) = 0.

A more complicated wall crossing formula than Theorem 2.5 follows rather quickly from Theorem 3.4.
For a cut C ∈ CΓ(I), removing the edges in C from Γ will cut Γ into multiple components graphs,

each of which can can be interpreted as a graph appearing for a simpler Hurwitz number.
As we sum over all Γ, we will sometimes see essentially the same cut C appearing for different Γ -

that is, the components of Γ \C will be different graphs, but will contribute to the same Hurwitz problem
(have the same number of vertices and in and out going ends), and glue together in the same manner. This
is the situation illustrated in Figure 8. As a result, we obtain:
Theorem 3.5 (Heavy Formula)

WCrI (x) =

∞∑

N=0

∑

s+(
∑N

j=1 tj)+u=r

∑

|λ|=|η|=d

∑

data in ?

(−1)N
(

r

s, t1, . . . , tN , u

) ∏
(µ(i,j))k∏
`(µ(i,j)j)!
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Ht1
(
µ(0,1), µ(1,2) + µ(1,3)

)

Hs(xI , λ)
xI,0 xI,∞

xIc,∞xIc,0 Hu(xIc ,−η)

µ(1,3)

µ(3,4) = η

µ(0,2)

µ(2,3)

µ(0,1) = λ − µ(0,2)

µ(1,2)

Ht2
(
µ(0,2) + µ(1,2), µ(2,3)

)

Ht3
(
µ(1,3) + µ(2,3), µ(3,4)

)

Fig. 8: The data denoted by ? in the heavy formula, Theorem 3.5

Hs(xI , λ)




N∏

j=1

Htj (?)


Hu(xIc ,−η)

The data denoted by ? is illustrated in Figure 8: it consists in disconnecting a graph with an I-cut in
all possible ways with the right numerical invariants. The µji denote the partitions of weights of the edges
connecting the i-th to the j-th connected component, we use (µji )k to denote its parts.

The derivation of Theorem 3.5 from Theorem 2.5 is essentially inclusion-exclusion, and an application
of Lemma 3.3.

4 Motivation and Connections to other work
Although our methods are essentially combinatorial, much of the motivation of Goulden et al. (2005),
and hence our work, comes from algebraic geometry, in particular the ELSV formula Ekedahl et al.
(2001). There, it is shown that similar polynomiality occurs for single Hurwitz numbers (where there is no
ramification over∞), and that the coefficients of these polynomials are the intersection of certain classes
in the moduli space of curvesMg,n. This connection has been vital in understanding these intersections.
In Goulden et al. (2005), it is suggested that a similar relationship should hold for one part double Hurwitz,
where the map is totally ramified over zero - i.e., where x has only one positive part. They conjecture
that the moduli space of curves should be replaced by some yet to be determined universal Picard space,
which would give us a similar understanding of the intersection theory there. One part double Hurwitz
numbers are simply one chamber of the Hurwitz problem, however, and it would be wonderful to extend
the conjecture of Goulden et al. (2005) to give a formula for double Hurwitz numbers on all chambers,
with the wall crossing phenomenon explained in terms of changes in the moduli space. Our work could
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perhaps be of use in investigating such a conjecture.
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Abstract. Let P be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice
points in the dilations P (n) = nP is a quasi-polynomial in n. We generalize this theorem by allowing the vertices
of P (n) to be arbitrary rational functions in n. In this case we prove that the number of lattice points in P (n) is
a quasi-polynomial for n sufficiently large. Our work was motivated by a conjecture of Ehrhart on the number of
solutions to parametrized linear Diophantine equations whose coefficients are polynomials in n, and we explain how
these two problems are related.

Résumé. Soit P un polytope avec sommets rationelles. Un théorème classique des Ehrhart déclare que le nombre de
points du réseau dans les dilatations P (n) = nP est un quasi-polynôme en n. Nous généralisons ce théorème en
permettant à des sommets de P (n) comme arbitraire fonctions rationnelles en n. Dans ce cas, nous prouvons que
le nombre de points du réseau en P (n) est une quasi-polynôme pour n assez grand. Notre travail a été motivée par
une conjecture d’Ehrhart sur le nombre de solutions à linéaire paramétrée Diophantine équations dont les coefficients
sont des polyômes en n, et nous expliquer comment ces deux problèmes sont liés.

Keywords: Diophantine equations, Ehrhart polynomials, lattice points, quasi-polynomials

1 Introduction.
In this article, we relate two problems, one from classical number theory, and one from lattice point
enumeration in convex bodies. Motivated by a conjecture of Ehrhart and a result of Xu, we study linear
systems of Diophantine equations with a single parameter. To be more precise, we suppose that the
coefficients of our system are given by polynomial functions in a variable n, and also that the number of
solutions f(n) in positive integers for any given value of n is finite. We are interested in the behavior
of the function f(n), and in particular, we prove that f(n) is eventually a quasi polynomial, i.e., there
exists some period s and polynomials fi(t) for i = 0, . . . , s − 1 such that for t � 0, the number of
solutions for n ≡ i (mod s) is given by fi(n). The other side of our problem can be stated in a similar
fashion: suppose that P (n) is a convex polytope whose vertices are given by rational functions in n. Then
the number of integer points inside of P (n), as a function of n, enjoys the same properties as that of f as
above. We now describe in more detail some examples and the statements of our results.
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1.1 Diophantine equations.
As a warmup to our result, we begin with two examples. The first is a result of Popoviciu. Let a and b be
relatively prime positive integers. We wish to find a formula for the number of positive integer solutions
(x, y) to the equation ax + by = n. For a real number x, let bxc denote the greatest integer less than or
equal to x, and define {x} = x− bxc to be the fractional part of x. Then the number of such solutions is
given by the formula

n

ab
−
{
na−1

b

}
−
{
nb−1

a

}
+ 1,

where a−1 and b−1 satisfy aa−1 ≡ 1 (mod b) and bb−1 ≡ 1 (mod a). See [BR, Chapter 1] for a proof.
In particular, this function is a quasi-polynomial in n.

For the second example which is a generalization of the first example, consider the number of solutions
(x, y, z) ∈ Z3

≥0 to the matrix equation

(
x1 x2 x3
y1 y2 y3

)

x
y
z


 =

(
m1

m2

)
(1)

where the xi and yi are fixed positive integers and xi+1yi < xiyi+1 for i = 1, 2. Write Yij = xiyj−xjyi.
We assume that gcd(Y12, Y13, Y23) = 1, so that there exist integers (not unique) fij , gij such that

gcd(f12Y13 + g12Y23, Y12) = 1, gcd(f13Y12 + g13Y23, Y13) = 1, gcd(f23Y13 + g23Y12, Y23) = 1.

Now define two regions Ωi = {(x, y) | yixi
< y

x <
yi+1

xi+1
} for i = 1, 2. Then if m = (m1,m2) ∈ Z2 is in

the positive span of the columns of the matrix in (1), there exist Popoviciu-like formulas for the number of
solutions of (1) which depend only on whether m ∈ Ω1 or m ∈ Ω2, and the numbers Yij , fij , gij , xi, yi.
See [Xu, Theorem 4.3] for the precise statement.

In particular, one can replace the xi, yi, and mi by polynomials in n in such a way that for all values of
n, the condition gcd(Y12, Y13, Y23) = 1 holds. For a concrete example, consider the system

(
2n+ 1 3n+ 1 n2

2 3 n+ 1

)

x
y
z


 =

(
3n3 + 1

3n2 + n− 1

)
.

Then for n� 0, we have that
3

3n+ 1
<

3n2 + n− 1

3n3 + 1
<
n+ 1

n2
,

so that for these values of n, there exists a quasi-polynomial that counts the number of solutions (x, y, z).
Given these examples, we are ready to state our general theorem. We denote by QP�0 the set of

functions f : Z→ Z which are eventually quasi-polynomial.

Theorem 1.1 Let A(n) be an m× k matrix, and b(n) be a column vector of length m, both with entries
in Z[n]. If f(n) denotes the number of nonnegative integer vectors x satisfying A(n)x = b(n) (assuming
that these values are finite), then f ∈ QP�0.

This theorem generalizes the conjecture [Sta, Exercise 4.12]. See [Ehr, p. 139] for a conjectural
multivariable analogue.
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1.2 Lattice point enumeration.
We first recall a classical theorem due to Pick. Let P ⊂ R2 be a convex polygon with integral vertices.
If A(P ), I(P ), and B(P ) denote the area of P , the number of integer points in the interior of P , and the
number of integer points on the boundary of P , respectively, then one has the equation

A(P ) = I(P ) +
1

2
B(P )− 1.

Now let us examine what happens with dilates of P : define nP = {nx | x ∈ P}. Then of course
A(nP ) = A(P )n2 and B(nP ) = nB(P ) whenever n is a positive integer, so we can write

A(P )n2 = I(nP ) +
1

2
B(P )n− 1,

or equivalently,

#(nP ∩ Z2) = I(nP ) +B(nP ) = A(P )n2 +
1

2
B(P )n+ 1,

which is a polynomial in n. The following theorem of Ehrhart says that this is always the case independent
of the dimension, and we can even relax the integral vertex condition to rational vertices:

Theorem 1.2 (Ehrhart) Let P ⊂ Rd be a polytope with rational vertices. Then the function LP (n) =
#(nP ∩ Zd) is a quasi-polynomial of degree dimP . Furthermore, if D is an integer such that DP has
integral vertices, then D is a period of LP (n). In particular, if P has integral vertices, then LP (n) is a
polynomial.

Proof: See [Sta, Theorem 4.6.25] or [BR, Theorem 3.23]. 2

The function LP (t) is called the Ehrhart quasi-polynomial of P . One can see this as saying that
if the vertices of P are vi = (vi1, . . . , vid), then the vertices of nP are given by the linear functions
vi(n) = (vi1n, . . . , vidn). We generalize this as

Theorem 1.3 Given polynomials vij(x), wij(x) ∈ Z[x] for 0 ≤ i ≤ s and 1 ≤ j ≤ d, let n be a positive
integer such that wij(n) 6= 0 for all i, j. This is satisfied by n sufficiently large, so we can define a
rational polytope P (n) = conv(p0(n), p1(n), . . . , ps(n)) ∈ Rd, where pi(n) = ( vi1(n)wi1(n)

, . . . , vid(n)wid(n)
).

Then #(P (n) ∩ Zd) ∈ QP�0.

We call the function #(P (n) ∩ Zd) a generalized Ehrhart polynomial.

2 Equivalence of the two problems
As we shall see, the two problems of the Diophantine equations and lattice point enumeration are closely
intertwined. In this section, we want to show that Theorem 1.1 is equivalent to Theorem 1.3. Before this,
let us see the equivalence of Theorem 1.3 with the following result. For notation, if x and y are vectors,
then x ≥ y if xi ≥ yi for all i.

Theorem 2.1 For n� 0, define a rational polytope P (n) = {x ∈ Rd | V (n)x ≥ c(n)}, where V (x) is
an r × d matrix, and c(x) is an r × 1 column vector, both with entries in Z[x]. Then #(P (n) ∩ Zd) ∈
QP�0.
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Notice that the difference of Theorem 1.3 and Theorem 2.1 is that one defines a polytope by its vertices
and the other by hyperplanes. So we will show their equivalence by presenting a generalized version of
the algorithm connecting “vertex description” and “hyperplane description” of a polytope.

The connection is based on the fact that we can compare two rational functions f(n) and g(n) when n
is sufficiently large. For example, if f(n) = n2− 4n+ 1 and g(n) = 5n, then f(n) > g(n) for all n > 9,
we denote this by f(n) >even g(n) (“even” being shorthand for “eventually”). Therefore, given a point
and a hyperplane, we can test their relative position. To be precise, let p(n) = (r1(n), . . . , rk(n)) be a
point where the ri(n) are rational functions and let F (x, n) = a1(n)x1 + a2(n)x2 + · · ·+ ak(n)xk = 0
be a hyperplane where all the ai(n) are polynomials of n. Then exactly one of the following will be true:

F (p, n) =even 0; F (p, n) >even 0; F (p, n) <even 0.

Given this, we can make the following definition. We say that two points p(n) and q(n) lie (resp., weakly
lie) on the same side of F (p, n) if F (p, n)F (q, n) >even 0 (resp., F (p, n)F (q, n) ≥even 0).

2.1 Equivalence of Theorem 1.3 and Theorem 2.1.
Going from the “vertex description” to the “hyperplane description”:

Given all vertices of a polytope P (n), whose coordinates are all rational functions of n, we want to get
its “hyperplane description” for n� 0. Let F (x, n) be a hyperplane defined by a subset of vertices. If all
vertices lie weakly on one side of F (x, n), we will keep it together with ≥ 0, or ≤ 0 or = 0 indicating the
relative position of this hyperplane and the polytope. We can get all the hyperplanes defining the polytope
by this procedure.

Going from the “hyperplane description” to the “vertex description”:
Let P (n) = {x ∈ Rd | V (n)x ≥ c(n)} be a polytope, where V (x) is an r × d matrix, and c(x) is

an r × 1 column vector, both with entries in Z[x]. Without loss of generality, we may assume that P (n)
is full-dimensional. We want to find its vertex description. Let f1(n), . . . , fr(n) be the linear functionals
defined by the rows of V (n). So we can rewrite P (n) as

P (n) = {x ∈ Rd | 〈fi(n), x〉 ≥ ci(n) for all i}.

The vertices of P (n) can be obtained as follows. For every d-subset I ⊆ {1, . . . ,m}, if the equations
{〈fi(n), x〉 = ci(n) | i ∈ I} are linearly independent for n � 0, and their intersection is nonempty,
then it consists of a single point, which we denote by vI(n). If 〈fj(n), vI(n)〉 ≥ cj(n) for all j, then
vI(n) ∈ Q(n)d is a vertex of P (n), and all vertices are obtained in this way. We claim that the subsets
I for which vI(n) is a vertex remains constant if we take n sufficiently large. First, the notion of being
linearly independent equations can be tested by showing that at least one of the d × d minors of the
rows of V (n) indexed by I does not vanish. Since these minors are all polynomial functions, they can
only have finitely many roots unless they are identically zero. Hence taking n � 0, we can assume that
{fi(n) | i ∈ I} is either always linearly dependent or always linearly independent. Similarly, the sign of
〈fj(n), vI(n)〉 is determined by the sign of a polynomial, and hence is constant for n� 0.

2.2 Equivalence of Theorem 1.1 and Theorem 2.1.
We can easily transform an inequality to an equality by introducing some slack variables and we can
also represent an equality f(n, x) = 0 by two inequalities f(n, x) ≥ 0 and −f(n, x) ≥ 0. So the



Generalized Ehrhart polynomials 123

main difference between the two theorems is that Theorem 1.1 is counting nonnegative solutions while
Theorem 2.1 is counting all integral solutions. But we can deal with this by adding constraints on each
variable.

A more interesting connection between Theorem 1.1 and Theorem 2.1 is worth mentioning here. First
consider any fixed integer n. Then the entries of A(n) and b(n) in the linear Diophantine equations
A(n)x = b(n) of Theorem 1.1 all become integers. For an integer matrix, we can calculate its Smith
normal form. Similarly, we can use a generalized Smith normal form for matrices over QP�0 to get a
transformation from Theorem 1.1 to Theorem 2.1.

Theorem 2.2 For any matrix M ∈ (QP�0)k×s, define a matrix function D : Z → Zk×s such that
D(n) is the Smith normal form of M(n). Then D ∈ (QP�0)k×s and there exists U ∈ (QP�0)k×k,
V ∈ (QP�0)s×s such that U(n), V (n) are unimodular (determinant is +1 or −1) for n � 0 and
UMV = D. We call this matrix function D the generalized Smith normal form of M .

Then given A(n) and b(n), by Theorem 2.2, we can put A(n) into generalized Smith normal form:
D(n) = U(n)A(n)V (n) for some matrix

D(n) = (diag(d1(n), . . . , dr(n), 0, . . . , 0)|0)

with nonzero entries only on its main diagonal, and unimodular matrices U(n) and V (n). Then the
equation A(n)x = b(n) can be rewritten as D(n)V (n)−1x = U(n)b(n). Set y = V (n)−1x and
b′(n) = U(n)b(n). By the form of D(n), we have a solution y if and only if di(n) divides b′i(n)
for i = 1, . . . , r, and for any given solution, the values yr+1, . . . , yk can be arbitrary. However, since
V (n)y = x, we require that V (n)y ≥ 0, and any such y gives a nonnegative solution x to the original
problem. Simplifying V (n)y ≥ 0, where V (n) = (v1(n), . . . , vk(n)), we get V ′(n)X ≥ c(n), where
V ′(n) = (vr+1(n), . . . , vk(n)), X = (yr+1, . . . , yk) and c(n) = −(v1(n)y1 + · · ·+ vr(n)yr). Although
V ′(n) and c(n) has entries in QP�0, we can assume that they are polynomials by dealing with each
constituent of the quasi-polynomials separately. So we reduce Theorem 1.1 to Theorem 2.1.

The proof of Theorem 2.2 is based on a theory of generalized division and GCD over the ring Z[x],
which mainly says that for f(x), g(x) ∈ Z[x], the functions

⌊
f(n)
g(n)

⌋
,
{
f(n)
g(n)

}
, and gcd(f(n), g(n)) lie

in the ring QP�0. Once interesting consequence of these results is that every finitely generated ideal
in QP�0 is principal, despite the fact that QP�0 is not Noetherian. We developed this theory in order
to appoach Theorem 1.1 at first, but subsequently have found a proof that circumvents its use. Further
development of these results will appear elsewhere.

3 Lemmas and examples
By the equivalence discussed in Section 2, we only need to prove Theorem 1.1. We give an outline of the
proof. The key idea is an elementary “writing in base n” trick, whose use allows us to reduce equations
with polynomial coefficients to linear functions. The idea of the following “writing in base n” trick is the
following: given a linear Diophantine equation

a1(n)x1 + a2(n)x2 + · · ·+ ak(n)xk = m(n)

with polynomial coefficients ai(n) and m(n), fix an integer n so that the coefficients all become integers.
Now consider a solution (x1, x2, . . . , xk) with xi ∈ Z≥0. Substituting the values of (x1, x2, . . . , xk) into
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the equation, both sides become integers. Then we use the fact that any integer has a unique representation
in base n (n is a fixed number), and compare the coefficient of each power of n in both sides of the
equation.

One can show (Lemma 3.1) that the form of this representation in base n is uniform for both sides
when n is sufficiently large. Moreover, the coefficient of each power of n in both sides of the equation
are all linear functions of n. Using Lemma 3.2, this uniform expression can be reduced to a system of
inequalities of the form f(x) ≥ An+B where A,B are integers and f(x) is a linear form with constant
coefficients. Then by Lemma 3.4, we can reduce these equations with linear coefficients to a case where
we can apply Ehrhart’s theorem (Theorem 1.2) to show that the number of solutions are quasi-polynomials
of n. This completes the proof of Theorem 1.1.

We finish this section with the statements of the above mentioned lemmas and include examples.

Lemma 3.1 Given p(x) ∈ Z[x] with p(n) > 0 for n � 0 (i.e., p(x) has positive leading coefficient),
there is a unique representation of p(n) in base n:

p(n) = cd(n)nd + · · ·+ c1(n)n+ c0(n),

where ci(n) is a linear function of n such that for n � 0, 0 ≤ ci(n) ≤ n − 1 for i = 0, 1, . . . , d and
0 < cd(n) ≤ n− 1. We denote d = degn(p(n)).

Note that degn(p(n)) may not be equal to deg(p(n)). For example, n2 − n + 3 is represented as
c1(n)n+ c0(n) with d = 1, c1(n) = n− 1, and c0(n) = 3.

Now fix a positive integer n. We have a unique expression of any integer x written in base n, if we
know an upper bound d of the highest power, as x = xdn

d+xd−1nd−1+ · · ·+x1n+x0 with 0 ≤ xi < n.
This gives us a bijection between the set {(x1, . . . , xk) ∈ Zk≥0} and the set

{0 ≤ (xij) 1≤i≤k
0≤j≤d−di

< n, xij ∈ Z}.

Then by a direct “base n” comparison starting from the lowest power to the highest power, we have the
following lemma.

Lemma 3.2 For n� 0, there is a one to one correspondence between the following two sets:

S1 = {(x1, . . . , xk) ∈ (Z≥0)k | a1(n)x1 + a2(n)x2 + · · ·+ ak(n)xk = m(n)}

where ai(n) =
∑di
`=0 ai`n

` (as a usual polynomial) with aidi > 0, i = 1, . . . , k, and m(n) =
∑d
`=0 b`n

`

(represented in base n as in Lemma 3.1), with bd > 0 and d ≥ max1≤i≤k{di}.

S2 = {0 ≤ (xij) 1≤i≤k
0≤j≤d−di

< n, xij ∈ Z | all constraints on x = (xij) are of the form An+B ≤ f(x)}

where A,B ∈ Z and f(x) is a linear form of x with constant coefficients.

For a lower bound on n in the above lemma, the sum of all absolute value of coefficients 1+
∑k
i=1

∑di
`=0 |ai`|+∑d

`=0 |b`| is sufficient.
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Example 3.3 We give an example of Lemma 3.2. Consider nonnegative integer solutions for

2x1 + (n+ 1)x2 + n2x3 = 4n2 + 3n− 5.

For any n > 5, RHS = 4n2 + 2n + (n − 5) is the expression in base n. Now consider the left hand
side. Writing x1, x2, x3 in base n, let x1 = x12n

2 + x11n + x10, x2 = x21n + x20 and x3 = x30 with
0 ≤ xij < n. Then we have

LHS = (2x12 + x21 + x30)n2 + (2x11 + x21 + x20)n+ (2x10 + x20).

Now we can write the left hand side in base n with extra constraints on (xij)’s.
We start with comparing the coefficient of n0 in both sides. We have the following three cases:

A0
0 = {0 ≤ 2x10 + x20 < n, 2x10 + x20 = n− 5},

A0
1 = {n ≤ 2x10 + x20 < 2n, 2x10 + x20 = (n− 5) + n},

A0
2 = {2n ≤ 2x10 + x20 < 3n, 2x10 + x20 = (n− 5) + 2n}.

We next consider the n1 term. If x satisfies A0
i for n0, i ∈ I0 = {0, 1, 2}, then the equation is reduced to

(2x12 + x21 + x30)n2 + (2x11 + x21 + x20 + i)n = 4n2 + 2n.

Now compare the n1 terms. We have five cases for each i ∈ I0 = {0, 1, 2}.

A1
ij = {jn ≤ 2x11 + x21 + x20 + i < (j + 1)n, 2x11 + x21 + x20 + i = jn+ 2},

where j ∈ I1 = {0, 1, 2, 3, 4}.
Last, we compare the n2 terms. Note that since we assume n � 0, the n0 term won’t affect the n2

term, so the computation of n2 term only depends on the term n1. If x satisfies the jth condition for n1,
the equation then becomes

(2x12 + x21 + x30 + j)n2 = 4n2.

So for each j ∈ I1, we have
A2
j = {2x12 + x21 + x30 + j = 4}.

Overall, we have the set

{(x1, x2, x3) ∈ Z3
≥0 | 2x1 + (n+ 1)x2 + n2x3 = 4n2 + 3n− 5}

is in bijection with the set

{x = (x12, x11, x10, x21, x20, x30) ∈ Z6
≥0, 0 ≤ xij < n},

such that x satisfies the conditions

(
A0

0 A0
1 A0

2

)


A1

00 A1
01 · · · A1

04

A1
10 A1

11 · · · A1
14

A1
20 A1

21 · · · A1
24







A2
0

A2
1

...
A2

4


 .
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Here we borrow the notation of matrix multiplication AB to represent intersection of sets A ∩ B and
matrix summation A + B to represent set union A ∪ B. Note that here all constrains Aji on x =
(x12, x11, x10, x21, x20, x30) are in the form of An + B ≤ f(x), where A,B ∈ Z and f(x) is a lin-
ear form of x with constant coefficients.

The following lemma allows us to reduce these equations (or inequalities) with linear function coef-
ficients to the case when we can apply Ehrhart’s theorem (Theorem 1.2) and show that the number of
solutions are quasi-polynomials of n.

Lemma 3.4 If P (n) ⊂ Rd is a polytope defined by inequalities of the form An + B ≤ f(x), where
A,B ∈ Z and f(x) is a linear form of x with constant coefficients, then #(P (n) ∩ Zd) ∈ QP�0.

Example 3.5 For n a positive integer, let P (n) be the polygon defined by the inequalities x ≥ 0, y ≥ 0
and −2x − y ≥ −n − 1. Then P ′(n) is defined by the inequalities x ≥ 0, y ≥ 0, and 2x + y ≤ n, and
P1(n) is defined by the inequalities x ≥ 0, y ≥ 0, and n + 1 = 2x + y. We can rewrite the equality as
y = n+ 1− 2x, and then the other inequalities become x ≥ 0 and n+ 1 ≥ 2x.

We see that P ′(n) is the convex hull of the points {(0, 0), (0, n), (n/2, 0)}, while P1(n) is the interval
[0, (n+ 1)/2]. The total number of integer points in P ′(n) and P1(n) is given by the quasipolynomial

#(P (n) ∩ Z2) =

{
k2 + 3k + 2 if n = 2k

k2 + 4k + 4 if n = 2k + 1
.

Its rational generating function is

∑

n≥0
#(P (n) ∩ Z2)tn =

t5 − 3t3 + 4t+ 2

(1− t2)3
=

t3 − 2t2 + 2

(1− t)3(1 + t)
.
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Abstract. Motivated by juggling sequences and bubble sort, we examine permutations on the set {1, 2, . . . , n} with d
descents and maximum drop size k. We give explicit formulas for enumerating such permutations for given integers
k and d. We also derive the related generating functions and prove unimodality and symmetry of the coefficients.

Résumé. Motivés par les “suites de jonglerie” et le tri à bulles, nous étudions les permutations de l’ensemble
{1, 2, . . . , n} ayant d descentes et une taille de déficience maximale k. Nous donnons des formules explicites pour
l’énumération de telles permutations pour des entiers k et d fixés, ainsi que les fonctions génératrices connexes. Nous
montrons aussi que les coefficients possèdent des propriétés d’unimodalité et de symétrie.

Keywords: Permutations, descent polynomial, drop size, Eulerian distribution.

1 Introduction
There have been extensive studies of various statistics on Sn, the set of all permutations of {1, 2, . . . , n}.
For a permutation π in Sn, we say that π has a drop at i if πi < i and that the drop size is i − πi. We
say that π has a descent at i if πi > πi+1. One of the earliest results [8] in permutation statistics states
that the number of permutations in Sn with k drops equals the number of permutations with k descents.
A concept closely related to drops is that of excedances, which is just a drop of the inverse permutation.
In this paper we focus on drops instead of excedances because of their connection with our motivating
applications concerning bubble sort and juggling sequences.

Other statistics on a permutation π include such things as the number of inversions (pairs (i, j) such that
i < j and πi > πj) and the major index of π (the sum of i for which a descent occurs). The enumeration
of and generating functions for these statistics can be traced back to the work of Rodrigues in 1839 [9] but
was mainly influenced by McMahon’s treatise in 1915 [8]. There is an extensive literature studying the
distribution of the above statistics and their q-analogs, see for example Foata and Han [4], or the papers
of Shareshian and Wachs [10, 11] for more recent developments.

This joint work originated from its connection with a paper [2] on sequences that can be translated into
juggling patterns. The set of juggling sequences of period n containing a specific state, called the ground
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state, corresponds to the set Bn,k of permutations in Sn with drops of size at most k. As it turns out,
Bn,k can also be associated with the set of permutations that can be sorted by k operations of bubble sort.
These connections will be further described in the next section. We note that the maxdrop statistic has not
been treated in the literature as extensively as many other statistics in permutations. As far as we know,
this is the first time that the distribution of descents with respect to maxdrop has been determined.

First we give some definitions concerning the statistics and polynomials that we examine. Given a
permutation π in Sn, let Des(π) = {1 ≤ i < n : πi > πi+1} be the descent set of π and let des(π) =
|Des(π)| be the number of descents. We use maxdrop(π) to denote the value of the maximum drop (or
maxdrop) of π,

maxdrop(π) = max{ i− π(i) : 1 ≤ i ≤ n }.
Let Bn,k = {π ∈ Sn : maxdrop(π) ≤ k}. It is known, and also easy to show, that |Bn,k| = k!(k+1)n−k;
e.g., see [2, Thm. 1] or [7, p. 108]. Let

bn,k(r) = |{π ∈ Bn,k : des(π) = r}|,
and define the (k-maxdrop-restricted) descent polynomial

Bn,k(x) =
∑

r≥0
bn,k(r)x

r =
∑

π∈Bn,k

xdes(π).

Examining the case of k = 2, we observed the coefficients bn,2(r) of Bn,2(x) appear to be given by
every third coefficient of the simple polynomial

(1 + x2)(1 + x+ x2)n−1.

Looking at the next two cases, k = 3 and k = 4, yielded more mysterious polynomials: bn,3(r) appeared
to be every fourth coefficient of

(1 + x2 + 2x3 + x4 + x6)(1 + x+ x2 + x3)n−2

and bn,4(r) every fifth coefficient of

(1 + x2 + 2x3 + 4x4 + 4x5 + 4x7 + 4x8 + 2x9 + x10 + x12)(1 + x+ x2 + x3 + x4)n−3.

After a fierce battle with these polynomials, we were able to show that bn,k(r) is the coefficient of ur(k+1)

in the polynomial
Pk(u)

(
1 + u+ · · ·+ uk

)n−k
(1)

where

Pk(u) =

k∑

j=0

Ak−j(u
k+1)(uk+1 − 1)j

k∑

i=j

(
i

j

)
u−i, (2)

and Ak denotes the kth Eulerian polynomial (defined in the next section). Further to this, we give an
expression for the generating function Bk(z, y) =

∑
n≥0Bn,k(y)z

n, namely

Bk(z, y) =

1 +

k∑

t=1

(
At(y)−

t∑

i=1

(
k + 1

i

)
(y − 1)i−1At−i(y)

)
zt

1−
k+1∑

i=1

(
k + 1

i

)
zi(y − 1)i−1

. (3)
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We also give some alternative formulations for Pk which lead to some identities involving Eulerian
numbers as well as proving the symmetry and unimodality of the polynomials Bn,k(x).

Many questions remain. For example, is there a more natural bijective proof for the formulas that we
have derived forBn,k and Bk? Why do permutations that are k-bubble sortable define the aforementioned
juggling sequences?

2 Descent polynomials, bubble sort and juggling sequences
We first state some standard notation. The polynomial

An(x) =
∑

π∈Sn
xdes(π)

is called the nth Eulerian polynomial. For instance, A0(x) = A1(x) = 1 and A2(x) = 1 + x. Note that
Bn,k(x) = An(x) for k ≥ n − 1, since maxdrop(π) ≤ n − 1 for all π ∈ Sn. The coefficient of xk in
An(x) is denoted

〈
n
k

〉
and is called an Eulerian number. It is well known that [5]

1− w
e(w−1)z − w =

∑

k,n≥0

〈
n

k

〉
wk

zn

n!
. (4)

The Eulerian numbers are also known to be given explicitly as [3, 5]
〈
n
k

〉
=
∑n
i=0

(
n+1
i

)
(k+1−i)n(−1)i.

We define the operator bubble which acts recursively on permutations via

bubble(LnR) = bubble(L)Rn.

In other words, to apply bubble to a permutation π in Sn, we split π into (possibly empty) blocks L
and R to the left and right, respectively, of the largest element of π (which initially is n), interchange n
and R, and then recursively apply this procedure to L. We will use the convention that bubble(∅) = ∅;
here ∅ denotes the empty permutation. This operator corresponds to one pass of the classical bubble
sort operation. Several interesting results on the analysis of bubble sort can be found in Knuth [7, pp.
106–110]. We define the bubble sort complexity of π as

bsc(π) = min{k : bubblek(π) = id},

the number of times bubble must be applied to π to give the identity permutation. The following lemma
is easy to prove using induction.

Lemma 1 (i) For all permutations π we have maxdrop(π) = bsc(π).
(ii) The bubble sort operator maps Bn,k to Bn,k−1.

The class of permutations Bn,k appears in a recent paper [2] on enumerating juggling patterns that are
usually called siteswaps by (mathematically inclined) jugglers. Suppose a juggler throws a ball at time i
so that the ball will be in the air for a time ti before landing at time ti + i. Instead of an infinite sequence,
we will consider periodic patterns, denoted by T = (t1, t2, . . . , tn). A juggling sequence is just one in
which two balls never land at the same time. It is not hard to show [1] that a necessary and sufficient
condition for a sequence to be a juggling sequence is that all the values ti + i (mod n) are distinct. In
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particular, it follows that that the average of ti is just the numbers of balls being juggled. Here is an
example:

If T = (3, 5, 0, 2, 0) then at time 1 a ball is thrown that will land at time 1 + 3 = 4. At time 2 a ball
is thrown that will land at time 2 + 5 = 7. At time 3 a ball is thrown that will land at time 3 + 0 = 3.
Alternatively one can say that no ball is thrown at time 3. This is represented in the following diagram.

1 2 3 4 5 6 7

Repeating this for all intervals of length 5 gives

1 2 3 4 5 6 7 8 9 10

For a given juggling sequence, it is often possible to further decompose into shorter juggling sequences,
called primitive juggling sequences, which themselves cannot be further decomposed. These primitive
juggling sequences act as basic building blocks for juggling sequences [2]. However, in the other direc-
tion, it is not always possible to combine primitive juggling sequences into a longer juggling sequence.
Nevertheless, if primitive juggling sequences share a common state (which one can think of as a landing
schedule), then we can combine them to form a longer and more complicated juggling sequences. In
[2] primitive juggling sequences associated with a specified state are enumerated. Here we mention the
related fact concerning Bn,k:

There is a bijection mapping permutations in Bn,k to primitive juggling sequences of period n with k
balls that all share a certain state, called the ground state.

The bijection maps π to φ(π) = (t1, . . . , tn) with ti = k − i + πi. As a consequence of the above
fact and Lemma 1, we can use bubble sort to transform a juggling sequence using k balls to a juggling
sequence using k − 1 balls.

To make this more precise, let T = (t1, . . . , tn) be a juggling sequence that corresponds to π ∈ Bn,k,
and suppose that T ′ = (s1, . . . , sn) is the juggling sequence that corresponds to bubble(π). Assume that
the ball B thrown at time j is the one that lands latest out of all the n throws. In other words, tj + j is the
largest element in {ti + i}ni=1. Now, write T = LtjR where L = (t1, . . . , tj−1) and R = (tj+1, . . . , tn).
Then we have

T ′ = fk(T ) = fk(L)Rs,

where s = tj + j − (n+1). In other words, we have removed the ball B thrown at time j and thus throw
all balls after time j one time unit sooner. Then at time n we throw the ball B so that it lands one time unit
sooner than it would have originally landed. Then we repeat this procedure to all the balls thrown before
time j.

3 The polynomials Bn,k(y)

In this section we will characterise the polynomials Bn,k(y). This is done by first finding a recurrence
for the polynomials and then solving the recurrence by exploiting some aspects of their associated char-
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acteristic polynomials. The latter step is quite involved and so we present the special case dealing with
Bn,4(y) first.

3.1 Deriving the recurrence for Bn,k(y)

We will derive the following recurrence for Bn,k(y).

Theorem 1 For n ≥ 0,

Bn+k+1,k(y) =
k+1∑

i=1

(
k + 1

i

)
(y − 1)i−1Bn+k+1−i,k(y) (5)

with the initial conditions
Bi,k(y) = Ai(y), 0 ≤ i ≤ k.

We use the notation [a, b] = {i ∈ Z : a ≤ i ≤ b} and [b] = [1, b]. Let A = {a1, . . . , an} with
a1 < · · · < an be any finite subset of N. The standardization of a permutation π on A is the permu-
tation st(π) on [n] obtained from π by replacing the integer ai with the integer i. Thus π and st(π) are
order isomorphic. For example, st(19452) = 15342. If the set A is fixed, the inverse of the standard-
ization map is well defined, and we denote it by st−1A (σ); for instance, with A = {1, 2, 4, 5, 9}, we have
st−1A (15342) = 19452. Note that st and st−1A each preserve the descent set.

For any set S ⊆ [n− 1] we define An,k(S) = {π ∈ Bn,k : Des(π) ⊇ S} and

tn(S) = max{i ∈ N : [n− i, n− 1] ⊆ S}.

Note that tn(S) = 0 in the case that n− 1 is not a member of S. Now, for any permutation π = π1 . . . πn
in An,k(S) define

f(π) = (σ,X), where σ = st(π1 . . . πn−i−1), X = {πn−i, . . . , πn} and i = tn(S).

Example 1 Let S = {3, 7, 8}, and choose the permutation π = 138425976 in A9,3(S). Notice that
Des(π) = {3, 4, 7, 8} ⊃ S. Now t9(S) = 2. This gives f(π) = (σ,X) where σ = st(138425) = 136425
and X = {π7, π8, π9} = {6, 7, 9}. Hence f(138425976) = (136425, {6, 7, 9}).
Lemma 2 For any π in An,k(S), the image f(π) is in the Cartesian product

An−i−1,k(S ∩ [n− tn(S)− 2])×
(
[n− k, n]
tn(S) + 1

)
,

where
(
X
m

)
denotes that set of all m-element subsets of the set X .

Proof: Given π ∈ An,k(S), let f(π) = (σ,X). Suppose i = tn(S). Then there are descents at positions
n− i, . . . , n− 1 (this is an empty sequence in case i = 0). Thus

n ≥ πn−i > πn−i+1 > · · · > πn−1 > πn ≥ n− k,

where the last inequality follows from the assumption that maxdrop(π) ≤ k. Hence X is an (i + 1)-
element subset of [n− k, n], as claimed. Clearly σ ∈ Sn−i−1.
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Next we shall show that σ is in An−i−1,k. Notice that the entries of (π1, . . . , πn−i−1) that do not
change under standardization are those π` which are less than πn. Since these values remain unchanged,
the values `− π` are also unchanged and are thus at most k.

Let (πa(1), . . . , πa(m)) be the subsequence of values which are greater than πn. The smallest value that
any of these may take after standardization is πn ≥ n − k. So σa(j) ≥ πn ≥ n − k for all j ∈ [1,m].
Thus a(j)− σa(j) ≤ a(j)− (n− k) = k − (n− a(j)) ≤ k for all j ∈ [1,m]. Therefore `− σ` ≤ k for
all ` ∈ [1, n− i− 1] and so σ ∈ An−i−1,k.

The descent set is preserved under standardization, and consequently σ is inAn−i−1,k(S∩ [n− i−2]),
as claimed. 2

We now define a function g which will be shown to be the inverse of f . Let π be a permutation in
Am,k(T ), where T is a subset of [m−1]. We will add i+1 elements to π to yield a new permutation σ in
Am+i,k(T ∪[m+1,m+i]). Choose any (i+1)-element subsetX of the interval [m+i+1−k,m+i+1],
and let us write X = {x1, . . . , xi+1}, where x1 ≤ · · · ≤ xi+1. Define

g(π,X) = st−1V (π1 . . . πm)xi+1xi . . . x1, where V = [m+ i+ 1] \X.

Example 2 Let T = {1}, and choose the permutation π = 3142 in A4,3(T ). Notice that Des(π) =
{1, 3} ⊇ T . Choose i = 2 and select a subset X from [4 + 2 + 1 − 3, 4 + 2 + 1] = {4, 5, 6, 7} of size
i+ 1 = 3. Let us select X = {4, 6, 7}. Now we have g(π,X) = st−1V (3142) 764 = 3152764, where V is
the set [4 + 2 + 1] \ {4, 6, 7} = {1, 2, 3, 5}.
Lemma 3 If (π,X) is in the Cartesian product

Am,k(T )×
(
[m+ i+ 1− k,m+ i+ 1]

i+ 1

)

for some i > 0 then g(π,X) is in

Am+i+1,k(T ∪ [m+ 1,m+ i]).

Proof: Let σ = g(π,X). For the first m elements of σ, since σj ≥ πj for all 1 ≤ j ≤ m, we have
j − σj ≤ j − πj which gives

max{j − σj : j ∈ [m]} ≤ max{j − πj : j ∈ [m]} ≤ k.

The final i + 1 elements of σ are decreasing so the maxdrop of these elements will be the maxdrop of
the final element,

m+ i+ 1− σm+i+1 = m+ i+ 1− x1 ≤ m+ i+ 1− (m+ i+ 1− k) = k.

Thus maxdrop(σ) ≤ k and so σ ∈ Bm+i+1,k. The descents of σ will be in the set T ∪ [m + 1,m + i]
since descents are preserved under standardization and the final i+1 elements of σ are listed in decreasing
order. Hence σ ∈ Am+i+1,k(T ∪ [m+ 1,m+ i]), as claimed. 2

We omit the straightforward, but a bit tedious, proof of the following important Lemma.

Lemma 4 The function f is a bijection, and g is its inverse.
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Corollary 1 Let an,k(S) = |An,k(S)| and i = tn(S). Then

an,k(S) =

(
k + 1

i+ 1

)
an−(i+1),k(S ∩ [1, n− (i+ 1)]).

Proposition 1 For all n ≥ 0,

Bn,k(y + 1) =
k+1∑

i=1

(
k + 1

i

)
yi−1Bn−i,k(y + 1).

Proof: Notice that

Bn,k(y + 1) =
∑

π∈Bn,k

(y + 1)des(π)

=
∑

π∈Bn,k

des(π)∑

i=0

(
des(π)

i

)
yi

=
∑

π∈Bn,k

∑

S⊆Des(π)

y|S|

=
∑

S⊆[n−1]
y|S|

∑

π∈An,k(S)

1 =
∑

S⊆[n−1]
y|S|an,k(S).

From Corollary 1, multiply both sides by y|S| and sum over all S ⊆ [n− 1]. We have

Bn,k(y + 1) =
∑

S⊆[n−1]
y|S|
(

k + 1

tn(S) + 1

)
an−(tn(S)+1),k(S ∩ [n− (tn(S) + 2)])

=
∑

i≥0

∑

S⊆[n−1]
tn(S)=i

yiy|S|−i
(
k + 1

i+ 1

)
an−(i+1),k(S ∩ [n− (i+ 2)])

=
∑

i≥0

(
k + 1

i+ 1

)
yi

∑

S⊆[n−1]
tn(S)=i

an−(i+1),k(S ∩ [n− (i+ 2)])y|S|−i

=
∑

i≥0

(
k + 1

i+ 1

)
yi

∑

S⊆[n−(i+1)]

an−(i+1),k(S)y
|S|

=
∑

i≥0

(
k + 1

i+ 1

)
yiBn−(i+1),k(y + 1)

=
∑

i≥1

(
k + 1

i

)
yi−1Bn−i,k(y + 1).

2
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Proof of Theorem 1: Replacing n and y by n+ k+1 and y− 1, respectively, in Proposition 1 yields the
recurrence (5):

Bn+k+1,k(y) =
k+1∑

i=1

(
k + 1

i

)
(y − 1)i−1Bn+k+1−i,k(y)

for n ≥ 0, with the initial conditions Bi,k(y) = Ai(y) for 0 ≤ i ≤ k. 2

By multiplying the above recurrence by zn and summing over all n ≥ 0, we have the generating
function Bk(z, y) given in equation (3).

3.2 Solving the recurrence for Bn,4(y).
Before we proceed to solve the recurrence for Bn,k, we first examine the special case of k = 4 which is
quite illuminating. We note that the characteristic polynomial for the recurrence for Bn,4 is

h(z) = z5 − 5z4 + 10(1− y)z3 − 10(1− y)2z2 + 5(1− y)3z − (1− y)4 =
(z − 1 + y)5 − yz5

1− y .

Substituting y = t5 in the expression above, we see that the roots of h(z) are just

ρj(t) =
1− t5
1− ωjt , 0 ≤ j ≤ 4,

where ω = exp( 2πi5 ) is a primitive 5th root of unity. Hence, the general term for Bn,4(t) can written as

Bn,4(t) =
4∑

i=0

αi(t)ρ
n
i (t)

where the αi(t) are appropriately chosen coefficients (polynomials in t). To determine the αi(t) we need
to solve the following system of linear equations:

4∑

i=0

αi(t)ρ
j
i (t) = Bj,4(t) = Aj(t

5), 0 ≤ j ≤ 4.

Thus, αi(t) can be expressed as the ratio N4,i+1(t)/D4(t) of two determinants. The denominator D4(t)

is just a standard Vandermonde determinant whose (i+1, j +1) entry is ρji (t). The numerator N4,i+1(t)

is formed fromD4(t) by replacing the elements ρji (t) in the (i+1)st row byAj(t5). A quick computation
(using the symbolic computation package Maple) gives:

D4(t) = 25
√
5 (1− t5)6t10;

N4,1(t) = 5
√
5 (t12 + t10 + 2t9 + 4t8 + 4t7 + 4t5 + 4t4 + 2t3 + t2 + 1)(1− t5)3(1− t)3t10

and, in general, N4,i+1(t) = N4,1(ω
it). Substituting the value α0(t) = N4,1(t)/D4(t) into the first term

in the expansion of Bn,4, we get

α0(t)(1 + t+ t2 + t3 + t4)n

= 1
5 (t

12 + t10 + 2t9 + 4t8 + 4t7 + 4t5 + 4t4 + 2t3 + t2 + 1)(1 + t+ t2 + t3 + t4)n−3.
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Now, since the other four terms αi(t)(1 + t + t2 + t3 + t4)n arise by replacing t by ωit then in the sum
of all five terms, the only powers of t that survive are those which have powers which are multiples of 5.
Thus, we can conclude that if we write

(t12 + t10 + 2t9 + 4t8 + 4t7 + 4t5 + 4t4 + 2t3 + t2 + 1)(1 + t+ t2 + t3 + t4)n−3 =
∑

r

β(r)tr

then bn,4(d) = β(5d). In other words, the number of permutations π ∈ Bn,4 with d descents is given by
the coefficient of t5d in the expansion of the above polynomial. Incidentally, the corresponding results for
the earlier Bn,i are as follows: bn,1(d) = β(2d) in the expansion of

(1 + t)n =
∑

r

β(r)tr,

so bn,1(d) =
(
n
2d

)
; bn,2(d) = β(3d) in the expansion of

(1 + t2)(1 + t+ t2)n−1 =
∑

r

β(r)tr;

and bn,3(d) = β(4d) in the expansion of

(1 + t2 + 2t3 + t4 + t6)(1 + t+ t2 + t3)n−2 =
∑

r

β(r)tr.

The preceding arguments have now set the stage for dealing with the general case of Bn,k. Of course,
the arguments will be somewhat more involved but it is hoped that treating the above special case will be
a useful guide for the reader.

3.3 Solving the recurrence for Bn,k(y)

Theorem 2 We have Bn,k(y) =
∑
d βk

(
(k + 1)d

)
yd, where

∑

j

βk(j)u
j = Pk(u)

(
1 + u+ · · ·+ uk

)n−k

and

Pk(u) =

k∑

j=0

Ak−j(u
k+1)(uk+1 − 1)j

k∑

i=j

(
i

j

)
u−i. (6)

The first few values of Pk(u) are shown below.

k Pk(u)
0 1
1 1 + u
2 1 + u+ 2u2 + u3 + u4

3 1 + u+ 2u2 + 4u3 + 4u4 + 4u5 + 4u6 + 2u7 + u8 + u9

4 1 + u+ 2u2 + 4u3 + 8u4 + 11u5 + 11u6 + 14u7 + 16u8+
+14u9 + 11u10 + 11u11 + 8u12 + 4u13 + 2u14 + u15 + u16

There is clearly a lot of structure in the polynomials Pk(u) which will be discussed in the next section.
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4 The structure of Pk(u)
Consider Equation 6 of Theorem 2. We write Pk(u) =

∑k2

i=0 αiu
i and define the stretch of Pk(u) to be

PPk(u) = α0 + αk2u
k2+k +

k∑

i=0

k−2∑

j=0

α1+i+(k+1)ju
2+i+(k+1)j+j .

What this does to Pk(u) is to insert 0 coefficients at every (k + 1)st term, starting after α0. Thus, the
stretched polynomials corresponding to the values of Pk(u) given in the array above are:

k PPk(u)
0 1
1 1 + u2

2 1 + u2 + 2u3 + u4 + u6

3 1 + u2 + 2u3 + 4u4 + 4u5 + 4u7 + 4u8 + 2u9 + u10 + u12

4 1 + u2 + 2u3 + 4u4 + 8u5 + 11u6 + 11u8 + 14u9 + 16u10+
+14u11 + 11u12 + 11u14 + 8u15 + 4u16 + 2u17 + u18 + u20

Note that if Pk(u) has degree k2 then PPk(u) has degree k2 + k.
Theorem 3 For all k ≥ 1,

Pk+1(u) = PPk(u) · (1 + u+ u2 + · · ·+ uk+1).

Theorem 4 The coefficients of Pk(u) are symmetric and unimodal.

Proof: It follows from Theorem 3 that we can construct the coefficient sequence for Pk+1(u) from that
of Pk(u) by the following rule (where we assume that all coefficients of ut in Pk(u) are 0 if t < 0

or t > k2). Namely, suppose we write Pk(u) =
∑k2

i=0 αiu
i so that we have the coefficient sequence

Ak = (α0, α1, . . . , αk2). Now form the new sequence Bk = (β0, β1, . . . βk2+k) by the rule

βi =

i∑

j=i−k
αj , 0 ≤ i ≤ k2 + k.

Finally, starting with β0, insert duplicate values for the coefficients

β0, βk+1, β2(k+1), . . . , βt(k+1), . . . , β(k−1)(k+1) and βk(k+1).

Thus, this will generate the sequence

(β0, β0, β1, β2, . . . , βk, βk+1, βk+1, βk+2, . . . , βk2+k−1, βk2+k, βk2+k).

This new sequence will in fact just be the coefficient sequence Ak+1 for Pk+1(u). For example, start-
ing with P1(u) = 1 + u, we have A1 = (1, 1) and so B1 = (1, 2, 1). Now, inserting the duplicate
values for β0 = 1 and β2 = 1, we get the coefficient sequence A2 = (1,1, 2, 1,1) for P2(u) =
1 + u + 2u2 + u3 + u4. Repeating this process for A2, we sum blocks of length 3 to get B2 =
(1, 2, 4, 4, 4, 2, 1). Inserting duplicates for entries at positions 0, 3 and 6 gives us the new coefficient
sequence A3 = (1,1, 2, 4, 4,4, 4, 2, 1,1) of P3 = 1+u+2u2+4u3+4u4+4u5+4u6+2u7+u8+u9,
etc. It is also clear from this procedure that if Ak is symmetric and unimodal, then so is Bk, and conse-
quently, so is Ak+1. This is what we claimed. 2
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4.1 An Eulerian identity
Note that since Pk(u) is symmetric and has degree uk

2

, we have Pk(u) = uk
2

Pk(
1
u ). Replacing Pk(u)

by its expression in (6), we obtain (with some calculation) the interesting identity

a+b∑

j=0

(−1)j
(
a

j

)
(1− x)jAa+b−j(x) = x

a+b∑

j=0

(
b

j

)
(1− x)jAa+b−j(x) +

(
b

a+ b

)
(1− x)a+b+1

for all integers a and b provided that a+ b ≥ 0.
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Abstract. The famous hook-length formula is a simple consequence of the branching rule for the hook lengths. While
the Greene-Nijenhuis-Wilf probabilistic proof is the most famous proof of the rule, it is not completely combinatorial,
and a simple bijection was an open problem for a long time. In this extended abstract, we show an elegant bijective
argument that proves a stronger, weighted analogue of the branching rule. Variants of the bijection prove seven other
interesting formulas. Another important approach to the formulas is via weighted hook walks; we discuss some
results in this area. We present another motivation for our work: J-functions of the Hilbert scheme of points.

Résumé. La formule bien connue de la longueur des crochets est une conséquence simple de la règle de branchement
des longueurs des crochets. La preuve la plus répandue de cette règle est de nature probabiliste et est due à Greene-
Njenhuis-Wilf. Elle n’est toutefois pas complètement combinatoire et une simple bijection a été pendant longtemps
un problème ouvert. Dans ce résumé étendu, nous proposons un argument bijectif élégant qui démontre une version à
poids plus forte de cette règle. Des variantes de cette bijection permettent d’obtenir sept autres formules intéressantes.
Une autre approche importante de ces formules est via les marches des crochets à poids. Nous discutons certains
résultats dans cette direction. Enfin, nous présentons aussi une autre motivation à l’origine de ce travail: les J-
fonctions du schéma d’Hilbert des points.

Resumen. La famosa fórmula de la longitud de codos es una consecuencia simple de la ley de ramificación de las
longitudes de los codos. Mientras que la prueba probabilı́stica de la fórmula de Greene-Nijenhuis-Wilf es la más
famosa, ésta no es del todo combinatoria. Por mucho tiempo el problema de encontrar una prueba biyectiva de la
formula estuvo abierto. En este resumen extendido, mostramos un argumento biyectivo elegante que prueba una
variante ponderada más robusta de la ley de ramificación. Variantes de la biyección prueban otras siete fórmulas
interesantes. Otro enfoque importante a las fórmulas es a traves de caminos ponderados de codos: discutimos unos
resultados en esta área. Presentamos otra motivación: las J-funciones del esquema de Hilbert de puntos.

Keywords: Hilbert scheme of points, hook-length formula, bijective proofs

1 Introduction and main results
The classical hook-length formula gives an elegant product formula for the number of standard Young
tableaux. Since its discovery by Frame, Robinson and Thrall in [9], it has been reproved, generalized and
extended in several different ways, and applications have been found in a number of fields of mathematics.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Let λ = (λ1, λ2, . . . , λ`), λ1 ≥ λ2 ≥ . . . ≥ λ` > 0, be a partition of n, λ ` n, and let [λ] = {(i, j) ∈
Z2 : 1 ≤ i ≤ `, 1 ≤ j ≤ λi} be the corresponding Young diagram. The conjugate partition λ′ is defined
by λ′j = max{i : λi ≥ j}. The hook Hz ⊆ [λ] is the set of squares weakly to the right and below of
z = (i, j) ∈ [λ], and the hook length hz = hij = |Hz| = λi + λ′j − i− j + 1 is the size of the hook.

A standard Young tableau of shape λ is a bijective map f : [λ] → {1, . . . , n}, such that f(i1, j1) <
f(i2, j2) whenever i1 ≤ i2, j1 ≤ j2, and (i1, j1) 6= (i2, j2). We denote the number of standard Young
tableaux of shape λ by fλ. The hook-length formula states that if λ is a partition of n, then

fλ =
n!∏

z∈[λ] hz
.

For example, for λ = (3, 2, 2) ` 7, the hook-length formula gives f322 = 7!
5·4·3·2·2·1·1 = 21.

One way to prove the hook-length formula is by induction on n. Namely, it is obvious that in a standard
Young tableau, n must be in one of the corners, squares (i, j) of [λ] satisfying (i+ 1, j), (i, j + 1) /∈ [λ].
Therefore fλ =

∑
c∈C[λ] f

λ−c, where C[λ] is the set of all corners of λ, and λ − c is the partition
whose diagram is [λ] \ {c}. That means that in order to prove the hook-length formula, we have to prove
that Fλ = n!/

∏
hz satisfy the same recursion. It is easy to see that this is equivalent to the following

branching rule for the hook lengths:

∑

(r,s)∈C[λ]

1

n

r−1∏

i=1

his
his − 1

s−1∏

j=1

hrj
hrj − 1

= 1. (1)

In an important development, Green, Nijenhuis and Wilf introduced the hook walk which proves (1) by
a combination of a probabilistic and a short but delicate induction argument [13]. Zeilberger converted the
hook walk proof into a bijective proof [26], but laments on the “enormous size of the input and output”
and “the recursive nature of the algorithm” (ibid, §3). With time, several variations of the hook walk have
been discovered, most notably the q-version of Kerov [16], and its further generalization, the (q, t)-version
of Garsia and Haiman [10]. In the recent paper [7], a direct bijective proof of (1) is presented. In fact, a
bijective proof is presented of the following more general identity, called the weighted branching formula.


 ∑

(p,q)∈[λ]
xpyq


 ·


 ∏

(i,j)∈[λ]\C[λ]

(
xi+1 + . . .+ xλ′j + yj+1 + . . .+ yλi

)



=
∑

(r,s)∈C[λ]




∏

(i,j)∈[λ]\C[λ]
i6=r,j 6=s

(
xi+1 + . . .+ xλ′j + yj+1 + . . .+ yλi

)



·
[
r∏

i=1

(xi + . . .+ xr + ys+1 + . . .+ yλi)

]
·




s∏

j=1

(
xr+1 + . . .+ xλ′j + yj + . . .+ ys

)



We refer to this formula as WBR. Here x1, . . . , x`(λ), y1, . . . , yλ1
are some commutative variables. If
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we substitute all xi and yj by 1, we get

n ·
∏

z∈[λ]\C[λ]
(hz − 1) =

∑

(r,s)∈C[λ]




∏

(i,j)∈[λ]\C[λ]
i6=r,j 6=s

(hz − 1)




r∏

i=1

his

s∏

j=1

hrj ,

which is equivalent to (1).
In [18], a weighted analogue of the formula

∏

z∈[λ]
(hz + 1) =

∑

(r,s)∈C′[λ]



∏

(i,j)∈[λ]
i6=r,j 6=s

(hz + 1)



r−1∏

i=1

his

s−1∏

j=1

hrj (2)

is proved. Here C′[λ] is the set of outer corners of λ, squares (i, j) /∈ [λ] satisfying i = 1 or (i−1, j) ∈ [λ],
and j = 1 or (i, j − 1) ∈ [λ]. The motivation for this formula is as follows, see [22]. Division by∏

z∈[λ](hz + 1) and
∏

z∈[λ] hz yields

1∏
z∈[λ] hz

=
∑

(r,s)∈C′[λ]

r−1∏

i=1

1

his + 1

s−1∏

j=1

1

hrj + 1

∏

(i,j)∈[λ]
i6=r,j 6=s

1

hz

We multiply by (n + 1)! and use the hook-length formula. We get (n + 1)fλ =
∑

c∈C′[λ] f
λ+c, where

λ + c is the partition whose diagram is [λ] ∪ {c}. Let us introduce the notation µ → λ or λ ← µ if
λ = µ− c for a corner c of µ, or, equivalently, if µ = λ+ c for an outer corner c of λ. We then have

∑

µ`n+1

(fµ)2 =
∑

µ`n+1

fµ


∑

λ←µ
fλ


 =

∑

λ`n
fλ


∑

µ→λ
fµ


 = (n+ 1)

∑

λ`n
(fλ)2.

Induction proves the famous formula
∑
λ`n(f

λ)2 = n!.
It turns out that the correct weighted analogue is

∏

(i,j)∈[λ]

(
xi + . . .+ xλ′j + yj + . . .+ yλi

)
=

∑

(r,s)∈C′[λ]

∏

(i,j)∈[λ]
i6=r,j 6=s

(
xi + . . .+ xλ′j + yj + . . .+ yλi

)

·
[
r−1∏

i=1

(xi+1 + . . .+ xr−1 + ys + . . .+ yλi)

]
·



s−1∏

j=1

(
xr + . . .+ xλ′j + yj+1 + . . .+ ys−1

)

 .

We refer to this result as complementary weighted branching rule, or CWBR.
This extended abstract is organized as follows. In Section 2, we describe the work that led us to WBR.

In Section 3, we give bijective proofs of WBR and CWBR. Simple variants of the proofs lead to six
other interesting identities. In Section 4, we present new theorems on weighted hook walks, and some
recursions for fλ which arise as corollaries. We finish with some final remarks in Section 5.

This extended abstract is based on papers [6], [7] and [18].
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2 Motivation: J-functions of the Hilbert scheme of points
In the last fifteen years, deep relations have been uncovered between representation theory and the ge-
ometry of the Hilbert scheme of points in the complex affine plane Hilbn(C2). See, say, Nakajima, [19]
and Haiman, [15]. The equivariant quantum cohomologyQH∗(C∗)2(Hilbn)(C2) of the Hilbert scheme has
been recently determined by Okounkov and Pandharipande, and the authors have also shown that it agrees
with the (equivariant) relative Donaldson-Thomas theory of P1 × C2, see [20], [21].

A different perspective on the study of the relationship between QH∗(C∗)2(Hilbn(C2)) and DT-theory
is undertaken in [3]. The main point there is to exploit the fact that the Hilbert scheme is a Geometric
Invariant Theory (GIT) quotient via the celebrated “ADHM construction” of Atiyah-Drinfeld-Hitchin-
Manin [1].

On the one hand, this allows one to employ the machinery of the abelian/nonabelian correspondence in
Gromov-Witten theory of [5], [2] to analyze the quantum cohomology of Hilbn(C2). In particular, one
can give a formula (a priori conjectural) for the J-function of the Hilbert scheme – a certain generating
function for Gromov-Witten invariants of a nonsingular algebraic variety, essentially encoding the same
information as the quantum cohomology ring. On the other hand, the ADHM construction of Hilbn(C2)
is also highly relevant to the Donaldson-Thomas side of the story, due to work of Diaconescu. Namely,
in [8] he used it to obtain a gauge-theoretic partial compactification of the space of maps P1 → Hilbn,
his moduli space of ADHM sheaves on P1, and then provided a direct geometric identification of the
DT-theory of P1 × C2 with the intersection theory of this new moduli space.

The main result of [3], and the jumping board for the paper [6], is a proof of the above-mentioned
formula for the J-function of Hilbn(C2). The following identity involving partitions is obtained as a
corollary. Choose a partition λ = (λ1, λ2, . . . , λk) and let α, β be indeterminates. For a square z = (i, j)
in |λ|, we define its weight to be wz = −(i− 1)α− (j − 1)β. Then, for each n ≥ 1 and each partition λ
of n, we have

∑

c∈C[λ]
(wc − (α+ β))

∏

z∈[λ]\{c}

(wc − wz − α)(wc − wz − β)
(wc − wz)(wc − wz − (α+ β))

= −n(α+ β). (3)

If λ has ` corners, there are ` different parts of λ. Let x` denote the smallest part, x`−1 + x` the second
smallest etc., and x1 + x2 + . . . + x` the largest part. Furthermore, let y1 be the number of times the
largest part appears in λ, y2 the number of times the second largest part appears, etc. A careful analysis
of the cancellations and the substitution of xi for xiα and yi for yiβ gives the rational function identity

∑̀

k=1

xkyk

k−1∏

p=1

(
1 +

yp
xp+...+xk−1+yp+1+...+yk

) ∏̀

q=k+1

(
1 +

xq
xk+...+xq−1+yk+1+...+yq

)
=
∑

1≤p≤q≤`
xqyp.

This is exactly WBR for the staircase shape (`, `− 1, . . . , 1). See [6] for a more detailed explanation.

3 Bijective proofs of weighted branching formulas
Now we present a bijective proof of WBR, by interpreting both sides as certain sets of arrangements of
labels, and then constructing a bijection between two sets of labels.

For the left-hand side of WBR, we are given: special labels xp, yq , corresponding to the first summation∑
(p,q)∈[λ] xpyq , and a label xk for some i < k ≤ λ′j , or yl for some j < l ≤ λi, in every non-corner

square (i, j). Denote by F the resulting arrangement of labels, see Figure 1, left.
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We can interpret the special labels xp, yq as the starting square (p, q). Furthermore, we can interpret all
other labels as arrows: if the label in square (i, j) is xk, the arrow points to (k, j), and if the label is yl,
the arrow points to (i, l). The arrow from (p, q) points to a square (p′, q′) in the hook of (p, q), the arrow
from (p′, q′) points to a square (p′′, q′′) in the hook of (p′, q′), etc. Eventually we obtain a hook walk
which reaches a corner (r, s) ∈ C[λ] (Figure 1, second drawing). Shade row r and column s. Now we
shift the labels in the hook walk and in its projection onto the shaded row and column. If the hook walk
has a horizontal step from (i, j) to (i, j′), move the label in (i, j) right and down from (i, j) to (r, j′),
and the label from (r, j) up to (i, j). If the hook walk has a vertical step from (i, j) to (i′, j), move the
label from (i, j) down and right to (i′, s), and the label from (i, s) left to (i, j). If the hook walk has a
horizontal step from (r, j) to (r, j′), move the label in (r, j) right to (r, j′). If the hook walk has a vertical
step from (i, s) to (i′, s), move the label in (i, s) down to (i′, s). Finally, move the label xp to (p, s), and
the label yq to (r, q). See Figure 1, third drawing. Denote the resulting arrangement G (Figure 1, right).
It turns out that G represents a term on the right-hand side. Furthermore, ϕ is a bijection.

x1 x1

x2x2 x2

x3

x3x3

x3

x3

x3

x4x4

x4 x4

x4x4

x4

x4x4

x4 x4

x4x4

x4 x5x5

x5

x5

x5x5

x5x5
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x6

x6

x6

x6

x6
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y2 y2

y2y2

y3 y3
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y3y3

y3

y3
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y3
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y4

y4

y4

y4

y4
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y7

y7

y7

y7

y7y7

Fig. 1: An arrangement corresponding to the left-hand side of WBR; hook walk; shift of labels; final arrangement.

There are three more identities in the same spirit. To save on space, let us write them down in an
abbreviated fashion. If WBR is the identity


 ∑

(p,q)∈[λ]
xpyq


 ·


 ∏

(i,j)∈[λ]\C[λ]
∗


 =

∑

(r,s)∈C[λ]




∏

(i,j)∈[λ]\C[λ]
i6=r,j 6=s

∗


 ·
[
r∏

i=1

∗
]
·




s∏

j=1

∗


 ,

then the following identities are also true:


`(λ)∑

p=1

xp


 ·


 ∏

(i,j)∈[λ]\C[λ]
∗


 =

∑

(r,s)∈C[λ]




∏

(i,j)∈[λ]\C[λ]
i6=r,j 6=s

∗


 ·
[
r∏

i=1

∗
]
·




s∏

j=2

∗


 , (4)

[
λ1∑

q=1

yq

]
·


 ∏

(i,j)∈[λ]\C[λ]
∗


 =

∑

(r,s)∈C[λ]




∏

(i,j)∈[λ]\C[λ]
i6=r,j 6=s

∗


 ·
[
r∏

i=2

∗
]
·




s∏

j=1

∗


 , (5)


 ∏

(i,j)∈[λ]\C[λ]
∗


 =

∑

(r,s)∈C[λ]




∏

(i,j)∈[λ]\C[λ]
i6=r,j 6=s

∗


 ·
[
r∏

i=2

∗
]
·




s∏

j=2

∗


 . (6)
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The proofs are very similar. We start the hook walk in square (p, 1) for (4), (1, q) for (5), and (1, 1)
for (6). We proceed as in the proof of WBR, except that in the final arrangement, the square (r, 1)
(respectively, (1, s), respectively, both (r, 1) and (1, s)) does not get a label.

A direct bijective proof of CWBR shares many characteristics with the bijective proof of WBR. We
interpret both left-hand and right-hand sides as labelings of the diagram; we start the bijection with a
(variant of the) hook walk; and the hook walk determines a relabeling of the diagram. There are, however,
some important differences. First, the walk always starts in the square (1, 1). Second, the hook walk can
never pass through a square that is not in the same row as an outer corner and the same column as an outer
corner. Third, the rule for one step of the hook walk is different from the one in [7]. And finally, there is
an extra shift in the relabeling process.
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x2 x2
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Fig. 2: An example of an arrangement corresponding to the left-hand side of CWBR for λ = 988666542; hook walk;
shift of labels; final arrangement.

For the left-hand side of CWBR, we are given a label xk for some i ≤ k ≤ λ′j , or yl for some
j ≤ l ≤ λi, for every square (i, j) ∈ [λ]. Denote by F the resulting arrangement of n labels (see Figure
2, top left).
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Again, we first construct a hook walk. Start in (1, 1), and move only through squares which are in the
same row as an outer corner and in the same column as an outer corner. The rule is as follows. If the
current square is (i, j) and the label of (i, j) in F is xk for i ≤ k ≤ λ′j , move to (i, λk + 1). If the label
of (i, j) in F is yl for j ≤ l ≤ λ′j , move to (λ′l+1, j). Note that i ≤ k implies λk ≤ λi and j ≤ l implies
λ′l ≤ λ′j , so the square we move to is either in [λ] or is the outer corner to the right or below (i, j). The
process continues until we arrive in an outer corner (r, s), see the top right drawing in Figure 2.

Shade row r and column s. Now we shift the labels in the hook walk and in its projection onto the
shaded row and column. If the hook walk has a horizontal step from (i, j) to (i, j′), i 6= r, move the label
in (i, j) right and down to (r, j′), and the label from (r, j) up to (i, j). If the hook walk has a vertical step
from (i, j) to (i′, j), j 6= s, move the label from (i, j) down and right to (i′, s), and the label from (i, s)
left to (i, j). If the hook walk has a horizontal step from (r, j) to (r, j′), move the label in (r, j) right to
(r, j′). If the hook walk has a vertical step from (i, s) to (i′, s), move the label in (i, s) down to (i′, s).
See Figure 2, bottom left.

After these changes, we have the following situation. If r = 1, there is no label in (1, 1), and in (1, s)
the label is xk, 1 ≤ k ≤ λ′λ1

. Move all the labels in row 1 one square to the left. If s = 1, there is no
label in (1, 1), and in (r, 1) the label is yl, 1 ≤ l ≤ λ`(λ). Move all the labels in column 1 one square
up. If r > 1 and s > 1, there are no labels in (r, 1) and (1, s). In (r, s), there are two labels: one of
the form xk for r ≤ k ≤ λ′s−1, and one of the form yl for s ≤ l ≤ λr−1. Push all the labels in row r,
including xk in (r, s), one square to the left; and push all labels in column s, including yl in (r, s), one
square up. See Figure 2, bottom right, for the final arrangement, which we denote G. It turns out that the
final arrangement represents a term on the right-hand side of CWBR, and the map F 7→ G is a bijection.

Again, there are variants of the formula with similar bijective proofs. Namely, if CWBR is

∏

(i,j)∈[λ]
∗ =

∑

(r,s)∈C′[λ]



∏

(i,j)∈[λ]
i6=r,j 6=s

∗


 ·

[
r−1∏

i=1

∗
]
·



s−1∏

j=1

∗


 ,

we also have



`(λ)∑

p=1

xp


 ·


 ∏

(i,j)∈[λ],j 6=1

∗


 =

∑

(r,s)∈C′[λ],s6=1



∏

(i,j)∈[λ]
i6=r,j 6=1,s

∗


 ·

[
r−1∏

i=1

∗
]
·



s−1∏

j=1

∗


 , (7)
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q=1

yq

]
·


 ∏

(i,j)∈[λ],i6=1

∗


 =

∑

(r,s)∈C′[λ],r 6=1



∏
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i6=1,r,j 6=s

∗


 ·

[
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∗
]
·



s−1∏

j=1

∗


 , (8)


 ∑

(p,q)/∈[λ]
xpyq


 ·


 ∏

(i,j)∈[λ],i,j 6=1

∗


 =

∑

(r,s)∈C′[λ],r,s 6=1




∏

(i,j)∈[λ]
i6=1,r,j 6=1,s

∗


 ·

[
r−1∏

i=1

∗
]
·



s−1∏

j=1

∗


 . (9)

The sum on the left-hand side of (9) is over all (i, j) such that 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λ1, (i, j) /∈ [λ].
The proofs of these identities are almost identical to the one for CWBR. We start the hook walk in square
(1, λp + 1) (respectively, in (λ′q + 1, 1), respectively, in (λ′q + 1, λp + 1)); we construct the hook walk in
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exactly the same fashion as before; we perform the relabeling as before; but before the final shift to the
left and up by one, we label (r, λp+1) (respectively, (λ′q+1, s), respectively, both) with xp (respectively,
yq , respectively, both).

4 Weighted hook walks
Choose a partition λ and draw the borders of its diagram in the plane. Now add lines x = 0, x = `(λ),
y = 0, y = λ1; this divides the plane into ten regions R1, . . . , R10 (R5 is empty if λ = ab for some a
and b). See Figure 3 for an example and the labelings of these regions. Draw the following lines in bold:
the half-line x = 0, y ≥ λ1, the half-line x = `(λ), y ≤ 0, the half-line y = 0, x ≥ `(λ), the half-line
y = λ1, x ≤ 0, and the zigzag line separating regions R1 and R5.

R1R2

R3R4

R5

R6

R7 R8R9

R10

Fig. 3: Division of the plane into regions R1, . . . , R10 for λ = 66532, with some lines in bold.

Define a weighted hook walk as follows. Choose positive weights (xi)
∞
i=−∞, (yj)∞j=−∞ satisfying∑

i xi <∞,
∑
j yj <∞. Select the starting square for the hook walk so that the probability of selecting

the square (i, j) is proportional to xiyj . In each step, move in a vertical or horizontal direction toward the
bolded line; in regions R1, R2, R3 and R4, right or down; in regions R5, R6, R7 and R8, left or up; in
region R9, right or up; and in region R10, left or down. More specifically, if the current position is (i, j),
move to the square (i′, j) between (i, j) and the bolded line with probability proportional to xi′ , and to
the square (i, j′) between (i, j) and the bolded line with probability proportional to yj′ . The process stops
if we are either in one of the corners of λ (if the initial square was in regions R1, R2, R3 or R4), one of
the outer corners of λ (if the initial square was in regions R5, R6, R7 or R8), the square (`(λ) + 1, 0) (if
the initial square was in region R9) or (0, λ1 + 1) (if the initial square was in region R10). These last two
possibilities are not particularly interesting.

Below, we give the probabilities of terminating in a particular corner conditional on starting in R1, R2,
R3 and R4, as well as probabilities of ending in a particular outer corner, conditional on starting in R5,
R6, R7 and R8. The most interesting observation is that these probabilities turn out to depend only on
x1, . . . , x`(λ), y1, . . . , yλ1

. As a corollary, we obtain the conditional probabilities in the case where all
these values are equal. They represent generalizations of classical results due to Greene, Nijenhuis and
Wilf from [13], [14].

We extend the definition of λi, λ′j to all i, j ∈ Z in a natural way as follows: for i ≤ 0, λi = λ1; for
i ≥ `(λ) + 1, λi = 0; for j ≤ 0, λ′j = `(λ); for j ≥ λ1 + 1, λ′j = 0. The following two theorems tell us
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how to compute probabilities of ending in corners and outer corners.

Theorem 1 For a corner c = (r, s) of λ, denote by P (c|R) the probability that the weighted hook walk
terminates in c, conditional on the starting point being in R. Write

∏
rs

= xrys

r−1∏

i=1

(
1 + xi

xi+1+...+xr+ys+1+...+yλi

)
·
s−1∏

j=1

(
1 +

yj
xr+1+...+xλ′

j
+yj+1+...+ys

)
.

Then:

(a) P (c|R1) =
1∑

(p,q)∈[λ] xpyq
·∏rs

(b) P (c|R2) =
1(∑`(λ)

p=1 xp
)
(xr+1+...+x`(λ)+y1+...+ys)

·∏rs

(c) P (c|R3) =
1(∑λ1

q=1 yq
)
(x1+...+xr+ys+1+...+yλ1 )

·∏rs

(d) P (c|R4) =
1

(xr+1+...+x`(λ)+y1+...+ys)(x1+...+xr+ys+1+...+yλ1 )
·∏rs

In particular, the sum of each of the above terms over all corners of λ equals 1; note that this proves WBR,
(4), (5) and (6). Also,

(e) P (c) = 1

(
∑
p xp)·(

∑
q yq)

·
(
1 +

∑
p≤0 xp

x1+...+xr+ys+1+...+yλ1

)
·
(
1 +

∑
q≤0 yq

xr+1+...+x`(λ)+y1+...+ys

)
·∏rs.

Theorem 2 For an outer corner, c = (r, s) of λ, denote by P (c|R) the probability that the weighted hook
walk terminates in c, conditional on the starting point being in R. Write

∏′

rs
=
r−1∏

i=1

(
1− xi

xi+...+xr−1+ys+...+yλi

)
·
s−1∏

j=1

(
1− yj

xr+...+xλ′
j
+yj+...+ys−1

)
.

Then:

(a) P (c|R5) =
(xr+...+x`(λ)+y1+...+ys−1)(x1+...+xr−1+ys+...+yλ1 )∑

(p,q)/∈[λ] xpyq
·∏′rs

(b) P (c|R6) =
xr+...+x`(λ)+y1+...+ys−1∑`(λ)

i=1 xp
·∏′rs

(c) P (c|R7) =
x1+...+xr−1+ys+...+yλ1∑λ1

q=1 yq
·∏′rs

(d) P (c|R8) =
∏′
rs

In particular, the sum of each of the above terms over all outer corners of λ equals 1; note that this proves
CWBR, (7), (8) and (9). Also,

(e) P (c) =
(x1+...+xr−1+

∑∞
q=s yq)·(

∑∞
p=r xp+y1+...+ys−1)

(
∑
p xp)·(

∑
q yq)

·∏′rs.
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Corollary 3 If x1 = . . . = x`(λ) = y1 = . . . = yλ1
, then we have the following. For a corner c = (r, s)

of λ,

P (c|R1) =
fλ−c

fλ
, P (c|R2) =

nfλ−c

`(λ)(`(λ)− r + s)fλ

P (c|R3) =
nfλ−c

λ1(λ1 + r − s)fλ , P (c|R4) =
nfλ−c

(`(λ)− r + s)(λ1 + r − s)fλ

In particular, the sum of each of the above terms over all corners of λ equals 1.
For an outer corner, c = (r, s) of λ,

P (c|R5) =
(`(λ)− r + s)(λ1 + r − s)fλ+c

(n+ 1)(`(λ)λ1 − n)fλ
, P (c|R6) =

(`(λ)− r + s)fλ+c

(n+ 1)`(λ)fλ

P (c|R7) =
(λ1 + r − s)fλ+c

(n+ 1)λ1fλ
, P (c|R8) =

fλ+c

(n+ 1)fλ

In particular, the sum of each of the above terms over all outer corners of λ equals 1.

The corollary (for probabilities conditional on starting in R2, R3, . . . , R7) gives six new recursive for-
mulas for numbers of standard Young tableaux. The sums over outer corners have the following interesting
interpretation. Recall that the content of a square (i, j) of a diagram [λ] is defined as i− j.

Corollary 4 Fix a partition λ ` n. Choose a standard Young tableau of shape λ uniformly at random,
and an integer i, 1 ≤ i ≤ n+1 uniformly at random. In the standard Young tableau, increase all integers
≥ i by 1, and use the bumping process of the Robinson-Schensted algorithm to insert i in the tableau.
Define the random variable X as the content of the square that is added to λ. Then

E(X) = 0, var(X) = n.

Proof: The bumping process is a bijection SYT(λ)× {1, 2, . . . , n+ 1} −→ ⋃
c∈C′[λ] SYT(λ+ c). This

means that the probability that c is the square added to λ is equal to fλ+c

(n+1)fλ
. We have

(n+1)λ1f
λ =

∑
(λ1+r−s)fλ+c = λ1

∑
fλ+c+

∑
(r−s)fλ+c = (n+1)λ1f

λ+
∑

(r−s)fλ+c

and therefore
∑

(r − s)fλ+c = 0, which is equivalent to E(X) = 0. On the other hand, we know that

(n+ 1)(`(λ)λ1 − n)fλ =
∑

(`(λ)− r + s)(λ1 + r − s)fλ+c =

= `(λ)λ1
∑

fλ+c + (`(λ)− λ1)
∑

(r − s)fλ+c −
∑

(r − s)2fλ+c

and so
∑

(r − s)2fλ+c = (n+ 1)nfλ. Division by (n+ 1)fλ shows that var(X) = n. 2
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5 Final remarks
As Knuth wrote in 1973, “Since the hook-lengths formula is such a simple result, it deserves a simple
proof ...” (see p. 63 of the first edition of [17], cited also in [26]). Unfortunately, the desired simple proofs
have been sorely lacking. It is our hope that Section 3 can be viewed as one such proof.

Surveying the history of the hook length formula is a difficult task, even if one is restricted to purely
combinatorial proofs. This extended abstract is too short to even attempt such an endeavor. See [7, §6]
for a brief outline, and the references therein.

There are several directions in which our results can be potentially extended. First, it would be inter-
esting to obtain the analogues of our results for shifted Young diagrams and Young tableaux, for which
there is a analogue of the hook length formula due to Thrall [25] (see also [23]). Similarly, most hook
formula results easily extend to trees, and one can try to obtain a weighted analogue in this case as well.
However, we are less confident this approach will give new and interesting (or at least non-trivial) for-
mulas. Extending to semi-standard and skew tableaux is another possibility, in which case one would be
looking for a weighted analogue of Stanley’s hook-content formula [24]. Finally, let us mention several
new extensions of the hook length formula recently introduced by Guo-Niu Han in [11, 12].
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Valuative invariants for polymatroids
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Abstract. Many important invariants for matroids and polymatroids, such as the Tutte polynomial, the Billera-Jia-
Reiner quasi-symmetric function, and the invariant G introduced by the first author, are valuative. In this paper we
construct the Z-modules of all Z-valued valuative functions for labeled matroids and polymatroids on a fixed ground
set, and their unlabeled counterparts, the Z-modules of valuative invariants. We give explicit bases for these modules
and for their dual modules generated by indicator functions of polytopes, and explicit formulas for their ranks. Our
results confirm a conjecture of the first author that G is universal for valuative invariants.

Résumé. Beaucoup des invariants importants des matroı̈des et polymatroı̈des, tels que le polynôme de Tutte, la fonc-
tion quasi-symmetrique de Billera-Jia-Reiner, et l’invariant G introduit par le premier auteur, sont valuatifs. Dans cet
article nous construisons les Z-modules de fonctions valuatives aux valeurs entières des matroı̈des et polymatroı̈des
étiquetés définis sur un ensemble fixe, et leurs équivalents pas étiquetés, les Z-modules des invariants valuatifs. Nous
fournissons des bases des ces modules et leurs modules duels, engendrés par fonctions charactéristiques des poly-
topes, et des formules explicites donnants leurs rangs. Nos résultats confirment une conjecture du premier auteur, que
G soit universel pour les invariants valuatifs.

Keywords: polymatroids, polymatroid polytopes, decompositions, valuations

1 Introduction
Matroids were introduced by Whitney in 1935 (see [22]) as a combinatorial abstraction of linear depen-
dence of vectors in a vector space. Some standard references are [21] and [17]. Polymatroids are multiset
analogs of matroids and appeared in the late 1960s (see [9, 13]). There are many distinct but equivalent
definitions of matroids and polymatroids, for example in terms of bases, independent sets, flats, polytopes
or rank functions. For polymatroids, the equivalence between the various definitions is given in [13]. We
will stick to the definition in terms of rank functions:

Definition 1.1 Suppose that X is a finite set (the ground set) and rk : 2X → N = {0, 1, 2, . . . }, where
2X is the set of subsets of X . Then (X, rk) is called a polymatroid if:

1. rk(∅) = 0;
2. rk is weakly increasing: if A ⊆ B then rk(A) ≤ rk(B);
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() The full version of this paper is arXiv:0908.2988.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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3. rk is submodular: rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B) for all A,B ⊆ X .

If moreover rk({x}) ≤ 1 for every x ∈ X , then (X, rk) is called a matroid.

An isomorphism ϕ : (X, rkX) → (Y, rkY ) is a bijection ϕ : X → Y such that rkY ◦ϕ = rkX . Every
polymatroid is isomorphic to a polymatroid with ground set d = {1, 2, . . . , d} for some nonnegative
integer d. The rank of a polymatroid (X, rk) is rk(X).

Our matroid notations will receive the subscript M, and our polymatroid notations the subscript PM. We
will write (P)M(d, r) when we want to refer to both in parallel.

Let S(P)M(d, r) be the set of all (poly)matroids with ground set d of rank r, A function f on S(P)M(d, r)

is a (poly)matroid invariant if f
(
(d, rk)

)
= f

(
(d, rk′)

)
whenever (d, rk) and (d, rk′) are isomorphic. Let

Ssym
(P)M(d, r) be the set of isomorphism classes in S(P)M(d, r). Invariant functions on S(P)M(d, r) corre-

spond to functions on Ssym
(P)M(d, r). Let Z(P)M(d, r) and Zsym

(P)M(d, r) be the Z-modules freely generated
by the symbols 〈rk〉 for rk in S(P)M(d, r) and Ssym

(P)M(d, r) respectively. For an abelian group A, every

function f : S
(sym)
(P)M (d, r)→ A extends uniquely to a group homomorphism Z

(sym)
(P)M (d, r)→ A.

To a (poly)matroid (d, rk) one can associate its base polytope Q(rk) in Rd (see Definition 2.2). For
d ≥ 1, the dimension of this polytope is≤ d− 1. The indicator function of a polytope Π ⊆ Rd is denoted
by [Π] : Rd → Z. Let P(P)M(d, r) be the Z-module generated by all [Q(rk)] with (d, rk) ∈ S(P)M(d, r).
We also define an analogue P sym

P(M)(d, r) by a certain pushout (see Section 6).

Definition 1.2 Suppose that A is an abelian group. A function f : S(P)M(d, r)→ A is strongly valuative
if there exists a group homomorphism f̂ : P(P)M(d, r)→ A such that for all (d, rk) ∈ S(P)M(d, r),

f
(
(d, rk)

)
= f̂([Q(rk)]).

Many interesting functions on matroids are valuative. Among these is the Tutte polynomial, one of
the most important matroid invariants [5, 7]. Other valuative functions on matroids include the quasi-
symmetric function F for matroids of Billera, Jia and Reiner introduced in [3], and the first author’s
quasi-symmetric function G introduced in [8]. Speyer’s invariant defined in [19] usingK-theory is strictly
speaking not valuative, but its composition with a certain automorphism of Zsym

∗M (d, r) is valuative. Val-
uative invariants and additive invariants can be useful for deciding whether a given matroid polytope has
a decomposition into smaller matroid polytopes (see the discussion in [3, Section 7]). Matroid polytope
decompositions appeared in the work of Lafforgue ([14, 15]) on compactifications of a fine Schubert cell
in the Grassmannian associated to a matroid.

It follows from Definition 1.2 that the dual P(P)M(d, r)∨ = HomZ(P(P)M(d, r),Z) is the space of all
Z-valued valuative functions on S(P)M(d, r). Likewise P sym

(P)M(d, r)∨ is the space of all Z-valued valuative

invariants. Let p(sym)
(P)M (d, r) be the rank of P (sym)

(P)M (d, r).
We will give explicit bases for each of the spaces P(P)M(d, r) and P sym

(P)M(d, r) and their duals (see
Theorems 5.1,6.1, Corollaries 5.3, 6.2). From these we obtain the following formulas:

Theorem 1.3

a. psym
M (d, r) =

(
d
r

)
and

∑

0≤r≤d
psym

M (d, r)xd−ryr =
1

1− x− y .
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b. psym
PM (d, r) =

{ (
r+d−1
r

)
if d ≥ 1 or r ≥ 1;

1 if d = r = 0
and

∞∑

r=0

∞∑

d=0

psym
PM (d, r)xdyr =

1− x
1− x− y .

c.
∑

0≤r≤d

pM(d, r)

d!
xd−ryr =

x− y
xe−x − ye−y .

d. pPM(d, r) =

{
(r + 1)d − rd if d ≥ 1 or r ≥ 1;
1 if d = r = 0,

and
∞∑

d=0

∞∑

r=0

pPM(d, r)xdyr

d!
=
ex(1− y)

1− yex .

In particular, the following theorem, which is a corollary of Corollary 6.3, proves a conjecture of the
first author in [8]:

Theorem 1.4 The invariant G is universal for all valuative (poly)matroid invariants, i.e., the coefficients
of G span the vector space of all valuative (poly)matroid invariants with values in Q.

Definition 1.5 Suppose that d > 0. A valuative function f : S(P)M(d, r) → A is said to be additive, if
f
(
(d, rk)

)
= 0 whenever the dimension of Q(rk) is < d− 1.

In Sections 8 and 9 we construct bigraded modules T(P)M and T sym
(P)M such that T(P)M(d, r)∨ is the

space of all additive functions on S(P)M(d, r) and T sym
(P)M(d, r)∨ is the space of all additive invariants. Let

t(P)M(d, r) be the rank of T(P )M (d, r) and tsym
(P )M (d, r) be the rank of T sym

(P )M (d, r). Then we have the
following formulas:

Theorem 1.6

a.
∏

0≤r≤d
(1− xd−ryr)tsymM (d,r) = 1− x− y.

b.
∏

r,d

(1− xdyr)tsymPM (d,r) =
1− x− y

1− y .

c.
∑

r,d

tM(d, r)

d!
xd−ryr = log

(
x− y

xe−x − ye−y
)

.

d. tPM(d, r) =

{
rd−1 if d ≥ 1
0 if d = 0, and

∑

r,d

tPM(d, r)

d!
xdyr = log

(ex(1− y)

1− yex
)
.

2 Polymatroids and their polytopes
By a polyhedron we will mean a finite intersection of closed half-spaces. A polytope is a bounded polyhe-
dron. It is convenient to have a polyhedral analogue of polymatroid polytopes, so we make the following
definition.

Definition 2.1 A function 2X → Z ∪ {∞} is called a megamatroid if it has the following properties:

1. rk(∅) = 0;
2. rk(X) ∈ Z;
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3. rk is submodular: if rk(A), rk(B) ∈ Z, then rk(A∪B), rk(A∩B) ∈ Z and rk(A∪B)+rk(A∩B) ≤
rk(A) + rk(B).

Obviously, every matroid is a polymatroid, and every polymatroid is a megamatroid. The rank of a
megamatroid (X, rk) is the integer rk(X). We will use notations for megamatroids analogous to our
notations for (poly)matroids but with the subscript MM. We will use the subscript ∗M and say “∗matroid”
when we want to refer to megamatroids or polymatroids or matroids in parallel.

Definition 2.2 For a megamatroid (d, rk), we define its base polyhedronQ(rk) as the set of all (y1, . . . , yd) ∈
Rd such that y1 + y2 + · · ·+ yd = rk(X) and

∑
i∈A yi ≤ rk(A) for all A ⊆ X .

If rk is a polymatroid then Q(rk) is a polytope, called the base polytope of rk. In fact Q(rk) is always
nonempty. The base polytope of a polymatroid (d, rk) of rank r is contained in the simplex

∆PM(d, r) = {(y1, . . . , yd) ∈ Rd | y1, . . . , yd ≥ 0, y1 + y2 + · · ·+ yd = r}

and the base polytope of a matroid (d, rk) of rank r is contained in the hypersimplex

∆M(d, r) = {(y1, . . . , yd) ∈ Rd | 0 ≤ y1, . . . , yd ≤ 1, y1 + y2 + · · ·+ yd = r}.

The next theorem generalises a theorem of Gelfand-Goresky-MacPherson-Serganova [10] on matroids.

Theorem 2.3 A convex polyhedron contained in y1 + · · ·+ yd = r equals Q(M) for some megamatroid
M if and only if for every face F of Π, the linear hull lhull(F ) is of the form z + W where z ∈ Zd and
W is spanned by vectors of the form ei − ej .

Polymatroid polyhedra are, up to translation, the lattice polytopes among the generalized permutohedra
of [18] or the submodular rank tests of [16].

3 The valuative property
There are essentially two definitions of the valuative property in the literature, which we will refer to as
the strong valuative and the weak valuative properties. The equivalence of these definitions is shown in
[12] and [20] when valuations are defined on sets of polyhedra closed under intersection. We show their
equivalence for megamatroid polytopes, which are not such a set.

Definition 3.1 A megamatroid polyhedron decomposition is a decomposition Π = Π1 ∪ Π2 ∪ · · · ∪ Πk

such that Π,Π1, . . . ,Πk are megamatroid polyhedra, and Πi ∩Πj is empty or contained in a proper face
of Πi and of Πj for all i 6= j.

A megamatroid polyhedron decomposition Π = Π1∪ · · ·∪Πk is a (poly)matroid polytope decomposition
if Π,Π1, . . . ,Πk are (poly)matroid polytopes.

For a megamatroid polyhedron decomposition Π = Π1 ∪ Π2 ∪ · · · ∪ Πk we define ΠI =
⋂
i∈I Πi if

I ⊆ {1, 2, . . . , k}, and Π∅ = Π. Define

mval(Π; Π1, . . . ,Πk) =
∑

I⊆{1,2,...,k}
(−1)|I|mI ∈ ZMM(d, r),

where mI = 〈rkI〉 if rkI is the megamatroid with Q(rkI) = ΠI , and mI = 0 if ΠI = ∅.
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Definition 3.2 A homomorphism of abelian groups f : Z∗M(d, r) → A is called weakly valuative if for
every megamatroid polyhedron decomposition Π = Π1 ∪Π2 ∪ · · · ∪Πk we have

f(mval(Π; Π1, . . . ,Πk)) = 0.

For a polyhedron Π in Rd, let [Π] denote its indicator function. Define PMM(d, r) as the Z-module
generated by all [Q(rk)], where rk lies in SMM(d, r). There is a natural Z-module homomorphism

Ψ∗M : Z∗M(d, r)→ P∗M(d, r)

such that Ψ∗M(〈rk〉) = [Q(rk)] for all rk ∈ S∗M(d, r).

Definition 3.3 A homomorphism of groups f : Z∗M(d, r) → A is strongly valuative if there exists a
group homomorphism f̂ : P∗M(d, r)→ A such that f = f̂ ◦Ψ∗M.

The map Ψ∗M has the weak valuative property, which shows that the strong valuative property implies the
weak valuative property. In fact the two valuative properties are equivalent, and in view of this we may
speak of the valuative property.

Theorem 3.4 A homomorphism f : Z∗M(d, r) → A of abelian groups is weakly valuative if and only if
it is strongly valuative.

4 Decompositions into cones
A chain of length k =: length(X) in d is X : ∅ ⊂ X1 ⊂ · · · ⊂ Xk−1 ⊂ Xk = d (here ⊂ denotes proper
inclusion). If d > 0 then every chain has length ≥ 1, but for d = 0 there is exactly one chain, namely ∅ =
0, and this chain has length 0. For a chainX of length k and a k-tuple r = (r1, r2, . . . , rk) ∈ (Z∪{∞})k,
we define a megamatroid polyhedron

RMM(X, r) =
{

(y1, . . . , yd) ∈ Rd
∣∣∣

d∑

i=1

yi = rk, ∀j
∑

i∈Xj

yi ≤ rj
}
.

We will always use the conventions r0 = 0, X0 = ∅. Note that the polytopes RMM(X, r) are full-
dimensional cones in {∑d

y=1 yi = r}.
The next theorem is an analogue of the Brianchon-Gram Theorem [4, 11] for megamatroid polytopes.

Theorem 4.1 For any megamatroid rk : 2d → Z ∪ {∞} we have

[Q(rk)] =
∑

X

(−1)d−length(X)[RMM(X, (rk(X1), . . . , rk(Xk)))].

Example 4.2 Consider the case where d = 3 and r = 3, and rk is defined by rk({1}) = rk({2}) =
rk({3}) = 2, rk({1, 2}) = rk({2, 3}) = rk{(1, 3}) = 3, rk({1, 2, 3}) = 4. The right of Figure 1 depicts
the decomposition using the Brianchon-Gram theorem of a polytopeQε(rk), which is defined by a certain
perturbation of the inequalities definingQ(rk). Note how the summands in the decomposition correspond
to the faces of Qε(rk). In the limit where the perturbation approaches 0, Qε(rk) tends to Q(rk) and we
obtain the left of Figure 1. This is exactly the decomposition in Theorem 4.1. In this decomposition, the
summands do not correspond bijectively to the faces of Q(rk).

The dashed triangle is the triangle defined by y1, y2, y3 ≥ 0, y1 + y2 + y3 = 4.
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Fig. 1: At left, a decomposition of Q(rk) as in Theorem 4.1. At right, a decomposition of a polytope Qε(rk).

5 Valuations
Suppose that d ≥ 1. Let pMM(d, r) be the set of all pairs (X, r) such that X is a chain of length k
(1 ≤ k ≤ d) and r = (r1, r2, . . . , rk) is an integer vector with rk = r. We define R(P)M(X, r) =
RMM(X, r)∩∆(P)M(d, r). If R(P)M(X, r) is nonempty, then it is a (poly)matroid base polytope. Define
pPM(d, r) ⊆ pMM(d, r) as the set of all pairs (X, r) with 0 ≤ r1 < · · · < rk = r. Let pM(d, r) denote
the set of all pairs (X, r) ∈ pMM(d, r) such that r = (r1, . . . , rk) for some k (1 ≤ k ≤ d),

0 ≤ r1 < r2 < · · · < rk = r

and
0 < |X1| − r1 < |X2| − r2 < · · · < |Xk−1| − rk−1 ≤ |Xk| − rk = d− r.

For d = 0, we define pMM(0, r) = pPM(0, r) = pM(0, r) = ∅ for r 6= 0 and pMM(0, 0) = pPM(0, 0) =
pM(0, 0) = {(∅ ⊆ 0, ())}.
Theorem 5.1 The group P∗M(d, r) is freely generated by the basis

{
[R∗M(X, r)]

∣∣ (X, r) ∈ p∗M(d, r)
}
.

Note that the basis of this theorem is a generating set by Theorem 4.1.
Suppose that X is a chain of length k and r = (r1, . . . , rk) is an integer vector with rk = r. Define a

homomorphism sX,r : ZMM(d, r)→ Z by

sX,r(rk) =

{
1 if rk(Xj) = rj for j = 1, 2, . . . , k,
0 otherwise.

Proposition 5.2 The homomorphism sX,r is valuative.

Theorem 5.3 The group P(P)M(d, r)∨ is freely generated by the basis
{
sX,r : (X, r) ∈ p(P)M(d, r)

}
.

If X is not a maximal chain, then sX,r is a linear combination of functions of the form sX′,r′ where
X ′ is a maximal chain. The set of such functions sX′,r′ appeared as the coordinates of the function H
defined in [1, §6], which was introduced there as a labeled analogue of G.
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6 Valuative invariants
Let Y∗M(d, r) be the group generated by all 〈rk〉−〈rk ◦σ〉where rk : 2d → Z∪{∞} is a ∗matroid of rank
r and σ is a permutation of d. We define Zsym

∗M (d, r) = Z∗M(d, r)/Y∗M(d, r). Let π∗M : Z∗M(d, r) →
Zsym
∗M (d, r) be the quotient homomorphism. If rkX : 2X → Z∪{∞} is any ∗matroid, then we can choose

a bijection ϕ : d → X , where d is the cardinality of X . Let r = rkX(X). The image of 〈rkX ◦ϕ〉 in
Zsym
∗M (d, r) does not depend on ϕ, and will be denoted by [rkX ]. The ∗matroids (X, rkX) and (Y, rkY )

are isomorphic if and only if [rkX ] = [rkY ]. So we may think of Zsym
∗M (d, r) as the free group generated

by all isomorphism classes of rank r ∗matroids on sets with d elements.
Let P sym

(P)M(d, r) be the pushout of the diagram

Z(P)M(d, r)
π(P)M //

Ψ(P)M

��

Zsym
(P)M(d, r)

Ψsym
(P)M

��
P(P)M(d, r)

ρ(P)M

// P sym
(P)M(d, r)

. (1)

Then the dual space P sym
(P)M(d, r)∨ is exactly the set of all Z-valued valuative (poly)matroid invariants.

Define psym
∗M (d, r) as the set of all pairs (X, r) ∈ p∗M(d, r) such that everyXj is of the form {1, 2, . . . , i}.

Theorem 6.1 The Z-module P sym
?M (d, r) is freely generated by all ρ?M([R?M(X, r)]) with (X, r) ∈

psym
?M (d, r).

The matroid polytopes RM(X, r) with (X, r) ∈ psym
?M (d, r) are the polytopes of Schubert matroids.

Schubert matroids were first described by Crapo [6], and have since arisen in several contexts, prominent
among these being the stratification of the Grassmannian into Schubert cells [2, §2.4].

For (X, r) ∈ psym
MM(d, r), define a homomorphism ssym

X,r : ZMM(d, r)→ Z by

ssym
X,r =

∑

σX

sσX,r

where the sum is over all chains σX in the orbit of X under the action of the symmetric group.

Theorem 6.2 The Q-vector space P sym
(P)M(d, r)∨ ⊗Z Q of valuations Zsym

(P)M(d, r)→ Q has a basis given
by the functions ssym

X,r for (X, r) ∈ psym
(P)M(d, r).

For a sequence α = (α1, . . . , αd) of nonnegative integers with |α| = ∑i αi = r, we define
uα = sX,r : Zsym

(P)M(d, r)→ Z, whereXi = i for i = 1, 2, . . . , r and r = (α1, α1+α2, . . . , α1+· · ·+αd).

Corollary 6.3 The Q-vector space P sym
PM (d, r)∨⊗ZQ of valuations Zsym

PM (d, r)→ Q has a Q-basis given
by the functions uα, where α runs over all sequences (α1, . . . , αd) of nonnegative integers with |α| = r.

Corollary 6.4 The Q-vector space P sym
M (d, r)∨⊗ZQ of valuations Zsym

M (d, r)→ Q has a Q-basis given
by all functions uα where α runs over all sequences (α1, . . . , αd) ∈ {0, 1}d with |α| = r.
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1 3 3

3 3 6

X : {1, 2, 3} X : {1, 2} ⊂ {1, 2, 3} X : {1} ⊂ {1, 2, 3}
r = (2) r = (1, 2) r = (1, 2)

X : {1} ⊂ {1, 2, 3} X : {1, 2} ⊂ {1, 2, 3} X : {1} ⊂ {1, 2} ⊂ {1, 2, 3}
r = (0, 2) r = (0, 2) r = (0, 1, 2)

Fig. 2: A polymatroid example of Theorems 5.1 and 6.1.

Example 6.5 Figures 2 and 3 are examples of both Theorems 5.1 and 6.1 for matroids in the cases
(d, r) = (3, 2) and (d, r) = (4, 2), respectively. At top left are the polyhedra ∆(P)M(d, r), containing all
the (poly)matroid base polytopes. At top right are the polytopes R(X, r) for (X, r) ∈ psym

(P)M(d, r), and at
bottom the corresponding pairs (X, r).

The symmetric group Σd acts on ∆d by permuting the coordinates. If Σd acts on the generatorsR(X, r)
with (X, r) ∈ p(P)M(d, r), then we get all R(X, r) with (X, r) ∈ p(P)M(d, r). In the figure, we have
written under each polytope the cardinality of its Σd-orbit.

7 Hopf algebra structures
Define Z∗M =

⊕
d,r Z∗M(d, r), and in a similar way define Zsym

∗M , P∗M, and P sym
∗M . We can view Zsym

∗M
as the Z-module freely generated by all isomorphism classes of ∗matroids. In this section we will only
speak of the megamatroid objects; in every case, there are analogous matroid and polymatroid objects,
which are substructures.

If rk1 : 2d → Z ∪ {∞} and rk2 : 2e → Z ∪ {∞} then we define rk1� rk2 : 2d+e → Z ∪ {∞} by

(rk1� rk2)(A) = rk1(A ∩ d) + rk2({i ∈ e | d+ i ∈ A})

for any set A ⊆ d+ e. Note that � is not commutative. We have a multiplication ∇ : ZMM ⊗Z ZMM →
ZMM defined by∇(〈rk1〉 ⊗ 〈rk2〉) = 〈rk1� rk2〉, which makes ZMM(d, r) into an associative (noncom-
mutative) ring with 1. The multiplication also respects the bigrading of ZMM(d, r). The unit η : Z →
ZMM(d, r) is given by 1 7→ 〈rk0〉 where rk0 : 20 → Z ∪ {∞} is the unique megamatroid defined by
rk(∅) = 0.

Next, we define a comultiplication for ZMM. Suppose thatX = {i1, i2, . . . , id} is a set of integers with
i1 < · · · < id and rk : 2X → Z ∪ {∞} is a megamatroid. We define a megamatroid r̂k : 2d → Z ∪ {∞}
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X : {1, 2, 3, 4} X : {1, 2} ⊂ {1, 2, 3, 4} X : {1, 2, 3} ⊂ {1, 2, 3, 4}
r = (2) r = (1, 2) r = (1, 2)

X : {1} ⊂ {1, 2, 3, 4} X : {1, 2} ⊂ {1, 2, 3, 4} X : {1} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4}
r = (0, 2) r = (0, 2) r = (0, 1, 2)

Fig. 3: A matroid example of Theorems 5.1 and 6.1.

by r̂k(A) = rk({ij | j ∈ A}). If rk : 2X → Z ∪ {∞} is a megamatroid and B ⊆ A ⊆ X then we define
rkA/B : 2A\B → Z ∪ {∞} by rkA/B(C) = rk(B ∪ C) − rk(B) for all C ⊆ A \ B. We also define
rkA := rkA/∅ and rk/B = rkX/B .

We now define ∆ : ZMM → ZMM ⊗Z ZMM by

∆(〈rk〉) =
∑

A⊆d; rk(A)<∞
〈r̂kA〉 ⊗ 〈r̂k/A〉.

where A runs over all subsets of d for which rk(A) is finite. This comultiplication is coassociative, but
not cocommutative. If rk : 2d → Z∪{∞} is a megamatroid, then the counit is defined by ε(〈rk〉) = 1 (if
d = 0), 0 (otherwise). We omit here the definition of the antipode S.

It is well-known that Zsym
M has the structure of a Hopf algebra over Z. In fact we have that Zsym

PM has a
Hopf algebra structure, with Zsym

M as a Hopf subalgebra. This structure is defined analogously to the one
on ZMM above, replacing each megamatroid by its isomorphism class: e.g. multiplication is given by the
direct sum of megamatroids, and is now commutative. The map πMM of (1) is a Hopf algebra morphism.

The space PMM inherits a Hopf algebra structure from ZMM. Most of this structure can be defined in
the expected fashion, but the coproduct requires some care. We define ∆ : PMM → PMM ⊗ PMM by

∆([RMM(X, r)]) =
k∑

i=0

[RMM
̂(Xi, ri)]⊗ [RMM

̂(Xi, ri)].

Since the RMM(X, r) with (X, r) ∈ pMM =
⋃
d,r pMM(d, r) form a basis of PMM, this is sufficient to

linearly extend. From Theorem 4.1 one can check that (ΨMM ⊗ΨMM)⊗∆ = ∆ ◦ΨMM.
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The Hopf algebra structure on PMM naturally induces a Hopf algebra structure on P sym
MM such that ρMM

and Ψsym
MM are Hopf algebra homomorphisms.

8 Additive valuations
For 0 ≤ e ≤ d we define P∗M(d, r, e) ⊆ P∗M(d, r) as the span of all [Π] where Π ⊆ Rd is a ∗matroid
polytope of dimension ≤ d − e. We have P∗M(0, r, 0) = P∗M(0, r) and P∗M(d, r, 1) = P∗M(d, r) for
d ≥ 1. These subgroups form a filtration

· · · ⊆ P∗M(d, r, 2) ⊆ P∗M(d, r, 1) ⊆ P∗M(d, r, 0) = P∗M(d, r).

Define P ∗M(d, r, e) := P∗M(d, r, e)/P∗M(d, r, e + 1), and T?M(d, r) = P ?M(d, r, 1). The image of
[Q(M)] in T∗M(d, r) is zero if and only if M is connected. The associated graded algebra P ∗M =⊕

d,r,e P ∗M(d, r, e) has an induced Hopf algebra structure.
Define

P ∗M(X) =
⊕

r1,r2,...,re∈Z
T∗M(|X1|, r1)⊗ · · · ⊗ T∗M(|Xe|, re).

There is a group homomorphism φX : P ∗M(X) → P ∗M(d, r, e). which takes the classes of a list of
∗matroids to the class of their direct sum. The next theorem essentially asserts a unique decomposition of
∗matroids into connected components.

Theorem 8.1 We have the isomorphism
(∑

X

φX

)
:

⊕

X=(X1,X2,...,Xe)
d=X1tX2t···tXe;X1,...,Xe 6=∅

P ∗M(X)→
⊕

r∈Z
P ∗M(d, r, e) (2)

If d ≥ 1, let tPM(d, r) be the set of all pairs (X, r) ∈ pPM(d, r) such that r1 > 0, and d 6∈ Xk−1,
where k is the length of X . Similarly, if d ≥ 2, let tM(d, r) be the set of all pairs (X, r) ∈ tM(d, r) such
that r1 > 0, |Xk−1| − rk−1 < d− r, and d 6∈ Xk−1.

Theorem 8.2 The group T(P)M(d, r) is freely generated by all [R(P)M(X, r)] with (X, r) ∈ t(P)M(d, r).

9 Additive invariants
The algebra P sym

?M also has a natural filtration:

· · · ⊆ P sym
?M (d, r, 2) ⊆ P sym

?M (d, r, 1) ⊆ P sym
?M (d, r, 0) = P sym

?M (d, r).

Here P sym
?M (d, r, e) is spanned by the indicator functions of all ∗matroid base polytopes of rank r and di-

mension d−e. Define P
sym

?M (d, r, e) = P sym
∗M (d, r, e)/P sym

∗M (d, r, e+1). Let P
sym

?M =
⊕

d,r,e P
sym

?M (d, r, e)
be the associated graded algebra.

Define T sym
?M =

⊕
d,r P

sym

?M (d, r, 1). The following theorem follows from Theorem 8.1.

Theorem 9.1 The algebra P
sym

?M is the free symmetric algebra S(T sym
?M ) on T sym

?M , and there exists an
isomorphism

Se(T sym
?M ) ∼=

⊕

d,r

P
sym

?M (d, r, e). (3)

Corollary 9.2 The algebra P sym
?M is a polynomial ring over Z.
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10 Invariants as elements in free algebras
Let

(P sym
∗M )# :=

⊕

d,r

P sym
∗M (d, r)∨

be the graded dual of P sym
∗M . Let m?M =

⊕
d,r P

sym
∗M (d, r, 1). Then we have m2

?M =
⊕

d,r P
sym
∗M (d, r, 2)

and T sym
∗M = m∗M/m2

∗M. The graded dual m#
?M can be identified with

(P sym
?M )#/P sym

∗M (0, 0) ∼=
∞⊕

d=1

⊕

r

P sym
?M (d, r)∨.

So m#
PM ⊗Z Q will be identified with the ideal (u0, u1, . . . ) of Q〈u0, u1, . . . 〉 and m#

M ⊗Z Q will be
identified with the ideal (u0, u1) of Q〈u0, u1〉. The graded dual (T sym

PM )# ⊗Z Q is a subalgebra (without
1) of the ideal (u0, u1, . . . ), and (T sym

PM )# ⊗Z Q is a subalgebra of (u0, u1).

Theorem 10.1 Let u0, u1, u2, . . . be indeterminates, where ui has bidgree (1, i). We have the following
isomorphisms of bigraded associative algebras over Q:

a. The space (P sym
M )∨ ⊗Z Q is isomorphic to Q〈〈u0, u1〉〉, the completion (in power series) of the free

associative algebra generated by u0, u1.

b. The space (P sym
PM )∨ ⊗Z Q is isomorphic to Q〈〈u0, u1, u2, . . .〉〉.

c. The space (T sym
M )∨ ⊗Z Q is isomorphic to Q{{u0, u1}}, the completion of the free Lie algebra

generated by u0, u1.

d. The space (T sym
PM )∨ ⊗Z Q is isomorphic to Q{{u0, u1, u2, . . .}}.

Proposition 10.2 The Hopf algebra P sym
PM ⊗Z Q is isomorphic to the ring QSym of quasi-symmetric

functions over Q.

If we identify P sym
PM ⊗Z Q with QSym , then G is equal to Ψsym

PM .
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317–319.

[5] T. H. Brilawski, The Tutte-Grothendieck ring, Algebra Universalis 2 (1972), 375–388.

[6] H. Crapo, Single-element extensions of matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965),
55–65.

[7] H. Crapo, The Tutte polynomial, Aequationes Math. 3 (1969), 211–229.

[8] H. Derksen, Symmetric and quasi-symmetric functions associated to polymatroids, preprint,
arXiv:0801.4393.

[9] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: R. Guy, H. Hanani,
N. Sauer, J. Schonheim (eds.), Combinatorial Structures and Their Applications, Gordon and
Breach, New York, 1970, 69–87.

[10] I. M. Gel’fand, M. Goresky, R. MacPherson, V. Serganova, Combinatorial geometries, convex poly-
hedra and Schubert cells, Adv. in Math. 63 (1987), 301–316.

[11] J. P. Gram, Om rumvinklerne i et polyeder, Tidsskrift for Math. (Copenhagen) (3) 4 (1874), 161–163.

[12] H. Groemer, On the extension of additive functionals on classes of convex sets, Pacific J. Math. 75
(1978), no. 2, 397–410.

[13] J. Herzog, T. Hibi, Discrete polymatroids, J. Algebraic Combinatorics 16 (2002), no. 2, 239–268.
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Abstract.

It is well-known that Catalan numbers Cn = 1
n+1

(
2n
n

)
count the number of dominant regions in the Shi arrangement

of type A, and that they also count partitions which are both n-cores as well as (n + 1)-cores. These concepts have
natural extensions, which we call here the m-Catalan numbers and m-Shi arrangement. In this paper, we construct
a bijection between dominant regions of the m-Shi arrangement and partitions which are both n-cores as well as
(mn+ 1)-cores.

We also modify our construction to produce a bijection between bounded dominant regions of them-Shi arrangement
and partitions which are both n-cores as well as (mn − 1)-cores. The bijections are natural in the sense that they
commute with the action of the affine symmetric group.

Résumé.

Il est bien connu que les nombres de Catalan Cn = 1
n+1

(
2n
n

)
comptent non seulement le nombre de régions domi-

nantes dans le Shi arrangement de type A mais aussi les partitions qui sont à la fois n-coeur et (n + 1)-coeur. Ces
concepts ont des extensions naturelles, que nous appelons ici les nombres m-Catalan et le m-Shi arrangement. Dans
cet article, nous construisons une bijection entre régions dominantes du m-Shi arrangement et les partitions qui sont
à la fois n-coeur et (nm+ 1)-coeur.

Nous modifions également notre construction pour produire une bijection entre régions dominantes bornées dum-Shi
arrangement et les partitions qui sont à la fois n-coeur et (mn− 1)-coeur. Ces bijections sont naturelles dans le sens
où elles commutent avec l’action du groupe affine symétrique.

Keywords: cores, symmetric group, Shi arrangement, Catalan numbers

1 Introduction
Let ∆ be the root system of type An−1, with Weyl group W , and let m be a positive integer. Then let Smn
be the arrangement of hyperplanes Hα,k = {x | 〈α | x〉 = k for −m + 1 ≤ k ≤ m and α ∈ ∆+}. Smn
is the mth extended Shi arrangement of type An−1, called here the m-Shi arrangement.

In Fishel and Vazirani (2010, 2009), the authors constructed and analyzed bijections between certain
regions of Smn and certain n-cores. In this extended abstract, we summarize the results from both papers.
We will first construct and discuss a bijection between dominant regions of Smn , and partitions that are

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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n-cores as well as (mn+1)-cores. We will then modify the construction to give a direct bijection between
bounded dominant regions and partitions which are simultaneously n-cores and (mn− 1)-cores.

Our bijection is W -equivariant in the following sense. In each connected component of Smn there is
exactly one m-minimal alcove, the alcove closest to the fundamental alcove A0, and in each bounded
connected component there is exactly one m-maximal alcove, the alcove farthest from the fundamental
alcove A0. Since the affine Weyl group W acts freely and transitively on the set of alcoves, there is a
natural way to associate an element w ∈ W = Ŝn to any alcove w−1A0, and to the m-minimal and
m-maximal alcoves in particular. There is also a natural action of Ŝn on partitions, whereby the orbit of
the empty partition ∅ is precisely the n-cores. We will show that when w is associated to an m-minimal
alcove, then w∅ is an (mn+ 1)-core as well as an n-cores and that all such (mn+ 1)-cores that are also
n-cores can be obtained this way. We will also show the analogous result for m-maximal alcoves and
(mn− 1)-cores that are also n-cores.

Roughly speaking, to each n-core λ we can associate an integer vector ~n(λ) whose entries sum to zero,
as in Garvan et al. (1990). When λ is also an (mn+ 1)-core, these entries satisfy certain inequalities. On
the other hand, these are precisely the inequalities that describe when a dominant alcove is m-minimal.
We λ is an (mn − 1)-core, the inequalites which must be satisfied by the entries of the vector exactly
describe when a dominant alcove is m-maximal.

As a consequence, we show an n-core λ is automatically an (mn + 1)-core if εi(λ) ≤ m for all
0 ≤ i < n, where εi(λ) counts the number of removable boxes of residue i. We also show the related
result, that an n-core λ is automatically an (mn − 1)-core if ϕi(λ) ≤ m for all 0 ≤ i < n, where ϕi(λ)
counts how many addable boxes of residue i the partition λ has.

The article is organized as follows. In Section 2 we introduce notation and recall facts about Coxeter
groups, root systems of type A, and inversion sets for elements of the affine symmetric group. Section 3
explains how the position of w−1A0 relative to our system of affine hyperplanes is captured by the action
of w on affine roots and that m-minimality and m-maximality can each be expressed by certain inequal-
ities on the entries of w(0, 0, . . . , 0). In Section 4 we review facts about core partitions and in particular
remind the reader how to associate an element of the root lattice to each core. Our main theorems, the
bijection between dominant regions of them-Shi arrangement and special cores and the bijection between
bounded dominant regions of the m-Shi arrangement and other special cores, is in Section 5. Section 6
describes the effect of a related bijection on m-minimal and m-maximal alcoves. In Section 7, we derive
further results that refine our bijection between alcoves and cores and that involve Narayana numbers. We
also characterize alcove walls in terms of addable and removable boxes.

2 Preliminaries
Please also see Fishel and Vazirani (2010, 2009). Let ∆ be the root system for type An−1, with Weyl
group the symmetric group Sn. Let ∆̃ be the affine root system of type A(1)

n−1, with null root δ, and with
Weyl group the affine symmetric group Ŝn. See Kac (1990) for more details. ∆ spans a Euclidean space
V with inner product 〈 | 〉. Let Q ⊆ V denote the root lattice for ∆. Let m be a positive integer. The
m-Shi arrangement is the collection of hyperplanes

Smn = {Hα,k | α ∈ ∆+,−m < k ≤ m},
where Hα,k = {v ∈ V | 〈v | α〉 = k}. This arrangement can be defined for all types; here we are
concerned with type A.
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The arrangement dissects V into connected components we call regions. We refer to regions which are
in the dominant chamber of V as dominant regions. Each connected component of V \ ⋃α∈∆+

k∈Z
Hα,k is

called an alcove and the fundamental alcove is denoted A0.
We denote the (closed) half spaces H+

α,k = {v ∈ V | 〈v | α〉 ≥ k} and H−α,k = {v ∈ V | 〈v | α〉 ≤ k}.
Note A0 is the interior of H−θ,1 ∩

⋂n−1
i=1 H

+
αi,0

and the dominant chamber is
⋂n−1
i=1 H

+
αi,0

.

The affine symmetric group Ŝn acts on V (preserving Q) via affine linear transformations, and acts
freely and transitively on the set of alcoves. We thus identify each alcoveA with the unique w ∈ Ŝn such
that A = wA0. We also note that we may express any w ∈ Ŝn as w = utγ for unique u ∈ Sn, γ ∈ Q,
or equivalently w = tγ′u where γ′ = u(γ). If we embed V into Rn by mapping αi to εi− εi+1, note that
γ′ = w(0, . . . , 0).

We also remind the reader that when w−1 is a minimal length right coset representative for Ŝn/Sn,
then we may write w−1 = tγ′u where u ∈ Sn and γ′ is in the dominant chamber.

For w ∈ Ŝn, we define the inversion set Inv(w) = {α ∈ ∆̃+ | w(α) ∈ ∆̃−}. Notice that the length
`(w) = |Inv(w)| for w ∈ Ŝn is just the minimal number of affine hyperplanes separating w−1A0 from
A0. We will need the following well-known proposition and corollary, both describing Inv(w) and both
proved in Fishel and Vazirani (2010).

Proposition 2.1. Let w ∈ Ŝn and α+ kδ ∈ ∆̃+. Then α+ kδ ∈ Inv(w) iff w−1A0 ⊆ H+
−α,k

Corollary 2.2. Suppose w is a minimal length left coset representative for Ŝn/Sn. Then Inv(w) consists
only of roots of the form −α + kδ, k ∈ Z>0, α ∈ ∆+. Further, if −α + kδ ∈ Inv(w) and k > 1 then
−α+ (k − 1)δ ∈ Inv(w).

3 m-minimal and m-maximal alcoves
We say an alcovewA0 ism-minimal if it is the unique alcove in its region such that `(w) is smallest. Such
alcoves are termed “representative alcoves” by Athanasiadis. We can identify each connected component
of the complement of the m-Shi arrangement with its unique m-minimal alcove.

If the region is bounded, we can also identify it with the unique alcove w′A0 contained in it such that
`(w′) is largest. In this situation we will say the alcove w′A0 is m-maximal. Note that for unbounded
regions, no such alcove exists.

See Figure 5 below for a picture of the m-maximal alcoves of type A2 for m = 1, 2.
The following proposition is useful. For a given alcove, it characterizes the affine hyperplanes contain-

ing its walls and which simple reflections flip it over those walls (by the right action). It can be found in
Shi (1987) in slightly different notation.

Proposition 3.1. Suppose wA0 ⊆ H+
α,k but wsiA0 ⊆ H−α,k

1. Then w(αi) = α− kδ.

2. Let β = w−1(0, . . . , 0) ∈ V . Then 〈β | αi〉 = −k.

Using the coordinates of V ⊆ Rn, we note k = γu(i) − γu(i+1), where w = tγu.

Remark 3.2. Note, if wA0 is m-minimal, then whenever k ∈ Z≥0 and wA0 ⊆ H+
α,k but wsiA0 ⊆ H−α,k

then we must have k ≤ m in the case α > 0 and k ≤ m− 1 in the case α < 0.
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It is easy to see that this condition is not only necessary but sufficient to describe when wA0 is m-
minimal. Together with Proposition 2.1, Proposition 3.1 says that when αi ∈ Inv(w) andw(αi) = α−kδ
then k ≤ m, and for β = w−1(0, . . . , 0) that 〈β | αi〉 ≥ −m.

Applying Remark 3.2 to positive α and alcoves in the dominant chamber, we get the following corollary.

Corollary 3.3. Suppose wA0 is in the dominant chamber and m-minimal.

1. If wA0 ⊆ H+
α,k but wsiA0 ⊆ H−α,k for some α ∈ ∆+, k ∈ Z≥0, then k ≤ m.

2. Let β = w−1(0, . . . , 0). Then 〈β | αi〉 ≥ −m, for all i, and in particular 〈β | θ〉 ≤ m+ 1.

Proof. The first statement follows directly from Proposition 3.1 and Remark 3.2. To conclude that the
second statement holds for all i, note that if k ≤ 0 then automatically k ≤ m.

It is possible to make a remark analogous to Remark 3.2 for the case of m-maximal alcoves and we
derive a corollary analogous to Corollary 3.3

Corollary 3.4. Suppose wA0 is in the dominant chamber and m-maximal.

1. If wA0 ⊆ H−α,k but wsiA0 ⊆ H+
α,k for some α ∈ ∆+, k ∈ Z≥0, then k ≤ m.

2. Let β = w−1(0, . . . , 0). Then 〈β | αi〉 ≤ m, for all i, and in particular 〈β | θ〉 ≥ −m+ 1.

4 Core partitions and their abacus diagrams
In this section we review some well-known facts about n-cores and review the useful tool of the abacus
construction. Details can be found in James and Kerber (1981).

There is a well-known bijection C : {n-cores} → Q that commutes with the action of Ŝn. One can use
the Ŝn-action to define the bijection, or describe it directly from the combinatorics of partitions via the
work of Garvan-Kim-Stanton’s ~n-vectors in Garvan et al. (1990) or of Lascoux (2001), or as described
in terms of balanced abaci as in Berg et al. (2009). Here, we will recall the description from Berg et al.
(2009) as well as remind the reader of the Ŝn-action on n-cores.

We identify a partition λ = (λ1, . . . , λr) with its Young diagram, the array of boxes with coordinates
{(i, j) | 1 ≤ j ≤ λi}. We say the box (i, j) ∈ λ has residue j − imodn, and in that case, we often refer
to it as a (j − imodn)-box. Its hook length hλ(i,j) is 1+ the number of boxes to the right of and below
(i, j).

An n-core is a partition λ such that n - hλ(i,j) for all (i, j) ∈ λ.
We say a box is removable from λ if its removal results in a partition. Equivalently its hook length is 1.

A box not in λ is addable if its union with λ results in a partition.

Claim 4.1. Let λ be an n-core. Suppose λ has a removable i-box. Then it has no addable i-boxes.
Likewise, if λ has an addable i-box it has no removable i-boxes.

Ŝn acts transitively on the set of n-cores as follows. Let λ be an n-core. Then

siλ =





λ ∪ all addable i-boxes ∃ any addable i-box,
λ \ all removable i-boxes ∃ any removable i-box,
λ else.

It is easy to check siλ is an n-core.



166 Susanna Fishel and Monica Vazirani

4.1 Abacus diagrams
We can associate to each partition λ its abacus diagram. When λ is an n-core, its abacus has a particularly
nice form, and then can be used to construct an element of Q. Each partition λ = (λ1, . . . , λr) is
determined by its hook lengths in the first column, the βk = hλ(k,1).

An abacus diagram is a diagram, with entries from Z arranged in n columns labeled 0, 1, . . . , n − 1,
called runners. The horizontal cross-sections or rows will be called levels and runner k contains the entry
labeled by rn + k on level r where −∞ < r < ∞. We draw the abacus so that each runner is vertical,
oriented with −∞ at the top and∞ at the bottom, and we always put runner 0 in the leftmost position,
increasing to runner n − 1 in the rightmost position. Entries in the abacus diagram may be circled; such
circled elements are called beads. Entries which are not circled will be called gaps. We shall say two
abaci are equivalent if they differ by adding a constant to all entries. Note, in this case we must cyclically
permute the runners so that runner 0 is leftmost. Given a partition λ its abacus is any abacus diagram
equivalent to the one obtained by placing beads at entries βk = hλ(k,1) and all j ∈ Z<0.

Remark 4.2. It is well-known that λ is an n-core if and only if its abacus is flush, that is to say whenever
there is a bead at entry j there is also a bead at j − n.

We define the balance number of an abacus to be the sum over all runners of the largest level in that
runner which contains a bead. We say that an abacus is balanced if its balance number is zero. Note that
there is a unique abacus which represents a given n-core λ for each balance number. Given a flush abacus,
that is, the abacus of an n-core λ, we can associate to it the vector whose ith entry is the largest level in
runner i − 1 which contains a bead. The sum of the entries in this vector is the balance number of the
abacus. When the abacus is balanced, we will call this vector ~n(λ), in keeping with the notation of Garvan
et al. (1990). We note that ~n(λ) ∈ Q, when we identify Q with {(a1, . . . , an) ∈ Zn |∑i ai = 0}.

We recall the following claim, which can be found in Berg et al. (2009).

Claim 4.3. The map λ 7→ ~n(λ) is an Ŝn-equivariant bijection {n-cores} → Q.

We recall here results of Anderson (2002), which describe the abacus of an n-core that is also a t-core,
for t relatively prime to n. When t = mn− 1, this takes a particularly nice form.

Proposition 4.4 (Anderson). Let λ be an n-core. Suppose t is relatively prime to n. Let M = nt−n− t.
Consider the grid of points (x, y) ∈ Z× Z with 0 ≤ x ≤ n− 1, 0 ≤ y labelled by M − xt− yn. Circle
a point in this grid if and only if its label is obtained from the first column hooklengths of λ or its label is
in Z<0. Then λ is a t-core if and only if the following three conditions hold.

1. All beads in the abacus of λ are at entries ≤ M , in other words at (x, y) with 0 ≤ x ≤ n − 1,
0 ≤ y;

2. The circled points in the grid are upwards flush, in other words if (x, y) is circled, so is (x, y − 1);

3. The circled points in the grid are flush to the right, in other words if (x, y) is circled and x ≤ n−2,
so is (x+ 1, y).

Note that the columns of this grid are exactly the runners of λ’s abacus, written out of order, with each
runner shifted up or down relative to its new left neighbor. The runners have also been truncated, which
is irrelevant given condition (1) above. This shifting is performed exactly so labels in the same row are
congruent mod t. This explains why the circles must be flush to the right as well as upwards flush.
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We will now analyze the special cases t = mn+1 and t = mn−1 to derive the conditions for a n-core
to be a mn± 1-core.

Corollary 4.5. Let λ be an n-core.

1. Then λ is an (mn+1)-core if and only if 〈~n(λ) | αi〉 ≥ −m for 0 < i < n and 〈~n(λ) | θ〉 ≤ m+1.

2. Let λ be an n-core. Then λ is an (mn− 1)-core if and only if 〈~n(λ) | αi〉 ≤ m for 0 < i < n and
〈~n(λ) | θ〉 ≥ −m+ 1.

Proof. In the notation of Proposition 4.4, in the special case t = mn+ 1, the columns of the grid are the
runners of λ’s abacus, written in reverse order. Furthermore, each runner has been shifted m units down
relative to its new left neighbor. So the condition of being flush to the right on Anderson’s grid is given by
requiring on the abacus that if the largest circled entry on runner i+ 1 is at level r then runner i must have
a circled entry at level r−m. In other words, if (a1, . . . , an) = ~n(λ), then we require ai+m−ai+1 ≥ 0,
i.e. 〈~n(λ) | αi〉 ≥ −m for 0 < i < n. Recall the 0th and (n − 1)st and runners must also have this
relationship (adding a constant to all entries in the abacus cyclically permutes the runners). This condition
becomes an + 1 +m− a1 ≥ 0, i.e. 〈~n(λ) | θ〉 ≤ m+ 1.

In the other special case, t = mn − 1, the columns of the grid are now the runners of λ’s abacus,
cyclically shifted so the 0-runner is now rightmost versus leftmost. Otherwise, the analysis is the same.

5 The bijection between cores and alcoves
Let Φ be the map

{n-cores} → {alcoves in the dominant chamber}
w∅ 7→ w−1A0,

which is Ŝn-equivariant, except for the minor technicality that the action on cores is a left action, but we
take the right action on alcoves when discussing the Shi arrangement.

Theorem 5.1. The map Φ : w∅ 7→ w−1A0 for w a minimal length left coset representative of Ŝn/Sn

induces a bijection between the set of n-cores that are also (mn + 1)-cores and the set of m-minimal
alcoves, which are in the dominant chamber of V .

Theorem 5.2. The map Φ : w∅ 7→ w−1A0 for w a minimal length left coset representative of Ŝn/Sn

induces a bijection from the set of n-cores that are also (mn− 1)-cores to the set of m-maximal alcoves
in the dominant chamber.

The first bijection is pictured below in Figure 1 and the second in Figure 2.

6 A bijection on alcoves
Although they are not an ingredient in the main theorem of this paper, the following theorems build on
the work of Section 3. They describe what the bijection wA0 7→ w−1A0 does to the m-minimal and
m-maximal alcoves. In particular, we do not limit ourselves to dominant alcoves.
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∅ ∅

Fig. 1: m-minimal alcoves w−1A0 in the dominant chamber of the m-Shi arrangement of type A2, filled with the
3-core partition w∅. On the left (m = 1), they are also 4-cores, and on the right (m = 2), they are also 7-cores.

∅ ∅

Fig. 2: m-maximal alcoves w−1A0 in the dominant chamber of the m-Shi arrangement of type A2, filled with the
3-core partition w∅. On the left (m = 1), they are also 2-cores, and on the right (m = 2), they are also 5-cores.

6.1 Effect on m-minimal alcoves
Define Am to be the m-dilation of A0:

Am = {v ∈ V | 〈v | αi〉 ≥ −m, 〈v | θ〉 ≤ m+ 1}.
Note that the set of alcoves in Am is in bijection with Q/(mn + 1)Q. Furthermore, it is easy to see by
translating (by mρ = m

2

∑
α∈∆+ α) that Q∩Am is in bijection with Q∩ (mn+ 1)A0. It is the latter that

is discussed in Lemma 7.4.1 of Haiman (1994) and studied in Athanasiadis (2005) (technically for the
co-root lattice Q∨). Taking the latter bijection into account, the second statement of Theorem 6.1 below
appears in Theorem 4.2 of Athanasiadis (2005).

Theorem 6.1. 1. The map wA0 7→ w−1A0 restricts to a bijection between alcoves in the region Am
and m-minimal alcoves.

2. The map w(0, . . . , 0) 7→ w−1A0 restricts to a bijection between Q ∩ Am and m-minimal alcoves
in the dominant chamber.

Proof. Observe Am = H−θ,m+1 ∩
⋂n−1
i=1 H

+
αi,−m can be viewed as an m-dilation of (the closure of)

A0 ⊆ H−θ,1 ∩
⋂n−1
i=1 H

+
αi,0

.
The second statement follows directly from Corollary 3.3.
A proof of the first statement can be given that is very similar to that of Propositions 3.1 and 2.1. In

Fishel and Vazirani (2010) we use those propositions to prove it.

The first part of the bijection is illustrated in Figures 3, and 4, by comparing Figure 4 to Figure 3.
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Fig. 3: wA0 for the m-minimal alcoves w−1A0 in Figure 4 below, m = 1, 2. Note wA0 ⊆ Am. Each γ ∈ Q is in
precisely one yellow/blue alcove, so this illustrates the second statement of Theorem 6.1.

Fig. 4: m-minimal alcoves in the m-Shi arrangement for m = 1 (m = 2). Dominant alcoves are shaded yellow
(and/or blue, respectively).

6.2 Effect on m-maximal alcoves

Let

am = {v ∈ V | 〈v | αi〉 ≤ m for 1 ≤ i < n, 〈v | θ〉 ≥ −m+ 1}.

Theorem 6.2. 1. The map wA0 7→ w−1A0 restricts to a bijection between alcoves in the region am
and m-maximal alcoves.

2. The map w(0, . . . , 0) 7→ w−1A0 restricts to a bijection between Q ∩ am and m-maximal alcoves
in the dominant chamber.

The proof is similar to the proof of Theorem 6.1.
The bijection is illustrated below, the first part comparing Figure 5 to Figure 6, and the second part from

restricting our attention to the lattice points.



170 Susanna Fishel and Monica Vazirani

Fig. 5: m-maximal alcoves in the m-Shi arrangement for m = 1 (m = 2). Dominant alcoves are shaded yellow
(and/or blue, respectively), whereas other m-maximal alcoves are shaded gray.

Fig. 6: wA0 for the m-maximal alcoves w−1A0 in Figure 5 above, m = 1, 2. Note
⋃
wĀ0 = am. Each γ =

w(0, . . . , 0) ∈ Q∩am is in precisely one yellow/blue alcove, so this illustrates the second statement of Theorem 6.2.

7 Alcove walls and addable and removable boxes for cores
In this section, we show how certain alcove walls correspond to addable and removable boxes in cores.
We characterize the regions counted by the Narayana numbers in terms of their corresponding cores and
explain an analagous result for bounded regions.

We will use some ideas from the theory of crystal graphs. For those readers familiar with the realization
of the basic crystal B(Λ0) of ŝln as having nodes parameterized by n-regular partitions,

siλ =

{
f̃
〈hi,wt(λ)〉
i (λ) 〈hi,wt(λ)〉 ≥ 0

ẽ
−〈hi,wt(λ)〉
i (λ) 〈hi,wt(λ)〉 ≤ 0,

where

wt(λ) = Λ0 −
∑

(x,y)∈λ
αy−xmodn, (7.1)

and hi is the co-root corresponding to αi.
Then the n-cores are exactly the Ŝn-orbit on the highest weight node, which is the empty partition ∅.
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It is well-known that siλ = µ iff siwt(λ) = wt(µ) where the action of Ŝn on the weight lattice is
given by

si(γ) = γ − 〈γ | αi〉αi.
We refer the reader to Chapters 5,6 of Kac (1990) for details on the affine weight lattice, definition of
Λ0 and so on. For computational purposes, all we need remind the reader of is that 〈Λ0 | αi〉 = δi,0 and
〈α0 | αi〉 = 2δi,0 − δi,1 − δi,n−1.

It is useful to recall the following notation from the theory of crystal graphs. In the case si removes k
boxes of residue i from the core λ, write εi(λ) = k, ϕi(λ) = 0. In the case si adds r boxes to λ to obtain
µ, write εi(λ) = 0, ϕi(λ) = r.

7.1 Narayana numbers
In this section, we add another set to the list in Theorem 1.2 of Athanasiadis (2005) of combinatorial
objects counted by generalized Narayana numbers. We further refine the enumeration of n-cores λ which
are also (mn + 1)-cores. This refinement produces the m-Narayana numbers, or generalized Narayana
numbers, Nm

n (k), which are defined in Definition 7.4 below. Recall that the (k, l)-box of the n-core λ is
referred to as an i-box if it has residue i = l − k mod n. Our refinement here is to count the number of
n-cores λ which are also (mn+1)-cores by the number of residues i such that λ has exactlym removable
i-boxes.

Remark 7.1. Equation (7.1) says that if si removes k boxes (of residue i) from λ, or adds−k boxes to λ to
obtain µ, then wt(µ) = si(wt(λ)) = wt(λ)− kαi. In either case, wt(µ) = wt(λ) + (ϕi(λ)− εi(λ))αi.

A straightforward rephrasing of Proposition 3.1 is then:

Proposition 7.2. Let λ be an n-core, k ∈ Z>0, and w ∈ Ŝn of minimal length such that w∅ = λ. Fix
0 ≤ i < n. The following are equivalent:

1. λ has k many removable i-boxes; in particular |siλ| = |λ| − k as the action of si removes those
i-boxes.

2. 〈~n(λ) | αi〉 = −k for i 6= 0, 〈~n(λ) | θ〉 = k + 1 for i = 0,

3. w−1A0 ⊆ H+
α,k, w−1siA0 ⊆ H−α,k where w−1(αi) = α− kδ.

When we rephrase Corollary 3.3 in this context, it says:

Proposition 7.3 (Corollary 3.3 restated). Suppose λ = w∅ is the n-core associated to the dominant alcove
A = w−1A0 via the bijection Φ of Section 5.

ThenA is m-minimal if and only if whenever λ has exactly k removable boxes of residue i then k ≤ m.
(And in this case, λ is also an (mn+ 1)-core.)

7.1.1 A refinement
Proposition 7.2 thus gives us another combinatorial interpretation of the m-Narayana numbers, as in
Athanasiadis (2005).

Definition 7.4. The kth m-Narayana number of type A is

Nm
n (k) =

1

nm+ 1

(
n− 1

n− k − 1

)(
mn+ 1

n− k

)
.
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Recall from Athanasiadis (2005) that Nm
n (k) is the number of dominant regions of the m-Shi arrange-

ment which have exactly k hyperplanes Hα,m separating them from A0 such that Hα,m contains a wall
of the region.

In other words, for fixed k, we count how manym-minimal alcovesA = w−1A0 satisfy that for exactly
k positive roots α, there exists an i such that w−1A0 ⊆ H+

α,m but w−1siA0 ⊆ H−α,m. It is clear that
∑

k≥0

Nm
n (k) = m-Catalan number

since each dominant m-minimal alcove gets counted once.
By Proposition 7.2 above,Nm

n (k) equivalently counts how many n-cores λ that are also (mn+1)-cores
have exactly k distinct residues i such that λ has precisely m removable i-boxes.

Corollary 7.5. Let Nm
n (k) denote the m-Narayana number of type An−1. Then

Nm
n (k) = |{λ | λ is an n-core and (mn+ 1)-core and ∃K ⊆ Z/nZ

with |K| = k such that λ has exactly m removable boxes

of residue i iff i ∈ K}|.

7.2 Bounded regions
We rephrase Equation (7.1) and Proposition 3.1 again, this time for m-maximal alcoves and bounded
regions.

Recall Remark 7.1. In the context ofm-maximal alcoves and bounded regions, Proposition 3.1 becomes

Proposition 7.6. Let λ be an n-core, k ∈ Z>0, and w ∈ Ŝn of minimal length such that w∅ = λ. Fix
0 ≤ i < n. The following are equivalent

1. ϕi(λ) = k,

2. 〈~n(λ) | αi〉 = k for i 6= 0, 〈~n(λ) | θ〉 = −k + 1 for i = 0,

3. w−1A0 ⊆ H−α,k, w−1siA0 ⊆ H+
α,k where w−1(αi) = −α+ kδ.

When we rephrase Corollary 3.4 in this context, it says:
Suppose λ = w∅ is the n-core associated to the dominant alcove A = w−1A0. Then A is m-maximal

iff whenever λ has exactly k addable boxes of residue i then k ≤ m. (And in this case, λ is also an
(mn− 1)-core.)

As a consequence, note an n-core λ is automatically an (mn− 1)-core if ϕi(λ) ≤ m for all 0 ≤ i < n.
Athanasiadis and Tzanaki (2006) define h+

k (∆,m), 0 ≤ k < n as the number of bounded dominant
regions of Smn for which exactly n− 1− k hyperplanes of the form Hα,m, α ∈ ∆+ are walls (i.e. support
a facet) of that region and do not separate it from the fundamental alcove A0.

By the definition of m-maximal, we can replace a bounded region by its unique m-maximal alcove and
consider its walls instead. In other words, to calculate h+

k (∆,m), we count how manym-maximal alcoves
A = w−1A0 satisfy that for exactly n−1−k positive roots α, there exists an i such that w−1A0 ⊆ H−α,m
but w−1siA0 ⊆ H+

α,m.
By Proposition 7.6 above, h+

k (∆,m) equivalently counts how many n-cores λ that are also (mn− 1)-
cores have exactly n− 1− k distinct residues i such that λ has precisely m addable i-boxes.
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Abstract. A tropical curve Γ is a metric graph with possibly unbounded edges, and tropical rational functions are con-
tinuous piecewise linear functions with integer slopes. We define the complete linear system |D| of a divisor D on a
tropical curve Γ analogously to the classical counterpart. We investigate the structure of |D| as a cell complex and show
that linear systems are quotients of tropical modules, finitely generated by vertices of the cell complex. Using a finite set
of generators, |D| defines a map from Γ to a tropical projective space, and the image can be modified to a tropical curve
of degree equal to deg(D). The tropical convex hull of the image realizes the linear system |D| as a polyhedral complex.

Résumé. Une courbe tropicale Γ est un graphe métrique pouvant contenir des arêtes infinies, et une fonction rationnelle
tropicale est une fonction continue linéaire par morceaux à pentes entières. Le système linéaire complet |D| d’un diviseur
D sur une courbe tropicale Γ est défini de façon analogue au cas classique. Nous étudions la structure de |D| en tant
que complexe cellulaire et montrons que les systèmes linéaires sont des quotients de modules tropicaux engendrés par un
nombre fini de sommets du complexe. Etant donné un ensemble fini de générateurs, |D| définit une application de Γ vers
un espace projectif tropical, dont l’image peut être modifiée en une courbe tropicale de degré égal à deg(D). L’enveloppe
convexe tropicale de l’image réalise le système linéaire |D| en tant que complexe polyédral.

Keywords: tropical curves, divisors, linear systems, canonical embedding, chip-firing games, tropical convexity

1 Introduction
An abstract tropical curve Γ is a connected metric graph with possibly unbounded edges. A divisor D on Γ
is a formal finite Z-linear combination D =

∑
x∈ΓD(x) ·x of points of Γ. The degree of a divisor is the sum

of the coefficients,
∑
xD(x). The divisor is effective if D(x) ≥ 0 for all x ∈ Γ; in this case we write D ≥ 0.

We call supp(D) = {x ∈ Γ : D(x) 6= 0} the support of the divisor D.
A (tropical) rational function f on Γ is a continuous function f : Γ → R that is piecewise-linear on each

edge with finitely many pieces and integral slopes. The order ordx(f) of f at a point x ∈ Γ is the sum of
outgoing slopes at x. The principal divisor associated to f is

(f) :=
∑

x∈Γ

ordx(f) · x.

A point x ∈ Γ is called a zero of f if ordx(f) > 0 and a pole of f if ordx(f) < 0. We call two divisors D and
D′ linearly equivalent and writeD ∼ D′ ifD−D′ = (f) for some f . For any divisorD on Γ, letR(D) be the
set of all rational functions f on Γ such that the divisor D+ (f) is effective, and |D| = {D′ ≥ 0 : D′ ∼ D},
the linear system of D. Let 1 denote the set of constant functions on Γ.

The set R(D) is naturally embedded in the set RΓ of all real-valued functions on Γ, and |D| is a subset
of the dth symmetric product of Γ where d = deg(D). The map R(D)/1 → |D| given by f 7→ D + (f)

†Supported by Emmy Noether grant HA 4383/1 of the German Research Foundation (DFG).
‡,3 Supported by an NSF Mathematical Sciences Postdoctoral Fellowship.
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is a homeomorphism from R(D)/1 to |D|. It was shown in [GK08, MZ06] that |D| is a cell complex, so is
R(D)/1. Our aim is to study the combinatorial and algebraic structure of this object R(D).

In Section 2 we give definitions and state linear equivalence in terms of weighted chip firing moves, which
are continuous analogues of the chip firing games on finite graphs. In Section 3 we show that R(D) is a
finitely generated tropical semi-module and describe a generating set. In Section 4, we study the cell complex
structure of |D|. We show that the vertex set of |D| coincides with the generating set of R(D) described in
Section 3. We give a triangulation of the link of each cell as the order complex of a poset of possible weighted
chip firing moves.

Any finite set F of linearly equivalent divisors induces a map φF from the abstract curve to a tropical
projective space. This map is described in Section 5. If F generates R(D), we show that the tropical convex
hull of the image of this map is homeomorphic to |D|. The image of this map φF can be naturally modified
to an embedded tropical curve.

2 Metric graphs, rational functions, and chip-firing
A metric graph Γ is a complete connected metric space such that each point x ∈ Γ has a neighborhood
Ux isometric to a star-shaped set of valence val(x) ≥ 1 endowed with the path metric. To be precise, a
star-shaped set of valence v is a set of the form

S(v, r) = {z ∈ C : z = te2πik/v for some 0 ≤ t < r and k ∈ Z}.

The points x ∈ Γ with valence different from 2 are precisely those where Γ fails to look locally like an open
interval. Accordingly, we refer to a point of valence 2 as a smooth point.

Let V (Γ) be any finite nonempty subset of Γ such that V (Γ) contains all of the points with val(x) 6= 2.
Then Γ \ V (Γ) is a finite disjoint union of open intervals. For a metric graph Γ, we say that a choice of such
V (Γ) gives rise to a model G(Γ) for Γ. Each edge has a nonzero length inherited from the metric space Γ.

Let V0(Γ) = {x ∈ Γ : val(x) 6= 2}, where val denotes the valence of a vertex of V (Γ). Unless Γ is
a circle, V0(Γ) gives a model. For some of our applications, we may choose a model whose vertex set is
strictly bigger than V0(Γ). However unless otherwise specified, the reader may assume that G(Γ) denotes the
coarsest model and that a vertex is an element of V0(Γ).

A tropical curve is a metric graph in which the leaf edges may have length ∞. A leaf edge is an edge
adjacent to a one-valent vertex. Note that we add a “point at infinity” for each unbounded edge. A tropical
rational function on a tropical curve may attain values ±∞ at points at infinity.

We will use the term subgraph in a topological sense, that is, as a compact subset of a tropical curve
Γ with a finite number of connected components. For a subgraph Γ′ ⊂ Γ and a positive real number l,
the chip firing move CF(Γ′, l) by a (not necessarily connected) subgraph is the tropical rational function
CF(Γ′, l)(x) = −min(l,dist(x,Γ′)). It is constant 0 on Γ′, has slope −1 in the l-neighborhood of Γ′

directed away from Γ′, and it is constant −l on the rest of the graph. We will sometimes refer to an effective
divisor D as a chip configuration. For example, for D = c1 ·x1 + · · ·+ cn ·xn, we say that there are ci chips
at the point xi ∈ Γ. The total number of chips is the degree of the divisor. We say that a subgraph Γ′ ⊂ Γ
can fire if for each boundary point of Γ′ there are at least as many chips as the number of edges pointing out
of Γ′. In other words, Γ′ can fire if the divisor D + (CF(Γ′, l)) is effective for some positive real number l.
The chip configuration D + (CF(Γ′, l)) is then obtained from D by moving one chip from the boundary of
Γ′ along each edge out of Γ′ by distance l. Here we assume that l was chosen to be small enough so that the
chips do not pass through each other or pass through a non-smooth point.

We will now show that these chip firing moves are enough to move between linearly equivalent divisors
(Proposition 3 below). To this end, call a tropical rational function f a weighted chip firing move if there
are two disjoint (not necessarily connected) proper closed subgraphs Γ1 and Γ2 such that the complement
Γ \ (Γ1 ∪ Γ2) consists only of open line segments and such that f is constant on Γ1 and Γ2 and linear
(smooth) with integer slopes on the complement.

A weighted chip firing move f can also be thought of as a combinatorial transformation that acts on chip
configurations. Such transformations move chips from the boundary of Γ2 along the open line segments in
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the complement Γ \ (Γ1 ∪ Γ2). (Here we assume w.l.o.g. that f(Γ2) > f(Γ1).) During this process, a law
of conservation of momentum holds so that a stack of m chips that move together will only move a distance
of l/m. The numbers l and m can be different on each component of the complement. Note that a (simple)
chip firing move CF(Γ′, l) with small l is a special case of a weighted chip firing move when all the slopes
are 0 or ±1. The following two lemmas make the connection between R(D) and chip firing games.

Lemma 1. A weighted chip firing move is an (ordinary) sum of chip firing moves (plus a constant).

Lemma 2. Every tropical rational function is an (ordinary) sum of chip firing moves (plus a constant).

Note that even if we start with a tropical rational function f ∈ R(D), the sequence of weighted chip firing
moves f1, . . . , fn for which f = f1 + · · · + fn may not be in R(D), i.e. the divisors D + (fi) may not be
effective although D + (f) is. The following proposition follows easily from the two previous lemmas.

Proposition 3. Two divisors are linearly equivalent if and only if one can be attained from the other using
chip firing moves.

Studying linear equivalence of divisors is partially motivated by a certain rank function satisfying tropical
Riemann-Roch. In particular, the rank r(D) of a divisor D is the maximum integer r such that |D − E| 6= ∅
for all degree-r divisors E. The Riemann-Roch Theorem [GK08, MZ06] (based on work of [BN07]) , which
is the same for classical and tropical geometry, says that

r(D)− r(K −D) = degD + 1− g, (RR)

where g is the genus of tropical curve Γ, and the canonical divisor of Γ, K, is defined in Section 4.2.

3 Extremals and Generators of R(D)

The tropical semiring (R,⊕,�) is the set of real numbers R with two tropical operations:

a⊕ b = max(a, b), and a� b = a+ b.

The space R(D) is naturally a subset of the space RΓ of real-valued functions on Γ. For f, g ∈ RΓ, and
a ∈ R, the functions f ⊕ g and a� f are defined by taking tropical sums and tropical products pointwise.

Lemma 4. The space R(D) is a tropical semi-module, i.e. it is closed under tropical addition and tropical
scalar multiplication.

Tropical semi-modules in Rn are also called tropically convex sets [DS04]. SinceR(D+(f)) = R(D)+f ,
the tropical algebraic structure of R(D) does not depend on the choice of the representative D. An element
f ∈ R(D) is called extremal if for any g1, g2 ∈ R(D), f = g1⊕ g2 =⇒ f = g1 or f = g2. Any generating
set of R(D) must contain all extremals up to tropical scalar multiplication.

Lemma 5. A tropical rational function f is an extremal of R(D) if and only if there are not two proper
subgraphs Γ1 and Γ2 covering Γ (i.e. Γ1 ∪ Γ2 = Γ) such that each can fire on D + (f).

A cut set of a graph Γ is a set of points A ⊂ Γ such that Γ\A is not connected. A smooth cut set is a cut set
consisting of smooth points (2-valent points). Note that being a smooth cut set depends only on the topology
of Γ and is not affected by the choice of model G(Γ).

Theorem 6. Let S be the set of rational functions f ∈ R(D) such that the support of D + (f) does not
contain a smooth cut set. Then

(a) S contains all the extremals of R(D),

(b) S is finite modulo tropical scaling, and

(c) S generates R(D) as a tropical semi-module.

For the proof of (b) we need a boundedness lemma that improves the bound in [GK08, Lemma 1.8].
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Fig. 1: (Left): The linear system |K| for the tropical curve Γ = K4, the complete graph on four vertices with edges of
equal length, and the canonical divisor K. The 13 divisors shown here, together with K, correspond to the elements of
S that generate R(K), from Theorem 6. The seven black dots correspond to the extremals. See Example 10.

(Right): The link of the canonical divisor in the canonical class, where Γ is the complete graph on four vertices,
with arbitrary edge lengths. This graph is also the order complex of the firing poset. The firing subgraphs in Γ are shown
by solid lines. See Example 26. Compare with Figure 2 in [AK06].

Lemma 7. For D ≥ 0 every slope of f ∈ R(D) is bounded by degD.

of Theorem 6. (a) Suppose f /∈ S, then D+ (f) splits Γ into two subgraphs Γ1 and Γ2. Both of these graphs
can fire, and the union of their closures is the entire Γ, so by Lemma 5, f is not an extremal.

(b) Let f ∈ S. The support of D + (f) meets the interior of each edge in at most one point, because two
points on the same edge form a smooth cut set. Removing the set of edges meeting the support of D + (f)
does not disconnect Γ, and so the remaining edges contain a spanning tree of Γ. There are finitely many
spanning trees in a graph and finitely many possible slopes for each edge in this spanning tree because of
Lemma 7. Therefore, the number of possible values of f on vertices of Γ is finite modulo tropical scaling.
(Here, vertices are non-smooth points. If Γ is a circle, then fix any point as a vertex.) On each non-tree edge,
knowing the values and the slopes of f at the two end points uniquely determines f since all the chips of
D + (f) must fall on the same point of a given edge. We conclude that S is finite modulo tropical scaling.

(c) Let f be an arbitrary function in R(D). We need to show that f can be written as a finite tropical sum
of elements of S. Let N(f) be the number of smooth points in supp(D + (f)). If f is not already in S,
then there is a smooth cut set A and two components Γ1 and Γ2. Let g1 and g2 be the weighted chip firing
moves that fire all chips on their boundaries as far as possible. Then f = (f + g1)⊕ (f + g2). Repeating this
decomposition terminates after a finite number of steps because 0 ≤ N(f+gi) < N(f) for each i = 1, 2.

Proposition 8. Any finitely generated tropical sub-semimodule M of RΓ is generated by the extremals.

Corollary 9. The tropical semimodule R(D) is generated by the extremals. This generating set is minimal
and unique up to tropical scalar multiplication.

The set of extremals can be obtained from S by removing the elements not satisfying the condition in
Lemma 5.

Example 10. Let Γ be a tropical curve with the complete graph on 4 vertices with equal edge lengths as
a model. Consider the canonical divisor K, that is the divisor with value 1 on the four vertices and zero
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elsewhere. The canonical divisor is defined in general in Section 4.2. Then the set S from Theorem 6
consists of 14 elements, 7 of which are extremals. The linear system |K| is the cone over the Petersen graph.

If the edge lengths of the complete graph are not all equal, then the set S may be different from this. We
describe the local cell complex structure of R(K) near K in the next section, in Example 20. See Figure 1.

4 Cell complex structure of |D|
As seen in the previous section, R(D) ⊂ RΓ is finitely generated as a tropical semi-module or a tropical
polytope. However, it is not a polyhedral complex in the ordinary sense. For example, let Γ be the line
segment [0, 1], and D be the point 1. Then R(D) is the tropical convex hull of f, g ∈ RΓ where f(x) = x
and g(x) = 0. Although R(D) is one-dimensional, it does not contain the usual line segment between any
two points in it. Letting 1 denote the constant function taking the value 1 at all points, we consider functions
in R(D) modulo addition of 1, i.e. translation.

Lemma 11. The set R(D)/1 does not contain any nontrivial ordinary convex sets.

Recall that R(D)/1, i.e. R(D) modulo tropical scaling can be identified with the linear system |D| :=
{D + (f) : f ∈ R(D)} via the map f 7→ D + (f). In what follows, elements of |D| and elements of
projectivized R(D), i.e. R(D)/1, will be used interchangeably.

A choice of model G(Γ) induces a polytopal cell decomposition of Symd Γ, the dth symmetric product of
Γ. Andreas Gathmann and Michael Kerber [GK08] as well as Grigory Mikhalkin and Ilia Zharkov [MZ06]
describe |D| as a cell complex |D|G(Γ) ⊂ Symd Γ. Let us coordinatize this construction.

We identify each open edge e ∈ E with the interval (0, `(e)) thereby giving the edge a direction, and we
identify Symk e with the open simplex {x ∈ Rk : 0 < x1 < . . . < xk < `(e)}. A cell of |D| is indexed by
the following discrete data:

• dv ∈ Z for every vertex v ∈ V ,

• a composition (i.e. an ordered partition) de = d
(1)
e + · · ·+ d

(re)
e for every edge e of Γ, and

• an integer me for every edge e of Γ.

Then, a divisor D′ belongs to that cell if

• dv = D′(v) for all v ∈ V ,

• D′ is given on e by
∑
i d

(i)
e xi for 0 < x1 < . . . < xre < `(e), and

• the slope of f at the start of edge e is me, where f is such that (f) +D = D′.

The intersection of |D| with an open cell of Symd Γ is a union of cells of |D|.
This cell complex structure depends on the choice of the model G(Γ), but not on the choice of representa-

tive divisor D in the linear system |D|. In particular, choosing a finer model amounts to subdividing the cell
complex |D|, and choosing a different divisor D′ = D + (g) amounts to changing the integer slopes at the
starting points on the edges by the slopes of g, but this does not change the cells. Whenever we talk about
a cell complex structure of |D|, we are impliciting assuming a model G(Γ). Unless Γ is a circle, there is a
unique coarsest model with the least number of vertices.

Example 12. Let Γ be a circle (for example a single vertex v with a loop edge e attached). Consider D to
be the divisor 3v. As we analyze in Example 17, |D| contains two 2-cells in this case. The elements of both
cells are divisors D′ = x+ y+ z with distinct points x, y, and z on the interior of e. However the two 2-cells
differ from one another by the slope of the function f (defined by D′ = D + (f)) at v. The outgoing slopes
of f at v are given by [−2,−1] for one 2-cell and by [−1,−2] for the other. This example shows that the
combinatorial type of the divisor D′ – the cell of Symd Γ containing D′ – does not determine the cell of |D|
containing D′. The different cells of |D| in one cell of Symd Γ are indexed by the slopes of f .
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Proposition 13. ForD′ ∈ |D|, let ID′ be the set of points in the support ofD′ that lie in the interior of edges.
Then the dimension of the carrier of D′ is one less than the number of connected components of Γ\ID′ .

Here, the carrier of D′ is the cell containing D′ in its interior. Recall that Γ is connected, and note that
being in the interior of an edge depends on the model G(Γ).

Theorem 14. Let G be a model for Γ, and let SG be the set of functions f ∈ R(D) such that the support
of D + (f) does not contain an interior cut set (i.e. a cut set consisting of points in interior of edges in the
model G). Then

(a) SG contains the set S from Theorem 6,

(b) SG is finite modulo tropical scaling, and

(c) SG = {f ∈ R(D) : D + (f) is a vertex of |D|}.

Proof. The statement (a) follows from definitions since points in the interior of edges (for any model) are
smooth, and the statement (b) can be shown in the exact same way as Theorem 6(b). By the previous propo-
sition, any element of SG has dimension 0. This shows (c).

This shows in particular that the cell complex |D| has finitely many vertices. If the model G is the coarsest
one, i.e. the vertices of G are non-smooth points of Γ, then SG = S. If Γ is a circle, then there is no unique
coarsest model.

Proposition 15. Each closed cell in the cell complex is finitely-generated as a tropical semi-module by its
vertices. In particular, it is tropically convex.

Example 16. (Line Segment) Any tree is a genus zero tropical curve. Like genus zero algebraic curves, two
divisors on a tree are linearly equivalent if and only if they have the same degree d. The simplest tree is a line
segment consisting of an edge between two vertices, v1 and v2. In this case, |D| is a d-simplex. The vertices
of |D| correspond to ordered pairs [d1, d2] summing to d associated to the chip configuration at v1 and v2.

Example 17. (Circle) A circle is the only tropical curve where the canonical divisor K is 0. Let Γ be
homeomorphic to a circle and let D be of degree 3. Then D ∼ 3x for some point x ∈ Γ. The coarsest cell
structure of R(D) is a triangle, but it is not realized by any model on Γ because Γ does not have a unique
coarsest model. If the model contains only one vertex v and D ∼ 3v, then R(D) is a triangle subdivided by a
median; see Figure 2. In particular |D| contains four 0-cells, five 1-cells, and two 2-cells. If the model G(Γ)
consists of a vertex u such that D 6∼ 3u, then the cell complex structure would be different. If the model
G(Γ) consists of 3 equally spaced vertices v1, v2, v3, and D ∼ 3v1, then R(D) is isomorphic as a polyhedral
complex to the barycentric subdivision of a triangle.

Example 18. (Circle with higher degree divisor) Let Γ be a circle graph with only a single vertex v and a
single edge e, a loop based at v. Let D = dv; then the linear system |D| is a cone over a cell complex, which
we denote as Pd(circle), which has an f -vector given by the following:

The number of i−cells of Pd(circle) = fi = (i+ 1)

(
d

i+ 2

)
.

Consequently, the f -vector for |D| is given by
{(

d
2

)
+ 1 if i = 0

(i+ 1)
(
d
i+2

)
+ i
(
d
i+1

)
if i ≥ 1

.

To see how to get these f -vectors, we note that a divisor D′ ∼ dv corresponds to a tropical rational function
f such that dv + (f) = D′. One such f is the zero function, this corresponds to the cone point. Each other
tropical rational function is parameterized by an increasing sequence of integer slopes (a1, . . . , ai+2) such
that a1 < 0, ai+2 > 0, and ai+2 − a1 ≤ d. The first slope must be negative and the last slope must be
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Fig. 2: (Top): The polyhedral cell complex R(3v)/1 on Γ = S1. The three black vertices are the extremals, and they
correspond to the three divisors which are linearly equivalent to 3v and have the form 3w. We have presented S1 as the
line segment [0, 1] with points 0 and 1 identified.

(Bottom): The polyhedral cell complex R(4v)/1 on Γ = S1 is a subdivided tetrahedron, a cone over this sub-
divided triangle with the cone-point corresponding to the constant function. (The labels of most 1-cells are suppressed,
but may be read off from the incident vertices or 2-cells.) The cone-point plus the three black vertices are the extremals.

positive so that the values of f at the two ends of the loop e agree. The cells not incident to the cone point
yield the cell complex Pd(circle), and are given by sequences (a1, . . . , ai+2) such that all ai 6= 0. To finish
the computation of the f -vector for Pd(circle), we pick an ordered pair [j, k] with j, k ≥ 1 and j+k = i+ 2
to denote the number of negative and positive ak’s, respectively. After setting a1 = −`, we note that the
number of ways to pick the remaining negative ak’s is given by

(
`−1
j−1

)
, and the number of ways to pick a

subset of positive ak’s such that ai+2 − a1 ≤ d is given by
(
d−`
k

)
. Summing over possible `, and using

a standard identity involving binomial coefficients (for instance see [BQ03, Identity 136]), we obtain
(
d
i+2

)

such tropical rational functions for each [j, k]. Since there are i+ 2 such [j, k]’s, we get the above number of
i-cells not incident to the cone point. For the case of d = 4, see Figure 2.

Example 19. (Circle. Cell structure of |D| as a simplex) In Examples 17 and 18, we saw that having to
choose a model, even one with only one vertex, gives |D| a cell structure of a subdivided simplex. Moreover,
different choices of models, even if they contain only one vertex each, may give combinatorially different
cell complex structures for |D|. We wish to describe |D| as a simplex.

First, let us look at the embedding of |D| in the symmetric product of the tropical curve. Let Γ be the circle
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R/Z, and D = d · [0] be a divisor of degree d. The embedding of |D| in Symd Γ = Symd(R/Z) is given by

{x ∈ (0, 1]d : 0 < x1 ≤ x2 ≤ . . . xd ≤ 1, x1 + x2 + · · ·+ xd ∈ Z}.

To see this, first consider a tropical rational function g on the line segment [0, 1] with (g) = x1 + x2 +
· · · + xd − d · 0 and g(1) = 0. Then g(0) = x1 + x2 + · · · + xd. If g(0) ∈ Z, then adding g and a
function l with constant slope g(0) on [0, 1] gives a tropical rational function f = g + l on the circle with
(f) + D = x1 + x2 + · · · + xd. It is easy to check that any f ∈ R(D) can be obtained this way. Although
this description gives |D| a uniform coordinate system, this does not give us a cell complex structure.

In fact, |D| can be realized as a (d − 1)-dimensional simplex, on d vertices. There is a unique set of d
points v1, v1, . . . , vd in Γ such that D ∼ dvi for all i = 1, . . . , d. These d points are equally spaced along Γ.
The extremals of R(D) are

E = {f ∈ R(D) : (f) +D = d · vi for some i = 1, 2, . . . , d}.

Consider the (d− 1)-dimensional simplex on vertices V = {dv1, dv2, . . . , dvd}, that is, the simplicial com-
plex containing a (k − 1)-dimensional cell for any k subset of V . We would like to stratify |D| into these
cells. For any divisor D′ ∈ |D|, elements in the same cell as D′ are obtained from D′ by weighted chip firing
moves that do not change the cyclically-ordered composition d = a1 + a2 + · · · + ak associated to divisor
a1x1 + a2x2 + · · · + akxk where x1, x2, . . . , xk are distinct and cyclically ordered along the circle (with a
fixed orientation). The complement of the support ofD′ = a1x1 +a2x2 + · · ·+akxk consists of k segments.
For each of these segments, there is a unique extremal in R(D′) that is maximal and constant on it. These k
extremals of R(D′), which are naturally identified with extremals of R(D), are precisely the vertices of the
cell of D′ and their convex hull is the cell of D′.

Example 20. (K4 continued) As in Example 10, consider the graph K4 with equal edge lengths and the
canonical divisor K. The canonical divisor is defined in general in Section 4.2. The coarsest cell structure
of |K| consists of 14 vertices and topologically is the cone over the Petersen graph shown in Figure 1. The
cone point is the canonical divisor K. The “cones” over the 3 subdivided edges of the Petersen graph are
quadrangles. The maximal cells of |K| consist of 12 triangles and 3 quadrangles. In particular, |K| is not
simplicial. The quadrangle obtained from “coning” over the bottom edge of the Petersen graph is shown in
Figure 3.

4.1 Local structure of a cell complex
If B is a cell complex and x is a point in B, then the link(x,B) denotes the cell complex obtained by inter-
secting B with a sufficiently small sphere centered at x. We will define a triangulation of link(D, |D|) which
is finer than the cell structure. Note that |D| and |D′| are isomorphic as cell complexes, so link(D, |D|) ∼=
link(D, |D′|) for any D′ ∼ D.

Let D′ ∈ link(D, |D|) and f be a rational function such that D′ = D + (f). Let h0 > h1 > · · · > hn
be the values taken on by f on the set of points that are either vertices of Γ or where f is not smooth. Notice
that h0 and hn are maximum and minimum values of f , respectively. Since D+(f) ∈ link(D, |D|), we may
assume that h0 − hn is sufficiently small. Let G = (Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn = Γ) be a chain of subgraphs of Γ
where Γi = {x ∈ Γ : f(x) ≥ hi}.

Let G′ = (Γ′1 ⊂ Γ′2 ⊂ · · · ⊂ Γ′n = Γ) be the chain of compactified graphs, where Γ′i is the union of edges
of Γi that are between two vertices of Γ. Each cell can be subdivided by specifying more combinatorial data:
the chain G′ obtained this way and the slopes at the non-smooth points. We call this the fine subdivision.

For an effective divisor D, we can naturally associate the firing poset PD as follows. An element of PD
is a weighted chip firing move without the information about the length, i.e. it is a closed subgraph Γ′ ⊂ Γ
together with an integer ce for each out-going direction e of Γ′ such that for each point x ∈ Γ′ we have∑
ce ≤ D(x) where the sum on the left is taken over the all outgoing directions e from x and D(x) denotes

the coefficient of x in D. We say that (Γ′, c′) ≤ (Γ′′, c′′) if Γ′ ⊂ Γ′′ and c′e ≥ c′′e for each common outgoing
direction e of Γ′ and Γ′′.
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Fig. 3: A non-simplicial cell in the linear system |K| for the complete graph on four vertices with edges of equal length.

Theorem 21. The fine subdivision of the link of a divisorD in its linear system |D| is a geometric realization
of the order complex of the firing poset PD.

Proof. By the discussion above, a cell in a fine subdivision link(D, |D|) corresponds to a unique chain in the
firing poset. For any chain in the firing poset, we can construct an element in link(D, |D|) by performing the
weighted chip firing moves in the order given by the chain, starting from the smallest element. The element
constructed this way defines a cell in the fine subdivision.

Note that the link of an element in |D| does not depend on the precise location of the chips, but on the
combinatorial data of the location. In other words, changing the edge lengths, without changing which edges
the chips are on, does not affect the combinatorial structure of the link.

This Theorem, along with Proposition 13 allows us to explicitly describe the 1-cells incident to a 0-cell D′

of |D|. For this, we need to define a specific subset of the weighted chip-firing moves. In particular, we call a
weighted chip-firing move f (which is constant on Γ1 and Γ2) to be doubly-connected if Γ1 and Γ2 are both
connected subgraphs.

Proposition 22. Given D′ ∈ |D|, and a model G such that supp(D′) ⊂ V (G) (so that D′ is a 0-cell in |D|),
the 1-cells incident to D′ correspond to the set of doubly-connected weighted chip-firing moves that are legal
on chip configuration D′ (up to combinatorial type).

Proof. Let f be a weighted chip-firing move which is legal at D′ that is constant on Γ1 and Γ2 such that
f(Γ2) = f(Γ1) − ε for small ε > 0. Then D′′, defined as D′ + (f) has a chip on each of the line segments
Li connecting Γ1 and Γ2. Then the dimension of the corresponding cell of D′′ is one if and only if Γ1 and
Γ2 are both connected.

4.2 Bergman subcomplex of |K|
Now we analyze the linear systems of an important family of divisors. The canonical divisor K on Γ is

K :=
∑

x∈Γ

(val(x)− 2) · x.

Vertices of valence two do not contribute to this sum so the divisor K is independent of the choice of model.
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Let M be a matroid on a ground set E. The Bergman fan of M is the set of w ∈ RE such that w
attains its maximum at least twice on each circuit C of M . The only matroids considered here are cographic
matroids of graphs. For a graph G with edge set E, the cographic matroid is the matroid on the ground set E
whose dependent sets are cuts of G, i.e. the sets of edges whose complement is disconnected. The Bergman
complex is the cell complex obtained by intersecting the Bergman fan with a sphere centered at the origin.
The following result will be useful to us later.

Theorem 23. [AK06]

1. The Bergman complex (with its fine subdivision) is a geometric realization of the order complex of the
lattice of flats of M .

2. The Bergman fan is pure of codimension rank(M).

Note that adding or removing parallel elements does not change the simplicial complex structure of the
Bergman complex because the lattice of flats remains unchanged up to isomorphism. In particular, if G1

and G2 are two graphs, forming two models of the same tropical curve, then the corresponding cographic
matroids have isomorphic Bergman complexes.

Lemma 24. A subset of edges of a graph forms a flat of the cographic matroid if and only if its complement
is a union of circuits of the graph.

Suppose Γ has genus at least one butKΓ is not effective. Let Γ′ be the subgraph of Γ obtained by removing
all the leaf edges recursively. Then the canonical divisorK ′ of Γ′ is effective, and we can apply the following
arguments for K ′ in Γ′ or Γ.

Theorem 25. The fine subdivision of link(K, |K|) contains the fine subdivision of the Bergman complex
B(M∗(Γ)) as a subcomplex.

Proof. The complement of a flat is a union of cocircuits, so the lattice of flats is isomorphic to the lattice of
unions of cocircuits, ordered by reverse-inclusion. The cocircuits of the cographic matroid are the circuits of
the graph. For the canonical divisor K, the proper union of circuits can always fire. Hence the proper part
of the poset of union of circuits is a subposet of the firing poset, and so is the proper part of the lattice of
flats.

The Bergman complex may be a proper subcomplex of the link because there may be subgraphs that can
fire on the canonical divisor but that are not union of circuits, e.g. two triangles connected by an edge in the
graph of a triangular prism. Moreover, if Γ is not trivalent, there may be vertices that can fire more than one
chip on each edge, so the firing poset may be strictly larger and so can the dimension of the order complex.

Example 26. (K4 continued)
Let Γ be a tropical curve with the complete graph on four vertices as a model, with arbitrary edge lengths.

Consider the canonical divisor K. In this case, the firing poset coincides with the lattice of unions of circuits,
which is anti-isomorphic to the lattice of flats. Hence the link of the canonical divisor is isomorphic to the
Bergman complex of the cographic matroid on the complete graph. Since the complete graph on four vertices
is self-dual, its co-Bergman complex is the space of trees on five taxa, which is the Petersen graph [AK06].

See Figure 1. In the case when all edge lengths are equal, the quadrangles of |K| described in Example 20
are subdivided in this fine subdivision of the link(K, |K|). Note that the link of the canonical divisor stays
the same when we vary the edge lengths, while the generators and cell structure of R(K) may change.

5 The induced map and projective embedding of a tropical curve
A finite setF = (f1, . . . , fr) ⊂ R(D) induces a map φF : Γ→ TPr−1, defined as φF (x) = (f1(x), . . . , fr(x))
for each x ∈ Γ. This is a map into TPr−1 rather than Rr as we take F to be defined up to translation by 1.

Theorem 27. Let 〈F〉 ⊂ R(D) be the tropical sub-semimodule of R(D) generated by F . Then 〈F〉/1 is
homeomorphic to the tropical convex hull of the image of φF . In particular, if F generates R(D), then |D|
is homeomorphic to the tropical convex hull of φF (Γ).
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The tropical convex hull of a set is the tropical semi-module generated by the set.

Proof. The intuition behind this theorem is the result from [DS04] that the tropical convex hull of the rows
of a matrix is isomorphic to the tropical convex hull of the columns. Here, the matrix MF in question has
entry fi(x) in row i and column x. As in [DS04], we define a convex set

PF = {(y, z) ∈ (Rr × RΓ)/(1,−1) : yi + z(x) ≥ fi(x)}.
Let BF be the union of bounded faces of PF , i.e. BF contains points in the boundary of PF that do not lie
in the relative interior of an unbounded face of PF in (Rr × RΓ)/(1,−1). We will show that BF projects
bijectively onto 〈F〉/1 ⊂ RΓ/1 on the one hand, and to tconv φF (Γ) ⊂ TPr−1 on the other, establishing a
homeomorphism. As in [DS04], we associate a type to (y, z) ∈ PF as follows:

type(y, z) := {(i, x) ∈ [r]× Γ : yi + z(x) = fi(x)}.
In other words, a type is a collection of defining hyperplanes that contains (y, z), so elements in the relative
interior of the same face have the same type. The recession cone of PF is {(y, z) ∈ (Rr × RΓ)/(1,−1) :
yi + z(x) ≥ 0}, which is the quotient of the positive orthant in (Rr × RΓ) by (1,−1). Hence, a point
(y, z) ∈ PF lies in BF if and only if we cannot add arbitrary positive multiples of any coordinate direction
to it while staying in the same face of PF , which means keeping the same type. This holds if and only if

(1) The projection of type(y, z) onto [r] is surjective, and

(2) The projection of type(y, z) onto Γ is surjective.

For (y, z) ∈ PF , these two conditions are equivalent respectively to

(1′) yi = max{fi(x)− z(x) : x ∈ Γ} for all i ∈ [r], i.e. y = MF �−z, and

(2′) z(x) = max{fi(x)− yi : i ∈ [r]} for all x ∈ Γ, i.e. z = −y �MF .

whereMF is the [r]×Γ matrix with entry fi(x) in row i and column x, and� is tropical matrix multiplication.
These two conditions respectively imply that the projections of BF onto RΓ/1 and Rr/1 are one-to-one.

On the other hand, let z ∈ 〈F〉, then z = (u1�f1)⊕· · ·⊕ (ur�fr) = u�MF for some u ∈ Rr such that
z ≥ ui � fi for each i = 1, 2, . . . , r. Let y ∈ Rr such that yi = min{c : z ≥ −c � fi} for i = 1, 2, . . . , r;
then z = −y �MF , so (y, z) satisfies (2′). Moreover, by construction, −yi � fi(x) = z(x) for some x,
so (y, z) satisfies (1). Thus (y, z) ∈ BF and the set BF projects surjectively onto 〈F〉/1 ⊂ RΓ/1. The
image under the projection onto Rr/1 is the tropical convex hull of image(φF ), and the homeomorphism
follows.

Remark 28. All of the bounded faces of the convex set PF are in fact vertices. If the union of bounded faces
BF contained a non-trivial line segment, then its projection 〈F〉/1 would as well, contradicting Lemma 11.

Example 29 (Circle, degree 3 divisor). Let Γ be a circle of circumference 3, identified with R/3Z and let
D be the degree 3 divisor [0] + [1] + [2]. Let f0, f1, f2 ∈ R(D) be the extremals corresponding to divisors
3 · [0], 3 · [1], and 3 · [2] respectively, and suppose fi([i]) = −1 for each i = 0, 1, 2. Then the image of Γ
under φF , for F = (f0, f1, f2) is a union of three line segments between the points

φF ([0]) = (−1, 0, 0), φF ([1]) = (0,−1, 0), φF ([2]) = (0, 0,−1) in TP3.

In this case, the (max-) tropical convex hull of the image of φF coincides with the usual convex hull and is a
triangle. However, it is not the tropical convex hull of any proper subset of image(φF ). In particular, |D| is
not a tropical polytope, i.e. it is not the tropical convex hull of a finite set of points.

We know from [DS04] that tropically convex sets are contractible.

Corollary 30. The sets |D| and R(D) are contractible.

Tropical linear spaces are tropically convex [Spe08], so any tropical linear space containing the image
φF (Γ) must also contain its tropical convex hull.

Corollary 31. Any tropical linear space in TPr−1 containing φF (Γ) has dimension at least dim(〈F〉).
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6 Conclusions and Open Questions
In this paper, we presented a number of properties of |D| including verification that it is finitely generated as
a tropical semi-module. We also provided some tools for explicitly understanding |D| as a polyhedral cell
complex such as a formula for the dimension of the face containing a given point, as well as applications such
as using |D| to embed an abstract tropical curve into tropical projective space.

There are many ways to continue this research for the future. It is quite tantalizing to investigate how the
Baker-Norine rank of a divisor compares with the geometry and combinatorics of the associated linear system
as a polyhedral cell complex. Also, is there any relation between r(D) and the minimal number of generators
of R(D)? How does the structure of |D| change as we continuously move one point in the support of D or if
we change the edge lengths of our metric graph while keeping the combinatorial type of the graph fixed?

In the case of finite graphs, i.e. divisors whose support lies within the set of vertices of the graph, can we
combinatorially describe the associated linear systems? For example, is there a stabilization or an associated
Ehrhart theory that one can use to count the sizes of such linear systems? Lastly, what other results from
classical algebraic curve theory carry over to the theory of metric graphs (or tropical curves) and vice-versa?
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Abstract. For any finite Coxeter group W , we introduce two new objects: its cutting poset and its biHecke monoid.
The cutting poset, constructed using a generalization of the notion of blocks in permutation matrices, almost forms a
lattice onW . The construction of the biHecke monoid relies on the usual combinatorial model for the 0-Hecke algebra
H0(W ), that is, for the symmetric group, the algebra (or monoid) generated by the elementary bubble sort operators.
The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by
the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead
the monoid generated by these operators. We prove that it admits |W | simple and projective modules. In order to
construct the simple modules, we introduce for eachw ∈W a combinatorial module Tw whose support is the interval
[1, w]R in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke
group algebra, with the combinatorics of descents replaced by that of blocks and of the cutting poset.

Résumé. Pour tout groupe de Coxeter fini W , nous définissons deux nouveaux objets : son ordre de coupures et son
monoïde de Hecke double. L’ordre de coupures, construit au moyen d’une généralisation de la notion de bloc dans
les matrices de permutations, est presque un treillis sur W . La construction du monoïde de Hecke double s’appuie
sur le modèle combinatoire usuel de la 0-algèbre de Hecke H0(W ) i.e., pour le groupe symétrique, l’algèbre (ou le
monoïde) engendré par les opérateurs de tri par bulles élémentaires. Les auteurs ont introduit précédemment l’algèbre
de Hecke-groupe, construite comme l’algèbre engendrée conjointement par les opérateurs de tri et d’anti-tri, et décrit
sa théorie des représentations. Dans cet article, nous considérons le monoïde engendré par ces opérateurs. Nous
montrons qu’il admet |W | modules simples et projectifs. Afin de construire ses modules simples, nous introduisons
pour tout w ∈ W un module combinatoire Tw dont le support est l’intervalle [1, w]R pour l’ordre faible droit. Ce
module détermine une algèbre dont la théorie des représentations généralise celle de l’algèbre de Hecke groupe, en
remplaçant la combinatoire des descentes par celle des blocs et de l’ordre de coupures.

Keywords: Coxeter groups, Hecke algebras, representation theory, blocks of permutation matrices

1 Introduction
The usual combinatorial model for the 0-Hecke algebra H0(Sn) of the symmetric group is the algebra
(or monoid) generated by the (anti) bubble sort operators π1, . . . , πn−1, where πi acts on words of length
n and sorts the letters in positions i and i + 1 decreasingly. By symmetry, one can also construct the
bubble sort operators π1, . . . , πn−1, where πi acts by sorting increasingly, and this gives an isomorphic
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construction H0 of the 0-Hecke algebra. This construction generalizes naturally to any finite Coxeter
group W . Furthermore, when W is a Weyl group, and hence can be affinized, there is an additional
operator π0 projecting along the highest root.

In [HT09] the first and last author constructed the Hecke group algebra HW by gluing together the 0-
Hecke algebra and the group algebra ofW along their right regular representation. Alternatively,HW can
be constructed as the biHecke algebra of W , by gluing together the two realizations H0(W ) and H0(W )
of the 0-Hecke algebra. HW admits a more conceptual description as the algebra of all operators on K.W
preserving left antisymmetries; the representation theory ofHW follows, governed by the combinatorics
of descents. In [HST09], the authors further proved that, when W is a Weyl group, HW is a natural
quotient of the affine Hecke algebra.

In this paper, following a suggestion of Alain Lascoux, we study the biHecke monoid M(W ), obtained
by gluing together the two 0-Hecke monoids. This involves the combinatorics of the usual poset structures
on W (left, right, left-right, Bruhat order), as well as a new one, the cutting poset, which in type A
is related to blocks in permutation matrices. The guiding principle is the use of representation theory
to derive a (so far elusive) summation formula for the size of this monoid, using that the simple and
projective modules of M are indexed by the elements of W .

In type A, the tower of algebras (K[M(Sn)])n∈N possesses long sought-after properties. Indeed, it
is well-known that several combinatorial Hopf algebras arise as Grothendieck rings of towers of alge-
bras. The prototypical example is the tower of algebras of the symmetric groups which gives rise to
the Hopf algebra Sym of symmetric functions, on the Schur basis. Another example, due to Krob and
Thibon [KT97], is the tower of the 0-Hecke algebras of the symmetric groups which gives rise to the
Hopf algebra QSym of quasi-symmetric functions of [Ges84], on the FI basis. The product rule on the
FI ’s is naturally lifted through the descent map to a product on permutations, leading to the Hopf algebra
FQSym of free quasi-symmetric functions. This calls for the existence of a tower of algebras (An)n∈N,
such that each An contains H0(Sn) and has its simple modules indexed by the elements of Sn. The
biHecke monoidsM(Sn) and their Borel submonoidsM1(Sn) satisfy these properties, and are therefore
expected to yield new representation theoretical interpretations of the bases of FQSym.

In the remainder of this introduction, we briefly review Coxeter groups and their 0-Hecke monoids, and
introduce our main objects of study: the biHecke monoids.

1.1 Coxeter groups
Let (W,S) be a Coxeter group, that is, a group W with a presentation

W = 〈S | (ss′)m(s,s′), ∀s, s′ ∈ S 〉 , (1)

with m(s, s′) ∈ {1, 2, . . . ,∞} and m(s, s) = 1. The elements s ∈ S are called simple reflections, and
the relations can be rewritten as s2 = 1, where 1 is the identity in W and:

ss′ss′s · · ·︸ ︷︷ ︸
m(s,s′)

= s′ss′ss′ · · ·︸ ︷︷ ︸
m(s,s′)

for all s, s′ ∈ S . (2)

Most of the time, we just write W for (W,S). In general, we follow the notation of [BB05], and we
refer to this monograph and to [Hum90] for details on Coxeter groups and their Hecke algebras. Unless
stated otherwise, we always assume that W is finite, and denote its generators by S = (si)i∈I , where
I = {1, 2, . . . , n} is the index set of W .
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The prototypical example is the Coxeter group of type An−1 which is the n-th symmetric group
(W,S) := (Sn, {s1, . . . , sn−1}), where si denotes the elementary transposition which exchanges i and
i+ 1. The relations are s2i = 1 for 1 ≤ i ≤ n− 1 and the braid relations:

sisj = sjsi , for |i− j| ≥ 2 ,

sisi+1si = si+1sisi+1 , for 1 ≤ i ≤ n− 2 .
(3)

When writing a permutation µ ∈ Sn explicitly, we use the one-line notation, that is the sequence
µ1µ2 · · ·µn, where µi := µ(i).

A reduced word i1 . . . ik for an element µ ∈ W corresponds to a decomposition µ = si1 · · · sik of µ
into a product of generators in S of minimal length k = `(µ). A (right) descent of µ is an element i ∈ I
such that `(µsi) < `(µ). If µ is a permutation, this translates into µi > µi+1. Left descents are defined
analogously. The sets of left and right descents of µ are denoted by DL(µ) and DR(µ), respectively.

A Coxeter group W comes equipped with four natural graded poset structures. Namely µ < ν in
Bruhat order (resp. left (weak), right (weak), left-right (weak) order) if some reduced word for µ is a
subword (resp. right factor, left factor, factor) of some reduced word for ν. In type A, the left (resp. right)
order give the usual left (resp. right) permutahedron.

For J ⊆ I , we denote by WJ = 〈sj | j ∈ J〉 the subgroup of W generated by sj with j ∈ J .
Furthermore, the longest element in WJ (resp. W ) is denoted by sJ (resp. w0).

1.2 The 0-Hecke monoid
The 0-Hecke monoid H0(W ) = 〈πi | i ∈ I〉 of a Coxeter group W is generated by the simple projections
πi with relations π2

i = πi for i ∈ I and

πiπjπiπj · · ·︸ ︷︷ ︸
m(si,sj)

= πjπiπjπi · · ·︸ ︷︷ ︸
m(si,sj)

for all i, j ∈ I . (4)

Thanks to these relations, the elements ofH0(W ) are canonically indexed by the elements ofW by setting
πw := πi1 · · ·πik for any reduced word i1 . . . ik of w. We further denote by πJ the longest element of the
parabolic submonoid H0(WJ) := 〈πi | i ∈ J〉.

The right regular representation of H0(W ) induces a concrete realization of H0(W ) as a monoid of
operators acting on W , with generators π1, . . . , πn defined by:

w.πi :=

{
w if i ∈ DR(w),
wsi otherwise.

(5)

In type A, πi sorts the letters at positions i and i + 1 decreasingly, and for any permutation w, w.πw0
=

n · · · 21. This justifies naming πi an elementary bubble antisorting operator.
Another concrete realization of H0(W ) can be obtained by considering instead the elementary bubble

sorting operators π1, . . . , πn, whose action on W are defined by:

w.πi :=

{
wsi if i ∈ DR(w),
w otherwise.

(6)

In type A, and for any permutation w, one has w.πw0
= 12 · · ·n.
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1.3 The biHecke monoid
Definition 1.1 Let Wbe a finite Coxeter group. The biHecke monoid is the submonoid of functions from
W to W generated simultaneously by the elementary bubble sorting and antisorting operators of (5)
and (6):

M := M(W ) := 〈π1, π2, . . . , πn, π1, π2, . . . , πn〉 .

1.4 Outline
The remainder of this paper is organized as follows. In Section 2, we generalize the notion of blocks of
permutation matrices to any Coxeter group, and use it to define a new poset structure onW , which we call
the cutting poset; we prove that it is (almost) a lattice, and derive that its Möbius function is essentially
that of the hypercube.

In Section 3, we study the combinatorial properties of M(W ). In particular, we prove that it preserves
left and Bruhat order, derive consequences on the fibers and image set of its elements, prove that it is
aperiodic, and study its conjugacy classes of idempotents.

In Section 4, our strategy is to consider a “Borel” triangular submonoid of M(W ) whose represen-
tation theory is simpler, but with the same number of simple modules, in the hope to later induce back
information about the representation theory of M(W ). Namely, we study the submonoid M1(W ) of the
elements fixing 1 in M(W ). This monoid not only preserves Bruhat order, but furthermore is contracting.
It follows that it is J -trivial which is the desired triangularity property. It is for example easily derived
that M1(W ) has |W | simple modules, all of dimension 1. In fact most of our results about M1 generalize
to any J -trivial monoid, which is the topic of a separate paper on the representation theory of J -trivial
monoids [DHST10].

In Section 5, we construct, for each w ∈ W , the translation module Tw by induction of the corre-
sponding simpleM1-module. It is a quotient of the indecomposable projective module Pw ofM(W ), and
therefore admits the simple module Sw of M(W ) as top. It further admits a simple combinatorial model
with the interval [1, w]R as support, and which passes down to Sw. We derive a formula for the dimension
of Sw, using an inclusion-exclusion on the sizes of intervals in (W,≤R), along the cutting poset. On the
way, we study the algebra HW (w) induced by the action of M(W ) on Tw. It turns out to be a natural
w-analogue of the Hecke group algebra, acting not anymore on the full Coxeter group, but on the interval
[1, w]R in right order. All the properties of the Hecke group algebra pass through this generalization, with
the combinatorics of descents being replaced by that of blocks and of the cutting poset. In particular,
HW (w) is Morita equivalent to the incidence algebra of a lattice.

In Section 6, we derive (parts of) the representation theory of M(W ) from Sections 3, 4, and 5.
A long version of this paper with all proofs included will appear separately.
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2 Blocks of Coxeter group elements and the cutting poset
In this section, we develop the combinatorics underlying the representation theory of the translation mod-
ules studied in Section 5. The key question is: for which subsets J ⊆ I does the canonical bijection
between a Coxeter group W and the Cartesian product WJ × JW of a parabolic subgroup WJ by its set
of coset representatives JW in W restrict properly to an interval [1, w]R in right order (see Figure 1)? In
type A, the answer is given by the so-called blocks in the permutation matrix of w, and we generalize
this notion to any Coxeter group. After reviewing parabolic subgroups and cosets representatives in Sec-
tion 2.1, we define blocks of Coxeter group elements in Section 2.2, and show in Section 2.3 how this
notion specializes to type A. Finally, in Section 2.4, we introduce and study the cutting poset.

2.1 Parabolic subgroups and cosets representatives
For a subset J ⊆ I , the parabolic subgroup WJ of W is the Coxeter subgroup of W generated by
sj , j ∈ J . A complete system of minimal length representatives of the right cosets WJw (resp. of the left
cosets wWJ ) are given respectively by:

JW := {x ∈W | DL(x) ∩ J = ∅} and W J := {x ∈W | DR(x) ∩ J = ∅} .

Every w ∈ W has a unique decomposition w = wJ
Jw with wJ ∈ WJ and Jw ∈ JW . Similarly, there

is a unique decomposition w = wKKw with Kw ∈ KW = WK andwK ∈ WK . A subset J is left
reduced w.r.t. w if J ′ ⊂ J implies J

′
w >L

Jw. Right reduced K’s are defined analogously.

2.2 Blocks of Coxeter group elements
We now come to the definition of blocks of Coxeter group elements, and associated cutting points.

Definition 2.1 (Blocks and cutting points) Let w ∈ W . We say K ⊆ I is a right block (resp. J ⊆ I is
a left block) of w, if there exists J ⊆ I (resp. K ⊆ I) such that wWK = WJw .

In that case, v := wK is called a cutting point of w, which we denote by v v w. Furthermore, K is
proper if K 6= ∅ and K 6= I; it is nontrivial ifwK 6= w (or equivalently Kw 6= 1); analogous definitions
are made for left blocks.

We denote by BR(w) (resp. BL(w)) the set of all right (resp. left) blocks for w, and byRBR(w) (resp.
RBL(w)) the set of all reduced right (resp. left) blocks for w.

Proposition 2.2 Assuming that J is reduced, J is a left block of w if and only if the bijection
{
WJ × JW →W

(u, v) 7→ uv

restricts to a bijection [1, wJ ]R × [1, Jw]R → [1, w]R (see Figure 1).

Due to Proposition 2.2, we also say that [1, v]R tiles [1, w]R if v = Jw for some left block J .

Example 2.3 For w = w0, any K ⊆ I is a reduced right block; of course, wK0 ≤L w0 and Kw0 is
the maximal element of the parabolic subgroup WK = KW . The cutting point wK v w is the maximal
element of the right descent class for the complement of K.
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Proposition 2.4 The set BL(w) (resp. BR(w)) of left (resp. right) blocks is stable under union and
intersection. So, they form a sublattice of the Boolean lattice.

The setsRBL(w) andRBR(w) are (dual) Moore families and therefore lattices.

Definition 2.5 (w-codescent sets) For u ∈ [1, w]R defineK(w)(u) to be the maximal reduced right block
K of w such that u is below the corresponding cutting point, that is u ≤R wK . Let J (w)(u) be the left
block corresponding to K(w)(u).

Example 2.6 When w = w0, any J ⊆ I is a reduced left block. Furthermore, for u ∈ W , J (w0)(u) is
the complement of its left-descent set: J (w0)(u) = I \DL(u). Idem on the right.

2.3 Blocks of permutations
We now specialize to type An−1. For a permutation w ∈ Sn, the blocks of Definition 2.1 correspond to
the usual notion of blocks of the matrix ofw (or unions thereof), and the cutting pointswK for right blocks
K correspond to putting the identity in the matrix-blocks of w. Namely, a matrix-block of a permutation
w is an interval [k′, k′ + 1, . . . , k] which is mapped to another interval. Pictorially, this corresponds
to a square submatrix of the matrix of w which is again a permutation matrix (that of the associated
permutation). For example, the interval [2, 3, 4, 5] is mapped to the interval [4, 5, 6, 7] by the permutation
w = 36475812 ∈ S8, and is therefore a matrix-block of w with associated permutation 3142. Similarly,
[7, 8] is a matrix-block with associated permutation 12:

•
•

•
•

•
•

•
•

The singletons [i] and the full set [1, 2, . . . , n] are always matrix-blocks; the other matrix-blocks are called
proper. A permutation with no proper matrix-block, such as 58317462, is called simple. See [AA05] for
a review of simple permutations or, equivalently, dimension 2 posets.

Proposition 2.7 Letw ∈ Sn. The right blocks ofw are in bijection with disjoint unions of (non singleton)
matrix-blocks for w; each matrix-block with column set [i, i+ 1, . . . , k] contributes {i, i+ 1, . . . , k − 1}
to the right block; each matrix-block with row set [i, i+ 1, . . . , k] contributes {i, i+ 1, . . . , k − 1} to the
left block. In addition, trivial right blocks correspond to unions of identity matrix-blocks. Also, reduced
right blocks correspond to unions of connected matrix-blocks.

Example 2.8 As in Figure 1, consider the permutation 4312, whose permutation matrix is:

•
•

•
•

The reduced (right)-blocks are K = {}, {1}, {2, 3}, and {1, 2, 3}. The cutting points are 4312, 3412,
4123, and 1234, respectively. The corresponding left blocks are J = {}, {3}, {1, 2} and {1, 2, 3},
respectively. The non-reduced blocks are {3} and {1, 3}, as they are respectively equivalent to the blocks
{} and {1}. Finally, the trivial blocks are {} and {3}.
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1234

1324

3124 1342

3142

3412

1243

1423

4123 1432

4132

4312

1234

1324 1243

3124 1342 1423

3142 1432 4123

3412 4132

4312

Fig. 1: Two pictures of the interval [1234, 4312]R in right order illustrating its proper tilings, for J := {3} and
J := {1, 2}, respectively. The thick edges highlight the tiling. The circled permutations are the cutting points, which
are at the top of the tiling intervals. Blue, red, green lines correspond to s1, s2, s3, respectively. See Section 5.4 for
the definition of the orientation of the edges (this is G(4312)); edges with no arrow tips point in both directions.

2.4 The cutting poset
Theorem 2.9 (W,v) is a poset with 1 as minimal element; it is further a subposet of both left and right
order. Every interval of (W,v) is a sublattice of both left and right order.

The v-lower covers of an element w correspond to the nontrivial blocks of w which are minimal for
inclusion. The meet-semilattice Lw they generate is free, and is in correspondence with the lattice of
unions of these minimal nontrivial blocks, or alternatively of the intersections of the intervals [1, u]R for
u v-lower covers of w.

The Möbius function is given by µ(u,w) = ±1 if u is in Lw (with alternating sign according to the
usual rule for the Boolean lattice), and 0 otherwise.

This Möbius function is used in Section 5.4 to compute the size of the simple modules of M .

Conjecture 2.10 (W,v) is a meet-semilattice whose intervals are all distributive lattices.

3 The combinatorics of M(W )

In this section we study the combinatorics of the biHecke monoid M(W ) of a finite Coxeter group W .
In particular, we prove in Section 3.1 that its elements preserve left order and Bruhat order, and derive in
Section 3.2 properties of their image sets and fibers. Finally, in Section 3.3, we prove the key combina-
torial ingredients for the enumeration of the simple modules of M(W ) in Section 6: M(W ) is aperiodic
and admits |W | conjugacy classes of idempotents.

3.1 Preservation of left and Bruhat order
Lemma 3.1 Take f ∈M(W ), w ∈W , and j ∈ I . Then, (sjw).f is either w.f or sj(w.f).

Proposition 3.2 The elements f of M preserve left order: u ≤L v ⇒ u.f ≤L v.f .

Proposition 3.3 The elements f of M preserve Bruhat order: u ≤B v ⇒ u.f ≤B v.f .

Proposition 3.4 Any f ∈M such that 1.f = 1 is contracting for Bruhat order: w.f ≤B w.
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3.2 Fibers and image sets
Proposition 3.5 The image set of an idempotent in M(W ) is an interval in left order.

Proposition 3.6 Take f ∈ M(W ), and consider the Hasse diagram of left order contracted with respect
to the fibers of f . Then, this graph is isomorphic to left order restricted on the image set.

Proposition 3.7 Any element f ∈M(W ) is characterized by its set of fibers and its image set.

A monoid M is called aperiodic if for any f ∈M , there exists k > 0 such that fk+1 = fk. Note that,
in that case, f∞ := fk = fk+1 = . . . is an idempotent.

Proposition 3.8 The biHecke monoid M(W ) is aperiodic.

3.3 Conjugacy classes of idempotents
Proposition 3.9 For w ∈ W , ew := πw−1w0

πw0w is the unique idempotent with image set [1, w]L. For
u ∈W , it satisfies ew(u) = max≤B

(
[1, u]B ∩ [1, w]L

)
.

Corollary 3.10 For u,w ∈ W , the intersection [1, u]B ∩ [1, w]L is a lower ≤L ideal with a unique
maximal element v in Bruhat order. The maximum is given by v = ew(u).

We are now in the position to describe the conjugacy relations between the idempotents of M .

Lemma 3.11 Let e and f be idempotents with respective image sets [a, b]L and [c, d]L. Then, f ∈MeM
if and only if dc−1 ≤LR ba−1. In particular, e and f are conjugates if and only if the intervals [a, b]L and
[c, d]L are of the same type: dc−1 = ba−1.

Corollary 3.12 The idempotents (ew)w∈W form a complete set of representatives of the conjugacy classes
of idempotents in M .

4 The Borel submonoid M1(W ) and its representation theory
In the previous section, we outlined the importance of the idempotents (ew)w∈W . A crucial feature is that
they live in a “Borel” submonoid M1 := {f ∈M | 1.f = 1}. In fact:

Theorem 4.1 M1 has a unique minimal generating set which consists of the (2n − n in type A) idempo-
tents ew where w0w

−1 is Grassmanian.

Furthermore, the elements of M1 are both order-preserving and contracting for Bruhat order.

Corollary 4.2 For f, g ∈ M1, define the relation f ≤ g if w.f ≤ w.g for all w ∈ W . Then, ≤ defines a
partial order on M1 such that fg ≤ f and fg ≤ g for any f, g ∈M1.

M1 is therefore J -trivial (see e.g. [Pin09]). The generalization of most of the representation theoretical
results summarized below to any J -trivial monoid is the topic of [DHST10].

For each w ∈ W define Sw to be the one-dimensional vector space with basis {εw} together with the
right operation of any f ∈ M1 given by εw.f := εw if w.f = w and εw.f := 0 otherwise. The basic
features of the representation theory of M1 can be stated as follows:

Theorem 4.3 The radical of K[M1] is the ideal with basis (f∞−f)f , for f non-idempotent. The quotient
of K[M1] by its radical is commutative. Therefore, all simple M1-module are one dimensional. In fact,
the family {Sw}w∈W forms a complete system of representatives of the simple M1-modules.
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To describe the indecomposable projective modules, we note that the restriction of the conjugacy relation
(J -order) to idempotents has a very simple description:

Proposition 4.4 For u, v ∈W , the following are equivalent:

• euev = eu ; • v ≤L u for left order;

• eveu = eu ; • there exists x, y ∈M1 such that eu = xevy .

Moreover (euev)
∞ = eu∨Lv , where u ∨L v is the join of u and v in left order.

Definition 4.5 For any element x ∈M , define

lfix(x) := min
≤L

{u ∈W | eux = x} and rfix(x) := min
≤L

{u ∈W | xeu = x} . (7)

Then, the projective modules and Cartan invariants can be described as follows:

Theorem 4.6 There is an explicit basis (bf )f∈M1
of K[M1] such that, for all w ∈W ,

• the family {bx | lfix(x) = w} is a basis for the right projective module associated to Sw;

• the family {bx | rfix(x) = w} is a basis for the left projective module associated to Sw.

Moreover, the Cartan invariant of K[M1] defined by cu,v := dim(euK[M1]ev) for u, v ∈ W is given by
cu,v = |Cu,v|, where Cu,v := {f ∈M1 | u = lfix(f) and v = rfix(f)}.

5 Translation modules and w-biHecke algebras
The main purpose of this section is to pave the ground for the construction of the simple modules Sw of the
biHecke monoidM = M(W ) in Section 6. To this end, in Section 5.1, we endow the interval [1, w]R with
a natural structure of a combinatorial M -module Tw, called translation module. This module is closely
related to the projective module Pw of M (Corollary 6.2), which explains its important role. By taking
the quotient of K[M ] through its representation on Tw, we obtain a w-analogue HW (w) of the biHecke
algebra HW . This algebra turns out to be interesting in its own right, and we proceed by generalizing
most of the results of [HT09] on the representation theory ofHW .

As a first step, we introduce in Section 5.2 a collection of submodules P (w)
J of Tw, which are analogues

of the projective modules of HW . Unlike for HW , not any subset J of I yields such a submodule,
and this is where the combinatorics of the blocks of w as introduced in Section 2 enters the game. In a
second step, we derive in Section 5.3 a lower bound on the dimension of HW (w); this requires a (fairly
involved) combinatorial construction of a family of functions on [1, w]R which is triangular with respect
to Bruhat order. In Section 5.4 we combine these results to derive the dimension and representation theory
ofHW (w): projective and simple modules, Cartan matrix, quiver, etc.

5.1 Translation modules and w-biHecke algebras
For f ∈ M , define the type of f by type(f) := (w0.f)(1.f)−1. By Proposition 3.2, we know that
for f, g ∈ M either type(fg) = type(f), or `(w0.(fg)) − `(1.(fg)) < `(w0.f) − `(1.f) and hence
type(fg) 6= type(f). The second case occurs precisely when fiber(f) is strictly finer than fiber(fg) or
equivalently rank(fg) < rank(f), where the rank is the cardinality of the image set.
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Definition 5.1 Fix f ∈M . The right M -module

trans(f) := K.fM/K.{h ∈ fM | rank(h) < rank(f)}

is called the translation module associated with f .

Proposition 5.2 Fix f ∈M . Then:

{h ∈ fM | rank(h) = rank(f)} = {fu | u ∈ [1, type(f)−1w0]R} , (8)

where fu is the unique element of M such that fiber(fu) = fiber(f) and 1.fu = u.

Proposition 5.3 Set w = type(f)−1w0. Then, (fu)u∈[1,w]R forms a basis of trans(f) such that:

fu.πi =





fu if i ∈ DR(u)

fusi if i 6∈ DR(u) and usi ∈ [1, w]R

0 otherwise;
fu.πi =





fusi if i ∈ DR(u) and usi ∈ [1, w]R

fu if i 6∈ DR(u)

0 otherwise.
(9)

This proposition gives a combinatorial model for translation modules. It is clear that two functions with
the same type yield isomorphic translation modules. The converse also holds:

Proposition 5.4 For any f, f ′ ∈ M , the translation modules trans(f) and trans(f ′) are isomorphic if
and only if type(f) = type(f ′).

By the previous proposition, we may choose a canonical representative for translation modules. We
choose Tw := trans(ew,w0

), and identify its basis with [1, w]R via u 7→ fu.

Definition 5.5 The w-biHecke algebraHW (w) is the natural quotient of K[M(W )] through its represen-
tation on Tw. In other words, it is the subalgebra of End(Tw) generated by the operators πi and πi of
Proposition 5.3.

5.2 Left antisymmetric submodules
By analogy with the simple reflections in the Hecke group algebra, we define for each i ∈ I the operator
si := πi + πi − 1. For u ∈ [1, w]R, it satisfies u.si = usi if usi ∈ [1, w]R and u.si = −u otherwise.
These operators are still involutions, but do not quite satisfy the braid relations. One can further define
operators←−s i acting similarly on the left.

Definition 5.6 For J ⊆ I , set P (w)
J := {v ∈ Tw | ←−s i.v = −v, ∀i ∈ J}.

For w = w0, these are the projective modules PJ of the biHecke algebra.

Proposition 5.7 Take w ∈ W and J ⊆ I left reduced. Then, J is a reduced left block of w if and only if
P

(w)
J is a submodule of Tw.

It is clear from the definition that for J1, J2 ⊆ I , P (w)
J1∪J2 = P

(w)
J1
∩ P (w)

J2
. Since the set RBL(w)

of reduced left blocks of w is stable under union, the set of modules (P
(w)
J )J∈RBL(w) is stable under

intersection. On the other hand, unless J1 and J2 are comparable, P (w)
J1∪J2 is a strict subspace of P (w)

J1
+

P
(w)
J2

. Hence, for J ∈ RBL(w), we set S(w)
J := P

(w)
J /

∑
J′)J,J ′∈RBL(w) P

(w)
J′ .
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5.3 A (maximal) Bruhat-triangular family of HW (w)

Consider the submonoid F inHW (w) generated by the operators πi, πi, and si, for i ∈ I . For f ∈ F and
u ∈ [1, w]R, we have u.f = ±v for some v ∈ [1, w]R. For our purposes, the signs can be ignored and f
be considered as a function from [1, w]R to [1, w]R.

Definition 5.8 For u, v ∈ [1, w]R, a function f ∈ F is called (u, v)-triangular (for Bruhat order) if v is
the unique minimal element of im(f) and u is the unique maximal element of f−1(v) (all minimal and
maximal elements in this context are with respect to Bruhat order).

Proposition 5.9 Take u, v ∈ [1, w]R such K(w)(u) ⊆ K(w)(v). Then, there exists a (u, v)-triangular
function fu,v in F .

For example, for w = 4312 in S4, the condition on u and v is equivalent to the existence of a path from
u to v in the digraph G(4312) (see Figure 1 and Section 5.4).

The construction of fu,v is explicit, and the triangularity derives from fu,v being either in M , or close
enough to be bounded below by an element of M . It follows from the upcoming Theorem 5.10 that the
condition on u and v is not only sufficient but also necessary.

5.4 Representation theory of w-biHecke algebras
Consider the digraph G(w) on [1, w]R with an edge u 7→ v if u = vsi for some i, and J (w)(u) ⊆ J (w)(v).
Up to orientation, this is the Hasse diagram of right order (see for example Figure 1). The following
theorem is a generalization of [HT09, Section 3.3].

Theorem 5.10 HW (w) is the maximal algebra stabilizing all the modules P (w)
J , for J ∈ RBL(w).

The elements fu,v of Proposition 5.9 form a basisHW (w); in particular,

dimHW (w) = |{(u, v) | J (w)(u) ⊆ J (w)(v)}| . (10)

HW (w) is the digraph algebra of the graph G(w).
The family (PJ)J∈RBL(w) forms a complete system of representatives of the indecomposable projective

modules ofHW (w).
The family (SJ)J∈RBL(w) forms a complete system of representatives of the simple modules ofHW (w).

The dimension of SJ is the size of the corresponding w-descent class.
HW (w) is Morita equivalent to the poset algebra of the lattice [1, w]v.

6 The representation theory of M(W )
Theorem 6.1 The monoid M = M(W ) admits |W | non-isomorphic simple modules (Sw)w∈W (resp.
projective indecomposable modules (Pw)w∈W ).

The simple module Sw is isomorphic to the top simple module S(w)
{} of the translation module Tw. In

general, the simple quotient module S(w)
J of Tw is isomorphic to SJw of M .

For example, the simple module S4312 is of dimension 3, with basis {4312, 4132, 1432} (see Figure 1).
The other simple modules S3412, S4123, and S1234 are of dimension 5, 3, and 1.

Corollary 6.2 The translation module Tw is an indecomposable M -module, quotient of the projective
module Pw of M .
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M1 is a submonoid of M . Therefore any M -module X is a M1-module, and its M1-character [X]M1

depends only on its M -character [X]M . This defines a Z-linear map [X]M 7→ [X]M1
. Let (Sw)w∈W

and (S1
w)w∈W be complete families of simple modules representatives for M and M1, respectively. The

matrix of [X]M 7→ [X]M1 is called the decomposition matrix of M over M1; its coefficient (u, v) is the
multiplicity of S1

u as a composition factor of Sv viewed as an M1-module.

Theorem 6.3 The decomposition matrix of M over M1 is upper uni-triangular for right order, with 0, 1
entries. Furthermore, Tw is isomorphic to the induction to M of the simple module S1

w.
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Criteria for rational smoothness of some
symmetric orbit closures
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Abstract. Let G be a connected reductive linear algebraic group over C with an involution θ. Denote by K the
subgroup of fixed points. In certain cases, the K-orbits in the flag variety G/B are indexed by the twisted identities
ι(θ) = {θ(w−1)w | w ∈ W} in the Weyl group W . Under this assumption, we establish a criterion for rational
smoothness of orbit closures which generalises classical results of Carrell and Peterson for Schubert varieties. That
is, whether an orbit closure is rationally smooth at a given point can be determined by examining the degrees in a
“Bruhat graph” whose vertices form a subset of ι(θ). Moreover, an orbit closure is rationally smooth everywhere if
and only if its corresponding interval in the Bruhat order on ι(θ) is rank symmetric.

In the special case K = Sp2n(C), G = SL2n(C), we strengthen our criterion by showing that only the degree of
a single vertex, the “bottom one”, needs to be examined. This generalises a result of Deodhar for type A Schubert
varieties.

Résumé. Soit G un groupe algébrique connexe réductif sur C, équipé d’une involution θ. Soit K le sous–groupe
de ses points fixes. Dans certains cas, les orbites des points de la variété de drapeaux G/B sous l’action de K sont
indexées par les identités tordues, ι(θ) = {θ(w−1)w | w ∈ W}, du groupe de Weyl W . Sous cette hypothèse,
on établit un critère pour la lissité rationnelle des adhérences des orbites, qui généralise des résultats classiques de
Carrell et Peterson pour les variétés de Schubert. Plus précisément, on peut déterminer si l’adhérence d’une orbite
est rationnellement lisse en examinant les degrés dans un ”graphe de Bruhat” dont les sommets forment un sous–
ensemble de ι(θ). En outre, l’adhérence d’une orbite est partout rationnellement lisse si et seulement si l’intervalle
correspondant dans l’ordre de Bruhat de ι(θ) est symétrique respectivement au rang.

Dans le cas particulier K = Sp2n(C), G = SL2n(C), nous améliorons notre critère en montrant qu’il suffit
d’examiner le degré d’un seul sommet, celui ”du bas”. Ceci généralise un résultat de Deodhar pour les variétés
de Schubert de type A.

Keywords: Rational smoothness, symmetric orbit, Bruhat graph

1 Introduction
Let G be a connected reductive complex linear algebraic group equipped with an automorphism θ of
order 2. There is a θ-stable Borel subgroup B which contains a θ-stable maximal torus T [Ste68, §7]
with normaliser N . Let K = Gθ be the fixed point subgroup. We may always assume θ to be the
complexification of the Cartan involution of some real form GR of G.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The flag variety X = G/B decomposes into finitely many orbits under the action of the symmetric
subgroup K by left translations. A natural “Bruhat-like” partial order on the set of orbits K\X is defined
by inclusion of their closures. Let V denote this poset. Richardson and Springer [RS90, RS94] defined a
poset map ϕ : V → Br(W ), where Br(W ) is the Bruhat order on the Weyl group W = N/T . The image
of ϕ is contained in the set of twisted involutions I(θ) = {w ∈ W | θ(w) = w−1}. In general, ϕ is
neither injective nor surjective. For certain choices of G and θ, however, ϕ produces a poset isomorphism
V ∼= Br(ι(θ)), where ι(θ) = {θ(w−1)w | w ∈ W} ⊆ I(θ) is the set of twisted identities and Br(·)
denotes induced subposet of Br(W ). In Section 3, we shall make explicit under what circumstances this
fairly restrictive assumption holds. Now suppose that ϕ is such an isomorphism and let Ow, w ∈ ι(θ),
denote the closure of the orbit Ow = ϕ−1(w). In this article we express the rationally singular locus of
Ow in terms of the combinatorics of ι(θ).

With each w ∈ ι(θ), we associate a Bruhat graph BG(w) with vertex set Iw = {u ∈ ι(θ) | u ≤ w}.
Our first main result, Theorem 5.7, states that Ow is rationally smooth at Ou if and only if v is contained
in ρ(w) edges for all u ≤ v ≤ w, where ρ(w) is the rank of w in Br(ι(θ)). In particular, Ow is rationally
smooth if and only if BG(w) is ρ(w)-regular. This latter statement also turns out to be equivalent to the
principal order ideal Br(Iw) being rank-symmetric; see Theorem 5.8 below.

The assertions just stated generalise celebrated criteria due to Carrell and Peterson [Car94] for rational
smoothness of Schubert varieties. We recover their results in the special case where G = G′ × G′ and
θ(x, y) = (y, x).

The main brushstrokes of our proofs are completely similar to those of Carrell and Peterson. Below the
surface, however, their results rely on delicate connections between Kazhdan-Lusztig polynomials and the
combinatorics of (ordinary) Bruhat graphs. Our chief contribution is to extend these properties to a more
general setting. Very roughly, here is what we do:

First, properties of ι(θ) are established that combined with results of Brion [Bri99] imply a bound on
the degrees in BG(w) that generalises “Deodhar’s inequality” for degrees in ordinary Bruhat graphs of
Weyl groups.

Second, an explicit procedure, in terms of combinatorial properties of ι(θ), for computing the “R-
polynomials” of [LV83, Vog83] is extracted from the correspondence V ↔ ι(θ). Using this procedure we
establish several properties of these polynomials (and therefore of Kazhdan-Lusztig-Vogan polynomials)
and relate them to degrees in the graphs BG(w). This generalises well known properties of ordinary
Kazhdan-Lusztig polynomials and R-polynomials and how they are related to ordinary Bruhat graphs.

The most prominent example where our results say something which is not contained in [Car94] is
G = SL2n(C), K = Sp2n(C). For this setting, we prove the stronger statement (Corollary 6.5) that the
degree of the bottom vertex alone suffices to decide rational smoothness. That is,Ow is rationally smooth
at Ou if and only if the degree of u in BG(w) is ρ(w). This is analogous to a corresponding result for
type A Schubert varieties which is due to Deodhar [Deo85]. Again, that result is contained in ours as a
special case.

Remark 1.1 After a preliminary version of [Hul09] was circulated, McGovern [McG09] has applied our
results in order to deduce a criterion for (rational) smoothness in the case G = SL2n(C), K = Sp2n(C)
in terms of pattern avoidance among fixed point free involutions. Moreover, he proved that in this case
the rationally singular loci in fact coincide with the singular loci.

In Section 3, we make precise the assumptions on θ for which our results are valid. Thereafter, the
Bruhat graphs BG(w) are introduced in Section 4. Our Carrell-Peterson type criteria for rational smooth-
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ness are deduced in Section 5. Finally, in Section 6, we prove that the bottom vertex alone suffices to
decide rational smoothness when G = SL2n(C), K = Sp2n(C).

Details left out in the present extended abstract can be found in [Hul09].

2 Kazhdan-Lusztig-Vogan polynomials
In the present paper, the principal method for detecting rational singularities of symmetric orbit closures is
via Kazhdan-Lusztig-Vogan polynomials. Here, we briefly review some of their properties and establish
notation. For more information we refer the reader to [LV83] or [Vog83]. Our terminology chiefly follows
the latter reference.

LetD denote the set of pairs (O, γ), whereO ∈ K\X and γ is aK-equivariant local system onO. The
choice of γ is equivalent to the choice of a character of the component group of the stabiliserKx of a point
x ∈ O. In particular, γ is unique if Kx is connected. Since O is determined by γ, we may abuse notation
and write γ for (O, γ). With each pair γ, δ ∈ D, we associate polynomials Rγ,δ, Pγ,δ ∈ Z[q]. The R-
polynomials can be computed using a recursive procedure which we refrain from stating in full generality
here; see [Vog83, Lemma 6.8] for details. A special case sufficient for our purposes is formulated in
Proposition 5.2 below.

LetM denote the free Z[q, q−1] module with basis D. For fixed δ ∈ D, we have inM the identity

q−l(δ)
∑

γ≤δ
Pγ,δ(q)γ =

∑

β≤γ≤δ
(−1)l(β)−l(γ)q−l(γ)Pγ,δ(q

−1)Rβ,γ(q)β

which subject to the restrictions Pγ,γ = 1 and deg(Pγ,δ) ≤ (l(δ) − l(γ) − 1)/2 uniquely determines
the Kazhdan-Lusztig-Vogan (KLV) polynomials Pγ,δ [Vog83, Corollary 6.12].(i) Here, l(·) indicates the
dimension of the corresponding orbit, and the order on D is the Bruhat G-order [Vog83, Definition 5.8].

KLV polynomials serve as measures of the singularities of symmetric orbit closures; cf. [Vog83, Theo-
rem 1.12]. In particular, their coefficients are nonnegative. Another consequence is the following:

Proposition 2.1 Let ≤ denote the order relation in V , i.e. containment among orbit closures. Given
orbits P,O ∈ K\X with P ≤ O, let δ = (O,CO), where CO is the trivial local system. Then, O is
rationally smooth at some (equivalently, every) point in P if and only if

Pγ,δ =

{
1 if L = CQ,
0 if L 6= CQ,

for all γ = (Q, L) ∈ D with P ≤ Q ≤ O.

The gadgets just described are fundamental ingredients in the representation theory of GR. More pre-
cisely, the KLV polynomials govern the transition between important families of (g,KR)-modules. See
[LV83, Vog83] for more details.

(i) Note that there is a typo which has an impact on the cited result. We are grateful to D. A. Vogan for pointing out that the displayed
formula in the statement of [Vog83, Lemma 6.8] should read

D(δ) = u−l(δ)
∑

γ

(−1)l(γ)−l(δ)Rγ,δ(u)γ.
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3 Restricting the involution
Consider the set V = {g ∈ G | θ(g−1)g ∈ N}. The set of orbits K\V/T parametrises K\X . In this
way, the map V → W given by g 7→ θ(g−1)gT induces the map ϕ : V → W which was mentioned in
the introduction. Observe that the image of ϕ is contained in I(θ).

Throughout this paper we shall only allow certain choices of θ. More precisely, we from now on assume
that θ obeys the following condition:

Hypothesis 3.1 The fixed point subgroup K is connected. Moreover, ϕ : V →W satisfies ϕ(v0) ∈ ι(θ),
where v0 ∈ V is the maximum element, i.e. the dense orbit.

Remark 3.2 If G is semisimple and simply connected, then K is necessarily connected. This result is
due to Steinberg [Ste68, Theorem 8.1]. In some sense, the general situation can be reduced to the study
of semisimple simply connected G; see [RS90].

Several consequences are collected in the next proposition. For the proof, see [Hul09]. Let Φ denote
the root system of G,T and write R ⊂W for the corresponding set of reflections.

Proposition 3.3 Hypothesis 3.1 implies the following:

(i) The map ϕ yields a poset isomorphism V → Br(ι(θ)).

(ii) There is a unique K-equivariant local system, namely CO, on each orbit O ∈ K\X . In particular,
the sets D, K\X and ι(θ) may be identified, and the Bruhat G-order on D coincides with V and
Br(ι(θ)).

(iii) Let α ∈ Φ and denote by Gα ⊆ G the corresponding rank one semisimple group. Then, we are in
one of the following two situations:

(a) The root α is compact imaginary. That is, Gα ⊆ K.

(b) The root α is complex (meaning θ(α) 6= α) and θ(α) + α 6∈ Φ.

(iv) If r ∈ R, then θ(r)r = rθ(r).

(v) The poset Br(ι(θ)) is graded with rank function ρ being half the ordinary Coxeter length. Moreover,
ρ(w) = l(Ow)− l(Oid).

The following example allows us to consider many of our results as generalisations of statements about
Schubert varieties.

Example 3.4 If G′ is a connected reductive complex linear algebraic group and G = G′ × G′, the
involution θ which interchanges the two factors makesK the diagonal subgroup. In this case, ι(θ) = I(θ),
so Hypothesis 3.1 is satisfied. The poset Br(ι(θ)) coincides with Br(W ′), where W ′ is the Weyl group
of G′. There is a one-to-one correspondence between K-orbits in X and Schubert cells in the Bruhat
decomposition of the flag variety of G′ which preserves a lot of structure including the property of having
rationally smooth closure at a given orbit.
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In addition to the setting in Example 3.4 there are a few more cases that satisfy Hypothesis 3.1. They are
denoted AII , D II and E IV in the classification of symmetric spaces GR/KR given e.g. in Helgason
[Hel78].(ii) The corresponding Weyl groups are A2n+1, Dn and E6, respectively, with θ in each case
restricting to the Weyl group as the unique nontrivial Dynkin diagram involution. Types D and E could
in principle be handled separately. In the former case, ι(θ) has a very simple structure (cf. [Hul08, proof
of Theorem 5.2]), whereas the latter admits a brute force computation. Thus, the main substance lies in
the A2n+1 case where Br(ι(θ)) is an incarnation of the containments among closures of Sp2n(C) orbits
in the flag variety SL2n(C)/B; see [RS90, Example 10.4] for a discussion of this case. Nevertheless,
we have opted to keep our arguments type independent regarding all assertions that are valid in the full
generality of Hypothesis 3.1. There are two reasons. First, the natural habitat for Theorems 5.7 and
5.8 is the general setting; no simplicity would be gained by formulating the arguments in type A specific
terminology. Second, we hope that the less specialised viewpoint shall prove suitable as point of departure
for generalisations beyond Hypothesis 3.1.

4 “Bruhat graphs”
Let ∗ denote the θ-twisted right conjugation action of W on itself, i.e. u ∗w = θ(w−1)uw for u,w ∈W .
Then ι(θ) is the orbit of the identity element id ∈W .

Recall that Iw = {u ∈ ι(θ) | u ≤ w}.
Definition 4.1 Given w ∈ ι(θ), let BG(w) be the graph with vertex set Iw and an edge {u, v} whenever
u = v ∗ t 6= v for some reflection t ∈ R.

Notice that BG(u) is an induced subgraph of BG(w) if u ≤ w. See Figure 1 for an illustration.
We shall refer to graphs of the form BG(w) as Bruhat graphs, because in the setting of Example 3.4,

they coincide with (undirected versions of) the ordinary Bruhat graphs inW ′ introduced by Dyer [Dye91].
Next, we list some useful properties of Bruhat graphs. The proofs rely on combinatorial considerations

and results from [Dye91]; see [Hul09] for details.

Lemma 4.2 Let w ∈ ι(θ) and u, v ∈ Iw, u 6= v. Write u = θ(x−1)x for x ∈ W . The following are
equivalent:

(i) {u, v} is an edge in BG(w).

(ii) There are exactly two distinct reflections t ∈ R such that u ∗ t = v.

(iii) There are exactly two distinct reflections t ∈ R such that θ(x−1)θ(t)tx = v. If t is one of these
reflections, then θ(t) is the other.

Lemma 4.3 If {u, v} is an edge in BG(w), then either u < v or v < u. Furthermore, v has exactly ρ(v)
neighbours u such that u < v.

Combining the first part of Brion’s [Bri99, Theorem 2.5] with part (iii) of Proposition 3.3 shows that the
rank of a vertex v = θ(x−1)x in BG(w) is at most half the number of complex reflections (i.e. reflections
that correspond to complex roots) t ∈ R such that θ(x−1)θ(t)tx ≤ w. By Lemma 4.2, this is precisely
the degree of v in BG(w). We thus have the following fact:
(ii) The “usual” construction of D II would yield G = SO2n(C), K = S(O2n−1(C) × O1(C)) ∼= O2n−1(C) so that K is

disconnected. However, passing to the fundamental cover, we have G = Spin2n(C), K = Spin2n−1(C) in agreement with
Hypothesis 3.1.
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Fig. 1: A picture of the Bruhat graph BG(w) where w = s5s3s4s5s1s2s3s1 ∈ ι(θ) ⊂ A5. Here, si denotes the
simple reflection (i, i + 1) in the usual manifestation of A5 as the symmetric group S6. The involution θ sends
s6−i to si. A vertex u ∈ Iw is labelled by the indices of a sequence of simple reflections whose product x satisfies
u = θ(x−1)x. The straight edges indicate the covering relation of Br(ι(θ)).

Theorem 4.4 For w ∈ ι(θ), the degree of each vertex in BG(w) is at least ρ(w).

Remark 4.5 In the setting of Example 3.4, Theorem 4.4 specialises to “Deodhar’s inequality” in W ′; see
[BL00, §6] and the references cited there.

5 A criterion for rational smoothness
In general, the recursion for the R-polynomials mentioned in Section 2 is technically rather involved.
Since we are assuming Hypothesis 3.1, however, the situation is simpler. Proposition 3.3 allows us to
identify the indexing set D with ι(θ). Rather than working with the actual R-polynomials as defined in
[Vog83], we shall find it more convenient to use the following simple variation:

Definition 5.1 For u, v ∈ ι(θ), let Qu,v(q) = (−q)ρ(v)−ρ(u)Ru,v(q−1).

With some labour, a combinatorially explicit recursion for the Qu,v can be extracted from the identity
∑

u∈ι(θ)
(−1)ρ(u)Ru,w(q)u = −

∑

u∈ι(θ)
(−1)ρ(u)Ru,w∗s(q)(Ts + 1− q)u;

see [Vog83, proof of Lemma 6.8]. The key is that the definition of the maps Ts (see [Vog83, Definition
6.4]) simplifies a fair amount under Hypothesis 3.1. We refer the reader to [Hul09] for the details.

With DR(v) denoting the descent set of v ∈ ι(θ), i.e. the set of simple reflections s such that vs < v,
or equivalently v ∗ s < v, the recursion takes the following form:

Proposition 5.2 For s ∈ DR(v), we have

Qu,v(q) =





Qu∗s,v∗s(q) if u ∗ s < u,
qQu∗s,v∗s(q) + (q − 1)Qu,v∗s(q) if u ∗ s > u,
qQu,v∗s(q) if u ∗ s = u.
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Together with the “initial values” Qu,u(q) = 1 and Qu,v(q) = 0 if u 6≤ v, we may calculate any Qu,v
using Proposition 5.2.

In the setting of Example 3.4, both the Ru,v(q) and the Qu,v(q) coincide with the classical Kazhdan-
Lusztig R-polynomials introduced in [KL79]. The three lemmata coming up next hint that the Qu,v(q)
may provide the more useful generalisation.

Lemma 5.3 For u, v ∈ ι(θ), we have

Q′u,v(1) =

{
1 if u < v and {u, v} is an edge in BG(v),
0 otherwise.

Proof: Suppose s ∈ DR(v). Differentiating the equation in Proposition 5.2 with respect to q, and using
that Qu,v(1) = Ru,v(1) = δu,v (Kronecker’s delta), it follows that

Q′u,v(1) = Q′u∗s,v∗s(1) + δu,v∗s.

It is clear that {u ∗ s, v ∗ s} is an edge in BG(v) if and only if the same is true about {u, v}. Employing
induction on ρ(v), it thus suffices to show that u ∗ s < v ∗ s if v ∗ s 6= u < v and {u, v} is an edge.
Lemma 4.3 shows that u ∗ s and v ∗ s are comparable in this situation. The assertion u ∗ s > v ∗ s would
contradict the Lifting Property [Hul08, Lemma 2.7], and we are done. 2

Lemma 5.4 Denote by µ the Möbius function of Br(ι(θ)). Then, µ(u, v) = Qu,v(0) for all u, v ∈ ι(θ).

Proof: Let us induct on ρ(v). The assertion holds for ρ(v) = 0 because Qid,id(q) = Rid,id(q) = 1. We
shall demonstrate that µ(u, v) satisfies the recursion for Qu,v(0) derived from Proposition 5.2.

Borrowing terminology from [Hul08], call [u, v] full if every twisted involution in the interval [u, v] is
in fact a twisted identity. Combining Philip Hall’s theorem (see e.g. [Sta97, Proposition 3.8.5]) with the
topological results in [Hul08, Theorem 4.12] shows that

µ(u, v) =

{
(−1)ρ(v)−ρ(u) if [u, v] is full,
0 otherwise.

Pick s ∈ DR(v). In case u ∗ s = u, [u, v] is not full, and µ(u, v) = 0 as desired. If u ∗ s > u, it follows
from [Hul08, Lemma 4.10] that [u, v ∗ s] is full if and only if [u, v] is full. Thus, µ(u, v) = −µ(u, v ∗ s),
and we are done. Finally, suppose u ∗ s < u. If [u ∗ s, v ∗ s] is full then [u, v] is also full, again by
[Hul08, Lemma 4.10]. On the other hand, [Hul08, Theorem 4.9] implies that µ(u ∗ s, v) = −µ(u, v), so
if [u ∗ s, v ∗ s] (and therefore [u ∗ s, v]) is not full, then [u, v] cannot be full either. Completing the proof,
we conclude µ(u, v) = µ(u ∗ s, v ∗ s). 2

Lemma 5.5 For all v ∈ ι(θ), ∑

u≤v
Qu,v(q) = qρ(v).
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Proof: We prove the lemma using induction on ρ(v). Given s ∈ DR(v), partition Iv into three sets:

A = {u ≤ v | u ∗ s < u}, B = {u ≤ v | u ∗ s > u}, C = {u ≤ v | u ∗ s = u}.

By the Lifting Property [Hul08, Lemma 2.7], the map u 7→ u ∗ s is a bijection between A and B. The
recursion in Proposition 5.2 therefore yields

∑

u≤v
Qu,v(q) =

∑

u∈A
u≤v∗s

qQu,v∗s(q) +
∑

u∈B
u≤v∗s

(1 + q − 1)Qu,v∗s(q) +
∑

u∈C
u≤v∗s

qQu,v∗s(q)

= q
∑

u≤v∗s
Qu,v∗s(q),

proving the claim. 2

Lemma 5.6 We have Pu,v(0) = 1 whenever u ≤ v in ι(θ).

Proof: The assertion is clear if u = v, and we employ induction on ρ(v)− ρ(u).
Vogan’s [Vog83, Corollary 6.12] translates to

qρ(v)−ρ(u)Pu,v(q
−1) =

∑

u≤w≤v
Qu,w(q)Pw,v(q).

The left hand side is a polynomial with zero constant term. Hence, Lemma 5.4 implies

Pu,v(0) = −
∑

u<w≤v
µ(u,w) = µ(u, u) = 1.

2

We are finally in position to prove the main results. Since all necessary technical prerequisites have
been established, the corresponding arguments from [Car94] can now be transferred to our setting more
or less verbatim.

Theorem 5.7 Suppose u, v ∈ ι(θ), u ≤ w. The following conditions are equivalent:

(i) The degree of v in BG(w) is ρ(w) for all u ≤ v ≤ w.

(ii) The KLV polynomials satisfy Pv,w(q) = 1 for all u ≤ v ≤ w. That is, the orbit closure Ow is
rationally smooth at Ou.

Proof: Define
fu,w(q) = qρ(w)−ρ(u)(Pu,w(q−2)− 1).

The P -polynomials have nonnegative coefficients. By Lemma 5.6, fu,w(q) too is a polynomial with
nonnegative coefficients. Since it has vanishing constant term, f ′u,w(1) = 0 if and only if fu,w(q) = 0
which, in turn, is equivalent to Pu,w(q) = 1.

Now,
f ′u,w(1) = (ρ(w)− ρ(u))(Pu,w(1)− 1)− 2P ′u,w(1).



206 Axel Hultman

Since Qu,w(1) = δu,w, we have

−2P ′u,w(1) =
d

dq
Pu,w(q−2)|q=1

= 2(ρ(u)− ρ(w))Pu,w(1) + 2
∑

u≤v≤w
Q′u,v(1)Pv,w(1) + 2P ′u,w(1).

Hence,
f ′u,w(1) = ρ(u)− ρ(w) +

∑

u≤v≤w
Q′u,v(1)Pv,w(1).

To begin with, assume (ii) holds. Then,

ρ(w)− ρ(v) =
∑

v≤v′≤w
Q′v,v′(1)

for all u ≤ v ≤ w. Condition (i) now follows from Lemma 5.3 together with Lemma 4.3.
Finally, let us prove (i) ⇒ (ii) by induction on ρ(w) − ρ(u). Suppose u < v ≤ w in Br(ι(θ)). By

Lemma 5.3 and the induction assumption, Q′u,v(1)Pv,w(1) is one if {u, v} is an edge in BG(w), zero
otherwise. Since deg(u) = ρ(w), u has exactly ρ(w)− ρ(u) neighbours v such that u < v. We conclude
f ′u,w(1) = 0 as desired. 2

Theorem 5.8 For w ∈ ι(θ), the following are equivalent:

(i) For all i, [id, w] = Br(Iw) has equally many elements of rank i as of rank ρ(w)− i.

(ii) The graph BG(w) is regular.

(iii) Pu,w(q) = 1 for all u ≤ w.

Proof: (i)⇒ (ii): Let n(i) denote the number of elements of rank i in [e, w]. Now, using Lemma 4.3 and
Theorem 4.4, we count the edges in BG(w) in two ways and obtain

ρ(w)∑

i=0

n(i)i ≥
ρ(w)∑

i=0

n(i)(ρ(w)− i)

with equality if and only if BG(w) is ρ(w)-regular. However, if n(i) = n(ρ(w)−i) for all i, then equality
does hold.

(ii)⇒ (iii): This follows from Theorem 5.7.
(iii)⇒ (i): We claim that

Fw(q) =
∑

u≤w
Pu,w(q)qρ(u)

is a symmetric polynomial, i.e. Fw(q) = qρ(w)Fw(q−1). If the P -polynomials all are 1, this means
∑

u≤w
qρ(u) =

∑

u≤w
qρ(w)−ρ(u).
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It therefore remains to verify the claim. Observe that

qρ(w)Fw(q−1) =
∑

u≤w
qρ(w)−ρ(u)Pu,w(q−1) =

∑

u≤w

∑

u≤v≤w
Qu,v(q)Pv,w(q) =

∑

v≤w
Pv,w(q)

∑

u≤v
Qu,v(q).

The claim now follows from Lemma 5.5. 2

To illustrate these results, consider Figure 1. The interval [id, w] has three elements of rank three but
only two of rank ρ(w)− 3 = 1. By Theorem 5.8, Ow is rationally singular. A more careful inspection of
the graph shows that s5s1 and e both have degree five whereas all other vertices have degree ρ(w) = 4.
By Theorem 5.7, the rationally singular locus ofOw therefore isOs5s1∪Oe. Also, observe that the degree
never decreases as we move down in the graph. This phenomenon is explained in the next section.

6 Sufficiency of the bottom vertex
In this final section, the criterion given in Theorem 5.7 is significantly improved in the special case G =
SL2n(C), K = Sp2n(C). In that case, as we shall see, whether or not an orbit closure Ow is rationally
smooth atOu is determined by the degree of u alone (Corollary 6.5 below). The corresponding statement
for Schubert varieties is known to be true in type A [Deo85] but false in general (see [BG03] for some
elaboration on this). Necessarily, therefore, this section must be type specific since the results cannot
possibly extend to the situation in Example 3.4 for arbitrary G′.

We work in the set F2n of fixed point free involutions on {1, . . . , 2n}. Let ? denote the conjugation
action from the right by the symmetric group S2n on itself, i.e. σ ? π = π−1σπ. Then, F2n = w0 ? S2n,
where w0 is the reverse permutation i 7→ 2n+ 1− i.

Let � denote the dual of the subposet of the Bruhat order on S2n induced by F2n. The bottom element
of this poset is w0. Observe that if u 6= u ? t, then u ? t � u iff t is an inversion of u (meaning t = (a, b)
with a < b and u(a) > u(b)).

For w ∈ F2n, define the Bruhat graph BG(w) as the graph with vertex set Iw = {u ∈ F2n | u � w}
and an edge {u, v} whenever u 6= v = u ? t for some transposition t. Thus, each edge has exactly two
transpositions associated with it, and the graph is simple (no loops or multiple edges). If w is understood
from the context and u � w, let E(u) denote the set of edges incident to u in BG(w). Also, define
deg(u) = |E(u)|.
Proposition 6.1 SupposeW = A2n−1 ∼= S2n with θ : W →W given by the unique nontrivial involution
of the Dynkin diagram. Then, x 7→ w0x defines a bijection F2n → ι(θ). Moreover, the bijection is an
isomorphism of Bruhat graphs, i.e. u � w ⇔ w0u ≤ w0w and w0(w ? t) = w0w ∗ t.

Proof: This is immediate from the well known facts that θ(x) = w0xw0 and that x 7→ w0x is an
antiautomorphism of Br(W ). 2

Suppose w � u 6= w0 and let r = (i, j), i < j, be a transposition such that u ? r ≺ u. Let a = u(i)
and b = u(j). Thus, a < b 6= i.

For a transposition t = (x, y), we use the notation supp(t) = {x, y}.
Definition 6.2 Call a transposition t compatible (with respect to u and r) if either supp(t) ∩ {i, j} 6= ∅
or supp(t) ∩ {a, b, i, j} = ∅.
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Given an edge e ∈ E(u) there are precisely two transpositions t and t′ 6= t such that e = {u, u ? t} =
{u, u ? t′}. At least one is compatible; let te be such a one.

Definition 6.3 Given e ∈ E(u), define ε(e) = {u ? r, u ? rτe}, where

τe =

{
rter if u ? ter � w,
te otherwise.

It is not a priori clear that ε(e) is independent of the choice of te, but this turns out to be the case. Here
is the point of all this:

Theorem 6.4 Definition 6.3 defines an injective map ε : E(u)→ E(u ? r).

The proof of Theorem 6.4 hinges on combinatorial considerations revolving around the Standard Cri-
terion characterising Bruhat order in symmetric groups; see e.g. [BB05, Theorem 2.1.5]. The details can
be found in [Hul09].

By Theorem 6.4, the degree can never decrease as we go down along edges in a Bruhat graph. In
particular, if a vertex has the minimum possible degree, then so does every vertex above it:

Corollary 6.5 We have deg(v) = deg(w) for all u � v � w if and only if deg(u) = deg(w).

Thus, to determine whether Condition (i) of Theorem 5.7 is satisfied, it suffices to check the degree of
u.

Remark 6.6 The set S2n = {w ∈ F2n | i ≤ n ⇒ w(i) ≥ n + 1} is in natural bijective correspondence
with S2n in a way which identifies Br(S2n) with �. Restricted to w ∈ S2n, Corollary 6.5 specialises to a
result of Deodhar [Deo85] for type A Schubert varieties. In that setting, our arguments are closely related
to work of Billey and Warrington [BW03, §6]

Remark 6.7 Observe that forG = SL2n(C),K = Sp2n(C), Theorem 4.4 follows directly from Theorem
6.4. Thus, we have rederived Brion’s [Bri99, Theorem 2.5] in this case.
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Combinatorics of the PASEP partition function

Matthieu Josuat-Vergès1 †
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Abstract. We consider a three-parameter PASEP model on N sites. A closed formula for the partition function
was obtained analytically by Blythe et al. We give a new formula which generalizes the one of Blythe et al, and is
proved in two combinatorial ways. Moreover the first proof can be adapted to give the moments of Al-Salam-Chihara
polynomials.

Résumé. Nous considérons un modèle de PASEP à trois paramètres sur N sites. Une formule close pour la fonction
de partition a été obtenue analytiquement par Blythe et al. Nous donnons une formule qui généralise celle de Blythe
et al, prouvée combinatoirement de deux manières diffèrentes. Par ailleurs la première preuve peut être adaptée de
sorte à obtenir les moments des polynômes d’Al-Salam-Chihara.

Keywords: asymmetric exclusion process, lattice paths, orthogonal polynomials, enumeration

1 Introduction
The partially asymmetric simple exclusion process (also called PASEP) is a Markov chain describing
the evolution of particles in N sites arranged in a line, each site being either empty or occupied by one
particle. Particles may enter the leftmost site at a rate α ≥ 0, go out the rightmost site at a rate β ≥ 0, hop
left at a rate q ≥ 0 and hop right at a rate p ≥ 0 when possible. By rescaling time it is always possible to
assume that the latter parameter is 1 without loss of generality. It is possible to define either a continuous-
time model or a discrete-time model, but they are equivalent in the sense that their stationary distributions
are the same. In this work we only study some combinatorial properties of the partition function. For
precisions, background about the model, and much more, we refer to [2, 3, 4, 5, 7, 9, 18]. We refer
particularly to the long survey of Blythe and Evans [2] and all references therein to give evidence that
this is a widely studied model. Indeed, it is quite rich and some important features are the various phase
transitions, and spontaneous symmetry breaking for example, so that it is considered to be a fundamental
model of nonequilibrium statistical physics.

A method to obtain the stationary distribution and the partition function ZN of the model is the Matrix
Ansatz of Derrida, Evans, Hakim and Pasquier [9]. We suppose that D and E are linear operators, 〈W | is
a vector, |V 〉 is a linear form, such that:

DE − qED = D + E, 〈W |αE = 〈W |, βD|V 〉 = |V 〉, 〈W |V 〉 = 1, (1)

†Partially supported by the grant ANR08-JCJC-0011.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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then the non-normalized probability of each state can be obtained by taking the product 〈W |t1 . . . tN |V 〉
where ti is D if the ith site is occupied and E if it is empty. It follows that the normalization, or partition
function, is given by 〈W |(D + E)N |V 〉. It is possible to introduce another variable y, which is not a pa-
rameter of the probabilistic model, but is a formal parameter such that the coefficient of yk in the partition
function corresponds to the states with exactly k particles (physically it could be called a fugacity). The
partition function is then:

ZN = 〈W |(yD + E)N |V 〉, (2)

which we may take as a definition on the combinatorial point of view. An interesting property is the
symmetry:

ZN (α, β, y, q) = yNZN (β, α, y−1, q), (3)

which can be seen on the physical point of view by exchanging the empty sites with occupied sites. It can
also be obtained from the Matrix Ansatz by using the transposed matrices D∗ and E∗ and the transposed
vectors 〈V | and |W 〉, which satisfies a similar Matrix Ansatz with α and β exchanged.

In section 2, we will use the explicit solution of the Matrix Ansatz found by Derrida & al. [9], and it
will permit to make use of weighted lattice paths as in [4].

An exact formula for ZN was given by Blythe & al. [3, Equation (57)] in the case where y = 1. It was
obtained from the eigenvalues and eigenvectors of the operator D + E as defined in (10) and (11) below.
This method gives an integral form for ZN , which can be simplified so as to obtain a finite sum rather than
an integral. Moreover this expression for ZN was used to obtain various properties of the large system
size limit, such as phases diagrams and currents. Here we generalize this result since we also have the
variable y, and the proofs are combinatorial. This is an important result since most interesting properties
of a model can be derived from the partition function. The interest of the result is also due to the plentiful
combinatorial information of ZN [7], in the full version of this work we will show that it is the generating
function of permutations in SN+1 with respect to right-to-left minima, right-to-left maxima, ascents, and
occurrences of the pattern 31-2 (see [6] for a close result).

Theorem 1.1 Let α̃ = (1− q) 1
α − 1 and β̃ = (1− q)β − 1. We have:

ZN =
1

(1− q)N
N∑

n=0

RN,n(y, q)Bn(α̃, β̃, y, q), (4)

where

RN,n(y, q) =

bN−n
2 c∑

i=0

(−y)iq(
i+1
2 )[n+i

i

]
q

N−n−2i∑

j=0

yj
((
N
j

)(
N

n+2i+j

)
−
(
N
j−1
)(

N
n+2i+j+1

))
(5)

and

Bn(α̃, β̃, y, q) =
n∑

k=0

[
n

k

]

q

α̃k(yβ̃)n−k. (6)
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In the case where y = 1, one sum can be simplified by the Vandermonde identity
∑
j

(
N
j

)(
N
m−j

)
=
(
2N
m

)
,

and we recover the expression given in [3, Equation (54)] by Blythe & al:

RN,n(1, q) =

bN−n
2 c∑

i=0

(−1)i
((

2N
N−n−2i

)
−
(

2N
N−n−2i−2

))
q(

i+1
2 )[n+i

i

]
q
. (7)

In the case where α = β = 1, it is known [8, 13] that:

ZN =
1

(1− q)N+1

N+1∑

k=0

(−1)k

(
N+1−k∑

j=0

yj
((
N+1
j

)(
N+1
j+k

)
−
(
N+1
j−1
)(

N+1
j+k+1

))
)(

k∑

i=0

yiqi(k+1−i)
)

(8)

(see Remarks 2.4 and 3.3 for a comparison between this previous result and the new one in Theorem 1.1).
And in the case where y = q = 1, from a recursive construction of permutation tableaux [6] or lattice
paths combinatorics [4] it is known that :

ZN =
N−1∏

i=0

(
1

α
+

1

β
+ i

)
. (9)

Our first proof of (4) is a purely combinatorial enumeration of some weighted Motzkin paths defined
below in (13), appearing from explicit representations of the operators D and E of the Matrix Ansatz.
It partially relies on results of [8, 13] through Proposition 2.1 below. In contrast, our second proof does
not use a particular representation of the operators D and E, but only on the combinatorics of the normal
ordering process. It also relies on previous results of [13] (through Proposition 3.1 below), but we will
sketch a self-contained proof. Additionally we will show that our first proof of Theorem 1.1 can be
adapted to give a formula for Al-Salam-Chihara moments [1].

2 A first combinatorial derivation of ZN using lattice paths
We use the solution of the Matrix Ansatz (1) given by Derrida & al. [9]. Let α̃ = (1 − q) 1

α − 1 and
β̃ = (1− q) 1

β − 1, their matrices are D = (Di,j)i,j∈N and E = (Ei,j)i,j∈N with coefficients :

(1− q)Di,i = 1 + β̃qi, (1− q)Di,i+1 = 1− α̃β̃qi, (10)

(1− q)Ei,i = 1 + α̃qi, (1− q)Ei+1,i = 1− qi+1, (11)

all other coefficients being 0, and vectors:

〈W | = (1, 0, 0, . . . ), |V 〉 = (1, 0, 0, . . . )∗, (12)

(i.e. |V 〉 is the transpose of 〈W |). Even if infinite-dimensional, they have the nice property of being
tridiagonal and this lead to a combinatorial interpretation of ZN in terms of lattice paths [4]. Indeed, we
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can see yD + E as a transfer matrix for walks in the non-negative integers, and from (2) we obtain that
(1− q)NZN is the sum of weights of Motzkin paths of length N with weights:

• 1− qh+1 for a step↗ starting at height h,

• (1 + y) + (α̃+ yβ̃)qh for a step→ starting at height h,

• y(1− α̃β̃qh−1) for a step↘ starting at height h.

(13)

To give a bijective proof of Theorem 1.1, we need to consider the set PN of weighted Motzkin paths of
length N such that:

• the weight of a step↗ starting at height h is qi − qi+1 for some i ∈ {0, . . . , h},

• the weight of a step→ starting at height h is either 1 + y or (α̃+ yβ̃)qh,

• the weight of a step↘ starting at height h is either y or −yα̃β̃qh−1.

The sum of weights of elements in PN is (1 − q)NZN because the weights sum to the ones in (13). We
stress that on the combinatorial point of view, it will be important to distinguish (h+ 1) kinds of step↗
starting at height h, instead of one kind of step↗ with weight 1− qh+1.

We will show that each element of PN bijectively corresponds to a pair of weighted Motzkin paths.
The first path (respectively, second path) belongs to a set whose generating function isRN,n(y, q) (respec-
tively, Bn(α̃, β̃, y, q)) for some n ∈ {0, . . . , N}. Following this scheme, our first combinatorial proof of
(4) is a consequence of Propositions 2.1, 2.2, and 2.3 below.

Let RN,n be the set of weighted Motzkin paths of length N such that:

• the weight of a step↗ starting at height h is qi − qi+1 for some i ∈ {0, . . . , h},

• the weight of a step → starting at height h is either 1 + y or qh, and there are exactly n steps →
weighted by a power of q,

• the weight of a step↘ is y,

Proposition 2.1 The sum of weights of elements in RN,n is RN,n(y, q).

This can be obtained with the methods used in [8, 13]. Some precisions are in order. In [8] and [13], we
obtained the formula (8) which is the special case α = β = 1 in ZN , and is theN th moment of q-Laguerre
polynomials [15] which are a rescaling of Al-Salam-Chihara polynomials. Since ZN is also very closely
related with these polynomials (see Section 4) it is not surprising that some steps are in common between
these previous results and the present ones. See also Remark 2.4 below.

Let Bn be the set of weighted Motzkin paths of length n such that:

• the weight of a step↗ starting at height h is qi − qi+1 for some i ∈ {0, . . . , h},

• the weight of a step→ starting at height h is (α̃+ yβ̃)qh,

• the weight of a step↘ starting at height h is −yα̃β̃qh−1.
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Proposition 2.2 The sum of weights of elements in Bn is Bn(α̃, β̃, y, q).

It is a consequence of properties of the Al-Salam-Carlitz orthogonal polynomials. Indeed, a standard
argument [10, 20] shows that Bn(α̃, β̃, y, q) is the nth moment of an orthogonal sequence whose three-
term recurrence relation is derived from the weights in the Motzkin paths. These polynomials are a
rescaled version of Al-Salam-Carlitz polynomials, whose moments are known [16]. The result follows.

Proposition 2.3 There exists a weight-preserving bijection Φ between the disjoint union of RN,n ×Bn

over n ∈ {0, . . . , N}, and Pn (we understand that the weight of a pair is the product of the weights of
each element).

To define the bijection, we start from a pair (H1, H2) ∈ RN,n × Bn for some n ∈ {0, . . . , N} and
build a path Φ(H1, H2) ∈ PN . Let i ∈ {1, . . . , N}.
• If the ith step of H1 is a step→ weighted by a power of q, say the jth one among the n such steps,

then:

– the ith step Φ(H1, H2) has the same direction as the jth step of H2,

– its weight is the product of weights of the ith step of H1 and the jth step of H2.

• Otherwise the ith step of Φ(H1, H2) has the same direction and same weight as the ith step of H1.

See Figure 1 for an example, where the thick steps correspond to the ones in the first of the two cases
considered above. It is immediate that the total weight of Φ(H1, H2) is the product of the total weights of
H1 and H2.
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Φ(H1, H2) =

Fig. 1: Example of paths H1, H2 and their image Φ(H1, H2) .

The inverse bijection is not as simple. It can be checked that H1 and H2 can be recovered by reading
Φ(H1, H2) step by step from right to left.
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Remark 2.4 The decomposition Φ is the key step in our first proof of Theorem 1.1. This makes the proof
quite different from the one in the case α = β = 1 [8], even though we have used results from [8] to prove
an intermediate step (namely Proposition 2.1). Actually, it might be possible to have a direct adaptation
of the case α = β = 1 [8] to prove Theorem 1.1, but it should give rise to many computational steps. In
contrast our decomposition Φ explains the formula for ZN as a sum of products.

3 A second derivation of ZN using the Matrix Ansatz
In this section we build on our previous work [13] to give a second proof of (4). In this reference we
define the operators

D̂ =
q − 1

q
D +

1

q
I and Ê =

q − 1

q
E +

1

q
I, (14)

where I is the identity. The new relations for these operators are:

D̂Ê − qÊD̂ =
1− q
q2

, 〈W |Ê = − α̃
q
〈W |, and D̂|V 〉 = − β̃

q
|V 〉, (15)

where α̃ and β̃ are defined as in the previous section. While the normal ordering problem for D and E
leads to permutation tableaux [7], for D̂ and Ê it leads to rook placements as was shown for example in
[21]. The combinatorics of rook placements lead to the following proposition.

Proposition 3.1 We have:

〈W |(qyD̂ + qÊ)k|V 〉 =
∑

i+j≤k
i+j≡k mod 2

[
i+ j

i

]

q

(−α̃)i(−yβ̃)jM k−i−j
2 ,k (16)

where

M`,k = y`
∑̀

u=0

(−1)uq(
u+1
2 )
[
k − 2`+ u

u

]

q

((
k

`− u

)
−
(

k

`− u− 1

))
. (17)

Proof: This is a consequence of results in [13] (see Section 2, Corollary 1, Proposition 12). We also
give here a self-contained recursive proof. By means of the commutation relation in (15), we can write
(yqD̂ + qÊ)k as a normal form:

(yqD̂ + qÊ)k =
∑

i,j≥0
d
(k)
i,j (qÊ)i(qyD̂)j , (18)

where d(k)i,j are polynomials in y and q, and only finitely many of them are non-zero. From the commuta-
tion relation we also obtain:

(qyD̂)j(qÊ) = qj(qÊ)(qyD̂)j + y(1− qj)(qyD̂)j−1. (19)

If we multiply (18) by yqD̂+qÊ to the right, using (19) we can get a recurrence relation for the coefficients
d
(k)
i,j , which reads:

d
(k+1)
i,j = d

(k)
i,j−1 + qjd

(k)
i−1,j + y(1− qj+1)d

(k)
i,j+1. (20)
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The initial case is that d(0)i,j is 1 if (i, j) = (0, 0) and 0 otherwise. It can be directly checked that the
recurrence is solved by:

d
(k)
i,j =

[
i+ j

i

]

q

M k−i−j
2 ,k (21)

where we understand that M k−i−j
2 ,k is 0 when k − i − j is not even. More precisely, if we let e(k)i,j =[

i+j
i

]
q
M k−i−j

2 ,k then we have:

e
(k)
i,j−1 + qje

(k)
i−1,j =

[
i+ j

i

]

q

M k−i−j+1
2 ,k, (22)

and also

y(1− qj+1)e
(k)
i,j+1 = y(1− qi+j+1)

[
i+ j

i

]

q

M k−i−j−1
2 ,k. (23)

So to prove d(k)i,j = e
(k)
i,j it remains only to check that

M k−i−j+1
2 ,k + y(1− qi+j+1)M k−i−j−1

2 ,k = M k−i−j
2 ,k. (24)

See for example [13, Proposition 12] (actually this recurrence already appeared more than fifty years ago
in the work of Touchard, see loc. cit. for precisions). 2

Now we can give our second proof of Theorem 1.1.

Proof: From (2) and (14) we have:

(1− q)NZN = 〈W |((1 + y)I − qyD̂− qÊ)N |V 〉 =
N∑

k=0

(
N

k

)
(1 + y)N−k(−1)k〈W |(qyD̂+ qÊ)k|V 〉.

So, from Proposition 3.1 we have:

(1− q)NZN =

N∑

k=0

∑

i+j≤k
i+j≡k mod 2

[
i+ j

i

]

q

α̃i(yβ̃)j
(
N

k

)
(1 + y)N−kM k−i−j

2 ,k

(the (−1)k cancels with a (−1)i+j). Setting n = i+ j, we have:

(1− q)NZN =
N∑

n=0

Bn(α̃, β̃, y, q)
∑

n≤k≤N
k≡n mod 2

(
N

k

)
(1 + y)N−kM k−n

2 ,k.

So it remains only to show that the latter sum is RN,n(y, q). If we change the indices so that k becomes
n+ 2k, this sum is:

bN−n
2 c∑

k=0

(
N

n+2k

)
(1 + y)N−n−2kyk

k∑

i=0

(−1)iq(
i+1
2 )
[
n+ i

i

]

q

((
n+2k
k−i

)
−
(
n+2k
k−i−1

))
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=

bN−n
2 c∑

i=0

(−y)iq(
i+1
2 )
[
n+ i

i

]

q

bN−n
2 c∑

k=i

yk−i
(

N
n+2k

)
(1 + y)N−n−2k

((
n+2k
k−i

)
−
(
n+2k
k−i−1

))
.

We can simplify the latter sum by Lemma 3.2 below and obtain RN,n(y, q). This completes the proof. 2

Lemma 3.2 For any N,n, i ≥ 0 we have:

bN−n
2 c∑

k=i

yk−i
(

N
n+2k

)
(1 + y)N−n−2k

((
n+2k
k

)
−
(
n+2k
k−1

))

=
N−n−2i∑

j=0

yj
((
N
j

)(
N

n+2i+j

)
−
(
N
j−1
)(

N
n+2i+j+1

))
.

(25)

Proof: It can be shown that the right-hand side of (25) is the number of Motzkin prefixes of lengthN , final
height n+2i, and a weight 1+y on each step→ and y on each step↘. Similarly, yk−i(

(
n+2k
k−i

)
−
(
n+2k
k−i−1

)
)

is the number of Dyck prefixes of length n+ 2k and final height n+ 2i, with a weight y on each step↘.
From these two combinatorial interpretations it is straightforward to obtain a bijective proof of (25). Each
Motzkin prefix is built from a shorter Dyck prefix with the same final height, by choosing where are the
N − n− 2k steps→. 2

Remark 3.3 All the ideas in this proof were present in [13] where we obtained the case α = β =
1. The particular case was actually more difficult to prove because several q-binomial and binomial
simplifications were needed. In particular, it is natural to ask if the formula in (8) for ZN |α=β=1 can be
recovered from the general expression in Theorem 1.1, and the (affirmative) answer is essentially given in
[13] (see also Subsection 4.2 below for a very similar simplification).

4 Moments of Al-Salam-Chihara polynomials
The link between the PASEP and the Al-Salam-Chihara orthogonal polynomials Qn(x; a, b | q) was de-
scribed in [18]. These polynomials, denoted by Qn(x) when we do not need to precise the other parame-
ters, are defined by the recurrence [17]:

2xQn(x) = Qn+1(x) + (a+ b)qnQn(x) + (1− qn)(1− abqn−1)Qn−1(x) (26)

together with Q−1(x) = 0 and Q0(x) = 1. They were introduced as the most general orthogonal
sequence that is a convolution of two orthogonal sequences [1]. In terms of the Askey-Wilson polynomials
pn(x; a, b, c, d | q), Al-Salam-Chihara polynomials are an important particular case sinceQn(x; a, b | q) =
pn(x; a, b, 0, 0 | q) [17].
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4.1 Closed formulas for the moments
It can be checked that the specialization (1 − q)NZN |y=1 is the N th moment of the sequence {Qn(x2 −
1; α̃, β̃ | q)}n∈N, where α̃ = (1 − q) 1

α − 1 and β̃ = (1 − q) 1
β − 1 as before. There is a simple relation

between the moments of an orthogonal sequence and the ones of a rescaled sequence, so that assuming
a = α̃ and b = β̃ the N th moment µN of the Al-Salam-Chihara polynomials can be obtained via the
relation:

µN =

N∑

k=0

(
N

k

)
(−1)N−k2−k(1− q)kZk|y=1. (27)

Actually, the methods of Section 2 also give a direct proof of the following.

Theorem 4.1 The N th moment of the Al-Salam-Chihara polynomials is:

µN =
1

2N

∑

0≤n≤N
n≡N mod 2




N−n
2∑

j=0

(−1)jq(
j+1
2 )[n+j

j

]
q

((
N

N−n
2 −j

)
−
(

N
N−n

2 −j−1
))


(

n∑

k=0

[
n
k

]
q
akbn−k

)
. (28)

Proof: The general idea is to adapt the proof of Theorem 1.1 in Section 2. Let P′N ⊂ PN be the subset of
paths which contain no step→ with weight 1 + y. The sum of weights of elements in P′N specialized at
y = 1, gives the N th moment of the sequence {Qn(x2 )}n≥0. This can be seen by comparing the weights
in the Motzkin paths and the recurrence (26). But the N th moment of this sequence is also 2NµN .

From the definition of the bijection Φ in Section 2, we see that Φ(H1, H2) has no step→ with weight
1 + y if and only if H1 has the same property. So from Proposition 2.3 the bijection Φ−1 gives a weight-
preserving bijection between P′N and the disjoint union of R′N,n × Bn over n ∈ {0, . . . , N}, where
R′N,n ⊂ RN,n is the subset of paths which contain no horizontal step with weight 1 + y. Note that R′N,n
is empty when n and N do not have the same parity, because now n has to be the number of steps→ in a
Motzkin path of length N . In particular we can restrict the sum over n to the case n ≡ N mod 2.

At this point it remains only to adapt the proof of Proposition 2.1 to compute the sum of weights of
elements in R′N,n, and obtain the sum over j in (28). As in the previous case we can adapt the methods
from [8]. 2

We have to mention that there are analytical methods to obtain the moments µN of these polynomi-
als. A nice formula for the Askey-Wilson moments was given by D. Stanton [19], as a consequence of
joint results with M. Ismail [12, equation (1.16)]. As a particular case they have the Al-Salam-Chihara
moments:

µN =
1

2N

N∑

k=0

(ab; q)kq
k

k∑

j=0

q−j
2

a−2j(qja+ q−ja−1)N

(q, a−2q−2j+1; q)j(q, a2q1+2j ; q)k−j
, (29)

where we use the q-Pochhammer symbol. The latter formula has no apparent symmetry in a and b and
has denominators, but D. Stanton gave evidence [19] that (29) can be simplified down to (28) using
binomial, q-binomial, and q-Vandermonde summation theorems. Moreover (29) is equivalent to a formula
for rescaled polynomials given in [15] (Section 4, Theorem 1 and equation (29)).
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4.2 Some particular cases of Al-Salam-Chihara moments
When a = b = 0 in (28) we immediately recover the known result for the continuous q-Hermite mo-
ments. This is 0 if N is odd, and the Touchard-Riordan formula if N is even. Other interesting cases
are the q-secant numbers E2n(q) and q-tangent numbers E2n+1(q), defined in [11] by continued fraction
expansions of the generating functions:

∑

n≥0
E2n(q)tn =

1

1− [1]2qt

1− [2]2qt

1− [3]2qt

. . .

and
∑

n≥0
E2n+1(q)tn =

1

1− [1]q[2]qt

1− [2]q[3]qt

1− [3]q[4]qt

. . .

. (30)

The exponential generating function of the numbersEn(1) is the function tan(x)+sec(x). They have the
following combinatorial interpretation [11, 14]: En(q) is the generating function counting the occurrences
of the generalized pattern 31-2 in alternating permutations of size n. We say that σ ∈ Sn is alternating
when σ(1) > σ(2) < σ(3) > . . . . From (30) these numbers are particular case of Al-Salam-Chihara
moments:

E2n(q) = ( 2
1−q )2nµ2n|a=−b=i√q, and E2n+1(q) = ( 2

1−q )2nµ2n|a=−b=iq (31)

(where i2 = −1). From (28) and q-binomial identities it is possible to obtain the closed formulas for
E2n(q) and E2n+1(q) that were given in [14], in a similar manner that (4) can be simplified into (8) when
α = β = 1. Indeed, from (28) we can rewrite:

22nµ2n =
n∑

m=0

((
2n
n−m

)
−
(

2n
n−m−1

)) ∑

j,k≥0
(−1)jq(

j+1
2 )[2m−j

j

]
q

[
2m−2j
k

]
q

(
b
a

)k
a2m−2j . (32)

This latter sum over j and k is also

∑

j,k≥0
(−1)jq(

j+1
2 )[2m−j

j+k

]
q

[
j+k
j

]
q

(
b
a

)k
a2m−2j =

∑

`≥j≥0
(−1)jq(

j+1
2 )[2m−j

`

]
q

[
`
j

]
q

(
b
a

)`−j
a2m−2j . (33)

The sum over j can be simplified in the case a = −b = i
√
q, or a = −b = iq, using the q-binomial

identities already used in [13] (see Lemma 2):

∑

j≥0
(−1)jq(

j
2)
[
2m− j

`

]

q

[
`

j

]

q

= q`(2m−`), (34)

and

∑

j≥0
(−1)jq(

j−1
2 )
[
2m− j

`

]

q

[
`

j

]

q

=
q(`+1)(2m−`) − q`(2m−`) + q`(2m−`+1) − q(`+1)(2m−`+1)

q2m−1(1− q) . (35)
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Omitting details, this gives a new proof of the Touchard-Riordan-like formulas for q-secant and q-tangent
numbers [14]:

E2n(q) =
1

(1− q)2n
n∑

m=0

((
2n
n−m

)
−
(

2n
n−m−1

)) 2m∑

`=0

(−1)`+mq`(2m−`)+m, (36)

and

E2n+1(q) =
1

(1− q)2n+1

n∑

m=0

((
2n+1
n−m

)
−
(

2n+1
n−m−1

)) 2m+1∑

`=0

(−1)`+mq`(2m+2−`). (37)
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Abstract. We give an interpretation of the t = 1 specialization of the modified Macdonald polynomial as a generating
function of the energy statistics defined on the set of paths arising in the context of Box-Ball Systems (BBS-paths for
short). We also introduce one parameter generalizations of the energy statistics on the set of BBS-paths which all,
conjecturally, have the same distribution.

Résumé. Nous donnons une intérprétation de la spécialisation à t = 1 du polynôme de Macdonald modifié comme
fonction génératrice des statistiques d’énergie définies sur l’ensemble des chemins qui apparaissent dans la théorie
des Systèmes BBS (BBS-chemins). Nous présentons également des généralisations à un paramètre de la statistique
d’énergie sur les chemins BBS qui toutes, conjecturalement, ont la même distribution.

Keywords: modified Macdonald polynomials, box-ball systems

1 Introduction
The purpose of the present paper is two-fold. First of all we would like to draw attention to a rich com-
binatorics hidden behind the dynamics of Box-Ball Systems, and secondly, to connect the former with
the theory of modified Macdonald polynomials. More specifically, our final goal is to give an interpreta-
tion of the Kostka–Macdonald polynomials Kλ,µ(q, t) as a refined partition function of a certain box-ball
systems depending on initial data λ and µ.

Box-Ball Systems (BBS for short) were invented by Takahashi–Satsuma [29, 28] as a wide class of
discrete integrable soliton systems. In the simplest case, BBS are described by simple combinatorial
procedures using boxes and balls. One can see the simplest but still very interesting examples of the BBS
by the free software available at [26]. Despite its simple outlook, it is known that the BBS have various
remarkably deep properties:

• Local time evolution rule of the BBS coincides with the isomorphism of the crystal bases [7, 2].
Thus the BBS possesses quantum integrability.

†Supported by Grant-in-Aid for Scientific Research (No.21740114), JSPS.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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• BBS are ultradiscrete (or tropical) limit of the usual soliton systems [30, 20]. Thus the BBS pos-
sesses classical integrability at the same time.

• Inverse scattering formalism of the BBS [19] coincides with the rigged configuration bijection orig-
inating in completeness problem of the Bethe states [14, 16], see also [25].

Let us say a few words about the main results of this note.

• We will identify the space of states of a BBS with the corresponding weight subspace in the tensor
product of fundamental (or rectangular) representations of the Lie algebra gl(n).

• In the case of statistics tau, our main result can be formulated as a computation of the corresponding
partition function for the BBS in terms of the values of the Kostka–Macdonald polynomials at t = 1.

• In the case of the statistics energy, our result can be formulated as an interpretation of the corre-
sponding partition function for the BBS as the q-weight multiplicity of a certain irreducible rep-
resentation of the Lie algebra gl(n) in the tensor product of the fundamental representations. We
expect that the same statement is valid for the BBS corresponding to the tensor product of rectan-
gular representations.

Let us remind that a q-analogue of the multiplicity of a highest weight λ in the tensor product⊗L
a=1 Vsaωra of the highest weight sa ωra , a = 1, . . . , L, irreducible representations Vsaωra of

the Lie algebra gl(n) is defined as

q-Mult [Vλ :

L⊗

a=1

Vsaωra ] =
∑

η

Kη,R Kη,λ(q),

where Kη,R stands for the parabolic Kostka number corresponding to the sequence of rectangles
R := {(sraa )}a=1,...,L, see e.g. [15], [18].

A combinatorial description of the modified Macdonald polynomials has been obtained by Haglund–
Haiman–Loehr [5]. In Section 5 we give an interpretation of two Haglund’s statistics in the context of
the box-ball systems, i.e., in terms of the BBS-paths. Namely, we identify the set of BBS paths of weight
α with the set P(α) which is the weight α component in the tensor product of crystals corresponding to
vector representations. We have observed that from the proof given in [5] one can prove the following
identity ∑

p∈P(α)
qinvµ(p)tmajµ(p) =

∑

η`|µ|
Kη,αK̃η,µ(q, t), (1)

see Proposition 6.2 and Corollary 6.3. One of the main problems we are interested in is to generalize the
identity Eq.(1) on more wider set of the BBS-paths.

Our result about connections of the energy partition functions for BBS and q-weight multiplicities sug-
gests a deep hidden connections between partition functions for the BBS and characters of the Demazure
modules, solutions to the q-difference Toda equations, cf.[3], ... .

As an interesting open problem we want to give raise a question about an interpretation of the sums∑
η Kη,R Kη,λ(q, t), where Kη,λ(q, t) denotes the Kostka–Macdonald polynomials [21], as refined par-

tition functions for the BBS corresponding to the tensor product of rectangular representations R =
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{(sraa )}1≤a≤n. In other words, one can ask: what is a meaning of the second statistics (see [5]) in the
Kashiwara theory [11] of crystal bases (of type A) ?

This paper is abbreviated and updated version of our paper [17]. The main novelty of the present paper
is the definition of a one parameter family of statistics on the set of BBS-paths which generalizes those
introduced in [17], see Conjecture 7.2. It conjecturally gives a new family of MacMahonian statistics on
the set of transportation matrices, see [15].

Organization of the present paper is as follows. In Section 2 we remind algorithms of the combinatorial
R-matrix and the energy functions. In Section 3, we introduce the energy statistics and the set of the
BBS. In Section 4 we remind definition of box-ball systems and state some of their simplest properties.
In Section 5 we remind definition of the Haglund’s statistics and give their interpretation in terms of the
BBS-paths. Sections 6 and 7 contain our main results and conjectures. In particular it is not difficult to
see that Haglund’s statistics majµ and invµ do not compatible with the Kostka–Macdonald polynomials
for general partitions λ and µ. In Section 6 we state a conjecture which describes the all pairs of partitions
(λ, µ) for those the restriction of the Haglund–Haiman–Loehr formula on the set of highest weight paths
of shape µ coincide with the Kostka–Macdonald polynomial K̃λ,µ(q, t).

2 Combinatorial R and energy function
Let Br,s be the Kirillov–Reshetikhin crystals of type A(1)

n (see [11, 12, 10], see also section 2 of [17]).
Here r ∈ {1, 2, · · · , n} and s ∈ Z>0. As the set,Br,s is consisting of all semistandard tableaux of height r
and width s. In this section, we recall an explicit description of the combinatorialR-matrix (combinatorial
R for short) and energy function onBr,s⊗Br′,s′ . To begin with we define few terminologies about Young
tableaux. Denote rows of a Young tableaux Y by y1, y2, . . . yr from top to bottom. Then row word row(Y )
is defined by concatenating rows as row(Y ) = yryr−1 . . . y1. Let x = (x1, x2, . . .) and y = (y1, y2, . . .)
be two partitions. We define concatenation of x and y by the partition (x1 + y1, x2 + y2, . . .).

Proposition 2.1 ([27]) b⊗b′ ∈ Br,s⊗Br′,s′ is mapped to b̃′⊗ b̃ ∈ Br′,s′⊗Br,s under the combinatorial
R, i.e.,

b⊗ b′ R' b̃′ ⊗ b̃, (2)

if and only if
(b′ ← row(b)) = (b̃← row(b̃′)). (3)

Moreover, the energy function H(b ⊗ b′) is given by the number of nodes of (b′ ← row(b)) outside the
concatenation of partitions (sr) and (s′r

′
).

For special cases ofB1,s⊗B1,s′ , the functionH is called unwinding number in [22]. Explicit values for
the case b⊗ b′ ∈ B1,1⊗B1,1 are given by H(b⊗ b′) = χ(b < b′) where χ(True) = 1 and χ(False) = 0.

In order to describe the algorithm for finding b̃ and b̃′ from the data (b′ ← row(b)), we introduce a
terminology. Let Y be a tableau, and Y ′ be a subset of Y such that Y ′ is also a tableau. Consider the set
theoretic subtraction θ = Y \ Y ′. If the number of nodes contained in θ is r and if the number of nodes
of θ contained in each row is always 0 or 1, then θ is called vertical r-strip.

Given a tableau Y = (b′ ← row(b)), let Y ′ be the upper left part of Y whose shape is (sr). We assign
numbers from 1 to r′s′ for each node contained in θ = Y \ Y ′ by the following procedure. Let θ1 be
the vertical r′-strip of θ as upper as possible. For each node in θ1, we assign numbers 1 through r′ from
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the bottom to top. Next we consider θ \ θ1, and find the vertical r′ strip θ2 by the same way. Continue
this procedure until all nodes of θ are assigned numbers up to r′s′. Then we apply inverse bumping
procedure according to the labeling of nodes in θ. Denote by u1 the integer which is ejected when we
apply inverse bumping procedure starting from the node with label 1. Denote by Y1 the tableau such that
(Y1 ← u1) = Y . Next we apply inverse bumping procedure starting from the node of Y1 labeled by 2,
and obtain the integer u2 and tableau Y2. We do this procedure until we obtain ur′s′ and Yr′s′ . Finally,
we have

b̃′ = (∅ ← ur′s′ur′s′−1 · · ·u1), b̃ = Yr′s′ . (4)

3 Energy statistics and its generalizations on the set of paths
For a path b1 ⊗ b2 ⊗ · · · ⊗ bL ∈ Br1,s1 ⊗Br2,s2 ⊗ · · · ⊗BrL,sL , let us define elements b(i)j ∈ Brj ,sj for
i < j by the following isomorphisms of the combinatorial R;

b1 ⊗ b2 ⊗ · · · ⊗ bi−1 ⊗ bi ⊗ · · · ⊗ bj−1 ⊗ bj ⊗ · · ·
' b1 ⊗ b2 ⊗ · · · ⊗ bi−1 ⊗ bi ⊗ · · · ⊗ b(j−1)j ⊗ b′j−1 ⊗ · · ·
' · · ·
' b1 ⊗ b2 ⊗ · · · ⊗ bi−1 ⊗ b(i)j ⊗ · · · ⊗ b′j−2 ⊗ b′j−1 ⊗ · · · , (5)

where we have written bk ⊗ b(k+1)
j ' b(k)j ⊗ b′k assuming that b(j)j = bj .

Define the statistics maj(p) by

maj(p) =
∑

i<j

H(bi ⊗ b(i+1)
j ). (6)

For example, consider a path a = a1 ⊗ a2 ⊗ · · · ⊗ aL ∈ (B1,1)⊗L. In this case, we have a(i)j = ai, since
the combinatorial R act on B1,1 ⊗B1,1 as identity. Therefore, we have

maj(a) =
L−1∑

i=1

(L− i)χ(ai < ai+1). (7)

Define another statistics tau as follows.

Definition 3.1 For the path p ∈ Br1,s1 ⊗Br2,s2 ⊗ · · · ⊗BrL,sL , define τ r,s by

τ r,s(p) = maj(u(r)s ⊗ p), (8)

where u(r)s is the highest element of Br,s.

Here the highest element u(r)s ∈ Br,s is the tableau whose i-th row is occupied by integers i. For example,

u
(3)
4 =

1 1 1 1
2 2 2 2
3 3 3 3

. In particular, the statistics τ r,1 on B1,1 type paths a ∈ (B1,1)⊗L has the following

form;

τ r,1(a) = L · χ(r < a1) +
L−1∑

i=1

(L− i)χ(ai < ai+1), (9)
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where a1 denotes the first letter of the path a. Note that τ1,1 is a special case of the tau functions for
the box-ball systems [20, 24] which originates as an ultradiscrete limit of the tau functions for the KP
hierarchy [9].

Definition 3.2 For composition µ = (µ1, µ2, · · · , µn), write µ[i] =
∑i
j=1 µj with convention µ[0] = 0.

Then we define a generalization of τ r,1 by

τ r,1µ (a) =
n∑

i=1

τ r,1(a[i]), (10)

where
a[i] = aµ[i−1]+1 ⊗ aµ[i−1]+2 ⊗ · · · ⊗ aµ[i]

∈ (B1,1)⊗µi . (11)

Note that we have a = a[1] ⊗ a[2] ⊗ · · · ⊗ a[n], i.e., the path a is partitioned according to µ.

4 Box-ball system
In this section, we summarize basic facts about the box-ball system in order to explain physical origin of
τ1,1. For our purpose, it is convenient to express the isomorphism of the combinatorial R: a⊗ b ' b′⊗a′
by the following vertex diagram:

a

b′

b

a′ .

Successive applications of the combinatorial R is depicted by concatenating these vertices.
Following [7, 2], we define time evolution of the box-ball system T

(a)
l . Let u(a)l,0 = u

(a)
l ∈ Ba,l be the

highest element and bi ∈ Bri,si . Define u(a)l,j and b′i ∈ Bri,si by the following diagram.

u
(a)
l,0

b1

b′1

u
(a)
l,1

b2

b′2

u
(a)
l,2 · · · · · · · · · · u

(a)
l,L−1

bL

b′L

u
(a)
l,L

(12)

u
(a)
l,j are usually called carrier and we set u(a)l,0 := u

(a)
l . Then we define operator T (a)

l by

T
(a)
l (b) = b′ = b′1 ⊗ b′2 ⊗ · · · ⊗ b′L. (13)

Recently [25], operators T (a)
l have used to derive crystal theoretical meaning of the rigged configuration

bijection.
It is known ([19] Theorem 2.7) that there exists some l ∈ Z>0 such that

T
(a)
l = T

(a)
l+1 = T

(a)
l+2 = · · · (=: T (a)

∞ ). (14)
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If the corresponding path is b ∈ (B1,1)⊗L, we have the following combinatorial description of the box-
ball system [29, 28]. We regard 1 ∈ B1,1 as an empty box of capacity 1, and i ∈ B1,1 as a ball of
label (or internal degree of freedom) i contained in the box. Then we have:

Proposition 4.1 ([7]) For a path b ∈ (B1,1)⊗L of type A(1)
n , T (1)

∞ (b) is given by the following procedure.

1. Move every ball only once.

2. Move the leftmost ball with label n+ 1 to the nearest right empty box.

3. Move the leftmost ball with label n+ 1 among the rest to its nearest right empty box.

4. Repeat this procedure until all of the balls with label n+ 1 are moved.

5. Do the same procedure 2–4 for the balls with label n.

6. Repeat this procedure successively until all of the balls with label 2 are moved.

There are extensions of this box and ball algorithm corresponding to generalizations of the box-ball sys-
tems with respect to each affine Lie algebra, see e.g., [8]. Using this box and ball interpretation, our
statistics τ1,1(b) admits the following interpretation.

Theorem 4.2 ([20] Theorem 7.4) For a path b ∈ (B1,1)⊗L of type A(1)
n , τ1,1(b) coincides with number

of all balls 2, · · · , n+ 1 contained in paths b, T (1)
∞ (b), · · · , (T (1)

∞ )L−1(b).

Example 4.3 Consider the path p = a⊗ b where a = 4311211111, b = 4321111111. Note that we omit
all frames of tableaux of B1,1 and symbols for tensor product. We compute τ(10,10)(p) by using Theorem
4.2. According to Proposition 4.1, the time evolutions of the paths a and b are as follows:

4 3 1 1 2 1 1 1 1 1
1 1 4 3 1 2 1 1 1 1
1 1 1 1 4 1 3 2 1 1
1 1 1 1 1 4 1 1 3 2
1 1 1 1 1 1 4 1 1 1
1 1 1 1 1 1 1 4 1 1
1 1 1 1 1 1 1 1 4 1
1 1 1 1 1 1 1 1 1 4

4 3 2 1 1 1 1 1 1 1
1 1 1 4 3 2 1 1 1 1
1 1 1 1 1 1 4 3 2 1
1 1 1 1 1 1 1 1 1 4
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Here the left and right tables correspond to a and b, respectively. Rows of left (resp. right) table represent
a, T (1)

∞ (a), · · · , (T (1)
∞ )L(a) (resp., those for b) from top to bottom. Counting letters 2, 3 and 4 in each

table, we have τ1,1(a) = 16, τ1,1(b) = 10 and we get τ1,1(10,10)(p) = 16 + 10 = 26, which coincides
with the computation by Eq.(9). Meanings of the above two dynamics corresponding to paths a and b are
summarized as follows:

(a) Dynamics of the path a. In the first two rows, there are two solitons (length two soliton 43 and
length one soliton 2), and in the lower rows, there are also two solitons (length one soliton 4 and
length two soliton 32). This is scattering of two solitons. After the scattering, soliton 4 propagates
at velocity one and soliton 32 propagates at velocity two without scattering.
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(b) Dynamics of the path b. This shows free propagation of one soliton of length three 432 at velocity
three.

5 Haglund’s statistics
Tableaux language description For a given path a = a1⊗a2⊗· · ·⊗aL ∈ (B1,1)⊗L, associate tabloid t
of shape µ whose reading word coincides with a. For example, to path p = abcdefgh and the composition
µ = (3, 2, 3) one associates the tabloid

c b a
e d
h g f

. (15)

Denote the cell at the i-th row, j-th column (we denote the coordinate by (i, j)) of the tabloid t by tij .
Attacking region of the cell at (i, j) is all cells (i, k) with k < j or (i+1, k) with k > j. In the following
diagram, gray zonal regions are the attacking regions of the cell (i, j).

�
��=

(i, j)

Follow [5], define |Invij | by

|Invij | = #{(k, l) ∈ attacking region for (i, j) | tkl > tij}. (16)

Then we define
|Invµ(a)| =

∑

(i,j)∈µ
|Invij |. (17)

If we have t(i−1)j < tij , then the cell (i, j) is called by descent. Then define

Desµ(a) =
∑

all descent (i,j)

(µi − j). (18)

Note that (µi − j) is the arm length of the cell (i, j).

Path language description Consider two paths a(1), a(2) ∈ (B1,1)⊗µ. We denote by a(1) ⊗ a(2) =
a1 ⊗ a2 ⊗ · · · ⊗ a2µ. Then we define

Inv(µ,µ)(a
(1), a(2)) =

µ∑

k=1

k+µ−1∑

i=k+1

χ(ak < ai). (19)
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For more general cases a(1) ∈ (B1,1)⊗µ1 and a(2) ∈ (B1,1)⊗µ2 satisfying µ1 > µ2, we define

Inv(µ1,µ2)(a
(1), a(2)) := Inv(µ1,µ1)(a

(1), 1⊗(µ1−µ2) ⊗ a(2)). (20)

Then the above definition of |Invµ(a)| is equivalent to

|Invµ(a)| =
n−1∑

i=1

Inv(µi,µi+1). (21)

Consider two paths a(1) ∈ (B1,1)⊗µ1 and a(2) ∈ (B1,1)⊗µ2 satisfying µ1 ≥ µ2. Denote a = a(1) ⊗
a(2). Then define

Des(µ1,µ2)(a) =

µ1∑

k=µ1−µ2+1

(k − (µ1 − µ2)− 1)χ(ak < ak+µ2
). (22)

For the tableau T of shape µ corresponding to the path a, we define

Desµ(T ) =

n∑

i=1

Des(µi,µi+1)(a[i] ⊗ a[i+1]). (23)

Definition 5.1 ([4]) For a path a, statistics majµ is defined by

majµ(a) =

µ1∑

i=1

maj(t1,i ⊗ t2,i ⊗ · · · ⊗ tµ′i,i). (24)

and invµ(a) is defined by
invµ(a) = |Invµ(a)| −Desµ(a). (25)

If we associate to a given path p ∈ P(λ) with the shape µ tabloid T , we sometimes write majµ(p) =
maj(T ) and invµ(p) = inv(T ).

6 Haglund–Haiman–Loehr formula
Let H̃µ(x; q, t) be the (integral form ) modified Macdonald polynomials where x stands for infinitely many
variables x1, x2, · · · . Here H̃µ(x; q, t) is obtained by simple plethystic substitution (see, e.g., section 2
of [6]) from the original definition of the Macdonald polynomials [21]. Schur function expansion of
H̃µ(x; q, t) is given by

H̃µ(x; q, t) =
∑

λ

K̃λ,µ(q, t)sλ(x), (26)

where K̃λ,µ(q, t) stands for the following transformation of the Kostka–Macdonald polynomials:

K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, t
−1). (27)

Here we have used notation n(µ) =
∑
i(i − 1)µi. Then the celebrated Haglund–Haiman–Loehr (HHL)

formula is as follows.
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Theorem 6.1 ([5]) Let σ : µ → Z>0 be the filling of the Young diagram µ by positive integers Z>0,
and define xσ =

∏
u∈µ xσ(u). Then the Macdonald polynomial H̃µ(x; q, t) have the following explicit

formula:
H̃µ(x; q, t) =

∑

σ:µ→Z>0

qinv(σ)tmaj(σ)xσ. (28)

From the HHL formula, we can show the following formula.

Proposition 6.2 For any partition µ and composition α of the same size, one has
∑

p∈P(α)
qinvµ(p)tmajµ(p) =

∑

η`|µ|
Kη,αK̃η,µ(q, t), (29)

where P(α) stands for the set of type B1,1 paths of weight α = (α1, α2, . . . , αn+1) and η runs over all
partitions of size |µ|.

Corollary 6.3 The (modified) Macdonald polynomial H̃µ(x; q, t) have the following expansion in terms
of the monomial symmetric functions mλ(x):

H̃µ(x; q, t) =
∑

λ`|µ|


 ∑

p∈P(λ)
qinvµ(p)tmajµ(p)


mλ(x), (30)

where λ runs over all partitions of size |µ|.
To find combinatorial interpretation of the Kostka–Macdonald polynomials K̃λ,µ(q, t) remains signifi-

cant open problem. Among many important partial results about this problem, we would like to mention
the following theorem also due to Haglund–Haiman–Loehr:

Theorem 6.4 ([5] Proposition 9.2) If µ1 ≤ 2, we have

K̃λ,µ(q, t) =
∑

p∈P+(λ)

qinvµ(p)tmajµ(p), (31)

where P+(λ) is the set of all highest weight elements of P(λ) according to the reading order explained
in Eq.(15).

It is interesting to compare this formula with the formula obtained by S. Fishel [1], see also [14], [18].
Concerning validity of the formula Eq.(31), we state the following conjecture.

Conjecture 6.5 Explicit formula for the Kostka–Macdonald polynomials

K̃λ,µ(q, t) =
∑

p∈P+(λ)

qinvµ(p)tmajµ(p). (32)

is valid if and only if at least one of the following two conditions is satisfied.

(i) µ1 ≤ 3 and µ2 ≤ 2.

(ii) λ is a hook shape.
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7 Generating function of tau functions
In [17], we give an elementary proof for special case t = 1 of the formula Eq.(29) in the following form.

Theorem 7.1 Let α be a composition and µ be a partition of the same size. Then,
∑

p∈P(α)
qmajµ′ (p) =

∑

η`|µ|
Kη,α Kη,µ(q, 1). (33)

Conjecture 7.2 Let α be a composition and µ be a partition of the same size. Then,

q−
∑
i>r αi

∑

p∈P(α)
qτ

r,1
µ (p) =

∑

η`|µ|
Kη,αK̃η,µ(q, 1). (34)

This conjecture contains Conjecture 5.8 of [17] and Theorem 7.1 above as special cases r = 1 and r =∞,
respectively. Also, extensions for paths of more general representations without partition µ are discussed
in Section 5.3 of [17].

Example 7.3 Let us consider case α = (4, 1, 1) and µ = (4, 2). The following is a list of paths p and
the corresponding value of tau function τ2,1(4,2)(p). For example, the top left corner 111123 1 means

p = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 2 ⊗ 3 and τ2,1(4,2)(p) = 1.

111123 1 111132 2 111213 2 111231 3 111312 2 111321 1
112113 3 112131 4 112311 3 113112 3 113121 2 113211 2
121113 4 121131 5 121311 4 123111 5 131112 4 131121 3
131211 4 132111 3 211113 1 211131 2 211311 1 213111 2
231111 3 311112 5 311121 4 311211 5 312111 6 321111 4

Summing up, LHS of Eq.(34) is

q−1
∑

p∈P((4,1,1))
q
τ2,1
(4,2)

(p)
= q5 + 4q4 + 7q3 + 7q2 + 7q + 4

which coincides with the RHS of Eq.(34). Compare this with τ1,1(4,2) data for the same set of paths at
Example 5.9 of [17].
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Abstract. We use Hopf algebras to prove a version of the Littlewood–Richardson rule for skew Schur functions,
which implies a conjecture of Assaf and McNamara. We also establish skew Littlewood–Richardson rules for Schur
P - and Q-functions and noncommutative ribbon Schur functions, as well as skew Pieri rules for k-Schur functions,
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Résumé. Nous utilisons des algèbres de Hopf pour prouver une version de la règle de Littlewood–Richardson pour
les fonctions de Schur gauches, qui implique une conjecture d’Assaf et McNamara. Nous établissons également des
règles de Littlewood–Richardson gauches pour les P - et Q-fonctions de Schur et les fonctions de Schur rubbans non
commutatives, ainsi que des règles de Pieri gauches pour les k-fonctions de Schur, les k-fonctions de Schur duales,
et pour l’homologie de la Grassmannienne affine du groupe symplectique.

Keywords: symmetric functions, Littlewood–Richardson rule, Pieri rule, Hopf algebras, antipode

Assaf and McNamara [AM] recently used combinatorics to give an elegant and surprising formula for
the product of a skew Schur function and a complete homogeneous symmetric function. Their paper
included a conjectural skew version of the Littlewood–Richardson rule, and also an appendix by one of
us (Lam) with a simple algebraic proof of their formula. We show how these formulas and much more
are special cases of a simple formula that holds for any pair of dual Hopf algebras. We first establish
this Hopf-algebraic formula, and then apply it to obtain formulas in some well-known Hopf algebras in
combinatorics.

1 A Hopf algebraic formula
We assume basic familiarity with Hopf algebras, as found in the opening chapters of the book [Mon93].
Let H , H∗ be a pair of dual Hopf algebras over a field k. This means that there is a nondegenerate pairing
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〈·, ·〉 : H ⊗ H∗ → k for which the structure of H∗ is dual to that of H and vice-versa. For example,
H could be finite-dimensional and H∗ its linear dual, or H could be graded with each component finite-
dimensional and H∗ its graded dual. These algebras naturally act on each other [Mon93, 1.6.5]: suppose
that h ∈ H and a ∈ H∗ and set

h ⇀ a :=
∑
〈h, a2〉a1 and a ⇀ h :=

∑
〈h2, a〉h1 . (1)

(We use Sweedler notation for the coproduct, ∆h =
∑
h1 ⊗ h2.) These left actions are the adjoints of

right multiplication: for g, h ∈ H and a, b ∈ H∗,

〈g, h ⇀ a〉 = 〈g · h, a〉 and 〈a ⇀ h, b〉 = 〈h, b · a〉 .

This shows that H∗ is a left H-module under the action in (1). In fact, H∗ is a left H–module algebra,
meaning that for a, b ∈ H∗ and h ∈ H ,

h ⇀ (a · b) =
∑

(h1 ⇀ a) · (h2 ⇀ b) . (2)

Recall that the counit ε : H → k and antipode S : H → H satisfy
∑
h1 ·ε(h2) = h and

∑
h1 ·S(h2) =

ε(h) · 1H for all h ∈ H .

Lemma 1 For g, h ∈ H and a ∈ H∗, we have

(a ⇀ g) · h =
∑

(S(h2) ⇀ a) ⇀ (g · h1) . (3)

Proof: Let b ∈ H∗. We prove first the formula

(h ⇀ b) · a =
∑

h1 ⇀ (b · (S(h2) ⇀ a)) . (4)

(This is essentially (∗) in the proof of Lemma 2.1.4 in [Mon93].) Expanding the sum using (2) and
coassociativity, (∆⊗ 1) ◦∆(h) = (1⊗∆) ◦∆(h) =

∑
h1 ⊗ h2 ⊗ h3, gives

∑
h1 ⇀ (b · (S(h2) ⇀ a)) =

∑
(h1 ⇀ b) · (h2 ⇀ (S(h3) ⇀ a))

=
∑

(h1 ⇀ b) · ((h2 · S(h3)) ⇀ a) (5)

= (h ⇀ b) · a . (6)

Here, (5) follows as H∗ is an H-module and (6) from the antipode and counit conditions.
Note that 〈(a ⇀ g) · h, b〉 = 〈a ⇀ g, h ⇀ b〉 = 〈g, (h ⇀ b) · a〉. Using (4) this becomes

〈
g,
∑

h1 ⇀ (b · (S(h2) ⇀ a))
〉

=
∑〈

g · h1, b · (S(h2) ⇀ a)
〉

=
〈∑

(S(h2) ⇀ a) ⇀ (g · h1), b
〉
,

which proves the lemma, as this holds for all b ∈ H∗. 2

Remark 2 This proof is identical to the argument in the appendix to [AM], where h was a complete
homogeneous symmetric function in the Hopf algebra H of symmetric functions.
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2 Application to distinguished bases
We apply Lemma 1 to produce skew Littlewood–Richardson rules for several Hopf algebras in algebraic
combinatorics. We isolate the common features of those arguments.

In the notation of Section 1, let {Lλ} ⊂ H and {Rλ} ⊂ H∗ be dual bases indexed by some set P , so
〈Lλ, Rµ〉 = δλ,µ for λ, µ ∈ P . Define structure constants for H and H∗ via

Lλ · Lµ =
∑

ν

b νλ,µLν ∆(Lν) =
∑

λ,µ

c νλ,µLλ ⊗ Lµ =
∑

µ

Lν/µ ⊗ Lµ (7)

Rλ ·Rµ =
∑

ν

c νλ,µRν ∆(Rν) =
∑

λ,µ

b νλ,µRλ ⊗Rµ =
∑

µ

Rν/µ ⊗Rµ . (8)

The skew elements Lν/µ and Rν/µ defined above co-multiply according to

∆(Lτ/σ) =
∑

π,ρ

c τπ,ρ,σ Lπ ⊗ Lρ ∆(Rτ/σ) =
∑

π,ρ

b τπ,ρ,σ Rπ ⊗Rρ . (9)

(Note that the structure of H∗ can be recovered from the structure of H . Thus, we may suppress the
analogs of (8) and the second formula in (9) in the coming sections.)

Finally, suppose that the antipode acts on H in the L-basis according to the formula

S(Lρ) = (−1)e(ρ)LρT (10)

for some functions e : P → N and (·)T : P → P . Then Lemma 1 takes the following form.

Theorem 3 (Algebraic Littlewood–Richardson formula) For any λ, µ, σ, τ ∈ P , we have

Lµ/λ · Lτ/σ =
∑

π,ρ,λ−,µ+

(−1)e(ρ) c τπ,ρ,σ b
λ
λ−,ρT b

µ+

µ,π Lµ+/λ− . (11)

Swapping L↔ R and b↔ c in (11) yields the analog for the skew elements Rµ/λ in H∗.

Proof: The actions in (1) together with the second formulas for the coproducts in (7) and (8) show that
Rλ ⇀ Lµ = Lµ/λ and Lλ ⇀ Rµ = Rµ/λ. Now use (3) and (7)–(10) to obtain

Lµ/λ · Lτ/σ = (Rλ ⇀ Lµ) · Lτ/σ =
∑

π,ρ

(−1)e(ρ) c τπ,ρ,σ
(
(LρT ⇀ Rλ) ⇀ (Lµ · Lπ)

)

=
∑

π,ρ,µ+

(−1)e(ρ) c τπ,ρ,σ b
µ+

µ,π

(
Rλ/ρT ⇀ Lµ+

)

=
∑

π,ρ,λ−,µ+

(−1)e(ρ) c τπ,ρ,σ b
λ
λ−,ρT b

µ+

µ,π (Rλ− ⇀ Lµ+) .

This equals the right hand side of (11), since Rλ− ⇀ Lµ+ = Lµ+/λ− . 2

Remark 4 The condition (10) is highly restrictive. It implies that the antipode S, as a linear map, is
conjugate to a signed permutation matrix. Nevertheless, it holds for the Hopf algebras we consider. More
generally, it holds if either H or H∗ is commutative, for then S is an involution [Mon93, Cor. 1.5.12].
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3 Skew Littlewood–Richardson rule for Schur functions
The commutative Hopf algebra Λ of symmetric functions is graded and self-dual under the Hall inner
product 〈·, ·〉 : Λ⊗ Λ→ Q. A systematic study of Λ from a Hopf algebra perspective appears in [Zel81].
We follow the definitions and notation in Chapter I of [Mac95]. The Schur basis of Λ (indexed by parti-
tions) is self-dual, so (7) and (9) become

sλ · sµ =
∑

ν

c νλ,µsν ∆(sν) =
∑

λ,µ

c νλ,µsλ ⊗ sµ =
∑

µ

sν/µ ⊗ sµ (12)

∆(sτ/σ) =
∑

π,ρ

c τπ,ρ,σ sπ ⊗ sρ , (13)

where the c νλ,µ are the Littlewood–Richardson coefficients and the sν/µ are the skew Schur functions
[Mac95, I.5]. Combinatorial expressions for the c νλ,µ and inner products 〈sµ/λ, sτ/σ〉 are derived using
the Hopf algebraic structure of Λ in [Zel81]. The coefficients c τπ,ρ,σ occur in the triple product sπ · sρ · sσ ,

c τπ,ρ,σ = 〈sπ · sρ · sσ, sτ 〉 = 〈sπ · sρ, sτ/σ〉 = 〈sπ ⊗ sρ, ∆(sτ/σ)〉 .

Write ρ′ for the conjugate (matrix-transpose) of ρ. Then the action of the antipode is

S(sρ) = (−1)|ρ|sρ′ , (14)

which is just a twisted form of the fundamental involution ω that sends sρ to sρ′ . Indeed, the formula∑
i+j=n(−1)ieihj = δ0,n shows that (14) holds on the generators {hn | n ≥ 1} of Λ. The validity

of (14) follows as both S and ω are algebra maps.
Since cλλ−,ρ′ = 0 unless |ρ| = |λ/λ−|, we may write (11) as

sµ/λ · sτ/σ =
∑

π,ρ,λ−,µ+

(−1)|λ/λ
−| c τπ,ρ,σ c

λ
λ−,ρ′ c

µ+

µ,π sµ+/λ− . (15)

We next formulate a combinatorial version of (15). Given partitions ρ and σ, form the skew shape ρ ∗σ
by placing ρ southwest of σ. Thus,

if ρ = and σ = then ρ ∗ σ = .

Similarly, if R is a tableau of shape ρ and S a tableau of shape σ, then R ∗ S is the skew tableau of shape
ρ ∗ σ obtained by placing R southwest of S. Fix a tableau T of shape τ . The Littlewood–Richardson
coefficient c τρ,σ is the number of pairs (R,S) of tableaux of respective shapes ρ and σ with R ∗ S Knuth-
equivalent to T . See [Ful97, Ch. 5, Cor. 2(v)]. Similarly, c τπ,ρ,σ is the number of triples (P,R, S) of
tableaux of respective shapes π, ρ, and σ with P ∗R ∗ S Knuth-equivalent to T .

Write sh(S) for the shape of a tableau S and S ≡K T if S is Knuth-equivalent to T .

Lemma 5 Let σ, τ be partitions and fix a tableau T of shape τ . Then

∆(sτ/σ) =
∑

ssh(R−) ⊗ ssh(R+) ,

the sum taken over triples (R−, R+, S) of tableaux with sh(S) = σ and R− ∗R+ ∗ S ≡K T . 2
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Note that (µ/λ)′ = µ′/λ′ and the operation ∗ makes sense for skew tableaux. If S is a tableau of skew
shape µ/λ, put |S| = |µ/λ| = |µ| − |λ|.

Theorem 6 (Skew Littlewood–Richardson rule) Let λ, µ, σ, τ be partitions and fix a tableau T of shape
τ . Then

sµ/λ · sτ/σ =
∑

(−1)|S
−| sµ+/λ− , (16)

the sum taken over triples (S−, S+, S) of skew tableaux of respective shapes (λ/λ−)′, µ+/µ, and σ such
that S− ∗ S+ ∗ S ≡K T .

Remark 7 If T is the unique Yamanouchi tableau of shape τ whose ith row contains only the letter i,
then this is almost Conjecture 6.1 in [AM]. Indeed, in this case S is Yamanouchi of shape σ, so the sum
is really over pairs of tableaux, and this explains the σ-Yamanouchi condition in [AM]. The difference
lies in the tableau S− and the reading word condition in [AM]. It is an exercise in tableaux combinatorics
that there is a bijection between the indices (S−, S+) of Theorem 6 and the corresponding indices of
Conjecture 6.1 in [AM].

Proof Proof of Theorem 6: We reinterpret (15) in terms of tableaux. Let (R−, R+, S) be a triple of
tableaux of partition shape with sh(S) = σ and R− ∗R+ ∗ S ≡K T . If sh(R−) = ρ, then by [Ful97, Ch.
5, Cor. 2(i)], cλλ−,ρ′ = cλ

′

(λ−)′,ρ counts skew tableaux S− of shape (λ/λ−)′ with S− ≡K R−. Likewise,

if sh(R+) = π, then cµ
+

µ,π counts skew tableaux S+ of shape µ+/µ with S+ ≡K R+. Now (15) may be
written as

sµ/λ · sτ/σ =
∑

(−1)|S
−|sµ+/λ− ,

summing over skew tableaux (R−, R+, S−, S+, S) withR± of partition shape, sh(S) = σ,R−∗R+∗S ≡K
T , sh(S+) = µ+/µ, sh(S−) = (λ/λ−)′, and S± ≡K R±.

Finally, note thatR± is the unique tableau of partition shape Knuth-equivalent to S±. Since S−∗S+∗S
is Knuth-equivalent to T (by transitivity of ≡K), we omit the unnecessary tableaux R± from the indices
of summation and reach the statement of the theorem. 2

4 Skew Littlewood–Richardson rule for Schur P - and Q-functions
The self-dual Hopf algebra of symmetric functions has a natural self-dual subalgebra Ω. This has dual
bases the Schur P - and Q-functions [Mac95, III.8], which are indexed by strict partitions λ : λ1 > · · · >
λl > 0. Write `(λ) = l for the length of the partition λ. As in Section 3, the constants and skew functions
in the structure equations

Qλ ·Qµ =
∑

ν

g νλ,µ Qν ∆(Qν) =
∑

λ,µ

f νλ,µQλ ⊗Qµ =
∑

µ

Qν/µ ⊗Qµ (17)

∆(Qτ/σ) =
∑

π,ρ

f τπ,ρ,σ Qπ ⊗Qρ (18)

have combinatorial interpretations (see below). Also, each basis {Pλ} and {Qλ} is almost self-dual in
that Pλ = 2−`(λ)Qλ and g νλ,µ = 2`(λ)+`(µ)−`(ν)f νλ,µ.
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The algebra Ω is generated by the special Q-functions qn = Q(n) :=
∑
i+j=n hiej [Mac95, III, (8.1)].

This implies that S(qn) = (−1)nqn, from which we deduce that

S(Qρ) = (−1)|ρ|Qρ .

As f λλ−,ρ = 0 unless |ρ| = |λ/λ−|, we may write the algebraic rule (11) as

Qµ/λ ·Qτ/σ =
∑

π,ρ,λ−,µ+

(−1)|λ/λ
−| f τπ,ρ,σ g

λ
λ−,ρ g

µ+

µ,π Qµ+/λ− , (19)

with a similar identity holding for Pµ/λ · Pτ/σ (swapping P ↔ Q and f ↔ g).
We formulate two combinatorial versions of (19). Strict partitions λ, µ are written as shifted Young

diagrams (where row i begins in column i). Skew shifted shapes λ/µ are defined in the obvious manner:

if λ = 431 = and µ = 31 = , then λ/µ = = .

In what follows, tableaux means semi-standard (skew) shifted tableaux on a marked alphabet [Mac95,
III.8]. We use shifted versions of the jeu-de-taquin and plactic equivalence from [Sag87] and [Ser],
denoting the corresponding relations by ≡SJ and ≡SP, respectively. Given tableaux R,S, T, we write
R ∗ S ≡SP T when representative words u, v, w (built via “mread” [Ser, §2]) of the corresponding shifted
plactic classes satisfy uv ≡SP w.

Stembridge notes (following [Ste89, Prop. 8.2]) that for a fixed tableau M of shape µ,

f νλ,µ = #
{

skew tableaux L : sh(L) = ν/λ and L ≡SJ M
}
. (20)

Serrano has a similar description of these coefficients in terms of ≡SP. Fixing a tableau T of shape τ , it
follows from [Ser, Cor. 1.15] that the coefficient f τπ,ρ,σ in Pπ · Pρ · Pσ =

∑
τ f

τ
π,ρ,σPτ is given by

f τπ,ρ,σ = #
{

(P,R, S) : sh(P ) = π, sh(R) = ρ, sh(S) = σ, and P ∗R ∗ S ≡SP T
}
. (21)

If T is a tableau of shape λ, write `(T ) for `(λ). The formula relating the g’s and f ’s combines with
(20) and (21) to give our next result.

Theorem 8 (Skew Littlewood–Richardson rule) Let λ, µ, σ, τ be strict partitions and fix a tableau T of
shape τ . Then

Qµ/λ ·Qτ/σ =
∑

(−1)|λ/λ
−| 2`(R

−)+`(R+)+`(λ−)+`(µ)−`(λ)−`(µ+) Qµ+/λ− , (22)

the sum taken over quintuples (R−, R+, S−, S+, S) with R± of partition shape, sh(S) = σ, R− ∗ R+ ∗
S ≡SP T , sh(S+) = µ+/µ, sh(S−) = (λ/λ−), and S± ≡SJ R

±. 2

Serrano conjectures an elegant combinatorial description [Ser, Conj. 2.12 and Cor. 2.13] of the structure
constants g νλ,µ in (17): For any tableau M of shape µ, he conjectured

g νλ,µ = #
{

skew tableaux L : sh(L) = ν/λ and L ≡SP M
}
. (23)

(Note that if S, T are tableaux, then S ≡SP T does not necessarily imply that S ≡SJ T .) This leads to a
conjectural reformulation of Theorem 8 in the spirit of Theorem 6.
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Conjecture 1 (Conjectural Skew Littlewood–Richardson rule) Let λ, µ, σ, τ be strict partitions, and
fix a tableau T of shape τ . Then

Qµ/λ ·Qτ/σ =
∑

(−1)|S
−| Qµ+/λ− , (24)

the sum taken over triples (S−, S+, S) of skew tableaux of respective shapes (λ/λ−), µ+/µ, and σ such
that S− ∗ S+ ∗ S ≡SP T .

Proof: There is a unique shifted tableau R in any shifted plactic class [Ser, Thm. 2.8]. So the conditions
S± ≡SP R± and R− ∗ R+ ∗ S ≡SP T in (21) and (23) may be replaced with the single condition
S− ∗ S+ ∗ S ≡SP T . 2

5 Skew Littlewood–Richardson rule for noncommutative
Schur functions

The Hopf algebra of noncommutative symmetric functions was introduced, independently, in [GKL+95,
MR95] as the (graded) dual to the commutative Hopf algebra of quasisymmetric functions. We con-
sider the dual bases (indexed by compositions) {Fα} of Gessel’s quasisymmetric functions and {Rα} of
noncommutative ribbon Schur functions. The structure constants in

Rα ·Rβ =
∑

γ

b γα,β Rγ ∆(Rγ) =
∑

α,β

c γα,βRα ⊗Rβ =
∑

β

Rγ/β ⊗Rβ (25)

∆(Rτ/σ) =
∑

π,ρ,σ

c τπ,ρ,σ Rπ ⊗Rρ (26)

may be given combinatorial meaning via the descent map d : Sn → Γn from permutations to composi-
tions and a section of it w : Γn → Sn. These maps are linked via ribbon diagrams, edge-connected skew
Young diagrams (written in the french style), with no 2× 2 subdiagram present. By way of example,

d : 148623795→ → 3141, w : 3141→ → 789623451.

(In the intermediate step for d(w), new rows in the ribbon begin at descents of w. In the intermediate step
for w(α), the boxes in the ribbon are filled left-to-right, bottom-to-top.)

A ribbon αmay be extended by a ribbon β in two ways: affixing β to the rightmost edge or bottommost
edge of α (written α/β and αMβ, respectively):

311/31: → , 31M41: → .

If a ribbon γ is formed from α and β in either of these two ways, we write γ ∈ α♦β. The coefficient
b γα,β is 1, if γ ∈ α♦β, and 0 otherwise. If ∗ is the shifted shuffle product on permutations (see (3.4) in
[MR95]), then the coefficient c γα,β is the number of words w in w(α) ∗ w(β) such that d(w) = γ. The
coefficient c τπ,ρ,σ has the analogous description.
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Antipode formulas for the distinquished bases were found, independently, in [Ehr96, MR95]:

S(Fα) = (−1)|α|Fα ′ and S(Rα) = (−1)|α|Rα ′ ,

where α ′ is the conjugate of α (in the sense of french style skew partitions). For example, (3141)
′

=
211311. The descriptions of the antipode and structure constants in (25) and (26) give a formula for the
product of two skew ribbon Schur functions.

Theorem 9 (Skew Littlewood–Richardson rule) Let α, β, σ, τ be compositions. Then

Rβ/α ·Rτ/σ =
∑

(−1)|ρ| Rβ+/α− ,

the sum taken over factorizations α ∈ α−♦ρ ′, extensions β+ ∈ β♦π, and words w in the shuffle product
w(π) ∗ w(ρ) ∗ w(σ) such that d(w) = τ . 2

Remark 10 The nonzero skew ribbon Schur functions Rβ/α do not correspond to skew ribbon shapes in
a simple way. For example, 111 is not a (connected) sub-ribbon of 221, yet R221/111 = R2 + R11 6= 0.
Contrast this with the skew functions Fβ/α, where Fβ/α 6= 0 if and only if β ∈ ω♦α for some ribbon
ω. That is, Fβ/α = Fω . Thus we may view α as the last |α| boxes of the ribbon β and β/α as the
complementary ribbon ω. Interpreting Fβ/α · Fτ/σ alternately as a product of ordinary functions or skew
functions yields the curious identity

Fβ/α · Fτ/σ =
∑

γ

c γβ/α,τ/σ Fγ =
∑

π,ρ,α−,β+

(−1)|ρ| b τ/σπ,ρ cαα−,ρ ′ c
β+

β,π Fβ+/α− . (27)

6 Skew k-Pieri rule for k-Schur functions
Fix an integer k ≥ 1. Let Λ(k) denote the Hopf subalgebra of the Hopf algebra of symmetric functions
generated by the homogeneous symmetric functions h1, h2, . . . , hk. Let Λ(k) denote the Hopf-dual quo-
tient Hopf algebra of symmetric functions. We consider the dual bases {s(k)λ } ⊂ Λ(k) and {F (k)

λ } ⊂ Λ(k)

of k-Schur functions and dual k-Schur functions of [LLMS, LM07], also called strong Schur functions
and weak Schur functions in [LLMS]. The k-Schur functions were first introduced by Lapointe, Lascoux,
and Morse in the context of Macdonald polynomials, and were later shown by Lam to represent Schubert
classes in the affine Grassmannian of SL(k+1,C). We refer the reader to the references in [LLMS].

Here λ varies over all k-bounded partitions, that is, those partitions satisfying λ1 ≤ k. There is an
involution λ 7→ λωk on k-bounded partitions called k-conjugation. We have

S(s
(k)
λ ) = (−1)|λ|s(k)λωk and S(F

(k)
λ ) = (−1)|λ|F (k)

λωk .

If λ = (r) is a one-part partition, then s(k)λ = hr is a homogeneous symmetric function. We have the
k-Pieri and dual k-Pieri rules [LLMS, LM07] (called weak and strong Pieri rules in [LLMS])

s
(k)
λ · hr =

∑

λ r µ

s(k)µ and F
(k)
λ · hr =

∑

λ→r µ

F (k)
µ (28)

for r ≤ k. Here λ r µ denotes an r-weak strip connecting λ and µ—present if and only if both µ/λ and
µωk/λωk are horizontal r-strips. The notation λ→r µ denotes an r-strong strip as introduced in [LLMS],
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which we will not define here. The terminology comes from the relationship with the weak and strong
(Bruhat) orders of the affine symmetric group. We remark that there may be distinct strong strips λ→r µ
and (λ→r µ)′ which start and end at the same partition, so that the second Pieri rule of (28) may have
multiplicities. (Strictly speaking, the strong strips in [LLMS] are built on (k + 1)-cores, and our λ→r µ
denotes the strips obtained after applying a bijection between (k + 1)-cores and k-bounded partitions.)

We define skew functions s(k)λ/µ and F (k)
λ/µ using (7) and (8). There is an explicit combinatorial descrip-

tion of F (k)
λ/µ in terms of the weak tableaux of [LLMS], but only a conjectured combinatorial description

of s(k)λ/µ [LLMS, Conj. 4.18(3)].

Theorem 11 (Skew k-Pieri (or weak Pieri) rule) For k-bounded partitions λ, µ, and r ≤ k,

s
(k)
µ/λ · hr =

∑

i+j=r

(−1)j
∑

µ i µ
+

(λ−)ωk  j λ
ωk

s
(k)
µ+/λ−

Proof: In Theorem 3, take Lτ/σ = hr. For c τπ,ρ,σ , use the formula ∆(hr) =
∑
i+j=r hi ⊗ hj , and for

bλλ−,ρωk
and bµ

+

µ,π , use (28). 2

Theorem 12 (Skew dual k-Pieri (or strong Pieri) rule) For k-bounded partitions λ, µ, and r ≤ k,

F
(k)
λ/µ · hr =

∑

i+j=r

(−1)j
∑

λ→i λ
+

(µ−)ωk →j µ
ωk

F
(k)
λ+/µ−

Proof: Identical to the proof of Theorem 11. 2

As an example, let k = 2, r = 2, µ = (2, 1, 1), and λ = (1). Then Theorem 11 states that

s
(2)
211/1 · h2 = s

(2)
2211/1 − s

(2)
2111 ,

which one can verify using (28) and the expansions s(2)211/1 = s
(2)
21 + s

(2)
111 and s(2)2211/1 = 2 s

(2)
2111 + s

(2)
221.

Theorem 12 states that

F
(2)
211/1 · h2 = 3F

(2)
222/1 + 5F

(2)
2211/1 + 3F

(2)
21111/1 + 3F

(2)
111111/1 − 2F

(2)
221 − 3F

(2)
2111 − 2F

(2)
11111.

One can verify that both sides are equal to 6F
(2)
221 + 5F

(2)
2111 + 4F

(2)
11111.

7 Skew Pieri rule for affine Grassmannian of the symplectic group
Fix n ≥ 1. The Hopf algebra Ω of Section 4 contains a Hopf subalgebra Ω(n) generated by the Schur
P -functions P1, P3, . . . , P2n−1. In [LSS10], it was shown that Ω(n) is isomorphic to the homology ring
H∗(GrSp(2n,C)) of the affine Grassmannian of the symplectic group Sp(2n,C). A distinguished basis
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{P (n)
w } ⊂ Ω(n), representing the Schubert basis, was studied there. The symmetric functions P (n)

w are
shifted versions of the k-Schur functions of Section 6.

The indexing set for the basis {P (n)
w } is the set C̃0

n of affine Grassmannian type C permutations: they
are the minimal length coset representatives of Cn in C̃n. A lower Bruhat order ideal Z ⊂ C̃n of the
affine type C Weyl group is defined in [LSS10]. Let Zj ⊂ Z denote those v ∈ Z with length `(v) = j.
For each v ∈ Z , there is a nonnegative integer c(v) ∈ Z≥0, called the number of components of v. We
note that c(id) = 0. With this notation, for each 1 ≤ j ≤ 2n − 1, we have the Pieri rule [LSS10, Thms.
1.3 and 1.4]

P (n)
w · Pj =

∑

v∈Zj

2c(v)−1 P (n)
vw , (29)

where the sum is over all v ∈ Zj such that vw ∈ C̃0
n, and `(vw) = `(v) + `(w).

It follows from the discussion in Section 4 that the antipode acts on the Pj by S(Pj) = (−1)jPj . We
define P (n)

w/v using (7).

Theorem 13 (Skew Pieri rule) For w, v ∈ C̃0
n, and r ≤ 2n− 1,

P
(n)
w/v · Pr =

∑

i+j=r

(−1)j
∑

u∈Zi
z∈Zj

2c(u)+c(z)−1 P (n)
uw/z−1v ,

where the sum is over all u ∈ Zi and z ∈ Zj such that uw, z−1v ∈ C̃0
n, `(uw) = `(u) + `(w), and

`(z−1v) + `(z) = `(v).

Proof: In Theorem 3, take Lτ/σ = Pr and use (29). For the constants c τπ,ρ,σ , use the formula

∆(Pr) = 1⊗ Pr + Pr ⊗ 1 + 2
∑

0<j<r

Pr−j ⊗ Pj .

If 0 < j < r, the product c τπ,ρ,σb
λ
λ−,ρ′b

µ+

µ,π in (11) becomes 2 · 2c(u)−1 · 2c(z)−1 = 2c(u)+c(z)−1. If j = 0

(resp., j = r), it becomes 1 · 2c(u)−1 · 1 = 2c(u)+c(z)−1 (resp., 1 · 1 · 2c(z)−1 = 2c(u)+c(z)−1). 2
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Abstract. We prove that the subset of quasisymmetric polynomials conjectured by Bergeron and Reutenauer to be a
basis for the coinvariant space of quasisymmetric polynomials is indeed a basis. This provides the first constructive
proof of the Garsia–Wallach result stating that quasisymmetric polynomials form a free module over symmetric
polynomials and that the dimension of this module is n!.

Résumé. Nous prouvons que le sous-ensemble des polynômes quasisymétriques conjecturé par Bergeron et Reutenauer
pour former une base pour l’espace coinvariant des polynômes quasisymétriques est en fait une base. Cela fournit la
première preuve constructive du résultat de Garsia–Wallach indiquant que les polynômes quasisymétriques forment
un module libre sur les polynômes symétriques et que la dimension de ce module est n!.

Keywords: quasisymmetric functions, symmetric functions, free modules, compositions, inverting compositions

1 Introduction
Quasisymmetric polynomials have held a special place in algebraic combinatorics since their introduction
in [7]. They are the natural setting for many enumeration problems [16] as well as the development of
Dehn–Somerville relations [1]. In addition, they are related in a natural way to Solomon’s descent algebra
of the symmetric group [14]. In this paper, we follow [2, Chapter 11] and view them through the lens of
invariant theory. Specifically, we consider the relationship between the two subrings Symn ⊆ QSymn ⊆
Q[x] of symmetric and quasisymmetric polynomials in variables x = xn := {x1, x2, . . . , xn}. Let Jn
denote the ideal in QSymn generated by the elementary symmetric polynomials. In 2002, F. Bergeron
and C. Reutenauer made a sequence of three successively finer conjectures concerning the quotient ring
QSymn/Jn. A. Garsia and N. Wallach were able to prove the first two in [6], but the third one remained
open; we close it here (Corollary 6) with the help of a new basis for QSymn introduced in [8].
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1.1 Motivating context
Recall that Symn is the ring Q[x]Sn of invariants under the permutation action of Sn on x and Q[x]. One
of the crowning results in the invariant theory of Sn is that the following true statements are equivalent:

(S1) Q[x]Sn is a polynomial ring, generated, say, by the elementary symmetric polynomials En =
{e1(x), . . . , en(x)};

(S2) the ring Q[x] is a free Q[x]Sn -module;

(S3) the coinvariant space Q[x]Sn
= Q[x]/

(
En
)

has dimension n! and is isomorphic to the regular
representation of Sn.

See [11, §§17, 18] for details. Analogous statements hold on replacing Sn by any pseudo-reflection
group. Since all spaces in question are graded, we may add a fourth item to the list: the Hilbert series
Hq

(
Q[x]Sn

)
=
∑
k≥0 dk q

k, where dk records the dimension of the kth graded piece of Q[x]Sn
, satisfies

(S4) Hq

(
Q[x]Sn

)
= Hq

(
Q[x]

)/
Hq

(
Q[x]Sn

)
.

Before we formulate the conjectures of Bergeron and Reutenauer, we recall another page in the story
of Symn and the quotient space Q[x]/ (En). The ring homomorphism ζ from Q[xn+1] to Q[xn] induced
by the mapping xn+1 7→ 0 respects the rings of invariants (that is, ζ : Symn+1 � Symn is a ring ho-
momorphism). Moreover, ζ respects the fundamental bases of monomial (mλ) and Schur (sλ) symmetric
polynomials of Symn, indexed by partitions λ with at most n parts. For example,

ζ(mλ(xn+1)) =

{
mλ(xn), if λ has at most n parts,
0, otherwise.

The stability of these bases plays a crucial role in representation theory [13]. Likewise, the associated
stability of bases for the coinvariant spaces (e.g., of Schubert polynomials [4, 12, 15]) plays a role in the
cohomology theory of flag varieties.

1.2 Bergeron–Reutenauer context
Given that QSymn is a polynomial ring [14] containing Symn, one might ask, by analogy with Q[x], how
QSymn looks as a module over Symn. This was the question investigated by Bergeron and Reutenauer
[3]. (See also [2, §11.2].) They began by computing the quotient Pn(q) := Hq

(
QSymn

)/
Hq

(
Symn

)

by analogy with (S4). To everyone’s surprise, the result was a polynomial in q with nonnegative integer
coefficients (so it could, conceivably, enumerate the graded space QSymn/Jn). More astonishingly,
sending q to 1 gave Pn(1) = n!. This led to the following two conjectures, subsequently proven in [6]:

(Q1) The ring QSymn is a free module over Symn;

(Q2) The dimension of the “coinvariant space” QSymn/Jn is n!.

In their efforts to solve the conjectures above, Bergeron and Reutenauer introduced the notion of “pure
and inverting” compositions Bn with at most n parts. These compositions have the favorable property of
being n-stable in that Bn ⊆ Bn+1 and that Bn+1\Bn are the pure and inverting compositions with exactly
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n+1 parts. They were able to show that the pure and inverting “quasi-monomials” Mβ (see Section 2)
span QSymn/Jn and that they are n! in number. However, the linear independence of these polynomials
over Symn remained open. Their final conjecture, which we prove in Corollary 6, is as follows:

(Q3) The set of quasi-monomials {Mβ : β ∈ Bn} is a basis for QSymn/Jn.

The balance of this paper is organized as follows. In Section 2, we recount the details surrounding a
new basis {Sα} for QSymn called the quasisymmetric Schur polynomials. These behave particularly well
with respect to the Symn action in the Schur basis. In Section 3, we give further details surrounding the
“coinvariant space” QSymn/Jn. These include a bijection between compositions α and pairs (λ, β), with
λ a partition and β a pure and inverting composition, that informs our main results. Section 4 contains
these results—a proof of (Q3), but with the quasi-monomials Mβ replaced by the quasisymmetric Schur
polynomials Sβ . We conclude in Section 5 with some corollaries to the proof. These include (Q3), as
originally stated, as well as a version of (Q1) and (Q3) over the integers.

2 Quasisymmetric polynomials
A polynomial in n variables x = {x1, x2, . . . , xn} is said to be quasisymmetric if and only if for each
composition (α1, α2, . . . , αk), the monomial xa11 x

a2
2 · · ·xakk has the same coefficient as xα1

i1
xα2
i2
· · ·xαk

ik
for all sequences 1 ≤ i1 < i2 < · · · < ik ≤ n. For example, x21x2 + x21x3 + x22x3 is a quasisymmet-
ric polynomial in the variables {x1, x2, x3}. The ring of quasisymmetric polynomials in n variables is
denoted QSymn. (Note that every symmetric polynomial is quasisymmetric.)

It is easy to see that QSymn has a vector space basis given by the quasi-monomials

Mα(x) =
∑

i1<···<ik
xα1
i1
· · ·xαk

ik
,

for α = (α1, . . . , αk) running over all compositions with at most n parts. It is less evident that QSymn

is a ring, but see [10] for a formula for the product of two quasi-monomials. We write l(α) = k for the
length (number of parts) of α in what follows. We return to the quasi-monomial basis in Section 5, but
for the majority of the paper, we focus on the basis of “quasisymmetric Schur polynomials” as its known
multiplicative properties assist in our proofs.

2.1 The basis of quasisymmetric Schur polynomials
A quasisymmetric Schur polynomial Sα is defined combinatorially through fillings of composition dia-
grams. Given a composition α = (α1, α2, . . . , αk), its associated diagram is constructed by placing αi
boxes, or cells, in the ith row from the top. (See Figure 1.) The cells are labeled using matrix notation; that
is, the cell in the jth column of the ith row of the diagram is denoted (i, j). We abuse notation by writing
α to refer to the diagram for α.

Given a composition diagram α = (α1, α2, . . . , α`) with largest part m, we define a composition
tableau T of shape α to be a filling of the cells (i, j) of α with positive integers T (i, j) such that

(CT1) entries in the rows of T weakly decrease when read from left to right,

(CT2) entries in the leftmost column of T strictly increase when read from top to bottom,
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FIG. 1: The diagram associated to the composition (2, 4, 3, 2, 4)

(CT3) entries satisfy the triple rule:

Let (i, k) and (j, k) be two cells in the same column so that i < j. If αi ≥ αj then either T (j, k) <
T (i, k) or T (i, k−1) < T (j, k). If αi < αj then either T (j, k) < T (i, k) or T (i, k) < T (j, k+1).

Assign a weight, xT to each composition tableau T by letting ai be the number of times i appears in T
and setting xT =

∏
xaii . The quasisymmetric Schur polynomial Sα corresponding to the composition α

is defined by
Sα(xn) =

∑

T

xT ,

the sum being taken over all composition tableaux T of shape α with entries chosen from [n]. (See
Figure 2.) Each polynomial Sα is quasisymmetric and the collection {Sα : l(α) ≤ n} forms a basis for
QSymn [8].

1 1 1

2

3 3

1 1 1

2

4 3

1 1 1

2

4 4

1 1 1

3

4 4

2 1 1

3

4 4

2 2 1

3

4 4

2 2 2

3

4 4

FIG. 2: The composition tableaux encoded in the polynomial S(3,1,2)(x4) = x31x2x
2
3+x

3
1x2x3x4+

x31x2x
2
4 + x31x3x

2
4 + x21x2x3x

2
4 + x1x

2
2x3x

2
4 + x32x3x

2
4.

2.2 Sym action in the Quasisymmetric Schur polynomial basis
We need several definitions in order to describe the multiplication rule for quasisymmetric Schur polyno-
mials found in [9]. The reverse of a partition λ is the composition λ∗ obtained by reversing the order of
its parts. Symbolically, if λ = (λ1, λ2, . . . , λk) then λ∗ = (λk, . . . , λ2, λ1). Let β be a composition, let
λ be a partition, and let α be a composition obtained by adding |λ| cells to β, possibly between adjacent
rows of β. A filling of the cells of α is called a Littlewood–Richardson composition tableau of shape α/β
if it satisfies the following rules:

(LR1) The ith row from the bottom of β is filled with the entries k + i.

(LR2) The content of the appended cells is λ∗.

(LR3) The filling satisfies conditions (CT1) and (CT3) from Section 2.1.

(LR4) The entries in the appended cells, when read from top to bottom, column by column, from right to
left, form a reverse lattice word. That is, one for which each prefix contains at least as many i’s as
(i− 1)’s for each 1 < i ≤ k.
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The following theorem provides a method for multiplying an arbitrary quasisymmetric Schur polyno-
mial by an arbitrary Schur polynomial.

Theorem 1 ([9]) In the expansion

sλ(x) · Sα(x) =
∑

γ

Cγλα Sγ(x), (1)

the coefficient Cγλα is the number of Littlewood–Richardson composition tableaux of shape γ/α with
content λ∗.

3 The coinvariant space for quasisymmetric polynomials
Let B ⊆ A be two Q-algebras with A a free left module over B. This implies the existence of a subset
C ⊆ A with A ' B ⊗ C as vector spaces over Q. In the classical setting of invariant theory (where B is
the subring of invariants for some group action on A), this set C is identified as coset representatives for
the quotient A/(B+), where (B+) is the ideal in A generated by the positive part of the graded algebra
B =

⊕
k≥0Bk.

Now suppose that A and B are graded rings. If A is free over B, then the Hilbert series of C is given
as the quotient Hq

(
A
)/
Hq

(
B
)
. Let us try this with the choice A = QSymn and B = Symn. It is

well-known that the Hilbert series for QSymn and Symn are given by

Hq

(
QSymn

)
= 1 +

q

1− q + · · ·+ qn

(1− q)n (2)

and

Hq

(
Symn

)
=

n∏

i=1

1

1− qi . (3)

Let Pn(q) =
∑
k≥0 pk q

k denote the quotient of (2) by (3). It is easy to see that

Pn(q) =
n−1∏

i=1

(
1 + q + · · ·+ qi

) n∑

i=0

qi(1− q)n−i ,

and hence Pn(1) = n!. It is only slightly more difficult (see (0.13) in [6]) to show that Pn(q) satisfies the
recurrence relation

Pn(q) = Pn−1(q) + qn
(
[n]q!− Pn−1(q)

)
, (4)

where [n]q! is the standard q-version of n!. Bergeron and Reutenauer use this recurrence to show that pk
is a nonnegative integer for all k ≥ 0 and to produce a set of compositions Bn satisfying pk = #{β ∈
Bn : |β| = k} for all n. In particular, |Bn| = n!.

Let Jn be the ideal in QSymn generated by all symmetric polynomials with zero constant term and call
Rn := QSymn/Jn the coinvariant space for quasisymmetric polynomials. From the above discussion,
Rn has dimension at most n!. If the set of quasi-monomials {Mβ ∈ QSymn : β ∈ Bn} are linearly
independent over Symn, then it has dimension exactly n! and QSymn becomes a free Symn module of
the same dimension.
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3.1 Destandardization of permutations
To produce a set Bn of compositions indexing a proposed basis ofRn, first recognize the [n]q! in (4) as the
Hilbert series for the classical coinvariant space Q[x]

/
(En) from (S3). The standard set of compositions

indexing this space are the Artin monomials {xα1
1 · · ·xαn

n : 0 ≤ αi ≤ n− i}, but these do not fit into the
desired recurrence (4) with n-stability. In [5], Garsia developed an alternative set of monomials indexed
by permutations. His “descent monomials” (actually, the “reversed” descent monomials, see [6, §6]) were
chosen as the starting point for the recursive construction of the sets Bn. Here we give a description in
terms of “destandardized permutations.”

In what follows, we view partitions and compositions as words in the alphabet N = {0, 1, 2, . . . }. For
example, we write 2543 for the composition (2, 5, 4, 3). The standardization st(w) of a word w of length
k is a permutation in Sk obtained by first replacing (from left to right) the `1 1s in w with the numbers
1, . . . , `1, then replacing (from left to right) the `2 2s in w with the numbers `1+1, . . . , `1+`2, and so
on. For example, st(121) = 132 and st(2543) = 1432. The destandardization d(σ) of a permutation
σ ∈ Sk is the lexicographically least word w ∈ Pk satisfying st(w) = σ. For example, d(132) = 121
and d(1432) = 1321. Let D(n) denote the compositions {d(σ) : σ ∈ Sn}. Finally, given d(σ) =

(α1, . . . , αk), let r(σ) denote the vector difference (α1, . . . , αk)−1k (leaving in place any zeros created in
the process). For example, r(132) = 010 and r(1432) = 0210. Up to a relabelling, the weak compositions
r(σ) are the ones introduced by Garsia in [5].

Bergeron and Reutenauer define their sets Bn recursively in such a way that

• B0 := {0},

• 1n+Bn−1 ⊆ D(n) and D(n) is disjoint from Bn−1, and

• Bn := Bn−1 ∪ D(n) \
(
1n+Bn−1

)
.

Here, 1n+Bn−1 denotes the vector sums {1n + d : d ∈ Bn−1}. Note that the compositions in D(n) all
have length n. Moreover, 1n+1+D(n) ⊆ D(n+1). Indeed, if σ = σ′1 is a permutation in Sn+1 with
suffix “1” in one-line notation, then 1n+1 + d(st(σ′)) = d(σ). That (4) enumerates Bn is immediate [6,
Proposition 6.1]. We give the first few sets Bn and D(n) in Figure 3.

D(1) = {1} B0 = {0}
D(2) = {11, 21} B1 = {0}
D(3) = {111, 211, 121, 221, 212, 321} B2 = {0, 21}
D(4) = {1111, 2111, 1211, 1121, 2211, 2121, 1221, 2112, 1212, 2221, 2212, 2122, B3 = {0, 21, 211,

3211, 3121, 1321, 3221, 2321, 3212, 2312, 2132, 3321, 3231, 3213, 4321} 121, 221, 212}

FIG. 3: The sets D(n) and Bn for small values of n. Compositions 1n+Bn−1 are underlined in Dn.

3.2 Pure and inverting compositions
We now give an alternative description of the compositions in Bn that will be easier to work with in what
follows. Call a composition α inverting if and only if for each i > 1 there exists a pair of indices s < t
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such that αs = i and αt = i − 1. For example, 13112312 is inverting while 21123113 is not. Any
composition α admits a unique factorization

α = γkik · · · 2i21i1 , (ij ≥ 1)

such that γ is a composition that does not contain any of the values from 1 to k, and k is maximal (but
possibly zero). We say α is pure if and only if this maximal k is even. (Note that if the last part of a
composition is not 1, then k = 0 and the composition is pure.) For example, 5435211 is pure with k = 2
while 3231 is impure since k = 1.

Proposition 2 (Bergeron and Reutenauer) The set of inverting compositions of length n is precisely
D(n). The set of pure and inverting compositions of length at most n is precisely Bn. 2

Let Cn,d be the set of all compositions of d into at most n parts and set PBn,d :=
{

(λ, β) : λ a partition,
β ∈ Bn, |λ|+ |β| = d, and l(λ) ≤ n, l(β) ≤ n

}
. We define a map φ : PBn,d → Cn,d as follows. Given

an arbitrary element (λ, β) be of PBn,d, φ((λ, β)) is the composition obtained by adding λi to the ith

largest part of β for each 1 ≤ i ≤ l(λ), where if βj = βk and j < k, then βj is considered smaller than
βk. If l(λ) > l(β), append zeros after the last part to lengthen β before applying φ. (See Figure 4.)

λ = 1 4 2 1 1 4 5 2 4 1 1
β = 2 4 3 1 1 3 4 2 3

φ(λ, β) = 3 8 5 2 2 7 9 4 7 1 1

FIG. 4: An example of the map φ : PB13,49 → C13,49.

Proposition 3 The map φ is a bijection between PBn,d and Cn,d

Proof: We prove this by describing the inverse φ−1 algorithmically. Let α be an arbitrary composition in
Cn,d and set (λ, β) := (∅, α).

1. If β is pure and inverting, then φ−1(α) := (λ, β)

2. If β is impure and inverting, then set φ−1(α) := (λ+ (1n), β − (1n)).

3. If β is not inverting, then let j be the smallest part of β such that there does not exist a pair of
indices s < t such that βs = j and βt = j− 1. Let m be the number of parts of β which are greater
than or equal to j. Replace β by the composition obtained by subtracting 1 from each part greater
than or equal to j and replace λ by the partition obtained by adding 1 to each of the first m parts.

4. Repeat until φ−1 is obtained. That is, until Step (1) or (2) above is followed.

To see that φφ−1 = 1, consider an arbitrary composition α. If α is pure and inverting, then φφ−1(α) =
φ(∅, α) = α. If α is impure and inverting, then φ(φ−1(α)) = φ((1l(α), α − (1l(α)))) = α. Consider
therefore a composition α which is not inverting. Note that the largest entry in α is decreased at each
iteration of the procedure. Therefore the largest entry in the partition records the number of times the
largest entry in α is decreased. Similarly, for each i ≤ l(λ), the ith largest entry in α is decreased by one
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λi times. This means that the ith largest part of α is obtained by adding λi to the ith largest part of β and
therefore our procedure φ−1 inverts the map φ. 2

Figure 5 illustrates the algorithmic description of φ−1 as introduced in the proof of Proposition 3 on
α = 38522794711.

α 7→
(
λ
β

)
:

∅
3 8 5 2 2 7 9 4 7 1 1 → 1 1 1 1 1 1

3 7 4 2 2 6 8 3 6 1 1

↓
3 1 3 3 1 3

3 5 4 2 2 4 6 3 4 1 1 ← 2 1 2 2 1 2
3 6 4 2 2 5 7 3 5 1 1

↓
3 1 3 4 1 3

3 5 4 2 2 4 5 3 4 1 1 → 1 4 2 1 1 4 5 2 4 1 1
2 4 3 1 1 3 4 2 3 →

(
14211452411
243113423

)
.

FIG. 5: The map φ−1 : C13,49 → PB13,49 applied to α = 38522794711. Parts j from Step 3 of
the algorithm are marked with a double underscore.

4 Main Results
Let Bn be as in Section 3 and set Bn := {Sβ : β ∈ Bn}. We prove the following.

Theorem 4 The set Bn is a basis for the Symn-module Rn.

To prove this, we focus on the quasisymmetric polynomials QSymn,d in n variables of homogeneous
degree d. Note that QSymn =

⊕
d≥0QSymn,d and therefore if Cn,d is a basis for QSymn,d, then the

collection
⋃
d≥0 Cn,d is a basis for QSymn.

First, we introduce a useful term order. Each composition α can be rearranged to form a partition λ(α)
by arranging the parts in weakly decreasing order. Recall the lexicographic order � on partitions of n,
which states that λ � µ if and only if the first nonzero entry in λ− µ is positive. For two compositions α
and γ of n, we say that α is larger then γ in revlex order (written α � γ) if and only if either

• λ(α) � λ(γ), or

• λ(α) = λ(γ) and α is lexicographically larger than γ when reading right to left.

For instance, we have
4 � 13 � 31 � 22 � 112 � 121 � 211 � 1111.

Remark: Extend revlex to weak compositions of length at most n by padding the beginning of α or γ with
zeros as necessary, so l(α) = l(γ) = n. Viewing these as exponent vectors for monomials in x provides
a term ordering on Q[x]. However, it is not good term ordering in the sense that it is not multiplicative:
given exponent vectors α, β, and γ with α � γ, it is not necessarily the case that α+ β � γ + β. This is
no doubt the trouble encountered in [3] and [6] when trying to prove the Bergeron–Reutenauer conjecture
(Q3). We circumvent this difficulty by working with the Schur polynomials sλ and the quasisymmetric



Qsym over Sym has a stable basis 253

Schur polynomials Sα. We consider leading polynomials Sγ instead of leading monomials xγ . The
leading term Sγ in a product sλ · Sα is readily found.

Proof of Theorem 4: We claim that the collection Cn,d = {sλSβ : |λ| + |β| = d, l(λ) ≤ n, l(β) ≤
n, and β ∈ Bn} is a basis for QSymn,d, which in turn implies that Bn is a basis for Rn.

We define an ordering on Cn,d by using the map φ and the revlex ordering on compositions. Note that
Cn,d is indexed by pairs (λ, β), where λ is a partition of some k ≤ d and β is a composition of d−k which
lies in Bn. We claim that the leading term in the quasisymmetric Schur polynomial expansion of sλSβ
is the polynomial Sφ(λ,β). To see this, recall that the terms of sλSβ are given by Littlewood–Richardson
composition tableaux of shape α/β and content λ∗, where α is an arbitrary composition shape obtained
by appending |λ| cells to the diagram of β so that conditions (CT1) and (CT3) are satisfied.

To form the largest possible composition (in revlex order), one first appends as many cells as possible
to the longest row of β. (Again, the lower of two equal rows is considered longer.) This new longest row
must end in an L := l(λ), since the reading word of the Littlewood–Richardson composition tableau must
satisfy (LR4). No entry smaller than L can appear to the left of L in this row, since the row entries are
weakly decreasing from left to right. Thus the maximum possible number of entries that could be added
to the longest row of β is λ1. Similarly, the maximum possible number of entries that can be added to the
second longest row of β is λ2 and so on. If l(λ) > l(β), append the extra parts of λ to end of β.

We must show that this largest possible shape is indeed the shape of a Littlewood–Richardson compo-
sition tableau obtained by adding cells with content λ∗ to the diagram of β. Place the entries of λ∗ into the
new cells as described above, with the following exception. If two augmented rows have the same length
and the corresponding parts of λ∗ are equal, then place the larger entries into the higher of the two rows.

Such a filling T of shape α satisfies (CT1) by construction. To prove that the filling S(λ, β) satisfies
(CT3), consider an arbitrary pair of cells (i, k) and (j, k) in the same column. If αi ≥ αj then βi ≥ βj ,
since the entries from λ are appended to the rows of β from largest row to smallest row. Therefore if (i, k)
is a cell in the diagram of β then T (j, k) < T (i, k) = T (i, k − 1) regardless of whether or not (j, k) is
in the diagram of β. If (i, k) is not in the diagram of β then (j, k) cannot be in the diagram of β since
βi ≥ βj . Therefore T (j, k) < T (i, k) since the smaller entry is placed into the shorter row, or the lower
row if the rows have equal length.

If αi < αj then βi ≤ βj . If T (i, k) ≤ T (j, k) then (i, k) is not in the diagram of β. If (j, k + 1) is
in the diagram of β then T (i, k) < T (j, k + 1) since the entries in the diagram of β are larger than the
appended entries. Otherwise the cell (j, k+1) is filled with a larger entry than (i, k) since the longer rows
are filled with larger entries and αj > αi. Therefore the entries in S(λ, β) satisfy (CT3).

To see that the reading word of such a filling satisfies (LR4), consider an entry i. We must show that
an arbitrary prefix of the reading word contains at least as many i’s as (i − 1)’s. Let ci be the rightmost
column of T containing the letter i and let ci−1 be the rightmost column of T containing the letter i− 1.
If ci > ci−1 then every prefix will contain at least as many i′s as (i − 1)’s since there will always be
at least one i appearing before any pairs i, i − 1 in reading order. If ci = ci−1, then the entry i will
appear in a higher row than the entry i − 1 and hence will be read first for each column containing both
an i and an i − 1. Therefore the reading word is a reverse lattice word and hence the filling constructed
above is indeed a Littlewood–Richardson composition tableau. The shape of this Littlewood–Richardson
composition tableau corresponds to the largest composition appearing as an index of a quasisymmetric
Schur polynomial in the expansion of sλSβ , so Sφ(λ,β) is indeed the leading term in this expansion. Since
φ is a bijection, the entries in Cn,d span QSymn,d and are linearly independent. Therefore Cn,d is a basis
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for QSymn,d and hence Bn is a basis for the Symn-module Rn. 2

The transition matrix between the basis C3,4 and the quasisymmetric Schur polynomial basis forQSym3,4

is given in Table 1. Note that this is an upper unitriangular matrix. In fact, this is true in general and there-
fore the algebra QSymn(Z) is a free module over Symn(Z). A basis is given by {sλSβ : β ∈ Πn, l(λ) ≤
n, and l(β) ≤ n}. Replacing Sβ by Mβ results in an alternative basis.

4 13 31 22 112 121 211

s4
s31

s1 · S21
s22
s211
S121
S211




1 · · · · · ·
· 1 1 · · · ·
· · 1 1 · · 1
· · · 1 · · ·
· · · · 1 · ·
· · · · · 1 ·
· · · · · · 1




TAB. 1: The transition matrix for n = 3, d = 4.

5 Corollaries and applications
5.1 Closing the Bergeron–Reuteuaner conjecture
In [8, Theorem 6.1], it was shown that the polynomials Mγ are related to the polynomials Sα as follows:

Sα =
∑

γ

Kα,γMγ , (5)

where Kα,γ counts the number of composition tableaux T of shape α and content γ.

Lemma 5 In the expansion Mα =
∑
γ K̃α,γ Sγ , if K̃α,γ 6= 0 then α � γ. Also, K̃α,α = 1.

Proof: Theorem 6.1 and Proposition 6.7 in [8] reveal that the transition matrix K = (Kα,γ) defined in
(5) is upper-unitriangular with respect to �. That is, α ≺ γ implies Kα,γ = 0 and Kα,α = 1. A closer
analysis shows that, moreover,Kα,γ = 0 when α 6= γ but λ(α) = λ(γ). The desired result for K̃ = K−1

follows readily from this fact. 2

We are ready to prove Conjecture (Q3). Let Bn and Rn be as in Section 4.

Corollary 6 The set {Mβ : β ∈ Bn} is a basis for the Symn-module Rn.

Proof: We show that the collection Mn,d = {sλMβ : |λ|+ |β| = d, l(λ) ≤ n, l(β) ≤ n, and β ∈ Bn} is
a basis for QSymn,d, which in turn implies that {Mβ : β ∈ Bn} is a basis for Rn. We first claim that the
leading term in the quasisymmetric Schur polynomial expansion of sλMβ is indexed by the composition
φ(λ, β). The corollary will easily follow.
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Applying Lemma 5, we may write sλMβ as

sλMβ = sλSβ +
∑

β�γ
K̃β,γ sλSγ .

Given any composition γ, the leading term of sλSγ is indexed by φ(λ, γ). This follows by the reasoning
used in the proof of Theorem 4. We prove the claim by showing that β � γ =⇒ φ(λ, β) � φ(λ, γ).

Assume first that λ(β) = λ(γ). Let i be the greatest integer such that βi > γi. The map φ adds λj
cells to βi and λk cells to γi, where λj ≥ λk. Therefore βi + λj > γi + λk. Since the parts of φ(λ, β)
and φ(λ, γ) are equal after part i, we have φ(λ, β) � φ(λ, γ).

Next assume that λ(β) � λ(γ). Consider the smallest i such that the ith largest part βj of β is not equal
to the ith largest part γk of γ. The map φ adds λi cells to βj and to γk, so that βj + λi > γk + λi. Since
the largest i− 1 parts of φ(λ, β) and φ(λ, γ) are equal, we have λ(φ(λ, β)) � λ(φ(λ, γ)).

We now use the claim to complete the proof. Following the proof of Theorem 4, we arrange the products
sλMβ as row vectors written in the basis of quasisymmetric Schur polynomials. The claim shows that the
corresponding matrix is upper-unitriangular. Thus Mn,d forms a basis for QSymn,d, as desired. 2

5.2 Triangularity
It was shown in Section 4 that the transition matrix between the bases C and {Sα} is triangular with
respect to the revlex ordering. Here, we show that a stronger condition holds: it is triangular with respect
to a natural partial ordering on compositions. Every composition α has a corresponding partition λ(α)
obtained by arranging the parts of α in weakly decreasing order. A partition λ is said to dominate a
partition µ iff

∑k
i=1 λi ≥

∑k
i=1 µi for all k. Let Cαλ,β be the coefficient of Sα in the expansion of the

product sλ Sβ .

Theorem 7 If λ(α) is not dominated by λ(φ(λ, β)), then Cαλ,β = 0.

Proof: Let (λ, β) be an arbitrary element of PBn,d and let α be an arbitrary element of Cn,d. Set γ :=
φ(λ, β). If α � γ then Cαλ,β = 0 (by the proof of Theorem 4) and we are done. Hence, assume that
α � φ(λ, β) = γ and that λ(α) is not dominated by λ(γ). Let k be the smallest positive integer such that∑k
i=1 λ(α)i >

∑k
i=1 λ(γ)i. (Such an integer exists since λ(α) is not dominated by λ(γ).) Therefore∑k

i=1 λ(α)i−
∑k
i=1 λ(β)i >

∑k
i=1 λ(γ)i−

∑k
i=1 λ(β)i and there are more entries in the longest k rows

of α/β then there are in the longest k rows of γ/β. This implies that there are more than
∑k
i=1 λi entries

from α/β contained in the longest k rows of α, since there are
∑k
i=1 λi entries in the longest k rows of

γ/β. This implies that in a Littlewood–Richardson composition tableau of shape α/β, the longest k rows
must contain an entry less than L− k + 1 where L = l(λ).

The rightmost entry in the ith longest row of α/β must be L − i + 1 for otherwise the filling would
not satisfy the reverse lattice condition. This means that the longest k rows of α must contain only entries
greater than or equal to L− i+1, which contradicts the assertion that an entry less than L−k+1 appears
among the k longest rows of α. Therefore there is no such Littlewood–Richardson composition tableau
of shape α and so Cαλ,β = 0. 2
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An Algebraic Analogue of a Formula of Knuth

Lionel Levine
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract. We generalize a theorem of Knuth relating the oriented spanning trees of a directed graphG and its directed
line graph LG. The sandpile group is an abelian group associated to a directed graph, whose order is the number of
oriented spanning trees rooted at a fixed vertex. In the case when G is regular of degree k, we show that the sandpile
group of G is isomorphic to the quotient of the sandpile group of LG by its k-torsion subgroup. As a corollary we
compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and
Kautz graphs.

Résumé. Nous généralisons un théorème de Knuth qui relie les arbres couvrants dirigés d’un graphe orienté G au
graphe adjoint orienté LG. On peut associer à tout graphe orienté un groupe abélien appelé groupe du tas de sable, et
dont l’ordre est le nombre d’arbres couvrants dirigés enracinés en un sommet fixé. Lorsque G est régulier de degré
k, nous montrons que le groupe du tas de sable de G est isomorphe au quotient du groupe du tas de sable de LG par
son sous-groupe de k-torsion. Comme corollaire, nous déterminons les groupes de tas de sable de deux familles de
graphes étudiées en informatique: les graphes de de Bruijn et les graphes de Kautz.

Keywords: critical group, de Bruijn graph, iterated line digraph, Kautz graph, matrix-tree theorem, oriented spanning
tree, weighted Laplacian

1 Introduction
In this extended abstract we discuss some new generalizations of an enumerative formula of Knuth [10].
Proofs omitted here due to space constraints can be found in [11].

Let G = (V,E) be a finite directed graph, which may have loops and multiple edges. Each edge e ∈ E
is directed from its source vertex s(e) to its target vertex t(e). The directed line graph LG = (E,E2) has
as vertices the edges of G, and as edges the set

E2 = {(e1, e2) ∈ E × E | s(e2) = t(e1)}.

For example, if G has just one vertex and n loops, then LG is the complete directed graph on n vertices.
If G has two vertices and no loops, then LG is a bidirected complete bipartite graph.

An oriented spanning tree of G is a subgraph containing all of the vertices of G, having no directed
cycles, in which one vertex, the root, has outdegree 0, and every other vertex has outdegree 1. The
number κ(G) of oriented spanning trees of G is sometimes called the complexity of G.

Our first result relates the numbers κ(LG) and κ(G). Let {xe}e∈E and {xv}v∈V be indeterminates,
and consider the polynomials

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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κedge(G,x) =
∑

T

∏

e∈T
xe

κvertex(G,x) =
∑

T

∏

e∈T
xt(e).

The sums are over all oriented spanning trees T of G.
Write

indeg(v) = #{e ∈ E | t(e) = v}

outdeg(v) = #{e ∈ E | s(e) = v}
for the indegree and outdegree of vertex v in G. We say that v is a source if indeg(v) = 0.

Theorem 1.1 Let G = (V,E) be a finite directed graph with no sources. Then

κvertex(LG,x) = κedge(G,x)
∏

v∈V


 ∑

s(e)=v

xe




indeg(v)−1

. (1)

Note that since the vertex set of LG coincides with the edge set of G, both sides of (1) are polynomials
in the same set of variables {xe}e∈E . Setting all xe = 1 yields the product formula

κ(LG) = κ(G)
∏

v∈V
outdeg(v)indeg(v)−1 (2)

due in a slightly different form to Knuth [10]. Special cases of (2) include Cayley’s formula nn−1 for the
number of rooted spanning trees of the complete graph Kn, as well as the formula (m + n)mn−1nm−1

for the number of rooted spanning trees of the complete bipartite graph Km,n. These are respectively the
cases that G has just one vertex with n loops, or G has just two vertices a and b with m edges directed
from a to b and n edges directed from b to a.

Suppose now that G is strongly connected, that is, for any v, w ∈ V there are directed paths in G
from v to w and from w to v. Then associated to any vertex v∗ of G is an abelian group K(G, v∗), the
sandpile group, whose order is the number of oriented spanning trees of G rooted at v∗. Its definition
and basic properties are reviewed in section 3. Other common names for this group are the critical group,
Picard group, Jacobian, and group of components. In the case when G is Eulerian (that is, indeg(v) =
outdeg(v) for all vertices v) the groups K(G, v∗) and K(G, v′∗) are isomorphic for any v∗, v′∗ ∈ V , and
we often denote the sandpile group just by K(G).

When G is Eulerian, we show that there is a natural map from the sandpile group of LG to the sandpile
group of G, descending from the Z-linear map

φ : ZE → ZV

which sends e 7→ t(e).
Let k be a positive integer. We say that G is balanced k-regular if indeg(v) = outdeg(v) = k for every

vertex v.
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Theorem 1.2 Let G = (V,E) be a strongly connected Eulerian directed graph, fix e∗ ∈ E and let
v∗ = t(e∗). The map φ descends to a surjective group homomorphism

φ̄ : K(LG, e∗)→ K(G, v∗).

Moreover, if G is balanced k-regular, then ker(φ̄) is the k-torsion subgroup of K(LG, e∗).

This result extends to directed graphs some of the recent work of Berget, Manion, Maxwell, Potechin
and Reiner [1] on undirected line graphs. If G = (V,E) is an undirected graph, the (undirected) line
graph line(G) of G has vertex set E and edge set

{{e, e′} | e, e′ ∈ E, e ∩ e′ 6= ∅}.

The results of [1] relate the sandpile groups of G and line(G). The undirected case is considerably more
subtle, because although there is still a natural map K(line G)→ K(G) when G is regular, this map may
fail to be surjective.

A particularly interesting family of directed line graphs are the de Bruijn graphs DBn, defined recur-
sively by

DBn = L(DBn−1), n ≥ 1,

where DB0 is the graph with just one vertex and two loops. The 2n vertices of DBn can be identified
with binary words b1 . . . bn of length n; two such sequences b and b′ are joined by a directed edge (b, b′)
if and only if b′i = bi+1 for all i = 1, . . . , n− 1.

Using Theorem 1.2, we obtain the full structure of the sandpile groups of the de Bruijn graphs.

Theorem 1.3

K(DBn) =

n−1⊕

j=1

(Z/2jZ)2
n−1−j

.

Closely related to the de Bruijn graphs are the Kautz graphs, defined by

Kautz1 = ({1, 2, 3}, {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)})

and
Kautzn = L(Kautzn−1), n ≥ 2.

The Kautz graphs are useful in network design because they have close to the maximum possible number
of vertices given their diameter and degree [7] and because they contain many short vertex-disjoint paths
between any pair of vertices [5]. The following result gives the sandpile group of Kautzn.

Theorem 1.4

K(Kautzn) = (Z/3Z)⊕ (Z/2n−1Z)2 ⊕
n−2⊕

j=1

(Z/2jZ)3·2
n−2−j

.

Bidkhori and Kishore [2] have recently generalized Theorems 1.3 and 1.4 to m-regular de Bruijn and
Kautz graphs.

The remainder of the paper is organized as follows. In section 2, we discuss some interesting variants
and special cases of Theorem 1.1. Section 3 begins by defining the sandpile group, and moves on from
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there to the proof of Theorem 1.2. In section 4 we enumerate spanning trees of iterated line digraphs.
Huaxiao, Fuji and Qiongxiang [9] prove that for a balanced k-regular directed graph G on N vertices,

κ(LnG) = κ(G)k(k
n−1)N .

Theorem 4.1 generalizes this formula to an arbitrary directed graph G having no sources. Section 4 also
contains the proofs of Theorems 1.3 and 1.4.

2 Spanning Trees
In this section we discuss a few variants and special cases of Theorem 1.1. We omit the proof due to space
constraints. See [11] for a proof using the matrix-tree theorem. Very recently, Bidkhori and Kishore [2]
have found a bijective proof, and used it to resolve a question of Stanley about de Bruijn sequences.

Theorem 1.1 enumerates all oriented spanning trees of LG, while in many applications one wants to
enumerate spanning trees with a fixed root. Given a vertex v∗ ∈ V , let

κedge(G, v∗,x) =
∑

root(T )=v∗

∏

e∈T
xe

and
κvertex(G, v∗,x) =

∑

root(T )=v∗

∏

e∈T
xt(e).

The following variant of Theorem 1.1 enumerates spanning trees of LG with a fixed root e∗ in terms of
spanning trees of G with root w∗ = s(e∗).

Theorem 2.1 Let G = (V,E) be a finite directed graph, and let e∗ = (w∗, v∗) be an edge of G. If
indeg(v) ≥ 1 for all vertices v ∈ V , and indeg(v∗) ≥ 2, then

κvertex(LG, e∗,x) = κedge(G,w∗,x)xe∗


 ∑

s(e)=v∗

xe




indeg(v∗)−2

×

×
∏

v 6=v∗


 ∑

s(e)=v

xe




indeg(v)−1

.

Setting all xe = 1 in Theorem 2.1 yields the enumeration

κ(LG, e∗) =
κ(G,w∗)

outdeg(v∗)
π(G) (3)

where κ(G,w∗) is the number of oriented spanning trees of G rooted at w∗, and

π(G) =
∏

v∈V
outdeg(v)indeg(v)−1.
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It is interesting to compare this formula to the theorem of Knuth [10], which in our notation reads

κ(LG, e∗) =


κ(G, v∗)−

1

outdeg(v∗)

∑

t(e)=v∗
e 6=e∗

κ(G, s(e))


π(G). (4)

To see directly why the right sides of (3) and (4) are equal, we define a unicycle to be a spanning subgraph
of G which contains a unique directed cycle, and in which every vertex has outdegree 1. If vertex v∗ is on
the unique cycle of a unicycle U , we say that U goes through v∗.

Lemma 2.2
κedge(G, v∗,x)

∑

s(e)=v∗

xe =
∑

t(e)=v∗

κedge(G, s(e),x)xe.

Proof: Removing e gives a bijection from unicycles containing a fixed edge e to spanning trees rooted
at s(e). If U is a unicycle through v∗, then the cycle of U contains a unique edge e with s(e) = v∗ and a
unique edge e′ with t(e′) = v∗, so both sides are equal to

∑

U

∏

e∈U
xe

where the sum is over all unicycles U through v∗. 2

Setting all xe = 1 in Lemma 2.2 yields

outdeg(v∗)κ(G, v∗) =
∑

t(e)=v∗

κ(G, s(e)).

Hence the factor appearing in front of π(G) in Knuth’s formula (4) is equal to κ(G,w∗)/outdeg(v∗).
We conclude this section by discussing some interesting examples and special cases of Theorem 1.1.

• Deletion and contraction. Fix e ∈ E and set xf = 1 for all f 6= e. The coefficient of x`e in
κvertex(LG,x) then counts the number of oriented spanning trees T of LG with indegT (e) = `. If
v = s(e) has indegree k and outdegree m, then this coefficient is given by

∏

w 6=v
outdeg(w)indeg(w)−1

((
k − 1
`

)
κ(G \ e)(m− 1)k−1−` +

+

(
k − 1
`− 1

)
κ(G/e)(m− 1)k−`

)
.

Here G \ e and G/e are respectively the graphs resulting from deleting and contracting the edge e.
(There is more than one sensible way to define contraction for directed graphs. By G/e we mean
the graph obtained from G by first deleting all edges f with s(f) = s(e), and then identifying the
vertices s(e) and t(e).)
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• Complete graph. TakingG to be the graph with one vertex and n loops, so that LG is the complete
directed graph ~Kn on n vertices, we obtain the classical formula

κvertex( ~Kn) = (x1 + . . .+ xn)n−1.

For a generalization to forests, see [15, Theorem 5.3.4]. Note that oriented spanning trees of ~Kn

are in bijection with rooted spanning trees of the complete undirected graph Kn, by forgetting
orientation.

• Complete bipartite graph. Taking G to have two vertices, a and b, with m edges directed from a
to b and n edges directed from b to a, we obtain

κvertex( ~Km,n) = (x1 + . . .+ xm)n−1(y1 + . . .+ yn)m−1 ·
· (x1 + . . .+ xm + y1 + . . .+ yn)

where ~Km,n = LG is the bidirected complete bipartite graph on m + n vertices. The variables
x1, . . . , xm correspond to vertices in the first part, and y1, . . . , yn correspond to vertices in the
second part. As with the complete graph, oriented spanning trees of ~Km,n are in bijection with
rooted spanning trees of the undirected complete bipartite graph Km,n by forgetting orientation.

• De Bruijn graphs. The spanning tree enumerators for the first few de Bruijn graphs are

κvertex(DB1) = x0 + x1;

κvertex(DB2) = (x00 + x01)(x10 + x11)(x01 + x10);

κvertex(DB3) = (x000 + x001)(x010 + x011)(x100 + x101)(x110 + x111)×
×
(
x011x110x100 + x010x110x100 + x110x101x001 + x110x100x001 +

+x100x001x011 + x101x001x011 + x001x010x110 + x001x011x110
)
.

3 Sandpile Groups
LetG = (V,E) be a strongly connected finite directed graph, loops and multiple edges allowed. Consider
the free abelian group ZV generated by the vertices of G; we think of its elements as formal linear
combinations of vertices with integer coefficients. For v ∈ V let

∆v =
∑

s(e)=v

(t(e)− v) ∈ ZV

where the sum is over all edges e ∈ E such that s(e) = v. Fixing a vertex v∗ ∈ V , let LV be the subgroup
of ZV generated by v∗ and {∆v}v 6=v∗ . The sandpile group K(G, v∗) is defined as the quotient group

K(G, v∗) = ZV /LV .
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The V ×V integer matrix whose column vectors are {∆v}v∈V is called the Laplacian ofG. Its principal
minor omitting the row and column corresponding to v∗ counts the number κ(G, v∗) of oriented spanning
trees of G rooted at v∗. (This is the matrix-tree theorem, [15, Theorem 5.6.4].) Since this minor is also
the index of LV in ZV , we have

#K(G, v∗) = κ(G, v∗).

Recall that G is Eulerian if indeg(v) = outdeg(v) for every vertex v. If G is Eulerian, then the groups
K(G, v∗) and K(G, v′∗) are isomorphic for any vertices v∗ and v′∗ [8, Lemma 4.12]. In this case we
usually denote the sandpile group just by K(G).

The sandpile group arose independently in several fields, including arithmetic geometry [12, 13], sta-
tistical physics [4] and algebraic combinatorics [3]. Often it is defined for an undirected graph G; to
translate this definition into the present setting of directed graphs, replace each undirected edge by a pair
of directed edges oriented in opposite directions. Sandpiles on directed graphs were first studied in [14].
For a survey of the basic properties of sandpile groups of directed graphs and their proofs, see [8].

The goal of this section is to relate the sandpile groups of an Eulerian graph G and its directed line
graph LG. To that end, let ZE be the free abelian group generated by the edges of G. For e ∈ E let

∆e =
∑

s(f)=t(e)

(f − e) ∈ ZE .

Fix an edge e∗ ∈ E, and let v∗ = t(e∗). Let LE ⊂ ZE be the subgroup generated by e∗ and {∆e}e 6=e∗ .
Then the sandpile group associated to LG and e∗ is

K(LG, e∗) = ZE/LE .

Note that LG may not be Eulerian even when G is Eulerian.

Lemma 3.1 Let φ : ZE → ZV be the Z-linear map sending e 7→ t(e). If G is Eulerian, then φ descends
to a surjective group homomorphism

φ̄ : K(LG, e∗)→ K(G, v∗).

Proof: To show that φ descends, it suffices to show that φ(LE) ⊂ LV . For any e ∈ E, we have

φ(∆e) =
∑

s(f)=t(e)

(t(f)− t(e)) = ∆t(e).

The right side lies in LV by definition if t(e) 6= v∗. Moreover, since G is Eulerian,

∑

v∈V
∆v =

∑

e∈E
(t(e)− s(e)) =

∑

v∈V
(indeg(v)− outdeg(v))v = 0,

so ∆v∗ = −∑v 6=v∗ ∆v also lies in LV . Finally, φ(e∗) = v∗ ∈ LV , and hence φ(LE) ⊂ LV .
SinceG is strongly connected, every vertex has at least one incoming edge, so φ is surjective, and hence

φ̄ is surjective. 2
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Let k be a positive integer. We say that G is balanced k-regular if indeg(v) = outdeg(v) = k for
every vertex v. Note that any balanced k-regular graph is Eulerian; and if G is balanced k-regular, then
its directed line graph LG is also balanced k-regular. In particular, this implies

∑

e∈E
∆e = 0

so that ∆e∗ ∈ LE .
Now consider the Z-linear map

ψ : ZV → ZE

sending v 7→∑
s(e)=v e. For a group Γ, write kΓ = {kg|g ∈ Γ}. The following lemma is proved in [11].

Lemma 3.2 If G is balanced k-regular, then ψ descends to a group isomorphism

ψ̄ : K(G)
'−→ kK(LG).

Proof of Theorem 1.2: If G is Eulerian, then φ descends to a surjective homomorphism of sandpile
groups by Lemma 3.1. If G is balanced k-regular, then ψ̄ is injective by Lemma 3.2, so

ker(φ̄) = ker(ψ̄ ◦ φ̄).

Moreover for any edge e ∈ E

(ψ ◦ φ)(e) =
∑

s(f)=t(e)

f = ke+ ∆e.

Hence ψ̄ ◦ φ̄ is multiplication by k, and ker(φ̄) is the k-torsion subgroup of K(LG).

4 Iterated Line Graphs
Let G = (V,E) be a finite directed graph, loops and multiple edges allowed. The iterated line digraph
LnG = (En, En+1) has as vertices the set

En = {(e1, . . . , en) ∈ En | s(ei+1) = t(ei), i = 1, . . . , n− 1}

of directed paths of n edges in G. The edge set of LnG is En+1, and the incidence is defined by

s(e1, . . . , en+1) = (e1, . . . , en);

t(e1, . . . , en+1) = (e2, . . . , en+1).

(We also set E0 = V , and L0G = G.) For example, the de Bruijn graph DBn is Ln(DB0), where DB0

is the graph with one vertex and two loops.
Our next result relates the number of spanning trees of G and LnG. Given a vertex v ∈ V , let

p(n, v) = #{(e1, . . . , en) ∈ En | t(en) = v}

be the number of directed paths of n edges in G ending at vertex v.
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Theorem 4.1 Let G = (V,E) be a finite directed graph with no sources. Then

κ(LnG) = κ(G)
∏

v∈V
outdeg(v)p(n,v)−1.

Proof: For any j ≥ 0, by Theorem 1.1 applied to LjG with all edge weights 1,

κ(Lj+1G)

κ(LjG)
=

∏

(e1,...,ej)∈Ej

outdeg(t(ej))
indeg(s(e1))−1

=
∏

v∈V
outdeg(v)p(j+1,v)−p(j,v).

Taking the product over j = 0, . . . , n− 1 yields the result. 2

When G is balanced k-regular, we have p(n, v) = kn for all vertices v, so we obtain as a special case
of Theorem 4.1 the result of Huaxiao, Fuji and Qiongxiang [9, Theorem 1]

κ(LnG) = κ(G)k(k
n−1)#V .

In particular, taking G = DB0 yields the classical formula

κ(DBn) = 22
n−1.

Since DBn is Eulerian, the number κ(DBn, v∗) of oriented spanning trees rooted at v∗ does not depend
on v∗, so

κ(DBn, v∗) = 2−nκ(DBn) = 22
n−n−1. (5)

This familiar number counts de Bruijn sequences of order n + 1 (Eulerian tours of DBn) up to cyclic
equivalence. De Bruijn sequences are in bijection with oriented spanning trees of DBn rooted at a fixed
vertex v∗; for more on the connection between spanning trees and Eulerian tours, see [6] and [15, section
5.6].

Perhaps less familiar is the situation when G is not regular. As an example, consider the graph

G = ({0, 1}, {(0, 0), (0, 1), (1, 0)}).

The vertices of its iterated line graph LnG are binary words of length n + 1 containing no two consecu-
tive 1’s. The number of such words is the Fibonacci number Fn+3, and the number of words ending in 0
is Fn+2. By Theorem 4.1, the number of oriented spanning trees of LnG is

κ(LnG) = 2 · 2p(n,0)−1 = 2Fn+2 .

Next we turn to the proofs of Theorems 1.3 and 1.4. If a and b are positive integers, we write Zab for
the group (Z/bZ)⊕ . . .⊕ (Z/bZ) with a summands.

Proof of Theorem 1.3: Induct on n. From (5) we have

#K(DBn) = 22
n−n−1
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hence
K(DBn) = Za12 ⊕ Za24 ⊕ Za38 ⊕ . . .⊕ Zam2m

for some nonnegative integers m and a1, . . . , am satisfying

m∑

j=1

jaj = 2n − n− 1. (6)

By Lemma 3.2 and the inductive hypothesis,

Za22 ⊕ Za34 ⊕ . . .⊕ Zam2m−1 ' 2K(DBn)

' K(DBn−1)

' Z2n−3

2 ⊕ Z2n−4

4 ⊕ . . .⊕ Z2n−2 .

hence m = n− 1 and
a2 = 2n−3, a3 = 2n−4, . . . , an−1 = 1.

Solving (6) for a1 now yields a1 = 2n−2.
For p prime, by carrying out the same argument on a general balanced p-regular directed graph G on N

vertices, we find that

K(LnG) ' K̃ ⊕
n−1⊕

j=1

(Zpj )p
n−1−j(p−1)2N ⊕ (Zpn)(p−1)N−r−1 ⊕

m⊕

j=1

(Zpn+j )aj

where
Sylowp(K(G)) = (Zp)a1 ⊕ . . .⊕ (Zpm)am ;

K̃ = K(G)/Sylowp(K(G));

r = a1 + . . .+ am.

In particular, taking G = Kautz1 with p = 2, we have K(G) = K̃ = Z3, and we arrive at Theorem 1.4.

5 Concluding Remark
Theorem 1.2 describes a map from the sandpile group K(LG, e∗) to the group K(G, v∗) when G is
an Eulerian directed graph and e∗ = (w∗, v∗) is an edge of G. There is also a suggestive numerical
relationship between the orders of the sandpile groupsK(LG, e∗) andK(G,w∗), which holds even when
G is not Eulerian: by equation (3) we have

κ(G,w∗) |κ(LG, e∗)

whenever G satisfies the hypothesis of Theorem 2.1. This observation leads us to ask whether K(G,w∗)
can be expressed as a subgroup or quotient group of K(LG, e∗).
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Abstract. We give bijective proofs of pattern-avoidance results for a class of permutations generalizing alternating
permutations. The bijections employed include a modified form of the RSK insertion algorithm and recursive bijec-
tions based on generating trees. As special cases, we show that the sets A2n(1234) and A2n(2143) are in bijection
with standard Young tableaux of shape 〈3n〉.
Alternating permutations may be viewed as the reading words of standard Young tableaux of a certain skew shape. In
the last section of the paper, we study pattern avoidance in the reading words of standard Young tableaux of any skew
shape. We show bijectively that the number of standard Young tableaux of shape λ/µ whose reading words avoid
213 is a natural µ-analogue of the Catalan numbers. Similar results for the patterns 132, 231 and 312.

Résumé. Nous présentons des preuves bijectives de résultats pour une classe de permutations à motifs exclus qui
généralisent les permutations alternantes. Les bijections utilisées reposent sur une modification de l’algorithme
d’insertion “RSK” et des bijections récursives basées sur des arbres de génération. Comme cas particuliers, nous
montrons que les ensembles A2n(1234) et A2n(2143) sont en bijection avec les tableaux standards de Young de la
forme 〈3n〉.
Une permutation alternante peut être considérée comme le mot de lecture de certain skew tableau. Dans la dernière
section de l’article, nous étudions l’évitement des motifs dans les mots de lecture de skew tableaux genéraux. Nous
montrons bijectivement que le nombre de tableaux standards de forme λ/µ dont les mots de lecture évitent 213 est
un µ-analogue naturel des nombres de Catalan. Des résultats analogues sont valables pour les motifs 132, 231 et 312.

Resumen. Presentamos pruebas biyectivas de resultados de “evasión de patrones” para una clase de permutaciones
que generalizan permutaciones alternantes. Las biyecciónes utilizadas incluyen una modificación del algoritmo de
inserción de RSK y una biyección recursiva basada en árboles generatrices. Mostramos, como casos especiales, que
los conjuntos A2n(1234) y A2n(2143) están en biyección con los tableaux de Young estándares de forma 〈3n〉.
Las permutaciones alternantes pueden ser entendidas como palabras de lectura de tableaux de Young estándares de
cierta forma sezgada. En la ultima sección del articulo, expandimos nuestro estudio al considerar evasión de patrones
en las palabras de lectura de tableaux de Young estándares de cualquier forma sezgada. Mostramos biyectivamente
que el número de tableaux de Young estándares de forma λ/µ cuyas palabras de lectura evitan 213 es un µ-anólogo
de los números de Catalán y resultados similares para los patrones 132, 231 y 312.
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1 Introduction
A classical problem asks for the number of permutations that avoid a certain permutation pattern. This
problem has received a great deal of attention (see e.g., [12, 3]) and has led to a number of interesting
variations including the enumeration of special classes of pattern-avoiding permutations (e.g., involutions
[12] and derangements [9]). One such variation, first studied by Mansour in [8], is the enumeration
of alternating permutations avoiding a given pattern or collection of patterns. Alternating permutations
have the intriguing property [8, 15, 4] that for any pattern of length three, the number of alternating
permutations of a given length avoiding that pattern is given by a Catalan number. This property is doubly
interesting because it is shared by the class of all permutations. This coincidence suggests that pattern
avoidance in alternating permutations and in usual permutations may be closely related and so motivates
the study of pattern avoidance in alternating permutations.

In this paper, we extend the study of pattern avoidance in alternating permutations to patterns of length
four. In particular, we show that the number of alternating permutations of length 2n avoiding either
of the patterns 1234 or 2143 is 2·(3n)!

n!(n+1)!(n+2)! . This is the first enumeration of a set of pattern-avoiding
alternating permutations for a single pattern of length four. In the case of 1234, we give a direct bijective
proof using a variation of RSK, while in the case of 2143 we give a recursive generating tree bijection.

Most of our bijections work in a more general setting in which we replace alternating permutations
with the set Ln,k of reading words of standard Young tableaux of certain nice skew shapes. (These
permutations are enumerated with no pattern restriction in [1].) Inspired by the idea of permutations as
reading words of tableaux, we give an enumeration of standard skew Young tableaux of any fixed shape
whose reading words avoid certain patterns. In particular, this provides a uniform argument to enumerate
permutations in Sn and permutations in Ln,k that avoid either 132 or 213. That such a bijection should
exist is far from obvious, and it raises the possibility that there is substantially more to be said in this area.
In the remainder of this introduction, we provide a more detailed summary of results.

Both the set of all permutations of a given length and the set of alternating permutations of a given
length can be expressed as the set of reading words of the standard Young tableaux of a particular skew
shape (essentially a difference of two staircases). We define a class Ln,k ⊆ Snk of permutations such that
Ln,1 = Sn is the set of all permutations of length n, Ln,2 is the set of alternating permutations of length
2n, and for each k Ln,k is the set of reading words of the standard Young tableaux of a certain skew shape.
In Section 2, we provide definitions of all the most important objects in this paper. In Sections 3 and 4,
we use bijective proofs to derive enumerative pattern avoidance results for Ln,k. In Section 3 we give
a simple bijection between elements of Ln,k with no (k + 1)-term increasing subsequence and standard
Young tableaux of rectangular shape 〈kn〉. In Section 4 we exhibit two bijections between the elements
of Ln,k with no (k + 2)-term increasing subsequence and standard Young tableaux of rectangular shape
〈(k + 1)n〉, one of which is a modified version of the famous RSK bijection and the other of which is a
generating tree approach that also yields an enumeration of alternating permutations avoiding 2143.

In Section 5, we broaden our study to arbitrary skew shapes and so initiate the study of pattern avoidance
in reading words of skew tableaux of any shape. In Section 5.1, we show bijectively that the number of
tableaux of shape λ/µ (under a technical restriction on the possible shapes that sacrifices no generality –
see Note 2) whose reading words avoid 213 can be easily computed from the shape. Notably, the resulting
value does not depend on λ and is in fact a natural µ-generalization of the Catalan numbers. Replacing
213 with 132, 231 or 312 leads to similar results.

For a complete version of this extended abstract, see [6] and [5].
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2 Definitions
A permutationw of length n is a word containing each of the elements of [n] = {1, 2, . . . , n} exactly once.
The set of permutations of length n is denoted Sn. Given a word w = w1w2 · · ·wn and a permutation
p = p1 · · · pk ∈ Sk, we say that w contains the pattern p if there exists a set of indices 1 ≤ i1 < i2 <
. . . < ik ≤ n such that the subsequence wi1wi2 · · ·wik of w is order-isomorphic to p, i.e., wi` < wim if
and only if p` < pm. Otherwise, w is said to avoid p. Given a pattern p and a set S of permutations, we
denote by S(p) the set of elements of S that avoid p. For example, Sn(123) is the set of permutations of
length n avoiding the pattern 123, i.e., the set of permutations with no three-term increasing subsequence.

A permutation w = w1w2 · · ·wn is alternating if w1 < w2 > w3 < w4 > . . .. (Note that in the
terminology of [13], these “up-down” permutations are reverse alternating while alternating permutations
are “down-up” permutations. Luckily, this convention doesn’t matter: any pattern result on either set can
be translated into a result on the other via complementation, i.e., by considering wc such that wci =
n+ 1− wi. Then results for the pattern 123 would be replaced by results for 321 and so on.) We denote
by An the set of alternating permutations of length n.

For n, k ≥ 1, let Ln,k be the set of permutations w = w1,1w1,2 · · ·w1,kw2,1 · · ·wn,k in Snk that satisfy
the conditions

L1. wi,j < wi,j+1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1, and

L2. wi,j+1 > wi+1,j for all 1 ≤ i ≤ n− 1, 1 ≤ j ≤ k − 1.

Note in particular that Ln,1 = Sn (we have no restrictions in this case) and Ln,2 = A2n. For any k and n,
Ln,k(12 · · · k) = 0. Thus, for monotone pattern-avoidance in Ln,k we should consider patterns of length
k + 1 or longer. The set Ln,k has been enumerated by Baryshnikov and Romik [1], and the formulas that
result are quite simple for small values of k.

Note 1 Ifw = w1,1 · · ·wn,k ∈ Snk satisfies L1 and also avoids 12 · · · (k+1)(k+2) then it automatically
satisfies L2, since a violation wi,j+1 < wi+1,j of L2 leads immediately to a (k + 2)-term increasing
subsequence wi,1 < . . . < wi,j+1 < wi+1,j < . . . < wi+1,k. In particular, we can also describe
Ln,k(1 · · · (k + 2)) (respectively, Ln,k(1 · · · (k + 1))) as the set of permutations in Snk(1 · · · (k + 2))
(respectively, Snk(1 · · · (k + 1))) whose descent set is (or in fact, is contained in) {k, 2k, . . . , (n− 1)k}.

A partition is a weakly decreasing, finite sequence of nonnegative integers. We consider two partitions
that differ only in the number of trailing zeroes to be the same. We write partitions in sequence notation,
as 〈λ1, λ2, . . . , λn〉, or to save space, with exponential notation instead of repetition of equal elements.
Thus, the partition 〈5, 5, 3, 3, 2, 1〉 may be abbreviated 〈52, 32, 2, 1〉. If the sum of the entries of λ is equal
to m then we write λ ` m.

Given a partition λ = 〈λ1, λ2, . . .〉, the Young diagram of shape λ is the left-justified array of λ1 +
. . . + λn boxes with λ1 in the first row, λ2 in the second row, and so on. We will identify each partition
with its Young diagram and speak of them interchangeably. A skew Young diagram λ/µ is the diagram
that results when we remove the boxes of µ from those of λ, when both are arranged so that their first
rows and first columns coincide. If λ/µ is a skew Young diagram with n boxes, a standard Young tableau
of shape λ/µ is a filling of the boxes of λ/µ with [n] so that each element appears in exactly one box,
and entries increase along rows and columns. We identify boxes in a (skew) Young diagram using matrix
coordinates, so the box in the first row and second column is numbered (1, 2). We denote by sh(T ) the
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Fig. 1: A standard skew Young tableau (in English notation, i.e., with the first row on top) whose reading word is the
permutation 7 10 14 8 13 15 4 11 12 1 5 9 2 3 6 ∈ L5,3.

shape of the standard Young tableau T , by SYT(λ) the set of standard Young tableaux of shape λ and by
fλ = |SYT(λ)| the size of this set.

Given a standard Young tableau T , the reading word of T is the permutation that consists of the entries
of the last row read from left to right, then the next-to-last row, and so on. For example, the reading
words of the tableaux of shape 〈n, n − 1, . . . , 2, 1〉/〈n − 1, n − 2, . . . , 1〉 are all of Sn, and similarly
Ln,k is equal to the set of reading words of standard skew Young tableaux of shape 〈n+ k − 1, n+ k −
2, . . . , k〉/〈n − 1, n − 2, . . . , 1〉, as illustrated in Figure 1. The other “usual” reading order, from right
to left then top to bottom in English notation, is simply the reverse of our reading order. Consequently,
any pattern-avoidance result in our case carries over to the other reading order by taking the reverse of all
permutations and patterns involved, i.e., by replacing w = w1 . . . wn with wr = wn · · ·w1.

We make note of two operations on Young diagrams and tableaux. Given a partition λ, the conjugate
partition λ′ is defined so that the ith row of λ′ has the same length as the ith column of λ for all i.
Similarly, the conjugate of a skew Young diagram λ/µ is defined by (λ/µ)′ = λ′/µ′. Given a standard
skew Young tableau T of shape λ/µ, the conjugate tableau T ′ of shape (λ/µ)′ is defined to have the entry
a in box (i, j) if and only if T has the entry a in box (j, i). Geometrically, all these operations can be
described as “reflection through the main diagonal.” Given a skew Young diagram λ/µ, rotation by 180◦

gives a new diagram (λ/µ)∗. Given a tableaux T with n boxes, we can form T ∗, the rotated-complement
of T , by rotating T by 180◦ and replacing the entry i with n+ 1− i for each i. Observe that the reading
word of T ∗ is exactly the reverse-complement of the reading word of T .

The Schensted insertion algorithm, or equivalently the RSK correspondence, is an extremely powerful
tool relating permutations to pairs of standard Young tableaux. For a description of the bijection and a
proof of its correctness and some of its properties, we refer the reader to [14, Chapter 7]. Our use of
notation follows that source, so in particular we denote by T ← i the tableau that results when we (row-)
insert i into the tableau T . Particular properties of RSK will be quoted as needed.

3 The pattern 12 · · · (k + 1)

In this section we give the simplest of the bijections in this paper.

Proposition 3.1 There is a bijection between Ln,k(12 · · · (k+1)) and the set of standard Young tableaux
of shape 〈kn〉.
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We have f 〈n〉 = f 〈1
n〉 = 1 and f 〈n,n〉 = f 〈2

n〉 = 1
n+1

(
2n
n

)
= Cn, the nth Catalan number. By the

hook-length formula [14, 11] we have

f 〈k
n〉 =

(kn)! · 1! · 2! · · · (k − 1)!

n! · (n+ 1)! · · · (n+ k − 1)!
.

So Proposition 3.1 says |Ln,k(1 · · · (k+1))| = f 〈k
n〉. For k = 1, this is the uninspiring result |Sn(12)| =

1. For k = 2, it tells us |A2n(123)| = Cn, a result that Stanley [15] attributes to Deutsch and Reifegerste.

Proof idea: The bijection is to identify the permutation w = w1,1 · · ·wn,k ∈ Ln,k(12 · · · k(k + 1)) with
the tableau T ∈ SYT(〈kn〉) given by Ti,j = wn+1−i,j . It is not difficult to verify that the conditions on
w correspond precisely to the conditions that T be a standard Young tableau and vice-versa. 2

Both directions of this bijection are more commonly seen with other names. The map that sends
w 7→ T is actually the Schensted insertion algorithm used in the RSK correspondence. (For any w ∈
Ln,k(1 · · · (k + 1)), the recording tableau is the tableau whose first row contains the {1, . . . , k}, second
row contains {k+ 1, . . . , 2k}, and so on.) The map that sends T 7→ w is the reading-word map as defined
in Section 2.

4 The pattern 12 · · · (k + 2)
There are several nice proofs of the equality |Sn(123)| = Cn including a clever application of the RSK
algorithm [14, Problem 6.19(ee)]. In this section, we give two bijective proofs of the following general-
ization of this result:

Theorem 4.1 There is a bijection between Ln,k(12 · · · (k + 2)) and the set of standard Young tableaux
of shape 〈(k + 1)n〉 and so

|Ln,k(12 · · · (k + 2))| = f 〈(k+1)n〉.

For k = 1 this is a rederivation of the equality |Sn(123)| = Cn while for k = 2 it implies

Corollary 4.2 We have |A2n(1234)| = f 〈3
n〉 =

2(3n)!

n!(n+ 1)!(n+ 2)!
for all n ≥ 0.

We believe this to be the first computation of any expression of the form A2n(π) or A2n+1(π) for
π ∈ S4. One can derive the complementary result for |A2n+1(1234)| using similar methods.

The first of our two bijections makes use of a modification of Schensted insertion, and the key idea for
the modification appears in [10] (in the context of doubly-alternating permutations). The second bijection
makes use of generating trees; its proof involves a number of technical results that we omit in this extended
abstract.

4.1 A bijection using a modified version of RSK
In this section, we prove Theorem 4.1 using a modification of the RSK insertion algorithm. Recall that the
RSK is a bijection between Sn and pairs (P,Q) of standard Young tableaux such that sh(P ) = sh(Q) ` n
with the following properties:

Theorem 4.3 ([14, 7.11.2(b)]) If P is a standard Young tableau and j < k then the insertion path of j
in P ← j lies strictly to the left of the insertion path of k in (P ← j) ← k, and the latter insertion path
does not extend below the former.



Pattern avoidance in alternating permutations and tableaux (extended abstract) 273

1 5 7

3 8

4

3

4

5

8

4 8

1 3

2

1

2

1 2 6

753

4 8

1 3 4

2

1

→∅ →→→ = P

= R→→∅ → →

Fig. 2: An application of our modified version of RSK to the permutation 48351726 ∈ L4,2(1234). Note that only
every other insertion step is shown in the construction of P .

Theorem 4.4 ([14, 7.23.11]) If w ∈ Sn and w RSK−→ (P,Q) with sh(P ) = sh(Q) = λ, then λ1 is the
length of the longest increasing subsequence in w.

Now we describe a bijection from Ln,k(12 · · · (k + 2)) to pairs (P,R) of standard Young tableau such
that P has nk boxes, R has n boxes, and the shape of R can be rotated 180◦ and joined to the shape of P
to form a rectangle of shape 〈(k + 1)n〉. (In other words, sh(P )′i + sh(R)′k+2−i = n for 1 ≤ i ≤ k + 1.)
Observe that the set of such pairs of tableaux is in natural bijection with the set of standard Young tableaux
of shape 〈(k + 1)n〉: given a tableau of shape 〈(k + 1)n〉, break off the portion of the tableau filled with
nk + 1, . . . , n(k + 1), rotate it 180◦ and replace each value i that appears in it with nk + n+ 1− i.

Given a permutation w = w1,1w1,2 · · ·w1,kw2,1 · · ·wn,k, let P0 = ∅ and for 1 ≤ i ≤ n let Pi =
(· · · ((Pi−1 ← wi,1) ← wi,2) · · · ) ← wi,k. Define P = Pn, so P is the usual RSK insertion tableau
for w. Define R as follows: set R0 = ∅ and λi = sh(Pi). Observe that by Theorem 4.3, λi/λi−1 is a
horizontal strip of size k and that by Theorem 4.4, λi/λi−1 stretches no further right than the (k + 1)th
column. Thus there is a unique j such that λi/λi−1 has boxes in the `th column for all ` ∈ [k + 1] \ {j}.
Let Ri be the shape that arises from Ri−1 by adding a box filled with i in the (k + 2− j)th column, and
define R = Rn. This map is illustrated in Figure 2.

Proposition 4.5 The algorithm just described is a bijection betweenLn,k(12 · · · (k+2)) and pairs (P,R)
of standard Young tableaux such that P has nk boxes,R has n boxes, and sh(R) can be rotated and joined
to sh(P ) to form a rectangle of shape 〈(k + 1)n〉.

Proof: By construction, P is a standard Young tableau with nk boxes and R is a shape with n boxes
filled with [n] such that we may rotate R by 180◦ and join it to P in order to get a rectangle of shape
〈(k + 1)n〉. Moreover, we have from standard properties of RSK that each Pi is of partition shape and by
construction that the corresponding Ri may be rotated 180◦ and joined to Pi to form a rectangle, so each
of the Ri (including R itself) is a partition shape. Finally, the unique box in Ri but not in Ri−1 is filled
with i, which is larger than the entry in any box in Ri−1, so R is a standard Young tableau.

We have left to show that this process is a bijection, i.e., we need that this map is invertible and that
its inverse takes pairs of tableaux of the given sort to permutations with the appropriate restrictions. In-
vertibility is straightforward, since from a pair (P,R) of standard Young tableaux of appropriate shapes
we can construct a pair of standard Young tableaux (P,Q) of the same shape such that w 7→ (P,R)

under our algorithm exactly when w RSK−→ (P,Q): if R has entry i in column k + 2 − j, place the entries
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ki− k + 1, ki− k + 2, . . . , ki respectively into columns 1, . . . , j − 1, j + 1, . . . , k + 1 of Q. Moreover,
by Theorem 4.3 we have that the preimage under RSK of this pair (P,Q) must consist of n runs of k
elements each in increasing order, i.e., it must satisfy L1, and by Theorem 4.4 it must have no increasing
subsequence of length k + 2. Then by the remarks in Section 2 following the definition of Ln,k we have
that the preimage satisfies L2 as well. This completes the proof. 2

4.2 A second approach using generating trees

Given a sequence {Σn}n≥1 of nonempty sets with |Σ1| = 1, a generating tree for this sequence is a
rooted, labeled tree such that the vertices at level n are the elements of Σn and the label of each vertex
determines the multiset of labels of its children. In other words, a generating tree is one particular type of
recursive structure in which heredity is determined by some local data. We are particularly interested in
generating trees for which the labels are (much) simpler than the objects they are labeling. In this case, we
may easily describe a generating tree by giving the label L1 of the root vertex (the element of Σ1) and the
succession rule L 7→ S that gives the set S of labels of the children in terms of the label L of the parent.
Generating trees have proven to be an effective tool for finding bijections between different classes of
pattern-avoiding permutations (see, e.g., [16, 2]). In this section, we describe how generating trees can be
used to give a second proof of Theorem 4.1 and to enumerate 2143-avoiding alternating permutations.

4.2.1 A tree for Ln,k

There is a natural generating tree structure on
⋃
n≥1 Ln,k: given a permutation v ∈ Ln,k, its children

are precisely the permutations w ∈ Ln+1,k such that the prefix of w of length nk is order-isomorphic to
v. Since pattern containment is transitive, the subset

⋃
n≥1 Ln,k(p) of these permutations that avoid the

pattern (or set of patterns) p is the set of vertices of a connected subtree. We now consider this restricted
tree for the pattern p = 12 · · · (k + 2).

Given a permutation w = w1w2 · · ·wnk ∈ Ln,k(1 · · · (k + 2)), we associate a label (a2, . . . , ak+1),
where aj is the smallest entry of w that is the largest entry in a j-term increasing subsequence, or nk + 1
if there is no such entry. (Note that aj could equivalently be defined as the last-occurring entry of w that
is the largest term in a j-term increasing subsequence of w but is not the largest term in a (j + 1)-term
increasing subsequence.) Thus, for example, the unique permutation 12 · · · k ∈ L1,k(1 · · · (k + 2)) has
label (2, . . . , k + 1), while the permutation 136245 ∈ L2,3(12345) has label (2, 4, 5).

Some relations among label entries are straightforward. For example, observe that if (a2, . . . , ak+1) is
the label of any permutation u ∈ Ln,k(1 · · · (k+ 2)) then 2 ≤ a2 < . . . < ak+1 ≤ nk+ 1. The following
result (whose proof, which consists of many technical details and little insight, is omitted) characterizes
the labels of children based on the labels of a parent.

Proposition 4.6 Suppose that u ∈ Ln,k(12 · · · (k + 2)) has label (a2, . . . , ak+1). Then for any k-tuple
(b2, . . . , bk+1) such that

2 ≤ b2 < b3 < . . . < bk+1 ≤ (n+ 1)k + 1 and bj ≤ aj + j − 1 for all j,

there is a unique child w ∈ Ln+1,k(12 · · · (k + 2)) of u with label (b2, . . . , bk+1), and u has no other
children.
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4.2.2 A tree for Young tableaux
There is a natural generating tree on the set

⋃
n≥1 SYT(〈(k+1)n〉) of rectangular standard Young tableaux

with k + 1 columns: let a tableau T be the child of a tableau S if S is order-isomorphic to T with its first
row removed.

Given a tableau S ∈ SYT(〈(k + 1)n〉) with first row (1, s2, s3, . . . , sk+1), assign to it the label
(s2, . . . , sk+1). Thus, for example, that the unique tableau in SYT(〈k + 1〉) has label (2, 3, . . . , k + 1),
while the tableau

1 2 4 5
3 6 7 8

∈ SYT(〈4, 4〉)

has label (2, 4, 5). It’s easy to see that if (s2, . . . , sk+1) is the label of a tableau T ∈ SYT(〈(k + 1)n〉)
then 2 ≤ s2 < s3 < . . . < sk+1 ≤ n(k + 1)− (n− 1) = nk + 1. Without too much effort, one can also
show the following result:

Proposition 4.7 Suppose that S ∈ SYT(〈(k + 1)n〉) has label (s2, . . . , sk+1). Then for any k-tuple
(t2, . . . , tk+1) such that

2 ≤ t2 < t3 < . . . < tk+1 ≤ (n+ 1)k + 1 and tj ≤ sj + j − 1 for all j,

there is a unique child T ∈ SYT(〈(k + 1)n+1〉) of S with label (t2, . . . , tk+1), and S has no other
children.

Theorem 4.1 follows immediately from Propositions 4.6 and 4.7.

4.2.3 A tree for 2143-avoiding alternating permutations
If, as in [5], we restrict our focus to alternating permutations (i.e., to A2n = Ln,2), brute-force computa-
tions suggest that there may be several patterns p ∈ S4 such that |A2n(p)| = |A2n(1234)| for all n. In
this section we use generating trees to show that 2143 is one such pattern.

Given any permutation w ∈ Sn and any c ∈ [n + 1], denote by w ◦ c the unique permutation in
Sn+1 whose last entry is c and whose first n entries are order-isomorphic to w. If w = w1w2 · · ·w2n ∈
A2n(2143), say that a value c ∈ [2n + 1] is active for w if w ◦ c avoids 2143. To each w ∈ A2n(2143),
assign the label (a, b) where a = w2n−1 + 1 and b is equal to the number of values in [n + 1] that are
active for w. The following result shows that with this labeling, the generating tree for

⋃
n≥1A2n(2143)

obeys a simple succession rule.

Proposition 4.8 Suppose that u ∈ A2n(2143) has label (a, b). Then for any ordered pair (x, y) such that

2 ≤ x ≤ a+ 1 and x < y ≤ b+ 2,

there is a unique child w ∈ A2n+2(2143) with label (x, y), and u has no other children.

One can easily verify that these conditions are equivalent to those of Propositions 4.6 and 4.7 in the
case k = 2. Therefore, we may conclude with the following result.

Theorem 4.9 For all n ≥ 1 we have

|A2n(1234)| = |A2n(2143)| = 2 · (3n)!

n! · (n+ 1)! · (n+ 2)!
.
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⇐⇒

Fig. 3: Moving separated components gives a new shape but leaves the set of reading words of tableaux unchanged.

5 Pattern avoidance in reading words of tableaux of skew shapes
So far, we have considered permutations that arise as the reading words of standard skew Young tableaux
of particular nice shapes. In this section, we expand our study to include pattern avoidance in the reading
words of standard Young tableaux of any skew shape. As is the case for pattern avoidance in other settings,
it is relatively simple to handle the case of small patterns (in our case, patterns of length three or less), but
it appears to be quite difficult to prove exact results for larger patterns.

As we have seen, this new type of pattern avoidance encompasses pattern avoidance for the set of all
permutations via the shape 〈n, n − 1 . . . , 1〉/〈n − 1, n − 2, . . . , 1〉, for alternating permutations via the
shape 〈n + 1, n, . . . , 2〉/〈n − 1, n − 2, . . . , 1〉 and three other similar shapes, and for Ln,k for any k via
the shape illustrated in Figure 1; it also incorporates other natural problems such as the enumeration of
pattern-avoiding permutations with prescribed descent set (when the skew shape is a ribbon). Thus, on
one hand the strength of our results is constrained by what is tractable to prove in these circumstances,
while on the other hand any result we are able to prove in this context applies quite broadly.

Note 2 We make the following general assumption on our Young diagrams: we will only ever be in-
terested in diagrams λ/µ such that the inner (north-west) boundary of λ/µ contains the entire outer
(south-east) boundary of µ. For example, the shape 〈4, 2, 1〉/〈2, 1〉 meets this condition, while the shape
〈5, 2, 2, 1〉/〈3, 2, 1〉 does not.

Observe that imposing this restriction does not affect the universe of possible enumerative results: for
a shape λ/µ failing this condition we can find a new shape λ′/µ′ that passes it and has an identical set
of reading words by moving the various disconnected components of λ/µ on the plane. For example,
for λ/µ = 〈5, 2, 2, 1〉/〈3, 2, 1〉 we have λ′/µ′ = 〈4, 2, 1〉/〈2, 1〉 – just slide disconnected sections of the
tableau together until they share a corner. This example is illustrated in Figure 3.

5.1 The patterns 213 and 132

The equality |Sn(213)| = |Sn(132)| = Cn is a simple recursive result. In [8] it was shown that
|A2n(132)| = |A2n+1(132)| = Cn (and so by reverse-complementation also |A2n(213)| = Cn), and
a bijective proof of this fact with implications for multiple-pattern avoidance was given in [7]. Here we
extend this result to the reading words of tableaux of any fixed shape.

Theorem 5.1 The number of tableaux of skew shape λ/µ whose reading words avoid the pattern 213 is
equal to the number of partitions whose Young diagram is contained in that of µ (subject to Note 2).

Note that this is a natural µ-generalization of the Catalan numbers: the outer boundaries of shapes
contained in 〈n−1, n−2, . . . , 1〉 are essentially Dyck paths of length 2nmissing their first and last steps.
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Fig. 4: Our bijection applied to the pair (〈3, 2〉/〈2〉, 〈1〉) to generate a standard Young tableau.
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Fig. 5: A partial example: an application of our bijection to generate a standard Young tableau from the pair
(〈9, 9, 8, 4, 4, 3, 2〉/〈7, 7, 4, 3, 2, 2〉, 〈6, 5, 3, 3, 1〉).

Proof idea: We begin with a warm-up and demonstrate the claim in the case that µ is empty. In this case,
the Proposition states that there is a unique standard Young tableau of a given shape λ = 〈λ1, λ2, . . .〉
whose reading word avoids the pattern 213. In order to show this, we note that the reading word of every
straight (i.e., non-skew) tableau ends with an increasing run of length λ1 and that the first entry of this
run is 1. Since the reading word is 213-avoiding, each entry following the 1 must be smaller than every
entry preceding the 1 and so this run consists of the values from 1 to λ1. Applying the same argument to
the remainder of the tableau (now with the minimal element λ1 + 1), we see that the only possible filling
is the one we get by filling the first row of the tableau with the smallest possible entries, then the second
row with the smallest remaining entries, and so on. On the other hand, the reading word of the tableau
just described is easily seen to be 213-avoiding, so we have our result in this case.

For the general case we give a recursive bijection. We recommend that the reader consult Figures 4
and 5 to most easily understand what follows.

Suppose we have a tableau T of shape λ/µwith entry 1 in position (i, j), an inner corner. Divide T into
two pieces, one consisting of rows 1 through i with the box (i, j) removed, the other consisting of rows
numbered i+1, i+2, etc. Let T1 be the tableau order-isomorphic to the first part and let T2 be the tableau
order-isomorphic to the second part. Let ν = 〈ν1, . . . , νi〉 be the result of applying this construction
recursively to T1 and let ι = 〈ι1, ι2, . . .〉 be the result of applying this construction recursively to T2.
Then the partition τ associated to T is given by τ = 〈ν1 + j, . . . , νi + j, ι1, ι2, . . .〉. That is, τ consists of
all boxes (k, l) with k < i and l ≤ j together with the result of applying our process to the right of this
rectangle and the result of applying it below the rectangle, with the latter piece shifted up one row. By
construction, τ is partition whose Young diagram fits inside µ.

To invert this process, start with a pair (λ/µ, τ) of a skew and a non-skew shape such that τ fits
inside µ. Let i be the largest index such that τi−1 > µi, or let i = 1 if no such index exists. We
divide τ and λ/µ into two pieces. For τ , we first remove the rectangle of shape 〈(µi + 1)i−1〉, leaving
a partition to the right of the rectangle of shape ν1 = 〈τ1 − µi − 1, τ2 − µi − 1, . . . , τi−1 − µi − 1〉
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and a second partition below the rectangle of shape ν2 = 〈τi, τi+1, . . .〉. For λ/µ, we begin by filling
the box (i, µi + 1) with the entry 1. Then we take the boxes to the right of this entry as one skew shape
α1/β1 = 〈λ1−µi− 1, λ2−µi− 1, . . . , λi−µi− 1〉/〈µ1−µi− 1, µ2−µi− 1, . . . , µi−1−µi− 1〉 and
the boxes below it as our second skew shape α2/β2 = 〈λi+1, λi+2, . . .〉/〈µi+1, µi+2, . . .〉. Note that ν2
fits inside β2 and that ν1 fits inside β1 by the choice of i. Thus we may apply this construction recursively
with the pairs (α1/β1, ν1) and (α2/β2, ν2), filling α1/β1 with the values 2, . . . , |s1|+1 and filling α2/β2
with the values |α1/β1|+ 2, . . . , |λ/µ| = |α1/β1|+ |α2/β2|+ 1. (Observe that this coincides with what
we did in the first paragraph for µ = ∅.)

One can prove by a simple inductive argument that these maps are mutually-inverse bijections between
the sets in question. 2

Corollary 5.2 We have that |Ln,k(213)| = Cn for all n, k ≥ 1.

Note that knowing the number of tableaux of each shape whose reading words avoid 213 automatically
allows us to calculate for any shape the number of tableaux of that shape whose reading words avoid 132:
if λ = 〈λ1, . . . , λk〉 and µ is contained in λ, the operation T 7→ T ∗ of rotation and complementation is a
bijection between tableaux of shape λ/µ and tableaux of shape 〈λ1−µk, λ1−µk−1, . . . , λ1−µ1〉/〈λ1−
λk, λ1−λk−1, . . . , λ1−λ2〉. Moreover, the reading word of T ∗ is the reversed-complement of the reading
word of T , so the reading word of T avoids 132 if and only if the reading word of T ∗ avoids 213. This
argument establishes the following corollary of Theorem 5.1:

Corollary 5.3 The number of tableaux of skew shape λ/µ whose reading words avoid the pattern 132 is
equal to the number of partitions whose Young diagram is contained in that of the partition 〈λ1−λk, λ1−
λk−1, . . . , λ1 − λ2〉.
Corollary 5.4 We have that |Ln,k(132)| = Cn for all n, k ≥ 1.

5.2 The patterns 312 and 231

If the shape λ/µ contains a square, every tableau of that shape contains as a sub-tableau four entries

a b
c d

with a < b < d and a < c < d, and the reading word of every such tableau is of the form . . . cd . . . ab . . ..
But any such permutation contains both an instance dab of the pattern 312 an instance cda of the pattern
231. Thus, the number of tableaux of shape λ/µ whose reading words avoid 312 or 231 is zero unless
λ/µ contains no square, i.e., unless λ/µ is contained in a ribbon. In this case, for a tableau T of shape
λ/µ with reading word w we have that the reading word of the conjugate tableau T ′ is exactly the reverse
wr of w. Since w avoids 312 if and only if wr avoids 213, we may apply Theorem 5.1 to deduce the
following result.

Proposition 5.5 If skew shape λ/µ is contained in a ribbon then the number of tableaux of shape λ/µ
whose reading words avoid the pattern 312 is equal to the number of partitions whose Young diagram is
contained in that of µ. Otherwise, the number of such tableaux is 0.

Analogous arguments give the following result.



Pattern avoidance in alternating permutations and tableaux (extended abstract) 279

Corollary 5.6 If skew shape λ/µ is contained in a ribbon then the number of tableaux of shape λ/µ
whose reading words avoid the pattern 231 is equal to the number of partitions whose Young diagram
is contained in that of the partition 〈λ1 − λk, λ1 − λk−1, . . . , λ1 − λ2〉. Otherwise, the number of such
tableaux is 0.

In the special case of Ln,k this says that for k ≥ 3 and n ≥ 2 we have Ln,k(231) = Ln,k(312) = ∅
while for 1 ≤ k ≤ 2 we have that |Ln,k(231)| and |Ln,k(312)| are Catalan numbers [4, 15].
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Abstract. A factorization of a permutation into transpositions is called “primitive” if its factors are weakly ordered.
We discuss the problem of enumerating primitive factorizations of permutations, and its place in the hierarchy of pre-
viously studied factorization problems. Several formulas enumerating minimal primitive and possibly non-minimal
primitive factorizations are presented, and interesting connections with Jucys-Murphy elements, symmetric group
characters, and matrix models are described.

Résumé. Une factorisation en transpositions d’une permutation est dite “primitive” si ses facteurs sont ordonnés.
Nous discutons du problème de l’énumération des factorisations primitives de permutations, et de sa place dans
la hiérarchie des problèmes de factorisation précédemment étudiés. Nous présentons plusieurs formules énumérant
certaines classes de factorisations primitives, et nous soulignons des connexions intéressantes avec les éléments Jucys-
Murphy, les caractéres des groupes symétriques, et les modèles de matrices.

Keywords: Primitive factorizations, Jucys-Murphy elements, matrix integrals.

1 Introduction
1.1 Polynomial integrals on unitary groups
Let U(N) denote the group of N × N complex unitary matrices U = [uij ]1≤i,j≤N . By a polynomial
function on U(N) we mean a function of the form

p(U) =
∑

m,n≥0

∑

I,J,I′,J′

c(I, J, I ′, J ′)UIJU I′J′ , (1)

where
I = (i1, . . . , im) I ′ = (i′1, . . . , i

′
n)

J = (j1, . . . , jm) J ′ = (j′1, . . . , j
′
n)

(2)

are multi-indices,
UIJU I′J′ = ui1j1 . . . uimjmui′1j′1 . . . ui′nj′n (3)
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is the corresponding monomial in matrix entries, and only finitely many of the coefficients c(I, J, I ′, J ′) ∈
C are non-zero. A polynomial integral over U(N) is the integral of a polynomial function on U(N)
against the normalized Haar measure.

The computation of polynomial integrals over U(N) is of interest from many points of view, including
mathematical physics (nuclear physics, lattice gauge theory, quantum transport and quantum informa-
tion), random matrix theory (matrix models, asymptotic freeness of random matrices), number theory
(stochastic models of the Riemann zeta function), and algebraic combinatorics (integral representations
of structure constants in the ring of symmetric functions), see [10] for references to the large body of
literature on matrix integrals of this type. Nevertheless, the evaluation of such integrals is a problem of
substantial complexity that is not yet fully understood.

We wish to develop a general theory of polynomial integrals over U(N). By linearity of the integral,
we have ∫

U(N)

p(U)dU =
∑

m,n≥0

∑

I,J,I′,J′

c(I, J, I ′, J ′)
∫

U(N)

UIJU I′J′dU, (4)

so we consider the problem of evaluating monomial integrals
∫

U(N)

UIJU I′J′dU. (5)

Monomial integrals are already of great interest in mathematical physics, see e.g. [3]. An easy argument
involving the invariance of Haar measure shows that (5) can be non-zero only for m = n (i.e. the multi-
indices I, J are of the same length as the multi-indices I ′, J ′). Furthermore, when m = n ≤ N (i.e. the
degree of the monomial to be integrated is at most the dimension of the matrices being integrated over),
the integral (5) can be decomposed into a double sum over the symmetric group S(n) of the form

∫

U(N)

UIJU I′J′dU =
∑

(σ,τ)∈S(n)×S(n)
[I = σ(I ′)][J = τ(J ′)]Wστ . (6)

This integration formula has two ingredients: a combinatorial “Wick-like” rule — sum over pairs of per-
mutations (σ, τ) such that σ maps the multi-index I ′ to the multi-index I and τ maps the multi-index J ′ to
the multi-index J — together with a certain “weight” Wστ associated to each admissible pair of permuta-
tions. These weights have a remarkable combinatorial interpretation as generating functions enumerating
certain factorizations in the symmetric group; the resulting connections with algebraic combinatorics are
the focus of this extended abstract prepared by the authors for FPSAC 2010.

1.2 Primitive factorizations and Weingarten numbers
Let S(∞) denote the group of finitary permutations of the natural numbers {1, 2, 3, . . . }, with S(n) ≤
S(∞) the subgroup of permutations of [1, n] = {1, . . . , n}. An ordered sequence of transpositions

(s1 t1)(s2 t2) . . . (sk tk), si < ti, (7)

is said to be a factorization of π ∈ S(∞) if

π = (s1 t1) ◦ (s2 t2) ◦ · · · ◦ (sk tk). (8)
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A factorization is called primitive (more precisely, right primitive) if the inequalities

t1 ≤ t2 ≤ · · · ≤ tk (9)

hold in (8). Consider the quantities

hk,π(n) = #{factorizations of π into k transpositions from S(n)}
wk,π(n) = #{primitive factorizations of π into k transpositions from S(n)}. (10)

The numbers hk,π(n) are known as (disconnected) Hurwitz numbers, and are of much interest in enumer-
ative geometry, see e.g. [12]. We will call the numbers wk,π(n) Weingarten numbers, see [2, 10] for the
origin of this name. The primitive factorizations counted by Weingarten numbers have previously been
considered by combinatorialists, both in relation to the enumeration of chains in noncrossing partition lat-
tices [1, 14] and for their own sake [5]. Our approach to polynomial integrals over unitary groups is based
on the remarkable fact that the weights appearing in the integration formula (6) are generating functions
for Weingarten numbers.

Theorem 1 ([10, 11]) For any n ≤ N and π ∈ S(n) we have

NnWστ =
∑

k≥0
wk,π(n)

(−1

N

)k
,

where π = σ ◦ τ−1.

2 Jucys-Murphy elements
2.1 Centrality
Let Cµ ⊂ S(∞) denote the conjugacy class of permutations of reduced cycle type µ (µ is a Young
diagram). For instance, C(0) is the class of the identity permutation, C(1) is the class of transpositions,
and more generallyC(r) is the class of (r+1)-cycles. Note that |µ| is the minimal length of a factorization
of π into transpositions. The conjugacy classes of S(n) are Cµ(n) := Cµ ∩ S(n). Let Z(n) denote the
centre of the group algebra C[S(n)]. Then {Cµ(n)} is the canonical basis of Z(n), where Cµ(n) is
identified with the formal sum of its elements, so Z(n) is referred to as the class algebra of S(n).

Multiplying k copies of the class of transpositions, we obtain

C(1)(n)C(1)(n) . . . C(1)(n)
︸ ︷︷ ︸

k times

=
∑

µ

hk,µ(n)Cµ(n), (11)

where clearly hk,µ(n) = hk,π(n) for any π ∈ Cµ(n). In other words, hk,π(n) depends on π only up to
conjugacy class. That this also holds for Weingarten numbers is not so obvious. To see that Weingarten
numbers are central, we consider the enumeration of strictly primitive factorizations, i.e. factorizations

π = (s1 t1) ◦ (s2 t2) ◦ · · · ◦ (sk tk) (12)

such that t1 < t2 < · · · < tk. One may show by a direct combinatorial argument that any permutation
π ∈ Cµ admits a unique strictly primitive factorization, and that this unique factorization has length |µ|.
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This combinatorial fact can be written algebraically as follows. Consider the Jucys-Murphy elements
J1, J2, . . . , Jt, · · · ∈ C[S(∞)] defined by

Jt =
∑

s<t

(s t). (13)

Let Ξn denote the alphabet {{J1, J2, . . . , Jn, 0, 0, . . . }}. Then

ek(Ξn) =
∑

π∈S(n)
#{length k strictly primitive factorizations of π}π

hk(Ξn) =
∑

π∈S(n)
#{length k primitive factorizations of π}π,

(14)

where

ek =
∑

t1<t2<···<tk
xt1xt2 . . . xtk

hk =
∑

t1≤t2≤···≤tk
xt1xt2 . . . xtk

(15)

are the elementary and complete symmetric functions in commuting variables x1, x2, . . . . The fact that
each π ∈ Cµ admits a unique strictly primitive factorization, and that this factorization has length π,
translates into the identity

ek(Ξn) =
∑

|µ|=k
Cµ(n) ∈ Z(n), (16)

which was first obtained by Jucys [8] (see also [4]). On the other hand, the algebra Λ of symmetric
functions is precisely the polynomial algebra Λ = C[e1, e2, . . . ] in the elementary symmetric functions,
so we conclude that the substitution f 7→ f(Ξn) defines a specialization Λ → Z(n) from the algebra of
symmetric functions to the class algebra. In particular, hk(Ξn) ∈ Z(n), and we can write

hk(Ξn) =
∑

µ

wk,µ(n)Cµ(n), (17)

where wk,µ(n) = wk,π(n) for any π ∈ Cµ(n).

2.2 Character theory
Since any permutation is either even or odd, the Hurwitz and Weingarten numbers hk,µ(n), wk,µ(n) can
only be non-zero for k of the form k = |µ|+ 2g for integer g ≥ 0. We thus introduce the notation

h̃g,µ(n) := h|µ|+2g,µ(n)

w̃g,µ(n) := w|µ|+2g,µ(n).
(18)

In particular, Theorem 1 reads

(−1)|µ|Nn+|µ|Wστ =
∑

g≥0

w̃g,µ(n)

N2g
, (19)
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where n ≤ N and σ ◦ τ−1 ∈ Cµ(n). Using the character theory of S(n), Jackson [7] and Shapiro-
Shapiro-Vainshtein [13] obtained the remarkable formula

h̃g,(n−1)(n) =
1

n!

n−1∑

j=0

(−1)j
(
n− 1

j

)((
n

2

)
− jn

)n−1+2g

(20)

for the number of factorizations of a full cycle (i.e. an element ofC(n−1)(n)) into n−1+2g transpositions.
Here we will explain how properties of Jucys-Murphy elements in irreducible representations of C[S(n)]
may be used to obtain an analogous formula for the Weingarten number w̃g,(n−1)(n).

Our point of departure is the remarkable expansion

f(Ξn) =
∑

λ`n

f(Aλ)

Hλ
χλ (21)

obtained by Jucys [8], of the symmetric function f ∈ Λ evaluated at Ξn in terms of the characters

χλ :=
∑

µ

χλ(Cµ(n))Cµ(n) (22)

of the irreducible (complex, finite-dimensional) representations of C[S(n)]. HereAλ denotes the alphabet
of contents of the Young diagram λ, and Hλ is the product of its hook-lengths. This can be viewed as
an analogue of the formula of Burnside which expresses the connection coefficients of Z(n) in terms of
irreducible characters.

Consider the ordinary generating function

Φ(z;n) =
∑

k≥0
hk(Ξn)zk, (23)

which is an element of the algebra Z(n)[[z]] of formal power series in one indeterminate z over the class
algebra Z(n). Plugging in the character expansion

hk(Ξn) =
∑

λ`n

hk(Aλ)

Hλ
χλ (24)

and changing order of summation, we obtain

Φ(z;n) =
∑

λ`n

χλ

Hλ

∏
2∈λ(1− c(2)z)

, (25)

where c(2) denotes the content of a cell 2 ∈ λ and we have made us of the generating function
∑

k≥0
hk(x1, x2, . . . )z

k =
∏

i≥1

1

1− xiz
(26)

for the complete symmetric functions. Thus we obtain the formula

Φµ(z;n) =
∑

λ`n

χλ(Cµ(n))

Hλ

∏
2∈λ(1− c(2)z)

(27)
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for the ordinary generating function

Φµ(z;n) =
∑

k≥0
wk,µ(n)zk (28)

of Weingarten numbers. Note that by Theorem 1, this corresponds to the character expansion

Wστ =
∑

λ`n

χλ(Cµ(n))

Hλ

∏
2∈λ(N + c(2))

(29)

(where n ≤ N and σ ◦ τ−1 ∈ Cµ(n)), which is well known in the physics literature and was first
rigorously obtained in [2] by a different argument.

Up until this point, the partition µ has been generic, but now we restrict to the special case µ = (n−1),
the class of a full cycle in S(n). A classical result from representation theory informs us that the trace of
C(n−1)(n) in an irreducible representation can only be non-zero in “hook” representations:

χλ(C(n−1)(n)) =

{
(−1)r, if λ = (n− r, 1r)
0, otherwise

. (30)

Now, the content alphabet of a hook diagram may be obtained immediately,

A(n−r,1r) = {0, 1, . . . , n− r − 1} t {−1, . . . ,−r}. (31)

so that

Φ(n−1)(z;n) =
n−1∑

r=0

(−1)r

H(n−r,1r)
∏n−r−1
i=1 (1− iz)∏r

j=1(1 + jz)
. (32)

For example, if n = 4, this is a rational function of the form

Φ(3)(z;n) =
const.

(1− z)(1− 2z)(1− 3z)
+

const.
(1− z)(1− 2z)(1 + z)

+
const.

(1− z)(1 + z)(1 + 2z)
+

const.
(1 + z)(1 + 2z)(1 + 3z)

.
(33)

Thus, as an irreducible rational function, Φ(n−1)(z;n) has the form

Φ(n−1)(z;n) =

∑n−1
i=0 ciz

i

∏n−1
i=1 (1− i2z2)

(34)

where c0, . . . , cn−1 ∈ C are some constants to be determined momentarily.
Before finding the above coefficients, let us consider the generating function

1∏n
i=1(1− i2u)

=
∑

g≥0
hg(1

2, . . . , n2)ug. (35)
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The coefficients in this generating function are complete symmetric functions evaluated on the alphabet
{12, . . . , n2} of square integers. Reason dictates that they ought to be close relatives of the Stirling
numbers

S(n+ g, n) = hg(1, . . . , n). (36)

The Stirling number S(a, b) has the following combinatorial interpretation: it counts the number of parti-
tions

{1, . . . , a} = V1 t · · · t Vb (37)

of an a-element set into b disjoint non-empty subsets. Stirling numbers are given by the explicit formula

S(a, b) =

b∑

j=0

(−1)b−j
ja

j!(b− j)! . (38)

The numbers
T (n+ g, n) = hg(1

2, . . . , n2) (39)

are known as central factorial numbers. The central factorial numbers were studied classically by Carlitz
and Riordan, see [15, Exercise 5.8] for references. They have the following combinatorial interpretation:
T (a, b) counts the number of partitions

{1, 1′, . . . , a, a′} = V1 t · · · t Vb (40)

of a set of a marked and a unmarked points into b disjoint non-empty subsets such that(i), for each block
Vj , if i is the least integer such that either i or i′ appears in Vj , then {i, i′} ⊆ Vj . Central factorial numbers
are given by the explicit formula

T (a, b) = 2
b∑

j=0

(−1)b−j
j2a

(b− j)!(b+ j)!
. (41)

Now let us determine the unknown constants c0, . . . , cn−1. By the above discussion, the generating
function Φ(n−1)(z;n) has the form

Φ(n−1)(z;n) = (c0 + c1z + · · ·+ cn−1z
n−1)

∑

g≥0
T (n− 1 + g, n− 1)z2g. (42)

On the other hand,

Φ(n−1)(z;n) =
∑

k≥0
wk,(n−1)(n)zk

=
∑

g≥0
w̃g,(n−1)(n)zn−1+2g

= w̃0,(n−1)(n)zn−1 + w̃1,(n−1)(n)zn+1 + . . . .

(43)

(i) Bálint Virág (personal communication) gave a colourful description of this condition, which is actually quite a useful mnemonic:
“the most important guy gets to bring his wife.”



Unitary Matrix Integrals, Primitive Factorizations, and Jucys-Murphy Elements 287

Consequently, we must have c0 = · · · = cn−2 = 0, cn−1 = w̃0,(n−1)(n), the number of primitive factor-
izations of the cyclic permutation ξ[1, n] = (1 2 . . . n) into the minimal number n− 1 of transpositions.
It is not difficult to show (see [5, 10]) bijectively that the number of minimal primitive factorizations of
the cycle ξ[1, n] is the Catalan number Catn−1 = 1

n

(
2n−2
n−1

)
. In fact, a stronger result from [10] asserts

that the number w̃0,µ(n) of minimal primitive factorizations of an arbitrary permutation of reduced cycle
type µ is a product of Catalan numbers,

w̃0,µ(n) =

`(µ)∏

i=1

Catµi
, (44)

so that the function
π 7→ #{minimal primitive factorizations of π} (45)

is a central multiplicative function on S(∞) (note that, via Theorem 1, this result corresponds to the
first-order estimate

(−1)|µ|Nn+|µ|Wστ =

`(µ)∏

i=1

Catµi +O

(
1

N2

)
, (46)

where σ◦τ−1 ∈ Cµ(n)). Thus we have proved the following analogue of (20) for primitive factorizations.

Theorem 2 For any g ≥ 0, the number of primitive factorizations of a full cycle from S(n) into n−1+2g
transpositions is

w̃g,(n−1)(n) = Catn−1 ·T (n− 1 + g, n− 1),

where T (a, b) denotes the Carlitz-Riordan central factorial number. Equivalently, we have the generating
function

Φ(n−1)(z;n) =
Catn−1 zn−1

(1− 12z2) . . . (1− (n− 1)2z2)
.

Via Theorem 1, Theorem 2 corresponds to the exact integration formula

Wστ =
(−1)n−1 Catn−1

N(N2 − 12) . . . (N2 − (n− 1)2)
, σ ◦ τ−1 ∈ Cµ(n), (47)

which was first stated by Collins in [2].

3 Conclusion
We have discussed the close relationship between the problem of computing polynomial integrals over
unitary groups and the enumeration of primitive factorizations of permutations. In particular, the problem
was completely solved for full cycles, and the central factorial numbers of Carlitz and Riordan made a
surprising appearance and were given a new combinatorial interpretation. It seems that Hurwitz numbers
and Weingarten numbers are remarkably similar in character. For example, writing (20) and Theorem 2
in terms of exponential generating functions yields

h̃g,(n−1)(n) = nn−2n2g
(
n− 1 + 2g

n− 1

)[
z2g

(2g)!

](
sinh z/2

z/2

)n−1

w̃g,(n−1)(n) = Catn−1

(
2n− 2 + 2g

2n− 2

)[
z2g

(2g)!

](
sinh z/2

z/2

)2n−2
.

(48)
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On one hand, the multiplicative form of Theorem 2 suggests the existence of an underlying bijective ex-
planation, and on the other computer calculations performed by Valentin Féray (personal communication)
suggest that such a bijection could be very complex. Further similarities between Hurwitz numbers and
Weingarten numbers are the subject of work in progress [6]. Let us finish by pointing out that the first au-
thor has extended many of the results presented here to the setting of polynomial integrals over orthogonal
groups [9].
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Abstract. We introduce a multiplicity Tutte polynomial M(x, y), which generalizes the ordinary one and has appli-
cations to zonotopes and toric arrangements. We prove thatM(x, y) satisfies a deletion-restriction recurrence and has
positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to
be specializations of the associated polynomial M(x, y), likewise the corresponding polynomials for a hyperplane
arrangement are specializations of the ordinary Tutte polynomial. Furthermore, M(1, y) is the Hilbert series of the
related discrete Dahmen-Micchelli space, while M(x, 1) computes the volume and the number of integral points of
the associated zonotope.

Résumé. On introduit un polynôme de Tutte avec multiplicitéM(x, y), qui généralise le polynôme de Tutte ordinaire
et a des applications aux zonotopes et aux arrangements toriques. Nous prouvons queM(x, y) satisfait une récurrence
de “deletion-restriction” et a des coefficients positifs. Le polynôme caractéristique et le polynôme de Poincaré d’un
arrangement torique sont des spécialisations du polynôme associé M(x, y), de même que les polynômes correspon-
dants pour un arrangement d’hyperplans sont des spécialisations du polynôme de Tutte ordinaire. En outre, M(1, y)
est la série de Hilbert de l’espace discret de Dahmen-Micchelli associé, et M(x, 1) calcule le volume et le nombre de
points entiers du zonotope associé.

Keywords: Tutte polynomial, zonotope, integral points, toric arrangement, characteristic polynomial, Dahmen-
Micchelli, partition function

1 Introduction
The Tutte polynomial is an invariant naturally associated to a matroid and encoding many of its features,
such as the number of bases and their internal and external activity ([21], [3], [6]). If the matroid is de-
fined by a finite list of vectors, it is natural to consider the arrangement obtained by taking the hyperplane
orthogonal to each vector. To the poset of the intersections of the hyperplanes one associates its charac-
teristic polynomial, which provides a rich combinatorial and topological description of the arrangement
([19], [22]). This polynomial can be obtained as a specialization of the Tutte polynomial.

Let T be a complex torus (i.e., a multiplicative group (C∗)n of n-tuples of nonzero complex numbers)
and take a finite list of characters: X ⊂ Hom(T,C∗). Then we consider the arrangement of hypersur-
faces in T obtained by taking the kernel of each element of the list X . To understand the geometry of this
toric arrangement one needs to describe the poset C(X) of the layers, i.e. connected components of the
intersections of the hypersurfaces ([5], [9], [15], [18]). Clearly this poset depends also on the arithmetics

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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of X , and not only on its linear algebra: for example, the kernel of the identity character λ of C∗ is the
point t = 1, but the kernel of 2λ has equation t2 = 1, hence is made of two points. Therefore we have
no chance to get the characteristic polynomial of C(X) as a specialization of the ordinary Tutte polyno-
mial T (x, y) of X . In this paper we define a polynomial M(x, y) that specializes to the characteristic
polynomial of C(X) (Theorem 5.5) and to the Poincaré polynomial of the complement RX of the toric
arrangement (Theorem 5.6). In particular M(1, 0) equals the Euler characteristic of RX , and also the
number of connected components of the complement of the arrangement in the compact torus T = (S1)n.

We call M(x, y) the multiplicity Tutte polynomial of X , since it coincides with T (x, y) when X is
unimodular, and in general it satisfies the same deletion-restriction recurrence that holds for T (x, y). By
this formula (Theorem 3.3) we prove that M(x, y) has positive coefficients (Theorem 3.4).

Actually a similar polynomial can be defined more generally for matroids, if we enrich their structure
in order to encode some ”arithmetic data”; we call such objects multiplicity matroids. We hope to develop
in a future paper an axiomatic theory of these matroids, as well as applications to graph theory. In the
present paper the focus is on the case of a list X of vectors in Zn. Given such a list, we consider two
finite dimensional vector spaces: a space of polynomials D(X), defined by differential equations, and a
space of quasipolynomials DM(X), defined by difference equations. These spaces were introduced by
Dahmen and Micchelli to study respectively box splines and partition functions, and are deeply related
respectively with the hyperplane arrangement and the toric arrangement defined by X , as explained in the
forthcoming book [6]. In particular, T (1, y) is known to be the Hilbert series of D(X); then we prove
that M(1, y) is the Hilbert series of DM(X) (Theorem 6.3).

On the other hand, by Theorem 4.1 the coefficients of M(x, 1) count integral points in some faces
of a convex polytope, the zonotope defined by X . The relations between arrangements, zonotopes and
Dahmen-Micchelli spaces is being studied intensively in the very last years: see for example [6], [10],
[7], [1], [11], . In particular M(1, 1) equals the volume of the zonotope (Proposition 2.1), while M(2, 1)
is the number of its integral points (Proposition 4.2).

Finally we focus on the case in which X is a root system: then we show some connections with the
theory of Weyl groups (see for instance Corollary 7.3).

Remark 1.1 This paper is an extended abstract of [17], which contains more details and all the proofs,
which are omitted here.

2 Multiplicity matroids and multiplicity Tutte polynomials
We start recalling the notions we are going to generalize.

A matroid M is a pair (X, I), where X is a finite set and I is a family of subsets of X (called the
independent sets) with the following properties:

1. The empty set is independent;

2. Every subset of an independent set is independent;

3. Let A and B be two independent sets and assume that A has more elements than B. Then there
exists an element a ∈ A \B such that B ∪ {a} is still independent.

A maximal independent set is called a basis. The last axiom implies that all bases have the same
cardinality, which is called the rank of the matroid. Every A ⊆ X has a natural structure of matroid,
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defined by considering a subset of A independent if and only if it is in I . Then each A ⊆ X has a rank
which we denote by r(A).

The Tutte polynomial of the matroid is then defined as

T (x, y)
.
=
∑

A⊆X
(x− 1)r(X)−r(A)(y − 1)|A|−r(A).

From the definition it is clear that T (1, 1) equals the number of bases of the matroid.
In the next sections we will recall the main example of matroid and some properties of its Tutte poly-

nomial.

We now introduce the following definitions.
A multiplicity matroid M is a triple (X, I,m), where (X, I) is a matroid and m is a function (called

multiplicity) from the family of all subsets of X to the positive integers.
We say that m is the trivial multiplicity if it is identically equal to 1.
We define the multiplicity Tutte polynomial of a multiplicity matroid as

M(x, y)
.
=
∑

A⊆X
m(A)(x− 1)r(X)−r(A)(y − 1)|A|−r(A).

Let us remark that we can endow every matroid with the trivial multiplicity, and then M(x, y) =
T (x, y).

Let X be a finite list of vectors spanning a real vector space U , and I be the family of its linearly
independent subsets; then (X, I) is a matroid, and the rank of a subset A is just the dimension of the
spanned subspace. We denote by TX(x, y) the associated Tutte polynomial.

We associate to the list X a zonotope, that is a convex polytope in U defined as follows:

Z(X)
.
=

{∑

x∈X
txx, 0 ≤ tx ≤ 1

}
.

Zonotopes play an important role in the theory of hyperplane arrangements, and also in that of splines, a
class of functions studied in Approximation Theory. (see [6]).

We recall that a lattice Λ of rank n is a discrete subgroup of Rn which spans the real vector space Rn.
Every such Λ can be generated from some basis of the vector space by forming all linear combinations
with integral coefficients; hence the group Λ is isomorphic to Zn. We will use the word lattice always
with this meaning, and not in the combinatorial sense (poset with join and meet).

Then let X be a finite list of elements in a lattice Λ, and let I and r be as above. We denote by
〈A〉Z and 〈A〉R respectively the sublattice of Λ and the subspace of Λ ⊗ R spanned by A. Let us define
ΛA

.
= Λ ∩ 〈A〉R: this is the largest sublattice of Λ in which 〈A〉Z has finite index. Then we define m as

this index:
m(A)

.
= [ΛA : 〈A〉Z] .

This defines a multiplicity matroid and then a multiplicity Tutte polynomial MX(x, y), which is the main
subject of this paper. We start by showing the relations with the zonotope Z(X) generated by X in
U

.
= Λ⊗ R.
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We already observed that TX(1, 1) equals the number of bases that can be extracted from X; on the
other hand we have:

Proposition 2.1 MX(1, 1) equals the volume of the zonotope Z(X).

Further relations between the polynomial MX(x, y) and the zonotope Z(X) will be shown in Section
4.

3 Deletion-restriction formula and positivity
The central idea that inspired Tutte in defining the polynomial T (x, y), was to find the most general
invariant satisfying a recurrence known as deletion-restriction. Such recurrence allows to reduce the
computation of the Tutte polynomial to some trivial cases. We will explain this algorithm in the case
above, i.e. when the matroid is defined by a list of vectors, and we will show that in this case also the
polynomial M(x, y) satisfies a similar recursion.

3.1 Lists of vectors
Let X be a finite list of elements spanning a vector space U , and let v ∈ X be a nonzero element. We
define two new lists: the listX1

.
= X\{v} of elements of U and the listX2 of elements of U/〈v〉 obtained

by reducing X1 modulo v. Assume that v is dependent in X , i.e. v ∈ 〈X1〉R. Then we have the following
well-known formula:

Theorem 3.1
TX(x, y) = TX1

(x, y) + TX2
(x, y)

It is now clear why we defined X as a list, and not as a set: even if we start with X made of (nonzero)
distinct elements, in X2 some vector may appear many times (and some vector may be zero).

By this recurrence we get:

Theorem 3.2 TX(x, y) is a polynomial with positive coefficients.

3.2 Lists of elements in finitely generated abelian groups.
We now want to show a similar recursion for the polynomial MX(x, y). Inspired by [8], we notice that
in order to do this, we need to work in a larger category. Indeed, whereas the quotient of a vector space
by a subspace is still a vector space, the quotient of a lattice by a sublattice is not a lattice, but a finitely
generated abelian group. For example in the 1-dimensional case, the quotient of Z by mZ is the cyclic
group of order m.

Then let Γ be a finitely generated abelian group. For every subset S of Γ we denote by 〈S〉 the generated
subgroup. We recall that Γ is isomorphic to the direct product of a lattice Λ and of a finite group Γt, which
is called the torsion subgroup of Γ. We denote by π the projection π : Γ→ Λ.

Let X be a finite subset of Γ; for every A ⊆ X we set ΛA
.
= Λ∩

〈
π(A)

〉
R and ΓA

.
= ΛA×Γt. In other

words, ΓA is the largest subgroup of Γ in which 〈A〉 has finite index.

Then we define m(A)
.
=
[
ΓA : 〈A〉

]
. We also define r(A) as the rank of π(A). In this way we defined

a multiplicity matroid, to which is associated a multiplicity Tutte polynomial:

MX(x, y)
.
=
∑

A⊆X
m(A)(x− 1)r(X)−r(A)(y − 1)|A|−r(A).
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It is clear that if Γ is a lattice, these definitions coincide with the ones given in the previous sections.
If on the opposite hand Γ is a finite group,M(x, y) is a polynomial in which only the variable y appears;

furthermore this polynomial, evaluated at y = 1, gives the order of Γ. Indeed the only summand that does
not vanish is the contribution of the empty set, which generates the trivial subgroup.

Now let λ ∈ X be a nonzero element such that π(λ) ∈
〈
π
(
X \ {λ}

)〉
R. We set X1

.
= X \ {λ} ⊂ Γ

and we denote by A the image of every A ⊆ X under the natural projection Γ −→ Γ/〈λ〉. We denote by
X2 the subset X1 of Γ/〈λ〉. Then we have the following deletion-restriction formula.

Theorem 3.3
MX(x, y) = MX1(x, y) +MX2(x, y).

By this recurrence we prove:

Theorem 3.4 MX(x, y) is a polynomial with positive coefficients.

4 Integral points in zonotopes
Let X be a finite list of vectors contained in a lattice Λ and generating the vector space U = Λ ⊗ R. We
say that a point of U is integral if it is contained in Λ. In this section we prove that MX(2, 1) equals the
number of integral points of the zonotope Z(X). Moreover we compare this number with the volume. In
order to do that, we have to move the zonotope to a ”generic position”; we proceed as follows. Following
[6, Section 1.3], we define the cut-locus of the couple (Λ, X) as the union of all hyperplanes in U that
are translations, under elements of Λ, of the linear hyperplanes spanned by subsets of X . Then let ε be
a vector of U which does not lie in the cut-locus and has length ε << 0. Let Z(X) − ε be the polytope
obtained translating Z(X) by −ε, and let I(X) be the set of its integral points:

I(X)
.
= (Z(X)− ε) ∩ Λ.

It is intuitive (and proved in [6, Prop 2.50]) that this number equals the volume:

|I(X)| = vol (Z(X)) = MX(1, 1)

by Proposition 2.1. We now prove a stronger result. Let us choose ε so that Z(X) − ε contanins the
origin 0. We partition I(X) as follows: set In(X) = {0}, and for every k = n− 1, . . . , 0, let Ik(X) be
the set of elements of I(X) that are contained in some k−codimensional face of Z(X) and that are not
contained in Ih(X) for h > k.

Then we have:

Theorem 4.1

MX(x, 1) =
n∑

k=0

|Ik(X)| xk.

Furthermore we prove:

Proposition 4.2
MX(2, 1) = |Z(X) ∩ Λ|
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Example 4.3 Consider the list in Z2

X = {(3, 3), (1,−1), (2, 0)} .

Then
MX(x, y) = (x− 1)2 + (3 + 1 + 2)(x− 1) + (6 + 6 + 2) + 2(y − 1).

Hence
MX(x, 1) = x2 + 4x+ 9

and MX(2, 1) = 21. Indeed the zonotope Z(X) has volume 14 and contains 21 integral points, 14 of
which lying in Z(X)− ε. The sets I2(X), I1(X), and I0(X) contain 1, 4 and 9 points respectively.

5 Application to arrangements
In this Section we describe some geometrical objects related to the lists considered in Section 2.2, and
show that many of their features are encoded in the polynomials TX(x, y) and MX(x, y).

5.1 Recall on hyperplane arrangements
Let X be a finite list of elements of a vector space U . Then in the dual space V = U∗ a hyperplane
arrangement H(X) is defined by taking the orthogonal hyperplane of each element of X . Conversely,
given an arrangement of hyperplanes in a vector space V , let us choose for each hyperplane a nonzero
vector in V ∗ orthogonal to it; let X be the list of such vectors. Since every element of X is determined up
to scalar multiples, the matroid associated toX is well defined; in this way a Tutte polynomial is naturally
associated to the hyperplane arrangement.

The importance of the Tutte polynomial in the theory of hyperplane arrangements is well known. Here
we just recall some results that we generalize in the next sections.

To every sublistA ⊆ X is associated the subspaceA⊥ of V that is the intersection of the corresponding
hyperplanes ofH(X); in other words, A⊥ is the subspace of vectors that are orthogonal to every element
ofA. LetL(X) be the set of such subspaces, partially ordered by reverse inclusion, and having as minimal
element 0 the whole space V = ∅⊥. L(X) is called the intersection poset of the arrangement, and is ”the
most important combinatorial object associated to a hyperplane arrangement” (R. Stanley).

We also recall that to every finite poset P is associated a Moebius function µ : P ×P → Z, recursively
defined as follows:

µ(L,M) =





0 if L > M

1 if L = M

−∑L≤N<M µ(L,N) if L < M.

Notice that the poset L(X) is ranked by the dimension of the subspaces; then we define characteristic
polynomial of the poset as

χ(q)
.
=

∑

L∈L(X)

µ(0, L)qdim(L).

This is an important invariant of H(X). Indeed, letMX be the complement in V of the union of the
hyperplanes ofH(X). Let P (q) be Poincaré polynomial ofMX , i.e. the polynomial having as coefficient
of qk the k−th Betti number ofMX . Then if V is a complex vector space, by [19] we have the following
theorem.
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Theorem 5.1
P (q) = (−q)nχ(−1/q).

If on the other hand V is a real vector space, by [22] the number Ch(X) of chambers (i.e., connected
components ofMX ) is:

Theorem 5.2
Ch(X) = (−1)

n
χ(−1).

The Tutte polynomial TX(x, y) turns out to be a stronger invariant, in the following sense. Assume that
0 /∈ X; then

Theorem 5.3
(−1)nTX(1− q, 0) = χ(q).

The proof of these theorems can be found for example in [6, Theorems 10.5, 2.34 and 2.33].

5.2 Toric arrangements and their generalizations
Let Γ = Λ × Γt be a finitely generated abelian group, and define TΓ

.
= Hom(Γ,C∗). TΓ has a natural

structure of abelian linear algebraic group: indeed it is the direct product of a complex torus TΛ of the
same rank as Λ and of the finite group Γt

∗ dual to Γt (and isomorphic to it).
Moreover Γ is identified with the group of characters of TΓ: indeed given λ ∈ Λ and t ∈ TΓ we can

take any representative ϕt ∈ Hom(Γ,C) of t and set λ(t)
.
= e2πiϕt(λ). When this is not ambiguous we

will denote TΓ by T .
Let X ⊂ Λ be a finite subset spanning a sublattice of Λ of finite index. The kernel of every character

χ ∈ X is a (non-connected) hypersurface in T :

Hχ
.
=
{
t ∈ T |χ(t) = 1

}
.

The collection T (X) = {Hχ, χ ∈ X} is called the generalized toric arrangement defined by X on T .
We denote byRX the complement of the arrangement:

RX .
= T \

⋃

χ∈X
Hχ

and by CX the set of all the connected components of all the intersections of the hypersurfacesHχ, ordered
by reverse inclusion and having as minimal elements the connected components of T .

Since rank(Λ) = dim(T ), the maximal elements of C(X) are 0-dimensional, hence (since they are
connected) they are points. We denote by C0(X) the set of such layers, which we call the points of the
arrangement.

Given A ⊆ X let us define HA
.
=
⋂
λ∈AHλ. Then we have:

Lemma 5.4 m(A) equals the number of connected components of HA.

In particular, when Γ is a lattice, T is a torus and T (X) is called the toric arrangement defined by
X . Such arrangements have been studied for example in [14], [5], [15], [18]; see [6] for a complete
reference. In particular, the complement RX has been described topologically and geometrically. In this
description the poset C(X) plays a major role, for many aspects analogous to that of the intersection poset
for hyperplane arrangements (see [5], [18]).

We will now explain the importance in this framework of the polynomial MX(x, y) defined in Section
3.3.
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5.3 Characteristic polynomial and Poincaré polynomial
Let µ be the Moebius function of C(X); notice that we have a natural rank function given by the dimension
of the layers. For every C ∈ C(X), let TC be the connected component of T that contains C. Then we
define the characteristic polynomial of C(X):

χ(q)
.
=

∑

C∈C(X)

µ(TC , C)qdim(C).

This polynomial is a specialization of the multiplicity Tutte polynomial:

Theorem 5.5
(−1)nMX(1− q, 0) = χ(q)

Furthermore, by applying our results to a theorem proved in [5, Theor. 4.2] (or [6, 14.1.5]), we give a
formula for the Poincare’ polynomial P (q) ofRX :

Theorem 5.6
P (q) = qnMX

(
2q + 1

q
, 0

)
.

Therefore, by comparing Theorem 5.5 and Theorem 5.6, we get the following formula, which relates
the combinatorics of C(X) with the topology ofRX , and is the ”toric” analogue of Theorem 4.1.

Corollary 5.7

P (q) = (−q)nχ
(
−q + 1

q

)
.

We recall that the Euler characteristic of a space can be defined as the evaluation at −1 of its Poincaré
polynomial. Hence by Theorem 5.6 we have:

Corollary 5.8 (−1)nMX(1, 0) equals the Euler characteristic ofRX .

Example 5.9 Take T = (C∗)2 with coordinates (t, s) and

X = {(2, 0), (0, 2), (1, 1), (1,−1)}

defining equations:
t2 = 1, s2 = 1, ts = 1, ts−1 = 1.

It is easily seen (see [17] for details) that this arrangement has six 1−dimensional layers and four
0−dimensional layers, and that

χ(q) = q2 − 6q + 8.

The polynomial MX(x, y) is composed by the following summands:

• (x− 1)2, corresponding to the empty set;

• 6(x− 1), corresponding to the 4 singletons, each giving contribution (x− 1) or 2(x− 1);

• 14, corresponding to the 6 pairs: indeed, the basis X = {(2, 0), (0, 2)} spans a sublattice of index
4, while the other bases span sublattices of index 2;
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• 8(y − 1), corresponding to the 4 triples, each contributing with 2(y − 1);

• 2(y − 1)2, corresponding to the whole set X .

Hence
MX(x, y) = x2 + 2y2 + 4x+ 4y + 3.

Notice that
MX(1− q, 0) = q2 − 6q + 8 = χ(q)

as claimed in Theorem 5.5. Furthermore Theorem 5.6 (or Corollary 4.12) implies that

P (q) = 15q2 + 8q + 1

and hence the Euler characteristic is P (−1) = 8 = MX(1, 0). Notice that this is the toric arrangement
arising from the root system of type C2 (see Section 7).

5.4 Number of regions of the compact torus
In this section we consider the compact abelian group dual to Γ T

.
= Hom(Γ,S1), where we set S1 .

=
{z ∈ C | |z| = 1} ' R/Z.

We assume for simplicity Γ to be a lattice; then T is a compact torus, i.e. it is isomorphic to (S1)n, and
in it every χ ∈ X defines a hypersurfaceHχ

.
=
{
t ∈ T |χ(t) = 1

}
.We denote by T (X) this arrangement;

clearly its poset of layers is the same as for the arrangement T (X) defined in the complex torus T . We
denote byRX the complement

RX .
= T \

⋃

χ∈X
Hχ.

The compact toric arrangement T (X) has been studied in [9]; in particular the number R(X) of regions
(i.e. of connected components) of RX is proved to be a specialization of the characteristic polynomial
χ(q):

Theorem 5.10
R(X) = (−1)nχ(0).

By comparing this result with Theorem 5.5 we get the following

Corollary 5.11
R(X) = MX(1, 0)

6 Dahmen-Micchelli spaces
Until now we considered evaluations of TX(x, y) and MX(x, y) at y = 0 and y = 1. However, there
is another remarkable specialization of the Tutte polynomial: TX(1, y), which is called the polynomial
of the external activity of X . It is related with the corresponding specialization of MX(x, y) in a simple
way:

Lemma 6.1
MX(1, y) =

∑

p∈C0(X)

TXp
(1, y).
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The previous lemma has an interesting consequence. In [4] to every finite set X ⊂ V is associated
a space D(X) of functions V → C, and to every finite set X ⊂ Λ is associated a space DM(X) of
functions Λ → C. Such spaces are defined as the solutions of a system, respectively of differential
equations and of difference equations, in the following way.

For every λ ∈ X , let ∂λ be the usual directional derivative ∂λf(x)
.
= ∂f/∂λ(x) and let ∇λ be the

difference operator∇λf(x)
.
= f(x)− f(x− λ).

Then for every A ⊂ X we define the differential operator ∂A
.
=
∏
λ∈A ∂λ and the difference operator

∇A .
=
∏
λ∈A∇λ. We can now define define the differentiable Dahmen-Micchelli space

D(X)
.
= {f : V → C | ∂Af = 0 ∀A such that r(X \A) < n}

and the discrete Dahmen-Micchelli space

DM(X)
.
= {f : Λ→ C | ∇Af = 0 ∀A such that r(X \A) < n} .

The space D(X) is a space of polynomials, which was introduced in order to study the box spline.
This is a piecewise-polynomial function studied in Approximation Theory; its local pieces, together with
their derivatives, span D(X). On the other hand, DM(X) is a space of quasipolynomials which arises
in the study of the partition function. This is the function that counts in how many ways an element
of Λ can be written as a linear combination with positive integer coefficients of elements of X . This
function is piecewise-quasipolynomial, and its local pieces, together with their translates, span DM(X).
In the recent book [6] the spaces D(X) and DM(X) are shown to be deeply related respectively with the
hyperlane arrangement and with the toric arrangement defined by X .

In order to compare these two spaces, we consider the elements of D(X) as functions Λ → C by
restricting them to the lattice Λ. Since the elements of DM(X) are polynomial functions, they are deter-
mined by their restriction. For every p ∈ C(X)0, let us define ϕp : Λ → C as the map λ 7→ λ(p). (see
Section 2.4.2). In [4] (see also [6, Formula 16.1]) the following result is proved.

Theorem 6.2
DM(X) =

⊕

p∈C0(X)

ϕpD(Xp).

Since every D(Xp) is defined by homogeneous differential equations, it is naturally graded, the degree
of every element being just its degree as a polynomial. The Hilbert series of D(Xp) is known to be
TXp

(1, y); in other words, the coefficients of this polynomial equal the dimensions of the graded parts
(see [2] or [6, Theorem 11.8]). Then, by the theorem above, also the space DM(X) is graded, and by
Lemma 6.1 we have:

Theorem 6.3 MX(1, y) is the Hilbert series of DM(X).

By comparing this theorem with Proposition 2.1 we recover the following known result, which can be
found for example in ([6, Chapter 13]) :

Corollary 6.4 The dimension of DM(X) equals the volume of the zonotope Z(X).
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7 The case of root systems
This section is devoted to describe a remarkable class of examples. We will assume standard notions
about root systems, Lie algebras and algebraic groups, which are exposed for example in [13] and [12].

Let Φ be a root system, 〈Φ∨〉 be the lattice spanned by the coroots, and Λ be its dual lattice (which is
called the cocharacters lattice). Then we define as in Section 4.2 a torus T = TΛ having Λ as group of
characters. In other words, if g is the semisimple complex Lie algebra associated to Φ and h is a Cartan
subalgebra, T is defined as the quotient T .

= h/〈Φ∨〉.
Each root α takes integer values on 〈Φ∨〉, so it induces a character eα : T → C/Z ' C∗. Let X be the

set of this characters; more precisely, since α and −α define the same hypersurface, we set

X
.
=
{
eα, α ∈ Φ+

}
.

In this way to every root system Φ is associated a toric arrangement. These arrangements have been
studied in [15]; we now show two applications to the present work. Let W be the (finite) Weyl group of
Φ, and let W̃ be the associated affine Weyl group. We denote by s0, . . . , sn its generators, and by Wk the
subgroup of W̃ generated by all the elements si but sk. Let Φk ⊂ Φ be the root system of Wk, and denote
by Xk the corresponding sublist of X . Then we have:

Corollary 7.1

MX(1, y) =
n∑

k=0

|W |
|Wk|

TXk
(1, y).

Furthermore, in [15] the following theorem is proved. Let W be the Weyl group of Φ.

Theorem 7.2 The Euler characteristic ofRX is equal to (−1)n|W |.
By comparing this statement with Corollary 5.8, we get the following

Corollary 7.3
MX(1, 0) = |W |.

It would be interesting to have a more direct proof of this fact.
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Fully Packed Loop configurations in a triangle
and Littlewood Richardson coefficients

Philippe Nadeau
Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, AUSTRIA.

Abstract. We are interested in Fully Packed Loops in a triangle (TFPLs), as introduced by Caselli at al. and studied
by Thapper. We show that for Fully Packed Loops with a fixed link pattern (refined FPL), there exist linear recurrence
relations with coefficients computed from TFPL configurations. We then give constraints and enumeration results
for certain classes of TFPL configurations. For special boundary conditions, we show that TFPLs are counted by the
famous Littlewood Richardson coefficients.

Résumé. Nous nous intéressons aux configurations de “Fully Packed Loops” dans un triangle (TFPL), introduites par
Caselli et al. et étudiées par Thapper. Nous montrons que pour les Fully Packed Loops avec un couplage donné, il
existe des relations de récurrence linéaires dont les coefficients sont calculés à partir de certains TFPLs. Nous donnons
ensuite des contraintes et des résultats énumératifs pour certaines familles de TFPLs. Pour certaines conditions au
bord, nous montrons que le nombre de TFPL est donné par les coefficients de Littlewood Richardson.

Keywords: Razumov Stroganov conjecture, Fully Packed Loop, Littlewood–Richardson coefficients

1 Introduction
The recently proved Razumov-Stroganov correspondence [RS04, CS10] states that the ground state com-
ponents ψπ of the so called O(1) loop model are equal to the refined Fully Packed Loop number Aπ ,
where π is a link pattern (see Section 1.1 for definitions on FPLs). Although certain general expressions
have been developed for the ψπ’s from which results could be obtained (see [ZJ] and references therein),
explicit formulas for the Aπ’s are known only in certain very special cases of link patterns (cf. [ZJ06]).

The purpose of this article is to study the numbers Aπ thanks to the decomposition found in [CKLN06]
which involves the counting of FPLs in a triangle (TFPLs). More recently, the paper [Tha07] developed
new ideas and conjectures concerning these TFPLs, and was the original motivation for the present paper.
We will actually first prove a conjecture of [Tha07] about certain recurrence relations for the numbers
Aπ that involve coefficients computed from TFPLs. Then we will start the study of TFPL configurations
themselves, gathering several of their properties, the most striking being Theorem 4.3 which shows that a
certain subclass of TFPLs turns out to be enumerated by Littlewood Richardson coefficients.

This work is thus a starting point in the study of TFPLs. Our results will show that these are not
only interesting by themselves, but are also a promising tool in order to obtain explicit recurrences or
expressions for the refined FPL numbers Aπ .

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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In the rest of this section we define FPL configurations, and notions related to words and partitions.
In Section 2 FPLs in a triangle are defined, and we prove Theorem 2.5 about linear recurrence relations
for the numbers Aπ . In Section 3, we prove certain properties and constraints of TFPL numbers, giving
in particular a very nice new proof of Theorem 3.1 from [CKLN06]. Finally, we prove Theorem 4.3
mentioned above in Section 4.

1.1 Fully Packed Loop configurations
We fix a positive integer n, and let Gn be the square grid with n2 vertices; we impose also periodic
boundary conditions on Gn, which means that we select every other external edge on the grid, starting
by convention with the topmost on the left side, and we will number these 2n external edges counter-
clockwise. A Fully Packed Loop (FPL) configuration F of size n is defined as a subgraph of Gn such
that each vertex of Gn is incident to two edges of F . An example of configuration is given on Figure 1
(left). We let An be the total number of FPL configurations on the grid Gn. It is well known that FPL
configurations are in bijection with alternating sign matrices (cf. [Pro01] for instance), and thus we have
the famous enumeration proved independently by Zeilberger [Zei96] and Kuperberg [Kup96]:

An =
n−1∏

i=0

(3i+ 1)!

(n+ i)!

1

2

3

4

5 6 7

8

9

10

11

121314

1

2

3

4

5
6

7

8

9

10

11

12
1314

Fig. 1: A FPL configuration of size 7.

Define a link pattern π of size n as a matching on {1, . . . , 2n} of n pairwise noncrossing pairs {i, j}
between these 2n points, which means that there are no integers i < j < k < ` such that {i, k} and {j, `}
are both in π. A FPL configuration on Gn naturally defines nonintersecting paths between its external
edges, so we can define the link pattern π(F ) as the set of pairs {i, j} where i, j label external edges
which are the extremities of the same path in F . For instance, if F is the configuration of Figure 1, then
π(F ) is the link pattern shown on its right, represented as a chord diagram.

Definition 1.1 (Aπ and Aπ) Let π be a link pattern. The set Aπ is defined as the set of all FPL config-
urations F of size n such that π(F ) = π. We also let Aπ := |Aπ|.
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Wieland’s theorem: Given a link pattern π, consider the rotated link pattern r(π) defined by {i, j} ∈
r(π) if and only if {i − 1, j − 1} ∈ π, where indices are taken modulo 2n. A beautiful result of
Wieland [Wie00] states that Aπ = Ar(π), by giving a bijection between Aπ and Ar(π).

Nested arches and Aπ(m): Given a link pattern π on {1, . . . , 2n}, and an integer m ≥ 0, let us define
π ∪ m as the link pattern on {1, . . . , 2(n + m)} given by the “nested” pairs {i, 2n + 2m + 1 − i} for
i = 1 . . .m, and the pairs {i+m, j +m} for each {i, j} ∈ π. We will want to study the numbers Aπ∪m
as functions of m, so we introduce the notation Aπ(m) := Aπ∪m.

1.2 Words, Ferrers diagrams, link patterns
We consider finite words on the alphabet with two letters 0 and 1, simply named words. For u a word, we
let |u|0 denote its number of zeros, |u|1 its number of ones, and |u| = |u|0 + |u|1 its total length.

Proposition 1.2 Given nonnegative integers k, `, there is a bijection between words σ such that |σ|0 = k
and |σ|1 = `, and Ferrers diagrams fitting in the rectangle with k rows and ` columns.

Proof: This is very standard. Given such a word σ = σ1 · · ·σk+`, construct a path on the square lattice
by drawing a North step when σi = 0 and an East step when σi = 1, for i from 1 to k+ `. Then complete
the picture by drawing a line up from the starting point, and a line left of the ending point; the resulting
region enclosed in the wanted Ferrers diagram; see Figure 2 for an example. 2

σ = 0101011110

σ

0 1

|σ| = 10, |σ|0 = 4, |σ|1 = 6

Fig. 2: Bijection between words and Ferrers diagrams.

Since we do not want to introduce too much notation, we use the bijection of Proposition 1.2 to identify
words and their corresponding Ferrers diagrams in the rest of the article. The conjugate σ∗ of σ =
σ1 · · ·σn is the word of length n defined by σ∗i := 1− σn+1−i. Clearly we have (σ∗)∗ = σ. The degree
of σ is the number of indices i < j such that (σi, σj) = (1, 0), and is noted d(σ); it is the number of
boxes in the Ferrers diagram representation. For instance we have d(σ) = 9 for the example of Figure 2.

Suppose that σ, τ are words that verify |σ|0 = |τ |0 and |σ|1 = |τ |1, so that they form Ferrers diagrams
included in a common rectangle by Proposition 1.2. We define σ ≤ τ if σ is included in τ in the diagram
representation: this is equivalent to σ≤i ≤ τ≤i for all indices i, where σ≤i =

∑
j≤i σj . If σ ≤ τ , we

define the skew shape τ/σ as the set of boxes that are in τ but not in σ; if there are no two boxes in the same
column, then τ/σ is a horizontal strip, and we write σ → τ . We define a semistandard Young tableau of
shape σ, and length N ≥ 0 to be a sequence (σi)i=0...N of words such that σ0 = 0→ σ1 . . .→ σN = σ,
where 0 is the empty partition. This is equivalent to the standard definition, i.e. a filling of the boxes of
the diagram σ by positive integers not bigger than N , nondecreasing across each row from left to right
and increasing down each column.
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Suppose that u is a box in the diagram σ, which is in the kth row from the top and `th column from
the left. The content c(u) of u is defined as ` − k, while its hook-length h(u) is defined as the number
of boxes in σ which are below u and in the same column, or right of u and in the same row ( u itself
being counted just once); define also Hσ =

∏
h(u) where the product is over all cells u of the diagram

σ. We have then the hook content formula, which states that the number of semistandard Young tableaux
of shape σ and length N ≥ 0 is given by the following polynomial in N with leading term 1

Hσ
Nd(σ):

SSYT(σ,N) :=
1

Hσ

∏

u∈σ
(N + c(u)) (1)

Link patterns and the set Dn: A link pattern π on {1, . . . , 2n} can also be considered as a word of
length 2n, where for each pair {i, j} in π we set πi = 0 and πj = 1. Such words π form the following
subset of {0, 1}2n:

Definition 1.3 (Dn) We denote by Dn the set of words σ of length 2n, such that |σ|0 = |σ|1 = n, and
each prefix u of σ verifies |u|0 ≥ |u|1.

These are known as Dyck words, and counted by the Catalan number |Dn| = Cn := 1
n+1

(
2n
n

)
. Note that

(Dn,≤) is a poset, with smallest element 0n := 0n1n and greatest element 1n := (01)n. We will identify
link patterns with words in Dn.

0

1
0

1
0

0

0
1 1 1

0 0 00 0 1 1 1 11

Fig. 3: The word 0010100111 ∈ D5 as a diagram and a link pattern.

2 FPL in a triangle and linear recurrence relations
In all this section n will be a fixed positive integer.

2.1 FPL configurations in a triangle
We will here recall briefly the triangle arising in [CKLN06, Tha07], and refer to these works for more
detail; we also advise the reader to look at Figure 4 while reading the definitions. We define the triangle
T n as the subset of Z2 consisting of the points of coordinates (x, y) which verify x ≥ y ≥ 0 and
x + y ≤ 4n − 2, with 2n external edges below all vertices (2i, 0) for i = 0 . . . 2n − 1, and horizontal
edges between (i, i) and (i+1, i), and between (4n−2−i−1, i) and (4n−2−i, i) for i = 0, . . . , 2n−2,
see left of Figure 4, where the edges in bold are the forced edges just described.

We consider the triangle with some extra conditions given by σ, τ words in Dn: if σ = σ1 . . . σ2n, we
add a vertical edge below (i − 1, i − 1) for each i such that σi = 0, while if τ = τ1 . . . τ2n, we add
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a vertical edge below (2n − 2 + i, 2n − i) for each i such that τi = 1. Note that σ and τ have to be
interpreted differently than in [Tha07].

Definition 2.1 A FPL configuration f in a triangle (TFPL) with boundary conditions σ, π, τ in Dn is a
graph on T n, where vertical edges on the left and right boundary are given by σ and τ as above. All
vertices (except on the left and right boundaries) are imposed to be of degree 2, and we have furthermore
(1) the 2n bottom external edges must be linked by paths in T n according to the link pattern π, and (2)
the paths starting on the left boundary must end on the right boundary; cf Figure 4 for an example. The
set of these TFPLs is denoted T πσ,τ , and we define tπσ,τ as the cardinality |T πσ,τ |.

π

σ τ

0

0

0

0

0 0
0

0

1 1

11 1
1

1

1

1

0
0 = σ1

σ2

σ3

σ4

σ5

1 = σ6 τ1 = 0

τ2

τ3

τ4

τ5

τ6 = 1

Fig. 4: Boundary conditions for FPL in a triangle.

2.2 Linear recurrences for refined FPL numbers
The link between FPLs and TFPLs is given by the following formula from [CKLN06]: for m ≥ 0,

Aπ(m) =
∑

σ,τ∈Dn
SSYT(σ, n) · tπσ,τ · SSYT(τ∗,m− 2n+ 1), (2)

Following Thapper [Tha07], we now consider endomorphisms of CDn, the vector space of formal
complex linear combinations of elements of Dn. We will write such endomorphisms g as matrices in the
canonical basis Dn, so that, if σ, τ ∈ Dn, we denote by gστ the coefficient of σ in the expansion of g(τ).
Then we define b by bστ = 1 if σ → τ , and bστ = 0 otherwise. We define b̃ by b̃στ = 1 if τ∗ → σ∗

and b̃στ = 1 otherwise. Given π ∈ Dn, we also let (tπ)στ = tπσ,τ . By definition of semistandard Young
Tableaux, we have SSYT(σ, n) = (bn)0nσ and SSYT(τ∗,m − 2n + 1) = (b̃m−2n+1)τ0n . So we can
rewrite Equation (2) as

Aπ(m) =
(
bntπb̃m−2n+1

)
0n0n

(3)

We have then the following Proposition conjectured by Thapper [Tha07, Conjecture 3.4]:

Theorem 2.2
btπ = tπb̃ for all π ∈ Dn. (4)
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Proof (Sketch): As shown by Thapper, the coefficients on the left and right side enumerate some config-
urations in “extended” triangles. By studying Wieland’s rotation (cf. Section 1.1), it is possible to show
that this can be applied in these extended triangles, and that it indeed exchanges bijectively left and right
extended triangles. Note that one has to apply either H0 or H1 in Wieland’s original notation in [Wie00],
and not the composition H0 ◦ H1: this shifts the link pattern π, and one has to check that the boundary
conditions σ and τ are indeed preserved. 2

Now we can apply the commutation relation (4) repeatedly in Equation (3), and obtain Aπ(m) =(
bm−n+1tπ

)
0n0n

which can be expanded as
∑
σ∈Dn SSYT(σ,m − n + 1) · tπσ,0n ; this involves only

TFPLs with τ = 0n, so if we introduce t as (t)σπ = tπσ,0n we get :

Proposition 2.3 For all integers m ≥ 0, we have Aπ(m) =
(
bm−n+1t

)
0nπ

.

We can now use the beautiful idea of Thapper: by Theorem 3.1, the coefficients tπσ,0n of t are integers,
equal to 0 unless σ ≤ π, and such that tππ,0n = 1. This means that, if we give the basis Dn a linear order
extending≤, then the matrix of t is upper triangular with ones on its diagonal. It is thus invertible, with its
inverse t−1 being also triangular with ones on its diagonal, and with integer entries. We can thus define:

Definition 2.4 We define the matrix c by c := t−1bt.

We can now state the main result of this section, conjectured by Thapper [Tha07, Proposition 3.5]:

Theorem 2.5 For any π ∈ Dn, we have the polynomial identity:

Aπ(m) =
∑

α∈Dn
cαπAα(m− 1)

Proof: By Proposition 2.3 and the definition of c, we get for any m

Aπ(m) =
(
bm−n+1t

)
0nπ

=
(
bm−ntc

)
0nπ

=
∑

α∈Dn

(
bm−nt

)
0nα

cαπ,

from which the result follows, again by Proposition 2.3. 2

We remark that the coefficients cαπ are not the unique integers verifying Theorem 2.5. But first, we
have a uniform definition for them. Second, there is evidence that they are “good” coefficients, based on
data communicated to the author by J. Thapper: these numbers are quite small (they are between −1 and
2 for n = 5, while the supremum of t exceeds 80000), and we conjecture that they verify cαπ = cα∗π∗ ,
that cαπ only depends on the skew shape π/α, and many other properties. It seems that there is hope that
these coefficients have a direct combinatorial characterization.

3 Some properties of TFPL configurations
In this Section we will prove certain enumerative questions related to TFPL configurations. In particular
we give a new proof of the following theorem, which was essential in Section 2.2:

Theorem 3.1 Let σ, π, τ be in Dn. Then tπσ,τ = 0 unless σ ≤ π. Moreover, if σ = π, then tππ,0n = 1 and
tππ,τ = 0 for τ 6= 0n.

It was proved first in [CKLN06, Section 7] in a very technical way, while here our proof (see Sec-
tion 3.2) is much shorter and illuminating.
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3.1 Oriented TFPL configurations
The vertices of Tn can be partitioned in lines: for i ∈ {1, . . . , 2n}, we defineEi as the vertices of T n such
that x+y = 2i−2, and for i ∈ {1, . . . , 2n−1}, we defineOi as the vertices of T n such that x+y = 2i−1.
The case n = 3 is given on Figure 5. Now let us suppose we have boundary configurations σ, τ, π on
the triangle Tn. We first define an orientation for all edges around the triangle as follows. On the left
boundary, we orient edges to the right and upwards; on the right boundary, we orient them to the right
and downwards; for the 2n vertical external edges on the bottom, we orient the one attached to (2i− 2, 0)
upwards if πi = 0, and downwards if πi = 1, for i ∈ {1, . . . , 2n}. Now given a TFPL configuration f in
T πσ,τ , we now orient all remaining edges so that each vertex of degree 2 have one incoming edge and one
outgoing edge. This condition determines clearly the orientation of edges in a path of f joining external
edges, and by convention we orient the closed paths of f clockwise. In this way we associate to each
configuration f ∈ T πσ,τ an oriented configuration that we will denote by or(f).

E1
O1

E2

O2

E3

O3

E4

O4

E5

O5

E6

Fig. 5: Lines Ei and Oi.

3.2 Proof of Theorem 3.1
Definition 3.2 (Ni(f) and Ni(f)) Let σ, τ, π be in Dn, f be a configuration in T πσ,τ , and i be an integer
in {1, . . . , 2n−1}. We defineNi(f) as the set of oriented edges in or(f) which are directed from a vertex
in Oi to a vertex in Ei. We also define Ni(f) = |Ni(f)|, and N0(f) = 0 by convention.

These oriented edges are circled in the example of Figure 5, and we get Ni(f) = 0, 1, 1, 1, 0 for
i = 1, 2, 3, 4, 5 respectively. We can now state the key lemma:

Lemma 3.3 Let σ, τ, π be in Dn, and f a configuration in T πσ,τ . Then

Ni(f)−Ni−1(f) = πi − σi, for i = 1, . . . , 2n− 1. (5)

Proof: We consider the oriented configuration or(f). The i vertices ofEi have one incoming edge, except
(i− 1, i− 1) when σi = 1. If this incoming edge comes from Oi it is an element of Ni(f); let Xi(f) be
the other incoming edges, and xi(f) := |Xi(f)|. We have then

Ni(f) + xi(f) + σi = i. (6)
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Similarly, consider the i − 1 vertices on the line Oi−1: each of them has exactly one outgoing edge, and
if this edge goes to the line Ei−1 it is by definition in Ni−1(f). We form the set Yi(f) with the other
outgoing edges of Oi−1, and let yi(f) := |Yi(f)|. We obtain here

Ni−1(f) + yi(f) = i− 1. (7)

Now the sets Yi(f) and Xi(f) coincide except in the case πi = 0, where there is an external edge
incoming in (2i− 2, 0) ∈ Ei (by definition of the orientation) and therefore belongs to Xi and not to Yi.
Thus xi(f) = yi(f) + (1− πi) and by injecting this in Equations (6) and (7) we deduce Equation (5). 2

We can now give the proof of the first half of Theorem 3.1. If we sum the relations (5) for i going from
1 to j, then for any j ∈ {1, . . . , 2n} we obtain π≤j −σ≤j = Nj(f). Since this is nonnegative, this proves
that σ ≤ π (cf. Section 1.2), and we are done. The second part of Theorem 3.1 is much easier, see the end
of Section 7 in [CKLN06].

3.3 Common prefixes and suffixes
We just showed that TFPLs exist only when σ ≤ π (and τ ≤ π by symmetry), and that in case of equality
σ = π there is just one configuration, when τ = 0n. It is natural to ask what happens when σ is smaller
than π but “close” to it, and one possible answer is the following:

Theorem 3.4 Let π, σ, τ ∈ Dn, and suppose that there exist words u, σ′, π′, v such that σ = uσ′v and
π = uπ′v (concatenation of words). Let a = |u|0 + |v|0 and b = |u|1 + |v|1. Then tπσ,τ = 0 unless τ is of
the form τ = 0aτ ′1b.

The proof is quite technical and will be omitted here. It involves a slight variant of de Gier’s lemma on
fixed edges [dG05, Lemma 8], in which we make use of the oriented TFPL configurations of Section 3.1.

There is one special case emerging naturally in the proof, which is when π′ = 1n−b0n−a; note that
this means that π/σ is a rotated diagram, i.e. a skew shape which is the (translated of) a Ferrers diagram
after a half turn. In this case, each vertex of Tn can be shown to be incident to at least one fixed edge,
and another observation of de Gier can be used to show that the enumeration of T πσ,τ is then reduced to a
tiling problem, whose solution in our case can be written under the form of a single determinant of size
min(n− a, n− b). So if π/σ is a row or a column of cells, we get a single binomial coefficient.

3.4 Extremal TFPL configurations
We recall that d(σ) is the number of boxes in the Ferrers diagram of σ.

Proposition 3.5 One has tπσ,τ = 0 unless d(σ) + d(τ) ≤ d(π). Furthermore, for every π ∈ Dn we have

1

Hπ
=

∑

σ,τ∈Dn
d(σ)+d(τ)=d(π)

tπσ,τ ·
1

2d(σ)Hσ
· 1

2d(τ)Hτ
. (8)

We reproduce the argument of [Tha07, Lemma 3.7] which is the first part of the proposition.

Proof: As Equation (2) shows, Aπ(m) is polynomial in m, and using Theorem 3.1 and (1), it is easy
to deduce as in [CKLN06] that it is a polynom with leading term 1

Hπ
md(π). Now using relation (4) and
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assuming m is an even integer, we can get from (3) that Aπ(m) =
(
bm/2tπb̃m/2−n+1

)
0n0n

, i.e.

∑

σ,τ∈Dn
SSYT(σ,m/2) · tπσ,τ · SSYT(τ∗,m/2− n+ 1).

This is also polynomial in m, and thus the coefficients of degree > d(π) must vanish, which implies the
first part of the proposition. The second part follows by taking the coefficient of degree d(π) in this last
expression, which is necessarily equal to 1

Hπ
md(π). 2

We will call extremal the TFPL configurations verifying d(σ) + d(τ) = d(π).

4 TFPL and Littlewood Richardson coefficients
In this section we will show that the coefficients tπσ,τ when d(σ)+d(τ) = d(π) are given by the Littlewood
Richardson coefficients.

4.1 Littlewood Richardson coefficients and puzzles
We refer to [Sta99] for background on symmetric functions. Let x = (x1, x2, . . .) be commuting in-
determinates, and let Λ(x) be the ring of symmetric functions in x. Schur functions sλ(x) (λ a Ferrers
diagram) form a basis of Λ(x), and the Littlewood–Richardson (LR) coefficients cνλ,µ are defined as the
coefficients in the expansion of their products sµ(x)sν(x) =

∑
λ c

λ
µ,νsλ(x). The LR coefficient cνλ,µ is

0 unless λ ≥ µ, ν and d(µ) + d(ν) = d(λ). Schur functions can be defined combinatorially in terms
of semistandard Young tableaux, and in this case it is clear that, under the specialization xi = 1 for
i = 1 . . . N and xi = 0 otherwise, sλ(x) is equal to SSYT(λ,N).

If one introduces sλ(x, y) as the Schur function in variables x1, x2, . . . , y1, y2, . . . then it is shown
in [Sta99, p.341] that sλ(x, y) =

∑
µ,ν c

λ
µ,νsµ(x)sν(y). By specializing at xi = yi = 1 for i = 1 . . .m

and xi = yi = 0 for i > m, we get a polynomial identity in m which in top degree can be written as:

1

Hλ
=
∑

µ,ν

cλµ,ν ·
1

2d(µ)Hµ
· 1

2d(ν)Hν
. (9)

The LR coefficients are easily seen to be nonnegative integers by character theory [Sta99, p.355];
many combinatorial descriptions of them are also known, the most famous being the original Littlewood
Richardson rule [LR34]. We will here use the (slightly adatpted) Knutson Tao puzzles [KTW04, KT03]:

Definition 4.1 (Knutson Tao puzzle) Let n be an integer, and σ, π, τ words in Dn. Consider a triangle
with edge size 2n on the regular triangular lattice, where unit edges on left, bottom and right side are
labelled by σ, π, τ respectively. A Knutson-Tao (KT) puzzle with boundary σ, π, τ is a labeling of each
internal edge of the triangle with 0,1 or 2, such that the labeling induced on each of the (2n)2 unit
triangles is composed either of three 0, or of three 1, or has 0, 1, 2 in counterclockwise order.

The exhaustive list of all authorized labelings of triangles is given on the left of Figure 6, and on the
right we have an example of a puzzle with boundaries σ = 00011011, π = 00110101, τ = 00011011. It
turns out that KT puzzles give a combinatorial interpretation for LR coefficients.

Theorem 4.2 ([KTW04, KT03]) KT-puzzles with boundary σ, π, τ are counted by cπσ,τ .
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Fig. 6: Authorized triangles in a KT puzzle, and an example.

4.2 The enumeration of extremal TFPL configurations
We can finally state our final result:

Theorem 4.3 Given σ, π, τ such that d(σ) + d(τ) = d(π), we have tπσ,τ = cπσ,τ .

The proof consists in a bijective correspondence Φ from KT-puzzles with boundary σ, π, τ to TFPLs
in T πσ,τ . The definition is local: each piece of a puzzle is transformed into a small part of a TFPL config-
uration. In fact, we will define directly a bijection to oriented configurations (defined in 3.1). The rules
are described on Figure 7: non horizontal edges of unit triangles give rise to vertices in Tn, while the
horizontal ones are sent on lines y = i+ 1/2. After every triangle of a puzzle P has been tranformed (see
Figure 8, left), delete the original puzzle, and rescale the graph obtained so that vertices lie on a square
grid. To finish, remove the superfluous horizontal edges that appear along the left boundary, double the
length of the bottom vertical edges:the resulting graph on Tn is by definition Φ(P ): see Figure 8 again.
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Fig. 7: The local transformations of the bijection Φ.

Lemma 4.4 For any puzzle P with boundary σ, π, τ , Φ(P ) is an (oriented) TFPL configuration in T πσ,τ .

Proof: It is easily seen (albeit a bit tedious) to check by inspection of Figure 7 that the edges created on
the left and right boundaries of Φ(P ) correspond indeed to σ and τ , and that the bottom external edges
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are also present, all of them with their correct orientation. It is also the case, once again by inspection,
that the graph Φ(P ) is such that each of its vertices has one incoming edge and one outgoing.

Paths starting from the left side end up on the right side: indeed, the only other possibility is that such
a path p ends on the bottom side (the left side is not possible because of conflicting orientations); but this
case is easily dismissed, because in the region of Tn above p, there would remain less incoming edges (on
the left boundary) than outgoing edges (on the right boundary), which is absurd.

Finally, one needs to check that the paths connecting the bottom external edges follow the link pattern
π, and this is more subtle. We already checked that the orientation of these external edges is correct; we
must also show that the paths go globally “from left to right”, that is they should not connect two external
edges such that the left one is directed downwards and the right one upwards. Now such a bad path would
necessarily possess a subpath consisting of an up step followed by one or more steps to the left, followed
by one downstep; but a quick look at the rules of Figure 7 reveals that a step to the left is either preceded
by a down step, or followed by an up step, and thus bad paths cannot appear in Φ(P ). A similar reasoning
to the one for paths between the left and right boundaries then shows that paths between bottom external
edges follow the link pattern π; this finally proves that Φ(P ) is in T πσ,τ . 2
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0 1 1 1 10 0 0

Fig. 8: Example of the bijection Φ.

Proof of Theorem 4.3: The previous lemma showed that Φ is well defined. It is also clear that Φ is
injective, because the ten configurations of oriented edges on Figure 7 are all different, and thus from
a puzzle Φ(P ) one can reconstruct the labeling of all edges, i.e. the puzzle P . Note the importance of
orienting configurations here, because without them some of the local configurations become identified.
The injectivity implies by Theorem 4.2 that tπσ,τ ≤ cπσ,τ . Now comparing Equations (8) and (9) tells us
that for a fixed π,

∑
σ,τ c

π
σ,τXστ =

∑
σ,τ t

π
σ,τXστ for certain positive coefficients Xστ , the sum being

over σ, τ such that d(σ) + d(τ) = d(π). Together with the injectivity of Φ, this proves that tπσ,τ = cπσ,τ
and Φ is in fact bijective, completing the proof of the theorem. 2
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The Homology of the Real Complement of a
k-parabolic Subspace Arrangement
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Abstract. The k-parabolic subspace arrangement, introduced by Barcelo, Severs and White, is a generalization of the
well known k-equal arrangements of type-A and type-B. In this paper we use the discrete Morse theory of Forman to
study the homology of the complements of k-parabolic subspace arrangements. In doing so, we recover some known
results of Björner et al. and provide a combinatorial interpretation of the Betti numbers for any k-parabolic subspace
arrangement. The paper provides results for any k-parabolic subspace arrangement, however we also include an
extended example of our methods applied to the k-equal arrangements of type-A and type-B. In these cases, we
obtain new formulas for the Betti numbers.

Résumé. L’arrangement k-parabolique, introduit par Barcelo, Severs et White, est une généralisation des arrange-
ments, k-éguax de type A et de type B. Dans cet article, nous utilisons la théorie de Morse discrète proposée par
Forman pour étudier l’homologie des compléments d’arrangements k-paraboliques. Ce faisant, nous retrouvons les
résultats connus de Bjorner et al. mais aussi nous fournissons une interprétation combinatoire des nombres de Betti
pour des arrangements k-paraboliques. Ce papier fournit alors des résultats pour n’importe quel arrangement k-
parabolique, cependant nous y présentons un exemple étendu de nos méthodes appliquées aux arrangements k-éguax
de type A et de type B. Pour ce cas, on obtient de nouvelles formules pour les nombres de Betti.

Keywords: Subspace Arrangements, Discrete Morse Theory, Coxeter Groups

1 Introduction
Recall that the real (essentialized) k-equal subspace arrangement, An,k is defined to be the collection of
subspaces given by

xi1 = xi2 = · · ·xik and subject to the relation
n+1∑

i=1

xi = 0.

This arrangement was originally studied by Björner and Lovász in connection with linear decision trees
and the k-equal problem [3]. In particular, they showed how the Betti numbers could be used to give lower
bounds on the number of leaves in a decision tree which solves the k-equal problem. The cohomology
of the complement of this subspace arrangement was studied by Björner and Welker in [6]. The Betti
numbers have applications in the study of linear decision trees and the k-equal problem. Recall that the

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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complement of a subspace arrangementA is MA = Rn−∪X∈AX . In order to compute the cohomology
group of the complement they make use of the well known Goresky-MacPherson formula for subspace
arrangements [8].

Proposition 1.1 (Goresky-MacPherson Formula) Let A be subspace arrangement with complement
MA, and let LA be the intersection lattice of A. Then

H̃i(MA) ∼=
⊕

x∈L≥0̂

H̃codim(x)−i−2(∆(0̂, x)), (1)

where ∆(0̂, x) is the order complex of the interval between 0̂ and x.

By considering the homology of the intersection lattice of An,k, Björner and Welker were able to
give a description of the cohomology of the complement, MAn,k

. Later, Björner and Wachs [5] used
lexicographic shellability to study the intersection lattice LAn,k

.
This method of studying subspace arrangements via the Goresky-MacPherson formula and shellability

of the intersection lattice was continued in the work of Björner and Sagan [4]. In this work they define
type-B and type-D analogues of the k-equal subspace arrangement. They then show that the intersection
lattice in the case of type-B is shellable and prove results about the cohomology of the complement of the
type-B k-equal arrangement using the Goresky-MacPherson formula.

The cohomology of complement of the type-D k-equal arrangement was further studied by Feichtner
and Kozlov. In [7], they prove that the intersection lattice of the type-D k-equal subspace arrangement
is shellable for large values of k and again use the Goresky-MacPherson formula to calculate the co-
homology groups in those cases. Their approach uses a generalization of lexicographic shellability due
to Kozlov [10]. For smaller values of k, Feichtner and Kozlov use more sophisticated techniques from
algebraic topology to approach the problem.

In this paper, we revisit the study of the complement of the k-equal arrangements of type-A,B and
D. via a generalization known as k-parabolic subspace arrangements. Introduced by Barcelo, Severs and
White in [2], the k-parabolic arrangement is a real subspace arrangement that may be defined for any finite
real reflection group, W . The subspaces in the arrangement are those which are fixed under the action of
irreducible parabolic subgroups of W that have rank k − 1. More information on these arrangements is
provided in Section 2.

Our study of the homology of the complement of the k-parabolic subspace arrangement is not done
via the Goresky-MacPherson formula and the intersection lattice, but rather by using the discrete Morse
theory of Forman. First we construct a polyhedral complex ∆k(W ) that is homotopy equivalent to the
complement of the k-parabolic arrangement. Recall that the poset of all cosets of parabolic subgroups
under inclusion is isomorphic to the face lattice of the Coxeter arrangement corresponding to W . We
obtain the face poset for ∆k(W ) by removing the upper order ideals corresponding to the irreducible
parabolic subgroups of rank k−1. We then create an acyclic matching on this poset and use discrete Morse
theory to calculate the homology groups and Betti numbers for ∆k(W ), and hence the complement.

The remainder of the paper is divided into three sections. In the first section we recall some definitions
and theorems that we will need concerning k-parabolic subspace arrangements and discrete Morse theory.
In the next section we provide an extended example of our methods using the type-A and type-B k-equal
subspace arrangements. These arrangements should be familiar to most readers and give a more intuitive
look at our matching and study of the homology of the complement. Moreover, we obtain new formulas
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for the Betti numbers of these arrangements, along with a new combinatorial interpretation for them. In
the final section we present our matching in fullest generality as well, including some periodicity results
for the homology, and a combinatorial interpretation of the Betti numbers. We also mention some open
questions.

2 Background
The material on k-parabolic arrangements in this section is taken from [2]. The definitions and theorems
concerning discrete Morse theory are primarily from Kozlov’s Combinatorial Algebraic Topology [9], but
may also be found in many other papers and books. This section contains no new material.

2.1 k-parabolic subspace arrangements
We start with the definition of the k-parabolic arrangement Wn,k. Choose a finite real reflection group
W of rank n with simple reflections S. A parabolic subgroup is a subgroup of the form w〈I〉w−1, for
some I ⊆ S,w ∈ W . Consider P(W ), the lattice of all parabolic subgroups of W . It was shown by
Barcelo and Ihrig [1] that the intersection lattice of the Coxeter arrangement associated to W , L(H(W )),
is isomorphic to P(W ). The isomorphism is established by sending a parabolic subgroup to the set of
points in Rn that it fixes, and sending an intersection of hyperplanes in the Coxeter arrangement to the
parabolic subgroup of W that fixes the points in the intersection. We will use this correspondence to
define a k-parabolic subspace arrangement associated to W .

Definition 2.1 (k-parabolic subspace arrangement) Let W be a finite real reflection group of rank n
and let Pn,k(W ) be the lattice of all irreducible parabolic subgroups ofW of rank k−1. The k-parabolic
subspace arrangement,Wn,k is the collection of subspaces

{Fix(G)|G ∈ Pn,k(W )}

As with the k-equal arrangement, the k-parabolic arrangement can be embedded in its corresponding
Coxeter arrangement. This allows us to think of the subspaces inWn,k as intersections of hyperplanes of
the Coxeter arrangement. Also, L(Wn,k) is a subposet of L(H(W )) = L(Wn,2).

If we let W = An then it is easy to see that we recover the k-equal subspace arrangement from the
introduction. Furthermore, if we let W = Bn, we recover the Bn,k,k−1 subspace arrangements of Björner
and Sagan. We note however when W = Dn, we do not recover the Dn,k arrangements of Björner and
Sagan except in the special case k = 3.

The natural embedding of Wn,k into the Coxeter arrangement allows us to use a construction, due to
Orlik [11], to create a cell complex homotopy equivalent to the complement. To be more precise, there is a
order-reversing correspondence between the face poset of the Coxeter arrangement and the dual zonotope,
known as the W -Permutahedron. Under this correspondence, removing a subcomplex of faces ofWn,k

is homotopy equivalent to a polyhedral subcomplex of the Permutahedron. In the case of the complement
MWn,k

, we apply this fact to the subcomplex generated by all faces contained in a subspace ofWn,k. We
shall call the resulting cell complex ∆k(W ).

Lemma 2.2 There exists a polyhedral complex, ∆k(W ), such that ∆k(W ) is homotopy equivalent to
MWn,k

. Moreover, the face poset of ∆k(W ) is a subposet of the poset of cosets of parabolic subgroups of
W , ordered by inclusion. It is obtained by removing all upper order ideals generated by any uG, where
G is an irreducible parabolic subgroup of rank k − 1.



316 Christopher Severs and Jacob A. White

2.2 Discrete Morse theory
Robin Forman’s discrete Morse theory provides a means to calculate the homology groups of a simplicial
or CW complex by studying the face poset of the complex. Informally, the goal is to find an acyclic
matching on the face poset of the complex. Then the main results of discrete Morse theory state that the
original complex is homotopy equivalent to a complex that has one cell of dimension i for each unmatched
element in the poset on level i−1. We will see that this is especially useful if there are unmatched elements
on only one level, or if there is a gap between the levels which share unmatched elements. In these cases,
we are able to easily calculate the homology groups of the complex.

We begin by presenting the definition of an acyclic matching that we will use.

Definition 2.3 ([9], Definition 11.1) Let P be a poset.

1. A partial matching in P is a partial matching in the underlying graph of the Hasse diagram of P ,
i.e., it is a subset M ⊆ P × P such that

• (a, b) ∈M implies b � a (b covers a);

• each a ∈ P belongs to at most one element in M .

When (a, b) ∈M we write a = d(b) and b = u(a).

2. A partial matching on P is called acyclic if there does not exist a cycle

b1 � d(b1) ≺ b2 � d(b2) ≺ · · · ≺ bn � d(bn) ≺ b1

with n > 2 and all bi ∈ P being distinct.

The second condition may be thought of in the following way. Consider the Hasse diagram of P as a
directed graph, with all of the edges oriented downwards, from larger to smaller. Now, if (a, b) ∈ M , we
change the orientation of the edge connecting a and b. The matching is called acyclic if the directed graph
obtained in the above manner is acyclic. Oftentimes the Cluster Lemma, or Patchwork Theorem, is used
to construct acyclic matchings.

Lemma 2.4 ([9], Theorem 11.10) Assume that ϕ : P → Q is an order-preserving map, and assume that
we have acyclic matchings on subposets ϕ−1(q) for all q ∈ Q. Then the union of these matchings is itself
an acyclic matching on P .

The proof that our matching for the k-parabolic arrangements is acyclic will rely on Lemma 2.4. In
application, one tries to break a poset P into ’smaller’ pieces, and place an acyclic matching on these
pieces. In our case, we will give the matching, and then show that it restricts to fibers, to help simplify the
proof that the matching is acyclic.

Given an acyclic matchingM on a poset P , we say the elements in P \M are critical. The fundamental
theorem of discrete Morse theory states that the critical elements correspond to the cells or simplices of a
new complex that the original complex is homotopy equivalent to.

Theorem 2.5 ([9], Theorem 11.13) Let ∆ be a polyhedral complex, and let M be an acyclic matching
on F(∆) \ {0̂}. Let ci denote the number of critical i-dimensional cells of ∆.
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(a) If the critical cells form a subcomplex ∆c of ∆, then there exists a sequence of cellular collapses
leading from ∆ to ∆c.

(b) In general, the space ∆ is homotopy equivalent to ∆c, where ∆c is a CW complex with ci cells in
dimension i.

(c) There is a natural indexing of cells of ∆c with the critical cells of ∆ such that for any two cells σ
and τ of ∆c satisfying dim σ = dim τ + 1, the incidence number [τ : σ] is given by

[τ : σ] =
∑

c

w(c).

Here the sum is taken over all alternating paths c connecting σ with τ , i.e., over all sequences c =
(σ, a1, u(a1), . . . , at, u(at), τ) such that σ � a1, u(at) � τ , and u(ai) � ai+1 , for i = 1, ..., at−1.
For such an alternating path, the quantity w(c) is defined by

w(c) := (−1)t[a1 : σ][τ : u(at)]

t∏

i=1

[ai : u(ai)]

t−1∏

i=1

[ai+1 : u(ai)]

where the incidence numbers in the right-hand side are taken in the complex ∆.

3 The type-A and type-B k-equal arrangements
In this section we give two examples of our usage of discrete Morse theory on k-parabolic subspace
arrangements. The examples we have chosen, the type-A k-equal arrangement (An,k) and the type-B k-
equal arrangement (Bn,k,k−1) have been studied and should be familiar to many readers. We have chosen
to present these two examples first because we believe they give the most intuitive look at our matching,
and because our matching can be used to obtain new results regarding these arrangements.

3.1 Acyclic matching and homology results for the k-equal arrangement
We start with the type-A k-equal arrangement. This arrangement, described in the introduction, is embed-
ded in the Coxeter arrangement,H(An). It is well known that the face lattice F(H(An)) may be thought
of as the poset of all set compositions of [n+ 1] with reverse refinement as the partial order.

We need to obtain a combinatorial description of the face lattice of ∆k(An). Since the face poset of
the Permutahedron is dual to F(H(An)), first we reverse the partial order. Then we consider faces of
the Permutahedron whose corresponding set compositions have a block of size k and remove the upper
order ideal of these elements. This will leave us with a subposet of F(H(An)) in which all elements
have blocks of size at most k − 1. In order to construct a matching on the face poset of the complement,
F(∆k(W )) we need the following definition.

Definition 3.1 Given two sets S, T ∈ [n+ 1] with S ∩ T = ∅, we say that there is a descent from set S to
set T if max(S) > min(T ). Otherwise we say there is an ascent from S to T .

We are now ready to construct a matching M on F(∆k(W )). The matching is given by the following
algorithm: Given an element (B1, B2, . . . , Bt) we consider pairs of adjacent blocks Bi and Bi+1. We
start with i = 1.
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1. If Bi is not a singleton, we match

(B1, . . . , Bi, Bi+1, . . . , Bt)

with
(B1, . . . , Bi−1, {min(Bi)}, Bi \ {min(Bi)}, . . . , Bt).

2. If there is a descent from Bi to Bi+1, we set i = i+ 1 and start over at step one.

3. If |Bi+1| = k − 1, then we set i = i+ 2 and start over at step one.

4. We match
(B1, . . . , Bi, Bi+1, . . . , Bt)

with the element
(B1, . . . , Bi ∪Bi+1, . . . , Bt).

Note that it is only possible to match elements that differ by the addition or removal of a singleton and
hence are on adjacent levels of the poset. The algorithm finishes when a match is found or we reach i = t.
In the latter case, we have identified a critical element.

Proposition 3.2 The matching M described above is acyclic.

The result follows from the general case, Proposition 4.1. The elements that are unmatched have a
series of singletons with a descent between each adjacent pair, followed by an ascent to a size k−1 block,
followed by a series of singletons with a descent between each adjacent pair, followed by an ascent to a
size k − 1 block, etc. An example of the matching along with some critical elements is shown in Figure
1. In the example, there are three elements on the same level of the poset. The first is matched with an
element above by merging two blocks. The second is matched with an element below by splitting a block,
and the third is a critical element. In the example, n = 8 and k = 4.

23/468/1/579

2/3/468/1/579 2/1/367/4/5891/279/6/45/38

1/279/6/4/5/38

Fig. 1: A matching between elements in ∆4(A8)

Also note that critical elements may only occur on levels that are a multiple of k− 2. By Theorem 2.5,
we can already conclude thatHi(MAn,k

) is trivial when i is not a multiple of k−2. In the case where k > 3
we also know that the non-trivial homology groups are free. We see this in the following way. Suppose
there are cj(k−2) critical elements on level j(k − 2). These correspond to cells of dimension j(k − 2)
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in a CW complex that is homotopy equivalent to MAn,k
. Furthermore, there are no critical elements on

levels j(k − 2)− 1 or j(k − 2) + 1 and hence no cells of these dimensions. Thus, we have that the chain
groups Cj(k−2)−1 and Cj(k−2)+1 are trivial and Cj(k−2) is free abelian of rank cj(k−2). The boundary
maps ∂j(k−2)+1 and ∂j(k−2) can only be the trivial map, which implies Hj(k−2)(MAn,k

) ∼= Cj(k−2).
It remains to calculate the number of critical cells at each level. Let j be an integer such that 0 ≤ j ≤

n/k . Then the number of unmatched cells in dimension j(k − 2) is given by:

∑

i0+···+ij=n
im≥k,∀1≤m≤j

(
n

i0, . . . , ij

) j∏

m=1

(
im − 1

k − 1

)

where the sum is over all integer compositions of n into j+1 parts, such that each part, with the exception
of the first part, has size at least k. In all other dimensions there are no critical cells. The formula comes
from the following: consider a composition of [n] into j+ 1 parts whose sizes are given by i0, . . . , ik. For
each block, besides the first one, take k − 1 elements that are not the minimum of that part. Make this a
block, and place all other elements of that block as singletons in descreasing order. Finally partition the
first block into singletons and append them to the end of the composition in decreasing order. Clearly this
gives all set compositions that meet our criteria for not being matched.

Combining the results above, Theorem 2.5 and Lemma 2.2, we have the following.

Theorem 3.3 The homology groups Hi(MAn,k
) are non-trivial only when i = j(k − 2), for j ≤ bnk c.

Furthermore, Hj(k−2)(MAn,k
) is free abelian of rank

∑

i0+···+ij=n
im≥k,∀1≤m≤j

(
n

i0, . . . , ij

) j∏

m=1

(
im − 1

k − 1

)
,

where the sum is over all integer compositions of n into j+1 parts, such that each part, with the exception
of the first part, has size at least k.

Note that the above formula is new, and simpler than previous formulas obtained. The case j = 1
specializes to a formula previously known by Björner and Welker [6]. The case where k = 3 is the most
difficult case. We will discuss this case for general W later.

3.2 Acyclic matching and homology results for Bn,k
We now turn to the type-B k-equal arrangement, Bn,k,h. The arrangement Bn,k,h has subspaces given by

±xi1 = · · · = ±xik as well as xj1 = · · · = xjh = 0

This arrangement is embedded in the type-B Coxeter arrangement,H(Bn), and the face latticeF(H(Bn))
has a description in terms of set compositions of {0, 1, . . . , n, 1̄, . . . , n̄}. For technical reasons, we will
use the linear order n̄ < · · · < 1̄ < 0 < 1 < · · · < n.

A type-B set composition consists of a set composition of [0, n] such that 0 is in the first block (hence-
forth called the zero block). The numbers in the 0 block are all unbarred, and in the non-zero blocks we
may replace i with ī. The order is reverse refinement, and when blocks are merged the bars do not change,
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except if a block is merged with the zero block. In this latter case all elements become unbarred. We again
say there is a descent from Bi to Bi+1 if max(Bi) > min(Bi+1).

As in the type-A case, we obtain the face poset, F(∆k(Bn)), by removing all type-B set compositions
that have blocks, including the zero block, of size k or greater. Thus we only study type-B set composi-
tions with blocks of size at most k − 1. Recall that we also reverse the partial order, so now the partial
order is refinement.

The matching algorithm that we give is sort of dual to the one in the type-A case. Instead we start at the
last block and work our way towards the zero block. Given an element (B0, B1, B2, . . . , Bt) we consider
pairs of adjacent blocks Bi and Bi+1. We start with i = t.

1. If Bi is not a singleton, we match

(B0, . . . , Bi, Bi+1, . . . , Bt)

with
(B0, . . . , Bi−1, {Bi \ {max(Bi)}, {max(Bi)}, . . . , Bt).

2. If there is a descent from Bi−1 to Bi, we set i = i− 1 and start over again at step one.

3. If |Bi−1| = k − 1, then we set i = i− 2 and start over again at step one.

4. We match
(B0, . . . , Bi−1, Bi, . . . , Bt)

with the element
(B0, . . . , Bi−1 ∪Bi, . . . , Bt).

Again the above algorithm gives an acyclic matching on F(∆k(Bn)). Critical cells have the following
properties:

• all blocks are singletons or have size k − 1,

• every block of size k − 1 is followed by a singleton, with an ascent between them,

• every pair of adjacent singletons forms a descent.

Again, as in the type-A case, when k > 3 we have non-trivial free abelian homology groups only in
period k − 2. We also note here that our restriction of h = k − 1 may be removed and the matching will
work with any h. Removing this restriction takes us out of the class of k-parabolic subspace arrangements
and covers all of the Bn,k,h arrangements defined by Björner and Sagan.

The only modification to the matching algorithm is that when considering whether we may merge a
singleton and the zero block we check to see if the zero block is of size < h, rather than < k − 1. The
condition for being a critical cell involves checking if the 0-block has size 1 or h, rather than k − 1.

For h = k or h = 2, we run into the same issues as the k = 3 case, namely that we end up with critical
elements on adjacent levels of the poset. In the case where h 6= 2, k it is easy to see that the non-trivial
homology groups are free abelian and appear in period t(k − 2) and t(k − 2) + h − 1, recovering the
periodicity results obtained by Björner and Sagan [4]. Moreover, by using a counting argument similar
to the type-A case, we obtain a new formula for the Betti numbers. Using the same reasoning as in the
type-A case, we obtain the following result.
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Theorem 3.4 The homology groups Hi(MBn,k
) are non-trivial only when i = j(k − 2), for j ≤ bnk c.

Furthermore, Hj(k−2)(MBn,k
) is free abelian of rank

∑

i0+···+ij=n
im≥k,∀1≤m≤j

(
n

i0, . . . , ij

) j∏

m=1

2im
(
im − 1

k − 1

)
+

∑

i0+···+ij=n
i1≥k−1

im≥k,∀2≤m≤j

(
n

i0, . . . , ij

)(
i1 − 1

k − 2

) j∏

m=2

2im
(
im − 1

k − 1

)
,

where the sums are over all integer compositions of n into j + 1 parts, such that each part, with the
exception of the first two parts, has size at least k. The first part has size at least k in the first sum, and at
least k − 1 in the second sum.

We also mention that there is a modification of the matching algorithm for the Dn,k-arrangement as
defined by Björner and Sagan. However, the modification requires making additional rules, and thus is
not related to our matching for the general case. We do not give it here, but it will appear in the full version
of the paper.

4 A matching for any k-parabolic subspace arrangement
We now present an algorithm to produce an acyclic matching for the complement of any k-parabolic
subspace arrangement. First, we fix a finite real reflection group W with corresponding root system Φ.
Let ∆ be a simple system in Φ and S the set of generators corresponding to roots in ∆. Given I ⊆ ∆, we
denote by WI the subgroup of W generated by the elements of I . Finally, fix a linear order {s1, . . . , sn}
on S.

We again consider the Coxeter arrangement H(W ), and the corresponding complex ∆k(W ) from
Lemma 2.2. We will define an acyclic matching on F(∆k(W )).

Recall that the length ` of an element w of W is the length of any reduced expression for w in terms
of the generators. Given a coset vWI , there is a unique element u ∈ vWI of minimal length. We let
D(w) = {s ∈ S : `(ws) < `(w)} denote the descents of w. Given a set I and a reflection s ∈ S, we
let P (I, s) = {J : J ⊆ I ∪ {s},WJ ∈ Pn,k(W )}. We linearly order P (I, s) by J ≤ K if J ⊆ K or
min(J \K) < min(K \ J). Finally, let I⊥ = {t ∈ S : st = ts,∀s ∈ I}.

Now, consider a coset uWI , where u is the element of minimal length in uWI . The matching algorithm
is as follows:

Let L = S, X = ∅.
While L 6= ∅

Let s = minL
If s ∈ D(u)

Set L = L− s
Else If s ∈ I

Set I ′ = I − s, and Return uWI′

Else If P (I, s) 6= ∅
Set L = (min(P (I, s))− s)⊥ And X = X + s

Else
Set I ′ = I + s, Return uWI′

End While
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Return uWI

Given a coset uWI , we will refer to the output of the algorithm as M(uWI). We will let X(uWI) be
the set of elements in X when the algorithm terminates.

If one takes the natural linear order si < sj for all i < j on An, this algorithm specializes to the one
made earlier for the type-A case. If one takes the linear order sj < si for all i < j on Bn, this algorithm
specializes to the one made earlier for the type-B case.

Proposition 4.1 The algorithm above gives an acyclic matching M .

The proof involves using Lemma 2.4 twice. The first time involves the partial order on W that is dual
to the right weak order. That is, we take the transitive closure of the cover relations u � us for all
u ∈ W, s ∈ S \D(u). We will denote the resulting poset by W ∗. The second application of Lemma 2.4
will use the Boolean poset on S.

Proof: We only sketch the ideas of the proof. The full version of the paper will have complete details.
It is not hard to see that the map ϕ which sends a coset uWI to its minimal coset representative is an
order-perserving map between F(∆k(W )) and W ∗. From properties of minimal coset representatives,
one can deduce that for any coset uWI , ϕ(uWI) = ϕ(M(uWI)). Thus, by the Patchwork Lemma, it
suffices to show that the algorithm gives an acyclic matching on the fibers of ϕ.

So fix an element w ∈ W . Then we attempt to apply 2.4 a second time. For each fiber ϕ−1(w),
we consider the map ψw to the boolean lattice on S given by sending uWI to X(uWI). A careful
study of the algorithm shows that this map is order perserving, and that for any coset uWI ∈ ϕ−1(w),
ψ(uWI) = ψ(M(uWI)). Thus, we only have to show that the algorithm gives an acyclic matching on the
fibers of ψw. It is not hard to see that it is a matching. We give an example of the argument for acyclicity.
2

Figure 2 is an example that the matching is acyclic on the fibers of ψw. We consider A6, with k = 3,
w the identity permutation, and the set X = {s1}. For type-A, the minimum length coset representative
for uWI is obtained by refining the set composition so that elements in each block are in increasing order.
Every directed cycle has to have alternating edges in the matching. Consider the edge 1/23/4/5/67 −
1/23/45/67. This is an edge in the matching in the fiber ψ−1w (X). Consider trying to make a directed
cycle with this edge. Let the next vertex in the directed cycle be 1/23/45/6/7. The next edge in the
’cycle’ must be from the matching. However, 1/23/45/6/7 is matched to 1/23/4/5/6/7, and as we see
in figure 2, this edge is pointed the wrong way. We prove acyclicity by showing that this situation always
happens on the fibers of ψw. In general, a matched edge is always of the form uWI → uWI+s, where u
is the coset representative of minimal length, and s ∈ S. Let t ∈ I , and consider uWI+s−t, and assume
t was chosen so that X(uWI+s−t) = X(uWI). Then the algorithm will match uWI+s−t with uWI−t,
resulting in a picture similar to our figure. Thus, we cannot get a directed cycle in the matching when
restricted to ψ−1w (X), for any w ∈W,X ⊆ S.

We would like to understand the structure of unmatched elements. A simple example will show us that
some linear orders on S are more useful than others. For instance, take A5 and k = 4, with linear order
s3 < s2 < s4 < s1 < s5, k = 4. Consider the set composition 1/23/456, which corresponds to the coset
A{s2,s4,s5}. Under the algorithm, this coset is unmatched, yet it is of dimension 3, which is not even.
Hence a simple proof of a periodicity condition requires being more specific when picking a linear order
for S, as the periodicity results followed easily from the linear order we considered previously for An.
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1/23/45/67

1/23/45/6/7

1/23/4/5/6/7

1/23/4/5/6/7

Fig. 2: An example of acyclicity - solid lines are matched edges, dotted lines are not

We restrict ourselves to the case whereW is irreducible for a moment. In this case, consider the dynkin
diagram D for W , and let P be a maximum length path in D. Consider a linear order of S such that
adjacent vertices of P are adjacent in the order, and the only vertex of D − P is at the end of the linear
order, if it exists. A very careful analysis of the algorithm on this linear order reveals that the unmatched
cells occur in dimensions that are a multiple of k − 2.

Now given any finite real reflection group W , we fix a linear order on each connected component of its
Dynkin diagram in a way similar to above. Then we take a linear extension of these orders, and we see
again that unmatched cells occur dimensions that are a multiple of k − 2.

So combining these observations with Theorem 2.5 and Lemma 2.2, we obtain:

Theorem 4.2 The homology groups Hi(MWn,k
) are non-trivial only when i = j(k − 2), for j ≤ bnk c.

Furthermore, Hj(k−2)(MWn,k
) is free abelian and has rank given by the number of unmatched elements

of rank j(k − 2) in our matching M .

Of course, the case k = 3 is challenging. Much like in the type-A and type-B case, there are unmatched
cells on every level. However, an involution can be used to show that the summation formula in Theorem
2.5, part c, are all zero. Hence the boundary map is the zero map, and the critical cells still index a basis
for the homology groups.

We remark that the number of critical cells of dimension 0 is 1. The only unmatched cell is w0W∅,
where w0 is the element of maximum length inW . We also note that for exceptional groups, and arbitrary
k > 3, we can compute the Betti numbers without studying the matching, except possibly the case when
W = E8, k = 4. In all other cases the peridocity conditions, combined with use of group theory to
compute the number of cells of ∆k(W ) of dimension i, can be used to determine the Betti numbers. A
table of these numbers will be included in the full version.

We close with a few open questions. First, similar arguments give a basis for the cohomology. It would
be nice to understand the cohomology ring structure in terms of this basis, although this is challenging.
Secondly, we note that discrete Morse theory allows us to obtain a minimal cell complex with the same
homotopy type as Wn,k for k > 3. However, with current methods it is complicated to understand
the attachment maps of this minimal complex. We do know that, for k = 3, and large n, the resulting
complex is not homotopy equivalent to a wedge of spheres, but we currently do not have more information
than that. Also, it is still an open problem if the intersection lattice of Wn,k is shellable or not. Even
though our approach avoids this question, it would be nice if there was another proof of our results, using
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lexicographic shellability.
Finally, our results have some application to linear decision trees. However, this application no longer

has the same simplicity as the k-equal problem, and our results do not add anything new to the theory of
linear decision trees. For length considerations, we mention more regarding linear decision trees in the
full paper.
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Abstract. We investigate the probability that a random composition (ordered partition) of the positive integer n has
no parts occurring exactly j times, where j belongs to a specified finite ‘forbidden set’ A of multiplicities. This
probability is also studied in the related case of samples Γ = (Γ1,Γ2, . . . ,Γn) of independent, identically distributed
random variables with a geometric distribution.

Résumé. Nous examinons la probabilité qu’une composition faite au hasard (une partition ordonnée) du nombre
entier positif n n’a pas de partie qui arrivent exactement j fois, où j appartient à une série interdite, finie et spécifié A
de multiplicités. Cette probabilité est aussi étudiée dans le cas des suites Γ = (Γ1,Γ2, . . . ,Γn) de variables aléatoires
identiquement distribués et indépendants avec une distribution géométrique.

Keywords: compositions, generating functions, geometric random variable, Mellin transform, Poisson transform,
multiplicity

1 Introduction
In this paper we derive generating functions for random compositions (ordered partitions) of a positive
integer n in which no parts occur exactly j times, where j belongs to a specified finite ‘forbidden set’ A
of multiplicities. For notational convenience we shall refer to such compositions as being ‘A-avoiding’.
We go on to find the probabilities that compositions and samples of geometric random variables are A-
avoiding.
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As a simple example of a forbidden set, we may wish to consider a sample where none of the n elements
occur exactly a times. In this case A = {a}. Another example is when a letter can occur only a times or
more (or not at all), i.e., A = {1, 2, . . . , a − 1}, for a ≥ 2. Note that we do not allow 0 in the forbidden
set.

Previously in [6, 12], geometric samples with the multiplicity constraint that certain values must occur
at least once were studied. These were called ‘gap-free’ and ‘complete’ samples. A gap-free sample has
elements whose values form an interval, namely if elements 2 and 6 are in the sample, then so are 3, 4 and
5. A complete sample is gap-free with minimal element 1.

In this paper we drop the ‘interval’ restriction, hence no value 0 in our forbidden sets. Here we are more
interested in the number of times the elements do occur than in the values of the elements. However, in
Section 2, the idea of forbidden sets is generalised even further when we allocate each value a different
forbidden set. For example, one could provide the restriction that the value 2 is not allowed to occur once,
but that the number of times that 5 can occur is anything except 2, 3 or 6 times. We denote the forbidden
set for the value i by Ai, so in this case, we have A2 = {1} and A5 = {2, 3, 6}.

The paper begins with a discussion on compositions (Section 2), where explicit generating functions
are derived for A-avoiding compositions and particular forbidden sets are highlighted. In Section 3,
the link between compositions and samples of geometric random variables is explained. Section 4 is
devoted to geometric samples, and Theorem 2 gives the probability that a geometric sample isA-avoiding,
along with some further examples of specific forbidden sets. Finally in Section 5, we state the result for
compositions - i.e., the probability that a random composition of n is A-avoiding. Some of the longer
proofs, in particular, the proof of Theorem 2 in Section 4 will be detailed in the full version of this paper.

2 Compositions
In this section we investigate the generating function for the number of A-avoiding compositions of n,
that is the number of compositions of n such that each part does not appear exactly j times, where j ∈ A.
We then go on to generalise this by allowing a different forbidden set for each value, as described in the
introduction.

LetCA,d(x;m) be the generating function for the number ofA-avoiding compositions of nwith exactly
m parts from the set [d] = {1, 2, . . . , d}. If σ is any A-avoiding composition with m parts in [d], then σ
contains the part d exactly j times with j 6∈ A and 0 ≤ j ≤ m. Deleting the parts that equal to d from σ
we get an A-avoiding composition σ′ of m− j parts in [d− 1]. Thus, rewriting the above rule in terms of
generating functions we get that

CA,d(x;m) =

m∑

j=0

j 6∈A

(
m

j

)
xdjCA,d−1(x;m− j),

which is equivalent to

CA,d(x;m)

m!
=

m∑

j=0

j 6∈A

xdj

j!

CA,d−1(x;m− j)
(m− j)! . (1)
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We denote the exponential generating function for the sequence CA,d(x;m) by CA,d(x, y), that is,

CA,d(x, y) =
∑

m≥0
CA,d(x;m)

ym

m!
.

Therefore, the recurrence in (1) can be written as

CA,d(x, y) = CA,d−1(x, y)


exdy −

∑

j∈A

xdjyj

j!


 ,

which implies that

CA,d(x, y) =
d∏

k=1


exky −

∑

j∈A

xkjyj

j!


 ,

for all d ≥ 1. Hence, we can state the following result.

Proposition 1 The generating function CA(x, y) =
∑
m≥0 CA(x;m)y

m

m! is given by

CA(x, y) =
∏

k≥1


exky −

∑

j∈A

xkjyj

j!


 ,

where CA(x;m) is the generating function for the number of A-avoiding compositions of n with exactly
m parts in N.

LetCA(n,m) be the number ofA-avoiding compositions of nwithm parts andCA(n) =
∑
m≥1 CA(n,m)

be the number of A-avoiding compositions of n.

Corollary 1 The generating function CA(x) =
∑
n≥0 CA(n)xn is given by

CA(x) =

∫ ∞

0

e−y
∏

k≥1


exky −

∑

j∈A

xkjyj

j!


 dy.

Proof: We use the fact that
∫∞
0
e−yymdy = m!. Then

∫ ∞

0

e−yCA(x, y)dy =
∑

n≥0
xn
∑

m≥0

CA(n,m)

m!

∫ ∞

0

yme−ydy =
∑

n≥0
CA(n)xn.

2

Example 1 Let Ai = {1} for all i, then the above proposition gives that

C{1}(x, y) =
∏

k≥1
(ex

ky − xky).

and Corollary 1 gives

C{1}(x) =

∫ ∞

0

e−y
∏

k≥1

(
ex

ky − xky
)
dy.
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Similar techniques as before show the following general result.

Proposition 2 The generating function DA1,A2,...(x, y) =
∑
m≥0DA1,A2,...(x;m)y

m

m! is given by

DA1,A2,...(x, y) =
∏

k≥1


exky −

∑

j∈Ak

xkjyj

j!


 ,

where DA1,A2,...(x;m) is the generating function for the number of compositions σ of n with exactly m
parts in N such that if σ contains the part i exactly di times, then di 6∈ Ai. Furthermore,

DA1,A2,...(x) =

∫ ∞

0

e−y
∏

k≥1


exky −

∑

j∈Ak

xkjyj

j!


 dy.

Example 2 For instance, let A1 = {1} and Ai = ∅ for i ≥ 2, then the above proposition gives that

F (x, y) = D{1},∅,∅,...(x, y) = (exy − xy)e
x2y
1−x .

If we expand F (x, y) as a power series at x = y = 0, then we obtain that

F (x, y) =
∑

j≥0

xjyj

j!(1− x)j
− xy

∑

j≥0

x2jyj

j!(1− x)j
,

which implies that

D{1},∅,∅,...(x;m) =
xm

(1− x)m
−m x2m−1

(1− x)m−1
.

Summing over all m ≥ 0, we get that the ordinary generating function for the number of compositions σ
of n such that the number occurrence of the part 1 in σ does not equal 1 is given by

1− x
1− 2x

− x(1− x)2

(1− x− x2)2
.

Note that it is not hard to generalize the above enumeration to obtain that the ordinary generating function
for the number of compositions σ of n such that the number occurrence of the part 1 in σ does not equal
` is given by

1− x
1− 2x

− `! x`(1− x)`+1

(1− x− x2)`+1
.

Example 3 For instance, letA1 = A2 = {1} andAi = ∅ for i ≥ 3, then the above proposition gives that

G(x, y) = D{1},{1},∅,∅,...(x, y) = (exy − xy)(ex
2y − x2y)e

x3y
1−x .

If we expand G(x, y) as a power series at x = y = 0, then we find that

D{1},{1},∅,∅,...(x;m)

=
x

(1− x)m
−mxm+1(1− x+ x2)m−1

(1− x)m−1
−m x2m−1

(1− x)m−1
−m(m− 1)

x3m−3

(1− x)m−2
.
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Summing over all m ≥ 0, we get that the ordinary generating function for the number of compositions σ
of n such that the number occurrence of the part i, i = 1, 2, in σ does not equal 1 is given by

1− x
1− 2x

− x(1− x)2

(1− x− x2)2
− x2(1− x)2

(1− 2x+ x2 − x3)2
+

2x3(1− x)3

(1− x− x3)3
.

Theorem 1 Fix a ∈ N. Let Ai = {a} for all i = 1, 2, . . . , ` and A`+i = ∅ for all i ≥ 1. The ordinary
generating function for the number of compositions π of n such that π does not contain part i exactly a
times for all i = 1, 2, . . . , ` is given by

∑

m≥0
DA1,A2,...(x;m) =

1− x
1− 2x

+
∑̀

j=1

∑

1≤i1<i2<···<ij≤`
(−1)j

j!xa
∑j

k=1 ik

(
1− x

1−x +
∑j
k=1 x

aik

)j+1
,

The proof of this result will be given in the full version of this paper. From the theorem we can deduce
the following result.

Corollary 2 The ordinary generating function for the number of {a}-avoiding compositions of n is given
by

1− x
1− 2x

+
∑

j≥1

∑

B⊆N, |B|=j
(−1)j

(aj)!(xa/a!)
∑

b∈B b

(
1− x

1−x +
∑
b∈B x

b
)aj+1

.

Even in this simple case of A = {a} it does not seem easy to find asymptotic estimates for the co-
efficients from the generating functions appearing in either Corollary 1 or Corollary 2. Instead we will
exploit the correspondence between compositions and geometric random variables of parameter p = 1/2,
as detailed in the next section.

3 Reduction of compositions to geometric samples
In order to derive asymptotic estimates, it will be convenient to adopt a probabilistic viewpoint. That is,
rather than think of the proportion of A-avoiding compositions we will equip the set of all compositions
of n with the uniform probability measure and will be interested in the probability that a randomly chosen
composition of n is A-avoiding. In that setting, compositions of n are closely related to the special case
for geometric random variables when p = 1/2, as shown in [7, 8] and again in this section.

The starting point for reducing compositions to samples of geometric random variables is the following
representation of compositions of n (see e.g., [2]). Consider sequences of n black and white dots subject
to the following constraints

(i) the last dot is always black

(ii) each of the remaining n− 1 dots is black or white.

Then there is a 1-1 correspondence between all such sequences and compositions of n. Namely, part sizes
in a composition correspond to “waiting times” for occurrences of black dots. For example, the sequence

•︸︷︷︸
1

◦ ◦ •︸ ︷︷ ︸
3

◦ •︸︷︷︸
2

•︸︷︷︸
1

•︸︷︷︸
1

◦ •︸︷︷︸
2

◦ •︸︷︷︸
2
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represents the composition of 12 into parts (1, 3, 2, 1, 1, 2, 2). As discussed e.g. in [7, 8] this leads to the
following representation of random compositions. Let p = 1/2 and define

τ = τn = inf{k ≥ 1 : Γ1 + Γ2 + · · ·+ Γk ≥ n}.

Then a randomly chosen composition κ of n has distribution given by

κ = (Γ1,Γ2, . . . ,Γτ−1, n−
τ−1∑

j=1

Γj) := (Γ̃1, Γ̃2, . . . , Γ̃τ ).

Furthermore, τ has known distribution, namely,

τ
d
= 1 + Bin(n− 1,

1

2
),

where Bin(m, p) denotes a binomial random variable with parametersm and p and d
= stands for equality in

distribution. Hence, τ is heavily concentrated around its mean. Specifically, since var(τ) = var(Bin(n−
1, 1/2)) = (n− 1)/4, for every t > 0 we have (see [1, Section A.1])

P(|τ − Eτ | ≥ t) ≤ 2 exp{− 2t2

n− 1
}.

In particular, for tn ∼
√
cn lnn,

P(|τ − Eτ | ≥ tn) = O

(
1

n2c

)
,

for any c > 0.
Let P(κ ∈ C) be the probability that a random composition is A-avoiding. We proceed by series of

refinements exactly as in [6]. Set m−n to be

m−n =

⌊
n+ 1

2
− tn

⌋
.

As shown in [6], with overwhelming probability, κ is A-avoiding if and only if the first m−n of its parts
are A-avoiding. In [6] the property considered is “complete” rather than “A-avoiding”, but the arguments
remain unchanged.

Ultimately we obtain, exactly as in [6],

P(κ ∈ C) = P((Γ1, . . . ,Γm−n ) ∈ C) +O

(
ln3/2 n√

n

)
,

thereby reducing the problem to samples of geometric random variables.
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4 Geometric random variables
Following the discussion in Section 3 above it is natural to start the investigation for the probability that a
composition is A-avoiding with samples of geometric random variables with arbitrary parameter p, where
0 < p < 1 . There is now an extensive literature on the combinatorics of geometric random variables and
its applications in Computer Science which includes [3, 5, 6, 11, 12, 13, 14].

Let Γ = (Γ1,Γ2, . . . ,Γn) be a sample of independent identically distributed (i.i.d.) geometric random
variables with parameter p, that is, P(Γi = k) = pqk−1, with p + q = 1, where k = 1, 2, . . . and
i = 1, 2, . . . , n. We shall restrict the multiplicity of elements in a sample of length n by prohibiting any
occurrences of exactly j entries of a given size, for j a natural number belonging to a specified finite set
of excluded numbers A, the forbidden set. We also call such a random sample of n geometric variables
A-avoiding.

The method used in [6] can be applied to the problem described above. We start with a recursion for
the probabilities that depends on the set A and then use Poissonisation and Mellin transforms followed by
de-Poissonisation to obtain our asymptotic estimates.

Using this approach, the following main result for geometric random variables will be proved in the
full version of this paper. We define χk := 2kπi

ln(1/q) .

Theorem 2 Let A be any finite set of positive integers. The probability pn that a geometric sample of
length n has no letter appearing with multiplicity j, for any j ∈ A is (asymptotically as n→∞)

pn = 1− T ∗(0)

ln(1/q)
− δ
(

log1/q(n/q)
)

+O(n−1),

with

T ∗(0) =
∑

j∈A
pj
∑

n≥0
pnq

n 1

n+ j

(
n+ j

j

)
(2)

and
δ(x) =

1

ln(1/q)

∑

k 6=0

T ∗(χk)e−2kπix

where

T ∗(χk) =
∑

j∈A

pj

j!

∑

n≥0
pn
qn

n!
Γ(n+ j + χk), for k ∈ Z\{0}. (3)

Here δ(x) is a periodic function of x with period 1, mean 0 and small amplitude.

The corresponding result for compositions of n is given in Section 5.

4.1 Examples of finite forbidden sets A

In the sections above we mentioned a few specific examples that would satisfy this definition of the
forbidden set. Here we simplify the T ∗(0) and T ∗(χk) formulae from Theorem 2 for a few specific cases.
The simplest case for A is a singleton set consisting of one value a. If A = {a}, then

T ∗(0) = pa
∑

n≥0
pnq

n 1

n+ a

(
n+ a

a

)
and T ∗(χk) =

pa

a!

∑

n≥0
pn
qn

n!
Γ(n+ a+ χk).
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If we consider the case where A = {1, . . . , a− 1}, then

T ∗(0) =
a−1∑

j=1

pj
∑

n≥0
pnq

n 1

n+ j

(
n+ j

j

)
and T ∗(χk) =

a−1∑

j=1

pj

j!

∑

n≥0
pn
qn

n!
Γ(n+ j + χk).

In particular if we want the probability that no element occurs exactly once (all elements must occur at
least twice if they occur at all), we have a main term for pn of

1− p

ln(1/q)

∑

n≥0
pnq

n.

This main term is plotted as a function of p in Figure 1.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 1: Plot of the non-oscillating limit term for pn for 0 ≤ q ≤ 1.

The corresponding picture for the probability that no element occurs exactly twice is given in Figure 2.

0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1

Fig. 2: Plot of the non-oscillating limit term for pn for 0 ≤ q ≤ 1.

In spite of what the Figures 1 and 2 tend to suggest for q near 1, the main term here is strictly greater
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than zero for every 0 < p < 1 as

T ∗(0) = pa
∑

n≥0
pnq

n 1

n+ a

(
n+ a

a

)

≤ pa
∑

n≥0
qn

1

n+ a

(
n+ a

a

)
= pa

(1− q)−a
a

≤ 1 < ln(1/q).

We observe also that the sequences (pn) in this section do not have a limit, but exhibit small oscillations
where both the period and amplitude of the oscillations depend on p. Such oscillations are almost ubiq-
uitous in problems solved using Mellin transform techniques. For example, Figures 3 and 4 (Section 5)
show these oscillations in the case that no element occurs exactly once (twice) when p = 1/2.

5 Compositions revisited
From Section 3, we conclude that probabilities for compositions can be reduced to probabilities for sam-
ples of geometric random variables. This result together with the special case p = q = 1

2 in Theorem 2
leads to the following corollary.

Corollary 3 Let A be any finite set of positive integers. The probability pn that a composition of n has
no part appearing with multiplicity j, for any j ∈ A is (asymptotically as n→∞)

pn = 1− T ∗(0)

ln 2
− δ(log2 n) +O

(
ln3/2 n√

n

)
,

with

T ∗(0) =
∑

j∈A

(1

2

)j∑

n≥0
pn

(1

2

)n 1

n+ j

(
n+ j

j

)
(4)

and

δ(x) =
1

ln 2

∑

k 6=0

T ∗(χk)e−2kπix

where χk = 2kπi
ln 2 and

T ∗(χk) =
∑

j∈A

1

j!

(1

2

)j∑

n≥0

pn
n!

(1

2

)n
Γ(n+ j + χk), for k ∈ Z\{0}. (5)

As in Theorem 2, δ(x) is a periodic function of xwith period 1, mean 0 and small amplitude. In Figures
3 and 4 we plot the probabilities that no element occurs exactly once (twice) in compositions of n.

In particular, we see that the probabilities pn that a composition is A-avoiding, do not converge to a
limit as n→∞, but instead oscillate around the value 1− T∗(0)

ln 2 .
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Fig. 3: Plot of pn for b = 1 and 1 ≤ n ≤ 1000.
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Fig. 4: Plot of pn for b = 2 and 1 ≤ n ≤ 1000.
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The spectrum of an asymmetric annihilation
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Abstract. In recent work on nonequilibrium statistical physics, a certain Markovian exclusion model called an asym-
metric annihilation process was studied by Ayyer and Mallick. In it they gave a precise conjecture for the eigenvalues
(along with the multiplicities) of the transition matrix. They further conjectured that to each eigenvalue, there cor-
responds only one eigenvector. We prove the first of these conjectures by generalizing the original Markov matrix
by introducing extra parameters, explicitly calculating its eigenvalues, and showing that the new matrix reduces to
the original one by a suitable specialization. In addition, we outline a derivation of the partition function in the
generalized model, which also reduces to the one obtained by Ayyer and Mallick in the original model.

Résumé. Dans un travail récent sur la physique statistique hors équilibre, un certain modèle d’exclusion Markovien
appelé “processus d’annihilation asymétriques” a été étudié par Ayyer et Mallick. Dans ce document, ils ont donné
une conjecture précise pour les valeurs propres (avec les multiplicités) de la matrice stochastique. Ils ont en outre
supposé que, pour chaque valeur propre, correspond un seul vecteur propre. Nous prouvons la première de ces
conjectures en généralisant la matrice originale de Markov par l’introduction de paramètres supplémentaires, calculant
explicitement ses valeurs propres, et en montrant que la nouvelle matrice se réduit à l’originale par une spécialisation
appropriée. En outre, nous présentons un calcul de la fonction de partition dans le modèle généralisé, ce qui réduit
également à celle obtenue par Ayyer et Mallick dans le modèle original.

Keywords: Reaction diffusion process, non-equilibrium lattice model, transfer matrix Ansatz, partition function,
characteristic polynomial, Hadamard transform.

1 Introduction
In the past few years, special stochastic models motivated by nonequilibrium statistical mechanics have
motivated several combinatorial problems. The most widely studied problem among these has been the
totally asymmetric simple exclusion process (TASEP). The model is defined on a one dimensional lattice
of L sites, each site of which either contains a particle or not. Particles in the interior try to jump with
rate 1 to the site to the right. The jump succeeds if that site is empty and fails if not. On the boundary,
particles enter with rate α on the first site if it is empty and leave from the last site with rate β. This was
first solved in 1993 by developing a new technique now called the matrix product representation [1].

It was initially studied in a combinatorial setting by Shapiro and Zeilberger in an almost forgotten
paper [3] in 1982, but only after the steady state distribution of the model was explicitly presented in

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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[1], the problem gained widespread attention. One of the reasons for this interest was that the common
denominator of the steady state probabilities for a system of size L was CL+1, the (L + 1)-th Catalan
number. One of the first articles to explain this fact combinatorially was the one by Duchi and Schaeffer
[4], who enlarged the space of configurations to one in bijection with bicolored Motzkin paths and showed
that the steady state distribution was uniform on this space. The analogous construction for the partially
asymmetric version of the model (PASEP) has been done in [5].

Further work has been on the relationship of the total and partially asymmetric exclusion processes to
different kinds of tableaux by Corteel and Williams [6, 7, 8] (permutation tableaux, staircase tableaux)
and by Viennot [9] (Catalan tableaux), to lattice paths [10], and to Askey-Wilson polynomials [7].

Just like the common denominator for the TASEP of size L was the Catalan number CL (which has
many combinatorial interpretations), the common denominator for the asymmetric annihilation process
considered in [2] in a system of size L at α = 1/2, β = 1 is 2(L+1

2 ) which is the number of domino tilings
of an Aztec diamond of size L as well as the number of 2-enumerated L × L alternating sign matrices.
One can therefore hope to enlarge the configuration space as was done for the TASEP [4] to explain this
phenomena.

The remainder of this extended abstract is organized as follows: In Sec. 2 we describe the model of the
asymmetric annihilation process. In Sec. 3 we present some of the main results obtained by Ayyer and
Mallick in [2]. Their work lead to a conjecture about the spectrum of this process. In Sec. 4 we prove this
conjecture by appropriately extending the model and viewing it in a different basis obtained by a variant
of the Hadamard transform. In the concluding section we outline the derivation of the partition function
for the generalized model using the same transformation, an approach very different from the way Ayyer
and Mallick obtained the partition function in the original model.

2 The model
Motivated by Glauber dynamics of the Ising model, Ayyer and Mallick [2] considered a non-equilibrium
system on a finite lattice with L sites labelled from 1 to L. States of the system are encoded by bitvectors
b = b1b2 . . . bL of length L, where bj ∈ B = {0, 1}, so that we have a total of 2L states. These bit vectors
may be represented numerically using the binary expansion (b)2 = bL+bL−1 21+bL−2 22+· · ·+b1 2L−1,
which introduces a total order on BL, so that we shall write b < c iff (b)2 < (c)2. All matrices and vectors
are indexed w.r.t. this order.

The evolution rules of the system introduced in [2] can now be stated as rewrite rules for bit vectors:

• In the bulk we have right shift and annihilation given by

right shift 10→ 01 with rate 1,
annihilation 11→ 00 with rate λ,

and visualized (for L = 8) in Fig. 1.

Fig. 1: Right shift 00110101→ 00110011 and annihilation 00110101→ 00000101
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• On the left boundary, particles enter by left creation in a way consistent with the bulk dynamics. A
particle at site 1 may also be left annihilated (due to a virtual particle at site 0). Therefore, the first
site evolves as

left creation 0→ 1 with rate α,
left annihilation 1→ 0 with rate αλ,

as illustrated Fig. 2.

Fig. 2: Left creation 00110101→ 10110011 and left annihilation 10110101→ 00110101

• Particles can exit from the last site by right annihilation (with a virtual particle at site L + 1)
according to

right annihilation 1→ 0 with rate β,

as illustrated by Fig. 3.

Fig. 3: Right annihilation 00110101→ 10110010

Note that all transition rules except left creation are monotonically decreasing w.r.t. the natural order of
bit vectors. Thus the transition matrix, as discussed in the next section, is not in triangular shape.

Following [2], we will take λ = 1 as that is the only case for which they derive explicit formulae.

3 Algebraic properties of the model
Is this section we present without proofs the main results as obtained by Ayyer and Mallick in [2]. First
recall the general concept:

Definition 1 A (continuous-time) transition matrix or Markov matrix or stochastic matrix is a square
matrix of size equal to the cardinality of the configuration space whose (i, j)-th entry is given by the rate
of the transition from configuration j to configuration i, when i is not equal to j. The (i, i)-th entry is then
fixed by demanding that the entries in each column sum to zero.

The Markov chain we defined in the previous section satisfies what [2] call the “transfer matrix Ansatz”.
The following general definition applies to any family of Markov processes defined by Markov matrices
{ML} of increasing sizes (in most physical applications, L is the size of the system).

Definition 2 A familyML of Markov processes satisfies the Transfer Matrix Ansatz if there exist matrices
TL,L+1 for all sizes L such that

(TMA) ML+1TL,L+1 = TL,L+1ML .

We also impose that this equality is nontrivial in the sense that ML+1TL,L+1 6= 0.
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The rectangular transfer matrices TL,L+1 can be interpreted as semi-similarity transformations connecting
Markov matrices of different sizes.

The last condition is important because there is always a trivial solution whenever we are guaranteed a
unique Perron-Frobenius eigenvector for all transition matrices ML. If |vL〉 is this eigenvector of ML and
〈1L| = (1, 1, . . . , 1), the matrix VL,L+1 = |vL+1〉〈1L| satisfies (TMA) since the Markov matrices satisfy
the conditions 〈1L|ML = 0 and ML+1|vL+1〉 = 0.

The above definition leads immediately to a recursive computation of the steady state vector, which is
the zero eigenvector. First we have

0 = TL,L+1ML|vL〉 = ML+1TL,L+1|vL〉,

which, assuming TL,L+1|vL〉 6= 0, and taking into account the uniqueness of the steady state, allows us
to define |vL+1〉 so that

TL,L+1|vL〉 = |vL+1〉.
This is very analogous to the matrix product representation of [1] because the steady state probability of
any configuration of length L+ 1 is expressed as a linear combination of those of length L. The transfer
matrix Ansatz is a stronger requirement than the matrix product representation in the sense that not every
system which admits the representation satisfies the Ansatz. For example, the only solution for (TMA) in
the case of the TASEP is the trivial one.

For our system introduced above, the Markov matrices ML are of size 2L. As mentioned, the entries of
these matrices are indexed w.r.t. the naturally ordered basis of binary vectors of lengthL. For convenience,
here are the first three of these matrices:

M1 =

[
−α α+ β
α −α− β

]
, M2 =




? β α 1
0 ? 1 α
α 0 ? β
0 α 0 ?


 , M3 =




? β 0 1 α 0 1 0
0 ? 1 0 0 α 0 1
0 0 ? β 1 0 α 0
0 0 0 ? 0 1 0 α
α 0 0 0 ? β 0 1
0 α 0 0 0 ? 1 0
0 0 α 0 0 0 ? β
0 0 0 α 0 0 0 ?




.

As for the diagonal elements ?, they have to be set such that the column sums vanish.
We now state without proof some important results on the Markov matrices of the system. These are

proved in [2]. We first show that the Markov matrix itself satisfies a recursion of order one.

Theorem 1 Let σ denote the matrix σ =

[
0 1
1 0

]
, and 1L denote the identity matrix of size 2L. Then

ML =

[
ML−1 − α(σ ⊗ 1L−2) α1L−1 + (σ ⊗ 1L−2)

α1L−1 ML−1 − 1L−1 − α(σ ⊗ 1L−2)

]
,

where ML is written as a 2× 2 block matrix with each block made up of matrices of size 2L−1.

The transfer matrices can also be explicitly constructed by a recursion of order one.
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Theorem 2 There exist transfer matrices for the model. If one writes the transfer matrix from size 2L−1

to size 2L by a block decomposition of matrices of size 2L−1 × 2L−1 as

TL−1,L =

[
T

(L−1)
1

T
(L−1)
2

]
, then the matrix TL,L+1 can be written as TL,L+1 =

[
T

(L)
1

T
(L)
2

]
, with

T
(L)
1 =


 T

(L−1)
1 + α−1T

(L−1)
2 2T

(L−1)
2 + α−1T

(L−1)
2

(σ ⊗ 1L−2)T
(L−1)
2 α−1T

(L−1)
2


 , T (L)

2 =


 2T

(L−1)
2 T

(L−1)
2 (σ ⊗ 1L−2)

0 T
(L−1)
2


 .

This, along with the initial condition

T1,2 =




1 + β + αβ α+ β + αβ
α 1

α+ αβ αβ
0 α


 ,

determines recursively a family of transfer matrices for the matrices ML.

We can also use the transfer matrices to calculate properties of the steady state distribution of the
Markov process. One quantity of interest is the so called normalization factor or partition function.

Definition 3 Let the entries of the kernel | vL 〉 of ML be normalized so that their sum is 1 and each entry
written in rationally reduced form. Then the partition function ZL for the system of size L is the least
common multiple of the denominators of the entries of | vL 〉.

Because of the way the transfer matrix has been constructed ZL is the sum of the entries in vL. For

example, the system of size one has | v1 〉 =

[
α+ β
α

]
, whence Z1 = 2α+ β.

Corollary 3 The partition function of the system of size L is given by

ZL = 2(L−1
2 )(1 + 2α)L−1(1 + β)L−1(2α+ β).

4 Spectrum of the Markov matrices
In this section, we consider the eigenvalues of the Markov matrices ML of the asymmetric annihilation
process. The following result was stated as a conjecture in [2]. This will be a corollary of the main result
(Theorem 8) of this article.

Theorem 4 Let the polynomials AL(x) and BL(x) be defined as

AL(x) =

dL/2e∏

k=0

(x+ 2k)(
L−1
2k ), BL(x) =

bL/2c∏

k=0

(x+ 2k + 1)(
L−1
2k+1).

Then the characteristic polynomial PL(x) of ML is given by

PL(x) = AL(x)AL(x+ 2α+ β)BL(x+ β)BL(x+ 2α),
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and successive ratios of characteristic polynomials are given by

PL+1(x)

PL(x)
= BL(x+ 1)BL(x+ 2α+ β + 1)AL(x+ β + 1)AL(x+ 2α+ 1).

This gives only 2L distinct eigenvalues out of a possible 2L. There is therefore the question of diago-
nalizability of the Markov matrix. Ayyer and Mallick [2] further conjecture the following.

Conjecture 1 The matrix ML is maximally degenerate in the sense that it has exactly 2L eigenvectors.

For L ≥ 1 we regard BL as the vector space of bitvectors of length L (over the binary field) . The usual
scalar product of vectors b, c ∈ BL will be denoted by b ·c. We will take the set VL =

{
| b 〉 ; b ∈ BL

}
as

the standard basis of a 2L-dimensional (real or complex) vector space, which we denote by VL. Indeed,
we will consider VL as a vector space over an extension over the real or complex field which contains all
the variables that we introduce below. To be precise, we take VL as a vector space over a field of rational
functions which extends the real or complex field.

The following definitions of linear transformations, when considered as matrices, refer to this basis, if
not stated otherwise. VL is the L-th tensor power of the 2-dimensional space V1 in an obvious way.

The transformation σ of V1 is given by the matrix σ =

[
0 1
1 0

]
and this extends naturally to transfor-

mations σb of VL for b = b1b2 . . . bL ∈ BL:

σb = σb1b2...bL = σb1 ⊗ σb2 ⊗ · · · ⊗ σbL .

Definition 4 For a vector α = (αb)b∈BL of variables we define the transformation AL(α) of VL as

AL(α) =
∑

b∈BL

αb σ
b.

A direct way to define these matrices is 〈 b |AL | c 〉 = αb⊕c, (b, c ∈ BL), where ⊕ denotes the
component wise mod-2-addition (exor) of bit vectors.

For 1 ≤ j ≤ L we define the involutive mappings

φj : BL → BL : b1 . . . bj−1bj bj+1 . . . bL 7→ φjb = b1 . . . bj−1 bj bj+1 . . . bL

by complementing the j-th component, and involutions

ψj : BL → BL : b 7→ φjφj+1b

by complementing components indexed j and j + 1, where ψL is the same as φL.

Definition 5 1. For 1 ≤ j ≤ L we define the projection operators PL,j acting on VL by

PL,j =
∑

b∈BL

| b 〉〈 b | − |ψbjj (b) 〉〈 b |

2. For a vector b = (β1, β2, . . . , βL) of variables we put BL(β) =
∑

1≤j≤L βj PL,j .
BL(β) denotes the matrix representing BL(β) in the standard basis VL.
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Note that in the sum for PL,j only summands for which bj = 1, i.e., for which ψj(b) < b, occur.
Indeed: this condition allows only for two situations to contribute:

bj bj+1 = 10 7→ bj bj+1 = 01 (right shift) (1)

bj bj+1 = 11 7→ bj bj+1 = 00 (annihilation) (2)

Thus these operators ψj encode the transitions of our model. Also note that by its very definition BL(β)
is an upper triangular matrix.

Writing β = (β, γ, δ) instead of (β1, β2, β3) we have for L = 3

B3(β, γ, δ) =




0 −δ 0 −γ 0 0 −β 0
0 δ −γ 0 0 0 0 −β
0 0 γ −δ −β 0 0 0
0 0 0 δ + γ 0 −β 0 0
0 0 0 0 β −δ 0 −γ
0 0 0 0 0 δ + β −γ 0
0 0 0 0 0 0 γ + β −δ
0 0 0 0 0 0 0 δ + γ + β




.

Our main concern is now with the transformation given by

ML(α,β) = AL(α)− BL(β).

Before we can state the main result we have to introduce some more notation, But before doing so, we
note that the corresponding matrix ML(α,β) = AL(α)−BL(β) reduces to the matrix ML above when
properly specialized:

Lemma 5 We have AL(α′)−BL(β′) = ML for α′ = (α′b)b∈BL and β′ = (β′j)1≤j≤L given by

α′b =





−α if b = 00 . . . 00

α if b = 10 . . . 00

0 otherwise
and β′ =

{
1 if 1 ≤ j < L

β if j = L
.

We will now consider the transformationML(α,β) in a different basis of VL. Let H = 1√
2

[
1 1
1 −1

]

be the familiar Hadamard matrix and defineHL as its L-th tensor power, the matrixLHadamard transform
of order L:

HL = H⊗L =
1

2L/2
[

(−1)b·c
]
b,c∈BL .

The columns of this matrix, denoted by |wb 〉 = HL| b 〉 for b ∈ BL, form an orthonormal basis WL ={
HL| b 〉 ; b ∈ BL

}
of VL. The following assertion is easily checked:

Lemma 6 The (pairwise commuting) transformations σc (c ∈ BL) diagonalize in the WL-basis. More
precisely:

σc |wb 〉 = (−1)b·c |wb 〉 (b, c ∈ BL).



Asymmetric annihilation process 343

Thus also the transformation AL diagonalizes in the WL-basis and its eigenvalues are given by

(HL ·AL ·HL)|wb 〉 = λb|wb 〉

where λb =
∑
c∈BL αc (−1)b·c =

∑
c∈BL αc 〈 b |H | c 〉.

The crucial observation is now the following: even though the transformation AL diagonalizes in the
WL-basis, the transformation BL doesn’t, it is not even triangular in this basis. But it turns out that a slight
modification of the WL-basis will be suitable for at the same time diagonalizing AL and bringing the BL
in (lower) triangular form. For that purpose we introduce the invertible linear transformation

∆ : BL → BL : b = b1b2 . . . bL 7→ b∆ =


 ∑

1≤i≤L−j+1

bi




1≤j≤L

where the sum has to be taken in the binary field. As an example (L = 3):

b 000 001 010 011 100 101 110 111

b∆ 000 100 110 010 111 011 001 101

The basis W̃L = {|wb∆ 〉} is nothing but a rearrangement of the WL-basis, hence the transformation
AL diagonalizes in this basis as well (with the corresponding eigenvalues). We will write H̃L for the
rearrangement of the Hadamard matrix in this new ordering of the elements of BL. The clue is now
contained in the following proposition:

Proposition 7
H̃L ·BL(β) · H̃L = Bt

L(βrev)

where βrev = (βL, βL−1, . . . , β1) is the reverse of β = (β1, β2, . . . , βL), t denoting transposition.

We illustrate this proposition in the caseL = 3 by displaying matrices 23/2H̃3 (left) and H̃3·B3(β, γ, δ)·
H̃3 = B3(δ, γ, β)t (right). Note that H̃L is symmetric because ∆ (as a matrix) is symmetric.



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1

1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1




,




0 0 0 0 0 0 0 0

−β β 0 0 0 0 0 0

0 −γ γ 0 0 0 0 0

−γ 0 −β β + γ 0 0 0 0

0 0 −δ 0 δ 0 0 0

0 0 0 −δ −β β + δ 0 0

−δ 0 0 0 0 −γ γ + δ 0

0 −δ 0 0 −γ 0 −β β + γ + δ




.

The proof of Proposition 7 will be given below. It leads to the main result by looking at the matrix
representation ofML(α,β) = AL − BL in the W̃L-basis, where it takes lower triangular form. Hence
the eigenvalues, which are 2L pairwise distinct linear polynomials in the α- and β-variables, can be read
directly from the main diagonal. In contrast to Theorem 4, the ex-conjecture, all eigenvalues are simple.
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Theorem 8
detML(α,β) = det [AL(α)−BL(β)] =

∏

b∈BL

(λb∆ − βrev · b)

Illustration of the Theorem for L = 3 recalling β = (β, γ, δ) = (β1, β2, β3):

b b∆ λb∆ (δ, γ, β) · b
000 000 [+ + + + + + ++] ·α 0
001 100 [+ + + +−−−−] ·α β
010 110 [+ +−−−−++] ·α γ
011 010 [+ +−−+ +−−] ·α β + γ
100 111 [+−−+−+ +−] ·α δ
101 011 [+−−+ +−−+] ·α β + δ
110 001 [+−+−+−+−] ·α γ + δ
111 101 [+−+−−+−+] ·α β + γ + δ

So, as an example, the line for b = 101 contributes the factor α000 − α001 − α010 − α011 + α100 −
α101 − α110 − α111 − β − δ to the product.

To prepare for the proof of Proposition 7 we state without proof simple relations between the transfor-
mations ψj , φL−j+1 and ∆:

Lemma 9 For b, c ∈ BL and 1 ≤ j ≤ L we have

1. (ψjb)
∆ = φL−j+1(b∆)

2. b∆ · ψjc = b∆ · c+ bL−j+1

Fact 2. is a consequence of fact 1.

Proof of Proposition 7. The actions of the transformations PL,j , seen in the W̃L-basis, are given by:

PL,j : |wb∆ 〉 7→
{
−|w(ψL−j+1b)∆ 〉 if bL−j+1 = 0,

|wb∆ 〉 if bL−j+1 = 1.

To see this, we compute

PL,j |wb∆ 〉 =
∑

c∈BL

〈 b∆ |H | c 〉PL,j | c 〉 =
∑

c>ψjc

〈 b∆ |H | c 〉 (| c 〉 − |ψjc 〉)

=
∑

c>ψjc

〈 b∆ |H | c 〉 | c 〉 −
∑

c<ψjc

〈 b∆ |H |ψjc 〉| c 〉,

using the involutive nature of ψj for the second sum. Now, using 2. from Lemma 9,

〈 b∆ |H |ψjc 〉 = (−1)b
∆·ψjc = (−1)b

∆·c+bL−j+1 = (−1)bL−j+1〈 b∆ |H | c 〉

and thus
PL,j |wb∆ 〉 =

∑

c>ψjc

〈 b∆ |H | c 〉 | c 〉 − (−1)bL−j+1

∑

c<ψjc

〈 b∆ |H | c 〉| c 〉.
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The conclusion in the case bL−j+1 = 1 is now obvious.
As for the case bL−j+1 = 1, we see, using item 1. from Lemma 9, that

|w(ψL−j+1b)∆ 〉 =
∑

c∈BL

〈 (ψL−j+1b)
∆ |H | c 〉 | c 〉 =

∑

c∈BL

(−1)(ψL−j+1b)∆·c | c 〉

=
∑

c∈BL

(−1)φj(b∆)·c | c 〉 =
∑

c∈BL

(−1)b
∆·c+cj | c 〉

= −
∑

c:cj=1

〈 b∆ |H | c 〉 | c 〉+
∑

c:cj=0

〈 b∆ |H | c 〉 | c 〉 = −PL,j |wb∆ 〉. 2

Corollary 10 If we consider the special case where αb = 0 for all b ∈ BL, except α00...0 = α0 and
α10...00 = α1, and where β1 = . . . = βL−1 = 1 and βL = β, then the determinant of the Theorem
simplifies to the product Π1 ·Π2 ·Π3 ·Π4 of the following four terms:

Π1 =
∏

0≤2k<L

(α0 + α1 − 2k)(
L−1
2k ) Π2 =

∏

0≤2k−1<L

(α0 + α1 − β − 2k + 1)(
L−1
2k−1)

Π3 =
∏

0≤2k−1<L

(α0 − α1 − 2k + 1)(
L−1
2k−1) Π4 =

∏

0≤2k<L

(α0 − α1 − β − 2k)(
L−1
2k )

For the proof note that each b ∈ BL we get as the contribution from AL

λb∆ ·α =
∑

c∈BL

αc〈 b∆ |H | c 〉

= α0 〈b∆ |H | 00 . . . 00〉+ α1 〈b∆ |H | 10 . . . 00〉
= α0(−1)b·∆·00...00 + α1(−1)b·∆·10...00 = α0 + (−1)‖b‖ α1

because ∆ · 00 . . . 00 = 11 . . . 11 and then b · 11 . . . 11 ≡ ‖b‖ mod 2, where ‖b‖ denotes the Hamming
weight of b and where we have used the fact that ∆ is a symmetric matrix. Thus the 2L eigenvalues are

α0 + (−1)‖b‖ α1 − βrev · b (b ∈ BL).

Now there are four cases to consider:

1. ‖b‖ is even and b1 = 0: this gives eigenvalues α0 + α1 − ‖b2b3 . . . bL‖ and since b1 does not
contribute to ‖b‖ the vector b2b3 . . . bL must have even weight 2k. There are

(
L−1
2k

)
possibilities

which account for Π1.

2. ‖b‖ is even and b1 = 1: this gives eigenvalues α0 + α1 − β − ‖b2b3 . . . bL‖ and since b1 does
contribute to ‖b‖ the vector b2b3 . . . bL must have odd weight 2k−1. There are

(
L−1
2k−1

)
possibilities

which account for Π2.

3. ‖b‖ is odd and b1 = 0: this gives eigenvalues α0 − α1 − ‖b2b3 . . . bL‖ and since b1 does not
contribute to ‖b‖ the vector b2b3 . . . bL must have odd weight 2k−1. There are

(
L−1
2k−1

)
possibilities

which account for Π3.
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4. ‖b‖ is odd and b1 = 1: this gives eigenvalues α0 − α1 − β − ‖b2b3 . . . bL‖ and since b1 does
contribute to ‖b‖ the vector b2b3 . . . bL must have even weight 2k. There are

(
L−1
2k

)
possibilities

which account for Π4.

Corollary 11 Setting now α0 = −α and α1 = α, i.e., specializing as in Lemma 5, gives for detML a
product Π′1 ·Π′2 ·Π′3 ·Π′4 of the following four terms:

Π′1 =
∏

0≤2k<L

(−2k)(
L−1
2k ) Π2 =

∏

0≤2k−1<L

(−β − 2k + 1)(
L−1
2k−1)

Π3 =
∏

0≤2k−1<L

(−2α− 2k + 1)(
L−1
2k−1) Π4 =

∏

0≤2k<L

(−2α1 − β − 2k)(
L−1
2k )

which are precisely the 2L distinct eigenvalues of the original Conjecture.

5 Concluding remarks
We have been able to solve Ayyer and Mallick’s conjecture about the eigenvalues of the asymmetric
annihilation process by embedding it into a more general model and using an orthogonal transform which
triagonalizes the transition matrix. In sharp contrast to the original problem, the general situation with
parameters αb and bj (which may be given a “physical” interpretation using 〈 b |AL | c 〉 = αb⊕c and
(1),(2)) is easier to handle because it is not degenerate: all “symbolic” eigenvalues are simple. Our proof
does not seem to explain the maximum amount of degeneracy, as stated in Conjecture 1.

On the other hand, we mention that the result of Corollary 3 about the partition function can be extended
to the more general model. Again, in contrast to the inductive approach of Ayyer and Mallick in [2], as
outlined in Sec. 3, we can solve this problem directly by transforming it orthogonally into the basis where
it shows its triangular structure.

We start by remarking that the columns sums of the extended model are constant
∑
αc, though not

zero. This implies that 〈 1L | is the unique left eigenvector with eigenvalue α =
∑
αc of ML(α, β). The

right eigenvector |x 〉 with the same eigenvalue corresponds to the steady state distribution of the original
problem. Then |y 〉 = H̃L|x 〉 satisfies M̃L(α,β)|y 〉 = α|y 〉, where M̃L = H̃L ·ML(α,β) · H̃L is the
matrix seen in the W̃L-basis. This triangular system for y is written explicitly as

(λ∗b∆ + βrev · b) yb =
∑

j : bj=1

βL−j+1yψjb (b ∈ BL)

where
λ∗b = α− λb = 2

∑

c : b·c=1

αc (b ∈ BL).

Note that the sum on the right only contains terms yc where c = ψjb < b. For b = 00 . . . 0 the equation
is void, so we may put y00...0 = 1. Since the polynomials λ∗b∆ +βrev ·b are mutually coprime, this shows
by induction that the denominator of the rational normal form of yb is the product of all polynomials
λ∗c∆ +βrev ·c, where c runs over the binary vectors that can be obtained from b by successive application
of decreasing ψj-transformations. Consequently, the product of linear polynomials

Z(α,β) =
∏

0 6=b∈BL

(λ∗b∆ + βrev · b)
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is the least common multiple of the denominators of the yb. This property is invariant under the Hadamard
transform, so it applies also to the coefficients of |x 〉 = H̃L|y 〉. But

〈1L|x〉 = 〈1L|H̃L|y〉 = 2L/2 〈100 . . . 00|y〉 = 2L/2 y00...0 = 2L/2,

so 2−L/2 |x 〉 is already normalized and can be seen as the “symbolic” stationary distribution in the
generalized model. What we have shown is:

Theorem 12 Z(α,β) is the partition function related to ML(α,β).

We conclude by remarking that the specialization as in Lemma 5 and Corollary 11 brings us back to
Corollary 3. This is not completely obvious, since the expression in Corollary 3 has only

(
L+1

2

)
factors,

whereas in Theorem 12 there are 2L−1 factors. What happens is that upon specialization the requirements
for least common multiples and greatest common divisors change. Taking this into account one finds that
from the general expression for Z(α,β) only the

(
L+1

2

)
terms where b ∈ BL with ‖b‖ = 1 or 2 contribute

– and this is precisely the statement of Corollary 3.
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Weakly directed self-avoiding walks
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Abstract. We define a new family of self-avoiding walks (SAW) on the square lattice, called weakly directed walks.
These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine
their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth
constant is approximately 2.54 and is thus larger than that of all natural families of SAW enumerated so far (but
smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed
walks grows linearly. Finally, we study a diagonal variant of this model.

Résumé. Nous définissons une nouvelle famille de chemins auto-évitants (CAE) sur le réseau carré, appelés chemins
faiblement dirigés. Ces chemins ont une caractérisation simple en termes des ponts irréductibles qui les composent.
Nous déterminons leur série génératrice. Cette série a une structure de singularités complexe et n’est en particulier
pas D-finie. La constante de croissance est environ 2,54, ce qui est supérieur à toutes les familles naturelles de SAW
étudiées jusqu’à présent, mais inférieur aux CAE généraux (dont la constante est environ 2,64). Nous prouvons
également que la distance moyenne entre les extrémités du chemin croît linéairement. Enfin, nous étudions une
variante diagonale du modèle.

Keywords: Enumeration – Self-avoiding walks

1 Introduction
A lattice walk is self-avoiding if it never visits twice the same vertex (Fig. 1). Self-avoiding walks (SAW)
have attracted interest for decades, first in statistical physics, where they are considered as polymer mod-
els, and then in combinatorics and in probability theory [20]. However, their properties remain poorly
understood in low dimension, despite the existence of remarkable conjectures. See [20] for dimension 5
and above.

On two-dimensional lattices, it is strongly believed that the number cn of n-step SAW and the average
end-to-end distance Dn of these walks satisfy

cn ∼ αµnnγ and Dn ∼ κnν (1)

where γ = 11/32 and ν = 3/4. Several independent, but so far not completely rigorous methods
predict these values, like numerical studies [12, 24], comparisons with other models [6, 21], probabilistic
arguments involving SLE processes [19], enumeration of SAW on random planar lattices [10]... The
growth constant (or connective constant) µ is lattice-dependent, and believed to be

√
2 +
√

2 for the
honeycomb lattice, and another bi-quadratic number (approximately 2.64) for the square lattice [16].

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Fig. 1: A self-avoiding walk on the square lattice, and a (quasi-)random SAW of length 1,000,000, constructed by
Kennedy using a pivot algorithm [17].

Given the difficulty of the problem, the study of restricted classes of SAW is natural, and probably as
old as the interest in SAW itself. The rule of this game is to design new classes of SAW that have both:

– a natural description (to be conceptually pleasant),
– some structure (so that the walks can be counted, and their asymptotic properties determined).

The two simplest classes of SAW on the square lattice probably consist of directed and partially directed
walks: a walk is directed if it involves at most two types of steps (for instance North and East), and
partially directed if it involves at most three types of steps. (Partially directed walks play a prominent role
in the definition of our weakly directed walks.) Among other solved classes, let us cite spiral SAW [22, 13]
and prudent walks [3, 8, 7]. Each time such a new class is solved, one compares its properties to (1): have
we reached with this class a large growth constant? Is the end-to-end distance of the walks sub-linear?

At the moment, the largest growth constant (about 2.48) is obtained with prudent SAW. However, this
is beaten by certain classes whose description involves a (small) integer k, like SAW confined to a strip
of height k [1, 26], or SAW consisting of irreducible bridges of length at most k [15, 18]. The structure
of these walks is rather poor, which makes them little attractive from a combinatorial viewpoint. In the
former case, they are described by a transfer matrix (the size of which increases exponentially with the
height of the strip); in the latter case, the structure is even simpler, since these walks are just arbitrary
sequences of irreducible bridges of bounded length. In both cases, improvements on the growth constant
much rely on progresses in the computer power. Regarding asymptotic properties, almost all solved
classes of SAW exhibit a linear end-to-end distance, with the exception of spiral walks. But there are very
few such walks [13], as their growth constant is 1.

With the weakly directed walks of this paper, we reach a growth constant of about 2.54. These walks are
defined in the next section. Their generating function is given in Section 5, after some preliminary results
on partially directed bridges (Sections 3 and 4). This series turns out to be much more complicated that
the generating functions of directed and partially directed walks, which are rational: we prove that it has
a natural boundary in the complex plane, and in particular is not D-finite (that is, it does not satisfy any
linear differential equation with polynomial coefficients). However, we are able to derive from this series
certain asymptotic properties of weakly directed walks, like their growth constant and average end-to-end
distance (which we find, unfortunately, to grow linearly with the length). Finally, we perform in Section 6
a similar study for a diagonal variant of weakly directed walks.

Due to space constraints, most proofs are only sketched or even omitted in this abstract. Details will
appear in the complete version of the paper.
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2 Weakly directed walks: definition
Let us denote by N, E, S and W the four square lattice steps. All walks in this paper are self-avoiding, so
that this precision will often be omitted. For any subset S of {N,E,S,W}, we say that a (self-avoiding)
walk is an S-walk if all its steps lie in S. We say that a SAW is directed if it involves at most two types of
steps, and partially directed if it involves at most three types of steps. The definition of weakly directed
walks stems for the following simple observations:

(i) between two visits to any given horizontal line, a NE-walk only takes E steps,
(ii) between two visits to any given horizontal line, a NEW-walk only takes E and W steps.

Conversely, a walk satisfies (i) if and only if it is either a NE-walk or, symmetrically, a SE-walk. Similarly,
a walk satisfies (ii) if and only if it is either a NEW-walk or, symmetrically, a SEW-walk. Conditions (i)
and (ii) thus respectively characterize (up to symmetry) NE-walks and NEW-walks.

Definition 1 A walk is weakly directed if, between two visits to any given horizontal line, the walk is
partially directed (that is, avoids at least one of the steps N, E, S, W).

Examples are shown in Fig. 2.

Fig. 2: Two weakly directed walks. The second one is a bridge, formed of 5 irreducible bridges. Observe that these
irreducible bridges are partially directed.

We will primarily focus on the enumeration of weakly directed bridges. As we shall see, this does
not affect the growth constant. A self-avoiding walk starting at v0 and ending at vn is a bridge if all its
vertices v 6= vn satisfy h(v0) ≤ h(v) < h(vn), where h(v), the height of v, is its ordinate. Concatenating
two bridges always gives a bridge. Conversely, every bridge can be uniquely factored into a sequence
of irreducible bridges (bridges that cannot be written as the product of two non-empty bridges). This
factorization is obtained by cutting the walk above each horizontal line of height n + 1/2 (with n ∈ Z)
that the walk intersects only once (Fig. 2, right). It is known that the growth constant of bridges is the
same as for general self-avoiding walks [20]. Generally speaking, the fact that bridges can be freely
concatenated makes them useful objects in the study of self-avoiding walks [14, 15, 18, 19, 20].

The following result shows that the enumeration of weakly directed bridges boils down to the enumer-
ation of (irreducible) partially directed bridges.
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Proposition 2 A bridge is weakly directed if and only if each of its irreducible bridges is partially directed
(that is, avoids at least one of the steps N, E, S, W).

We discuss in Section 6 a variant of weakly directed walks, where we constrain the walk to be partially
directed between two visits to the same diagonal line (Fig. 3). The notion of bridges is adapted accord-
ingly, by defining the height of a vertex as the sum of its coordinates. We will refer to this model as the
diagonal model, and to the original one as the horizontal model. There is, however, no simple counterpart
of Proposition 2: a (diagonal) bridge whose irreducible bridges are partially directed is always weakly
directed, but the converse is not true, as can be seen in Fig. 3. Thus bridges with partially directed irre-
ducible bridges form a proper subclass of weakly directed bridges. We will enumerate this subclass, and
study its asymptotic properties.

Fig. 3: Two weakly directed walks in the diagonal model. The second one is a bridge, factored into 6 irreducible
bridges. Observe that the third irreducible bridge is not partially directed.

3 Partially directed bridges: a step-by-step approach
Let us equip the square lattice Z2 with its standard coordinate system. With each model (horizontal or
diagonal) is associated a notion of height: the height of a vertex v, denoted h(v), is its ordinate in the
horizontal model, while in the diagonal model, it is the sum of its coordinates. Recall that a walk, starting
at v0 and ending at vn, is a bridge if all its vertices v 6= vn satisfy h(v0) ≤ h(v) < h(vn). If the weaker
inequality h(v0) ≤ h(v) ≤ h(vn) holds for all v, we say the walk is a pseudo-bridge. Note that nonempty
bridges are obtained by adding a step of height 1 to a pseudo-bridge (a N step in the horizontal model, a
N or E step in the diagonal model). It is thus equivalent to count bridges or pseudo-bridges.

By Proposition 2, the enumeration of weakly directed bridges boils down to the enumeration of (irre-
ducible) partially directed bridges. In this section and the following one, we address the enumeration of
these building blocks, first in a rather systematic way based on a step-by-step construction, then in a more
combinatorial way based on heaps of cycles.
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Fig. 4: A NES-pseudo-bridge in the horizontal model. (b) An ESW-pseudo-bridge in the diagonal model. (c) A
NES-pseudo-bridge in the diagonal model.

As partially directed walks are defined by the avoidance of (at least) one step, there are four kinds
of these. Hence, in principle, we should count, for each model (horizontal and diagonal), four families
of partially directed bridges. However, in the horizontal model, there exists no ESW-bridge, and every
NEW-walk is a pseudo-bridge. The latter class of walks is very easy to count. Moreover, a symmetry
transforms NES-bridges into NSW-bridges, so that there is really one class of bridges that we need to
count. In the diagonal model, we need to count ESW-bridges (which are equivalent to NSW-bridges by
a diagonal symmetry) and NES-bridges (which are equivalent to NEW-bridges). Finally, to avoid certain
ambiguities, we need to count ES-bridges, but this has already been done in [5].

From now on, the starting point of our walks is always at height 0. The height of a walk is then defined
to be the maximal height reached by its vertices.

3.1 NES-bridges in the horizontal model
Proposition 3 Let k ≥ 0. In the horizontal model, the length generating function of NES-pseudo-bridges
of height k is

B(k)(t) =
tk

Gk(t)
,

where Gk(t) is the sequence of polynomials defined by

G−1 = 1, G0 = 1− t, and for k ≥ 0, Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

Equivalently,
∑

k≥0

vktk

B(k)(t)
=
∑

k≥0

vkGk =
1− t− t2v

1− (1− t+ t2 + t3)v + t2v2
,

or

B(k)(t) =
U − Ū(

(1− t)U − t
)
Uk −

(
(1− t)Ū − t

)
Ūk

,

where

U =
1− t+ t2 + t3 −

√
(1− t4) (1− 2t− t2)

2t

is a root of tu2 −
(
1− t+ t2 + t3

)
u+ t = 0 and Ū := 1/U is the other root of this polynomial.
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Proof: Let T be the set of NES-walks that end with an E step, and in which each vertex v satisfies
0 ≤ h(v) ≤ k. Let Ti be the subset of T consisting of walks that end at height i. Let Ti(t) ≡ Ti be the
length generating function of Ti, and define the bivariate generating function

T (t;u) ≡ T (u) =
k∑

i=0

Ti(t)u
i.

This series counts walks of T by their length and the height of their endpoint. Pseudo-bridges walks of
height k containing at least one E step are obtained by adding a sequence of N steps of appropriate length
to a walk of T , and this gives

B(k)(t) = tk +

k∑

i=0

Ti(t)t
k−i = tk (1 + T (1/t)) (2)

(the term tk accounts for the walk formed of k consecutive N steps.)
A step-by-step construction of the walks of T yields the following lemma.

Lemma 4 Let ū = 1/u. The series T (t;u), denoted T (u) for short, satisfies the following equation:
(

1− ut2

1− tu −
t

1− tū

)
T (u) = t

1− (tu)k+1

1− tu − t (tu)k+1

1− tu T (1/t)− t2ū

1− tūT (t).

The equation of Lemma 4 is easily solved using the kernel method (see e.g. [2, 4, 23]). The kernel of
the equation is the coefficient of T (u), namely

1− ut2

1− tu −
t

1− tū .

It vanishes when u = U and u = Ū := 1/U , whereU is defined in the lemma. Since T (u) is a polynomial
in u, the series T (U) and T (Ū) are well-defined. Replacing u byU or Ū in the functional equation cancels
the left-hand side, and hence the right-hand side. One thus obtains two linear equations between T (t) and
T (1/t), which involve the series U . Solving them gives in particular the value of T (1/t), and thus of
B(k)(t) (thanks to (2)). This provides the second expression of B(k)(t) given in the lemma. The other
results easily follow, using elementary arguments about linear recurrence relations and rational generating
functions.

3.2 ESW-bridges in the diagonal model
Proposition 5 Let k ≥ 0. In the diagonal model, the length generating function of ESW-pseudo-bridges
of height k is

B
(k)
1 (t) =

tk

Gk(t)
,

where Gk(t) is the sequence of polynomials defined by

G0 = 1, G1 = 1− t2 and for k ≥ 1, Gk+1 = (1 + t2)Gk − t2(2− t2)Gk−1.
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The length generating function of NES-pseudo-bridges of height k is

B
(k)
2 (t) = (2− t2)kB

(k)
1 (t).

Finally, the length generating function of ES-pseudo-bridges of height k is

B
(k)
0 (t) =

tk

Fk(t)
,

where the sequence Fk(t) is defined by F−1 = 1, F0 = 1, and Fk+1 = Fk − t2Fk−1 for k ≥ 0.

4 Partially directed bridges via heaps of cycles
In this section, we give alternative (and more combinatorial) proofs of the results of Section 3. In partic-
ular, these proofs explain why the numerators of series counting partially directed bridges of height k are
so simple (tk or tk(2− t2)k, depending on the model).

Let Γ = (V,E) be a directed graph. To each edge of this graph, we associate a weight taken in some
commutative ring (typically, a ring of formal power series). A cycle of Γ is a path ending at its starting
point, taken up to a cyclic permutation. A path is self-avoiding if it does not visit the same vertex twice.
A self-avoiding cycle is called an elementary cycle. Two paths are disjoint if their vertex sets are disjoint.
The weight w(π) of a path (or cycle) π is the product of the weights of its edges. A configuration of cycles
γ = {γ1, . . . , γr} is a set of pairwise disjoint elementary cycles. The signed weight of γ is

w̃(γ) := (−1)r
r∏

i=1

w(γi).

For two vertices i and j, denote by Wi,j the generating function of paths going from from i to j:

Wi,j =
∑

π:i;j

w(π).

We assume that this sum is well-defined, which is always the case when considering length generating
functions.

Proposition 6 The generating function of paths going from i to j in the weighted digraph Γ is

Wi,j =
Ni,j
G

,

where G =
∑
γ w̃(γ) is the signed generating function of configuration of cycles, and

Ni,j =
∑

η,γ

w(η)w̃(γ),

where η is a self-avoiding path going from i to j and γ is a configuration of cycles disjoint from η.
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This result can be proved as follows: one first identifies Ni,j as the (i, j) coefficient of the matrix (1 −
A)−1, where A is the adjacency matrix of Γ. Thanks to standard linear algebra, this coefficient can be
expressed in terms of the determinant of (1 − A) and one of its cofactors. A simple expansion of these
as sums over permutations shows that the determinant is G, and the cofactor Ni,j . Proposition 6 can also
be proved without any reference to linear algebra, using the theory of partially commutative monoids, or
heaps of pieces [11, 25]. In this context, configurations of cycles are called trivial heaps of cycles. This
justifies the title of this section.

4.1 Bridges with large down steps
Let Γk be the graph with vertices {0, . . . , k} and with the following weighted edges:

– ascending edges of height 1, i→ i+ 1, with weight A, for i = 0, . . . , k − 1;
– descending edges of height h, i→ i− h, with weight Dh, for i = h, . . . , k and h ≥ 0.

For k ≥ 0, denote by C(k) the generating function of paths from 0 to k in the graph Γk. These paths may
be seen as pseudo-bridges of height k with general down steps.

Lemma 7 The generating function of pseudo-bridges of height k is

C(k) =
Ak

Hk
,

where the generating function of the denominators Hk is

∑

k≥0

Hkv
k =

1−D(vA)

1− v + vD(vA)
, (3)

with D(v) the generating function of descending steps:

D(v) =
∑

h≥0

Dhv
h.

Proof: With the notation of Proposition 6, the series C(k) reads N0,k/G. Since all ascending edges have
height 1, the only self-avoiding path from 0 to k consists of k ascending edges, and has weight Ak. As it
visits every vertex of the graph, the only configuration of cycles disjoint from it is the empty configuration.
Therefore, the numeratorN0,k is simplyAk. The elementary cycles consist of a descending step of height,
say, h, followed by h ascending steps. The weight of this cycle is DhA

h.
To underline the dependance of our graph in k, denote by Hk the denominator G of Proposition 6.

Consider a configuration of cycles of Γk: either the vertex k is free, or it is occupied by a cycle; this gives
the following recurrence relation, valid for k ≥ 0:

Hk = Hk−1 −
k∑

h=0

DhA
hHk−h−1.

with the initial condition H−1 = 1. This is equivalent to (3).
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4.2 Partially directed self-avoiding walks as arbitrary paths
It is not straightforward to apply Proposition 6 (or Lemma 7) to the enumeration of partially directed
bridges, because of the self-avoidance condition. To circumvent this difficulty, we will first prove that
partially directed self-avoiding walks are arbitrary paths on a graph with generalized steps. We only deal
with the horizontal model, but the diagonal model can be addressed in a similar way.

Let us say that a NES-walk is proper if it neither begins nor ends with a S step. All NES-pseudo-
bridges are proper, whether in the horizontal or diagonal model. The following lemma explains how to
see proper NES-walks as sequences of generalized steps.

Lemma 8 Every proper NES-walk has a unique factorization into N steps and nonempty proper ES-
walks with no consecutive E steps.

This result, combined with Lemma 7, gives an alternative proof of Proposition 3.

5 Weakly directed walks: the horizontal model
We now return to the weakly directed walks defined in Section 2. We determine their generating function,
study their asymptotic number and average end-to-end distance, and finally prove that the generating
function we have obtained has infinitely many singularities, and hence, cannot be D-finite.

5.1 Generating function
By combining Propositions 2 and 3, it is now easy to count weakly directed bridges.

Proposition 9 In the horizontal model, the generating function of weakly directed bridges is:

W (t) =
1

1 + t− 2tB
1+tB

where B :=
∑
k≥0B

(k)(t) is the generating function of NES-pseudo-bridges, given by Proposition 3.

The generating function of general weakly directed walks is a bit more involved, but the numbers of
weakly directed walks and bridges of length n only differ asymptotically by a multiplicative constant.

5.2 Asymptotic results
Proposition 10 The generating function W of weakly directed bridges, given in Proposition 9, is mero-
morphic in the diskD = {z : |z| <

√
2− 1}. It has a unique dominant pole in this disk, ρ ' 0.3929. This

pole is simple. Consequently, the number wn of weakly directed bridges of length n satisfies wn ∼ κµn,
with µ = 1/ρ ' 2.5447.

Let Nn denote the number of irreducible bridges in a random weakly directed bridge of length n. The
mean and variance of Nn satisfy:

E(Nn) ∼ mn, V(Nn) ∼ s2 n,

where m ' 0.318 and s2 ' 0.7, and the random variable Nn−mn
s
√
n

converges in law to a standard normal
distribution. In particular, the average end-to-end distance, being bounded from below by E(Nn), grows
linearly with n.
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We have designed an algorithm for the random generation of weakly directed bridges, using a Boltzmann
sampler [9]. A sample output of this algorithm is shown in Figure 5, confirming the linear form of weakly
directed bridges.

Fig. 5: A random weakly directed bridge of length 1009, rotated by 90◦.

5.3 Nature of the series
Proposition 11 The generating function B of NES-pseudo-bridges, given in Proposition 3, converges
around 0 and has a meromorphic continuation in C\E , where E consists of the two real intervals [−

√
2−

1,−1] and [
√

2− 1, 1], and of the curve

E0 =

{
x+ iy : x ≥ 0, y2 =

1− x2 − 2x3

1 + 2x

}
. (4)

This curve, shown in Fig. 6, is a natural boundary of B. That is, every point of E0 is a singularity of B.
The above statements hold as well for the generating function W of weakly directed bridges. In partic-

ular, neither B nor W is D-finite.

–1

–0.5

0.5

1

y

–2 –1.5 –1 –0.5 0.5 1

x

Fig. 6: The curve E0 and the zeroes of the polynomial G20.

6 The diagonal model
We have defined weakly directed walks in Section 2 by requiring that the portion of the walk joining
two visits to the same diagonal is partially directed. Here, we study a proper subclass of these walks,
consisting of bridges formed of partially directed irreducible bridges.
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Proposition 12 The generating function of bridges formed of partially directed irreducible bridges is

W∆(t) =
1

1 + 2t− 2tB1

1 + tB1
− 4tB2

1 + 2tB2
+

2tB0

1 + tB0

,

where the series Bi =
∑
k≥0B

(k)
i (t) are given in Proposition 5.

The growth constant is found to be a bit smaller than in the horizontal model (about 2.5378). The
end-to-end distance is again linear.
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Abstract. We study the poset of Borel congruence classes of symmetric matrices ordered by containment of closures.
We give a combinatorial description of this poset and calculate its rank function. We discuss the relation between this
poset and the Bruhat poset of involutions of the symmetric group. Also we present the poset of Borel congruence
classes of anti-symmetric matrices ordered by containment of closures. We show that there exists a bijection between
the set of these classes and the set of involutions of the symmetric group. We give two formulas for the rank function
of this poset.

Résumé Nous étudions l’ensemble ordonné des classes de congruence de matrices symétriques ordonnées par con-
tainment de leurs fermetures. Nous donnons une description combinatoire de cet ensemble et calculons sa fonction
rang. Nous étudions les relations entre cet ensemble et l’ensemble des involutions du groupe symérique ordonné selon
l’ordre de Bruhat. Nous montrons qu’il existe une bijection parmi l’ensemble ordonné de classes de congruences de
Borel des matrices anti-symétriques et l’ensemble des involutions du groupe symétrique. On termine en donnant deux
formules pour la fonction rang pour ce dernier ensemble.

Keywords: Bruhat poset, congruence orbit, involutions of the symmetric group

1 Introduction
A remarkable property of the Bruhat decomposition of GLn(C) (i.e. the decomposition of GLn(C) into
double cosets {B1πB2} where π ∈ Sn , B1, B2 ∈ Bn(C) – the subgroup of upper-triangular invertible
matrices ) is that the natural order on double cosets (defined by containment of closures) leads to the
same poset as the combinatorially defined Bruhat order on permutations of Sn (for π, σ ∈ Sn, π 6 σ if
π is a subword of σ with respect to the reduced form in Coxeter generators). L. Renner introduced and
developed the beautiful theory of Bruhat decomposition for not necessarily invertible matrices, see [10]
and [9]. When the Borel group acts on all the matrices, the double cosets are in bijection with partial
permutations which form a so called rook monoid Rn which is the finite monoid whose elements are the
0-1 matrices with at most one nonzero entry in each row and column. The group of invertible elements of
Rn is isomorphic to the symmetric group Sn. Another efficient, combinatorial description of the Bruhat
ordering on Rn and a useful, combinatorial formula for the length function on Rn are given by M. Can
and L. Renner in [3].
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The Bruhat poset of involutions of Sn was first studied by F. Incitti in [6] from a purely combinatorial
point of view. He proved that this poset is graded, calculated the rank function and also showed several
other important properties of this poset.

In this extended abstract we present a geometric interpretation of this poset and its natural general-
ization, considering the action of the Borel subgroup on symmetric matrices by congruence. Denote by
Bn(C) the Borel subgroup ofGLn(C), i.e. the group of invertible upper-triangular n×nmatrices over the
complex numbers. Denote by S(n,C) the set of all complex symmetric n× n matrices. The congruence
action of B ∈ Bn(C) on S ∈ S(n,C) is defined in the following way:

S 7−→ BtSB .

The orbits of this action (to be precisely correct, we must say S 7→
(
B−1

)t
SB−1 to get indeed a group

action) are called the congruence B-orbits. It is known that the orbits of this action may be indexed by
partial Sn-involutions (i.e. symmetric n×n matrices with at most one 1 in each row and in each column)
(see [11]). Thus, if π is such a partial involution, we denote by Cπ the corresponding congruence B-orbit
of symmetric matrices. The poset of these orbits gives a natural extension of the Bruhat poset of regular
(i.e. not partial) involutions of Sn. If we restrict this action to the set of invertible symmetric matrices we
get a poset of orbits that is isomorphic to the Bruhat poset of involutions of Sn studied by F. Incitti.

Here, we give another view of the rank function of this poset, combining combinatorics with the geo-
metric nature of it. The rank function equals to the dimension of the orbit variety. We define the combina-
torial parameter D which is an invariant of the orbit closure and give two combinatorial formulas for the
rank function of the poset of partial involutions (Theorems 2 and 7). The result of Incitti that the Bruhat
poset of involutions of Sn is graded and his formula for the rank function of this poset follow from our
exposition (Corollary 1).

Also we present another graded poset of involutions of the symmetric group which also has the geo-
metric nature, i.e. it can be described as a poset of matrix varieties ordered by containment of closures.
Denote by AS(n,C) the set of all complex anti-symmetric n × n matrices. It is actually a vector space
with respect to standard operations of addition and multiplication by complex scalars, also it is a Lie al-
gebra usually denoted as so with [A,B] := AB −BA. It is easy to see that AS(n,C) is closed under the
congruence action. We consider the orbits of the congruence action of Bn(C) on AS(n,C).

The main points of this work are Proposition 2, Definition 8, Theorem ?? and Proposition 8. In Propo-
sition 2 we show that the orbits of this action may be indexed by involutions of Sn. Then we consider
the poset of these orbits ordered by containment of closures. In Definition 7 we introduce the parameter
A and then in Theorem 2 and Proposition 8 we give two different formulas for the rank function of the
studied poset using the parameter A. This parameter is similar to the parameter D introduced in [1] and
it can be seen as a particular case of a certain unified approach to the calculation of the rank function for
several ”Bruhat-like” posets as we briefly discuss it at the last section of [1].

If we restrict this action on the set of invertible anti-symmetric matrices we get a poset of orbits that is
isomorphic to the (reversed) Bruhat poset of involutions of Sn without fixed points which is a subposet of
the poset studied by F. Incitti.
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2 Preliminaries
2.1 Permutations and partial permutations. The Bruhat order
The Bruhat order on permutations of Sn is defined as follows: π 6 σ if π is a subword of σ in Coxeter
generators s1 = (1, 2), s2 = (2, 3),...,sn−1 = (n − 1, n). It it well studied from various points of
view. The rank function is the length in Coxeter generators which is exactly the number of inversions in
a permutation. A permutation matrix is a square matrix which has exactly one 1 in each row and each
column while all other entries are zeros. A partial permutation is an injective map defined on a subset
of {1, 2, .., n}. A partial permutation matrix is a square matrix which has at most one 1 at each row and
each column and all other entries are zeros. So, if we delete the zero rows and columns from a partial
permutation matrix we get a (regular) permutation matrix of smaller size, we will use this view later. See
works of L. Renner [9] and [10] where the Bruhat order on partial permutations is introduced and studied.

2.2 Partial order on orbits
When an algebraic group acts on a set of matrices, the classical partial order on the set of all orbits is
defined as follows:

O1 ≤ O2 ⇐⇒ O1 ⊆ O2

where S is the (Zariski) closure of the set S.

Reminder 1 Note that O1 ⊆ O2 =⇒ O1 ⊆ O2 for any two sets O1,O2.

Definition 1 As usual, a monomial matrix is a matrix which has at most one non-zero entry in each its
row and in each its column.

3 Rank-control matrices
In this section we define the rank control matrix which will turn out to be a key corner in the identification
of our poset. We start with the following definition:

Definition 2 Let X = (xij) be an n × m matrix. For each 1 ≤ k ≤ n and 1 ≤ l ≤ m, denote by
Xk` the upper-left k × ` submatrix of X . We denote by R(X) the n × m matrix whose entries are:
rk` = rank (Xk`) and call it the rank control matrix of X .

It follows from the definitions that for each matrix X , the entries of R(X) are nonnegative integers
which do not decrease in rows and columns and each entry is not greater than its row and column number.
If X is symmetric, then R(X) is symmetric as well.

Reminder 2 This rank-control matrix is similar to the one introduced by A. Melnikov [7] when she stud-
ied the poset (with respect to the covering relation given in Definition 2.2) of adjoint B-orbits of certain
nilpotent strictly upper-triangular matrices.

The rank control matrix is connected also to the work of Incitti [6] where regular involutions of Sn are
discussed.

Proposition 1 Let X,Y ∈ GLn(F) be such that Y = LXB for some invertible lower-triangular matrix
L and some matrix B ∈ Bn(C). Denote by Xk` and Yk` the upper-left k × ` submatrices of X and Y
respectively. Then for all 1 6 k, ` 6 n

rank (Xk`) = rank (Yk`) .
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Proof: (
Lkk 0k×(n−k)
∗ ∗

)(
Xk` ∗
∗ ∗

)(
B`` ∗

0(n−`)×` ∗

)
=

(
LkkXk`B`` ∗

∗ ∗

)
,

and therefore, Yk` = LkkXk`B``. The matrices Lkk and B`` are invertible, which implies that Yk` and
Xk` have equal ranks. 2

The rank control matrices of two permutations can be used to compare between them in the sense of
Bruhat order. This is the reasoning for the next definition:

Definition 3 Define the following order on n ×m matrices with positive integer entries: Let P = (pij)
and Q = (qij) be two such matrices.

Then
P 6R Q ⇐⇒ pij 6 qij for all i, j .

The following lemma appears in another form as Theorem 2.1.5 of [2].

Lemma 1 Denote by 6B the Bruhat order of Sn and let π, σ ∈ Sn. Then

π 6B σ ⇐⇒ R(π) >R R(σ) .

In other words, the Bruhat order on permutations corresponds to the inverse order of their rank-control
matrices. 2

4 Partial permutations, Partial Involutions and Congruence B-Orbits
Definition 4 A partial permutation is an n×n (0, 1)-matrix such that each row and each column contains
at most one ‘1’.

Definition 5 If a partial permutation matrix is symmetric, then we call it a partial involution.

The following easily verified lemma claims that partial permutations are completely characterized by
their rank control matrices.

Lemma 2 For two n× n partial permutation matrices π, σ we have

R(π) = R(σ) ⇐⇒ π = σ.

Proof: The statement of the lemma is implied by the following simple observation: let U be the n × n
upper-triangular matrix with ’1’s on the main diagonal and in all upper triangle and let π be any partial
permutation. Then

R(π) = U tπU .

2 The following theorem can be found in [11] (Theorem 3.2). It is proved by performing a symmetric

version of Gauss elimination process.

Theorem 1 There exists a bijection between the set of congruence B-orbits of symmetric matrices over C
and the set of partial involutions.



364 Eli Bagno and Yonah Cherniavsky

5 A bijection between orbits and involutions
The following Proposition 2 is somewhat similar to Theorem 3.2 in [11].

Proposition 2 There is a bijection between the set of congruence B-orbits of all anti-symmetric n × n
matrices and the set of all involutions of Sn.

Proof: The complete proof can be found in [4]. It is done by symmetric elimination process which starts
with an anti-symmetric matrix and terminates with a certain monomial anti-symmetric matrix which has
1’s in its upper triangle and −1’s in its lower triangle. Such matrix is unique for the given orbit and there
is a bihection between the set of such matrices and involutions of Sn. This bijection is illustrated in the
Example 1. 2

Example 1 The monomial anti-symmetric matrix




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0




corresponds to the involu-

tion(
1 2 3 4 5 6
4 5 3 1 2 6

)
∈ S6, which can be written as the product of disjoint transpositions as (1, 4)(2, 5).

a

Observation 1 The congruence B-orbits of invertible anti-symmetric 2n × 2n matrices can be indexed
by involutions of S2n without fixed points.

6 The Poset of Congruence B-Orbits of Symmetric Matrices
Here is a direct consequence of Lemma 2 and Proposition 1.

Proposition 3 All the matrices of a fixed congruence B-Orbit share a comon rank-control matrix. In other
words, if π is a partial Sn-involution, and Cπ is the congruence B-orbit of symmetric matrices associated
with π then

Cπ = {S ∈ S(n,C) |R(S) = R(π)} .
The following lemma describes the orbits:

Lemma 3 Let π be a partial involution and let R(π) be its rank-control matrix. Then

Cπ = {S ∈ S(n,C) | R(S) 6R R(π)} .

This lemma follows from Theorem 15.31 of [8]. Their exposition differs somewhat from ours as it deals
with rectangular, not necessarily symmetric matrices but the differences can be easily overwhelmed by
considering also equations of the form aij = aji which are polynomial equations with regard to the entries
of a matrix.

Reminder 3 Over the fields C and R the closure in Lemma 5 may also be considered with respect to the
metric topology.
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The next corollary follows from Lemma 5 and characterizes the order relation of the poset of B-orbits.
Let π and σ be partial Sn-involutions. Then

Cπ 6O Cσ ⇐⇒ R(π) 6R R(σ)

Explicit examples for n = 3 in the symmetric case can be found in [1] and for n = 4 in the antisym-
metric case can be found in [4].

7 The Poset of Congruence B-Orbits of Anti-Symmetric Matrices
Here is a direct consequence of Proposition 1.

Proposition 4 All the matrices of a fixed congruence B-Orbit have the same rank-control matrix. In other
words, if X ∈ AS(n,C) and AX is the congruence B-orbit of X , then

AX = {S ∈ AS(n,C) |R(S) = R(X)} .

Similarly to the symmetric case we give the proposition which describes the orbit closures in the anti-
symmetric case. This proposition also follows from Theorem 15.31 given by E. Miller and B. Sturmfels,
see [8, Chapter 15, page 301]:

Proposition 5 Let X be an anti-symmetric matrix and let R(X) be its rank-control matrix. Then

AX = {S ∈ AS(n,C) |R(S) 6R R(X)} .

The next corollary characterizes the order relation of the poset of B-orbits.

Corollary 1 Let X,Y ∈ AS(n,C). Then

AX 6O AY ⇐⇒ R(X) 6R R(Y )

8 The Rank Function
Definition 6 A poset P is called graded (or ranked) if for every x, y ∈ P , any two maximal chains from
x to y have the same length.

Proposition 6 The poset of congruence B-orbits of symmetric matrices and the poset of congruence B-
orbits of anti-symmetric matrices(with respect to the order 6O) are graded posets with the rank function
given by the dimension of the closure.

This proposition is a particular case of the following fact. Let G be a connected, solvable group acting
on an irreducible, affine variety X . Suppose that there are a finite number of orbits. Let O be the set of
G-orbits on X . For x, y ∈ O define x 6 y if x ⊆ y. Then O is a graded poset.

This fact is given as an exercise in [10] (exercise 12, page 151) and can be proved using the proof of the
theorem appearing of Section 8 of [9]. (Note that in our case the Borel group is solvable, the varieties of
all symmetric and anti-symmetric matrices are irreducible because they are vector spaces and the number
of orbits is finite since there are only finitely many partial permutation.)

A natural problem is to find an algorithm which calculates the dimension of the orbit closure from the
monomial matrix or from its rank-control matrix. Here we present such an algorithm.
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Definition 7 Let π be a partial involution matrix and let R(π) = (rij) be its rank-control matrix. Add an
extra 0 row to R(π), pushed one place to the left, i.e. assume that r0k = 0 for each 0 6 k < n.

Denote
D(π) = # {(i, j) | 1 6 i 6 j 6 n and rij = ri−1,j−1} .

Definition 8 Let X ∈ AS(n,C) and let R(X) = (rij)
n
i,j=1 be the rank-control matrix of X . Add an

extra 0 row to R(X), pushed one place to the left, i.e. assume that r0k = 0 for each 0 6 k < n. Denote

A(X) = # {(i, j) | 1 6 i < j 6 n and rij = ri−1,j−1} .

The first parameter D counts equalities in the diagonals of the upper triangle of the rank-control matrix
including the main diagonal and the second parameter A counts equalities in the diagonals of the upper
triangle of the rank-control matrix without the main diagonal.

Theorem 2 Let π be a partial Sn-involution. As above Cπ denotes the orbit of symmetric matrices which
corresponds to π. Then

dim Cπ =
n2 + n

2
−D(π).

Proof: Consider the vector space

Cn
2

=



[aij ]

n
i,j=1 =



a11 · · · a1n
· · · · · · · · ·
an1 · · · ann


 : aij ∈ C



 .

Let X be some set of pairs of indexes, i.e. X ⊆ {(i, j) : 1 6 i, j 6 n}. Define a subspace WX ⊂ Cn2

of
dimension n2 − |X| in the following way:

WX = {[aitjt ] : (it, jt) /∈ X} ,
i.e. WX is spanned by the elements of the standard basis of Cn2

which we index by all pairs of indices
not belonging to X .

Consider also the natural projection pX : Cn2 → WX . Since we consider elements of Cn2

as n × n
matrices, we denote elements of WX as matrices with empty boxes in the positions whose indexes are in
X . For example, consider

C32 =



[aij ]

3
i,j=1 =



a11 a12 a13
a21 a22 a23
a31 a32 a33


 : aij ∈ C





and let X = {(2, 3), (3, 2), (3, 3)}. Then

WX =



[a11, a12, a13, a21, a22, a31] =



a11 a12 a13
a21 a22 �
a31 � �


 : aij ∈ C



 ⊂ C32 .

In this example the natural projection pX : C32 →WX is

pX ([a11, a12, a13, a21, a22, a23, a31, a32, a33]) = [a11, a12, a13, a21, a22, a31]
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or in the matrix notation

pX





a11 a12 a13
a21 a22 a23
a31 a32 a33




 =



a11 a12 a13
a21 a22 �
a31 � �


 .

By a fragment of an n× n matrix we mean the image of this matrix under the projection pX with certain
X .

Denote
V kn = pX(Cπ)

where X = {(k + 1, n), (n, k + 1), (k + 2, n), (n, k + 2), ...(n, n)}.
The variety V kn corresponds to the fragments of V with empty entries in the n-th row and column: the

last non-empty entry in the n-th column is in the row number k, all further positions in the n-th row and
column are empty.

Observation 2 Let V be a variety in Cn which is described by the polynomial equations

f1 (x1, ..., xn) = 0, f2 (x1, ..., xn) = 0, ..., fk (x1, ..., xn) = 0

and let p : Cn → Cn−k be the natural projection

p (x1, x2, ..., xn−k, ..., xn−1, xn) = (x1, x2, ..., xn−k) .

Then
p(V ) = {(x1, x2, ..., xn−k) ∈ Cn−k : fi1 = 0, fi2 = 0, ..., fit = 0}

where the equations fij = 0 appearing here are only those which do not include the variables xn−k+1,
xn−k+2,...,xn, i.e. only those fi whose partial derivatives by with respect to the variables xn−k+1,
xn−k+2,...,xn are zeros.

Observation 3 Note that since V kn and V k−1,n are projections of the same variety Cπ and V kn has
one more coordinate than V k−1,n, there are only two possibilities for their dimensions: dimV kn =
dimV k−1,n or dimV kn = dimV k−1,n + 1.

(This is true since the rank of the Jacobian matrix can change only by 1 when we delete the rows
corresponding to the coordinates.)

Now, let us start the course of the proof, by induction on n. For n = 1 the statement is obviously true.
Let πn be any partial Sn involution. Denote by πn−1 its upper-left n−1×n−1 submatrix (which is an

Sn−1 partial involution by itself). Denote by R(πn), (R(πn−1)) the corresponding rank-control matrices.
By the induction hypothesis, dim Cπn−1

= n2−n
2 −D (πn−1). Now we add to πn−1 the n-th column

and consider the n-th column of R(πn). (We also add the n-th row but since our matrices are symmetric
it suffices to check the dimension when we add the n-th column.) We added n new coordinates to the
variety Cπn−1 and we have to show that

dim Cπ = dim Cπn−1
+ n−# {(i, n) | 1 6 i 6 n and rin = ri−1,n−1} , (∗)

The equality (∗) implies the statement of our theorem since n2−n
2 + n = n2+n

2 and

D (π) = D (πn−1) + # {(i, n) | 1 6 i 6 n and rin = ri−1,n−1} .
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Obviously, if r1,n = 0, then a1,n = 0 for anyA = (aij)
n
i,j=1 ∈ Cπ . This itself is a polynomial equation

which decreases the dimension by 1.
If, on the other hand, r1,n = 1, it means that the rank of the first row is maximal and therefore, no

equation is involved. In other words, the dimension of the variety V 1n is one more than the dimension of
the variety V 0n, corresponding to and they have equal dimensions when r1,n = 0.

Now move down along the n-th column of R(πn). Again, by induction, this time on the number of
rows, assume that for each 1 6 i 6 k − 1 dimV in = dimV i−1,n if and only if ri−1,n−1 = ri,n while
dimV in = dimV i−1,n + 1 if and only if ri−1,n−1 < ri,n.

First, let rk−1,n−1 = rk,n = c. Consider a matrix A = (aij)
n
i,j=1 ∈ Cπ and its upper-left (k − 1) ×

(n− 1) submatrix 


a11 a12 · · · a1,n−1
a21 a22 · · · a2,n−1
· · · · · · · · · · · ·

ak−1,1 ak−1,2 · · · ak−1,n−1


 .

Using the notation introduced in Proposition 1, we denote this submatrix as Ak−1,n−1.
If c = 0, then rankAkn = 0, so Akn is a zero matrix and thus dimV in = dimV i−1,n = 0.

Let c 6= 0. Since rank (Ak−1,n−1) = c, we can take c linearly independent columns




a1,j1
a2,j1
· · ·

ak−1,j1


 , ... ,




a1,jc
a2,jc
· · ·

ak−1,jc


 which span its column space. Now take only the linearly independent rows of the (k − 1)× c

matrix




a1,j1 · · · a1,jc
a2,j1 · · · a2,jc
· · · · · · · · ·

ak−1,j1 · · · ak−1,jc


 to get a nonsingular c× c matrix Tc =




ai1,j1 · · · ai1,jc
ai2,j1 · · · ai2,jc
· · · · · · · · ·
aic,j1 · · · aic,jc


.

The equality rk−1,n−1 = rk,n = c 6 k− 1 implies that any (c+1)× (c+1) minor of the matrix Akn
is zero, in particular

det




ai1,j1 · · · ai1,jc ai1,n
ai2,j1 · · · ai2,jc ai2,n
· · · · · · · · · · · ·
aic,j1 · · · aic,jc aic,n
ak,j1 · · · ak,jc ak,n



= 0

which is a polynomial equation. This equation is algebraically independent of the similar equations ob-
tained for 1 6 i 6 k − 1 since it contains a ”new” variable – the entry ak,n. It indeed involves the entry
ak,n since detTc 6= 0. This equation means that the variable ak,n is not independent of the coordinates
of the variety V k−1,n, and therefore dimV k−1,n = dimV kn.

Now let rk−1,n−1 < rk,n = c. We have to show that in this case the variable ank is independent of
the coordinates of V k−1,n, in other words, we have to show that there is no new equation. Consider the
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fragment
[
rk−1,n−1 rk−1,n
rk−1,n rk,n

]
. There are four possible cases:

[
rk−1,n−1 rk−1,n
rk−1,n rk,n

]
=

[
c− 1 c− 1
c− 1 c

]
or

[
c− 2 c− 1
c− 1 c

]
or

[
c− 1 c
c− 1 c

]
or

[
c− 1 c− 1
c c

]
.

The equality rk,n = c implies that each (c+ 1)× (c+ 1) minor of Akn is equal to zero, but we shall see
that each such equation is not new, i.e. it is implied by the equality rk,n−1 = c − 1 or by the equality

rk−1,n = c− 1. In the first three cases we decompose the (c+1)× (c+1) determinant det
[
· · · · · ·
· · · ak,n

]

using the last column. Since in all these cases rk,n−1 = c − 1, each c × c minor of this decomposition
(i.e. each c × c minor of Ak,n−1) is zero and therefore, this determinant is zero. In the fourth case
we get the same if we decompose the determinant using the last row instead of the last column: since
rk−1,n = c− 1, all the c× c minors of this decomposition (i.e. all c× c minor of Ak−1,n) are zeros and
thus, our (c+ 1)× (c+ 1) determinant equals to zero. So there is no algebraic dependence between akn
and the coordinates of V k−1,n. Therefore, dimV kn = dimV k−1,n + 1. The case k = n is the same as
other cases when k 6 n− 1. The proof is completed. 2

Theorem 3 Let π ∈ Sn be an involution. Denote by Aπ the orbit of anti-symmetric matrices which
corresponds to π.Then

dim Aπ =
n2 − n

2
− A(π).

The proof is similar to the proof of Theorem 2 and can be found in [4].

9 Another formula for the rank function.

9.1 The symmetric case.
Obviously, an n × n partial involution matrix π can be described uniquely by the pair (π̃, {i1, ..., ik}),
where n−k is the rank of the matrix π, π̃ ∈ Sn−k such that π̃2 = Id is the regular (not partial) involution
of the symmetric group Sn−k and the integers i1, ..., ik are the numbers of zero rows (columns) in the
matrix π.

The following theorem is a generalization of the formula for the rank function of the Bruhat poset of
the involutions of Sn given by Incitti in [6]. It is indeed the rank function because we already know
that the rank function is the dimension (Proposition 6) and the dimension is determined by the parameter
D (Theorem 2). Recall that for σ ∈ Sn, inv(σ) = #{(i, j)|i < j&σ(i) > σ(j)} and exc(σ) =
#{i|σ(i) > i}.
Proposition 7 Following Incitti, denote by Invol(G) the set of all involutions in the group G. Then for
a partial permutation π = (π̃, {i1, ..., ik}), where π̃ ∈ Invol(Sn−k) and the integers i1, ..., ik are the
numbers of zero rows (columns) in the matrix π is:

D(π) =
exc(π̃) + inv(π̃)

2
+

k∑

t=1

(n+ 1− it)
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In other words, D(π) equals to the length of π̃ in the poset of the involutions of the group Sn−k plus
the sum of the numbers of zero rows of the matrix π, where the numbers are taken in the opposite order,
i.e. the n-th row is labeled by 1, the (n− 1)-th row is labeled by 2,..., the first row is labeled by n.

Comment 1 The Bruhat poset of regular (not partial) involutions of Sn is a graded poset with the rank
function given by the formula

D(σ) =
exc(σ) + inv(σ)

2
,

where σ ∈ Invol(Sn).
The proofs of Proposition 7 and Corollary 1 can be found in [1].

9.2 The anti-symmetric case.
Here we don’t distinguish between an involution π ∈ Sn and the monomial anti-symmetric matrix (with
minuses in the lower triangle) associated to π by the bijection presented in Proposition 2.

Definition 9 Let π ∈ Sn be an involution. It is always possible to write it as product of disjoint transpo-
sitions

π = (i1, j1) (i2, j2) · · · (ik, jk)
in such a way that for all 1 6 t 6 k, it < jt and i1 < i2 < · · · < ik. Let us call it ”the canonic form”.

Denote by I(π) the number of inversions in the word i1j1i2j2 · · · ikjk.

Proposition 8 Let π ∈ Sn be an involution. Then

A(π) = I(π) +
∑

a :π(a)=a

(n− a) .

The proof can be found in [4].
The proofs of Propositions 7 and 8 are done by induction and use Theorems 2 and 3 respectively.
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Abstract. We explore in this paper the spaces of common zeros of several deformations of Steenrod operators. Proofs
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Résumé. Nous explorons dans cet article l’espace des zéros communs de plusieurs déformations d’opérateurs de
Steenrod. Faute de place, les preuves sont omises.

Keywords: Harmonic polynomials, Steenrod Operators

1 Introduction
In recent years many authors have studied variations on a striking classical result of invariant theory
holding for any finite group W of real n×n matrices generated by reflections. Roughly stated, this result
asserts that there is a natural decomposition

R[x] ' R[x]W ⊗ R[x]W (1)

of the ring of polynomials R[x], in n variables x = x1, x2, . . . , xn, as a tensor product of the ring R[x]W

ofW -invariant polynomials, and the “W -coinvariant-space” R[x]W . This last is simply the space obtained
as the quotient of the ring R[x] by the ideal generated by constant-term-free W -invariant polynomials. It
is well known that R[x]W is isomorphic as a W -module to the space HW of W -harmonic polynomials,
i.e.: the set of polynomials f(x) that satisfy all partial differential equations of the form p(∂x)f(x) = 0,
where p(∂x) any constant-term-free W -invariant polynomial in the partial derivatives ∂i.

The purpose of this work is to study twisted versions of this setup. Typically, we replace symmetric
operators ∂k1 + . . .+ ∂kn, by operators of the form

Dk :=

n∑

i=1

ai,kxi∂
k+1
i + bi,k∂

k
i , (2)

†supported by NSERC-Canada and FQRNT-Québec
‡supported by NSF
§supported by NSF

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



Steenrod operators 373

with some parameters ai,k and bi,k. We then consider the solution setHx of the system of partial differen-
tial equations Dkf(x) = 0, for k ≥ 1. Observe that the operators Dk are homogeneous. We say that they
are of degree −k since they lower degree of polynomials by k. It follows thatHx is graded by degree. In
particular, it makes sense to consider the Hilbert series

Hn(t) :=
∑

d≥0

td dim(πd(Hx)), (3)

with πd denoting the projection onto the homogeneous component of degree d. Clearly the right-hand
side of (3) depends on the choice of the parameters ai,k and bi,k. Recall that the Hilbert series of the space
HSn

, of Sn-harmonic polynomials (which corresponds to setting ai,k = 0 and bi,k = 1) is the classical
t-analog of n!. As we will see later, this is a “generic” value for Hn(t).

Before going on with our discussion, let us consider an interesting dual point of view. Following a
terminology of Wood [5], we shall say that a polynomial is a hit-polynomial if it can be expressed in the
form

f(x) =
∑

k

D∗k gk(x), (4)

for some polynomials gk(x), with D∗k standing for the dual operator of Dk with respect to the following
scalar product on the ring of polynomials.

For two polynomials f and g in R[x], one sets

〈f, g〉 := f(∂x)g(x)
∣∣
x=0

. (5)

In other words, this corresponds to the constant term of the polynomial resulting from the application of
the differential operator f(∂x) to g(x). A straightforward computation reveals that, for two monomials
xa and xb, we have 〈xa,xb〉 = a!, if a = b, and 0 otherwise. Here, as is now almost usual, a! stands for
a1!a2! · · · an!. This observation makes it clear that (5) indeed defines a scalar product on R[x]. Moreover,
the dual of the operator ∂ki is easily checked to be multiplication by xki . It follows that

D∗k =
n∑

i=1

ai,k x
k+1
i ∂i + bi,k x

k
i .

From general basic linear algebra principles, it follows that the space ofHx, of general harmonic polyno-
mials, is orthogonal to the space of hit-polynomials. Moreover, since the subspace of hit-polynomials is
homogeneous, the corresponding quotient C of R[x], by this subspace, is isomorphic to Hx as a graded
space.

For, the special case corresponding to setting ai,k = q, and bi,k = 1, for all i and k, we denote Hx;q

resulting space which has been considered by Hivert and Thiéry (in [3]). Using the notation

Dk;q :=

n∑

i=1

q xi∂
k+1
i + ∂ki ,

Using a simply Lie-bracket calculation, Hivert and Thiéry have observed thatHx;q is simply characterized
as the common solutions of the two equations D1;qf(x) = 0, and D2;qf(x) = 0. Recall that the ring
of polynomials R[x] can be considered as a Sn-module for the action that corresponds to permutation of
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the variables. This action restricts to a natural Sn-action on the space Hx;q , since the operators Dk;q are
symmetric. It is classical that HSn

= Hx;0 is isomorphic, as a Sn-module, to the regular representation
of Sn. Hivert-Thiéry go on to state that

Conjecture 1 (Hivert-Thiéry) As Sn-modules, the spaces Hx;q is isomorphic to HSn
, when q > 0. In

particular, this implies that the Hilbert series ofHx;q is [n]!t.

It follows from (1) that the graded Frobenius characteristic Fn(t) ofHx;q (andHSn
) is

Fn(t) = [n]!t (1− t)n
∑

λ`n

n∏

k=1

1

dk!

(
pk

k (1− tk)

)dk
, (6)

where dk = dk(λ) is the number of size k parts of λ.
In this work we generalize and extend the scope of the above conjecture to include the more general

operators of (2). Along the way we prove several related results.

2 Tilde-Harmonics and Hat-Harmonics
We first consider another interesting special case of (2). Namely, we suppose that all bi,k’s vanish, and all
ai,k’s are equal to 1. Thus, we consider the space of common zeros of the operators D̃k :=

∑n
i=1 xi ∂

k+1
i ,

which is called the space of tilde-harmonics, and denoted H̃x. We easily check that

[D̃k, D̃j ] = (k − j)D̃k+j , (7)

hence H̃x is simply the set of common zeros of the two equations D̃1f(x) = 0, and D̃2f(x) = 0.
The space H̃x affords a natural action of the symmetric group, and the associated graded Frobenius
characteristic is denoted F̃n(t). Computer experimentations suggest that the Hilbert series of H̃x seems
to be

H̃n(t) =

n∑

k=0

(
n

k

)
tk[k]t!. (8)

Modulo a natural conjecture, this follows from a very explicit description of H̃x outlined below. To state it
we need one more family of operators and yet another version of harmonic polynomials. For each k ≥ 1,
consider the operator D̂k =

∑n
i=1 xi∂

k+1
i + (k + 1) ∂ki , and introduce the space

Ĥx :=
{
f(x) ∈ R[x] | D̂kf(x) = 0, ∀k ≥ 1

}
,

whose elements are said to be “hat-harmonics”. We will soon relate the two notions of tilde and hat
harmonics. Experimentation suggest that Ĥx has dimension n!, and that even more precisely we have the
following.

Conjecture 2 As a graded Sn-module, Ĥx is isomorphic to the space of Sn-harmonics.

Now, for any given k-subset y of the n variables x, let us consider the space Ĥy, and write

ey :=
∏

x∈y
x,
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for the elementary symmetric polynomial of degree k in the variables y. As usual, we define the support
of a monomial to be the set of variable that appear in it, with non-zero exponent. Clearly, ya has support
y if and only if ya = ey y

b, for some b. Observe that we have the operator identity we can easily check
the operator identity

D̃k ex = ex D̂k, (9)

where ex stands for the operator of multiplication by ex. We can now state the following remarkable fact.

Theorem 1 The space of tilde-harmonics has the direct sum decomposition

H̃x =
⊕

y⊆x
eyĤy, (10)

if we consider that hat-harmonics for y = ∅ are simply the scalars.

The same holds for the more general case of operators ak D̃k and ak D̂k, with the ak’s equal to 0 or
1. The intent here is to restrict the set of equations considered to those k for which ak takes the value 1.
The corresponding spaces are denoted H̃a

x and Ĥa
x, with similar convention for the corresponding Hilbert

series and graded Frobenius characteristics. It follows that, even in this more general context, we have

Corollary 2 For all choices of ak,

H̃a
n(t) =

n∑

k=0

(
n

k

)
tk Ĥa

k(t). (11)

In particular, if conjecture 2 holds then (8) holds. There is an even finer corollary of Theorem 1.

Corollary 3 The graded Frobenius characteristic of H̃a
x is given by the symmetric function

F̃ a
n (t) =

n∑

k=0

tkF̂ a
k (t)hn−k(z) (12)

A conjecture of Wood [5, conjecture 7.3] is thus partially addressed in a very explicit manner. Indeed, in
view of Theorem 1, Wood’s conjecture is a consequence of Conjecture 2 and the fact that C̃ is isomorphic
to H̃x as a graded Sn-module.

3 More on q-harmonics
We now link the study of harmonics of the D̃k to further our understanding of the common zeros of
the operators Dk:q , in the case when q is considered as a formal parameter. Our point of departure is
the following important fact. Denote by ∇k :=

∑n
i=1 ∂

k
i the generalized Laplacian, and observe that

Dk:q = qD̃k +∇k, then we get the following.

Theorem 4 Up to a power of q, every q-harmonic polynomial f may be written in the form

f = f0 + qf1 + q2f2 + · · ·+ qmfm (13)
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with fi ∈ R[x], and such that for all k ≥ 1 we have

(a) ∇kf0 = 0

(b)∇kfi = −D̃kfi−1, for all i = 2, . . . ,m− 1,

(c) D̃kfm = 0.

(14)

In particular, it follows that for any r ≥ 0, and any choice of k1, k2, . . . , kr ≥ 1, the element

∇k1∇k2 · · · ∇krfr (15)

is a Sn-harmonic polynomial in the usual sense.

Let us now reformulate the expansion of (13) in the form

f = qr(f0 + qf1 + · · ·+ qmfm) (with each fi ∈ R[x], fi 6= 0)

We call f0 the first term of f and denote it “FT(f)”. Analogously we say that fm is the last term of f
and denote it “LT(f)”. The integer m will be called the length of f . We also set

HFx := L[FT(f) | f ∈ Hx;q] and HLx := L[LT(f) | f ∈ Hx;q] (16)

to respectively stand for the span of first terms of q-harmonics and last terms. Using a theorem of [3] we
then get the following remarkable corollary.

Corollary 5 The three spaces HFx , HLx and Hx;q are isomorphic as graded Sn-modules and therefore
they are all isomorphic to a submodule of the Harmonics of Sn.

Since the dimension of Hx;q is thus bounded above, the single equality dimHx;q = n! would imply
that Hx;q affords the regular representation of Sn. In particular this would yield that HFx is none other
than the space of harmonics of Sn. Since Hx;q is isomorphic to HFx , as a graded Sn-module, it would
follow thatHx;q itself is isomorphic to the space of harmonics of Sn (as a graded Sn-module). Thus the
Hivert-Thiéry conjecture would result.

4 The Kernel of Dk

To compute the general space Hx of harmonic polynomials, we need to find common solutions of the
differential equations Dkf(x) = 0, for k > 0. For each k, the kernel of the operator Dk may be given a
precise explicit description whenever ai,k d + bi,k 6= 0, for all d ∈ N.We lighten the notation by writing
simply ai instead of ai,k.

The case k = 1 illustrates all aspects of the method. We construct a set

{yr + Ψ1(yr)}r∈Nn−1 (17)

which is a basis of the solution set of D1f(x) = 0. Here, Ψ1 is a linear operator described below. Simply
writing x for xn, and y for the set of variables x1, . . . , xn−1, we expand f ∈ R[x] as polynomials in x:

f =
∑

d

fd
xd

d!
, with fd ∈ R[y]. (18)
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The effect of D1 can then be described in the format

D1

(∑

d

fd
xd

d!

)
=
∑

d

[D1(fd) + (d an + bn)fd+1]
xd

d!
. (19)

Setting a := an and b := bn, we now assume that a d+ b 6= 0, for all d ∈ N. Then, the right-hand side of
(19) vanishes if and only we choose f to be such that

fd+1 =
−1

a d+ b
D1(fd), (20)

for all d ≥ 0. Unfolding this recurrence for the fd’s, we find that every element of the kernel of D1 can
be written as f0 + Ψ1(f0), if we define the linear operator Ψ1 as

Ψ1(g) :=
∑

m≥1

(−1)m
Dm

1 (g)

[a; b]m

xm

m!
, for g ∈ R[y]. (21)

Here we use the notation [a; b]m := b (a + b) (2 a + b) · · · ((m − 1) a + b). This leads to the following
theorem.

Theorem 6 The collection of polynomials yr + Ψ1(yr) is a basis for the kernel of D1. In fact, given any
polynomial f in the kernel of D1, its expansion in terms of this basis is simply obtained as

f =
∑

r

ar(y
r + Ψ1(yr)) (22)

with (f mod x) =
∑

r ary
r.

It follows readily that, whenever a d + b 6= 0 for all d ∈ N, the Hilbert series of the dimension of the
kernel of D1 is (1− t)1−n. In view of Theorem 1, this implies that the Hilbert series of the kernel of D̃1

is

1 +
n∑

k=1

(
n

k

)
tk

1

(1− t)k−1
. (23)

In fact, we can get an explicit description of this kernel using (9).
We can generalize formula (21) to get a description of the kernel of Dk as follows. Observe as before

that

Dk

(∑

d

fd
xd

d!

)
=
∑

d

[Dk(fd) + (a d+ b)fd+k]
xd

d!
. (24)

For this expression to be zero, we must have

fd+k =
−1

a d+ b
Dk(fd),

with the same conditions as before on a and b. This recurrence has a unique solution given initial values
for fd, 0 ≤ d ≤ k − 1. Clearly these can be fixed at leisure. Substituting the solution of the recurrence in
f , we get an element of the kernel of Dk if and only if f is of the form

f = (f mod xk) + Ψk(f mod xk),
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with Ψk the linear operator defined as

Ψk

(
k−1∑

r=0

fr
xr

r!

)
:=
∑

m≥1

k−1∑

r=0

(−1)m
Dm
k (fr)

[a k; a r + b]m

xkm+r

(km+ r)!
. (25)

In particular, it follows that the Hilbert series of the kernel of Dk is (1 + t+ . . . tk−1) (1− t)1−n.

5 Some explicit harmonic polynomials
Common zeros of all Dk’s are exactly what we are looking for. Some of these are easy to find when the
Dk’s are symmetric. Let λ be any partition of n, and consider a tableau τ of shape λ, this is to say a
bijection

τ : λ −→ {1, 2, . . . , n},

with λ identified with the set of cells of its Ferrers diagram. Recall that, for λ = λ1 ≥ λ2 ≥ . . . ≥ λk > 0,
the cells of λ are the n pairs (i, j) in N2, such that

1 ≤ i ≤ λj , 1 ≤ j ≤ k.

The value τ(i, j) is called an entry of τ , and it is said to lie in column i of τ . The Garnir polynomial of a
λ-shape tableau τ , is defined to be

∆τ (x) :=
∏

i, j<k

(xτ(i,j) − xτ(i,k)).

In other terms, the factors that appear in ∆τ (x) are differences of entries of τ that lie in the same column.
Now, define Vλ to be the linear span of the polynomials ∆τ , for τ varying in the set of tableaux of

shape λ. In formula,
Vλ := R{∆τ | τ tableau of shape λ}.

In other words, Vλ is the linear span of the ∆τ . It is well known that this homogeneous (invariant)
subspace is an irreducible representation of of Sn of dimension equal to the number of standard Young
tableaux. Moreover, in the ring R[x], there exists no isomorphic copy of this irreducible representation
lying in some homogeneous component of degree lower then that in which lies Vλ. It is easy to check that
the degrees of all of the ∆τ ’s, for a tableau of shape λ, are all equal to

`(λ)∑

i=1

(i− 1)λi,

which is usually denoted n(λ) in the literature (see [4]). This is the smallest possible value for the cocharge
of a standard tableau of shape λ. This fact has the following easy implication.

Proposition 7 For any tableau τ of shape λ, the Garnir polynomial ∆τ (x) is a zero of Dk, for k ≥ 1,
whenever Dk is symmetric.
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A direct consequence of this is that there is at least one copy of each irreducible representation of Sn

inHx, when the Dk’ s are all symmetric. Moreover, under the same conditions, we have
∑

λ`n
fλ t

n(λ) � Hn(t),

with “�” denoting coefficient wise inequality, and Hn(t) as in (3).

6 A new regular sequence and a universal dimension bound
The goal of this section is to establish a bound for the dimension of Hx;q which is valid for all values of
q. To carry this out we need some auxiliary results from commutative algebra. Let F be an algebraically
closed field and let θ1(x), θ2(x), . . . , θn(x) be homogeneous polynomials of F[x] of respective degrees
d1, d2, . . . , dn. The following result is basic.

Proposition 8 The polynomials θ1(x), θ2(x), . . . , θn(x) form a regular sequence in F[x] if and only if
the system of equations

θ1(x) = 0 , θ2(x) = 0 , . . . , θn(x) = 0

has, for x ∈ Fn, the unique solution

x1 = 0 , x2 = 0 , . . . , xn = 0.

We next make use of this proposition to study the sequence of polynomials

ϕm(x) :=
n∑

i=1

aix
m
i ,

for m ≥ 0. More precisely we seek to obtain conditions on the coefficient sequence

a = (a1, a2, . . . , an) ∈ Fn (26)

which assure that, for a given k ≥ 1, that the polynomials

ϕk(x), ϕk+1(x), . . . , ϕk+n−1(x)

form a regular sequence in F[x].
We first observe that the polynomials ϕm(x), for m > n, may be expressed in term of the ϕk(x)’s, for

1 ≤ k ≤ n. Indeed, recall that the ordinary elementary symmetric functions er(x) may be presented in
the form of the identity

(t− x1)(t− x2) · · · (t− xn) =
n∑

r=0

(−1)rer(x) tn−r.

Setting t = xi, we obtain
n∑

r=0

(−1)rer(x)xn−ri = 0.
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Multiplying both sides by ai xm−ni and isolating ai xmi , we get

ai x
m
i = −

n∑

r=1

(−1)rer(x) ai x
m−r
i .

Thus, summing up on i, the following recurrence results

ϕm(x) =
n∑

r=1

(−1)r+1er(x)ϕm−r(x). (27)

Unfolding this recurrence, we conclude that ϕm lies in the ideal (ϕ1, ϕ2, . . . , ϕn)F[x], for all m ≥ 1.

Remark 1 It is interesting to observe that identity (27) yields that

ϕ1(x), ϕ2(x), . . . , ϕn(x) (28)

is never a regular sequence when a1 + a2 + · · ·+ an = 0. Indeed, setting m = n in (27), we get

ϕm(x) =
n−1∑

r=1

ϕm−r(x)(−1)r+1er(x) + (−1)n+1en(x)
(
a1 + a2 + · · ·+ an

)

and thus the vanishing of a1 + a2 + · · ·+ an forces ϕn(x) to vanish modulo the ideal

(ϕ1, ϕ2, . . . , ϕn−1)F[x].

Let us now denote
Φkn := (ϕk, ϕk+1, . . . , ϕk+n−1)F[x],

the ideal in F[x] generated by the n polynomials ϕ`(x), with k ≤ ` ≤ k + n − 1. We also write Φn for
Φ1
n. Proposition 8 and (27) combine to yield the following remarkable result.

Theorem 9 For any k ≥ 1 the sequence

ϕk(x), ϕk+1(x), . . . , ϕk+n−1(x), (29)

is regular if and only if the sequence

ϕ1(x), ϕ2(x), . . . , ϕn(x), (30)

is regular.

This given, here and after we need only be concerned with finding conditions on a1, a2, . . . , an that
assure the regularity of sequence ϕ1, ϕ2, . . . , ϕn. The following result offers a useful criterion.

Theorem 10 In the ring F[x], the polynomials

ϕ1, ϕ2, . . . , ϕn
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form a regular sequence if and only if we have

x
(n
2)+1

i ∈ Φn. (31)

When this happens we have the Hilbert series equalities

FF[x]/Φk
n
(t) = [k]t[k + 1]t · · · [k + n− 1]t (32)

and, in particular,
dimF[x]/Φkn = (k)(k + 1) · · · (k + n− 1).

Going along the lines of Remark 1, we are now ready to assert the following characterization of the ai’s
for which we have regularity.

Theorem 11 For k > 1, the sequences

ϕk, ϕk+1, . . . , ϕk+n−1 (33)

is regular if and only if we have
ai1 + ai2 + · · ·+ aik 6= 0, (34)

for all 1 ≤ i1 < i2 < · · · < ik ≤ n.

We intend to derive the consequences of this assumption in the theory of q-harmonics. First, we simply
reformulated every statement modulo the substitution of variables

(a1, a2, . . . , an) 7→ x = (x1, x2, . . . , xn),

x 7→ ξ = (ξ1, ξ2, . . . , ξn),

and we now have
Φkn = (ϕk(ξ), ϕk+1(ξ), . . . , ϕk+n−1(ξ))Fx[ξ].

This given, from Theorem (10) we can derive the following facts about the ring

Fx[ξ1, ξ2, . . . , ξn],

where now, Fx denotes the field of rational functions in x with coefficients in F.

Theorem 12 Let
u1(ξ), u2(ξ), . . . , u(n+1)!(ξ)

be a monomial basis for the quotient
Fx[ξ]/Φkn,

and let deg(ui) = di. Then every polynomial f(ξ) ∈ Fx[ξ], which is homogeneous of degree d, has a
unique expansion of the form

f(ξ) =

(n+1)!∑

i=1

ui(ξ)
∑

∑
k rk(k+1)=d−di

ai;r(x)ϕr11 (ξ), ϕr22 (ξ) · · ·ϕrnn (ξ), (35)

where the coefficients ai;r(x) are rational functions of x, for r ∈ Nn. In particular if d >
(
n+1

2

)
then

f(ξ) ≡ 0 mod Φkn. (36)
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Let us now denote by D(x) the algebra of differential operators with coefficients in Fx. Moreover,
let Dd(x) denote the subspace of D(x) consisting of operators of order d. More precisely we have
D ∈ Dd(x) if and only if D may be expanded in the form

D =
∑

|r|≤d
ar(x) ∂rx (37)

with coefficients ar(x) ∈ Fx such that ar(x) 6= 0 at least once when |r| = d. We are here extending our
vectorial notation to operators, so that

∂rx = ∂r11 ∂
r2
2 · · · ∂rnn

is an operator of order |r| = r1 + r2 + . . .+ rn. The degree condition in (37) imply that the polynomial

σ(D) :=
∑

|r|=d
ar(x) ξr.

does not identically vanish. We will refer to σ(D) as the “symbol” of D.
This given, as a corollary of Theorem (10), we obtain the following basic result for Steenrod operators

Theorem 13 Every operator D ∈ Dd(x) has an expansion of the form

D =

(n+1)!∑

i=1

∑
∑

` rk(k+1)≤d−di
ai;r(x)ui(∂x)Dr1

1;qD
r2
2;q · · ·Drn

n;q

where di = deg(ui) and ai;r(x) ∈ Fx. Note that this holds true for any rational value of q.

We may now establish the main goal of this section.

Theorem 14 For any value of q the dimension of the space of q-Harmonic polynomials in x does not
exceed (n+ 1)!

7 Last Considerations
Further computer experiments suggest that we have

Conjecture 3 The set Da
n of common polynomial zeros of the operators

n∑

i=1

ai ∂
k
xi
∂jyi ,

for all k, j ∈ N such that k + j > 0, is of a bigraded space of dimension (n+ 1)n−1, whenever we have
a = (a1, . . . , an) such that ∑

k∈K
ak 6= 0, (38)

for all nonempty subsets K of {1, . . . , n}.
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Another interesting experimental observation concerning the space of common zeros of D1 and D2

with general operators

D1 :=
n∑

i=1

ai xi∂
2
i + bi ∂i,

D2 :=
n∑

i=1

ci xi∂
3
i + di ∂

2
i ,

is that there seem to be conditions, similar to (38), for which this space is always n!-dimensional.
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Abstract. Let Bn be the hyperoctahedral group acting on a complex vector space V . We present a combinatorial
method to decompose the tensor algebra T (V) on V into simple modules via certain words in a particular Cayley
graph of Bn. We then give combinatorial interpretations for the graded dimension and the number of free generators
of the subalgebra T (V)Bn of invariants of Bn, in terms of these words, and make explicit the case of the signed
permutation module. To this end, we require a morphism from the Mantaci-Reutenauer algebra onto the algebra of
characters due to Bonnafé and Hohlweg.

Résumé. Soit Bn le groupe hyperoctaédral agissant sur un espace vectoriel complexe V . Nous présentons une
méthode combinatoire donnant la décomposition de l’algèbre T (V) des tenseurs sur V en modules simples via certains
mots dans un graphe de Cayley donné. Nous donnons ensuite des interprétations combinatoires pour la dimension
graduée et le nombre de générateurs libres de la sous-algèbre T (V)Bn des invariants de Bn, en termes de ces mots,
et explicitons le cas du module de permutation signé. À cette fin, nous utilisons un morphisme entre l’algèbre de
Mantaci-Reutenauer et l’algèbre des charactères introduit par Bonnafé et Hohlweg.

Keywords: Tensor algebras, invariants of finite groups, hyperoctahedral group, signed permutation module, Cayley
graph, words.

1 Introduction
Let V be a vector space over the field C of complex numbers with basis {x1, x2, . . . , xn}. Then the tensor
algebra

T (V) = C⊕ V ⊕ V⊗2 ⊕ V⊗3 ⊕ · · ·
can be identified with the ring C〈x〉 of polynomials in noncommutative variables x = x1, x2, . . . , xn,
where we use the notation V⊗d to represent the d-fold tensor space. Any action of a finite group G on V
can be extended to the tensor algebra and the graded character can be found in terms by what we might
identify as an analogue of MacMahon’s Master Theorem [10] for the tensor space,

χV⊗d(g) = tr(M(g))d =
[
qd
] 1

1− trM(g)q
,

where
[
qd
]

represents taking the coefficient of qd in the expression to the right and M(g) is a matrix
which represents the action of the group element g on a basis of V . In particular, we consider the algebra

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



Noncommutative Invariants of the Hyperoctahedral Group 385

of invariants of G, denoted T (V)G, as the subspace of elements of T (V) which are fixed under the action
of G. The analogue of Molien’s Theorem [6] for the tensor algebra allows us to calculate the graded
dimension of this space

P(T (V)G) =
∑

d≥0

dim(V⊗d)Gqd =
1

|G|
∑

g∈G

1

1− trM(g) q
. (1.1)

It is well-known that the algebra of invariants ofG is freely generated [7, 8] by an infinite set of generators
(except when G is scalar) [6].

These algebraic tools do not clearly show the underlying combinatorial structure of these algebras.
Our main goal is to find a combinatorial method to decompose T (V) into simple G-modules. The idea
is to associate to a module V of G, a special subalgebra of the group algebra together with a surjective
morphism of algebras into the algebra of characters of G. Then we get as a consequence a combinatorial
way to decompose T (V) by counting words generated by a particular Cayley graph of the group G. To
compute the graded dimension of T (V)G, it then suffices to look at the multiplicity of the trivial module in
T (V). This leads to combinatorial descriptions for the graded dimension and the number of free generators
of the algebras of invariants of G, which unifie their interpretations.

At this point, we treated the cases of the cyclic, dihedral and symmetric groups [3]. For the symmetric
group, the main bridge to link the words in a particular Cayley graph and the decomposition of the tensor
algebra into simple modules is a morphism from the theory of the descent algebra [12, 15]. In order to
handle cases beyond those already considered, we must find a relation between the group algebra and the
algebra of characters.

We present in this paper the case of the hyperoctahedral group Bn, where the main bridge comes from a
surjective morphism from the Mantaci-Reutenauer algebra [11] onto the characters of Bn due to Bonnafé
and Hohlweg [1]. More precisely, we present a combinatorial way to decompose the Bn-module T (V)
into simple modules using words in a Cayley graph of Bn and study the subalgebra T (V)Bn of invariants.
This technique applies to modules that can be realized in the Mantaci-Reutenauer algebra, for example for
modules indexed by bipartitions of hook shapes, and we make explicit the case of the signed permutation
module V[n−1],[1]. We also give combinatorial descriptions for the graded dimensions and the number of
free generators of the algebra T (V[n−1],[1])

Bn of invariants, using words in a particular Cayley graph of
Bn. Finally, we present an application to set partitions, since the dimension of T (V[n−1],[1])

Bn is also
given by the set partitions of at most n even parts [2].

The paper is organized as follows. We recall in Section 2.1 the definition of a Cayley graph, and
introduce its weighted version. Section 2.2 fixes some notation about bipartitions and bitableaux. Section
2.3 is dedicated to the hyperoctahedral group and recalls its representation theory. In Section 2.4, we
describe the generalized Robinson-Schensted correspondence from [16, 5] needed in the statement of the
Main Theorem. The bridge between the words in a particular Cayley graph of Bn and the decomposition
of the tensor algebra is a morphism from the Mantaci-Reutenauer algebra into the character algebra of Bn,
which we present in Section 2.5. In Section 3, we prove the Main Theorem which gives a combinatorial
way to decompose the tensor algebra on any Bn-module into simple modules. As a consequence, we give
in Section 4 a combinatorial way to compute the graded dimension of the space of invariants of Bn, and
give a description for its number of free generators as an algebra. We then investigate in Sections 3.1 and
4.1 the case of the signed permutation module and give an application to set partitions in Section 4.2.
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2 Preliminairies
2.1 Cayley graph
For our purpose, let us recall the definition of a Cayley graph. Let G be a finite group and let S ⊆ G
be a set of group elements. The Cayley graph associated with (G,S) is defined as the oriented graph
Γ = Γ(G,S) having one vertex for each element of G and the edges associated with elements in S. Two
vertices g1 and g2 are joined by a directed edge associated to s ∈ S if g2 = g1s. If the resulting Cayley
graph of G is connected, then the set S generates G.

A path along the edges of Γ corresponds to a word in the alphabet S. We denote by S∗ the free monoid
on S, i.e. the set of all words in the alphabet S. Naturally, the length of a word is the number of its letters.
We say that a word reduces to an element g ∈ G in the Cayley graph Γ if it corresponds to a path along the
edges from the vertex labelled by the identity to the one labelled by g. Such a word, when simplified with
respect to the group relations, corresponds to the reduced word g. We denote byWd(g) the set of words
of length d which reduce to g. A word w is called a prefix of a word u if there exits a word v such that
u = wv. The prefix is proper if v is not the empty word. We say that a word does not cross the identity if
it has no proper prefix which reduces to the identity.

We also consider weighted Cayley graphs, where we associate a weight ν(s) to each letter s ∈ S. We
define the weight of a word w = s1s2 · · · sr in S∗ to be the product of the weights of its letter,

ν(w) = ν(s1)ν(s2) · · · ν(sr).

For sake of simplicity, we use undirected edges to represent bidirectional edges and nonlabelled edges to
represent edges of weight one.

Example 2.1 The Cayley graph of the hyperoctahedral group B2 = {12, 21, 12̄, 21̄, 1̄2, 2̄1, 1̄2̄, 2̄1̄} of
signed permutations of {1, 2} with generators 1̄2 and 2̄1 of weigth one is represented in Figure 1.

12 21̄

2̄1

1̄2

21

2̄1̄

1̄2̄

12̄

1

Fig. 1: Γ(B2, {1̄2, 2̄1}).

2.2 Bipartitions and bitableaux
To fix the notation, we recall some definitions. A partition λ of a positive integer n is a decreasing
sequence λ1 ≥ λ2 ≥ . . . ≥ λ` > 0 of positive integers such that n = |λ| = λ1 + λ2 + . . . + λ`. We
write λ = [λ1, λ2, . . . λ`] ` n. It is natural to represent a partition by its Young diagram which is the finite
subset diag(λ) = {(a, b) | 0 ≤ a ≤ `−1 and 0 ≤ b ≤ λa+1−1} of N2. Visually, each element of diag(λ)
corresponds to the bottom left corner of a box of dimension 1× 1 in N2.

A bipartition of n, denoted λ ` n, is a couple λ = (λ1, λ2) of partitions such that |λ| = |λ1|+|λ2| = n.
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Example 2.2 The bipartitions of 2 are

, ∅ , ∅ , ∅, ∅, .

A tableau t of shape λ ` n with values in T = {1, 2, . . . , n} is a function t : diag(λ)→ T . We denote
by sh(t) the shape of t. We can visualize it by filling each box c of diag(λ) with the value t(c). A standard
Young tableau of shape λ ` n is a tableau with filling {1, 2, . . . , n} and strictly increasing values along
each row and each column.

A bitableau is a pair T = (t1, t2) of tableaux. The shape of a bitableau is the couple sh(T) =
(sh(t1), sh(t2)). A standard Young bitableau is a bitableau T = (t1, t2) where t1 and t2 have strictly
increasing values along each row and each column, |sh(T)| = n and the filling of t1 and t2 is the set
{1, 2, . . . , n}. We denote by SYB(λ) the set of standard Young bitableaux of shape λ and by SYBn the
set of standard Young bitableaux with n boxes.

Example 2.3 The standard Young bitableaux of shape λ ` 2 are

1 2 , ∅
2
1 , ∅ 1 , 2 2 , 1 ∅,

2
1 ∅, 1 2 .

2.3 The hyperoctahedral group Bn
Denote by [n] the set {1, 2, . . . , n} and by m the integer −m. The hyperoctahedral group is the group of
signed permutations of [n] of order 2nn! which can be seen as the wreath product of the cyclic group of
order two Z/2Z with the symmetric group Sn of permutations of [n]. We will often represent an element
π of Bn as a word

π = π(1)π(2) · · ·π(n),

where each π(i) is an integer whose absolute value is in [n]. Note that if we forget the signs in π, we get
a permutation of [n]. We denote by e the identity element in the hyperoctahedral group.

Example 2.4 1̄76̄5̄243 is an element of B7.

Since the conjugacy classes of Bn are characterized by bipartitions of n (see [9], Appendix B), it is
natural to index the simple modules of Bn with bipartitions λ = (λ1, λ2) such that |λ1| + |λ2| = n. We
denote them by Vλ with associated irreducible characters χλ. In particular, V[n],∅ is the trivial module
and V[n−1],[1] the signed permutation module (see Example 4.4). Let us denote by ZIrr(Bn) the algebra
of characters of Bn.

2.4 Generalized Robinson-Schensted correspondence
The Robinson-Schensted correspondence [13, 14] is a bijection between the elements σ of the symmetric
group Sn and pairs (P (σ), Q(σ)) of standard Young tableaux of the same shape. In this section, we
present a generalization of this correspondence to the hyperoctahedral group defined as in [16, 5].

Consider the element π ofBn as a word. Define P(π) to be the standard Young bitableau (P+(π), P−(π))
where P+(π) and P−(π) are the insertion tableaux (from the Robinson-Schensted correspondence) of π
with respectivley positive and negative letters of π. Similarly, Q(π) = (Q+(π), Q−(π)) is the standard
Young bitableau whereQ+(π) andQ−(π) are the recording tableaux of π for the insertion of respectivley
positive and negative letters of π. The map

π ←→ (P(π),Q(π))
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is a bijection from Bn onto the set of all pairs of standard Young bitableaux of the same shape. We say
that P(π) and Q(π) are respectively the insertion and recording bitableaux of π.

Example 2.5 Consider the element 1̄76̄5̄243 of B7. Then we find

P(π) =

7
4
2 3 ,

6
1 5 and Q(π) =

7
5
2 6 ,

4
1 3 .

2.5 Mantaci-Reutenauer algebra and special morphism
Surprisingly, the key to prove our main result comes from a morphism from the Mantaci-Reutenauer
algebra onto the characters of Bn due to Bonnafé and Hohlweg [4].

A signed composition of n, denoted c |= n, is a sequence of nonzero integers c = (c1, c2, . . . , ck) such
that |c| = |c1| + |c2| + · · · + |ck| = n. Following Mantaci and Reutenauer [11], we associate to each
element π ∈ Bn a descent composition Des(π) constructed by recording the length of the increasing runs
(in absolute value) with constant sign, and then recording that sign.

Example 2.6 The descent composition of 1̄76̄5̄243 ∈ B7 is Des(1̄.7.6̄.5̄.24.3) = (1̄, 1, 1̄, 1̄, 2, 1).

The descent composition Des(T) of a standard Young bitableau T = (t+, t−) with n boxes is defined in
[1] in the following way. First, look for maximal subwords j j+ 1 j+ 2 · · · k of consecutive letters of the
word 12 · · ·n such that either the numbers j, j + 1, j + 2, . . . , k can be read in this order in t+ when one
goes from left to right and top to bottom, or they can be read in t− in the same manner. The concatenation
of these subwords is the word 12 · · ·n and the descent composition Des(T) is the signed composition of
n obtained by recording the lengths of these subwords, and the sign of their tableau.

Example 2.7 Consider the bitableau T=

7
5
2 6 ,

4
1 3 . The partition of 1234567 in maximal subwords is

1|2|3|4|56|7 hence we can deduce that Des(T) = (1̄, 1, 1̄, 1̄, 2, 1).

Given a signed composition c |= n, define the element of the group algebra of Bn

Dc =
∑

π∈Bn
Des(π)=c

π.

These elements form a basis of the Mantaci-Reutenauer algebraMRn, which is a subalgebra of the group
algebra of Bn containing the Solomon’s descent algebra of Bn [11]. Given a standard Young bitableau T
with n boxes, define the element of the group algebra of Bn

ZT =
∑

π∈Bn
Q(π)=T

π,

where Q(π) corresponds to the recording bitableau resulting from the generalized Robinson-Schensted
correspondence. These elements are linearly independent and the space Qn that they span is called the
coplactic space, introduced by Bonnafé and Hohlweg [4]. Note that this space in not an algebra in gen-
eral. By Lemma 5.7 of [1], the descent composition of an element π ∈ Bn coincides with the descent
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composition of its recording bitableau Q(π). Therefore we can rewrite Dc as

Dc =
∑

π∈Bn
Des(π)=c

π =
∑

T∈SYBn
Des(T)=c

ZT, (2.1)

hence MRn ⊆ Qn (see [1] Corollary 5.8). There is a surjective algebra morphism from the Mantaci-
Reutenauer algebra onto the character algebra Θ :MRn → ZIrr(Bn) due to Bonnafé and Hohlweg [4],
and a linear map

Θ̃ : Qn → ZIrr(Bn) (2.2)

defined by Θ̃(ZT) = χsh(T) such that Θ̃ restricted toMRn corresponds to Θ.

3 Decomposition of T (V) into simple modules
In this section, we develop a combinatorial method to decompose the d-fold tensor of any Bn-module
into simple modules. To achieve this, we use the algebra morphism Θ : MRn → ZIrr(Bn) introduced
in Section 2.5 from the Mantaci-Reutenauer algebra onto the algebra of characters of Bn. The next
proposition says that the multiplicity of a simple module in the d-fold tensor of any module V is given as
some coefficients in fd, where f is an element ofMRn whose image under Θ is the character of V .

Proposition 3.1 Let V be a Bn-module such that Θ(f) = χV , for some element f inMRn. For λ ` n,
the multiplicity of Vλ in V⊗d is equal to

∑

T∈SYB(λ)

[ZT]fd,

where [ZT]fd means taking the coefficient of ZT in fd.

Proof: By Equation (2.1), we can write fd as

fd =
∑

λ`n

∑

T∈SYB(λ)

cTZT.

Applying the linear map (2.2), we get

Θ̃(fd) =
∑

λ`n

∑

T∈SYB(λ)

cTΘ̃(ZT) =
∑

λ`n

∑

T∈SYB(λ)

cTχλ.

Since the restriction of Θ̃ toMRn is Θ, we get Θ̃(fd) = Θ(fd) = Θ(f)d = χVd and thus

[χλ]χV
d =

∑

T∈SYB(λ)

cT =
∑

T∈SYB(λ)

[ZT]fd.

2

The subsequent theorem provide us with an interesting interpretation for the multiplicity of Vλ in the
d-fold tensor of a Bn-module. This multiplicity is the weighted sum of words in a particular Cayley graph
of Bn which reduce to πT, an element of Bn having recording bitableau T of shape λ (after performing
the generalized Robinson-Schensted correspondence). But first, the following key lemma will allow us to
link some coefficients of an element of the group algebra to some weighted words in a Cayley graph of G.
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Lemma 3.2 ([3]) Let Γ(G, {s1, s2, . . . , sr}) be a Cayley graph of G with weights ν(si) = νi. Then the
coefficient of π ∈ G in the element (ν1s1 + ν2s2 + · · ·+ νrsr)

d of the group algebra CG equals

∑

w∈Wd(π)

ν(w).

Before stating the Main Theorem, we need to recall the following. The support of an element f of the
group algebra of Bn is defined by supp(f) = {π ∈ Bn|[π]f 6= 0}, where [π]f is the coefficient of π in f .

Theorem 3.3 Let V be a Bn-module such that Θ(f) = χV , for some element f ofMRn, and consider
the Cayley graph Γ(Bn, supp(f)) with weights ν(π) = [π](f) for each π ∈ supp(f). For λ ` n, the
multiplicity of Vλ in V⊗d is equal to

∑

T∈SYB(λ)

∑

w∈Wd(πT)

ν(w),

where πT ∈ Bn is such that Q(πT) = T andWd(πT) is the set of words of length d which reduce to πT.

Proof: From Proposition 3.1, the multiplicity of Vλ in V⊗d is

∑

T∈SYB(λ)

[ZT]fd.

Since by definition π ∈ supp(ZT) if and only if π has recording bitableau T, the coefficient of ZT in fd

is also the coefficient of πT in fd with Q(πT) = T and the result follows from Lemma 3.2. 2

3.1 Decomposition of T (V[n−1],[1]) into simple modules
When the hyperoctahedral group Bn acts as a reflection group on the ring of polynomials in n noncommu-
tative variables, this action corresponds to the signed permutation module V[n−1],[1]. We use the following
two corollaries of Proposition 3.1 and Theorem 3.3 respectively, for establishing a connection between
the multiplicity of a simple module in V[n−1],[1]

⊗d and words of length d in a particular Cayley graph of
Bn. To this end, consider the basis element D(1̄,n−1) of the Mantaci-Reutenauer algebraMRn, which is
the sum of all elements of Bn having descent composition (1̄, n− 1). Since

Θ
(
D(1̄,n−1)

)
= Θ̃

(
Z

2 3 4 ··· n , 1

)
= χ[n−1],[1],

we have the following formulas for the multiplicity.

Corollary 3.4 For λ ` n, the multiplicity of Vλ in V[n−1],[1]
⊗d is equal to

∑

T∈SYB(λ)

[ZT]D(1̄,n−1)
d.
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Corollary 3.5 Consider the Cayley graph Γ(Bn, supp(D(1̄,n−1))). For λ ` n, the multiplicity of Vλ in
V[n−1],[1]

⊗d is equal to ∑

T∈SYB(λ)

|Wd(πT)|,

where πT ∈ Bn is such that Q(πT) = T.

Example 3.6 Using Corollary 3.4, the B3-module V[2],[1]
⊗4 decomposes into simple modules as

V[2],[1]
⊗4 ∼= 4V[3],∅ ⊕ 7V[2,1],∅ ⊕ 3V[1,1,1],∅ ⊕ 10V[1],[2] ⊕ 10V[1],[1,1].

Indeed, the element D(1̄,2)
4 of the Mantaci-Reutenauer algebra equals

4Z
1 2 3 ,∅+3Z

3
1 2 , ∅

+4Z
2
1 3 ,∅

+3Z
3
2
1 ,∅

+5Z
3 , 2 1

+2Z
2 , 1 3

+3Z
1 , 2 3

+5Z
3 ,

2
1

+3Z
1 ,

3
2

+2Z
2 ,

3
1

and is sent to
4χ[3],∅ + 7χ[2,1],∅ + 3χ[1,1,1],∅ + 10χ[1],[2] + 10χ[1],[1,1]

via the map Θ̃. Table 1 shows how these multiplicities can also be computed using Corollary 3.5 by
considering words of length four in the Cayley graph of B3 with generators {1̄23, 2̄13, 3̄12}.

Vλ T ∈ SYB(λ)
πT ∈ B3

Q(πT) = T
W4(πT)

mult. of Vλ

in V[2],[1]
⊗4

V[3],∅ 1 2 3 , ∅ 123
aaaa abab baba
bbbb

4

V[2,1],∅

3
1 2 , ∅ 132 acab caba cbbb
2
1 3 , ∅ 213

aaba abbb baaa
bbab

7

V[1,1,1],∅

3
2
1 , ∅ 321 baca bcbb ccab 3

V[1],[2]

1 , 2 3 31̄2̄ bbca bccb cccc
2 , 1 3 1̄32̄ bcac ccbc

3 , 1 2 1̄2̄3
aabb abba baab
bbaa cacc

10

V[1],[1,1]

1 ,
3
2 32̄1̄ bcab caca ccbb

2 ,
3
1 2̄31̄ acac cbbc

3 ,
2
1 2̄1̄3

aaab abaa babb
bbba cabc

10

1

Tab. 1: Decomposition of V[2],[1]
⊗4 using words in Γ(B3, {a, b, c}) where a = 1̄23, b = 2̄13 and c = 3̄12.
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4 Algebra T (V)Bn of invariants of Bn
As a consequence of Theorem 3.3, we have a combinatorial interpretation for the graded dimension of the
algebra T (V)Bn of invariants of Bn in terms of words in a particular Cayley graph of Bn.

Corollary 4.1 Let V be a Bn-module such that θ(f) = χV , for some f ∈MRn, and consider the Cayley
graph Γ(Bn, supp(f)) with weight ν(π) = [π](f) for each π ∈ supp(f). Then

dim
(
V⊗d

)Bn
=

∑

w∈Wd(e)

ν(w).

Proof: The dimension of the space of invariants of Bn in V⊗d is equal to the multiplicity of the trivial
module in V⊗d. Then the result follows from Theorem 3.3. 2

Another interesting result is that the number of free generators of the algebra of invariants of Bn can
be counted by some special words in a particular Cayley graph of Bn. These are the weighted words
corresponding to paths which begin and end at the identity vertex, but without crossing the identity vertex.

Proposition 4.2 Let V be a Bn-module such that θ(f) = χV , for some f ∈ MRn. Then the number of
free generators of T (V)Bn as an algebra are counted by the words which reduce to the identity without
crossing the identity in the Cayley graph Γ(Bn, supp(f)) with weight ν(π) = [π](f) for each π ∈
supp(f).

4.1 Algebra T (V[n−1],[1])Bn of invariants of Bn
We have an interpretation for the graded dimension of the space T (V[n−1],[1])

Bn of invariants of Bn in
terms of paths starting from and ending at the identity vertex in the Cayley graph of Bn generated by the
elements of Bn having descent composition (1̄, n− 1). As a consequence of Corollary 4.1, we can easily
compute these dimensions since

Θ
(
D(1̄,n−1)

)
= χ[n−1],[1].

Corollary 4.3 The dimension of (V[n−1],[1]
⊗d)Bn is equal to the number of words of length d which

reduce to the identity in the Cayley graph Γ(Bn, supp(D(1̄,n−1))).

Example 4.4 When the group B3 acts on the polynomial ring C〈x1, x2, x3〉 by π(xi) = sgn(π(i))x|π(i)|,

the space C〈x1, x2, x3〉B3
4
∼= (V[2],[1]

⊗4)B3 of invariants of B3 has a monomial basis indexed by the set
partitions of [4] with at most 3 parts of even cardinality (see Section 4.2):

m{1234}(x1, x2, x3) = x1x1x1x1 + x2x2x2x2 + x3x3x3x3,

m{12,34}(x1, x2, x3) = x1x1x2x2 + x1x1x3x3 + x2x2x1x1 + x2x2x3x3 + x3x3x1x1 + x3x3x2x2,

m{13,24}(x1, x2, x3) = x1x2x1x2 + x1x3x1x3 + x2x1x2x1 + x2x3x2x3 + x3x1x3x1 + x3x2x3x2,

m{14,23}(x1, x2, x3) = x1x2x2x1 + x1x3x3x1 + x2x1x1x2 + x2x3x3x2 + x3x1x1x3 + x3x2x2x3.

As recorded in Table 2, its cardinality equals the one of the set

{aaaa, abab, baba, bbbb}
of words of length 4 in the letters a = 1̄23, b = 2̄13 and c = 3̄12 which reduce to the identity in the Cayley
graph Γ(B3, {a, b, c}).
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In general, for any module V , the algebra T (V)Bn of invariants of Bn is freely generated [6], therefore
we have the following relation between its Poincaré series and the generating series F(T (V)Bn) counting
the number of its free generators:

P(T (V)Bn) =
1

1−F(T (V)Bn)
. (4.1)

The next corollary of Proposition 4.2 presents a nice interpretation for the number of these free generators.

Corollary 4.5 The number of free generators of T (V[n−1],[1])
Bn as an algebra are counted by the words

which reduce to the identity without crossing the identity in the Cayley graph Γ(Bn, supp(D(1̄,n−1))).

Example 4.6 The free generators of T (V[2],[1])
B3 are counted by the number of words which reduce to

the identity without crossing the identity in the Cayley graph Γ(B3, {a, b, c}) where a = 1̄23, b = 2̄13 and
c = 3̄12. They are

aa
abab
baba
bbbb

abaaab abbabb abbbba baaaba
baabbb babbab bbaabb bbabba
bbbaab abcabc acacac accbbc
bbcacc bcabca bcacca bccbcc
baccab cacaca caccbb cbbcac
cbccbc ccbbca ccbccb cccccc

. . .

Using relation (4.1) and the analogue of Molien’s Theorem (1.1), the generating series for the number of
free generators is given by

F(T (V[2],[1])
B3) = 1− P(T (V[2],[1])

B3)−1

= 1−
(

1

48

{ 1

(1− 3q)
+

15

(1− q) + 16 +
15

(1 + q)
+

1

(1 + 3q)

})−1

=
q2 − 6q4

1− 9q2 + 3q4
,

with series expansion q2 + 3q4 + 24q6 + 207q8 + 1791q10 + 15498q12 + 134109q14 + 1160487q16 + · · ·

4.2 Applications to set partitions
A set partition of [n], denoted by A ` [n], is a family of disjoint nonempty subsets A1, A2, . . . , Ak ⊆ [n]
such that A1 ∪A2 ∪ . . . ∪Ak = [n]. The subsets Ai are called the parts of A. The algebra

T (V[n−1],[1])
Bn ∼= C〈x〉Bn

corresponds to the space of polynomials in noncommutative variables x = {x1, x2, . . . , xn} which are
invariant under the action of Bn defined in Example 4.4. Using the fact that a monomial basis for the
space C〈x〉Bn of invariants of Bn is indexed by the set partitions with at most n parts of even cardinality,
a closed formula for the Poincaré series of T (V[n−1],[1])

Bn has been proved in [2] and is given by

P(T (V[n−1],[1])
Bn) = 1 +

n∑

k=1

1 · 3 · . . . · (2k − 1)q2k

(1− q2) (1− 4 q2) · · · (1− k2 q2)
.
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The words considered in the Cayley graph of Bn, with generators the elements having descent compo-
sition (1̄, n− 1), have a different nature to that of set partitions. But from Corollary 4.3, we can show for
instance the following result.

Corollary 4.7 The number of set partitions of [2d] into at most n parts is the number of words of length
2d which reduce to the identity in the Cayley graph Γ(Bn, supp(D(1̄,n−1))).

5 Appendix
The table in this section represents the words of length 2, 3 and 4 which reduce to a specific element in
the Cayley graph Γ(B3, {1̄23, 2̄13, 3̄12}).

123 132 231 213 312 321 231̄ 132̄ 123̄ 21̄3 12̄3 13̄2

aa ba ca

aba

bbb

abb

bba

acb

cba

aaaa

abab

baba

bbbb

acab

caba

cbbb

bcab

caca

ccbb

aaba

abbb

baaa

bbab

aaca

acbb

caaa

cbab

baca

bcbb

ccab

1̄23 2̄13 3̄12 321̄ 312̄ 213̄ 31̄2 32̄1 23̄1 1̄32 2̄31 3̄21

aaa

bab

aab

baa

aac

caa

aca

cbb

bca

ccb

bcb

cca
cab cac bac

31̄2̄ 21̄3̄ 12̄3̄ 1̄32̄ 1̄23̄ 2̄13̄ 1̄2̄3 1̄3̄2 2̄3̄1 32̄1̄ 23̄1̄ 13̄2̄

bb cb cc

bbca

bccb

cccc

bccc

cbca

cccb

accc

cbcb

ccca

bcac

ccbc

bcbc

ccac

acbc

cbac

aabb

abba

baab

bbaa

cacc

aacb

acbc

bacc

caab

cbaa

aacc

baca

bcba

caac

ccaa

bcab

caca

ccbb

abca

accb

cbcc

abcb

acca

bbcc

2̄31̄ 3̄21̄ 3̄12̄ 2̄1̄3 3̄1̄2 3̄2̄1 3̄2̄1̄ 2̄3̄1̄ 1̄3̄2̄ 3̄1̄2̄ 2̄1̄3̄ 1̄2̄3̄

ab ac bc

abc acc bcc bbc cbc ccc

acac

cbbc

abac

bbbc

abbc

bbac

aaab

abaa

babb

bbba

cabc

aaac

acaa

babc

cabb

cbba

aabc

baac

bcaa

cacb

ccba

Tab. 2: Words in Γ(B3, {a, b, c}), where a = 1̄23, b = 2̄13 and c = 3̄12.
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A unified bijective method for maps:
application to two classes with boundaries
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Abstract. Based on a construction of the first author, we present a general bijection between certain decorated plane
trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g.
Eulerian maps, simple triangulations,...) are in bijection with a subset of these orientations, and our construction
restricts in a simple way on the subset. This gives a general bijective strategy for classes of maps. As a non-
trivial application of our method we give the first bijective proofs for counting (rooted) simple triangulations and
quadrangulations with a boundary of arbitrary size, recovering enumeration results found by Brown using Tutte’s
recursive method.

Résumé. En nous appuyant sur une construction du premier auteur, nous donnons une bijection générale entre certains
arbres décorés et certaines orientations de cartes planaires sans cycle direct. De nombreuses classes de cartes (par
exemple les eulériennes, les triangulations) sont en bijection avec un sous-ensemble de ces orientations, et notre
construction se spécialise de manière simple sur le sous-ensemble. Cela donne un cadre bijectif général pour traiter les
familles de cartes. Comme application non-triviale de notre méthode nous donnons les premières preuves bijectives
pour l’énumération des triangulations et quadrangulations simples (enracinées) ayant un bord de taille arbitraire, et
retrouvons ainsi des formules de comptage trouvées par Brown en utilisant la méthode récursive de Tutte.

Keywords: Triangulation, quadrangulation, maps with boundaries, mobiles, bijection, counting

1 Introduction
The enumeration of planar maps (connected graphs embedded on the sphere) has received a lot of attention
since the seminal work of Tutte in the 60’s [Tut63]. Tutte’s recursive method consists in translating the
decomposition of a class of maps (typically obtained by deleting an edge) into a functional equation sat-
isfied by the corresponding generating function. The translation usually requires an additional “catalytic”
variable, and the obtained functional equation is solved using the so-called “quadratic method” [GJ83,
sec.2.9] or its extensions [BMJ06]. The final result is, for many classes of maps, a strikingly simple
counting formula. For instance, the number of (rooted) maps with n edges is 2·3n

(n+1)(n+2)

(
2n
n

)
. Tutte’s
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1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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method has the advantage of being systematic, but is quite technical in the way of solving the equation
and does not give a combinatorial understanding of the simple-looking enumerative formulas.

As an alternative method, bijective constructions have been developed to obtain more direct combina-
torial proofs of the counting formulas, with nice algorithmic applications (random generation and asymp-
totically optimal encoding in linear time). The first bijections appeared in [CV81] and later in [Sch98]
where direct bijections for several classes of maps are described. Typically bijections are from a class
of “decorated” plane trees to a class of maps and operate on trees by progressively closing facial cycles.
Even if it has been successfully applied to many classes, e.g. in [PS06, PS03, FPS08, BFG04], the bijec-
tive method for maps is up to now not as systematic as Tutte’s recursive method, since for each class of
maps one has to “guess” the tree family to match with, and one has to specify the construction from trees
to maps.

This article contributes to fill this gap. Based on a construction of the first author [Ber07, BC10], we
provide in Section 3 a general bijection Φ between a set D of certain decorated plane trees which we call
mobile(i) and a set O of certain orientations on planar maps with no counterclockwise circuit. As it turns
out, a map class is often in bijection with a subfamily S of O on which our construction restricts nicely;
typically the orientations in S are characterized by degree constraints which can be traced through our
construction and yields a degree characterization of the associated mobiles. The mobiles family is then
specifiable by a decomposition grammar and amenable to the Lagrange inversion formula for counting.
To summarize, our method makes the bijective method more systematic, since it consists in specializing a
“master bijection” Φ to the class of maps under consideration. The problem of enumerating a class of map
M therefore reduces to guessing a family of “canonical” orientations (in O) forM instead of guessing a
family of trees to match withM (the first task being often simpler than the second).

We focus here, in Section 4 and Section 5 respectively, on two classes that were not completely covered
before, namely simple triangulations and simple quadrangulations with a polygonal boundary and a root-
corner incident to the boundary. We show bijectively that the number tn,k of rooted simple triangulations
with n+k vertices and boundary of length k and the number qn,k of rooted simple quadrangulations with
n+ 2k vertices and boundary of length 2k satisfy

t(k)n =
2(2k − 3)!

(k − 1)!(k − 3)!

(4n+ 2k − 5)!

n!(3n+ 2k − 3)!
, q(k)n =

3(3k − 2)!

(k − 2)!(2k − 1)!

(3n+ 3k − 4)!

n!(2n+ 3k − 2)!
,

recovering results found by Brown respectively in [Bro64] and [Bro65] using Tutte’s recursive method.
The case without boundaries (k = 3 for triangulations, k = 2 for quadrangulations) have already received
bijective proofs in [PS06, FPS08] (for triangulations) and [Fus07, Sch98] (for quadrangulations); our
construction actually coincides with [FPS08, Theo.4.10] for triangulations and with [Sch98, Sec.2.3.3]
for quadrangulations. The case of triangulations with boundaries has also received a partial bijective
interpretation, different from ours, in [PS06] (only one direction is given, from trees to maps, which by
injection shows that tn,k is at least the number above, but does not suffice to prove equality).

2 Maps and orientations
Maps. A (planar) map is a connected planar graph embedded in the oriented sphere and considered up to
continuous deformation. A map is simple if it has no loop nor multiple edge. The faces are the connected
components of the complementary of the graph. A plane tree is a map with a unique face. Cutting an
(i) The term mobile is borrowed from a bijection by Bouttier et al. [BFG04] which can be seen as a specialization of Φ.
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edge e at its middle point gives two half-edges, each incident to an endpoint of e (they are both incident
to the same vertex if e is a loop). We shall also consider some maps decorated with dangling half-edges
called stems (see e.g. Figure 2(a)). A corner is the angular section between two consecutive half-edges
around a vertex. The degree of a vertex or face is the number of incident corners. A map is a triangulation
(resp. quadrangulation) if every face has degree 3 (resp. 4).

A map is said to be vertex-rooted if a vertex is marked, face-rooted if a face is marked, and corner-
rooted if a corner is marked(ii). The marked vertex, face or corner are called the root-vertex, root-face or
root-corner. For a corner-rooted map, the marked corner is indicated by a dangling half-edge pointing
to that corner; see Figure 1. A corner-rooted map is said to induce the vertex-rooted map (resp. face-
rooted map) obtained by keeping the root-vertex (resp. root-face) as marked, but otherwise forgetting the
root-corner. Given a face-rooted (or corner-rooted) map, vertices and edges are said to be outer or inner
depending on whether they are incident to the root-face or not.

Orientations. An orientationO of a mapM is the choice of a direction for each edge ofM . A circuit is a
directed cycle. A source is a vertex incident to no ingoing edge. If M is face-rooted (resp. vertex-rooted,
corner-rooted), then the pair (M,O) is called a face-rooted orientation (resp. vertex-rooted orientation,
corner-rooted orientation). A corner-rooted orientation naturally induces a face-rooted orientation and a
vertex-rooted orientation. For a vertex v of M , the indegree in(v) is the number of edges going into v; the
outdegree out(v) is the number of edges going out of v. For a face f ∈ M , the clockwise-degree cw(f)
is the number of edges incident to f that have f on their right; the counterclockwise-degree ccw(f) is the
number of edges that have f on their left. For corner-rooted maps, the half-edge indicating the root-corner
increases by 1 the indegree of the root-vertex and the clockwise-degree of the root-face.

A vertex-rooted orientation is said to be accessible if every vertex is accessible from the root-vertex by
a directed path; it is source-accessible if in addition the root-vertex is a source. A circuit of a face-rooted
(or corner-rooted) orientation is said clockwise if the root-face is on its left. The orientation is minimal
if every circuit is clockwise; it is clockwise-minimal if in addition the root-face is a (clockwise) circuit.
We extend the definition of accessibility to (face-rooted) clockwise-minimal orientations O by calling O
accessible if it is accessible from one of the vertices incident to the root-face. Observe that O is in fact
accessible from any vertex on the root-face in this case Similarly, we call a source-accessible orientation
O minimal if O is minimal for one of the faces incident to the root-vertex. Observe that O is in fact
minimal for every face incident to the root-vertex in this case.

Let d be a positive integer. We denote by Sd the set of source-accessible minimal orientations such that
the root-vertex has degree d. We denote by Od the set of clockwise-minimal accessible orientations such
that the root-face has degree d. We denote by S̃d the subset of Sd such that every face incident to the
root-vertex has clockwise degree 1. We denote by Õd the subset of Od such that every vertex incident to
the root-face has indegree 1.

Given a map M with vertex-set V and given a function α : V 7→ N, an α-orientation is an orientation
of M such that in(v) = α(v) for each v ∈ V . The following result is well-known [Fel04]:

Lemma 1 If a face-rooted map M has an α-orientation, then M has a unique minimal α-orientation.

Duality. The dual M∗ of a map M is the map obtained by the following two step process; see Figure 1.

(ii) Corner-rooted map are usually simply called rooted maps in the literature. A face-rooted map can be thought as a plane map (a
connected graph embedded in the plane) by thinking of the root-face as the infinite face.
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Fig. 1: The dual of an oriented map.

1. In each face f of M , draw a vertex vf of M∗. For each edge e of M separating faces f and f ′

(which can be equal), draw the dual edge e∗ of M∗ going from vf to vf ′ across e.
2. Flip the drawing of M∗, that is, inverse the orientation of the sphere.

The dual of a face-rooted map is a vertex-rooted map. Corners of a map and of its dual are in natural
correspondence (they face each other); this gives the way of defining the root-corner of the dual of a
corner-rooted map; see Figure 1. Duality is involutive on maps and rooted maps.

The dual of an orientation of M is the orientation of the dual map M∗ obtained by applying the fol-
lowing rule at step 1: the dual-edge e∗ of an edge e ∈ M is oriented from the left of e to the right of e.
Observe that duality is an involution for oriented map (this is the motivation for step 2 in the definition
of duality). The clockwise degree (resp. counterclockwise degree) of a face f of M is equal to the inde-
gree (resp. outdegree) of the vertex vf of M∗ (this is true also with the special convention applying to
corner-rooted maps). Also one easily checks that minimality is equivalent to accessibility in the dual:

Lemma 2 A face-rooted orientation is minimal (resp. clockwise-minimal) if and only if the dual vertex-
rooted orientation is accessible (resp. source-accessible).

Observe that duality maps the set of orientations Sd (resp. S̃d) to the set Od (resp. Õd). Also, minimal
accessible orientations (of corner-rooted maps) are self dual. We mention that these orientations, which
play an important role below, are in bijection with spanning trees [Ber07].

3 Bijections between mobiles and orientations
In this section, we first recall a bijection Φ originally due to the first author [Ber07].We then present some
extensions of Φ which will be convenient for our subsequent goals. Indeed, in the next two sections we
will show how to use these extensions in order to count several families of maps.

The bijection Φ maps minimal accessible (corner-rooted) orientations with n edges and pairs of corner-
rooted plane trees (B, T ) with n + 1 and n edges respectively. The tree B is called the (rooted) mobile
and its vertices are bicolored in black and white (in such a way that edges always connect a black and a
white vertex). Informally, the bijection Φ consists in folding the tree T (oriented from the root to leaves)
around the mobile. More precisely, one glues the vertices of T on the black corners of the mobile and
then erases the edges and white vertices of B (leaving the edges of T as edges of a minimal accessible
orientation). In what follows we adopt a slightly different presentation, in which the tree T only appears
implicitly in certain decorations added to the mobile B.

A decorated mobile is a bicolored (unrooted) plane tree with outgoing stems (dangling outgoing half-
edges) possibly attached to each black corner; see Figure 2(a). The excess of a decorated mobile is the
number of edges minus the number of (outgoing) stems. A mobile with excess δ is called a δ-mobile. A
fully decorated mobile is obtained from a decorated mobile by inserting an ingoing stem (dangling ingoing
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⇒ ⇒

(a) (b) (c)

Fig. 2: The rooted closure of a mobile of excess δ = 1.

half-edge) in each black corner following an edge of the mobile (and not a stem) in clockwise order around
the vertex; the fully decorated mobile is represented in solid lines in Figure 2(b). The degree deg(v) of a
vertex v of a decorated mobile is the total number of incident half-edges (including the outgoing stems).
For a black vertex b the indegree in(b) and out-degree out(b) are respectively the number of incident
ingoing and outgoing stems incident to b in the fully-decorated mobile (so deg(b) = in(b) + out(b)).

3.1 Bijection between 1-mobiles and minimal accessible orientations
We now recall the bijection given in [Ber07] between 1-mobiles and minimal accessible orientations.
Closure. Let D be a decorated mobile with p edges and q outgoing stems (hence excess δ = p − q).
The corresponding fully decorated mobile D′ has p ingoing and q outgoing stems. A clockwise walk
around D′ (with the face area on the left of the walker) sees a succession of outgoing stems and ingoing
stems. Associating an opening parenthesis to outgoing stems and a closing parenthesis to ingoing stems,
one obtains thus a cyclic binary word with q opening and p closing parentheses. This yields in turn a
matching of outgoing stems with ingoing stems, leaving |δ| stems unmatched, which are ingoing if δ > 0
and outgoing if δ < 0; see Figure 2. The partial closure C of the decorated mobile D is obtained by
forming a directed edge out of each matched pair, see Figure 2(a)-(b). We consider C as a planar map
with two types of edges (those of the mobile, which are undirected, and the new formed edges, which
are directed) and |δ| stems. Note that, if δ ≥ 0, there are δ white corners incident to the root-face of C,
because initially the number of such corners is equal to the number of edges, and then each matched pair
of stems decreases this number by 1. These corners, which stay incident to the root-face throughout the
partial closure, are called exposed white corners.

The rooted-closure of the decorated mobile D is obtained from the partial closure C by erasing every
white vertex and edge of the mobile (this might result in a disconnected embedded graph in general).

Opening. LetM be an oriented map (rooted or not) with vertex set V and face set F . The partial opening
of M is the map C with two types of vertices (black vertices in V and white vertices in W = {wf , f ∈
F}) and two types of edges (directed and undirected) obtained as follows.
• Insert a white vertex wf inside each face f of M .

• Draw an undirected edge betweenwf and each corner incident to f which precedes an ingoing half-
edge in clockwise order around its incident vertex. If M is corner-rooted, then the stem indicating
the root-corner is interpreted as an ingoing half-edge and gives rise to an edge of C.

If M is a corner-rooted orientation, the rooted-opening of M is obtained from the partial opening C by
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Rooted closure, duality: 1-mobile max. acc. ori. max. acc. ori.

black vertex b vertex v face f
deg(b)=deg(v)

out(b)=out(v)
in(b)=in(v)

deg(v)=deg(f)

out(v)=ccw(f)
in(v)=cw(f)

white vertex w face f vertex v
deg(w)=cw(f) cw(f)=in(v)

δ-closure + duality:

Case δ > 0

δ-mobile ori. in Oδ
black vertex b

deg(b)=deg(f)

out(b)=ccw(f)
in(b)=cw(f)

inner face f

white vertex w
deg(w)=in(v)

vertex v

Case δ < 0

δ-mobile ori. in Õ|δ|
black vertex b

deg(b)=deg(f)

out(b)=ccw(f)
in(b)=cw(f)

inner face f

white vertex w
deg(w)=in(v)

inner vertex v

Fig. 3: The closure-bijections, with the parameter correspondences.

erasing all the ingoing half-edges of M , thereby creating an undirected embedded bicolored graph with
some outgoing stems incident to black corners.

We recall the result from [Ber07] (see also [BC10]) that we shall generalize.

Theorem 3 The rooted closure is a bijection between decorated mobiles of excess δ = 1 and (corner-
rooted) minimal accessible orientations. The rooted opening is the inverse mapping. Lastly, the parameter-
correspondence is shown in Figure 3, top-part.

3.2 Bijection for δ-mobiles

δ-closure. We now define the δ-closure of a δ-mobile (the definition depends on the sign of δ). Let D be
a δ-mobile and let C be the partial closure of D. The δ-closure M of D is defined as follows.

• If δ > 0, then C has δ ingoing stems (incident to the root-face). The vertex-rooted orientation M
is obtained from C by first creating a root-vertex v of M in the root-face of C and connecting it to
each ingoing stem (stems thus become part of an edge of M directed away from v); second erasing
the edges and white vertices of the mobile.
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• If δ < 0, then C has δ outgoing stems (incident to the root-face). The vertex-rooted orientation M
is obtained from C by first creating a root-vertex v of M in the root-face of C and connecting it
to each outgoing stem and then reorienting these edges (stems thus become part of an edge of M
directed away from v); second erasing the edges and white vertices of the mobile.
• If δ = 0, then M is the face-rooted orientation obtained from C by erasing the edges and white

vertices of the mobile.

Actually, it is not obvious from our definitions that the δ-closures give connected orientations but we
prove this and more below.

Theorem 4 Let δ be in Z.
• For δ > 0, the δ-closure is a bijection between δ-mobiles and the set Sδ , which (by duality) is itself

in bijection with the set Oδ . The parameter-correspondence is shown in Figure 3 bottom-part.
• For δ < 0, the δ-closure is a bijection between δ-mobiles and the subset S̃|δ| ⊂ S|δ|, which (by

duality) is itself in bijection with the subset Õ|δ| ⊂ O|δ| The parameter-correspondence is shown
in Figure 3 bottom-part.
• For δ = 0, the δ-closure is a bijection between δ-mobiles and minimal orientations.

The remaining of this section is devoted to the proof of Theorem 4 (the proof for δ = 0, which is
similar, is omitted since we will not use it in this article).
Case δ > 0. We first prove that the δ-closure of a δ-mobile is in Sδ . Let D be a δ-mobile, let C be its
partial closure and let M be its δ-closure. As observed above, the mobile D has δ > 0 exposed white
corners. Let D′ be the decorated mobile obtained from D by creating a new black vertex b, joining b to an
exposed white corner, and adding δ outgoing stems to b. The excess of D′ is 1, hence by Theorem 3 the
rooted closure of D′ gives a minimal accessible orientation M ′. Moreover, it is easily seen (Figure 4) that
the root-corner ofM ′ is incident to the new vertex b (because the ingoing stem incident to b is not matched
during the partial closure). Moreover (provided the ingoing root half-edge is not counted) b is a source of
the orientation M ′, and the vertex-rooted orientation M is induced by the corner-rooted orientation M ′.
Thus, the orientation M is in Sδ .

The following comment will be useful later (for the case δ < 0): the closureM ofD is in S̃δ if and only
if each of the exposed white corners of D is incident to a (white) leaf of D. Indeed, a white vertex wf of
D has an exposed white corner if and only if it corresponds to a face f of M incident to the root-vertex b.
Moreover, the clockwise degree of f is (as always) the degree of wf .

We now prove that the δ-closure is a bijection by defining the inverse mapping. Let M be a vertex-
rooted orientation in Sδ . By applying the partial opening of M and then erasing every ingoing half-edge
of M , one obtains an embedded graph with stems D̂. The embedded graph D̂ is in fact disconnected
since the root-vertex b of M is incident to no edge of D̂ (since b is a source of M ). The δ-opening D of
M is obtained from D̂ by erasing the vertex b. In order to prove that D is a decorated mobile (i.e. a tree
with stems), we consider a minimal accessible orientationM ′ obtained fromM by choosing a root-corner
for M among the corners incident to the root-vertex b. By Theorem 3, the rooted opening of M ′ gives
a decorated mobile D′. Clearly, D is obtained from D′ by erasing the black vertex b. Moreover, b is a
leaf of D′ (since b is incident to no ingoing half-edge except the stem indicating the root-corner of O),
hence D is a mobile, and it has excess δ. Lastly, since the rooted closure and rooted opening are inverse
mappings, it is clear that δ-closure and δ-opening are inverse mappings, hence bijections.
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(a) (b) (c)

Fig. 4: Formulation of the δ-closure, for δ > 0, as a reduction to the rooted closure. Figure (a) shows generically the
partial closure of a δ-mobile with δ = 4, in (b) one creates a black vertex b with δ outgoing stems, and connects it to
an exposed white corner, in (c) one performs the remaining matchings of stems to complete the δ-closure.

Case δ < 0. We denote d = −δ. Let D be a δ-mobile. We associate to D a d-mobile φ(D) obtained
from D by transforming each of its d unmatched outgoing stems into an edge of φ(D) connected to a
newly created white leaf. Observe that the δ-closure of D and the d-closure of φ(D) coincide. Hence
the δ-closure is the composition of the mapping φ and of the d-closure. Moreover, the mapping φ is a
bijection between the set of δ-mobiles and the set Dd of d-mobiles such that every exposed white corner
belongs to a leaf. Indeed, φ(D) belongs to Dd since the unique incident corner for each of the d newly
created white leaves remains exposed during the partial closure; and the inverse mapping φ−1 is obtained
by replacing each edge incident to an exposed leaf by an outgoing stem. Lastly, by the observations above
(case δ > 0), the d-closure induces a bijection between the set Dd and the set S̃d. The inverse mapping
to the δ-closure, called the δ-opening, is obtained as the composition of φ−1 with the d-opening. This
completes the proof of Theorem 4 (in the cases δ 6= 0).

4 Bijective counting of triangulations with boundaries
In this section we obtain bijections for simple triangulations (a.k.a. 3-connected triangulations, maximal
planar graphs) and for triangulations with boundaries. The bijections are obtained by specializing the clo-
sures defined in the previous section to certain classes of orientations characterizing simple triangulations.

Let T be a face-rooted triangulation. A 3-orientation of T is an orientation such that inner vertices
have indegree 3 and outer vertices have indegree 1. Schnyder proved in [Sch89] that any simple face-
rooted triangulation admits a 3-orientation, that any 3-orientation is accessible from the outer vertices and
that the root-face is always directed. Moreover, one easily checks (using Euler’s relation) that loops and
double edges are obstructions to the existence of a 3-orientation. Thus, a planar triangulation admits a
3-orientation if and only if it is simple. In the following we simply call 3-orientation a 3-orientation of a
face-rooted triangulation. From Lemma 1 one obtains:

Lemma 5 Face-rooted simple triangulations are in bijection with minimal 3-orientations. Such orienta-
tions are clockwise-minimal and accessible.

Minimal 3-orientations are the orientations in Õ3 such that all inner vertices have indegree 3 and all
faces have degree 3. Thus, we can use the case δ = −3 of Theorem 4 to conclude that face-rooted simple
triangulations are in bijection with (−3)-mobiles having every vertex of degree 3 (recall that outgoing
stems count in the degree of a black vertex). In fact, the constraint that the excess is −3 can be omitted,
since it is a consequence of all vertices having degree 3 (as easily seen by induction on the number of
vertices). Call trivalent the decorated mobiles with all vertices of degree 3. We obtain:
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(a) (b) (c) (d)

Fig. 5: (a) A mobile in Bk. (b) The 3-closure. (c) Duality. (d) The non-separated k-annular triangulation (with its
minimal pseudo 3-orientation).

Proposition 6 (Recovering [FPS08]) The δ-closure, case δ = −3 (together with duality) induces a bi-
jection between face-rooted triangulations with n+3 vertices and trivalent mobiles with n white vertices.

Proposition 7 (Counting rooted simple triangulations) For n ≥ 0, let tn be the number of corner-
rooted simple triangulations with n + 3 vertices. The generating function T (x) =

∑
n≥0(2n + 1)tnx

n

satisfies
T (x) = u3, where u = 1 + xu4.

Consequently, the Lagrange inversion formula gives: tn = 2
(4n+ 1)!

(n+ 1)!(3n+ 2)!
.

Proof: The Euler relation easily implies that a triangulation with n + 3 vertices has 2n + 1 non-root
faces. Hence (2n+1)tn is the cardinality of the setHn of face-rooted triangulations with n inner vertices
having an additional marked corner c not incident to the root-face (think of obtaining this map by first
marking a corner and then a face). Marking the corner c is equivalent to marking a black corner of the
associated mobile (since the black vertices are in correspondence to the triangular faces). In other words,
Hn is in bijection, via the (−3)-closure, with trivalent mobiles that have n white vertices and a marked
black corner, and T (x) is the generating function of this class of mobiles. Finally, the expression of T (x)
above is just the translation of a recursive decomposition for the mobiles (details are omitted here). 2

We now proceed to count bijectively the triangulations with boundaries. In the following, k is an integer
greater than 3. A k-gonal triangulation is a map having one face of degree k whose contour is simple
(incident to k distinct vertices) and all other faces of degree 3. The k-gonal face is called boundary
face, and the vertices are called boundary or non-boundary depending on whether they are incident to
the boundary face. A pseudo 3-orientation of a k-gonal triangulation is an orientation such that all non-
boundary vertices have indegree 3, and the boundary face is directed. A pseudo 3-orientation of a k-gonal
triangulation is shown in Figure 5(d). By the Euler relation, a k-gonal triangulation with n non-boundary
vertices has 3n + 2k − 3 edges. Hence, the sum of indegrees of the boundary vertices is 2k − 3. A
k-annular triangulation is a face-rooted k-gonal triangulation whose root-face is not the boundary face;
see Figure 5(d). Let T be a simple k-annular triangulation, with root-face f and boundary face f ′. A
3-cycle C of T is called separating if C is different from (the contour of) the root-face and has f on one
side and f ′ on the other side; T is said to be non-separated if it has no separating 3-cycle. We denote by
Tk the set of k-annular triangulations, and by Nk the subset of non-separated ones.

Lemma 8 A k-annular triangulation A admits a pseudo 3-orientation if and only if it is simple. If A
is simple, it admits a unique minimal pseudo 3-orientation. This orientation is accessible from all outer
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vertices if and only if A is non-separated. Moreover, the root-face is directed (in clockwise direction) in
this case.

To summarize, the set Nk of non-separated k-annular triangulations is in bijection with the set of
clockwise-accessible minimal pseudo 3-orientations.

The proof of the lemma, which is ommited, essentially relies on Lemma 1 and on the Euler relation.
By definition, the clockwise-accessible minimal pseudo 3-orientations are the orientations in O3 such

that every vertex has indegree 3 and every face has degree 3 except for one boundary face b which has
degree k and is directed clockwise. Moreover, a counting argument (using the Euler relation) shows that
the indegrees of the boundary vertices must add up to 2k−3. Let D be the 3-mobile giving an orientation
O ∈ Nk (by the 3-closure followed by duality) and let vb be the black vertex of D corresponding to the
boundary face b. Since b is counterclockwise, vb has no outgoing stem and has k white neighbors, which
clearly (by definition of closure) corresponds to the boundary vertices; see Figure 5. Hence, the degree of
these white vertices of the mobile must add up to 2k − 3. Lastly, as in the case of triangulations without
boundary, the condition of the excess being 3 is implied by the degree conditions on black and white
vertices, so can be omitted. To conclude, by specialization of the 3-closure, Lemma 8 translates into:

Theorem 9 The family Nk of non-separated k-annular triangulations is in bijection with the family Bk
of decorated mobiles having every vertex of degree 3 except for one black vertex b of degree k carrying
no outgoing stem and such that the degrees of its k (white) neighbors add up to 2k − 3.

Theorem 10 (Counting rooted k-gonal triangulations) Let k > 3, n ≥ 0, and let tk,n be the number
of simple corner-rooted k-gonal triangulations with n+ k vertices having the root-corner in the k-gonal
face. The generating function Tk(x) =

∑
n≥0(2n+ k − 2) tk,nx

n satisfies

Tk(x) =

(
2k − 4

k − 3

)
u2k−3, where u = 1 + xu4.

Consequently, the Lagrange inversion formula gives: tk,n =
2(2k − 3)!

(k − 1)!(k − 3)!

(4n+ 2k − 5)!

n!(3n+ 2k − 3)!
.

Proof: Let ~Tk be the set of k-annular triangulations with a marked corner in the boundary face (equiva-
lently, a marked boundary vertex). Let ~Nk be the subset of these k-annular triangulations that are non-
separated. Let also ~T be the set of corner-rooted simple triangulations with a marked inner face. The
separating 3-cycles of a k-annular triangulation are linearly ordered by inclusion of their boundary re-
gion (the region which contains the boundary face). Thus, there is a unique decomposition of k-annular
triangulations A ∈ ~Tk into a pair (N,T ) ∈ ~Nk × ~T . This decomposition is a bijection and translates
into the generating function equation Tk(x) = Nk(x)T (x), where Tk(x), Nk(x), T (x) are respectively
the generating function of the maps in ~Tk, ~Nk, ~T counted by number of non-boundary vertices. The
generating function ~Tk(x) is

∑
n≥0(2n+k−2) tk,nx

n because maps in ~Tk with n non-boundary vertices
have 2n + k − 2 non-boundary faces. Moreover, by Proposition 7, T (x) = u3, where u = 1 + xu4. It
remains to expressNk(x) in terms of u. By Theorem 9 (and the fact that marking a corner in the boundary
face accounts to marking a corner incident to the special black vertex in the associated mobile), Nk(x) is
the generating function of corner-rooted mobile (counted by number of white vertices) such that the root-
vertex is a black corner of degree k whose (white) neighbors have total degree 2k− 3. The white vertices
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have a total of k− 3 hanging subtrees, which are trivalent trees whose generating funcion is v = u2 (easy
proof omitted). In addition, there are

(
2k−4
k−3

)
ways to distribute the k − 3 hanging trees on the k white

vertices. Hence, Nk(x) =
(
2k−4
k−3

)
u2k−6. 2

5 Bijective counting of quadrangulations with boundaries
In this section we reiterate the strategy used in previous section to the case of quadrangulations.

We call 2-orientation a face-rooted orientation, in which faces have degree 4, inner vertices have inde-
gree 2, and outer vertices have indegree 1. De Fraysseix et al. [dFOdM01] have shown that any simple
face-rooted quadangulation admits a 2-orientation, that any 2-orientation is accessible from the outer
vertices and that the root-face is always directed. Moreover, one easily checks that a double edge is an
obstruction for 2-orientation. Hence minimal 2-orientations are in bijection with simple face-rooted quad-
rangulations. By definition, minimal 2-orientations are the orientations in Õ4 having faces of degree 4
and inner vertices of indegree 2. The (−4)-closure (followed by duality) gives a bijection between such
orientations and (-4)-mobiles whise white vertices have degree 2 and whose black vertices have degree 4.
Call these mobiles tetravalent. We obtain:

Proposition 11 (Counting rooted simple quadrangulations) For n ≥ 0, let qn be the number of rooted
simple quadrangulations with n + 4 vertices. Then the generating function Q(x) =

∑
n≥0(n + 1)qnx

n

satisfies
Q(x) = u4, where u = 1 + xu3.

Consequently, the Lagrange inversion formula gives: qn = 2
(3n+ 3)!

(n+ 2)!(2n+ 3)!
.

Call 2k-gonal quadrangulation a map with faces of degree 4 except for one face of degree 2k > 4.
The strategy for counting simple 2k-gonal quadrangulations parallels the case of triangulations. One
first defines a 2k-annular quadrangulation to be a simple quadrangle-rooted 2k-gonal quadrangulation.
One then proves that any such map admits a unique minimal pseudo 2-orientation (orientation such that
the boundary face is clockwise and non-boundary vertices have indegree 2), and that this orientation is
clockwise-accessible if and only if the map is non-separated (no 4-cycle separates the root-face from
the boundary face). Any 2k-annular quadrangulation decomposes uniquely into a pair made of a face-
rooted quadrangulation with an additional marked face and a non-separated 2k-annular quadrangulation.
Moreover, the later maps are in bijection (via the 4-closure) with a family of pseudo-tetravalent decorated
mobiles which is easy to enumerate. We obtain:

Theorem 12 (Counting rooted simple 2k-gonal quadrangulations) Let k > 2, n ≥ 0, and let qk,n be
the number of rooted simple 2k-gonal quadrangulations with n + 2k vertices and with the root-corner
incident to the 2k-gonal face. The generating function Qk(x) =

∑
n≥0(n+ k − 1)qk,nx

n satisfies

Qk(x) =

(
3k − 3

k − 2

)
u3k−2, where u = 1 + xu3.

Consequently, the Lagrange inversion formula gives: qk,n =
3(3k − 2)!

(k − 2)!(2k − 1)!

(3n+ 3k − 4)!

n!(2n+ 3k − 2)!
.
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Combinatorial aspects of Escher tilings
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Abstract. In the late 30’s, Maurits Cornelis Escher astonished the artistic world by producing some puzzling drawings.
In particular, the tesselations of the plane obtained by using a single tile appear to be a major concern in his work,
drawing attention from the mathematical community. Since a tile in the continuous world can be approximated by a
path on a sufficiently small square grid - a widely used method in applications using computer displays - the natural
combinatorial object that models the tiles is the polyomino. As polyominoes are encoded by paths on a four letter
alphabet coding their contours, the use of combinatorics on words for the study of tiling properties becomes relevant.
In this paper we present several results, ranging from recognition of these tiles to their generation, leading also to
some surprising links with the well-known sequences of Fibonacci and Pell.

Résumé. Lorsque Maurits Cornelis Escher commença à la fin des années 30 à produire des pavages du plan avec des
tuiles, il étonna le monde artistique par la singularité de ses dessins. En particulier, les pavages du plan obtenus avec
des copies d’une seule tuile apparaissent souvent dans son oeuvre et ont attiré peu à peu l’attention de la communauté
mathématique. Puisqu’une tuile dans le monde continu peut être approximée par un chemin sur un réseau carré
suffisemment fin - une méthode universellement utilisée dans les applications utilisant des écrans graphiques - l’object
combinatoire qui modèle adéquatement la tuile est le polyomino. Comme ceux-ci sont naturellement codés par des
chemins sur un alphabet de quatre lettres, l’utilisation de la combinatoire des mots devient pertinente pour l’étude des
propriétés des tuiles pavantes. Nous présentons dans ce papier plusieurs résultats, allant de la reconnaissance de ces
tuiles à leur génération, conduisant à des liens surprenants avec les célèbres suites de Fibonacci et de Pell.

Keywords: Tesselations, tilings, polyomino, Fibonacci, Pell.

1 Introduction
We study here a special class of periodic tilings consisting of translated copies of a single tile, and we refer
the reader to Grünbaum and Shephard (1987) for a more general presentation of tilings, and to Ardila and
Stanley (2005) for an introduction to combinatorial problems related with tilings. For instance, consider
the problem of tiling the plane with an infinite number of copies of a single tile. While it is not known
whether it admits a periodic tiling of the plane, the situation is easier with translations of a polyomino.
†Corresponding author.
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The problem of deciding if a given polyomino tiles the plane by translation goes back to Wijshoff and
van Leeuven (1984) who coined the term exact polyomino for these. Up to our knowledge, Beauquier
and Nivat (1991) were the first to provide a characterization stating that the boundary b(P ) of an exact
polyomino P satisfies the following (not necessarily unique) Beauquier-Nivat factorization

b(P ) = A ·B · C · Â · B̂ · Ĉ (1)

where at most one variable may be empty. Hereafter, this condition is referred as the BN-factorization,

Polyominoes having a BN-factorization (where
BN stands for Beauquier-Nivat) with A, B
and C nonempty were called pseudo-hexagons.
For sake of simplicity, we call them hexagons.
The example on the right shows a hexagonal
tiling. Indeed the basic tile is composed of 6
sides, each one corresponding to one side of a
hexagon.

Introduction
The tiling by translation problem

Generation of squares tiles
Double Squares

M.C. Escher
Escher Tilings
Discrete figures

Figure: Hexagonal tiling

Ariane Garon Words2009:Palindromes and local periodicity

If one of the variables in Equation (1) is empty, they are called squares. A tiling may have both features
as shown below.

Indeed, in the tiling on the left, we have two basic
ways of decomposing the tesselation: into squares
(a pair of white and black birds) and hegaxons (3
white and 3 black). Even more, a tile may have both
hexagon and square factorizations, as a polyomino
consisting of k contiguous unit squares shows.

In this paper we present a combinatorial approach for understanding the structure of the polyominoes
that tile the plane by translation. The combinatorics on words point of view is powerful for a number of
decision problems such as deciding if a polyomino tiles the plane by translation or checking if a tile is
digitally convex. Enumeration of such tiles is a challenging problem, and we have exhibited new classes
of polyominoes having surprising properties.

Indeed there are square tiles that can be assembled
in exactly two different ways, defining two sets of
distinct translations: we call them double squares.
On the other hand we did not find a square having
3 distinct square factorizations, confirming a conjec-
ture due to Provençal (2008). In particular, we de-
scribe two infinite families of squares linked to the
Christoffel words and to the Fibonacci sequence. Fig. 1: Tiling with a Fibonacci polyomino.

Proofs of the results are based on combinatorics on words techniques and are omitted due to lack of space.



410 A. Blondin Massé and S. Brlek and S. Labbé

2 Preliminaries
The usual terminology and notation on words is from Lothaire (1997). An alphabet Σ is a finite set whose
elements are called letters. A finite word w is a sequence of letters, that is, a function w : {1, 2, . . . , n} →
Σ, where wi is the i-th letter, 1 ≤ i ≤ n. The length of w, denoted by |w|, is given by the integer n. The
unique word of length 0 is denoted ε, and the set of all finite words over Σ is denoted Σ∗. The set of n-
length word is Σn, and Σ≥k denotes those of length at least k. The reversal w̃ of w = w1w2 · · ·wn is the
word w̃ = wnwn−1 · · ·w1. Words p satisfying p = p̃ are called palindromes. The set of all palindromes
over Σ is denoted Pal(Σ∗). A word u is a factor of another word w if there exist x, y ∈ Σ∗ such that
w = xuy. We denote by |w|u the number of occurrences of u in w. Two words u and v are conjugate
if there are words x and y such that u = xy and v = yx. In that case, we write u ≡ v. Clearly, ≡
is an equivalence relation. Given two alphabets Σ1 and Σ2, a morphism is a function ϕ : Σ∗1 → Σ∗2
compatible with concatenation, that is, ϕ(uv) = ϕ(u)ϕ(v) for any u, v ∈ Σ∗1 . It is clear that a morphism
is completely defined by its action on the letters of Σ1.

Paths on the square lattice. The notation of this section is partially adapted from Brlek et al. (2006b). A
path in the square lattice, identified as Z×Z, is a polygonal path made of the elementary unit translations

a = (1, 0), a = (−1, 0), b = (0, 1), b = (0,−1).

A finite path w is therefore a word on the alphabet F = {a, a, b, b}. Furthermore, we say that a path w is
closed if it satisfies |w|a = |w|a and |w|b = |w|b. A simple path is a word w such that none of its proper
factors is a closed path. A boundary word is a closed path such that none of its proper factors is closed.
Finally, a polyomino is the subset of Z2 contained in some boundary word. On the square grid, a path
can be encoded by a sequence of basic movements in the left (L), right (R), forward (F) and backward (B)
directions, so that there is a map D : F2 → R = {L, R, F, B} defined by

D(u) =





L if u ∈ VL = {ab, ba, ab, ba},
R if u ∈ VR = {ba, ab, ba, ab},
F if u ∈ VF = {aa, aa, bb, bb},
B if u ∈ VB = {aa, aa, bb, bb}.

It is extended to a function on arbitrary words, denoted by the same letter D : F≥1 → R∗, by setting

D(w) =
{
ε if |w| = 1,∏n
i=2D(wi−1wi) if |w| ≥ 2,

where |w| = n and the product is the concatenation. For example,D(bababaab) = RLLRRFR. Notice that
each path w ∈ F≥1 is completely determined, up to translation, by its initial step α ∈ F and a word y on
the alphabetR. Therefore, for each α ∈ F there is a function D−α : R∗ → F≥1 defined recursively by

D−1α (y) =

{
α if |y| = 0,
αD−1β (y′) if |y| ≥ 1,

where β ∈ F is the letter such that αβ ∈ Vx and y = xy′ with x ∈ R. For example, if y = RLLRRFR,
then D−b (y) = bababaab, while D−a (y) = abababba. The next lemma gives some easily established
statements and shows how both functions D and D− behave.
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Lemma 1 Let w,w′ ∈ F∗, y, y′ ∈ R∗, α ∈ F and x ∈ R. Then

(i) D−w1
D(w) = w and D ◦ D−α (y) = y, where w1 is the first letter of w;

(ii) D(ww′) = D(w) · D(wnw′1) · D(w′) and D−α (yxy′) = D−α (y)D−β (y′), where wn is the last letter
of w, w′1 is the first letter of w′ and β is the last letter of D−α (yx). 2

In Brlek et al. (2006b), the authors introduced the winding number, the valuation ∆ defined on R∗ by
∆(y) = |y|L − |y|R + 2|y|B as well as on F≥1 by setting ∆(w) = ∆(Dw).
Transformations. Some useful transformations on F∗ are rotations by an angle kπ/2 and reflections
with respect to axes of angles kπ/4, where k ∈ N. The rotation of angle π/2 translates merely in F by
the morphism ρ : a 7→ b, b 7→ a, a 7→ b, b 7→ a. We denote the other rotations by ρ2 and ρ3 according
to the usual notation. The rotation ρ2 is also noted · since it can be seen as the complement morphism
defined by the relations a = a and b = b. Similarly, for k ∈ {0, 1, 2, 3}, σk is the reflection defined by the
axis containing the origin and having an angle of kπ/4 with the abscissa. It may be seen as a morphism
on F∗ as well:

σ0 : a 7→ a, a 7→ a, b 7→ b, b 7→ b and σ1 : a 7→ b, b 7→ a, a 7→ b, b 7→ a.

The two other reflections are σ2 = σ0 ◦ ρ2 and σ3 = σ1 ◦ ρ2. Another useful map is the antimorphism
·̂ = · ◦ ·̃ defined on F∗: ŵ is the path traversed in the opposite direction. The behaviour of the operators
·̂ , ·̃ and · is illustrated in Figure 2.

aabab̄ab̄

āāb̄ābāb

b̄ab̄abaa
bābāb̄āā

˜

˜

Fig. 2: Effect of the operators ·̂ , ·̃ and · on F∗.

On the alphabet R, we define an involution ı : L 7→ R, R 7→ L, F 7→ F, B 7→ B. This function ı extends
to R∗ as a morphism, so that the map ·̂ extends as well to ·̂ : R∗ → R∗ by setting ·̂ = ı ◦ ·̃ . All these
operations are closely related as shown in the lemmas hereafter. The proofs are left to the reader.

Lemma 2 Let w ∈ F∗, y ∈ R∗ and α ∈ F . The following properties hold:

(i) D(w) = D(ρi(w)) for all i ∈ {1, 2, 3},
(ii) ı(D(w)) = D(σi(w)) for all i ∈ {0, 1, 2, 3},

(iii) D(ŵ) = D̂(w) = D(w̃),
(iv) ρi(D−α (y)) = D−ρi(α)(y) for all i ∈ {1, 2, 3},
(v) σi(D−α (y)) = D−σi(α)

ı(y) for all i ∈ {0, 1, 2, 3},
(vi) D̃−α (y) = D−β ŷ where β is the last letter of D−α (y),

(vii) D̂−α (y) = D−
β
(ŷ) where β is the last letter of D−α (y),

(viii) If β is the last letter of D−α y, then β = ρi(α) where i = ∆(y). 2
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For the rest of the paper, the words w of F∗ andR∗ satisfying ŵ = w are called antipalindromes.

Lemma 3 Let w ∈ F∗. Then the following statements are equivalent.

(i) ŵ = ρ2(w)

(ii) w is a palindrome
(iii) D(w) is an antipalindrome.

Finally, reflections on F∗ are easily described onR∗.
Lemma 4 Let w ∈ F∗. There exists i ∈ {0, 1, 2, 3} such that ŵ = σi(w) if and only if D(w) is a
palindrome. 2

Square Tilings. Let P be a polyomino having W for boundary word, and Q a square having V =
ABÂB̂ as a BN-factorization. Then the product of P and Q, denoted by P ◦Q, is the polyomino whose
boundary word is given by γ(W ), where γ : F∗ → F∗ is the morphism defined by

γ(a) = A, γ(a) = Â, γ(b) = B, γ(b) = B̂.

The assumption for Q to be a square is essential in order to glue together the tiles. Here is an illustration
of the composition where P is a tetramino, which is an hexagon but not a square.

=

Double Squares

Definition (Composition of tiles)

Let P be a polyomino and S be a square. Then the composition
P ◦ C is the square defined by replacing each unit cell of P by the
square C

=⇒

Note : non commutative.
A tile is called prime if it is not obtained by composition of two
tiles both different from the unit square.

Srečko Brlek PP2009:combinatorics of double squares

=⇒

Fig. 3: Composition of tiles and the resulting tiling

Of particular interest are the constructions yielding double squares, discovered by Provençal (2008).

Proposition 5 Let P be a double square and Q a square. Then the following properties hold:

(i) the BN-factorizations of P must overlap, i.e. no factor of a BN-factorization may be included in a
factor of the other one.

(ii) P ◦Q is a double square. 2

The composition of tiles lead naturally to the notion of primality, and a polyomino R is called prime if
the relation R = P ◦Q implies that either R = P or R = Q. Of course, every square with prime area is
prime. In Figure 3, the winged horse is a prime square (!).

Lemma 6 Let P be a square with boundary word W , A and B be words such that W ≡ ABÂB̂. Then
A,B ∈ Pal(F∗) if and only if W = ww for some word w.

For more reading on square tilings see Brlek and Provençal (2006); Brlek et al. (2009b).
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3 Recognition of tiles
Wijshoff and van Leeuven (1984) provided a naive O(n4) algorithm for recognizing exact polyominoes.
Later, using the BN-factorization of Beauquier and Nivat, Gambini and Vuillon (2007) exhibited a general
O(n2) algorithm.

Brlek and Provençal (2006) designed a linear algorithm for recognizing squares. It uses all the power
of combinatorics on words as accounted in Lothaire (2005). The main idea is to choose a position p
in W = ABÂB̂, and then, to list all the candidate factors A that overlap this fixed position p. To
achieve this, the auxiliary functions Longest-Common-Right-Extension (LCRE) and Longest-Common-
Left-Extension (LCLE) ofW and Ŵ at some respective positions i and j are essential : their computation
is performed in constant time thanks to a pre-processing in linear time (!). (see Lothaire (2005) for more
details)

Nevertheless, there is still a gap to close for completely solving the recognition problem. In the case
of hexagons the solution is not complete: if the polyominoes do not have too long square factors then the
algorithm is still linear (Brlek et al. (2009b)). A general algorithm in O(n(log(n)3) also appears in the
thesis of Provençal (2008). Nevertheless, we conjecture that a linear algorithm exists.

It has been shown in Provençal (2008) that there exist polyominoes admitting a linear number of distinct
non trivial factorizations as hexagons. The case is different for squares. Indeed, based on exhaustive
computation of tiles of small length, showing no square with 3 distinct square factorizations the following
result, conjectured in the thesis of Provençal (2008), holds.

Proposition 7 (Blondin Massé et al. (2010a)) The number of distinct BN-factorizations of a square is at
most 2.

4 Generation of tiles
The greedy algorithm, consisting in computing for each even n all polyominoes of perimeter, does not
allow to produce large size candidates. Therefore, we used the following approach, which is based on the
generation of self avoiding walks.

1. Generate 2 self avoiding walks A,B of length n,m. Each self avoiding walk can be built in two steps:

(a) generate randomly a word w of length n : this takes O(n) ;

(b) check if w intersects itself, which amounts to check if a point appears twice in the walk. This step
can be achieved inO(n) thanks to a sequential algorithm we provided in Brlek et al. (2009a)). The
key point is that there is no need to sort the points (which requires a log n factor) thanks to the
combination of two data structures: a radix-tree for storing the visited points on the square grid is
enriched with a quad-tree structure encoding the neighborhood relation of points.

Note : both steps can be combined in a single pass of Step 1(b). It suffices to substitute the sequential
reading with the sequential random generation of a letter.

2. Check if the final word ABÂB̂ does not intersect itself by extending the nonintersection verification
in Step 1 (b) with the factor ÂB̂.

The resulting algorithm is clearly linear in the perimeter size.
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Some double squares are displayed in Figure 4. In fact, there is an infinite number of these and we are
able to describe some infinite families.

4 A. BLONDIN MASSÉ, S. BRLEK, AND S. LABBÉ

Finally, reflections on A∗ are easily described on M∗.

Lemma 4. Let w ∈ A∗. There exists i ∈ {0, 1, 2, 3} such that ŵ = σi(w) if and
only if Γw is a palindrome.

In his thesis [8], the author proposed a conjecture that prime double squares
have a palindromic symmetry on their sides. We have not been able to found a
counterexample and used that property to exhaustively generate these tiles. Here
are some examples.

This leads to a number of questions on the “arithmetics” of tilings, such as the
unique decomposition, distribution of prime tiles, and their enumeration. Using
the symmetry properties that double square must satisfy we have obtained two
remarkable families of tiles, namely the Christoffel and Fibonacci tiles (see [2]). As
an example we provide a family of tiles linking the Fibonacci and the Pell sequences.

2. Fibonacci snow flakes

We define a sequence (qn)n∈N in M∗ by q0 = ε, q1 = r and

(5) qn =

{
qn−1qn−2 if n ≡ 2 mod 3,

qn−1qn−2 if n ≡ 0, 1 mod 3.

whenever n ≥ 2. The first terms of (qn)n∈N are

q0 = ε q3 = rl q6 = rllrllrr
q1 = r q4 = rll q7 = rllrllrrlrrlr
q2 = r q5 = rllrl q8 = rllrllrrlrrlrrllrllrr

Note that |qn| = Fn is the n-th Fibonacci number. Moreover, given α ∈ A, the
path Φαqn presents strong symmetric properties, as shown by the next lemma.

Lemma 5. Let n ∈ N. Then q3n+1 = pα, q3n+2 = qα and q3n+3 = rα for some
antipalindrome p, and some palindromes q, r and some letter α ∈ {l,r}.
Proof. By induction on n. For n = 0, we have indeed q1 = ε · r, q2 = ε · r and
q3 = r · l. Now, assume that q3n+1 = pα, q3n+2 = qα and q3n+3 = rα for some
antipalindrome p, some palindromes q, r and some letter α ∈ {l,r}. Then

q3n+4 = q3n+3q3n+2 = q3n+2q3n+1q3n+2 = qαpαq · α
q3n+5 = q3n+4q3n+3 = q3n+3q3n+2q3n+3 = rαqαr · α
q3n+6 = q3n+5q3n+4 = q3n+4q3n+3q3n+4 = qαpαqαrαqαpαq · α.

Fig. 4: Some double squares

The first diagonal in Figure 4 contains what we call the Fibonacci tiles. Two special classes of double
squares are described now.

4.1 Christoffel Tiles
Recall that Christoffel words are finite Sturmian words, that is, they are obtained by discretizing a segment
in the plane. Let (p, q) ∈ N2 with gcd(p, q) = 1, and let S be the segment with endpoints (0, 0) and
(p, q).

The word w is a lower Christoffel word if the path

(0, 0)

(8, 5)
induced by w is under S and if they both delimit a
polygon with no integral interior point. An upper
Christoffel word is defined similarly. A Christoffel
word is either a lower Christoffel word or an upper
Christoffel word. On the right is illustrated the lower
one corresponding to

w = aabaababaabab.

It is well known that if w and w′ are respectively
the lower and upper Christoffel words associated to
(p, q), then w′ = w̃. Moreover, we have w = amb
and w′ = bma, where m is a palindrome and a, b
are letters. The word m is called cutting word. They have been widely studied in the literature (see e.g.
Berstel et al. (2008)), where they are also called central words.



Combinatorics of Escher tilings 415

Let B = {a, b}. Consider the morphism λ : B∗ → F∗ by λ(a) = abab and λ(b) = ab, which can be
seen as a “crenelation” of the steps east and north-east.

Theorem 8 (Blondin Massé et al. (2009)) Let w = amb where a and b are letters.

(i) If m is a palindrome, then λ(ww) is a square tile.

(ii) λ(ww) is a double square if and only if w is a Christoffel word.

We say that a crenelated tile λ(ww) obtained from a lower Christoffel word w is a basic Christoffel
tile while a Christoffel tile is a polyomino isometric to a basic Christoffel tile under some rotations ρ and
symmetries σi (see Figure 5).

Fig. 5: Basic Christoffel tiles: (a) w = aaaab (b) w = abbbb and (c) w = aabaababaabab.

Theorem 9 (Blondin Massé et al. (2009)) Let P be a crenelated tile. Then P is a double square if and
only if it is obtained from a Christoffel word. 2

It can also be shown in view of Lemma 6, that each Christoffel tile is highly symmetrical.

Proposition 10 If ABÂB̂ is a BN-factorization of a Christoffel tile, then A and B are palindromes.

Moreover, one verifies easily the following facts.

Proposition 11 Let T be a Christoffel tile obtained from the (p, q) Christoffel word, where p and q are
relatively prime. Then the perimeter and the area of T are given respectively by P(T ) = 8p + 4q and
A(T ) = 4p+ 3q − 2. 2

4.2 Fibonacci Tiles
In this section, in order to simplify the notation, we redefine the operator · on R∗ by setting y = ι(y),
where ι is the involution ι : R ↔ L, F 7→ F, B 7→ B. We define a sequence (qn)n∈N in R∗ by setting
q0 = ε, q1 = R and

qn =

{
qn−1qn−2 if n ≡ 2 mod 3,
qn−1qn−2 if n ≡ 0, 1 mod 3.

whenever n ≥ 2. The first terms of (qn)n∈N are

q0 = ε q3 = RL q6 = RLLRLLRR
q1 = R q4 = RLL q7 = RLLRLLRRLRRLR
q2 = R q5 = RLLRL q8 = RLLRLLRRLRRLRRLLRLLRR

Note that |qn| = Fn is the n-th Fibonacci number. Moreover, given α ∈ F , the path D−α (qn) presents
strong symmetric properties. The next two lemmas are from Blondin Massé et al. (2010b).

Lemma 12 Let n ∈ N. Then q3n+1 = pα, q3n+2 = qα and q3n+3 = rα for some antipalindrome p, and
some palindromes q, r and some letter α ∈ {L, R}.
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Lemma 13 Let n ∈ N and α ∈ F . Then D−α (qn) is a simple path and D−α (q3n+1)
4 is the boundary word

of a polyomino.

A Fibonacci tile of order n is a polyomino having D−α (q3n+1)
4 as a boundary word, where n ∈ N.

They are somehow related to the Fibonacci fractals found in Monnerot-Dumaine. The first Fibonacci tiles
are illustrated in Figure 6.

Fig. 6: Fibonacci tiles of order n = 0, 1, 2, 3, 4.

Theorem 14 Fibonacci tiles are double squares.

As for Christoffel tiles, Fibonacci tiles also suggest that the conjecture of Provençal (2008) for double
squares is true as stated in the next result.

Corollary 15 If ABÂB̂ is a BN-factorisation of a Fibonacci tile, then A and B are palindromes.

We have established in Blondin Massé et al. (2010b) that the perimeter of the Fibonacci tiles is given
by 4F (3n+ 1) while their area A(n) satisfies the recurrence formulas

A(0) = 1, A(1) = 5;
A(n) = 6A(n− 1)−A(n− 2), for n ≥ 2,

whose first terms are 1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, . . . This se-
quence is the subsequence of odd index Pell numbers.

We end this section by presenting four families of double squares, a variant of the Fibonacci tiles
whose areas satisfy the same recurrence. Indeed, consider the sequence (rd,m,n)(d,m,n)∈N3 satisfying the
following recurrence, for d ≥ 2,

rd,m,n =





rd−1,n,mrd−2,n,m if d ≡ 0 mod 3
rd−1,n,mrd−2,n,m if d ≡ 1 mod 3
rd−1,m,nrd−2,m,n if d ≡ 2 mod 3

Using similar arguments as in the Fibonacci tiles case, one shows that both families obtained respectively
with seed values

r0,m,n = (RLLR)mRLR, r1,m,n = (RLLR)nR,
r0,m,n = (RL)mRLR, r1,m,n = (RL)nRL

are such that D−α (r3d,m,nr3d,n,m)2, where α ∈ F , is a boundary word whose associated polyomino is a
double square (see Figure 7). Their level of fractality increases with d so that one could say that they are
crenelated versions of the Fibonacci Tiles.
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Fig. 7: Tiles obtained with different seeds: from r2,0,1, from r3,m,0 for m = 0, 1, 2, from r3,1,0.

Similarly, let (sd,m,n)(d,m,n)∈N3 be a sequence satisfying for d ≥ 2 the recurrence

sd,m,n =

{
sd−1,n,msd−2,n,m if d ≡ 0, 2 mod 3,
sd−1,m,nsd−2,m,n if d ≡ 1 mod 3.

Then the families obtained with seed values

s0,m,n = (RLLR)mRLR, s1,m,n = RL,
s0,m,n = (RL)mRLR, s1,m,n = R

yield double squares D−α (s3d,m,ns3d,n,m)2 as well (see Figure 8). One may verify that rd,0,0 = sd,0,0 for
any d ∈ N for some conveniently chosen seed values.

Fig. 8: Tile obtained from s3,2,0, and from s2,0,n for n = 1, 2.

The area of the tiles D−(r3d,m,nr3d,n,m)2 and D−(s3d,m,ns3d,n,m)2 for each values of d, m and n
share particular properties. In fact, all the sequences are obtained by the same recurrence (see the first
values in Table 1), and we have the following proposition.

Proposition 16 Let m,n ∈ N be fixed. The sequence of areas indexed by d ∈ N of the four families of
generalized Fibonacci tiles satisfy the recurrence A(d) = 6A(d− 1)−A(d− 2) for d ≥ 2. 2

5 Concluding remarks
The study of double squares suggests some interesting and challenging problems. For instance, there is
a conjecture of Provençal (2008) stating that if ABÂB̂ is a BN-factorization of a prime double square,
then A and B are palindromes, for which, despite a lot of computation time, we have not been able to
provide any counter-example. Another problem is to prove that Christoffel and Fibonacci tiles are prime,
that is, they are not obtained by composition of smaller squares. This leads to a number of questions
on the “arithmetics” of tilings, such as the unique decomposition, distribution of prime tiles, and their
enumeration. Partial results may be found in Brlek et al. (2006a)

It is also appealing to conjecture that a prime double square is either of Christoffel type or of Fibonacci
type. However, that is not the case, as illustrated by Figure 9. This begs for a thorough study in order to
exhibit a complete zoology of such tilings.
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m n d
0 1 2 3 4 5 6 7

0 0 5 13 73 425 2477 14437 84145 490433
1 0 9 29 165 961 5601 32645 190269 1108969
0 1 9 29 165 961 5601 32645 190269 1108969
2 0 13 45 257 1497 8725 50853 296393 1727505
1 1 17 65 373 2173 12665 73817 430237 2507605
0 2 13 45 257 1497 8725 50853 296393 1727505
3 0 17 61 349 2033 11849 69061 402517 2346041
2 1 25 101 581 3385 19729 114989 670205 3906241
1 2 25 101 581 3385 19729 114989 670205 3906241
0 3 17 61 349 2033 11849 69061 402517 2346041
4 0 21 77 441 2569 14973 87269 508641 2964577
3 1 33 137 789 4597 26793 156161 910173 5304877
2 2 37 157 905 5273 30733 179125 1044017 6084977
1 3 33 137 789 4597 26793 156161 910173 5304877
0 4 21 77 441 2569 14973 87269 508641 2964577

Tab. 1: Area of the tile D−(r3d,m,nr3d,n,m)2 with seed values r0,m,n = (RLLR)mRLR and r1,m,n = (RLLR)nR.

The fractal nature of the Fibonacci tiles strongly suggests that Lindemayer systems (L-systems) may
be used for their construction Rozenberg and Salomaa (1980). The formal grammars used for describing
them have been widely studied, and their impact in biology, computer graphics Rozenberg and Salomaa
(2001) and modeling of plants is significant Prusinkiewicz and Lindenmayer (1990). A number of designs
including snowflakes fall into this category.

Fig. 9: Three double squares not in the Christoffel and Fibonacci tiles families.

References
F. Ardila and R. Stanley. Tilings. arXiv:math/0501170v3, 2005.

D. Beauquier and M. Nivat. On translating one polyomino to tile the plane. Discrete Comput. Geom., 6:
575–592, 1991.

J. Berstel, A. Lauve, C. Reutenauer, and F. Saliola. Combinatorics on Words: Christoffel Words and
Repetition in Words, volume 27 of CRM monograph series. American Mathematical Society, 2008.
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Abstract.

Steingrı́msson (2001) showed that the chromatic polynomial of a graph is the Hilbert function of a relative Stanley-
Reisner ideal. We approach this result from the point of view of Ehrhart theory and give a sufficient criterion for when
the Ehrhart polynomial of a given relative polytopal complex is a Hilbert function in Steingrı́msson’s sense. We use
this result to establish that the modular and integral flow and tension polynomials of a graph are Hilbert functions.

Résumé. Steingrı́msson (2001) a montré que le polynôme chromatique d’un graphe est la fonction de Hilbert d’un
idéal relatif de Stanley-Reisner. Nous abordons ce résultat du point de vue de la théorie d’Ehrhart et donnons un
critère suffisant pour que le polynôme d’Ehrhart d’un complexe polytopal relatif donné soit une fonction de Hilbert
au sens de Steingrı́msson. Nous utilisons ce résultat pour établir que les polynômes de flux et de tension modulaires
et intégraux d’un graphe sont des fonctions de Hilbert.

Keywords: Hilbert function, lattice polytope, relative Stanley-Reisner ring, tension polynomial, flow polynomial,
relative polytopal complex

1 Introduction
Steingrı́msson [Ste01] showed that the proper k + 1-colorings of a graph G are in bijection with the
monomials of degree k in a polynomial ring K[x1, . . . , xn] that lie inside a square-free monomial ideal I2,
but outside a square-free monomial ideal I1. In other words, he showed that the chromatic polynomial χG
of G is the Hilbert function of a relative Stanley-Reisner ideal. To this end, he used a clever combinatorial
construction to describe the ideals I1 and I2 explicitly.

In this article we approach the problem from the point of view of Ehrhart theory, which allows us
to arrive quickly at a sufficient criterion for when the Ehrhart polynomial of a given relative polytopal
complex is a Hilbert function in Steingrı́msson’s sense:

The Ehrhart function of a relative polytopal complex in which all faces are compressed is the
Hilbert function of a relative Stanley-Reisner ideal.
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1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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See Theorem 5. We then apply this general result to establish that four other counting polynomials defined
in terms of graphs are Hilbert functions: the modular flow and tension polynomials and their integral
variants. Also, we are able to improve Steingrı́msson’s result insofar as we are able to obtain the chromatic
polynomial χG(k) itself as a Hilbert function, and not only the shifted chromatic polynomial χG(k + 1).
We conclude the paper by a giving another more algebraic proof of our geometric theorem, which allows
us to generalize the result further.

These results have been developed in the authors’ respective theses [Dal08] and [Bre09], to which we
refer the interested reader for further details and additional material.

This paper is organized as follows. After some preliminary definitions in Section 2 we review Ste-
ingrı́msson’s theorem and related work in Section 3. In Section 4 our main result is derived. In Section 5
we apply this result to show that all five counting polynomials are Hilbert functions. We present a gen-
eralization of our main result in Section 6 along with a more algebraic proof. Finally, we give some
constraints on the coefficients of the polynomials and discuss questions for further research in Section 7.

2 Preliminary Definitions
Before we begin, we gather some definitions. We recommend the textbooks [BR07, MS05, Sta96, Sch86]
as references.

The Ehrhart function LA of any set A ⊂ Rn is defined by LA(k) = |Zn ∩ k · A| for k ∈ N. A
lattice polytope is a polytope in Rn, such that all vertices are integer points. It is a theorem of Ehrhart
that the Ehrhart function LP (k) of a lattice polytope is a polynomial in k. Two polytopes P,Q are lattice
isomorphic, P ≈ Q, if there exists an affine isomorphism A such that A|Zn is a bijection onto Zn and
AP = Q. A d-simplex is the convex hull of d+1 affinely independent points. A d-simplex is unimodular
if it is lattice isomorphic to the convex hull of d+ 1 standard unit vectors. A lattice polytope is empty if
the only lattice points it contains are its vertices. A hyperplane arrangement is a finite collection H of
affine hyperplanes and

⋃H denotes the union of all of these.
A polytopal complex is a finite collection C of polytopes in some Rn with the following two properties:

If P ∈ C and F is a face of P , then F ∈ C; and if P,Q ∈ C then F = P ∩ Q ∈ C and F is common
face of both P and Q. The polytopes in C are also called faces and

⋃ C denotes the union of all faces
of C. A (geometric) simplicial complex is a polytopal complex in which all faces are simplices. An
abstract simplicial complex is a set ∆ of subsets of a finite set V , such that ∆ is closed under taking
subsets. A geometric simplicial complex ∆ gives rise to an abstract simplicial complex comb(∆) via
comb(∆) = {σ|σ is the vertex set of some F ∈ C}. A polytopal complex C′ that is a subset C′ ⊂ C of
a polytopal complex C is called a subcomplex of C. Subcomplexes of abstract simplical complexes are
defined similarly. Given a collection S of polytopes in Rn such that for any P,Q ∈ S the set P ∩ Q is
a face of both P and Q, the polytopal complex C generated by S, is C = {F |F a face of P ∈ S}. A
subdivision of a polytopal complex C is a polytopal complex C′ such that

⋃ C =
⋃ C′ and every face

of C′ is contained in a face of C. A triangulation is a subdivision in which all faces are simplicies. A
unimodular triangulation is a triangulation in which all simplices are unimodular.

Let K[x] = K[x1, . . . , xn] denote the polynomial ring in n variables over some field K equipped with
the standard grading by degree K[x] =

⊕
k≥0Rk, where Rk is the K-vector space generated by all

monomials of degree k. A graded K[x]-module is a module M that can be written as a direct sum of
abelian groups M =

⊕∞
−∞Mk such that RiMj ⊂ Mi+j for all i and j. The Hilbert function HM of

M is defined by HM (k) = dim KMk. Let I1 be a monomial ideal in K[x] and consider the quotient ring
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K[x]/I1 graded by degree. Then HK[x]/I1(k) = |{xa ∈ K[x]|xa 6∈ I1,deg(xa) = k}|. Furthermore
let I2 ⊃ I1 be another monomial ideal. By abuse of notation we also denote by I2 the ideal in K[x]/I1
generated by the same set of monomials. We can write I2 =

⊕
k≥0 I

k
2 where Ik2 is the vector space

generated by the monomials xa in I2 with deg(xa) = k that are non-zero in K[x]/I1. Then RiIk2 ⊂ Ii+k2 ,
where the product is taken in K[x]/I1, and HI2(k) = |{xa ∈ I2 \ I1|deg(xa) = k}|. A term order on
K[x] is a total order on the monomials xa ∈ K[a] such that 1 ≺ xa for all a ∈ Zn>0 and xa ≺ xb implies
xa+c ≺ xb+c for all a, b, c ∈ Zn≥0.

We consider oriented graphs that may have loops and multiple edges. Note, however, that the values of
the five counting polynomials do not depend on the orientation of the graph and are thus invariants of the
underlying unoriented graph. Formally, a graph is a tuple (V,E, head, tail), where V is a finite vertex
set, E is a finite edge set and head : E → V and tail : E → V are maps. Graph theoretic concepts such
as adjacency, paths, connectivity, etc. are defined in the usual way. We note that a cycle in the underlying
unoriented graph can be coded as a map c : E → {0,±1} where ce = +1 if the direction in which e
is traversed is consistent with the orientation of e in G, ce = −1 if the direction of traversal is opposite
to the orientation in G and ce = 0 if e does not lie on the cycle. Here we view c both as a map and as
a vector as we shall do with all maps defined in this article. Let k ∈ Z>0. A k-coloring of G is a map
x : V → {0, . . . , k − 1} and it is called proper if xv 6= xu whenever u ∼ v. The chromatic polynomial
χG is defined such that χG(k) is the number of proper k-colorings of G.

A k-tension of G is a map t : E → {−k + 1, . . . , k − 1} such that
∑

e∈E
cete = 0 for every cycle c in G. (1)

Similarly, a Zk-tension of G is a map t : E → Zk such that (1) holds in Zk. A tension is nowhere zero if
t(e) 6= 0 for all e ∈ E. Now we define functions θG and θ̄G as follows: θG(k) is the number of nowhere
zero k-tensions of G and θ̄G(k) is the number of nowhere zero Zk-tensions of G. Both θG(k) and θ̄G(k)
are polynomials in k, called the integral and the modular tension polynomial, respectively.

A k-flow of G is a map f : E → {−k + 1, . . . , k − 1} such that
∑

e∈E
head(e)=v

fe −
∑

e∈E
tail(e)=v

fe = 0 for every vertex v of G. (2)

Similarly, a Zk-flow of G is a map f : E → Zk such that (2) holds in Zk. The functions ϕG and ϕ̄G
are defined as follows: ϕG(k) is the number of nowhere zero k-flows of G and ϕ̄G(k) is the number of
nowhere zero Zk-flows of G. Both ϕG(k) and ϕ̄G(k) are polynomials in k, called the integral and the
modular flow polynomial, respectively. More about these polynomials can be found in [BZ06a, BZ06b,
Koc02, Bre09].

3 Steingrı́msson’s theorem and related work
Steingrı́msson [Ste01] showed that for any graph G the chromatic polynomial χG(k + 1) shifted by one
is the Hilbert function of a module with a particular structure.

Theorem 1 (Steingrı́msson [Ste01, Theorem 9]) For any graph G, there exists a number n, a square-
free monomial ideal I1 in the polynomial ring over n variables K[x] = K[x1, . . . , xn] and a square-free
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monomial ideal I2 in K[X]/I1 such that

HI2(k) = χG(k + 1)

for all k ∈ Z>0, where HI2 denotes the Hilbert function of I2 with respect to the standard grading and
χG denotes the chromatic polynomial of G.

In [Ste01] Steingrı́msson went on to define the coloring complex of a graph to be the simplicial complex
given by the square-free monomial ideal I2. In the case of colorings the ideal I1 has a simple description,
so bounds on the f -vector of the coloring complex translate into bounds on the coefficients of the chro-
matic polynomial. The articles [Jon05, Hul07, HS08], building on Steingrı́msson’s work, have mainly
dealt with showing various properties of the coloring complex. Steingrı́msson himself gave a combinato-
rial description of the coloring complex and determined its Euler characteristic to be the number of acyclic
orientations of G. To some extent this was already known: Welker observed that the coloring complex
of a graph G = (V,E) is the same as a complex appearing in the article [HRW98] by Herzog, Reiner
and Welker, where this complex is shown to be homotopy equivalent to a wedge of spheres of dimension
|V | − 3 and the number of spheres is the number of acyclic orientations of G minus one. Jonsson [Jon05]
showed the coloring complex to be constructible and hence Cohen-Macaulay. This result was improved by
Hultman [Hul07] who showed the coloring complex to be shellable and by Hersh and Swartz [HS08] who
showed that the coloring complex has a convex ear decomposition. These results translate into bounds on
the coefficients of χG.

In this article we concentrate on establishing the structural result that the four counting polynomials
are Hilbert functions in Steingrı́msson’s sense. We deal with the question of obtaining bounds on the
coefficients in the companion article [BD10]. In the present article, we only characterize the coefficient
vectors of Hilbert polynomials of ideals of Steingrı́msson’s type in Section 7. In [BD10] we exploit
geometric information to derive stronger constraints for these four polynomials.

4 Hilbert equals Ehrhart
In this section we relate Ehrhart functions of certain complexes to Hilbert functions of ideals defined
in terms of these complexes. We begin with the well-known relation between simplicial complexes and
the corresponding Stanley-Reisner ideals, move on to relative simplicial complexes and relative Stanley-
Reisner ideals before we finally consider relative polytopal complexes.(i) As Ehrhart functions are defined
in terms of geometric simplicial complexes while Stanley-Reisner ideals are defined in terms of abstract
simplicial complexes, all the complexes we consider live in both worlds. A geometric simplicial complex
∆ has an abstract simplicial complex comb(∆) associated with it, see Section 2.

Let ∆ be an abstract simplicial complex on the ground set V . We identify the elements of the ground
set of ∆ with the variables in the polynomial ring K[xv : v ∈ V ] =: K[x]. Thus sets S ⊂ V correspond
to square-free monomials in K[x]. The Stanley-Reisner ideal I∆ of ∆ is generated by the monomials
corresponding to the minimal non-faces of ∆, more precisely

I∆ := 〈xu ∈ K[x]|supp(u) 6∈ ∆〉.
Then, the Stanley-Reisner ring of ∆ is the quotient K[∆] = K[x]/I∆. We equip the ring K[x] with
the standard grading, that is for any monomial xu ∈ K[x] we have deg(xu) = ||u||1 =

∑n
i=1 ui. The

fundamental result about Stanley-Reisner rings is this:
(i) We introduce the polytopal Stanley-Reisner ideals corresponding to polytopal complexes only later in Section 6.
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Theorem 2 [Sta96] Let ∆ be a d-dimensional (abstract) simplicial complex with fi faces of dimension
i for 0 ≤ i ≤ d. Then the Hilbert function HK[∆] of the Stanley-Reisner ring K[∆] satisfies

HK[∆](k) =

d∑

i=0

fi

(
k − 1

i

)
(3)

for k ∈ Z>0 and HK[∆](0) = 1.

We remark that the right-hand side of (3) evaluated at zero gives
∑d
i=0 fi

(−1
i

)
= χ(∆), the Euler charac-

teristic of ∆.
If we are given a geometric simplicial complex ∆ we will generally use vert(∆) as the ground set of

the abstract simplicial complex comb(∆) and identify the variables of K[x] with the vertices of ∆. In this
case we use I∆ to refer to Icomb(∆) and similarly for K[∆].

Now the Ehrhart functions of a unimodular d-dimensional lattice simplex σd and its relative interior
relint σd are, respectively,

Lσd(k) =

(
k + d

d

)
and Lrelint σd(k) =

(
k − 1

d

)
. (4)

Taken together, (3) and (4) tell us that for any (geometric) simplicial complex ∆ in which all simplices
are unimodular, the Ehrhart function L∆(k) = |Zd ∩ k⋃∆| of ∆ satisfies

L∆(k) =
∑
σ∈∆ Lrelint σ(k) =

∑d
i=0 fi

(
k−1
i

)
= HK[∆](k) (5)

for all k ∈ Z>0. Simply put: the Ehrhart function of a unimodular geometric simplicial complex and
the Hilbert function of the corresponding Stanley-Reisner ring coincide. This fact is well-known, see for
example [MS05]. Taking the above approach and calculating the Ehrhart functions of open simplices,
however, allows us to do without Möbius inversion.

For our purpose we need a more general concept than that of a Stanley-Reisner ring. For an abstract
simplicial complex ∆ the Hilbert function HK[∆](k) counts all those monomials xu of degree k with
supp(u) ∈ ∆. We are interested in a pair of simplicial complexes ∆′ ⊂ ∆, the former being a subcomplex
of the latter, and want to count those monomials xu such that supp(u) 6∈ ∆′ but supp(u) ∈ ∆. To that
end we follow Stanley [Sta96] in calling a pair of simplicial complexes ∆′ ⊂ ∆ a relative simplicial
complex. We denote by I∆/∆′ the ideal in K[∆] generated by all monomials xu with supp(u) 6∈ ∆′. We
call this the relative Stanley-Reisner ideal. Its Hilbert function HI∆/∆′ (k) counts the number of non-zero
monomials xu of degree k in I∆′ \ I∆ or, equivalently, the number of non-zero monomials xu in K[x]
with supp(u) ∈ ∆ \ ∆′. (Notice how the roles of ∆ and ∆′ swap, depending on whether we formulate
the condition using ideals or using complexes). Now, as Stanley remarks, Theorem 2 carries over to the
relative case.

Theorem 3 [Sta96] Let ∆′ ⊂ ∆ be a relative d-dimensional abstract simplicial complex and let fi denote
the number of i-dimensional simplices in ∆ \∆′. Then for all k ∈ Z>0

HI∆/∆′ (k) =
d∑

i=0

fi

(
k − 1

i

)
. (6)
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If ∆ is a geometric simplicial complex and ∆′ ⊂ ∆ a subcomplex, we also call the pair ∆′ ⊂
∆ a relative geometric simplicial complex and define its relative Stanley-Reisner ideal I∆/∆′ to be
Icomb(∆)/comb(∆′).

By the same argument as above, we conclude that for any relative d-dimensional geometric simplicial
complex ∆′ ⊂ ∆, all faces of which are unimodular,

L⋃∆\⋃∆′(k) =
∑

σ∈∆\∆′

Lrelint (σ)(k) =
d∑

i=0

fi

(
k − 1

i

)
= HI∆/∆′ (k) (7)

for all k ∈ Z>0, i.e. the Ehrhart function of a relative simplicial complex with unimodular faces and
the Hilbert function of the associated relative Stanley-Reisner ideal coincide. Moreover this function is a
polynomial in k as (

k − 1

i

)
=

1

i!

i∏

i=1

(k − i)

is a polynomial for every i ∈ Z≥0 using the convention that i! =
∏i
j=1 j and empty products are 1.

To be able to deal with the applications in Section 5 we need to go one step further. The complexes we
will be dealing with, are not going to be simplicial. Their faces will be polytopes. So we define a relative
polytopal complex to be a pair C′ ⊂ C of polytopal complexes, the former a subcomplex of the latter. Our
goal is to realize the Ehrhart function L⋃ C\⋃ C′(k) as the Hilbert function of a relative Stanley-Reisner
ideal.

By the above arguments, it would suffice to require that C has a unimodular triangulation. But for
the sake of convenience we would like to impose a condition on C that can be checked one face at a
time. Requiring that each face of C has a unimodular triangulation would not be sufficient. A unimodular
triangulation ∆F for each face F ∈ C does not guarantee that

⋃
F∈C ∆F is a unimodular triangulation

of C: It may be that for faces F1, F2 ∈ C that share a common face F = F1 ∩ F2 the unimodular
triangulations ∆F1 and ∆F2 do not agree on F , i.e.

{F ∩ f1 | f1 ∈ ∆F1} 6= {F ∩ f2 | f2 ∈ ∆F2}.
Fortunately there is the notion of a compressed polytope: it suffices to require of each face F ∈ C
individually that F is compressed, to guarantee that C as a whole has a unimodular triangulation.

Let P ⊂ Rd be a lattice polytope. Let ≺ be a total ordering of the lattice points in P . The pulling
triangulation pull(P ;≺) of P with respect to the total ordering ≺ is defined recursively as follows. If P
is an empty simplex, then pull(P ;≺) is the complex generated by P . Otherwise pull(P ;≺) is the complex
generated by the set of polytopes

⋃

F

{conv{v,G} : G ∈ pull(F ;≺)}

where v is the ≺-minimal lattice point in P and the union runs over all faces F of P that do not contain
v. See also Sturmfels [Stu96]. This construction yields a triangulation and the vertices of pull(P,≺)
are lattice points in P . Pulling triangulations need not be unimodular, in fact the simplices in a pulling
triangulation do not even have to be empty! Polytopes whose pulling triangulation is always unimodular
get a special name. A polytope P is compressed if for any total ordering ≺ on the vertex set the pulling
triangulation pull(P,≺) is unimodular. These definitions have the following well-known properties.
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Proposition 4 1. Any dim(P )-dimensional simplex in pull(P,≺) contains the≺-minimal lattice point
v in P as a vertex.

2. pull(F,≺) = pull(P,≺) ∩ F for any total order ≺ on the lattice points in P and any face F of P .

3. All faces of a compressed polytopes are compressed.

4. Compressed polytopes are empty.

A proof of this proposition can be found in [Bre09]. For more information on pulling triangulations
and compressed polytopes we refer to [Stu96, OH01, Sul04, Stu91].

Now, if C is a polytopal complex with integral vertices such that every face P ∈ C is compressed,
then we can fix an arbitrary total order ≺ on

⋃ C ∩ Zd and construct the pulling triangulations pull(P,≺)
of all faces P ∈ C with respect to that one global order ≺. By Proposition 4 this means that the for
any two P1, P2 ∈ C that share a common face F = P1 ∩ P2 the triangulations induced on F agree:
pull(P1,≺) ∩ F = pull(F,≺) = pull(P2,≺) ∩ F . Thus pull(C,≺) :=

⋃
F∈C pull(F,≺) is a unimodular

triangulation of C with vert(C) = vert(pull(C,≺)). We abbreviate ∆ := pull(C,≺).
If C′ is any subcomplex of C, we define ∆′ to be the subcomplex of ∆ consisting of those faces F ∈ ∆

such that F ⊂ ⋃ C′. So

L⋃ C\⋃ C′(k) = L⋃∆\⋃∆′(k) = HI∆/∆′ (k) (8)

for k ∈ Z>0 which means that we have realized the Ehrhart function of
⋃ C \ ⋃ C′ as the Hilbert func-

tion of the relative Stanley-Reisner ideal I∆/∆′ . Moreover, we have already seen that this function is a
polynomial. We summarize these results in the following theorem.

Theorem 5 Let C be a polytopal complex. If all faces of C are compressed lattice polytopes, then for any
subcomplex C′ ⊂ C there exists a relative Stanley-Reisner ideal I∆,∆′ such that for all k ∈ Z>0

L⋃ C\⋃ C′(k) = HI∆/∆′ (k)

and this function is a polynomial.

5 Counting Polynomials as Hilbert Functions
In this section we apply Theorem 5 to obtain analogues of Steingrı́msson’s Theorem 1 for all five counting
polynomials. A useful tool in this context is going to be the following theorem by Ohsugi and Hibi which
states that lattice polytopes that are slices of the unit cube are automatically compressed.

Theorem 6 (Ohsugi and Hibi [OH01]) Let P be a lattice polytope in Rn. If P is lattice isomorphic to
the intersection of an affine subspace with the unit cube, i.e. P ≈ [0, 1]n ∩ L for some affine subspace L,
then P is compressed.(ii)

(ii) Actually, Ohsugi and Hibi showed a more general result, but this will suffice for our purposes. Interestingly, Sullivant [Sul04]
noted that this condition is also necessary for a lattice polytope to be compressed.
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Integral Flow and Tension Polynomials
Let S be the linear subspace of RE given by (2). The k-flows of G are in bijection with the lattice
points in k · (−1, 1)E ∩ S. Furthermore let H = {{x|xe = 0} | e ∈ E} denote the arrangement of
all coordinate hyperplanes. Then the nowhere zero k-flows of G are in bijection with the lattice points
in k · (−1, 1)E ∩ S \ ⋃H. The closures of the components of (−1, 1)E ∩ S \ ⋃H are of the form
(
∏
e∈E [ae, ae + 1]) ∩ S for some a ∈ {−1, 0}E . Let C be the polytopal complex generated by these and

let C′ be the subcomplex of all faces of C contained in the boundary of [−1, 1]E or contained in one of
the coordinate hyperplanes. Then ϕG(k) = L⋃ C\⋃ C′(k). Because (2) gives rise to a totally unimodular
matrix, the maximal faces of C are lattice polytopes.(iii) Moreover by Theorem 6, they are compressed.
Thus Theorem 5 can be applied to yield the following result.

Theorem 7 For any graphG there exists a relative Stanley-Reisner ideal I∆/∆′ such that for all k ∈ Z>0

ϕG(k) = HI∆/∆′ (k).

The above geometric construction can be found in [BZ06b]. A similar construction given in [Dal08]
can be used to show an analogue of the above theorem for the integral tension polynomial.

Theorem 8 For any graphG there exists a relative Stanley-Reisner ideal I∆/∆′ such that for all k ∈ Z>0

θG(k) = HI∆/∆′ (k).

Modular Flow and Tension Polynomials
Let v ∈ V and define the vector av ∈ {0,±1}E by ave = +1 if head(e) = v 6= tail(e), ave = −1 if
head(e) 6= v = tail(e), and ave = 0 otherwise. Let A denote the matrix with the vectors av for v ∈ V as
rows. Now, we identify the integers {0, . . . , k − 1} with their respective cosets in Zk so that a function
f : E → Zk can be viewed as an integer vector f ∈ [0, k)E . Using this identification all equations (2)
hold for a given f if and only if Af = kb for some b ∈ ZV . Thus the set of nowhere zero Zk-flows
on G can be identified with the set of lattice points in k · ((0, 1)E ∩ ⋃bHb) where Hb = {f |Af = b}
and b ranges over all integer vectors such that (0, 1)E ∩Hb 6= ∅. Let C be the complex generated by the
respective closed polytopes [0, 1]E ∩Hb. Let C′ be the subcomplex consisting of all those faces that are
contained in the boundary of the cube [0, 1]E . Then ϕ̄G(k) = L⋃ C\⋃ C′(k). The faces of C are lattice
polytopes because A is totally unimodular and by Theorem 6, they are compressed. Thus Theorem 5 can
be applied to yield the following result.

Theorem 9 For any graphG there exists a relative Stanley-Reisner ideal I∆/∆′ such that for all k ∈ Z>0

ϕ̄G(k) = HI∆/∆′ (k).

The above geometric construction can be found in [BS09], which also contains a similar construction
using which an analogue of the above theorem for the modular tension polynomial can be shown [Bre09].

Theorem 10 For any graph G there exists a relative Stanley-Reisner ideal I∆/∆′ such that for all k ∈
Z>0

θ̄G(k) = HI∆/∆′ (k).

(iii) We refer to [Sch86] for the concept of a totally unimodular matrix and related results.
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Chromatic Polynomial
Let G be a graph without loops.(iv) For each e ∈ E define He = {x | xhead(e) = xtail(e)} and consider the
graphic hyperplane arrangement H = {He | e ∈ E}. Then the proper k-colorings of G are in bijection
with the lattice points in k · ([0, 1)E \ ⋃H). The closure of any component C of [0, 1)E \ ⋃H is of
the form Pσ = {x ∈ [0, 1]V | σe(xhead(e) − xtail(e)) ≥ 0} where σ ∈ {±1}E is a sign vector. Let C be
the polytopal complex generated by the Pσ and let C′ be the subcomplex consisting of all faces that are
contained in some hyperplane He or in some hyperplane of the form {x | xv = 1} for some v ∈ V . Then
χG(k) = L⋃ C\⋃ C′(k). The faces of C are lattice polytopes and it can be shown that they are compressed.
Thus Theorem 5 can be applied to yield the following result.

Theorem 11 For any graph G there exists a relative Stanley-Reisner ideal I∆/∆′ such that for all k ∈
Z>0

χG(k) = HI∆/∆′ (k).

This is an improvement upon Steingrı́msson’s Theorem insofar as we obtain the chromatic polynomial
χG(k) itself as a Hilbert function of a relative Stanley-Reisner ideal and not the shifted polynomial χG(k+
1). To obtain the shifted chromatic polynomial using the above construction we would need to consider
the closed cube [0, 1]V instead of the half-open cube [0, 1)V . A geometric construction similar to the one
given above can be found in [BZ06a].

6 Non-Square-Free Ideals
What if the relative polytopal complex C does not have a unimodular triangulation? It turns out that if the
polytopes in C are normal lattice polytopes, the Ehrhart function of

⋃ C \⋃ C′ is still the Hilbert function
of a an ideal I2 in a ring K[x]/I1, however we cannot guarantee that the ideals I1, I2 are square-free. That
is, we are dealing with a relative multicomplex instead of a relative simplicial complex.

A lattice polytope P is normal if for every k ∈ N every z ∈ kP ∩ Zd can be written as the sum of k
points in P ∩ Zd. Note that a compressed polytope is automatically normal.

With this notion we can generalize Theorem 5 to include another case where the polytopal complex in
question satisfies a weaker condition. The conclusion we obtain in this case is not as strong, however.

Theorem 12 Let C be a polytopal complex in which all faces are normal lattice polytopes. Then for any
subcomplex C′ ⊂ C there exist a monomial ideal I1 in a polynomial ring K[x] equipped with the standard
grading and a monomial ideal I2 in K[x]/I1 such that for all k ∈ Z>0

L⋃ C\⋃ C′(k) = HI2(k)

and this function is a polynomial. If the faces of C are compressed, then moreover the ideals I1 and I2
can be chosen to be square-free.

The case where the faces of C are compressed and the ideals are square-free is just Theorem 5. We are
not going to prove this again. Instead we give a self-contained algebraic proof of the case where the faces
are only normal and we do not conclude that the ideals are square-free.

(iv) If G contains loops, then χG(k) = 0 which, trivially, is a Hilbert function.
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First we define the polytopal Stanley-Reisner ideal IC of the polytopal complex C by

IC := 〈xa | there is no P ∈ C such that supp(a) ⊂ P 〉

where again supp(a) denotes the set of lattice points u such that au 6= 0.

Proof: By homogenization, that is by passing to the complex generated by {P × {1}|P ∈ C}, we can
assume without loss of generality that for every lattice point z there is at most one integer k such that
z ∈ k⋃ C.

We are going to construct ideals I2 ⊃ I1 in a polynomial ring K[x] such that the monomials in I2 \ I1
of degree k are in bijection with the lattice points in k(

⋃ C \⋃ C′).
Now consider the polynomial ring K[xu : u ∈ ⋃ C ∩Zd] equipped with the standard grading. Let ≺ be

a term order on this polynomial ring. Let U be the matrix that has the vectors u as columns. Let n be the
number of columns of U and let d be the number of rows. We define

I1 := IC + 〈xb | xb 6∈ IC and there is an xa 6∈ IC such that Ua = Ub and xa ≺ xb〉,
I2 := IC′

where IC and IC′ denote the polytopal Stanley-Reisner ideals of the complexes C and C′ respectively. We
call a monomial xa valid if xa 6∈ I1 but xa ∈ I2. Now we claim that the map π : xa 7→ Ua defines a
bijection between the valid monomials of degree k and the lattice points in k(

⋃ C \⋃ C′).
If xa is valid and of degree k, then Ua ∈ k(

⋃ C \⋃ C′) ∩ Zd. First, we notice that Ua ∈ Zd, because
a and U are integral. Second, we argue that Ua ∈ k⋃ C. Because xa is valid, there exists a polytope P
such that supp(a) ⊂ P and thus Ua ⊂ kP . Finally, we show that Ua 6∈ k⋃ C′. Suppose Ua ∈ kP ′ for
an inclusion-minimal P ′ ∈ C′. Because C′ is a subcomplex of C, this implies that P ′ is a face of P and
supp(a) ⊂ P ′. Hence xa 6∈ IC′ , which is a contradiction to xa being valid.
π is surjective. Let v ∈ k(

⋃ C \⋃ C′) ∩ Zd for some k. Then there is a polytope P ∈ C \ C′ such that
v ∈ relint (kP ). By the assumption that P is normal, there exists a non-negative integral representation
b of v in terms of lattice points in P ∩ Zd: v =

∑
u∈P∩Zd buu = Ub. So by construction xb 6∈ IC and

Ub = v. Consider the≺-minimal monomial xa 6∈ IC with Ua = Ub. For this monomial we have xa 6∈ I1.
Moreover, as Ua = v ∈ relint (kP ) we have xa ∈ I2. Finally we have to check that deg(xa) = k. All
elements of supp(a) are lattice points in P , so Ua ∈ deg(xa)P . However by our assumption at the
beginning there is at most one integer k′ such that v = Ua ∈ k′P . Thus deg(xa) = k.
π̂ is injective. By definition of I1 and as ≺ is a total order on the set of monomials, for every v ∈

k(
⋃ C) ∩ Zd there is at most one monomial xa 6∈ I1 such that Ua = v. 2

We remark that this approach can also be used to give another proof of Theorem 5 using a fundamental
correspondence between compressed polytopes and lattice point sets such that the corresponding toric
ideal has square-free initial ideals under any reverse-lexicographic term order (see [Stu96]). This approach
is explored in [Dal08] and [Bre09]. [Bre09] also contains a variant of the above result, due to Breuer and
Sanyal, in the case where K[x] is equipped with a non-standard grading.

7 Bounds on the Coefficients
(
k−1
d

)
is a polynomial of degree d in k. The polynomials

(
k−1
i

)
for 0 ≤ i ≤ d form a basis of the K-vector

space of all polynomials in K[k] of degree at most d and the polynomials
(
k−1
i

)
for 0 ≤ i form a basis of
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K[k] when seen as a K-vector space. By Theorem 3 the coefficients of the Hilbert function of a relative
Stanley-Reisner ideal expressed with respect to this basis must be non-negative and integral. It turns out
that this characterizes which polynomials appear as Hilbert functions of relative Stanley-Reisner ideals.

Theorem 13 A polynomial f(k) =
∑d
i=0 fi

(
k−1
i

)
is the Hilbert function of some relative Stanley-Reisner

ideal I∆/∆′ if and only if fi ∈ Z≥0 for all 0 ≤ i ≤ d.

Proof: We have already seen that the coefficients of HI∆/∆′ (k) with respect to the basis
(
k−1
d

)
, d ∈ Z≥0

are necessarily non-negative integers. To see that this is also sufficient, let f(k) =
∑d
i=0 fi

(
k−1
i

)
with

fi ∈ Z≥0 for all 0 ≤ i ≤ d. For 0 ≤ i ≤ d and 1 ≤ j ≤ fi let σij denote a closed unimodular lattice
simplex of dimension i in Rd such that the σij are pairwise disjoint. Let ∆ denote the (disjoint) union of
all these σij and define ∆′ to be the union of the respective boundaries ∂σij . Then the set

⋃
∆ \⋃∆′ is

the disjoint union of fd relatively open unimodular lattice simplices of dimension d, fd−1 relatively open
unimodular lattice simplices of dimension d − 1 and so on. Consequently HI∆/∆′ (k) = L⋃∆\∆′(k) =

f(k) as desired. 2

This immediately implies that all the counting functions we considered have non-negative integral
coefficients with respect to this basis.

Theorem 14 The modular and integral flow and tension polynomials as well as the chromatic polynomial
of a graph have non-negative integer coefficients with respect to the basis {

(
k−1
d

)
|0 ≤ d ∈ Z} of K[k].

For the modular and integral flow polynomials and the integral tension polynomial this is a new result,
whereas for the chromatic polynomial and thus for the modular tension polynomial this is implicit in the
previous work on the coloring complex. However, these bounds are not very strong, as we have not used
any of the geometric information particular to these polynomials.

In [BD10] we give stronger constraints on the coefficients of the modular and integral flow and tension
polynomials. There, we do not build on the realization of these polynomials as Hilbert functions, we rather
make direct use of our geometric realization of these polynomials as Ehrhart functions of inside-out poly-
topes. We show that a wide class of inside-out polytopes, including those arising in these constructions,
have a convex ear decomposition and use this fact to derive bounds.
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Abstract. In the late 1930’s Murnaghan discovered the existence of a stabilization phenomenon for the Kronecker
product of Schur functions. For n large enough, the values of the Kronecker coefficients appearing in the product
of two Schur functions of degree n do not depend on the first part of the indexing partitions, but only on the values
of their remaining parts. We compute the exact value of n when this stable expansion is reached. We also compute
two new bounds for the stabilization of a particular coefficient of such a product. Given partitions α and β, we give
bounds for all the parts of any partition γ such that the corresponding Kronecker coefficient is nonzero. Finally, we
also show that the reduced Kronecker coefficients are structure coefficients for the Heisenberg product introduced by
Aguiar, Ferrer and Moreira.

Résumé. Dans les années 30 Murnaghan a découvert une propriété de stabilité pour le produit de Kronecker de
fonctions de Schur. En degré assez grand, les valeurs des coefficients qui aparaissent dans le produit de Kronecker
de deux fonctions de Schur ne dépendent pas de la première part des partitions en indice, mais seulement des parts
suivantes. Dans ce travail nous calculons la valeur exacte du degré partir duquel ce développement stable est atteint.
Nous calculons aussi deux nouvelles bornes supérieures pour la stabilisation d’un coefficient particulier d’un tel
produit. Nous donnons en outre, pour α et β fixés, des bornes supérieures pour toutes les parts des partition γ rendant
le coefficient de Kronecker d’indices α, β, γ non–nul. Finalement, nous identifions les coefficients de Kronecker
réduits comme des constantes de structures pour le produit de Heisenberg de fonctions symétriques défini par Aguiar,
Ferrer et Moreira.

Resumen. Hace poco más de 80 años Murnaghan descubrió un fenómeno de estabilidad para el producto de Kro-
necker de dos funciones de Schur. En grado suficientemente grande, los valores de los coeficientes de Kronecker que
aparecen en el producto de Kronecker de dos funciones de Schur, no dependen de las primeras partes de las particiones
que las indexan, sino solamente de sus demás partes. En este trabajo calculamos exactemente cuando este desarrollo
estable esta alcanzado. También calculamos dos nuevas cotas para que cualquier familia dada de coeficientes de Kro-
necker se estabilice. Dadas dos particiones α y β, proporcionamos cotas superiores para todas las partes de cualquier
partición γ tal que el coeficiente de Kronecker correspondiente no sea nulo. Finalmente, identificamos los coefi-
cientes de Kronecker reducidos como constantes de estructura del producto de Heisenberg de funciones simétricas,
introducido por Aguiar, Ferrer y Moreira.
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Introduction
The understanding of the Kronecker coefficients of the symmetric group gγα,β (the multiplicities appearing
when the tensor product of two irreducible representations of the symmetric group is decomposed into
irreducibles; equivalently, the structural constants for the Kronecker product ∗ of symmetric functions in
the basis of Schur functions, sλ) is a longstanding open problem. Richard Stanley writes “One of the main
problems in the combinatorial representation theory of the symmetric group is to obtain a combinatorial
interpretation for the Kronecker coefficients” [30]. It is also a source of new challenges such as the
problem of describing the set of non–zero Kronecker coefficients [28], a problem inherited from quantum
information theory [18, 10]. Or proving that the positivity of a Kronecker coefficient can be decided in
polynomial time, a problem posed by Mulmuley at the heart of his Geometric Complexity Theory [24]
(see also the introductory paper by Bürgisser, Landsberg, Manivel and Weyman [2]).

In our work we study in more detail a remarkable stability property for the Kronecker products of Schur
functions discovered by Murnaghan [26, 27]. This property is best shown on an example. Consider the
Kronecker products s(n−2,2) ∗ s(n−2,2):

s2,2 ∗ s2,2 = s4 + s1,1,1,1 + s2,2

s3,2 ∗ s3,2 = s5 + s2,1,1,1 + s3,2 + s4,1 + s3,1,1 + s2,2,1

s4,2 ∗ s4,2 = s6 + s3,1,1,1 + 2s4,2 + s5,1 + s4,1,1 + 2s3,2,1 + s2,2,2

s5,2 ∗ s5,2 = s7 + s4,1,1,1 + 2s5,2 + s6,1 + s5,1,1 + 2s4,2,1 + s3,2,2 + s4,3 + s3,3,1

s6,2 ∗ s6,2 = s8 + s5,1,1,1 + 2s6,2 + s7,1 + s6,1,1 + 2s5,2,1 + s4,2,2 + s5,3 + s4,3,1 + s4,4

s7,2 ∗ s7,2 = s9 + s6,1,1,1 + 2s7,2 + s8,1 + s7,1,1 + 2s6,2,1 + s5,2,2 + s6,3 + s5,3,1 + s5,4

And, actually, in all degree n ≥ 8 we have the expansion:

s•,2 ∗ s•,2 = s• + s•,1,1,1 + 2s•,2 + s•,1 + s•,1,1 + 2s•,2,1 + s•,2,2 + s•,3 + s•,3,1 + s•,4

For α partition and n integer, set α[n] for (n−|α|, α1, α2, . . .). Murnaghan’s general result is that for any
partitions α and β, the expansions of sα[n] ∗ sβ[n] in the Schur basis all coincide for n big enough, except
for the first part of the indexing partitions (which is determined by the degree n). This implies in particular
that given any three partitions α, β and γ, the sequence of Kronecker coefficients gγ[n]

α[n]β[n] is eventually
constant. The reduced Kronecker coefficient gγα,β is defined as the stable value of this sequence. In our

example, we see that g(2)
(2),(2) = 2 and g(4)

(2),(2) = 1.
When does a Kronecker product sα[n] ∗ sβ[n] stabilizes? When does a sequence of Kronecker co-

efficients gγ[n]
α[n]β[n] becomes constant? Interestingly, these questions lead to look for linear inequalities

fulfilled by the sets of triples of partitions (α, β, γ) whose corresponding reduced Kronecker coefficient
gγα,β is non–zero. The analogous problem for Kronecker coefficients is of major importance, see [18, 28].

In view of the difficulty of studying the Kronecker coefficients, it is surprising to obtain theorems that
hold in general. Regardless of this, we present new results of a general nature.

We find an elegant expression for the precise degree n = stab(α, β) at which the expansion of the
Kronecker product sα[n] ∗ sβ[n] stabilizes:

stab(α, β) = |α|+ |β|+ α1 + β1
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Using Weyl’s inequalities [35] for eigenvalues of triples of hermitian matrices fulfillingA+B = C, we
find the maximum of γ1 and upper bounds for all parts γk, among all γ in Supp(α, β) = {γ : gγα,β > 0}.

Finally, we find upper bounds for the index n = stab(α, β, γ) at which the sequence gγ[n]
α[n]β[n] becomes

constant, improving previously known bounds due to Brion [9] and Vallejo [34].
Detailed proofs for the results presented in this extended abstract can be found in [7].

1 Preliminaries
We assume that the reader is familar with the basic definitions in the theory of symmetric funcion, see
[21] or [30].

Let λ be a partition of n. Let Vλ the irreducible representation of the symmetric group Sn indexed
by λ. The Kronecker coefficient gλµ,ν is the multiplicity of Vλ in the decomposition into irreducible
representations of the tensor product Vµ⊗Vν . The Frobenius map identify Vλ with the Schur function sλ.
In doing so, it allows us to lift the tensor product of representations of the symmetric group to the setting
of symmetric functions. Accordingly, the Kronecker coefficients gλµ,ν define the Kronecker product on
symmetric functions by setting

sµ ∗ sν =
∑

λ

gλµ,νsλ.

We use the Jacobi-Trudi determinant to extend the definition of sµ to the case where µ is any finite
sequence of n integers :

sµ = det
(
hµj+i−j

)
1≤i,j≤n , (1)

where hk is the complete homogeneous symmetric function of degree k. In particular, hk = 0 if k is
negative, and h0 = 1. It is not hard to see that such a Jacobi–Trudi determinant sµ is either zero or ±1
times a Schur function.

The starting point of our investigations is a beautiful theorem of Murnaghan. Given a partition λ =
(λ1, λ2, . . .) and an integer n, we denote by λ[n] the sequence (n− |λ|, λ1, λ2, . . .). Notice that λ[n] is a
partition only if n− |λ| ≥ λ1.

Murnaghan Theorem (Murnaghan, [26, 27]). There exists a family of non-negative integers (gγαβ) in-
dexed by triples of partitions (α, β, γ) such that, for α and β fixed, only finitely many terms gγαβ are
nonzero, and for all n ≥ 0,

sα[n] ∗ sβ[n] =
∑

γ

gγαβsγ[n] (2)

Moreover, the coefficient gγαβ vanishes unless the weights of the three partitions fulfill the inequalities:

|α| ≤ |β|+ |γ|, |β| ≤ |α|+ |γ|, |γ| ≤ |α|+ |β|.

In what follows, we refer to these inequalities as Murnaghan’s inequalities. We follow Klyachko
[18] and call the coefficients gγαβ the reduced Kronecker coefficients. An elegant proof of Murnaghan’s
Theorem, using vertex operators on symmetric functions, is given in [33].

Example 1. According to Murnaghan’s theorem the reduced Kronecker coefficients determine the Kro-
necker product of two Schur functions, even for small values of n. For instance,

s2,2 ∗ s2,2 = s4 + s1,1,1,1 + 2s2,2 + s3,1 + s2,1,1 + 2s1,2,1 + s0,2,2 + s1,3 + s0,3,1 + s0,4
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The Jacobi-Trudi determinants corresponding to s1,2,1 and s0,2,2 have a repeated column, hence they
are zero. On the other hand, it is easy to see that s1,3 = −s2,2, s0,3,1 = −s2,1,1, and s0,4 = −s3,1.
After taking into account the resulting cancellations, we recover the expression of the Kronecker product
s2,2 ∗ s2,2 in the Schur basis: s4 + s1,1,1,1 + s2,2.

The reduced Kronecker coefficients contain the Littlewood–Richardson coefficients as special cases, as
it was observed already by Murnaghan [27] and Littlewood [20]. Precisely, if |γ| = |α| + |β|, then the
reduced Kronecker coefficient gγα,β is equal to the Littlewood–Richardson coefficient cγα,β .

2 Recovering the Kronecker coefficients from reduced Kronecker
coefficients

By definition, the reduced Kronecker coefficients are particular instances of Kronecker coefficients. We
show that the reduced Kronecker coefficients contain enough information to recover exact value of the
Kronecker coefficients. Let u = (u1, u2, . . .) be an infinite sequence and i a positive integer. Define u†i

as the sequence obtained from u by adding 1 to its i− 1 first terms and erasing its i–th term:

u†i = (1 + u1, 1 + u2, . . . , 1 + ui−1 + 1, ui+1, ui+2, . . .)

Partitions are identified with infinite sequences by appending trailing zeros. Under this identification,
when λ is a partition then so is λ†i for all positive i.

Theorem 2.1 (Computing the Kronecker coefficients from the reduced Kronecker coefficients). Let n be
a nonnegative integer and λ, µ, and ν be partitions of n. Then

gλµν =

`(µ)`(ν)∑

i=1

(−1)i+1ḡλ
†i
µ̄ν̄ (3)

3 The stabilization of the Kronecker products
Let us define here formally stab(α, β). Let V be the linear operator on symmetric functions defined on
the Schur basis by V (sλ) = sλ+(1) for all partitions λ.

Definition (stab(α, β)). Let α and β be partitions. Then stab(α, β) is defined as the smallest integer n
such that

sα[n+k] ∗ sβ[n+k] = V k
(
sα[n] ∗ sβ[n]

)

for all k > 0.

As an illustration see the example in the introduction where α = β = (2) and the Kronecker product is
stable starting at s(6,2) ∗ s(6,2). Since (6, 2) is a partition of 8, we get that stab(α, β) = 8.

Theorem 3.1. Let α and β be two partitions. Then

stab(α, β) = |α|+ |β|+ α1 + β1.

To show that this theorem holds, we first reduce the calculation of stab(α, β) to maximizing the linear
form |γ|+ γ1 on Supp(α, β)

stab(α, β) = max
{
|γ|+ γ1 | γ partition, gγα,β > 0

}
.
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Then, we use the following formula that gives a decomposition of gγαβ as a sum of nonnegative summands

obtained from a formula due to Littlewood to show that max
{
|γ|+ γ1 | γ partition, gγα,β > 0

}
= |α|+

|β|+ α1 + β1.
Let cδα,β,γ be the coefficient of sδ in the product sαsβsγ .

Lemma 3.2. Let α, β, γ be partitions. Then,

gγα,β =
∑

gζδ,εc
α
δ,σ,τ c

β
ε,ρ,τ c

γ
ζ,ρ,σ (4)

4 Row lengths for partitions indexing nonzero Kronecker coeffi-
cients.

In this section we give bounds for row lengths of partitions indexing nonzero Kronecker coefficients. We
begin by reminding the reader about the powerful result:

Proposition 4.1 ( Klemm [17], Dvir [13] Theorem 1.6, Clausen and Meier [11] Satz 1.1.). Let α and β
be partitions of the same weight. Then,

max
{
γ1 | γ partition s. t. gγα,β > 0

}
= |α ∩ β|

where α ∩ β = (min(α1, β1),min(α2, β2), . . .).

Proposition 4.1 is the inspiration for some of the results in this section. Two closely related questions
come to mind: First, can we prove an analogous result for the reduced Kronecker coefficients? Second,
what can be said about the remaining parts of a partition γ such that gγα,β > 0 (or similarly, such that
gγα,β > 0)?

We answer the first question in the affirmative by showing that

Theorem 4.2. Let α and β be partitions. Then,

max
{
γ1 | γ partition, gγα,β > 0

}
= |α ∩ β|+ max(α1, β1) (5)

We also obtained a set of bounds for the remaing parts of such a γ using Weyl’s inequalities triples of
spectra of hermitian matrices fulfilling A + B = C [35]. This bounds are known to hold as well for the
indices of the non–zero Littlewood–Richardson coefficients (see for instance [14]).

Theorem 4.3. Let α and β be partitions. If gγα,β > 0, then, for all positive integers i, j, we have that

γi+j−1 ≤ |Eiα ∩ Ejβ|+ αi + βj (6)

where Ekλ stands for the partition obtained from λ by erasing its k–th part.

Finally, combining Murnaghan’s inequalities with Proposition 4.1 we obtain

max
{
|γ| | γ partition, gγα,β > 0

}
= |α|+ |β|,

min
{
|γ| | γ partition, gγα,β > 0

}
= max(|α|, |β|)− |α ∩ β|.
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The first equality readily implies that

γk ≤
|α|+ |β|

k
. (7)

Example 2. Let α = (2) and β = (4, 3, 2), then the first row of the table are the nonzero values of γk
and the second row are the values predicted by equations (6) and (7):

k 1 2 3 4 5
max values for γk 6 4 3 2 1
bound for γk 6 5 3 2 2

In the case that α = (3, 1) and β = (2, 2) we get

k 1 2 3 4 5 6
max values for γk 6 3 2 1 1 1
bound for γk 6 4 2 2 1 1

These bounds also provide bounds for the non–zero Kronecker coefficients. Indeed, Michel Brion [9]
showed that for any given α, β and γ, the sequence of the Kronecker coefficients gγ[n]

α[n],β[n] is weakly

increasing. As a consequence, gγα,β is non–zero whenever gγ[n]
α[n],β[n] is non–zero for some n.

5 The stabilization of the Kronecker coefficients
In this section we study of a weaker version of the stabilization problem. One consequence of Mur-
naghan’s Theorem is that each particular sequence of Kronecker coefficients gγ[n]

α[n],β[n] stabilizes to gγα,β ,
possibly before n reaches stab(α, β).

Definition (stab(α, β, γ)). Let α, β, γ be partitions. Then stab(α, β, γ) is defined as the the smallest
integerN such that the sequences α[N ], β[N ] and γ[N ] are partitions and gγ[n]

α[n],β[n] = gγα,β for all n ≥ N .

Two bounds have already been found for stab(α, β, γ) by Brion [9] and Vallejo [34]. Brions’ and
Vallejo’s bounds, respectively, are

MB(α, β; γ) = |α|+ |β|+ γ1,

MV (α, β; γ) = |γ|+
{

max{|α|+ α1 − 1, |β|+ β1 − 1, |γ|} if α 6= β
max{|α|+ α1, |γ|} if α = β

Our first contribution is the following Lemma which describes a general technique for producing linear
upper bounds for stab(α, β, γ).

Lemma 5.1. Let f be a function on triples of partitions such that for all i,

f(α, β, γ†1) ≥ f(α, β, γ†i).

SetMf (α, β, γ) = |γ|+ f(α, β, γ̄) and assume also that whenever gγα,β > 0,

Mf (α, β, γ) ≥ max (|α|+ α1, |β|+ β1, |γ|+ γ1) . (8)

Then whenever gγα,β > 0,
stab(α, β, γ) ≤Mf (α, β, γ).
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Three functions f such that (8) holds have already appeared in this paper. Each one gives a bound for
stab(α, β, γ).

1. Murnaghan’s triangle inequalities and Theorem 4.2 imply that (8) holds for f(α, β, τ) = |α|+|β|−
|τ |. Using our lemma, we recover Brion’s bound.

2. From Theorem 4.2 we obtain that (8) holds for f(α, β, τ) = |ᾱ ∩ β̄| + α1 + β1. In this situation,
we obtain that M1(α, β, γ) = |γ| + |ᾱ ∩ β̄| + α1 + β1. From the symmetry of the Kronecker
coefficients, we conclude that stab(α, β, γ) ≤ N1(α, β, γ) where

N1(α, β, γ) = min(M1(α, β, γ),M1(β, γ, α),M1(γ, α, β))

We have shown that N1 improves both the bounds of Vallejo and of Brion.

3. Finally, Theorem 3.1 shows that (8) holds for f(α, β, τ) = 1/2 (|α|+ |β|+ α1 + β1 − |τ |). Then
stab(α, β, γ) ≤ N2(α, β, γ), where

N2(α, β, γ) =

[ |α|+ |β|+ |γ|+ α1 + β1 + γ1

2

]

where [x] denotes the integer part of x.

We conclude this section by applying our bounds to some interesting examples of Kronecker coeffi-
cients appearing in the literature.

Example 3 (The Kronecker coefficients indexed by three hooks). Our first example looks at the elegant
situation where the three indexing partitions are hooks. Note that after deleting the first part of a hook we
always obtain a one column shape. Let α = (1e), β = (1f ) and γ = (1d) be the reduced partitions, with
d, e and f positive. In Theorem 3 of [29], it was shown that Murnaghan’s inequalities describe the stable
value of the Kronecker coefficient gγ[n]

α[n],β[n],

gγα,β = ((e ≤ d+ f))((d ≤ e+ f))((f ≤ e+ d))

where ((P )) equals 1 if the proposition is true, and 0 if not.
Moreover, stab(α, β, γ) was actually computed in the proof of Theorem 3 [29]. It was shown that

the Kronecker coefficient equals 1 if and only if Murnaghan’s inequalities hold, as well as the additional
inequality e+ f ≤ d+ 2(n− d)− 2. This last inequality says that:

stab(α, β, γ) =
[d+ e+ f + 3

2

]
= N2(α, β, γ)

To summarize, for triples of hooks, Murnaghan’s inequalities govern the value of the reduced Kronecker
coefficients, and N2 is a sharp bound. On the other hand, the bounds provided by N1, NB , and NV are
not in general sharp.

2
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Example 4 (The Kronecker coefficients indexed by two two-row shapes). After deleting the first part of
a two-row partition we obtain a partition of length 1. Let α and β be one-row partitions. We have:

N1(α, β, γ) = α1 + β1 + γ1

N2(α, β, γ) = α1 + β1 + γ1 +

[
γ2 + γ3

2

]

It follows from [8] that when gγα,β > 0,

stab(α, β, γ) = γ1 − γ3 + α1 + β1.

Neither N1 nor N2 are sharp bounds. Indeed, for gγα,β > 0 we have stab(α, β, γ) < N1 if γ3 > 0, and
stab(α, β, γ) < N2 if γ2 > 0.

Moreover, N1 < N2 when γ2 + γ3 > 1.

2

Example 5 (The Kronecker coefficients: One of the partitions is a two-row shape). The case when γ has
only one row, γ = (p), was studied in [4]. It was shown there (Theorem 5.1) that

stab(α, β, (p)) ≤ |α|+ α1 + 2 p.

6 Further remarks on the reduced Kronecker coefficients
There is strong evidence to believe that the reduced Kronecker coefficients are better behaved than the
Kronecker coefficients and in some sense easier to study.

The saturation theorem of Terence Tao and Allen Knutson, imply that deciding whether a Littlewood-
Richardson coefficient is positive can be done in polynomial time [23, 19, 12]. On the other hand, it is
known that the Kronecker coefficients do not satisfy the saturation property. For example,

g
(n,n)
(n,n),(n,n) = 0 if n is odd, but g(n,n)

(n,n),(n,n) = 1 if n is even.

This suggests that the Kronecker coefficients are harder to compute.
On the other hand, the reduced Kronecker coefficients are conjectured to satisfy the saturation property

by Klyachko and Kirillov, [18, 16], and in a stronger form by King [15].
We believe that the study of the reduced Kronecker coefficients gλµ,ν will lead to a better understanding

of the Kronecker coefficients.
This paper is part of a series [6, 8] that studies the reduced Kronecker coefficients. Theorem 2.1 first

appeared in [5], where it was used to compute the first explicit piecewise quasipolynomial description for
the Kronecker coefficients indexed by two two–row shapes. That description was then used in [8] to test
several conjectures of Mulmuley. As a result, we found counterexamples [6] for the strong version of
his SH conjecture [24] on the behavior of the Kronecker coefficients under stretching of its indices. As
pointed out by Ron King [15], our counterexample also implies that Qνλ,µ(t) = gtνtλ,tµ is not an Ehrhart
quasipolynomial. Therefore Qνλ,µ(t) can not count the number of integral points in any rational complex
polytope.
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We have also found a very interesting connection to another product # on symmetric functions, intro-
duced by Aguiar, Ferrer and Moreira [1, 25] under the names smash or Heisenberg product, and indepen-
dently, yet less explicitely, by Scharf, Thibon and Wybourne [32]. It fulfills

f#g =
∑

f1 · (f2 ∗ g1) · g2

where ∆(f) =
∑
f1 ⊗ f2 and ∆(g) =

∑
g1 ⊗ g2 are in Sweedler’s notation.

We have shown that the reduced Kronecker coefficients are the structure constants for this product in
the basis {sλ[X− 1]} (the Schur functions at the alphabet X− 1, in the λ–ring notation). That is,

sα[X− 1]#sβ [X− 1] =
∑

γ

gγα,βsγ [X− 1].

At this point, we hope that the reader is convinced that the reduced Kronecker coefficients are interesting
objects on their own.

Acknowledgments
We thank Ernesto Vallejo for pointing to us the reference [9], Ron King for pointing to us Littlewood’s
formula, and Richard Stanley for suggesting to look at [16]. We also thank John Stembridge for making
freely available his Maple package SF [31].

References
[1] Marcelo Aguiar, Walter Ferrer, and Walter Moreira. The smash product of symmetric functions.

Extended abstract. ArXiv:math.CO/0412016, 2004.

[2] Peter Bürgisser, Joseph Landsberg, Laurent Manivel, and Jerzy Weyman. An overview of mathe-
matical issues arising in the Geometric complexity theory approach to VP v.s. VNP.

ArXiv:0907.2850, 2009.

[3] P. H. Butler and R. C. King. The symmetric group: characters, products and plethysms. J. Mathe-
matical Phys., 14:1176–1183, 1973.

[4] Cristina M. Ballantine and Rosa C. Orellana. On the Kronecker product s(n−p,p) ∗ sλ. Electronic
Journal of Combinatorics, 12:#R28, 26 pp. (electronic), 2005.

[5] Emmanuel Briand, Rosa Orellana, and Mercedes Rosas. Quasipolynomial formulas for the Kro-
necker coefficients indexed by two two–row shapes (extended abstract). ArXiv:0812.0861v1, 2008.

[6] Emmanuel Briand, Rosa Orellana, and Mercedes Rosas. Reduced Kronecker coefficients and
counter–examples to Mulmuley’s conjecture SH. ArXiv:0810.3163, 2008.

[7] Emmanuel Briand, Rosa Orellana, and Mercedes Rosas. On the stability of the Kronecker products
of Schur functions. ArXiv:0907.4652, 2009.

[8] Emmanuel Briand, Rosa Orellana, and Mercedes Rosas. Quasipolynomial formulas for the Kro-
necker coefficients indexed by two two–row shapes. In preparation.



The stability of the Kronecker product of Schur functions 441

[9] Michel Brion. Stable properties of plethysm: on two conjectures of Foulkes. Manuscripta Mathe-
matica, 80:347–371, 1993.

[10] Matthias Christandl, Aram W. Harrow, and Graeme Mitchison. Nonzero Kronecker coefficients and
what they tell us about spectra. Comm. Math. Phys., 270(3):575–585, 2007.

[11] Michael Clausen and Helga Meier. Extreme irreduzible Konstituenten in Tensordarstellungen sym-
metrischer Gruppen. Bayreuth. Math. Schr., 45:1–17, 1993.
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Abstract. We take a geometric view of lecture hall partitions and anti-lecture hall compositions in order to settle some
open questions about their enumeration. In the process, we discover an intrinsic connection between these families of
partitions and certain quadratic permutation statistics. We define some unusual quadratic permutation statistics and
derive results about their joint distributions with linear statistics. We show that certain specializations are equivalent
to the lecture hall and anti-lecture hall theorems and another leads back to a special case of a Weyl group generating
function that “ought to be better known.”

Résumé. Nous regardons géométriquement les partitions amphithéâtre et les compositions planétarium afin de résoudre
quelques questions énumératives ouvertes. Nous découvrons un lien intrinsèque entre ces familles des partitions et
certaines statistiques quadratiques de permutation. Nous définissons quelques statistiques quadratiques peu com-
munes des permutations et dérivons des résultats sur leurs distributions jointes avec des statistiques linéaires. Nous
démontrons que certaines spécialisations sont équivalentes aux théorèmes amphithéâtre et planétarium. Une autre
spécialisation mène à un cas spécial de la série génératrice d’un groupe de Weyl qui “devrait être mieux connue”.

Keywords: lecture hall partitions, anti-lecture hall compositions, permutation statistics, lattice point enumeration,
generating functions

1 Introduction
A lecture hall partition of length n is an integer sequence λ = (λ1, λ2, . . . , λn) [BME97] satisfying

0 ≤ λ1

1
≤ λ2

2
≤ . . . ≤ λn

n
.

An anti-lecture hall composition of length n is an integer sequence λ = (λ1, λ2, . . . , λn) [CS03] satisfy-
ing

λ1

1
≥ λ2

2
≥ . . . ≥ λn

n
≥ 0.
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These intriguing combinatorial objects and their various generalizations have been the subject of several
papers and they have been shown to be related to Bott’s formula in the theory of affine Coxeter groups
[BME97, BME99], Euler’s partition theorem [BME97, Yee01, SY08], the Gaussian polynomials [CLS07,
CS04], the q-Chu-Vandermonde Identities [CLS07, CS04], the q-Gauss summation [ACS09], and the little
Göllnitz partition theorems [CSS09]. In this paper we regard them from the point of view of lattice point
enumeration and uncover several new results and connections.

The set Zn ⊂ Rn is the n-dimensional integer lattice and its elements are called lattice points. Zn≥0

denotes the set of lattice points with all coordinates nonnegative. So, lecture hall partitions and anti-lecture
hall compositions of length n can be viewed as lattice points in Zn≥0.

Let Ln be the set of lecture hall partitions of length n and An, the set of anti-lecture hall compositions
of length n. Define the subsets L(t)

n and A(t)
n by the constraints:

L(t)
n : 0 ≤ λ1

1
≤ λ2

2
≤ . . . ≤ λn

n
≤ t

and
A(t)
n : t ≥ λ1

1
≥ λ2

2
≥ . . . ≥ λn

n
≥ 0.

The following was shown in [CLS07]

Theorem 1.1 For integer t ≥ 0, ∣∣∣L(t)
n

∣∣∣ = (t+ 1)n =
∣∣∣A(t)

n

∣∣∣ .

Let Qnt denote the lattice points in the n-dimensional cube of width t:

Qnt = {(x1, x2, . . . , xn) ∈ Zn≥0 | 0 ≤ xi ≤ t, 1 ≤ i ≤ n}.

Matthias Beck observed [Bec09] that since also |Qnt | = (t+ 1)n, there should be some natural bijections
with L(t)

n and A(t)
n .

In Section 2, we prove two simple bijections

Θ : Zn≥0 → Ln

and
Φ : Zn≥0 → An

with the property that for every t ≥ 0,

Θ−1(L(t)
n ) = Qtn = Φ−1(A(t)

n ).

Previously, a bijection between L(t)
n and A(t)

n was known [CLS07], but it depended on t, it did not extend
to Ln andAn, and it did not explain the relationship between their generating functions. In contrast, a new
bijection Ln → An reveals the functional relationship between their generating functions and restricts to
a bijection between L(t)

n and A(t)
n . What emerges is a characterization of Ln and An in terms of (new)

permutation statistics.
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In Section 3, we use the bijections Θ and Φ to derive generating functions for Ln and An in terms of
permutation statistics and show how to derive one from the other. Similar ideas underlie the computa-
tion of the refined generating function for Ln in [BME99] and An in [CS04], but the connection with
permutation statistics, a key ingredient in the relationship between Ln and An, was missed.

In Section 4, we show how the generating functions derived in Section 3 imply new results about
distributions of quadratic permutation statistics and connections with affine Coxeter groups.

2 The bijections
The bijections between points in the cube and the lecture hall partitions and anti-lecture hall compositions
have simple descriptions in terms of permutations and their inversion sequences, so we first review some
notation and results.

2.1 Permutation statistics and stable sorting

Let Sn be the set of permutations of {1, 2, . . . , n}. For π ∈ Sn, an inversion of π is a pair (i, j) such
that i < j, but πi > πj . The number of inversions of π is denoted inv(π). A descent of π is a position
i such that 1 ≤ i < n and πi > πi+1. The set of all descents of π is denoted Des(π) and its size is
des(π) = |Des(π)|.

Define the inversion sequence of π as the sequence ε(π) = (ε1, ε2, . . . , εn), where εi is the number of
elements of {1, . . . , n} to the right of i, in π, which are smaller than i. Then inv(π) = ε1 + ε2 + · · ·+ εn.

It is well-known ([Knu73], p. 12) that the mapping π → ε(π) is a bijection between Sn and integer
sequences In, where

In = {(ε1, ε2, . . . , εn) | 0 ≤ εi < i}.
For π ∈ Sn, although in general ε(π) 6= ε(π−1), it is known that ([Knu73], p. 14-15):

inv(π) = inv(π−1). (1)

A permutation π ∈ Sn stably sorts a sequence s = (s1, . . . , sn) into weakly increasing order if

sπ1 ≤ sπ2 ≤ . . . ≤ sπn
and if i ∈ Des(π) then sπi < sπi+1 , that is, equal elements of s retain their relative order. For every
sequence s of length n there is a unique π ∈ Sn such that π stably sorts s into weakly increasing order.

Let (w1 ≤ w2 ≤ . . . ≤ wn) denote a weakly increasing sequence and (w1 ≥ w2 ≥ . . . ≥ wn)
a weakly decreasing sequence. For a sequence s = (s1, . . . , sn) and π ∈ Sn, define π(s) by π(s) =
(sπ1 , sπ2 , . . . , sπn).

Define
Sn/(w1 ≤ w2 ≤ . . . ≤ wn) = {π ∈ Sn | if i ∈ Des(π−1) then wi < wi+1}

and
Sn/(w1 ≥ w2 ≥ . . . ≥ wn) = {π ∈ Sn | if i ∈ Des(π−1) then wi > wi+1}

Informally, π ∈ Sn/w iff π−1 is the unique permutation in Sn that stably sorts π(w) into w.



446 Katie L. Bright and Carla D. Savage

Define
In/w = {ε ∈ In | if wi = wi+1 then εi ≥ εi+1}.

It is straightforward to prove the following lemma, which characterizes the multiset permutations of
{w1, . . . , wn} in terms of their inversion sequences.

Lemma 2.1 Given w = (w1 ≤ w2 ≤ . . . ≤ wn) or w = (w1 ≥ w2 ≥ . . . ≥ wn), the mapping π → ε(π)
on Sn restricts to a bijection between Sn/w and In/w. The mapping π → π(w) is a bijection between
Sn/w and (distinguishable) permutations of w. In particular, there is a bijection between permutations
of w and inversion sequences in In/w.

2.2 The bijection for lecture hall partitions

Bijection Θ : Zn≥0 → Ln:

For p ∈ Zn≥0, define Θ(p) as follows:

1. Let π−1 be the unique permutation that stably sorts p into weakly increasing order
(w1 ≤ w2 ≤ ... ≤ wn) = π−1(p)

2. Let ε = (ε1, ε2, . . . , εn) be the inversion sequence of π

Then Θ(p) = λ = (λ1, λ2, . . . , λn) where λi = iwi − εi, i = 1, 2, . . . , n.

Example 2.1 Let p = (9, 0, 3, 3, 5, 4, 3, 8, 1, 8, 2, 9) ∈ Z12
≥0. Thenw = (0, 1, 2, 3, 3, 3, 4, 5, 8, 8, 9, 9)

and π = (11, 1, 4, 5, 8, 7, 6, 9, 2, 10, 3, 12) and ε(π) = (0, 0, 0, 2, 2, 2, 3, 4, 2, 1, 10, 0). So

Θ(p) = λ

= (0− 0, 2− 0, 6− 0, 12− 2, 15− 2, 18− 2, 28− 3, 40− 4, 72− 2, 80− 1, 99− 10, 108− 0)

= (0, 2, 6, 10, 13, 16, 25, 36, 70, 79, 89, 108).

To check that Θ(p) = λ ∈ Ln, verify that

0 ≤ 0

1
≤ 2

2
≤ 6

3
≤ 10

4
≤ 13

5
≤ 16

6
≤ 25

7
≤ 36

8
≤ 70

9
≤ 79

10
≤ 89

11
≤ 108

12
.

Also, note that p ∈ Q12
9 , since its largest coordinate is 9 and that Θ(p) = λ ∈ L(9)

n , since
λ12/12 = (108)/(12) ≤ 9.

Theorem 2.2 Θ is a bijection between lattice points in Zn≥0 and lecture hall partitions of length n. In

fact, Θ(Qnt ) = L
(t)
n .

Proof: First, to prove Θ(Qnt ) ⊆ L(t)
n , let p ∈ Qnt and λ = Θ(p). From the definition of Θ, λi = iwi− εi,

where w = (w1 ≤ w2 ≤ . . . ≤ wn) is the sorted sequence of coordinates of p and (ε1, ε2, . . . , εn) = ε(π)
for the unique π ∈ Sn/w with π(w) = p. By Lemma 2.1, ε(π) ∈ In/w, so 0 ≤ εi < i and if wi = wi+1,
then εi ≥ εi+1.
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To show that λ ∈ L(t)
n , we must show that

0 ≤ 1w1 − ε1
1

≤ . . . ≤ iwi − εi
i

≤ (i+ 1)wi+1 − εi+1

i+ 1
≤ . . . ≤ nwn − εn

n
≤ t.

Clearly, the first inequality holds, since w1 ≥ 0 and ε1 = 0. Also, since p ∈ Qnt , wn ≤ t, so the last
inequality holds.

To show iwi−εi
i ≤ (i+1)wi+1−εi+1

i+1 , consider the relationship between wi and wi+1. If wi = wi+1, then
since εi ≥ εi+1,

iwi − εi
i

= wi+1 −
εi
i
≤ wi+1 −

εi+1

i
≤ wi+1 −

εi+1

i+ 1
=

(i+ 1)wi+1 − εi+1

i+ 1
.

Otherwise, wi+1 ≥ wi + 1, so since 0 ≤ εi+1 < i+ 1,

(i+ 1)wi+1 − εi+1

i+ 1
≥ wi + 1− εi+1

i+ 1
≥ wi + 1− i

i+ 1
> wi ≥

iwi − εi
i

.

To complete the proof that Θ(Qnt ) = L
(t)
n , since by Theorem 1.1, |L(t)

n | = |Qnt |, it suffices to show that
Θ is one-to-one. Suppose Θ(p) = λ = Θ(r) for p, r ∈ Qnt . Then λ = (w1− ε1, . . . , iwi− εi, . . . , nwn−
εn) for some w = (w1 ≤ w2 ≤ . . . ≤ wn) and ε satisfying ε ∈ In/w, and in particular, 0 ≤ εi < i. But
this determines w uniquely as

w = (dλ1/1e, dλ2/2e, . . . , dλn/ne) (2)

and thus ε uniquely as
εi = iwi − λi.

There is a unique permutation π ∈ Sn with inversion sequence ε and by Lemma 2.1, π ∈ Sn/w. Then,
by the definition of Θ, π(w) = p and π(w) = r. Thus p = r and therefore Θ is a bijection. 2

2.3 The bijection for anti-lecture hall compositions

Bijection Φ : Zn≥0 → Ln:

For p ∈ Zn≥0, define Φ(p) as follows:

1. Let π−1 be the unique permutation that stably sorts p into weakly decreasing order
(w1 ≥ w2 ≥ ... ≥ wn) = π−1(p)

2. Let ε = (ε1, ε2, . . . , εn) be the inversion sequence of π

Then Φ(p) = λ = (λ1, λ2, . . . , λn) where λi = iwi + εi, i = 1, 2, . . . , n.

Example 2.2 Let p = (9, 0, 3, 3, 5, 4, 3, 8, 1, 8, 2, 9) ∈ Z12
≥0. Thenw = (9, 9, 8, 8, 5, 4, 3, 3, 3, 2, 1, 0)

and π = (1, 12, 7, 8, 5, 6, 9, 3, 11, 4, 10, 2) and ε(π) = (0, 0, 1, 1, 3, 3, 5, 5, 3, 1, 3, 10). So

Φ(p) = λ = (9, 18, 25, 33, 28, 27, 26, 29, 30, 21, 14, 10).
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Theorem 2.3 Φ is a bijection between lattice points in Zn≥0 and anti-lecture hall compositions of length

n. In fact, Φ(Qnt ) = A
(t)
n .

Proof: In the same spirit as the proof of Theorem 2.2, first show that λ resulting from Φ(p) is, in fact, an
anti-lecture hall composition. Then, cite Theorem 1.1 to show

∣∣∣A(t)
n

∣∣∣ = |Qnt |. To complete the bijective
proof, show that Φ is one-to-one by observing that if Φ(p) = λ = Φ(r), then because

w = (bλ1/1c , bλ2/2c , . . . , bλn/nc), (3)

we know, from Lemma 2.1 that p = r. 2

3 Generating Functions
In this section we will derive generating functions for lecture hall partitions and anti-lecture hall compo-
sitions via the bijections Θ and Φ. We need the following additional observations about permutations.

Lemma 3.1 If π ∈ Sn stably sorts (p1, . . . , pn) into weakly increasing order and σ ∈ Sn stably sorts
(pn, . . . , p1) into weakly decreasing order then σi = n+ 1− πn+1−i.

Lemma 3.2 Let σ, π ∈ Sn be related by σi = n+ 1− πn+1−i. Then their inverses are similarly related:
σ−1
i = n+ 1− π−1

n+1−i.

Lemma 3.3 If σ, π ∈ Sn are related by σi = n+1−πn+1−i, then des(σ) = des(π) and inv(σ) = inv(π).

For a point p ∈ Zn≥0, the weight of p is |p| = p1 + . . .+ pn. For λ ∈ An, let

bλc = (bλ1/1c, bλ2/2c, . . . , bλn/nc).

Note from (3) that, for λ ∈ An,
|bλc| = |Φ−1(λ)|.

Similarly, for λ ∈ Ln, let
dλe = (dλ1/1e, dλ2/2e, . . . , dλn/ne).

Then from (2) for λ ∈ Ln,
|dλe| = |Θ−1(λ)|.

Define
Ln(u, q) =

∑

λ∈Ln
u|dλe|q|λ| and An(u, q) =

∑

λ∈An
u|bλc|q|λ|.

It was shown in [BME99] that

Ln(u, q) =
n∏

i=1

1 + uqi

1− u2qn+i
(4)
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and in [CS04] that

An(u, q) =
n∏

i=1

1 + uqi

1− u2q1+i
. (5)

Although a relationship between An(u, q) and Ln(u, q) can be deduced from (4) and (5), each generating
function was derived independently and until now the relationship could not be explained combinatorially.

From Theorem 2.2, the mapping p→ Θ(p) is a bijection Zn≥0 → Ln and if λ = Θ(p) then |p| = |dλe|.
Thus

Ln(u, q) =
∑

p∈Zn≥0

u|p|q|Θ(p)|.

Similarly, from Theorem 2.3, the mapping p → Φ(p) is a bijection Zn≥0 → An and if λ = Φ(p) then
|p| = |bλc|. So,

An(u, q) =
∑

p∈Zn≥0

u|p|q|Φ(p)|.

For the first time we are able to show that Ln(u, q) can be derived from An(u, q). Define the reverse of a
sequence s = (s1, s2, . . . , sn) by srev = (sn, sn−1, . . . , s1).

Theorem 3.4
Ln(u, q) = An(uqn+1, q−1).

Proof: For p ∈ Zn≥0, we compare the contribution of Φ(p) toAn(u, q) with the contribution of Θ(prev) to
Ln(u, q). Let π−1 be the permutation that stably sorts p into weakly decreasing order w = (w1 ≥ . . . ≥
wn) and let σ−1 be the permutation that stably sorts prev into weakly increasing order wrev. Then

Φ(p) = (w1 + ε1(π), 2w2 + ε2(π), . . . , nwn + εn(π))

Θ(prev) = (wn − ε1(σ), 2wn−1 − ε2(σ), . . . , nw1 − εn(σ)).

So

u|p|q|Φ(p)| = u|w|q
∑n
i iwiqinv(π)

and

u|p
rev|q|Θ(prev)| = u|w

rev|q
∑n
i (n+1−i)wiq−inv(σ)

= (uqn+1)|w|q−
∑n
i iwiq−inv(σ) = (uqn+1)|p|q−|Φ(p)|,

where we have used inv(σ) = inv(π) from Lemma 3.3. Note finally that summing over all p ∈ Zn≥0 is
equivalent to summing over all prev ∈ Zn≥0, so

Ln(u, q) =
∑

p∈Zn≥0

u|p|q|Θ(p)| =
∑

prev∈Zn≥0

u|p
rev|q|Θ(prev)|

=
∑

p∈Zn≥0

(uqn+1)|p|q−|Φ(p)| = An(uqn+1, q−1).



450 Katie L. Bright and Carla D. Savage

2

Now we derive the generating function for An in terms of permutation statistics.

Theorem 3.5

An(u, q) =
∑

π∈Sn

qinv(π)
∏
i∈Des(π) u

iqi(i+1)/2

(1− uq)(1− u2q1+2) · · · (1− unq1+2+...+n)

Proof: For T ⊆ Zn≥0, define FT by

FT (u, z1, . . . , zn) =
∑

λ∈T
u|λ|zλ1

1 zλ2
2 . . . zλnn .

Given D ⊆ {1, 2, . . . , n− 1}, define

SD = {(w1 ≥ w2 ≥ . . . ≥ wn) ∈ Zn≥0 | wi > wi+1 if i ∈ D}.
Then

FSD (u, z1, . . . , zn) =

∏
i∈D u

iz1z2 · · · zi
(1− uz1)(1− u2z1z2) · · · (1− unz1z2 · · · zn)

.

We count An from Zn≥0 via Φ. Use the permutations π ∈ Sn to partition the points p ∈ Zn≥0 into sets Tπ
defined by

Tπ = {p | p = π(w1 ≥ w2 ≥ . . . ≥ wn) such that i ∈ Des(π−1) → wi > wi+1}.
So, we are partitioning the points according to the permutation π such that π−1 stably sorts p into weakly
decreasing order. The bijection Φ : Zn≥0 → An does the following to the points in Tπ: They are first
mapped onto the points in SDes(π−1). Then for each i, the ith coordinate is multiplied by i and added to
εi(π). So in the generating function

z
ε1(π)
1 · · · zεn(π)

n FSDes(π−1)
(u, z1, z

2
2 , . . . , z

n
n),

u keeps track of the weight of p ∈ Tπ and the variables zi track the weight of Φ(p). Putting this together,

An(u, z1, . . . , zn) =
∑

λ∈An
u|bλc|zλ1

1 · · · zλnn =
∑

π∈Sn

∑

p∈Tπ
u|p|zΘ(p)1

1 · · · zΘ(p)n
n

=
∑

π∈Sn

∑

p∈Tπ
z
ε1(π)
1 · · · zεn(π)

n FSDes(π−1)
(u, z1, z

2
2 , . . . , z

n
n)

=
∑

π∈Sn

z
ε1(π)
1 · · · zεn(π)

n
∏
i∈Des(π−1) u

iz1z
2
2 · · · zii

(1− uz1)(1− u2z1z2
2) · · · (1− unz1z2

2 · · · znn)
.

Setting all zi = q, and using (1), which states that inv(π) = inv(π−1),

An(u, q) =
∑

π∈Sn

qinv(π)
∏
i∈Des(π) u

iqi(i+1)/2

(1− uq)(1− u2q1+2) · · · (1− unq1+2+...+n)
.

2
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Theorem 3.6

Ln(u, q) =
∑

π∈Sn

q−inv(π)
∏
i∈Des(π)(uq

(n+1))iq−i(i+1)/2

∏n
i=1(1− uiqi(n+1)−i(i+1)/2)

.

Proof: From Theorem 3.4, Ln(u, q) = An(uqn+1, q−1), so apply Theorem 3.5. 2

Combining Theorems 3.5 and 3.6 with equations (4) and (5) will have implications about the distribu-
tion of certain permutation statistics, discussed in the next section.

4 Quadratic Permutation Statistics
Define the q-integer [ n ]q by [ n ]1 = 1 and for q 6= 1, by [ n ]q = (1 − qn)/(1 − q). In Section 2.1
we defined the permutation statistics inv and des. The major index of π ∈ Sn is the sum of the descent
positions: maj(π) =

∑
i∈Des(π) i. It is known that

∑

π∈Sn
qmaj(π) =

n∏

i=1

[ i ]q, (6)

and that inv and maj are equally distributed over all permutations [Mac60].
Motivated by Theorems 3.5 and 3.6, we introduce quadratic permutation statistics sq and bin:

sq(π) =
∑

i∈Des(π)

i2 and bin(π) =
∑

i∈Des(π)

(
i+ 1

2

)
.

Because of the way “inv” is involved with the distribution of these quadratic statistics, we also define

sqin(π) = sq(π) + inv(π)

binv(π) = bin(π) + inv(π)

and prove two distribution theorems that refine (6). The first comes from the enumeration of anti-lecture
hall compositions.

Theorem 4.1
∑

π∈Sn
umaj(π)qbinv(π) =

n∏

i=1

(1− uiq(i+1
2 ))

1 + uqi

1− u2q1+i
.

Proof: Restate the generating function for An(u, q) in Theorem 3.5 in terms of the new permutation
statistics and apply equation (5). 2

Setting q = 1 in Theorem 4.1 gives (6). Setting u = 1 in Theorem 4.1 gives the following interesting
generating function for the symmetric group.
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Corollary 4.2
∑

π∈Sn
qbinv(π) =

n∏

i=1

[ 2 ]qi
[ i(i+ 1)/2 ]q

[ i+ 1 ]q

In Theorem 4.1, setting q = q−1 and then u = qn+1 gives an unusual variation of (6).

Corollary 4.3
∑

π∈Sn
q(n+1)maj(π)−binv(π) =

n∏

i=1

[ i ]q2(n−i)+1 .

Proof: By Theorem 3.4, An(u, qn+1, q−1) = Ln(u, q). Equate Ln(u, q) in Theorem 3.6 and equation
(4), setting u = 1, and simplify:

∑

π∈Sn
q(n+1)maj(π)−binv(π) =

n∏

i=1

(1− qi(2n−i+1)/2)
n∏

i=1

1

1− q2i−1
.

The result follows by observing that

1− qi(2n−i+1)/2 =

{
1− qk(2(n−k)+1) = [ k ]q2(n−k)+1(1− q2(n−k)+1) if i = 2k

1− q(2k+1)(n−k) = [ n− k ]q2k+1(1− q2k+1) if i = 2k + 1.

2

The second distribution theorem has the following form.

Theorem 4.4
∑

π∈Sn
qmaj(π)tsqin(π) =

n∏

i=1

[ i ]qti

Before proving Theorem 4.4, we observe that it has the following specializations. Setting t = 1 in
Theorem 4.4 gives (6). Setting q = 1 in Theorem 4.4 gives the following, which appears to be a new
observation:

Corollary 4.5
∑

π∈Sn
tsqin(π) =

n∏

i=1

[ i ]ti .

Setting q = qn and t = 1/q in Theorem 4.4 gives:

Corollary 4.6
∑

π∈Sn
qnmaj(π)−sqin(π) =

n∏

i=1

[ i ]qn−i .
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In [SW98], Stembridge and Waugh derive a Weyl group generating function which, especially in the
case of the symmetric group, they felt “ought to be better known”. In [Zab03], Zabrocki gave a simple
combinatorial proof of that special case, which was exactly Corollary 4.6 above. It appears that we have
come full circle, since lecture hall partitions originally arose in Eriksson’s work on affine Coxeter groups
[BME97].

Setting q = q2n+1 and t = 1/q2 in Theorem 4.4 gives:

Corollary 4.7
∑

π∈Sn
q(2n+1)maj(π)−2sqin(π) =

n∏

i=1

[ i ]q2(n−i)+1 ,

We finish this section with a proof of Theorem 4.4, which follows the same strategy as Zabrocki’s proof
of Corollary 4.6 above. In contrast to the proof of Theorem 4.3, this is a direct and elementary proof which
does not rely on the theory of lecture hall partitions or affine Coxeter groups. We have not as yet found a
similar approach to Theorem 4.3.

Proof: (of Theorem 4.4) Expand the product in Theorem 4.4 as

n∏

i=1

[ i ]qti = (1)(1 + qt2)(1 + qt3 + (qt3)2) . . . (7)

=
∑

(r1,...,rn)

qr1+...+rnt1r1+2r2+...+nrn (8)

where the sum is over the n! sequences (r1, . . . , rn) satisfying 0 ≤ r < i. So, we will establish a bijection
from Sn to these sequences with the property that if π maps to (r1, . . . , rn), then maj(π) = r1 + . . .+ rn
and sqin(π) = 1r1 + 2r2 + . . .+ nrn.

Given π, let ε = ε(π−1) be the inversion sequence of π−1. Define r by ri = εi− εi+1 + i if i ∈ Des(π)
and ri = εi− εi+1, otherwise. Observe that εi < εi+1 if and only if i ∈ Des(π). By definition, 0 ≤ εi < i
for every i Thus 0 ≤ ri < i for every i. Clearly r1 + . . .+ rn = maj(π) and

n∑

i=1

iri =
∑

i∈Des(π)

i2 +

n∑

i=1

i(εi − εi+1) = sq(π) + inv(π−1) = sq(π) + inv(π).

Finally, observe that ε, and therefore π−1 and π, can be recovered from r: εn = rn and for i < n, given
ri and εi+1, it must be that εi = ri + εi+1 if ri + εi+1 < i and otherwise, εi = ri + εi+1 − i. 2

5 Further directions
We mention a few questions suggested by this work. Are there other areas where quadratic permutation
statistics arise naturally? Other joint distribution results? Can we give a direct and elementary proof of
Theorem 4.4 on the joint distribution of maj and binv that is independent of the theory of lecture hall
partitions and Weyl groups? The lecture hall theorem came from the theory of affine Coxeter groups and
Bott’s formula; do anti-lecture hall compositions have any place in this theory?
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Abstract. We use a quantum analog of the polynomial ringZ[x1,1, . . . , xn,n] to modify the Kazhdan-Lusztig construction
of irreducibleHn(q)-modules. This modified construction produces exactly the same matrices as the original construction
in [Invent. Math. 53 (1979)], but does not employ the Kazhdan-Lusztig preorders. Our main result is dependent on new
vanishing results for immanants in the quantum polynomial ring.

Résumé. Nous utilisons un analogue quantique de l’anneau Z[x1,1, . . . , xn,n] pour modifier la construction Kazhdan-
Lusztig des modules-Hn(q) irreductibles. Cette construction modifiée produit exactement les mêmes matrices que la con-
struction originale dans [Invent. Math. 53 (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Notre résultat
principal dépend de nouveaux résultats de disparaition pour des immanants dans l’anneau polynôme de quantique.

Resumen. Utilizamos un analog cuántico del anillo Z[x1,1, . . . , xn,n] para modificar la construcción de Kazhdan-Lusztig
de módulos-Hn(q) irreducibles. Esta construcción modificada produce exactamente las mismas matrices que la con-
strucción original en [Invent. Math. 53 (1979)], pero sin emplear los preórdenes de Kazhdan-Lusztig. Nuestro resultado
principal es depende en los nuevos resultados de desaparición para los imanantes en el anillo polinómico del cuántico.

Keywords: Kazhdan-Lusztig, immanants, irreducible representations, Hecke algebra

1 Introduction

In 1979, Kazhdan and Lusztig introduced [8] a family of modules for Coxeter groups and related Hecke
algebras. These modules, which happen to be irreducible for Coxeter groups of type-A and have many
fascinating properties, also aid in the understanding of modules for quantum groups and other algebras.
Important ingredients in the construction of the Kazhdan-Lusztig modules are the computation of certain
polynomials in Z[q] known as Kazhdan-Lusztig polynomials, and the description of preorders on Coxeter
group elements known as the Kazhdan-Lusztig preorders. These two tasks, which present something of an
obstacle to one wishing to construct the modules, have become fascinating research topics in their own right.
Even in the simplest case of a Coxeter group, the symmetric group Sn, the Kazhdan-Lusztig polynomials and
preorders are somewhat poorly understood, see [2, Chp. 6], [13].

As an alternative to the “traditional” Kazhdan-Lusztig construction of type-A modules in terms of sub-
spaces of the type-A Hecke algebra Hn(q), one may construct modules in terms of subspaces of a non-
commutative “quantum polynomial ring”. Theoretically, this alternative offers no special advantage over the

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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original construction. On the other hand, a simple modification of this alternative completely eliminates the
need for the Kazhdan-Lusztig preorders in a new construction of Hn(q)-modules.

In Sections 2-3, we review essential definitions for the symmetric group, Hecke algebra, and Kazhdan-
Lusztig modules. In Section 4 we review definitions related to a quantum analog of the polynomial ring
Z[x1,1, . . . , xn,n] and a particular n!-dimensional subspace called the quantum immanant space. In Section 4,
we use the basis of Kazhdan-Lusztig immanants studied in [10] to transfer the traditional Kazhdan-Lusztig
representations of Hn(q) to the immanant space.

Results of Clausen [4] will then motivate us to modify the above representations in Section 5 and to apply
vanishing properties of Kazhdan-Lusztig immanants similar to those obtained in [11]. This leads to our main
result that the resulting representations, which do not rely upon the Kazhdan-Lusztig preorders, have matrices
equal to those corresonding to the original Kazhdan-Lusztig representations in [8].

2 Tableaux and the symmetric group

We call a weakly decreasing sequence λ = (λ1, . . . , λ`) of positive integers with
∑`
i=1 λi = r an integer

partition of r, and we denote this by λ ` r or |λ| = r. A partial ordering on integer partitions of r called
dominance order is given by λ � µ if and only if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi, for all i = 1, . . . , `. (1)

From an integer partition λ we can construct a Ferrers diagram which has λi left justified dots in row i.
When we replace the dots in a diagram with 1, . . . , r we have a Young tableau where the shape of the tableau
is λ. An injective tableau is merely one in which the replacing is performed injectively, i.e. the 1, . . . , r
appear exactly once in the tableau. We call a tableau column-(semi)strict if its entries are (weakly) increasing
downward in columns. A tableau is row-(semi)strict if entries (weakly) increase from left to right in rows.
We call a tableau semistandard if it is column-strict and row-semistrict, and standard if it is semistandard and
injective. We define transposition of partitions λ 7→ λ> (also known as conjugation) and tableaux T 7→ T> in
a manner analogous to matrix transposition. We define a bitableau to be a pair of tableaux of the same shape,
and say that it posesses a certain tableau property if both of its tableaux posess this property.

For each partition λ we define the superstandard tableau of shape λ to be the tableau T (λ) having entries
in reading order. For example,

T ((4, 2, 1)) =
1 2 3 4
5 6
7

. (2)

The standard presentation of Sn is given by generators s1, . . . , sn−1 and relations

s2
i = 1, for i = 1, . . . , n− 1,

sisjsi = sjsisj , if |i− j| = 1,

sisj = sjsi, if |i− j| ≥ 2.

(3)

Let Sn act on rearrangements of the letters [n] = {1, . . . , n} by

si ◦ v1 · · · vn =
def

v1 · · · vi−1vi+1vivi+2 · · · vn. (4)

For each permutation w = si1 · · · si` ∈ Sn we define the one-line notation of w to be the word

w1 · · ·wn =
def

si1 ◦ (· · · (si` ◦ (1 · · ·n)) · · · ). (5)
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For each w ∈ Sn we define two tableaux, P (w), Q(w) which are obtained from the Robinson-Schensted
correspondence using column insertion to the one-line notation of w. (See, e.g., [12, Sec. 3.1].) It is well
known that these tableaux satisfy P (w−1) = Q(w). Since sh(P (w)) = sh(Q(w)) we can define the shape
of a permutation as sh(w) = sh(P (w)).

Given a permutation w ∈ Sn expressed in terms of generators w = si1 · · · si` we say this expression is
reduced if w cannot be expressed as a shorter product of generators of Sn. We call the length of a permu-
tation w ∈ Sn `(w) = `, in the previous equation. We define the Bruhat order on Sn by v ≤ w if some
(equivalently every) reduced expression for w contains a reduced expression for v as a subword (The reader
is referred to [2] for more on this topic). Throughout this paper we will use w0 to denote the unique maximal
element in the Bruhat order. Multiplying a permutation on the right by w0 also changes the bitableau of the
Robinson-Schensted correspondence for that permutation. Specifically, this change can be described in terms
of transposition. (See [2, Appendix].)

Lemma 2.1 If v ∈ Sn, then Q(v) = (Q(vw0))
>.

3 Kazhdan-Lusztig representations

Given an indeterminate q we define the Hecke algebra,Hn(q), to be the Z[q 1
2 , q¯

1
2 ]-algebra with multiplicative

identity T̃e generated by {T̃si}n−1
i=1 with relations

T̃ 2
si = (q

1
2 − q¯1

2 )T̃si + T̃e, for i = 1, . . . , n− 1, (6)

T̃si T̃sj T̃si = T̃sj T̃si T̃sj , if |i− j| = 1, (7)

T̃si T̃sj = T̃sj T̃si , if |i− j| ≥ 2. (8)

We then can define T̃w for any w ∈ Sn by T̃w = T̃si1 · · · T̃sil where w = si1 · · · sil is any reduced
expression. Inverses of generators are given by

T̃−1
si = T̃si − (q

1
2 − q¯1

2 )T̃e = T̃si − q¯
1
2 (q − 1)T̃e. (9)

When q = 1 we see that this presentation is simply that of the symmetric group algebra Z[Sn].
An important involution of the Hecke algebra is the so called bar involution. The involution is defined as

∑

w

awT̃w 7→
∑

w

awT̃w =
∑

w

aw T̃w (10)

where
q = q−1, T̃w =

(
T̃w−1

)−1

. (11)

The Kazhdan-Lusztig basis, {C ′w(q) |w ∈ Sn}, is the unique basis of Hn(q) such that the basis elements
are invariant under the bar involution, C ′w(q) = C ′w(q) for all w ∈ Sn, and that C ′w(q) in terms of the
{T̃v | v ∈ Sn} is given by

C ′w(q) =
∑

v≤w
q−1
v,wPv,w(q) T̃v, (12)

where Pv,w(q) are polynomials in q of degree at most `(w)−`(v)−1
2 and where we define the convenient

notation εv,w = (−1)`(w)−`(v), qv,w = (q
1
2 )`(w)−`(v). These polynomials are known as the Kazhdan-Lusztig

polynomials and in fact belong to N[q].
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Kazhdan and Lusztig also introduced another basis {Cw(q) |w ∈ Sn} with similar properties which is
traditionally known as the Kazhdan-Lusztig basis, but for our purposes the {C ′w(q) |w ∈ Sn} basis is more
convenient. Cw(q) and C ′w(q) are related by C ′w(q) = ψ(Cw(q)), where ψ is the semilinear map defined by

ψ : q
1
2 7→ q¯

1
2 and T̃w 7→ εe,wT̃w. (13)

Thus Cw(q) is also bar invariant and its expression in terms of {T̃v | v ∈ Sn} is

Cw(q) =
∑

v≤w
εv,wqv,wPv,w(q)T̃v. (14)

As a preliminary to the proof of the existence and uniqueness of their bases Kazhdan and Lusztig also
defined the following function

µ(u, v) =
def

{
coefficient of q(`(v)−`(u)−1)/2 in Pu,v(q) if u < v,

0 otherwise.
(15)

Note that µ(u, v) = 0 if `(v)−`(u) is even since Pu,v(q) has only integer powers of q. Also, it is well known
that Pu,v(q) = Pw0uw0,w0vw0

(q), and therefore that µ(u, v) = µ(w0uw0, w0vw0). Kazhdan and Lusztig
showed further [8, Cor. 3.2] µ(u, v) = µ(w0v, w0u), even though Pu,v(q) and Pw0v,w0u(q) are not equal in
general.

In the existence proof of the Kazhdan-Lusztig basis in [8, Pf. of Thm. 1.1] an expression for the action of
T̃s, s a basic transposition, on the basis element C ′w(q) is given by

C ′w(q)T̃s =





−q¯1
2C ′w(q) + C ′ws(q) +

∑

v<w
vs<v

µ(v, w)C ′v(q) if ws > w,

q
1
2C ′w(q) if ws < w.

(16)

Along with these bases Kazhdan and Lusztig defined a preorder on Sn in order to construct representations
of Hn(q). This preorder, called the right preorder, is denoted by ≤R and is defined as the transitive closure
of lR where u lR v if C ′u(q) has nonzero coefficient in the expression of C ′v(q)T̃w for some w ∈ Sn. It
follows from a result in [1] that w ≤R v implies sh(v) � sh(w).

We follow the description in [7, Appendix] of the Kazhdan-Lusztig construction of an irreducible Hn(q)-
module indexed by partition λ ` n. Here and henceforth the span will be over the Laurent polynomial ring
Z[q 1

2 , q¯
1
2 ]. Choosing tableau T of shape λ, we allow Hn(q) to act by right multiplication on

Kλ =
def

span{C ′w(q) |Q(w) = T}, (17)

regarded as the quotient

span{C ′v(q) | v ≤R w}/span{C ′v(q) | v ≤R w, v 6≥R w}. (18)

The quotient is necessary because Kλ is not in general closed under the action of Hn(q). In particular, for
λ 6= (1n) we have the containments Kλ ⊂ Hn(q)K

λ ⊆ Kλ ⊕ span{C ′v(q) | v ≤R w, v 6≥R w}.
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4 The quantum polynomial ring and Kazhdan-Lusztig immanants
Let x = (xi,j) be an n × n-matrix of variables. The polynomial ring Z[x] has a natural grading Z[x] =
⊕r≥0Ar, where Ar is the span of all monomials of total degree r. Further decomposing each space Ar, we
define a multigrading

Z[x] =
⊕

r≥0

Ar =
⊕

r≥0

⊕

L,M

AL,M , (19)

where L = {`(1) ≤ . . . ≤ `(r)} and M = {m(1) ≤ . . . ≤ m(r)} are r-element multisets of [n], written as
weakly increasing sequences, and where AL,M is the span of monomials whose row and column indices are
given by L and M , respectively. We define the generalized submatrix of x with respect to (L,M) by

xL,M =




x`(1),m(1) · · · x`(1),m(r)

x`(2),m(1) · · · x`(2),m(r)

...
...

x`(r),m(1) · · · x`(r),m(r)


 . (20)

We refer to the space
A[n],[n] = span{x1,w1

· · ·xn,wn
|w ∈ Sn}, (21)

as the immanant space, and define the notation xu,v = xu1,v1 · · ·xun,vn for permutations u, v ∈ Sn. Im-
manants are a generalization of the determinant and permanent of a matrix introduced in [9].

A natural Sn-action on Z[x] is given by

g(x) ◦ si =
def

g(xsi), (22)

where g ∈ Z[x] and xsi is interpreted as the product of x and the permutation matrix of si.

We now define a generalization of the polynomial ring Z[x] called the quantum polynomial ring, A(n; q).
The ringA(n; q) is a noncommutative Z[q 1

2 , q¯
1
2 ]-algebra on n2 generators x = (x1,1 . . . , xn,n) with relations

(assuming i < j and k < `),

xi,`xi,k = q
1
2xi,kxi,`,

xj,kxi,k = q
1
2xi,kxj,k,

xj,kxi,` = xi,`xj,k,

xj,`xi,k = xi,kxj,` + (q
1
2 − q¯1

2 )xi,`xj,k.

(23)

A natural basis for the quantum polynomial ring consists of the set of monomials in lexicographic order.
Analogous to the multigrading of Z[x] is the multigrading

A(n; q) =
⊕

r≥0

Ar(n; q) =
⊕

r≥0

⊕

L,M

AL,M (n; q), (24)

whereAr(n; q) is the span of all monomials of total degree r, and whereAL,M (n; q) is the span of monomials
whose row and column indices are given by r-element multisets L and M of [n]. We again call the space
A[n],[n](n; q) = span{xe,w |w ∈ Sn} the immanant space of A(n; q) or the quantum immanant space.

Define a right action of the Hecke algebra on A[n],[n](n; q) by

xe,v ◦ T̃si =
{
xe,vsi if vsi > v,

xe,vsi + (q
1
2 − q¯1

2 )xe,v if vsi < v.
(25)
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Related to the bar involution on Hn(q) is another bar involution on A[n],[n](n; q) defined by

∑

w

awx
e,w 7→

∑

w

awxe,w =
∑

w

aw xe,w (26)

where
q = q−1, xe,w = xw0,w0w = xn,wn

· · ·x1,w1
. (27)

Lemma 4.1 The bar involutions of (10) and (26) are compatible with the action of Hn(q) on A[n],[n](n; q).
That is,

xe,v ◦ T̃si = xe,v ◦ T̃si (28)

for all v ∈ Sn.

Proof: Omitted. 2

It is known that there is a unique, bar-invariant basis of A[n],[n](n; q) closely related to the Kazhdan-
Lusztig basis of the Hecke algebra. We call the elements of this basis the Kazhdan-Lusztig immanants
{Immv(x; q) | v ∈ Sn}. First appearing in Du [5],[6], this basis has the following theorem-definition. (See,
e.g., [3, Thm. 5.3])

Theorem 4.2 For any v ∈ Sn, there is a unique element Immv(x; q) ∈ A[n],[n](n; q) such that

Immv(x; q) = Immv(x; q) (29)

Immv(x; q) =
∑

w≥v
εv,wq

−1
v,wQv,w(q)x

e,w, (30)

where Qv,w(q) are polynomials in q of degree ≤ `(w)−`(v)−1
2 if v < w and Qv,v(q) = 1.

The polynomialsQu,v(q) above are actually the inverse Kazhdan-Lusztig polynomials, found in [8, Sec. 3].
They are related to the Kazhdan-Lusztig polynomials by

Qu,v(q) = Pw0v,w0u(q) = Pvw0,uw0(q). (31)

We can now describe a right action of Hn(q) on the immanant space by its action on the Kazhdan-Lusztig
immanants.

Corollary 4.3 The right action of the Hecke algebra on A[n],[n](n; q) is described by

Immv(x; q) ◦ T̃si =





q
1
2 Immv(x; q) + Immvsi(x; q) +

∑

w>v
wsi>w

µ(v, w)Immw(x; q) if vsi < v,

−q¯1
2 Immv(x; q) if vsi > v.

(32)

Proof: Omitted. 2

A deeper connection between the Kazhdan-Lusztig immanants and the Kazhdan-Lusztig basis is evident
in the Z[q 1

2 , q¯
1
2 ]-bilinear form on A[n],[n](n; q) × Hn(q) defined by by 〈xe,v, T̃w〉 = δv,w. Specifically, we
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have 〈Immv(x; q), C
′
w(q)〉 = δv,w, so the Kazhdan-Lusztig basis is dual to the basis of Kazhdan-Lusztig

immanants.

In the following lemma we relate the definition of the right preorder in the Hecke algebra with these
Kazhdan-Lusztig immanants. The results in the proof will also be essential in describing the relationship of
the Hn(q)-representations associated with the Kazhdan-Lusztig basis and immanants.

Lemma 4.4 Let v, v′ ∈ Sn. Then v lR v′ if Immv′(x; q) appears with nonzero coefficient in the Kazhdan-
Lusztig immanant expansion of Immv(x; q) ◦ T̃u for some u ∈ Sn.

Proof: Omitted. 2

With Lemma 4.4 we can now express the preorder in terms of the Kazhdan-Lusztig immanants. We can
now construct Hn(q)-modules indexed by λ ` n, as in [7, Appendix], with the Kazhdan-Lusztig immanants.
We choose a tableau T of shape λ and allow Hn(q) to act by right multiplication on

V λ =
def

span{Immw(x; q) |Q(w) = T}, (33)

regarded as the quotient

span{Immv(x; q) | v ≥R w}/span{Immv(x; q) | v ≥R w, v 6≤R w}. (34)

The quotient is necessary because like Kλ, V λ is not in general closed under the action of Hn(q). In
particular, whenever λ 6= (1n) we have the containments

V λ ⊂ Hn(q)V
λ ⊆ V λ ⊕ span{Immv(x; q) | v ≥R w, v 6≤R w}. (35)

5 Generalized submatrices and vanishing properties of immanants

In [11] Rhoades and Skandera stated conditions on immanants Immw(x) in Z[x] and on n × n-matrices
A which imply that Immw(A) = 0. Here we present new, analogous vanishing results for immanants in
A[n],[n](n; q). Specifically we will state conditions on quantum immanants Immw(x; q) in A(n; q) and on
generalized submatrices xL,M of the quantum matrix x, which imply that Immw(xL,M ; q) = 0. Using these
results we can eliminate the quotient needed in the construction (34) of the Hn(q)-modules. This provides a
quantum analog of the authors’ results in [3].

To express the vanishing results we need to define the row repetition partition of an n× n-matrix A by

µ[j](A) =
def

(µ1, . . . , µk), (36)

where k is the number of distinct rows in the n × j-submatrix A[n],[j], and µ1, . . . , µk are the multiplicities
with which distinct rows appear, written in weakly decreasing order. Also we define the permutation w[j] ∈
Sj from w ∈ Sn by arranging 1, . . . , j in the same relative order of the first j terms in the one line notation
of w.

Lemma 5.1 Fix a permutation w ∈ Sn and indices 1 ≤ j ≤ n. If sh(w[j]) � µ[j](xL,[n]), then

Immw(xL,[n]; q) = 0. (37)
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An immediate consequence of this vanishing result follows after defining a partial order found in [11]. A
partial order on standard tableaux is the iterated dominance of tableaux. Given two standard tableau T,U
both having n boxes, we define U /I T if for j = 1, . . . , n we have

sh(U[j]) ≺ sh(T[j]), (38)

where U[j] is the subtableau of U consisting of all entries less than or equal to j.

Corollary 5.2 Fix a partition λ ` n and define the multiset L = 1λ1 · · ·nλn , where nk is shorthand for n
appearing k times. For each permutationw satisfying sh(w) � λ or satisfying sh(w) = λ andQ(w) 6= T (λ),
we have that Immw(xL,[n]) = 0.

Proof: If w satisfies sh(w) � λ then the case with j = n of Lemma 5.1 implies that Immw(xL,[n]; q) = 0.
Suppose that sh(w) = λ and Q(w) 6= T (λ). Since the tableau T (λ) is greatest in iterated dominance among
all tableaux of shape λ, we have that Q(w) /I T (λ) and there exists an index j such that

sh(Q(w)[j]) ≺ sh(T (λ)[j]) = µ[j](xL,[n]). (39)

Then by the fact that sh(w[j]) = sh(Q(w)[j]) we see that sh(w[j]) ≺ µ[j](xL,[n]), which by Lemma 5.1
implies that Immw(xL,[n]; q) = 0. 2

We can define a right action of Hn(q) on AL,[n](n; q) by the formula

(xL,[n])
e,w ◦ T̃s =

{
(xL,[n])

e,ws, ws > w

(xL,[n])
e,ws + (q

1
2 − q¯1

2 )(xL,[n])
e,w, ws < w.

(40)

We can then extend this action for the Kazhdan-Lusztig immanants evaluated at generalized submatrices.

Corollary 5.3 Fix u ∈ Sn and an n-element multiset L of [n]. For a basic transposition s, the right action
of Hn(q) on the element Immu(xL,[n]; q) of AL,[n](n; q) is given by

Immu(xL,[n]; q) ◦ T̃s =



q
1
2 Immu(xL,[n]; q) + Immus(xL,[n]; q) +

∑

w>u
ws>w

µ(u,w)Immw(xL,[n]; q), us < u

−q¯1
2 Immu(xL,[n]; q), us > u.

(41)

Proof: For u ∈ Sn the Kazhdan-Lusztig immanant indexed by u evaluated at the matrix xL,[n] is given by

Immu(xL,[n]; q) =
∑

w≥u
εu,wq

−1
u,wQu,w(q)(xL,[n])

e,w. (42)
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Now we have an action of Hn(q) on the immanants by (40),

Immu(xL,[n]; q) ◦ T̃s =
∑

w≥u
εu,wq

−1
u,wQu,w(q) (xL,[n])

e,w ◦ T̃s

=
∑

w≥u
ws>w

εu,wq
−1
u,wQu,w(q)(xL,[n])

e,ws

+
∑

w≥u
ws<w

εu,wq
−1
u,wQu,w(q)

(
(xL,[n])

e,ws + (q
1
2 − q¯1

2 )(xL,[n])
e,w
)

= −q¯1
2

∑

w≥u
ws>w

εu,wq
−1
u,wQu,ws(q)(xL,[n])

e,w

+
∑

w≥u
ws<w

εu,wq
−1
u,w

(
(q

1
2 − q¯1

2 )Qu,w(q)− q
1
2Qu,ws(q)

)
(xL,[n])

e,w.

(43)

If us > u we know that Qu,w(q) = Qu,ws(q) for any permutation w. Thus we have from (43) the action
of T̃s is

Immu(xL,[n]; q) ◦ T̃s = −q¯
1
2

∑

w≥u
ws>w

εu,wq
−1
u,wQu,w(q)(xL,[n])

e,w

+
∑

w≥u
ws<w

εu,wq
−1
u,w

(
(q

1
2 − q¯1

2 )Qu,w(q)− q
1
2Qu,w(q)

)
(xL,[n])

e,w

= −q¯1
2 Immu(xL,[n]; q), (44)

as we expected.

If us < u we know thatQus,w(q) = Qus,ws(q) for any permutation w. By careful application of the recur-
sive formula for the inverse Kazhdan-Lusztig polynomials we can also observe the following relationships.
If ws > w then we see that

Qu,ws(q) = Qus,w(q)− qQu,w(q) +
∑

u<v≤w
v<vs

qv,wµ(u, v)Qv,w(q). (45)

If ws < w then we see that

Qu,w(q) + qQu,ws(q) = Qus,ws(q) +
∑

u<v≤ws
v<vs

qv,wsµ(u, v)Qv,ws(q) (46)

= Qus,w(q) +
∑

u<v≤ws
v<vs

qv,wsµ(u, v)Qv,ws(q). (47)
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Thus we have from (43) the action of T̃s is

Immu(xL,[n]; q) ◦ T̃s

= −q¯1
2

∑

w≥u
ws>w

εu,wq
−1
u,w


Qus,w(q)− qQu,w(q) +

∑

u<v≤w
v<vs

qv,wµ(u, v)Qv,w(q)


 (xL,[n])

e,w

+
∑

w≥u
ws<w

εu,wq
−1
u,w


q 1

2Qu,w(q)− q¯
1
2


Qus,w(q) +

∑

u<v≤ws
v<vs

qv,wsµ(u, v)Qv,ws(q)





 (xL,[n])

e,w

=
∑

w≥u
ws>w

εu,wq
−1
u,w


q 1

2Qu,w(q)− q¯
1
2Qus,w(q)− q¯

1
2

∑

u<v≤w
v<vs

qv,wµ(u, v)Qv,w(q)


 (xL,[n])

e,w

+
∑

w≥u
ws<w

εu,wq
−1
u,w


q 1

2Qu,w(q)− q¯
1
2Qus,w(q)− q¯

1
2

∑

u<v≤ws
v<vs

qv,wsµ(u, v)Qv,ws(q)


 (xL,[n])

e,w

= q
1
2 Immu(xL,[n]; q) + Immus(xL,[n]; q) +

∑

v>u
v<vs

µ(u, v)Immv(xL,[n]; q), (48)

as we expected. 2

We can now see that the right Hn(q)-action defined in Corollary 5.3 actually describes an Hn(q)-module
if we evaluate the immanants at generalized submatrices.

Theorem 5.4 Let λ ` n and set L = 1λ1 · · ·nλn . Define

Wλ =
def

span{Immw(xL,[n]; q) |Q(w) = T (λ)}, (49)

where T (λ) is the superstandard tableau of shape λ. Then Wλ is an Hn(q)-module.

Proof: By (35) we know that it suffices to show that Immv(xL,[n]; q) = 0 for v >R w where Q(w) = T (λ).
Since v >R w then we know that sh(w) � sh(v). The row multiplicity partition of xL,[n] is µ(xL,[n]) = λ.
So sh(v) ≺ sh(w) = µ(xL,[n]). Thus sh(v) � µ(xL,[n]). Therefore, by Lemma 5.1, Immv(xL,[n]; q) = 0
for all v >R w. 2

The condition for inclusion in the basis of this module is Q(w)> = T (λ) unlike the condition, Q(w) = T
where sh(T ) = λ, used in the definition of V λ above. The need for the change in conditions is due to the
result Corollary 5.2.

We would now like to show that these modules, Wλ, are isomorphic to the modules constructed by the
action Hn(q) on the Kazhdan-Lusztig basis. We shall then show that the action of T̃si on either basis yields
equal matrices, up to ordering of the basis elements. Let ρ1 : Hn(q) → End(Kλ) and ρ2 : Hn(q) →
End(Wλ) be the representations of Hn(q) defined by the right actions described in (16) and Corollary 4.3,
respectively.

Theorem 5.5 Let X1(h), X2(h) be the matrices of ρ1(h), ρ2(h) with respect to the Kazhdan-Lusztig basis
and the Kazhdan-Lusztig immanant basis. Then X1(h) = X2(h).
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Proof: First, we construct Kλ as in (17) with T = T (λ). Let B = {v ∈ Sn |Q(v) = T (λ)}. From Lemma
2.1 we see that if Cw(q) is a basis element of Kλ, i. e. w ∈ B, then Q(ww0)

> = Q(w) = T (λ). Thus
if w ∈ Bw0, then Immw(xL,[n]; q) is a basis element of Wλ, as in (49). Define coefficients asiv,w for each
generators si of Sn and v, w ∈ B so that

C ′v(q)T̃si =
∑

w∈B
asiv,wC

′
w(q). (50)

Then from the proof of Lemma 4.4 and Corollary 5.3 we see that for all v ∈ B

Immvw0(xL,[n]; q) ◦ T̃si =
∑

w∈B
asiv,wImmww0(xL,[n]; q). (51)

Thus X1(T̃si) = X2(T̃si). Since any element of v ∈ Sn is a product of generators we have that X1(T̃v) =

X2(T̃v) and thus for any element h ∈ Hn(q) we have that X1(h) = X2(h). 2

Corollary 5.6 The modules C(q 1
2 ) ⊗Wλ indexed by partitions λ ` n are the irreducible C(q 1

2 ) ⊗Hn(q)-
modules.

This result follows immediately from the fact that the modules Kλ are the irreducible Hn(q)-modules.
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On k-crossings and k-nestings of
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Abstract. We introduce k-crossings and k-nestings of permutations. We show that the crossing number and the
nesting number of permutations have a symmetric joint distribution. As a corollary, the number of k-noncrossing
permutations is equal to the number of k-nonnesting permutations. We also provide some enumerative results for
k-noncrossing permutations for some values of k.

Résumé. Nous introduisons les k-chevauchement d’arcs et les k-empilements d’arcs de permutations. Nous mon-
trons que l’index de chevauchement et l’index de empilement ont une distribution conjointe symétrique pour les
permutations de taille n. Comme corollaire, nous obtenons que le nombre de permutations n’ayant pas un k-
chevauchement est égal au nombre de permutations n’ayant un k-empilement. Nous fournissons également quelques
résultats énumératifs.

Keywords: crossing, nesting, permutation, enumeration

1 Introduction
Nestings and crossings are equidistributed in many combinatorial objects, such as matchings, set par-
titions, permutations, and large classes of embedded labelled graphs [2, 3, 5]. More surprising is the
symmetric joint distribution of the crossing and nesting numbers: A set of k arcs forms a k-crossing (re-
spectively nesting) if each of the

(
k
2

)
pairs of arcs cross (resp. nest). The crossing number of an object

is the largest k for which there is a k-crossing, and the nesting number is defined similarly. Chen et
al. [2] proved the symmetric joint distribution of the nesting and crossing numbers for set partitions and
matchings. Although they describe explicit involutions, they do not use simple local operations on the
partitions. Recently, de Mier [5] interpreted the work of Krattenthaler [6] to show that k-crossings and
k-nestings satisfy a similar distribution in embedded labelled graphs.

A hole in this family of results is the extension of the notions of k-crossings and k-nestings to permu-
tations. This note fills this gap. We also give exact enumerative formulas for permutations of size n with
crossing numbers 1 (non-crossing) and dn/2e.
1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Aσ =

111087654321 129

Aσ+ = 111087654321 129

Aσ− = 111087654321 129

Fig. 1: An arc diagram representation for the permutation σ = [9 5 6 7 8 3 2 1 4 12 11 10], and its decomposition into
upper and lower arc diagrams (A+

σ , A
−
σ ). In this example, cr(σ) = 4, ne(σ) = 3, and the degree sequence is given

by Dσ = (1, 0)(1, 0)(1, 0)(1, 0)(1, 1)(0, 1)(0, 1)(0, 1)(0, 1)(1, 0)(1, 1)(0, 1).

2 Introducing k-crossings and k-nestings of permutations
2.1 Crossings and nestings
The arc annotated sequence associated to the permutation σ ∈ Sn is the directed graph on the vertex set
V (σ) = {1, . . . , n} with arc set A(σ) = {(a, σ(a)) : 1 ≤ a ≤ n}, drawn in a particular way. It is also
known as the standard representation, or simply, the arc diagram. It is embedded in the plane by drawing
an increasing linear sequence of the vertices, with edges (a, σ(a)) satisfying a ≤ σ(a) drawn above the
vertices (the upper arcs), and the remaining lower arcs satisfying a > σ(a) drawn below. We refer to this
graph as Aσ; the subgraph induced by the upper arcs and V (σ) is A+

σ ; and the subgraph induced by the
lower arcs and V (σ) is A−σ . Additionally, we reverse the orientation of the arcs in A−σ , and view it as a
classic arc diagram above the horizon. Because of these rules, the direction of the arcs is determined, and
hence we simplify our drawings by not showing arrows on the arcs.

These two subgraphs are arc diagrams in their own right: for example A−σ represents a set partition,
and A+

σ is a set partition with some additional loops.
Crossings and nestings are defined for permutations by considering the upper and lower arcs separately.

A crossing is a pair of arcs {(a, σ(a)), (b, σ(b))} satisfying either a < b ≤ σ(a) < σ(b) (an upper
crossing) or σ(a) < σ(b) < a < b (a lower crossing). A nesting is a pair of arcs (a, σ(a)) (b, σ(b))
satisfying a < b ≤ σ(b) < σ(a) (an upper nesting) or σ(a) < σ(b) < b < a (a lower nesting).

There is a slight asymmetry to the treatment of upper and lower arcs in this definition which we shall
see is inconsequential. However, the reader should recall that what is considered a crossing (resp. nesting)
in the upper diagram is elsewhere called an enhanced crossing (resp. enhanced nesting).

Crossings and nestings were defined in this way by Corteel [3] because they represent better known
permutation statistics. Corteel’s Theorem 1 states that the number of top arcs in this representation of a
permutation is equal to the number of weak excedances, the number of arcs on the bottom is the number
of descents, each crossing is equivalent to an occurrence of the pattern 2 − 31, and each nesting is an
occurrence of the pattern 31 − 2. Corteel’s Proposition 4 states nestings and crossings occur in equal
number across all permutations of length n.
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2.2 k-nestings and k-crossings
To generalize Corteel’s work we define k-crossings and k-nestings in the same spirit as set partitions and
matchings. A k-crossing in a permutation ard diagram Aσ is a set of k arcs {(ai, σ(ai)) : 1 ≤ i ≤ k}
that satisfy either the relation a1 < a2 < · · · < ak ≤ σ(a1) < σ(a2) < · · · < σ(ak) (upper k-crossing)
or σ(a1) < σ(a2) < · · · < σ(ak) < a1 < a2 < · · · < ak (lower k-crossing). Similarly, a k-nesting is a
set of k arcs {(ai, σ(ai)) : 1 ≤ i ≤ n} that satisfy either the relation a1 < a2 < · · · < ak ≤ σ(ak) <
· · · < σ(a2) < σ(ak) (upper k-nesting) or σ(a1) < σ(a2) < · · · < σ(ak) < ak < · · · < a2 < a1 (lower
k-nesting).

The crossing number of a permutation σ, denoted by cr(σ), is the size of the largest k such that Aσ
contains a k-crossing. In this case we also say σ is k + 1-noncrossing. Likewise, the nesting number
of a permutation ne(σ) is the size of the largest nesting in Aσ , and define k + 1-noncrossing similarly.
Occasionally we consider the top and lower diagrams in their own right as graphs, and then we use the
definition of deMier [5], and hence distinguish separately the enhanced crossing number of the graphA+

σ

denoted cr∗(A+
σ ) from the permutation crossing number, and likewise for the enhanced nesting number

ne∗. The number of permutations of Sn with crossing number equal to k is Cn(k), and we likewise define
Nn(k) for nestings.

The degree sequence Dg of a graph g is the sequence of indegree and outdegrees of the vertices, when
considered as a directed graph:

Dg ≡ (Dg(i))i =
(
indegreeg(i), outdegreeg(i)

)n
i=1

.

Some sources call these left-right degree sequences since in other arc diagrams the incoming arcs always
come in on the left, and the outgoing arcs go out to the right. As a graph, the degree sequence of a
permutation is trivial: (1, 1)n, since a permutation is a map in which every point has a unique image, and
a unique pre-image. To define a more useful entity, we define the degree sequence of a permutation to
be the degree sequence of only the upper arc diagram: Dσ ≡ DA+

σ
. The degree sequence defined by the

lower arc diagram can be computed coordinate-wise directly from the upper by simple transformations
given in Table 2.2, and we denote this sequence Dσ . (The sums of the vertex degrees is not (1,1) because
the lower arcs have their orientation reversed, and hence the indegree, and the outdegree have switched)
An example is in Figure 1. The vertices with degree (0, 1) are called “openers” and those with degree
(1, 0) are “closers”.

The main theorem can now be stated.

Theorem 1 LetNCn(i, j,D) be the number of permutations of n with crossing number i, nesting number
j, and left-right degree sequence specified by D. Then

NCn(i, j,D) = NCn(j, i,D). (1)

There is an explicit involution behind this enumerative result, and the proof is in Section 4.

2.3 Preliminary enumerative results
The number of permutations of Sn with crossing number equal to k is directly computable for small
values of n and k.

We immediately notice the first column of Table 2, the non-crossing permutations, are counted by
Catalan numbers: Cn(1) = 1

n+1

(
2n
n

)
. This has a simple explanation: non-crossing partitions have long
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Type vertex i Dσ(i) Dσ(i)

opener (1,0) (1,0)

closer (0,1) (0,1)

loop (1,1) (0,0)

upper transient (1,1) (0,0)

lower transient (0,0) (1,1)

Tab. 1: The five vertex types that appear in permutations, and their associated upper degree value, and lower degree
value.

n\k 1 2 3 4 5
1 1
2 2
3 5 1
4 14 10
5 42 76 2
6 132 543 45
7 429 3904 701 6
8 1430 29034 9623 233
9 4862 225753 126327 5914 24

Tab. 2: Cn(k): The number of permutations of Sn with crossing number k. A crossing number of 1 is equivalent to
non-crossing.

been known to be counted by Catalan numbers and there is a simple bijection between non-crossing
permutations and non-crossing partitions. Essentially, to go from a non-crossing permutation to a non-
crossing partition, flip the arc diagram upside down, convert the loops to fixed points, and then remove the
lower arcs. This defines a unique set partition, and is easy to reverse. This bijection is easy to formalize,
but it is not the main topic of this note.
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3 Enumeration of maximum nestings and crossings
To get a sense of how Theorem 1 is proved, and to obtain some new enumerative results, we consider the
set of maximum nestings and crossings. A maximum nesting is the largest possible: a dn/2e-nesting is
maximum in a permutation on n elements. We can compute Nn(dn/2e) explicitly.

Theorem 2 The number of permutations with a maximum nesting satisfies the following formula:

Nn(dn/2e) =

{
m! n = 2m+ 1
2(m+ 1)!− (m− 1)!− 1 n = 2m

. (2)

Proof: We divide the result into a few cases, but each one is resolved the same way: For each permutation
σ ∈ Sn with a maximum nesting, the dn/2e-nesting comes from either A+

σ or A−σ , and in most cases
defines that subgraph. Once one side is fixed, and there is a given degree sequence, it is straightforward to
compute the number of ways to place the remaining arcs. Some cases are over counted, and tallying these
gives the final result.

Odd n: n = 2m + 1 To achieve an m + 1-nesting, it must be an enhanced nesting in the upper arc
diagram, and it uses all vertices, including a loop: σ(i) = n − i + 1 : 1 ≤ i ≤ m. It remains to define
σ(i) for m < i ≤ n. The lower degree sequence is fixed, and so 1 ≤ σ(i) < m for each i, but other than
that there is no restriction. Thus, there are m! possibilities.

Even n: n = 2m The even case is slightly more complicated, owing to the fact that three different ways
to achieve an m-nesting:

1. An m-nesting in A+
σ These permutations satisfy σ(i) = n − i, 1 ≤ i ≤ m. As before, there are m!

ways to define σ(i),m < i ≤ n.

2. An m-nesting in A−σ These permutations satisfy σ(n − i) = i, 1 ≤ i ≤ m. Again, there are m!
possibilities to define σ(i), 1 < i ≤ m. Only the involution [nn − 1 . . . 2 1] is in the intersection
of these sets.

3. An enhanced m-nesting in A+
σ If the m-nesting uses only 2m − 1 vertices, there is one left over. It

must either be a lower transient vertex, or a loop since there is nothing left to connect to it. We
count these by considering the different ways to construct it from a smaller permutation diagram.
Suppose we have a permutation with an m-nesting on 2m − 1 vertices. By the first part, we know
there are (m − 1)! of these. We place it on 2m points, by first selecting our special vertex i, and
placing the permutation on the rest. There are 2m ways to pick this special vertex. Finally, we
create the new permutation σ by connecting the new vertex to the rest of the structure. We choose a
point j to be the value σ(i). We can choose i and thus i is a loop. Otherwise, j must be before the
loop in σ′. We then set σ−1(i) to be σ′−1(j). There are m choices for σ(i).

Over counting we have counted twice the family of diagrams with two loops in the center. There are
(m− 1)! of these.

Putting all of the pieces together, and simplifying the expression we get the formula:

N2m(m) = 2(m+ 1)!− (m− 1)!− 1.
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2

This proof suggests a direct involution on the permutation which switches a maximum nesting for a
maximum crossing, since the degree sequence of a nesting and a crossing have the same shape. Thus
the formula for maximum crossings is the same. However, in certain diagrams, this involution sends a
k-crossing to a k + 1-nesting, and so it can not be used to prove equidistribution for general k.

3.1 Other enumerative questions

From the formula, we see that a very small proportion of permutations have maximum crossings, (≤
2n+1

2 !/n!) or are non-crossing ≈ 4nn−3/2/n!. What can be said of the nature of the distribution, or the
even simply the average crossing number? What is the nature of the generating function P (z;u) where
u marks the crossing number, or even simply the generating function for k-noncrossing permutations?
Bousquet-Mélou and Xin [1] consider this question for partitions: 2-noncrossing partitions are counted
by Catalan numbers, (as we mentioned before), and thus the generating function is algebraic; the counting
sequence for 3-noncrossing partitions is P-recursive, and so the generating function is D-finite, and they
conjecture that the generating function for k-noncrossing partitions, k > 3 are likely not D-finite. How
can these results be adapted to permutations, given the similar structure?

4 Proof of Theorem 1
We restate and prove our main theorem. The proof first decomposes a permutation into its upper and
lower arc diagrams and then applies the results for graphs separately to each part.

Theorem 1 Let NCn(i, j,D) be the number of permutations of n with crossing number i, nesting
number j, and left-right degree sequence specified by D. Then

NCn(i, j,D) = NCn(j, i,D).

Proof: We consider the top and the bottom in turn, and to each apply the consequence of Chen et al.,
that the pair (cr(g),ne(g))) is symmetrically distributed across all arc diagrams g on n vertices with
degree sequence a fixed element of {(0, 0), (0, 1), (1, 0), (1, 1)}n, which is the case for our graphs here.
Furthermore, we apply their degree preserving involution Ψ : Sn → Sn which swaps nesting and
crossing number. That is, Dσ = DΨ(σ), and ne(σ) = cr(Ψ(σ)), cr(σ) = ne(Ψ(σ)).

This consequence can also be seen as an example of de Miers’ Theorem 3.3 [5]. Vertices with maximum
left or right degree at most one avoid multiple edges, as is the case with our graphs, and hence the result
applies. Furthermore, her interpretation of graphs as fillings of growth diagrams apply.

In order to apply the above results, the first step is to re-writeA+
σ so that we only consider proper cross-

ings and nestings instead of enhanced crossing and nestings. This is a common trick, known as inflation.
Essentially, we create the graph g fromA+

σ by adding some supplementary vertices to eliminate loops and
transitory vertices:
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i i' i''

i i' i''

Now each nesting and crossing is proper, and by [5, Lemma 3.4] ne∗(A+
σ ) = ne(g) and cr∗(A+

σ ) =
cr(g).

Let Ψ be the map on embedded labelled graphs described implicitly in de Mier’s proof. Because Ψ
is a left-right degree preserving map, we can identify the supplementary vertices in Ψ(g) to get a graph
with the correct kind of vertices. Call this new graph g′. We now extend the definition of Ψ to A+

σ by
Ψ(A+

σ ) ≡ g′.
Consider the pair of graphs (Ψ(A+

σ ),Ψ(A−σ )).
Proving our main theorem now reduces to showing that there is a unique τ ∈ Sn such that Aτ =

(Ψ(A+
σ ),Ψ(A−σ )), which we do next. For every vertex in Aτ the indegree and the outdegree are equal to

one. This is because the left-right degree sequence of both the top and the bottom are preserved in the
map, and hence the vector sum of their degree sequence is unchanged, i.e. (1, 1)n, and has all the correct
partial sum properties. The map is a bijection and so τ is unique.

This map swaps the upper nesting and the upper crossing number, and also the lower nesting and the
lower crossing number. Thus cr(τ) = max{cr∗(A+

τ ), cr(A−τ )} = max{ne∗(A+
σ ),ne(A−σ )} = ne(σ).

Thus, the crossing and the nesting number are switched under the map Ψ. 2

Figure 2 illustrates our involution on an example. Remark that the degree sequence is fixed.

Aσ =

111087654321 129

AΨ(σ) =

Fig. 2: The permutation σ and its image in the involution Ψ(σ). Note that ne(Ψ(σ)) = 4, cr(Ψ(σ)) = 3.

4.1 Equidistribution in permutation subclasses
Involutions are in bijection with partial matchings, and have thus been previously considered. What of
other subclasses of permutations? The map presented here does not fix involutions, because loops are
mapped to upper transient vertices, but it does fix any class that is closed under degree sequence, for
example, permutations with no lower transitory vertices, or permutations with no upper transitory vertices
nor loops. These conditions have interpretations in terms of other permutation statistics, if we consider
the initial motivations of Corteel.
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5 Conclusions and open questions
The main open question, aside from the enumerative, and probabilistic questions we have already raised,
is to find a direct permutation description of our involution, i.e. a description avoiding the passage through
tableaux or fillings of Ferrers diagrams. Is this involution already part of the vast canon of permutation
automorphisms? de Mier’s original involution for graphs [4] applies in our situation, and is apparently a
different map. How does it compare?

Which subclasses of permutations preserve the symmetric distribution? From our example, we remark
that cycle type is not neccesarily conserved (since loops are always mapped to upper transitory vertices),
but non-intersecting intervals are preserved. Involution permutations are in bijection with partial match-
ings, and so this subclass has this property.

Is there an interpretation of crossing and nesting numbers in terms of other permutations statistics?
Which other statistics does this involution preserve?

Ultimately we have considered a type of graph with two edge colours and strict degree restrictions. Can
this be generalized to a larger class of graphs with fewer degree restrictions? What of a generalization of
graphs with multiple edge colours?
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On joint distribution of adjacencies, descents
and some Mahonian statistics

Alexander Burstein1

1Department of Mathematics, Howard University, Washington, DC 20059 USA

Abstract. We prove several conjectures of Eriksen regarding the joint distribution on permutations of the number of
adjacencies (descents with consecutive values in consecutive positions), descents and some Mahonian statistics. We
also prove Eriksen’s conjecture that a certain bistatistic on Viennot’s alternative tableaux is Euler-Mahonian.

Résumé. Nous demontrons plusieurs conjectures d’Eriksen concernant la distribution conjointe sur les permuta-
tions du nombre de contiguı̂tés (descentes avec des valeurs consécutives en positions consécutives), les descentes et
quelques statistiques mahoniennes. Nous demontrons également une conjecture d’Eriksen qui affirme qu’une certaine
bistatistique sur les tableaux alternatifs de Viennot est euler-mahonienne.

Keywords: permutation statistic, Eulerian, Mahonian, descent, adjacency, pattern, permutation tableau

1 Introduction
Eriksen [3] defined a new statistic adj on permutations that has the same distribution as the number of
fixed points. He also conjectured that certain Euler-Mahonian pairs of statistics together with adj have
the same joint distribution on permutations. Here we prove this conjecture. This refines a result of Foata
and Zeilberger [5] that proves a conjecture of Babson and Steingrı́msson [1].

1.1 Permutation statistics
We will start with some definitions. A combinatorial statistic on a set S is a map f : S → Nm for some
integer m ≥ 0. The distribution of f is the map df : Nm → N with df (i) = |f−1(i)| for i ∈ Nm, where
|f−1(i)| is the number of objects s ∈ S such that f(s) = i.

Let Sn be the set of permutations of [n] = {1, . . . , n}. A descent of a permutation π ∈ Sn is a
position i < n such that π(i) > π(i + 1). Then π(i) and π(i + 1) are called descent top and descent
bottom, respectively. A non-descent position is called an ascent. Ascent tops and ascent bottoms are
defined similarly. An adjacency is a descent such that π(i) − π(i + 1) = 1. Where the context is
unambiguous, we will also refer to the sequence of descent top and descent bottom as the descent, and do
likewise for adjacencies.

Let desπ be the number of descents of π, and let adjπ be the number of adjacencies of π0, i.e. a
permutation of [0, n] = {0, 1, . . . , n} obtained by appending 0 to the end of π. Eriksen proved that adj
has the same distribution as fix, the number of fixed points, i.e. positions i such that π(i) = i.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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A statistic is Eulerian if its distribution is the same as that of the descent statistic, des. One well known
Eulerian statistic is exc, the number of excedances, i.e. excπ is the number of positions i of π such that
π(i) > i. Another “almost” Eulerian statistic wex, the number of weak excedances (i.e. wexπ is the
number of positions i of π such that π(i) ≥ i) has the same distribution as des + 1. Eriksen [3] has also
proved that the bistatistic (adj, des + 1) has the same distribution on permutations as (fix, wex).

An inversion of π is a pair of positions (i, j), such that i < j and π(i) > π(j). Let invπ be the number
of inversions of π. A statistic is Mahonian if it has the same distribution as inv. The first Mahonian
statistic other than inv was discovered by MacMahon himself and is the major index maj, the sum of
positions of descents of a permutation. Other Mahonian statistics include, e.g., Denert’s statistic den (see
[1, 2]).

1.2 Permutation patterns
A pattern is an order-isomorphism type of a string over a totally ordered alphabet. An occurrence (or
instance) of a pattern τ in a permutation π is a subsequence of π that is order-isomorphic to τ . A gen-
eralized pattern, first defined in [1], is a pattern where some consecutive entries must be adjacent in all
occurrences of the pattern as well. Consecutive entries of the pattern that need not be adjacent in the
containing permutation are separated by a hyphen.

Example 1.1 An occurrence of the generalized pattern 2-31 in a permutation π is a subsequence
(π(i), π(j), π(j + 1)) of π such that i < j and π(j + 1) < π(i) < π(j).

Given a pattern τ and a permutation π, we denote by (τ)π the number of occurrences of the pattern τ in
π. Thus, (τ) is a pattern occurrence statistic. Babson and Steingrı́msson [1] showed that many Mahonian
statistics can be expressed as sums of pattern occurrence statistics. For example,

inv = (2-1) = (21) + (3-12) + (3-21) + (2-31) = (21) + (31-2) + (32-1) + (23-1),

maj = (21) + (1-32) + (2-31) + (3-21),

mak = (21) + (1-32) + (2-31) + (32-1),

stat = (21) + (13-2) + (21-3) + (32-1)

(1.1)

are Mahonian statistics. In fact, the last line is the definition [1] of the stat statistic.
We also need to define some permutation symmetries. Reversal, r, and complement, c, are the opera-

tions of reading a permutation back-to-front and upside-down, respectively. In other words, for π ∈ Sn,
πr(i) = π(n + 1 − i) and πc(i) = n + 1 − π(i). Note that the composition rc = cr is equivalent to
rotating the permutation diagram by 180◦. It is well known (and easily seen) that for any permutation π
and pattern τ , we have (τ r)πr = (τ c)πc = (τ rc)πrc = (τ)π.

2 Main result
Eriksen [3] conjectured that (adj, des, stat) and (adj, des, maj) are equidistributed on permutations.
This (up to permutation reversal) is a refinement of a result of Foata and Zeilberger [5, Theorem 3] who use
q-enumeration and generating functions and an almost completely automated proof via Maple packages
ROTA and PERCY. In this paper, we produce a “handmade” bijective proof of Eriksen’s conjecture. A
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possible redeeming feature of this approach is that the bijection is a nice and simple involution yielding a
slightly better result than may have been expected.

Let Fπ = π(1) be the first (leftmost) letter of π. Then the following result holds.

Theorem 2.1 Statistics (adj, des, F, maj, stat) and (adj, des, F, stat, maj) have the same joint distri-
bution on Sn for all n.

Eriksen’s conjecture is an immediate corollary of Theorem 2.1.

Corollary 2.2 Statistics (adj, des, stat) and (adj, des, maj) have the same joint distribution on Sn

for all n.

To prove Theorem 2.1, we will define a map on permutations and prove that it preserves the values of
adj, des and F and switches the values of maj and stat.

Given a permutation π ∈ Sn with π(1) = k, define the permutation π′ ∈ Sn as follows: π′(1) =
π(1) = k, and for i ∈ [2, n],

π′(i) =

{
k − π(n+ 2− i), if π(n+ 2− i) < k,

n+ k + 1− π(n+ 2− i), if π(n+ 2− i) > k.

This is better visualized as follows. Let πb (resp. πt) be the subsequence of π consisting of values that
are lesser (resp. greater) than k. Then we can represent π and π′ graphically as

π = k
πt
πb

and π′ = k

(
πc
t

πc
b

)r

.

In other words, we take the complements of πt and πb separately, but then take the reversal of the whole
π except the first letter. Note that this implies that

π′b = πrc
b , π′t = πrc

t ,

and the operation rc takes descents to descents and adjacencies to adjacencies. Note also that the map
p : π 7→ π′ (where p stands for “prime”) is an involution on the set of permutations in Sn that start with
k, i.e. (π′)′ = π. Hence, p is a bijection on Sn.

We can also describe the bijection p is as follows. Insert bars between adjacent elements of πt and πb
that are not adjacent in π. Also insert a bar at the start (resp. end) of the one of two sequences πt and πb
not containing π(2) (resp. π(n)). Let π̄t and π̄b be the resulting top and bottom sequences with bars, and
write

π = k
π̄t
π̄b
.

Then

π′ = k
(π̄t)

rc

(π̄b)rc
.

In other words, we rotate (separately) the permutation diagrams of π̄t and π̄b by 180◦ with bars.
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Example 2.3 Let π = 543617982 = 5
|6|798|
43|1|2 . Then π′ = 5

|768|9|
3|4|21

= 537684921.

We claim that the following is true:

adjπ′ = adjπ

desπ′ = desπ

Fπ′ = Fπ

majπ′ = statπ

statπ′ = majπ

(2.1)

Obviously, the first letter is preserved under this map, so the third equation is certainly true. To prove
the fourth equation, we will show that

majπ + statπ = (n+ 1) desπ − (k − 1) = majπ + majπ′ (2.2)

for all π ∈ Sn. Finally, the fifth equation follows from the fourth equation and the fact that the map
p : π 7→ π′ is an involution.

Example 2.4 Take π = 543617982 and π′ = 537684921 from Example 2.3. Then n = 9, k = Fπ =
Fπ′ = 5, adjπ = adjπ′ = 3 (recall that we actually count adjacencies in π0 = 5436179820 and
π′0 = 5376849210), desπ = desπ′ = 5, majπ = statπ′ = 22, statπ = majπ′ = 24, and
(n+ 1)desπ − (k − 1) = 46 = 22 + 24.

Lemma 2.5 adjπ′ = adjπ.

Proof: No descent of π0 that starts in πt and ends in πb0 can be an adjacency since the values of the
descent top and descent bottom in this case differ by at least 2. Therefore, adjacencies of π0 can be of
four types:

• both top and bottom are in πt,

• both top and bottom are in πb,

• k(k − 1), if π(2) = πb(1) = k − 1,

• 10, if π(n) = πb(|πb|) = 1.

If both entries are in πt or in πb, then these adjacencies are mapped to adjacencies in πrc
t = π′t or πrc

b = π′b,
respectively. If π(2) = k − 1, then π′(n) = 1, so π0 contains the adjacency k(k − 1) if and only if π′0
contains the adjacency 10. Likewise, if π(n) = 1, then π′(2) = k − 1, so π0 contains the adjacency 10 if
and only if π′0 contains the adjacency k(k − 1). Thus, all adjacencies of π0 map to adjacencies in π′0,
and vice versa, so adjπ = adjπ′. 2

Lemma 2.6 desπ′ = desπ.
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Proof: As in the previous lemma, note that descents where both top and bottom are in πt or in πb map to
descents in π′ where both entries are in πrc

t = π′t and πrc
b = π′b, respectively. Thus, we only need to look

at descents of π and π′ that start at or above k (i.e. in kπt or kπ′t, respectively) and end below k (i.e. in
πb or π′b, respectively). The number of such descents equals the number of blocks in the bottom part πb
of π, which is the same as the number of blocks in the bottom part π′b of π′.

This implies that desπ′ = desπ as desired. 2

For the next lemma, we will need a bit of notation. Given a pattern τ , let τi1,i2,...,ih denote the pattern
τ with distinguished entries i1 < i2 < · · · < ih. Usually, we will write τ with distinguished entries itali-
cized. Now given a list of letters j1 < j2 < · · · < jh and a permutation π, let (τi1,i2,...,ih)(j1, j2, . . . , jh)
be the permutation statistic of the number of occurrences of τ where each entry is in τ corresponds to
the entry js in the containing permutation, for s = 1, 2, . . . , h. For example, (2-31)(a, b)π counts all
occurrences of 2-31 in π where a and b in π correspond to 1 and 3 in 2-31, respectively.

Lemma 2.7 majπ + statπ = (n+ 1) desπ − (k − 1).

Proof: From Equation (1.1), it follows that

maj + stat = (21) + (21) + (3-21) + (21-3) + (1-32) + (32-1) + (2-31) + (13-2).

Let ba, b > a, be a descent of π (in other words, b is the descent top and a is the descent bottom here).
Then

(21)(a, b) + (21)(a, b)

counts the entries a and b themselves,

(3-21)(a, b) + (21-3)(a, b)

counts all entries greater than b (split into those to the left or to the right of the descent ba),

(1-32)(a, b) + (32-1)(a, b)

counts all entries less than a (split into the same two groups), and

(2-31)(a, b) + (31-2)(a, b)

counts all entries between a and b (split likewise). This implies that
(

(21) + (21) + (3-21) + (21-3) + (1-32) + (32-1) + (2-31) + (31-2)
)

(a, b)π = |π| = n

for any permutation π of size n and any descent ba of π. Summing over all descents of π, we get
(

(21) + (21) + (3-21) + (21-3) + (1-32) + (32-1) + (2-31)
)
π = n desπ − (31-2)π,

so that
majπ + statπ = n desπ + (13-2)π − (31-2)π.
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Now for each c ∈ [n], lets us count (13-2)(c)π − (31-2)(c)π. Recall that π(1) = k. We claim that the
following is true:

(13-2)(c)π − (31-2)(c)π =





0, if c = k,

0, if c > k is an ascent top,
1, if c > k is an descent bottom,
−1, if c < k is an ascent top,

0, if c < k is an descent bottom.

Let us call instances of (13-2)(c) and (31-2)(c) left ascents across c and left descents across c, respec-
tively. Since the first line is obvious, assume c 6= k and let d be the entry immediately preceding c in
π.

If c > k is an ascent top, then c > d as well, so k and d are on the same side of c (on the value axis of
the permutation diagram), and hence, from k to d, the number of ascents across c is equal to the number
of descents across c, so their difference is 0. The same result is obtained when c < k is a descent bottom,
i.e. when c < d as well, and hence k and d are again on the same side of c. If c > k is a descent bottom,
then k < c < d, so k is below c and d is above c. Hence, from k to d, there are 1 more ascents across c
than descents across c. Finally, if c < k is an ascent top, then k > c > d, so k is above c and d is below
c. Hence, from k to d, there are 1 more descents across c than ascents across c.

Therefore, summing over all entries c ∈ π, we get

(13-2)π − (31-2)π = |{descent bottoms > k}| − |{ascent tops < k}| =
= (|{descent bottoms > k}|+ |{descent bottoms < k}|)
− ({|ascent tops < k}|+ |{descent bottoms < k}|) =

= |{all descent bottoms}| − |{all entries < k}|
= desπ − |πb| = desπ − (k − 1).

(2.3)

We will explain the passage from the second to the third equality in some detail. For the first parenthesis,
note that k cannot be a descent bottom and that every descent bottom corresponds to a unique descent.
For the second parenthesis, note that every entry less than k must be at the end of an ascent or descent.

Thus,
majπ + statπ = n desπ + desπ − (k − 1) = (n+ 1) desπ − (k − 1).

This ends the proof. 2

Remark 2.8 The Equation (2.3) can also be proved as follows. Note that des = (21) and k − 1 =
Fπ − 1 = [2-1), where the initial bracket means that the first letter of the pattern must also be the first
letter in the permutation. In our case, [2-1) counts all inversions starting from the leftmost letter of π, i.e.
all letters less than π(1) = k. We can write

(2-1) = [2-1) + (32-1) + (23-1) + (13-2), (2.4)

since the first letter in an inversion is either the initial letter in the permutation (the first summand on the
right) or preceded by another letter (the other three summands). On the other hand,

(2-1) = (21) + (32-1) + (23-1) + (31-2), (2.5)
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since the first letter in an inversion is immediately followed either by the second letter in that inversion
(the first summand on the right) or by some other letter (the other three summands). Comparing Equations
(2.4) and (2.5), we obtain

(13-2)− (31-2) = (21)− [2-1) = des− (F− 1). (2.6)

Lemma 2.9 majπ + majπ′ = (n+ 1)desπ − (k − 1).

Proof: Suppose that i is a descent of π and that π(i) and π(i + 1) are both in πt or both in πb. Then the
map p : π 7→ π′ takes this descent to the descent at position n+ 1− i since π′(n+ 1− i) > π′(n+ 2− i)
and these values are also both in πt or both in πb. Therefore, each descent of π within πt or within πb
and its corresponding descent in π′ within π′t or π′b contributes

i+ (n+ 1− i) = n+ 1

to the sum majπ + majπ′.
Now consider descents in π and π′ from not below k to below k. Suppose that πb = π

(1)
b π

(2)
b . . . π

(m)
b ,

where each π(s)
b is a maximal block of consecutive entries of π that are in πb. Suppose also that π(s)

b starts
at position js + 1 for some js ≤ n− 1. Then π(s)

b ends at position js + |π(s)
b |. Therefore, we can partition

the descents of π and π′ from not below k to below k into pairs, where the descent from kπt to π(s)
b at

position js corresponds to the descent from kπ′t to (π
(s)
b )rc at position

(n+ 2)− (js + |π(s)
b |+ 1) = (n+ 1)− (js + |π(s)

b |).

Therefore, each such pair (for s = 1, . . . ,m) together contributes

js +
(

(n+ 1)− (js + |π(s)
b |)

)
= (n+ 1)− |π(s)

b |

to the sum majπ + majπ′. Summing over all π(s)
b for s = 1, . . . ,m, we get that the descents in π and π′

from not below k to below k together contribute

(n+ 1)|{descents from kπt to πb}| −
m∑

s=1

|π(s)
b | = (n+ 1)|{descents from kπt to πb}| − |πb|

to majπ + majπ′. Thus, all descents in π and π′ together sum to

(n+ 1)|{descents of π in πt}|+ (n+ 1)|{descents of π in πb}|+ (n+ 1)|{descents from kπt to πb}| − |πb|
= (n+ 1)|{all descents of π}| − |πb| = (n+ 1) desπ − (k − 1),

in other words,
majπ + majπ′ = (n+ 1) desπ − (k − 1).

This ends the proof. 2

Thus, we proved all the equalities in Equation (2.1). This ends the proof of Theorem 2.1.
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3 Distribution of (adj, des+ 1)
In [3], Eriksen gives a proof of equidistribution of (adj, des + 1) and (fix, wex) on Sn using two
bijections from permutations to permutation tableaux. Here we give a direct bijection on permutations that
maps the former bistatistic to the latter. This bijection is different [4] from the composition of Eriksen’s
two bijections. In fact, letting S0

n = {π0 |π ∈ Sn}, we get desπ0 = desπ + 1, fixπ0 = fixπ,
wexπ0 = wexπ, so (adj, des) and (fix, wex) are equidistributed on S0

n.
Given a permutation π ∈ Sn, for each entry m ∈ [n] of π, define `(m) to be the leftmost entry of π0

to the right of m that is less than m. Note that `(m) + 1 ≤ m for all m ∈ [n]. Then π is mapped to

π̃ = (1 `(1) + 1)(2 `(2) + 1) . . . (n− 1 `(n− 1) + 1)(n `(n) + 1). (3.1)

The map t : π 7→ π̃ is obviously a bijection since π̃ in (3.1) is the product of transpositions required to
make entries n, n − 1, . . . , 2, 1 of π̃ fixed points in order of decreasing magnitude (i.e., first, n is moved
from position `(n) + 1 to position n, then n− 1 is moved from position `(n− 1) + 1 to position n− 1,
and so on). Moreover, the inverse map t−1 : π̃ 7→ π amounts to starting with the string 0, then inserting
the entries 1, 2, . . . , n in increasing order so that each i is inserted immediately to the left of `(i), then
deleting the 0.

Example 3.1 Let π = 543617982, then π0 = 5436179820, so

π̃ = (11)(21)(32)(44)(55)(62)(73)(83)(99) = 268453179.

Note that adjπ = 3 = fix π̃ and desπ + 1 = des(π0) = 6 = wex π̃.

Proposition 3.2 The map t : π 7→ π̃ is a bijection on Sn such that (adj, des + 1)π = (fix, wex)π̃.

Proof: Suppose that, scanning the cycles of π̃ in formula (3.1) from right to left, we see that the element j
occurs first as `(i)+1 for some i. Then j ≤ i and i does not occur to the left of the cycle (i j) = (i `(i)+1)
in (3.1). Therefore, π̃(j) = i ≥ j, i.e. j is a weak excedance of π̃. But such a situation arises exactly
when i is to the left of j − 1 = `(i), and between i and j − 1 there is no element less than j − 1 (by
definition of `(i)) and no element greater than j − 1 (or j would occur in a transposition earlier to the
right in (3.1)), i.e. exactly when π0 contains a descent from i to j − 1.

On the other hand, suppose the above situation does not occur. Then j first occurs as the greater entry
of the transposition (j `(j) + 1) in (3.1), and `(j) + 1 < j. Then j is first mapped to `(j) + 1 < j by
(j `(j) + 1), and since there are no elements greater than j to the left of (j `(j) + 1) in (3.1), it follows
that π̃(j) < j.

Thus, j is a weak excedance of π̃ exactly when j − 1 is a descent bottom of π0. Moreover, j is fixed
point of π̃ exactly when π0 contains a descent from j to j − 1, i.e. when j is an adjacency of π0. 2

4 Euler-Mahonian statistics on permutation tableaux
Here we will give a simple proof of another conjecture of Eriksen [3]: that a certain bistatistic on permu-
tation tableaux is Euler-Mahonian, i.e. has the same distribution as (des, maj).

A Ferrers diagram of a partition is a left-justified column of nonincreasing rows of identical squares
(cells), where some rows may be of length 0. A permutation tableau T (see [7]) is a (0, 1)-filling of a
Ferrers diagram that satisfies the following properties:
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(1-hinge) every cell that has a 1 to its left in the same row and a 1 above it in the same column must also
contain a 1 (such a 1 is called an induced 1),

(column) every column contains at least one 1.

Permutation tableaux of semiperimeter n are in bijection with permutations of length n (see [7]). Note
that there is no corresponding restrictions on rows, i.e. a row may contain all 0s.

A 0 in a permutation tableau is called a restricted zero if there is a 1 above it in the same column. Note
that all cells to the left of a restricted 0 in a permutation tableau must also be filled with 0s.

Viennot [8] considered so-called alternative tableaux, that are closely related to the regular permutation
tableaux. An alternative tableau T̄ is obtained from an regular permutation tableau T by replacing the
top 1 in each column with a blue dot, the rightmost restricted 0 (if any) in each row with a red dot, then
removing all nontop 1s from their cells and deleting the top row except for its bottom boundary (so that
we know the length of the deleted top row).

This operation is a bijection. Indeed, given an alternative tableau A, we can recover the permutation
tableau Â = T such that T̄ = A by adjoining back the top row, inserting blue dots in those columns of
the top row which had no blue dots in T̄ , filling all red dot cells, cells to the left of red dots and cells above
the blue dots with 0s, and filling the remaining cells with 1s.

The alternative tableaux have an advantage over the original permutation tableaux in that they are closed
under the involution that consists of transposition and switching the colors of red and blue dots.

Eriksen [3] conjectured that the following statistic on alternative tableaux,

Astat =

(
rows + 1

2

)
+ red dots + blue dots + cells to the left of red dots + cells above blue dots,

is Mahonian and, in fact, that (rows, Astat) is Euler-Mahonian. Here we prove this conjecture.

Theorem 4.1 The bistatistic (rows, Astat) on alternative tableaux is Euler-Mahonian.

Proof: LetA be an alternative tableau, and let T = Â be its corresponding permutation tableau. Then the
0s of T that are not in the top row are exactly in the cells that either contain the red dots or are to the left
of the red dots or are above the blue dots in A. On the other hand, the 0s in the top row of T are exactly
in the columns that contain the blue dots of T . Note also that rows(T ) = rows(A) + 1. Thus,

Astat(A) =

(
rows(T )

2

)
+ zeros(T ).

Steingrı́msson and Williams [7] give a bijection from permutation tableaux to permutations that con-
verts tableau statistics to pattern statistics. If a permutation tableau T corresponds to a permutation π via
that bijection (Ψ−1 ◦ Φ in the notation of [7]), then the following holds

desπ = rows(T )− 1 = rows(A),

[(31-2) + (21-3) + (3-21)]π −
(
desπ

2

)
= zeros(T ).
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Thus,

Astat(A) =

(
desπ + 1

2

)
+ [(31-2) + (21-3) + (3-21)]π −

(
desπ

2

)

= desπ + [(31-2) + (21-3) + (3-21)]π

= [(21) + (31-2) + (21-3) + (3-21)]π

= [(21) + (2-31) + (1-32) + (32-1)]πrc

= makπrc = makrc(π),

and mak is a Mahonian statistic (e.g., see [2]). Moreover, desπrc = desπ, and (des, mak) is Euler-
Mahonian [6], and thus, (rows, Astat) is Euler-Mahonian as well. 2

5 Further questions
In the earlier sections we have proved that the bistatistics (des, mak) (or, more specifically, (des, mak)rc)
on permutations and (rows, Astat) on permutation tableaux are equidistributed. Steingrı́msson and
Williams [7] show that the bistatistics (fix, wex) on permutations and (rows-with-no-1s, rows) on per-
mutation tableaux are equidistributed. Furthermore, Eriksen [3] gives a direct bijection that shows equidis-
tribution of (adj, des + 1) and (rows-with-no-1s, rows).

However, the triples of statistics (adj, des, mak) (or (adj, des + 1, mak), or (adj, des, mak)rc) and
(rows-with-no-1s, rows, Astat) are not equidistributed. This leads us to ask if there are more or less
natural statistics on permutations or permutation tableaux that fill the position of the question mark, for
example, in the following equidistributions, among others:

(adj, des, mak) ∼ (rows-with-no-1s, rows, ?)

(adj, des, mak) ∼ (?, rows, Astat)

(adj, des, ?) ∼ (rows-with-no-1s, rows, Astat)

(?, des, mak) ∼ (rows-with-no-1s, rows, Astat)
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Abstract. We establish a stronger symmetry between the numbers of northeast and southeast chains in the context of
01-fillings of moon polyominoes. Let M be a moon polyomino. Consider all the 01-fillings of M in which every
row has at most one 1. We introduce four mixed statistics with respect to a bipartition of rows or columns of M.
More precisely, let S be a subset of rows of M. For any filling M , the top-mixed (resp. bottom-mixed) statistic
α(S;M) (resp. β(S;M)) is the sum of the number of northeast chains whose top (resp. bottom) cell is in S, together
with the number of southeast chains whose top (resp. bottom) cell is in the complement of S. Similarly, we define
the left-mixed and right-mixed statistics γ(T ;M) and δ(T ;M), where T is a subset of the columns. Let λ(A;M)
be any of these four statistics α(S;M), β(S;M), γ(T ;M) and δ(T ;M). We show that the joint distribution of the
pair (λ(A;M), λ(M/A;M)) is symmetric and independent of the subsets S, T . In particular, the pair of statistics
(λ(A;M), λ(M/A;M)) is equidistributed with (se(M),ne(M)), where se(M) and ne(M) are the numbers of
southeast chains and northeast chains of M , respectively.

Résumé. Nous établissons une symétrie plus forte entre les nombres de chaı̂nes nord-est et sud-est dans le cadre
des remplissages 01 des polyominos lune. Soit M un polyomino lune. Considérez tous les remplissages 01 de M
dans lesquels chaque rangée contient au plus un 1. Nous présentons quatre statistiques mixtes sur les bipartitions des
rangées et des colonnes de M. Plus précisément, soit S un sous-ensemble de rangées de M. Pour tout remplissage
M , la statistique mixte du dessus (resp. du dessous) α(S;M) (resp. β(S;M)) est la somme du nombre de chaı̂nes
nord-est dont le dessus (resp. le dessous) est dans S, et du nombre de chaı̂nes sud-est dont la cellule supérieure
(resp. inférieure) est dans le complément de S. De même, nous définissons les statistiques mixtes à gauche et à droite
γ(T ;M) et δ(T ;M), où T est un sous-ensemble des colonnes. Soit λ(A;M) une des quatre statistiques α(S;M),
β(S;M), γ(T ;M) et δ(T ;M). Nous montrons que la distribution commune des paires (λ(A;M), λ(M/A;M)) est
symétrique et indépendante des sous-ensembles S, T . En particulier, la paire de statistiques (λ(A;M), λ(M/A;M))
est équidistribuée avec (se(M),ne(M)), où se(M) et ne(M) sont les nombres de chaı̂nes sud-est et nord-est de M
respectivement.
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1 Introduction
Recently it is observed that the numbers of crossings and nestings have a symmetric distribution over
many families of combinatorial objects, such as matchings and set partitions. Recall that a matching
of [2n] = {1, 2, . . . , 2n} is a partition of the set [2n] with the property that each block has exactly
two elements. It can be represented as a graph with vertices 1, 2, . . . , 2n drawn on a horizontal line in
increasing order, where two vertices i and j are connected by an edge if and only if {i, j} is a block.
We say that two edges (i1, j1) and (i2, j2) form a crossing if i1 < i2 < j1 < j2; they form a nesting if
i1 < i2 < j2 < j1. The symmetry of the joint distribution of crossings and nestings follows from the
bijections of de Sainte-Catherine, who also found the generating functions for the number of crossings
and the number of nestings. Klazar [12] further studied the distribution of crossings and nestings over the
set of matchings obtained from a given matching by successfully adding edges.

The symmetry between crossings and nestings was extended by Kasraoui and Zeng [11] to set parti-
tions, and by Chen, Wu and Yan [3] to linked set partitions. Poznanović and Yan [15] determined the
distribution of crossings and nestings over the set of partitions which are identical to a given partition π
when restricted to the last n elements.

Many classical results on enumerative combinatorics can be put in the larger context of counting sub-
matrices in fillings of certain polyominoes. For example, words and permutations can be represented as
01-fillings of rectangular boards, and general graphs can be represented as N-fillings of arbitrary Ferrers
shapes, as studied by [13, 6, 7]. Other polyominoes studied include stack polyominoes [9], and moon
polyominoes [16, 10]. It is well-known that crossings and nestings in matchings and set partitions cor-
respond to northeast chains and southeast chains of length 2 in a filling of polyominoes. The symmetry
between crossings and nestings has been extended by Kasraoui [10] to 01-fillings of moon polyominoes
where either every row has at most one 1, or every column has at most one 1. In both cases, the joint dis-
tribution of the numbers of northeast and southeast chains can be expressed as a product of p, q-Gaussian
coefficients. Other known statistics on fillings of moon polyominoes are the length of the longest north-
east/southeast chains [2, 13, 16], and the major index [4].

The main objective of this paper is to present a stronger symmetry between the numbers of northeast
and southeast chains in the context of 01-fillings of moon polyominoes. Given a bipartition of the rows (or
columns) of a moon polyomino, we define four statistics by considering mixed sets of northeast and south-
east chains according to the bipartition. Let M be a 01-filling of a moon polyominoM with n rows and
m columns. These statistics are the top-mixed and the bottom-mixed statistics α(S;M), β(S;M) with
respect to a row-bipartition (S, S̄), and the left-mixed and the right-mixed statistics γ(T ;M), δ(T ;M)
with respect to a column-bipartition (T, T̄ ). We show that for any of these four statistics λ(A;M),
namely, α(S;M), β(S;M) for S ⊆ [n] and γ(T ;M), δ(T ;M) for T ⊆ [m], the joint distribution of
the pair (λ(A;M), λ(Ā;M)) is symmetric and independent of the subsets S, T . Consequently, we have
the equidistribution ∑

M

pλ(A;M)qλ(Ā;M) =
∑

M

pse(M)qne(M),

where M ranges over all 01-fillings ofM with the property that either every row has at most one 1, or
every column has at most one 1, and se(M) and ne(M) are the numbers of southeast and northeast chains
of M , respectively.

The paper is organized as follows. Section 2 contains necessary notation and the statements of the main
results. We present the proofs in Section 3, and show by bijections in Section 4 that these new statistics
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are invariant under a permutation of columns or rows on moon polyominoes.

2 Notation and the Main Results
A polyomino is a finite subset of Z2, where every element of Z2 is represented by a square cell. The
polyomino is convex if its intersection with any column or row is connected. It is intersection-free if every
two columns are comparable, i.e., the row-coordinates of one column form a subset of those of the other
column. Equivalently, it is intersection-free if every two rows are comparable. A moon polyomino is a
convex and intersection-free polyomino.

Given a moon polyominoM, we assign 0 or 1 to each cell ofM so that there is at most one 1 in each
row. Throughout this paper we will simply use the term filling to denote such 01-fillings. We say that
a cell is empty if it is assigned 0, and it is a 1-cell otherwise. Assume M has n rows and m columns.
We label the rows R1, . . . , Rn from top to bottom, and the columns C1, . . . , Cm from left to right. Let
e = (ε1, . . . , εn) ∈ {0, 1}n and s = (s1, . . . , sm) ∈ Nm with

∑n
i=1 εi =

∑m
j=1 sj . We denote by

F(M, e, s) the set of fillings M ofM such that the row Ri has exactly εi many 1’s, and the column Cj
has exactly sj many 1’s, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. See Figure 1 for an illustration.

1

1
1

1
1

1

Fig. 1: A filling M with e = (1, 1, 0, 1, 1, 1, 1) and s = (1, 1, 2, 1, 1, 0).

A northeast (resp. southeast) chain in a filling M ofM is a set of two 1-cells such that one of them
is strictly above (resp. below) and to the right of the other and the smallest rectangle containing them is
contained inM. Northeast (resp. southeast) chains will be called NE (resp. SE) chains. The number of
NE (resp. SE) chains of M is denoted by ne(M) (resp. se(M)). It is proved by Kasraoui [10] that ne(M)
and se(M) have a symmetric joint distribution over F(M, e, s).

Theorem 2.1

∑

M∈F(M,e,s)

pne(M)qse(M) =
∑

M∈F(M,e,s)

pse(M)qne(M) =
m∏

i=1

[
hi
si

]

p,q

.

Let R be the set of rows of the moon polyomino M. For S ⊆ [n], let R(S) =
⋃
i∈S Ri. We say

a 1-cell is an S-cell if it lies in R(S). An NE chain is called a top S-NE chain if its northeast 1-cell is
an S-cell. Similarly, an SE chain is called a top S-SE chain if its northwest 1-cell is an S-cell. In other
words, an NE/SE chain is a top S-NE/SE chain if the upper 1-cell of the chain is in R(S). Similarly, an
NE/SE chain is a bottom S-NE/SE chain if the lower 1-cell of the chain is inR(S).
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Let S̄ = [n] \ S be the complement of S. Given a filling M ∈ F(M, e, s), we define the top-mixed
statistic α(S;M) and the bottom-mixed statistic β(S;M) with respect to S as

α(S;M) = #{top S-NE chain of M}+ #{top S̄-SE chain of M},
β(S;M) = #{bottom S-NE chain of M}+ #{bottom S̄-SE chain of M}.

See Example 2.3 for some of these statistics on the filling M in Figure 1.
Let F tS(p, q) and F bS(p, q) be the bi-variate generating functions for the pairs (α(S;M), α(S̄;M)) and

(β(S;M), β(S̄;M)) respectively, namely,

F tS(p, q) =
∑

M∈F(M,e,s)

pα(S;M)qα(S̄;M) and F bS(p, q) =
∑

M∈F(M,e,s)

pβ(S;M)qβ(S̄;M).

Note that
(α(∅;M), α([n];M)) = (β(∅;M), β([n];M)) = (se(M),ne(M)).

Our first result is the following property.

Theorem 2.2 F tS(p, q) = F tS′(p, q) for any two subsets S, S′ of [n]. In other words, the bi-variate
generating function F tS(p, q) does not depend on S. Consequently,

F tS(p, q) = F t∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M)

is a symmetric function. The same statement holds for F bS(p, q).

We can also define the mixed statistics with respect to a subset of columns. Let C be the set of columns
of M. For T ⊆ [m], let C(T ) =

⋃
j∈T Cj . An NE chain is called a left T -NE chain if the southwest

1-cell of the chain lies in C(T ). Similarly, an SE chain is called a left T -SE chain if the northwest 1-cell
of the chain lies in C(T ). In other words, an NE/SE chain is a left T -NE/SE chain if its left 1-cell is in
C(T ). Similarly, an NE/SE chain is a right T -NE/SE chain if its right 1-cell is in C(T ).

Let T̄ = [m] \ T be the complement of T . For any filling M of F(M, e, s), we define the left-mixed
statistic γ(T ;M) and the right-mixed statistic δ(T ;M) with respect to T as

γ(T ;M) = #{left T -NE chain of M}+ #{left T̄ -SE chain of M},
δ(T ;M) = #{right T -NE chain of M}+ #{right T̄ -SE chain of M}.

Example 2.3 Let M be the filling in Figure 1, where ne(M) = 6 and se(M) = 1. Let S = {2, 4}, i.e.,
R(S) contains the second and the fourth rows. Then

α(S;M) = 5, α(S̄;M) = 2, β(S;M) = 1, β(S̄;M) = 6.

Let T = {1, 3}, i.e., C(T ) contains the first and the third columns. Then

γ(T ;M) = 4, γ(T̄ ;M) = 3, δ(T ;M) = 2, δ(T̄ ;M) = 5.
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Let GlT (p, q) and GrT (p, q) be the bi-variate generating functions of the pairs (γ(T ;M), γ(T̄ ;M)) and
(δ(T ;M), δ(T̄ ;M)) respectively, namely,

GlT (p, q) =
∑

M∈F(M,e,s)

pγ(T ;M)qγ(T̄ ;M) and GrT (p, q) =
∑

M∈F(M,e,s)

pδ(T ;M)qδ(T̄ ;M).

Again note that

(γ(∅;M), γ([m];M)) = (δ(∅;M), δ([m];M)) = (se(M),ne(M)).

Our second result shows that the generating function GlT (p, q) possesses a similar property as F tS(p, q).

Theorem 2.4 GlT (p, q) = GlT ′(p, q) for any two subsets T, T ′ of [m]. In other words, the bi-variate
generating function GlT (p, q) does not depend on T . Consequently,

GlT (p, q) = Gl∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M)

is a symmetric function. The same statement holds for GrT (p, q).

We notice that the set F(M, e, s) appeared as N r(T,m, A) in Kasraoui [10], where m is the column
sum vector, and A is the set of empty rows, i.e., A = {i : εi = 0}. Kasraoui also considered the set
N c(T,n, B) of fillings whose row sum is an arbitrary N-vector n under the condition that there is at most
one 1 in each column and where B is the set of empty columns. By a rotation of moon polyominoes, it is
easily seen that Theorem 2.2 and Theorem 2.4 also hold for the set N c(T,n, B), as well as for the set of
fillings such that there is at most one 1 in each row and in each column.

As an interesting example, we explain how Theorems 2.2 and 2.4 specialize to permutations and words,
which are in bijections with fillings of squares or rectangles. More precisely, a word w = w1w2 · · ·wn
on [m] can be represented as a filling M on an n ×m rectangleM in which the cell in row n + 1 − i
and column j is assigned the integer 1 if and only if wi = j. In the word w1w2 · · ·wn, a pair (wi, wj) is
an inversion if i < j and wi > wj ; we say that it is a co-inversion if i < j and wi < wj , see also [14].
Denote by inv(w) the number of inversions of w, and by coinv(w) the number of co-inversions of w.

For S ⊆ [n] and T ⊆ [m], we have

α(S;w) = #{(wi, wj) : n+ 1− j ∈ S and (wi, wj) is a co-inversion}
+#{(wi, wj) : n+ 1− j 6∈ S and (wi, wj) is an inversion},

β(S;w) = #{(wi, wj) : n+ 1− i ∈ S and (wi, wj) is a co-inversion}
+#{(wi, wj) : n+ 1− i 6∈ S and (wi, wj) is an inversion}.

γ(T,w) = #{(wi, wj) : wi ∈ T and (wi, wj) is a co-inversion}
+#{(wi, wj) : wj 6∈ T and (wi, wj) is an inversion},

δ(T,w) = #{(wi, wj) : wj ∈ T and (wi, wj) is a co-inversion}
+#{(wi, wj) : wi 6∈ T and (wi, wj) is an inversion}.

Let W = {1s1 , 2s2 , . . . ,msm} be a multiset with s1 + · · ·+ sm = n, and R(W ) be the set of permu-
tations, also called rearrangements, of the elements in W . Let λ(A;w) denote any of the four statistics
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α(S;w), β(S;w), γ(T ;w), δ(T ;w). Theorems 2.2 and 2.4 imply that the bi-variate generating function
for (λ(A;w), λ(Ā;w)) is symmetric and

∑

w∈R(W )

pλ(A;w)qλ(Ā;w) =
∑

w∈R(W )

pinv(w)qcoinv(w) =

[
n

s1, . . . , sm

]

p,q

, (1)

where
[

n
s1,...,sm

]
p,q

is the p, q-Gaussian coefficient with the p, q-integer [r]p,q given by [r]p,q = pr−1 +

pr−2q + · · ·+ pqr−2 + qr−1.

3 Proof of the Main Results
It is sufficient to prove our results for α(S;M) and γ(T ;M) only, since conclusions for β(S;M) and
δ(T ;M) can be obtained by reflecting the moon polyomino with respect to a horizontal line or a vertical
line.

In Subsection 3.1, we recall Kasraoui’s bijection Ψ from F(M, e, s) to sequences of compositions
[10]. Kasraoui’s construction is stated for the set N c(T,n, B). We shall modify the description to fit our
notation. This bijection will be used in the proof of Lemma 3.2 which states that the pair of the top-mixed
statistics (α({1};M), α({1};M)) is equidistributed with (se(M),ne(M)). Theorem 2.2 follows from an
iteration of Lemma 3.2. In Subsection 3.3 we prove Theorem 2.4. Again the crucial step is the observation
that (γ({1};M), γ({1};M)) has the same distribution as (se(M),ne(M)).

Due to the space limit, in this extended abstract we would just describe the main ideas and the con-
struction of the bijections, and leave out the detailed proofs. A complete version of the present paper is
available in [5].

3.1 Kasraoui’s bijection Ψ

Assume the columns ofM are C1, . . . , Cm from left to right. Let |Ci| be the length of the column Ci.
Assume that k is the smallest index such that |Ck| ≥ |Ci| for all i. Define the left part ofM, denoted
L(M), to be the union ∪1≤i≤k−1Ci, and the right part ofM, denotedR(M), to be the union ∪k≤i≤mCi.
Note that the columns of maximal length inM belong to R(M).

We order the columns C1, . . . , Cm by a total order ≺ as follows: Ci ≺ Cj if and only if

• |Ci| < |Cj | or

• |Ci| = |Cj |, Ci ∈ L(M) and Cj ∈ R(M), or

• |Ci| = |Cj |, Ci, Cj ∈ L(M) and Ci is on the left of Cj , or

• |Ci| = |Cj |, Ci, Cj ∈ R(M) and Ci is on the right of Cj .

For every column Ci ∈ L(M), we define the rectangleM(Ci) to be the largest rectangle that contains
Ci as the leftmost column. For Ci ∈ R(M), the rectangleM(Ci) is taken to be the largest rectangle that
contains Ci as the rightmost column and does not contain any column Cj ∈ L(M) such that Cj ≺ Ci.

Given M ∈ F(M, e, s), we define a coloring of M by the following steps.
The coloring of the filling M

1. Color the cells of empty rows;
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2. For each Ci ∈ L(M), color the cells which are contained in the rectangleM(Ci) and on the right
of any 1-cell in Ci.

3. For each Ci ∈ R(M), color the cells which are contained in the rectangleM(Ci) and on the left
of any 1-cell in Ci.

ForM ∈ F(M, e, s), let ai be the number of empty rows (i.e., {Ri : εi = 0}) that intersect the column
Ci. Suppose that Ci1 ≺ Ci2 ≺ · · · ≺ Cim . For j = 1, . . . ,m, we define

hij = |Cij | − aij − (si1 + si2 + · · ·+ sij−1
). (2)

For positive integers n and k, denote by Ck(n) the set of compositions of n into k nonnegative parts, that
is, Ck(n) = {(λ1, λ2, . . . , λk) ∈ Nk :

∑k
i=1 λi = n}. The bijection Ψ is constructed as follows.

The bijection Ψ : F(M, e, s) −→ Cs1+1(h1 − s1)× Cs2+1(h2 − s2)× · · · × Csm+1(hm − sm).
For eachM ∈ F(M, e, s) with the coloring, Ψ(M) is a sequence of compositions (c(1), c(2), . . . , c(m)),

where

• c(i) = (0) if si = 0. Otherwise

• c(i) = (c
(i)
1 , c

(i)
2 , . . . , c

(i)
si+1) where

– c
(i)
1 is the number of uncolored cells above the first 1-cell in the column Ci;

– c
(i)
k is the number of uncolored cells between the (k− 1)-st and the k-th 1-cells in the column
Ci, for 2 ≤ k ≤ si;

– c
(i)
si+1 is the number of uncolored cells below the last 1-cell in the column Ci.

The statistics ne(M) and se(M) can be written in terms of the compositions.

Theorem 3.1 Let M ∈ F(M, e, s) and c = Ψ(M) = (c(1), c(2), . . . , c(m)). Then

ne(M) =
∑

Ci∈L(M)

si∑

k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k ) +

∑

Cj∈R(M)

sj∑

k=1

(hj − sj − c(j)1 − c
(j)
2 − · · · − c

(j)
k ),

se(M) =
∑

Ci∈L(M)

si∑

k=1

(hi − si − c(i)1 − c
(i)
2 − · · · − c

(i)
k ) +

∑

Cj∈R(M)

sj∑

k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k ).

Summing over the sequences of compositions yields the symmetric generating function of ne(M) and
se(M), c.f. Theorem 2.1.

3.2 Proof of Theorem 2.2
To prove Theorem 2.2 for the top-mixed statistic α(S;M), we first consider the special case when R(S)
contains the first row only.

Lemma 3.2 For S = {1}, we have

F t{1}(p, q) = F t∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M).
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Proof: We assume that the first row is nonempty. Otherwise the identity is obvious. Given a filling M ∈
F(M, e, s), assume that the unique 1-cell of the first row lies in the column Ct. Let the upper polyomino
Mu be the union of the rows that intersect Ct, and the lower polyominoMd be the complement ofMu,
i.e.,Md =M\Mu. We aim to construct a bijection φα : F(M, e, s) → F(M, e, s) such that for any
filling M ,

(α({1};M), α({1};M)) = (se(φα(M)),ne(φα(M))),

and φα(M) is identical to M onMd (which depends on M ).
LetMu = M∩Mu andMd = M∩Md. Let s′i be the number of 1-cells ofM in the columnCi∩Mu,

and s′ = (s′1, . . . , s
′
m). Let e′ = (ε1, . . . , εr), where r is the number of rows inMu. We shall define φα

on F(Mu, e
′, s′) first.

LetC ′i = Ci∩Mu. Suppose that inM the columns intersecting with the first row areCa, . . . , Ct, . . . , Cb
from left to right. Then Ct = C ′t, and inMu the columns C ′a, . . . , C

′
t, . . . , C

′
b intersect the first row. As-

sume that among them the ones with the same length as C ′t are C ′u, . . . , C
′
t, . . . , C

′
v from left to right.

Clearly, the columns C ′u, . . . , C
′
t, . . . , C

′
v are those with maximal length and belong to R(Mu). Note

that in Mu, the number of top {1}-NE chains is
∑
a≤i<t s

′
i, while the number of top {1}-SE chains is∑

t<i≤b s
′
i. Let h′i be given as in Eq. (2) for F(Mu, e

′, s′). Let c = Ψ(Mu) = (c(1), c(2), . . . , c(m)).
Then we can compute that

α({1};Mu) =
∑

a≤i<u
s′i + (h′t − s′t) +

∑

C′i∈L(Mu)

s′i∑

k=1

(h′i − s′i − c(i)1 − c
(i)
2 − · · · − c

(i)
k )

+
∑

C′j∈R(Mu)

s′j∑

k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k )−

∑

t<i≤b
s′i. (3)

and

α({1};Mu) =
∑

t<i≤b
s′i +

∑

C′i∈L(Mu)

s′i∑

k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k )

+
∑

C′j∈R(Mu)

s′j∑

k=1

(h′j − s′j − c(j)1 − c
(j)
2 − · · · − c

(j)
k )−

∑

a≤i<u
s′i − (h′t − s′t). (4)

The fact that the 1-cell of the first row lies in the column C ′t implies that c(t)1 = 0, and c(i)1 > 0 for
a ≤ i < u or t < i ≤ b. We define the filling φα(Mu) by setting φα(Mu) = Ψ−1(c̃), where c̃ is obtained
from c as follows:





c̃(i) = (c
(i)
1 − 1, c

(i)
2 , . . . , c

(i)
si , c

(i)
si+1 + 1), if a ≤ i < u or t < i ≤ b, and s′i 6= 0,

c̃(t) = (c
(t)
2 , c

(t)
3 , . . . , c

(t)
st+1, c

(t)
1 ), if i = t,

c̃(i) = c(i), for any other i.

Comparing the formulas (3) and (4) with Theorem 3.1 for c̃, one easily verifies that

(α({1};Mu), α({1};Mu)) = (se(φα(Mu)),ne(φα(Mu))).
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Now φα(M) is obtained from M by replacing Mu with φα(Mu). 2

Proposition 3.3 Assume S = {r1, r2, . . . , rs} ⊆ [n] with r1 < r2 < · · · < rs. Let S′ = {r1, r2, . . . , rs−1}.
Then F tS(p, q) = F tS′(p, q).

Proof: Let X = {Ri : 1 ≤ i < rs} be the set of rows above the row Rrs , and Y be the set of remaining
rows. Given a filling M ∈ F(M, e, s), let T (M) be the set of fillings M ′ ∈ F(M, e, s) that are identical
toM in the rows ofX . Construct a map θrs : T (M)→ T (M) by setting θrs(M) to be the filling obtained
from M by replacing M ∩ Y with φα(M ∩ Y ). Then it is a bijection with the property that

(α(S;M), α(S̄;M)) = (α(S′; θrs(M)), α(S′; θrs(M))). (5)

2

Proof of Theorem 2.2. Assume S = {r1, r2, . . . , rs} ⊆ R with r1 < r2 < · · · < rs. Let Θα =
θr1 ◦ θr2 ◦ · · · ◦ θrs , where θr is defined in the proof of Prop. 3.3. Then Θα is a bijection on F(M, e, s)
with the property that (α(S;M), α(S̄;M)) = (se(Θα(M)),ne(Θα(M))). The symmetry of F tS(p, q)
follows from Theorem 2.1. 2

3.3 Proof of Theorem 2.4
Theorem 2.4 is concerned with the left-mixed statistic γ(T ;M). The idea of the proof is similar to that
of Theorem 2.2: we show that the statement is true when T contains the left-most column only. However,
Kasraoui’s bijection φ does not help here, since the columns and rows play different roles in the fillings.
Instead, we give an algorithm which gradually maps the left-mixed statistics with respect to the first
column to the pair (ne, se).

Lemma 3.4 For T = {1}, we have

Gl{1}(p, q) = Gl∅(p, q) =

m∏

i=1

[
hi
si

]

p,q

.

The proof is built on an involution ρ on the fillings of a rectangular shapeM.
An involution ρ on rectangular shapes.
LetM be an n ×m rectangle, and M a filling ofM. Let C1 be the left-most column of M , in which
the 1-cells are in the l1, . . . , lk rows from top to bottom. Replace C1 by the column Cr1 so that the 1’s in
Cr1 appear in the l1, . . . , lk rows from bottom to top. This is ρ(M). Note that this map does not change
the relative positions of those 1-cells that are not in C1. It is easy to verify that ρ(ρ(M)) = M and
(γ({1};M), γ({1};M)) = (se(ρ(M)),ne(ρ(M))).

Proof: Given a general moon polyomino M, assume that the rows intersecting the first column are
{Ra, . . . , Rb}. LetMc be the union Ra∪ · · ·∪Rb. Clearly, for any M ∈ F(M, e, s), a left {1}-NE (SE)
chain consists of two 1-cells inMc. Let C ′i = Ci ∩Mc be the restriction of the column Ci onMc. Then
C ′1 = C1 and |C ′1| ≥ |C ′2| ≥ · · · ≥ |C ′m|.

Suppose that

|C ′1| = |C ′2| = · · · = |C ′j1 | > |C ′j1+1| = |C ′j1+2| = · · · = |C ′j2 | > |C ′j2+1| · · ·
· · · = |C ′jk−1

| > |C ′jk−1+1| = |C ′jk−1+2| = · · · = |C ′jk | = |C ′m|.
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Let Bi be the greatest rectangle contained in Mc whose right most column is C ′ji (1 ≤ i ≤ k), and
B′i = Bi ∩Bi+1 (1 ≤ i ≤ k − 1).

We define φγ : F(M, e, s) → F(M, e, s) by constructing a sequence of fillings (M,Mk, . . . ,M1)
starting from M .
The map φγ : F(M, e, s)→ F(M, e, s)

Let M ∈ F(M, e, s).

1. The filling Mk is obtained from M by replacing M ∩Bk with ρ(M ∩Bk).

2. For i from k − 1 to 1:

(a) Define a filling Ni on B′i by setting Ni = ρ(Mi+1 ∩B′i). Let the filling M ′i be obtained from
Mi+1 by replacing Mi+1 ∩B′i with Ni.

(b) The filling Mi is obtained from M ′i by replacing M ′i ∩Bi with ρ(M ′i ∩Bi).

3. Set φγ(M) = M1.

Then φγ is a bijection satisfying the equation (γ({1};M), γ({1};M)) = (se(φγ(M)),ne(φγ(M))). 2

Proposition 3.5 Assume T = {c1, c2, . . . , ct} ⊆ [m] with c1 < c2 < · · · < ct. Let T ′ = {c1, c2, . . . , ct−1}.
Then GlT (p, q) = GlT ′(p, q).

The proof is similar to that of Prop. 3.3. Iterating Prop. 3.5 leads to Theorem 2.4.

4 Invariance Properties
The bi-variate generating function of (ne, se) (cf. Theorem 2.1) implies that the mixed statistics are in-
variant under any permutation of rows and/or columns. To be more specific, letM be a moon polyomino.
For any moon polyomino M′ obtained from M by permuting the rows and/or the columns of M, we
have

#{M ∈ F(M, e, s) : λ(A;M) = i, λ(Ā;M) = j}
= #{M ′ ∈ F(M′, e′, s′) : λ(A;M ′) = i, λ(Ā;M ′) = j}

for any nonnegative integers i and j, where e′ (resp. s′) is the sequence obtained from e (resp. s) in
the same ways as the rows (resp. columns) of M′ are obtained from the rows (resp. columns) of M,
and λ(A;M) is any of the four statistics α(S;M), β(S;M), γ(T ;M), and δ(T ;M). In this section we
present bijective proofs of such phenomena.

Let M be a general moon polyomino. Let Nl be the unique left-aligned moon polyomino whose
sequence of row lengths is equal to |R1|, . . . , |Rn| from top to bottom. In other words, Nl is the left-
aligned polyomino obtained by rearranging the columns ofM by length in weakly decreasing order from
left to right. We shall use an algorithm developed in [4] that rearranges the columns ofM to generateNl.
The algorithm α for rearrangingM:

Step 1 SetM′ =M.

Step 2 IfM′ is left aligned, go to Step 4.
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Step 3 IfM′ is not left-aligned, consider the largest rectangle B completely contained inM′ that contains
C1, the leftmost column ofM′. UpdateM′ by settingM′ to be the polyomino obtained by moving
the leftmost column of B to the right end. Go to Step 2.

Step 4 Set Nl =M′.

Based on the algorithm α, Chen et al. constructed a bijection g = gM : F(M, e, s) → F(Nl, e, s′)
such that (se(M),ne(M)) = (se(g(M)),ne(g(M))), see [4, Section 5.3.2].

Combining gM with the bijection Θα constructed in the proof of Theorem 2.2, we are led to the fol-
lowing invariance property.

Theorem 4.1 LetM be a moon polyomino. For any moon polyominoM′ obtained fromM by permuting
the columns ofM, the map

Φα = Θ−1
α ◦ g−1

M′ ◦ gM ◦Θα : F(M, e, s)→ F(M′, e, s′) (6)

is a bijection with the property that

(α(S;M), α(S̄;M)) = (α(S;M ′), α(S̄;M ′)).

Similarly, let Nt be the top aligned polyomino obtained fromM by rotating 90 degrees counterclock-
wise first, followed by applying the algorithm α, and finally rotating 90 degrees clockwise. Such opera-
tions enable us to establish a bijection h = hM from F(M, e, s) to F(Nt, e′, s) that keeps the statistics
(se,ne). The exact description of hM is given in [5]. Combining the bijection Θα with hM, we arrive at
the second invariance property.

Theorem 4.2 LetM be a moon polyomino. For any moon polyominoM′ obtained fromM by permuting
the rows ofM, the map

Λα = Θ−1
α ◦ h−1

M′ ◦ hM ◦Θα : F(M, e, s)→ F(M′, e′, s) (7)

is a bijection with the property that

(α(S;M), α(S̄;M)) = (α(S;M ′), α(S̄;M ′)).

Similar statements hold for the statistics β(S;M), γ(T ;M) and δ(T ;M).
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Abstract. Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A
partial permutation of length n with k holes is a sequence of symbols π = π1π2 · · ·πn in which each of the symbols
from the set {1, 2, . . . , n− k} appears exactly once, while the remaining k symbols of π are “holes”.

We introduce pattern-avoidance in partial permutations and prove that most of the previous results on Wilf equivalence
of permutation patterns can be extended to partial permutations with an arbitrary number of holes. We also show
that Baxter permutations of a given length k correspond to a Wilf-type equivalence class with respect to partial
permutations with (k − 2) holes. Lastly, we enumerate the partial permutations of length n with k holes avoiding a
given pattern of length at most four, for each n ≥ k ≥ 1.
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1 Introduction
Let A be a nonempty set, which we call an alphabet. A word over A is a finite sequence of elements
of A, and the length of the word is the number of elements in the sequence. Assume that � is a special
symbol not belonging to A. The symbol � will be called a hole. A partial word over A is a word over the
alphabet A ∪ {�}. In the study of partial words, the holes are usually treated as gaps that may be filled by
an arbitrary letter of A. The length of a partial word is the number of its symbols, including the holes.

The study of partial words was initiated by Berstel and Boasson [BB99]. Partial words appear in
comparing genes [Leu05]; alignment of two sequences can be viewed as a construction of two partial
words that are compatible in the sense defined in [BB99]. Combinatorial aspects of partial words that have
been studied include periods in partial words [BB99, SK01], avoidability/unavoidability of sets of partial
words [BBSGR09, BSBK+09], squares in partial words [HHK08], and overlap-freeness [HHKS09]. For
more see the book by Blanchet-Sadri [BS08].

Let V be a set of symbols not containing �. A partial permutation of V is a partial word π such
that each symbol of V appears in π exactly once, and all the remaining symbols of π are holes. Let Skn
denote the set of all partial permutations of the set [n− k] = {1, 2, . . . , n− k} that have exactly k holes.
For example, S13 contains the six partial permutations 12�, 1�2, 21�, 2�1, �12, and �21. Obviously, all
elements of Skn have length n, and |Skn| =

(
n
k

)
(n − k)! = n!/k!. Note that S0n is the familiar symmetric

group Sn. For a set H ⊂ [n] of size k, we let SHn denote the set of partial permutations π1 · · ·πn ∈ Skn
such that πi = � if and only if i ∈ H . We remark that our notion of partial permutations is somewhat
reminiscent of the notion of insertion encoding of permutations, introduced by Albert et al. [ALR05].
However, the interpretation of holes in the two settings is different.

In this paper, we extend the classical notion of pattern-avoiding permutations to the more general setting
of partial permutations. Let us first recall some definitions related to pattern avoidance on permutations.
Let V = {v1, . . . , vn} with v1 < · · · < vn be any finite subset of N. The standardization of a permutation
π on V is the permutation st(π) on [n] obtained from π by replacing the letter vi with the letter i. As
an example, st(19452) = 15342. Given p ∈ Sk and π ∈ Sn, an occurrence of p in π is a subword
ω = πi(1) · · ·πi(k) of π such that st(ω) = p; in this context p is called a pattern. If there are no
occurrences of p in π we also say that π avoids p. Two patterns p and q are called Wilf-equivalent if for
each n, the number of p-avoiding permutations in Sn is equal to the number of q-avoiding permutations
in Sn.

Let π ∈ Skn be a partial permutation and let i(1) < · · · < i(n − k) be the indices of the non-hole
elements of π. A permutation σ ∈ Sn is an extension of π if

st(σi(1) · · ·σi(n−k)) = πi(1) · · ·πi(n−k).

For example, the partial permutation 2�1 has three extensions, namely 312, 321 and 231. In general, the
number of extensions of π ∈ Skn is

(
n
k

)
k! = n!/(n− k)!.

We are now ready to define pattern avoidance on partial permutations. We say that π ∈ Skn avoids the
pattern p ∈ S` if each extension of π avoids p. For example, π = 32�154 avoids 1234, but π does not
avoid 123: the permutation 325164 is an extension of π and it contains two occurrences of 123. Let Skn(p)
be the set of all the partial permutations in Skn that avoid p, and let skn(p) = |Skn(p)|. Similarly, if H ⊆ [n]
is a set of indices, then SHn (p) is the set of p-avoiding permutations in SHn , and sHn (p) is its cardinality.

We say that two patterns p and q are k-Wilf-equivalent if skn(p) = skn(q) for all n. Notice that 0-Wilf
equivalence coincides with the standard notion of Wilf equivalence. We also say that two patterns p and
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q are ?-Wilf-equivalent if p and q are k-Wilf-equivalent for all k ≥ 0. Two patterns p and q are strongly
k-Wilf-equivalent if sHn (p) = sHn (q) for each n and for each k-element subset H ⊆ [n]. Finally, p and q
are strongly ?-Wilf-equivalent if they are strongly k-Wilf-equivalent for all k ≥ 0.

We note that although strong k-Wilf equivalence implies k-Wilf-equivalence, and strong ?-Wilf equiva-
lence implies ?-Wilf equivalence, the converse implications are not true. Consider for example the patterns
p = 1342 and q = 2431. A partial permutation avoids p if and only if its reverse avoids q, and thus p and q
are ?-Wilf-equivalent. However, p and q are not strongly 1-Wilf-equivalent, and hence not strongly ?-Wilf
equivalent either. To see this, we fix H = {2} and easily check that sH5 (p) = 13 while sH5 (q) = 14.

Our Results
The main goal of this paper is to establish criteria for k-Wilf equivalence and ?-Wilf equivalence of
permutation patterns. We are able to show that most pairs of Wilf-equivalent patterns that were discovered
so far are in fact ?-Wilf-equivalent. The only exception is the pair of patterns p = 2413 and q = 1342.
Although these patterns are known to be Wilf-equivalent [Sta94], they are neither 1-Wilf-equivalent nor
2-Wilf equivalent (see Section 6).

Many of our arguments rely on a close relationship between partial permutations and partial 01-fillings
of Ferrers diagrams. These fillings are introduced in Section 2, where we also establish the link between
partial fillings and partial permutations.

Our first main result is Theorem 5 in Section 3, which states that a permutation pattern of the form
123 · · · `X is strongly ?-Wilf-equivalent to the pattern `(` − 1) · · · 321X , where X = x`+1x`+2 · · ·xm
is any permutation of {` + 1, . . . ,m}. This theorem is a strengthening of a result of Backelin, West and
Xin [BWX07], who show that patterns of this form are Wilf-equivalent. Our proof is based on a different
argument than the original proof of Backelin, West and Xin. The main ingredient of our proof is an
involution on a set of fillings of Ferrers diagrams, discovered by Krattenthaler [Kra06]. We adapt this
involution to partial fillings and use it to obtain a bijective proof of our result.

Our next main result is Theorem 6 in Section 4, which states that for any permutation X of the set
{4, 5, . . . , k}, the two patterns 312X and 231X are strongly ?-Wilf-equivalent. This is also a refinement
of an earlier result involving Wilf equivalence, due to Stankova and West [SW02]. As in the previous
case, the refined version requires a different proof than the weaker version.

In Section 5, we study the k-Wilf equivalence of patterns whose length is small in terms of k. It is not
hard to see that all patterns of length ` are k-Wilf equivalent whenever ` ≤ k + 1, because skn(p) = 0
for every such pattern p. Thus, the shortest patterns that exhibit nontrivial behaviour are the patterns of
length k+2. For these patterns, we show that k-Wilf equivalence yields a new characterization of Baxter
permutations: a pattern p of length k + 2 is a Baxter permutation if and only if skn(p) =

(
n
k

)
. For any

non-Baxter permutation q of length k + 2, skn(q) is strictly smaller than
(
n
k

)
and is in fact a polynomial

in n of degree at most k − 1.
In Section 6, we focus on explicit enumeration of skn(p) for small patterns p. We obtain explicit closed-

form formulas for skn(p) for every p of length at most four and every k ≥ 1.
In view of the space constraints, most of the proofs have been omitted from this extended abstract.

An example: monotone patterns
Before we present our main results, let us illustrate the concept of pattern-avoiding partial permutations
on the example of partial permutations avoiding the monotone pattern 12 · · · `. Let π ∈ Skn, and let



Pattern avoidance in partial permutations 501

π′ ∈ Sn−k be the permutation obtained from π by deleting all �’s. Note that π avoids the pattern 12 · · · `
if and only if π′ avoids 12 · · · (`− k). Thus,

skn(12 · · · `) =
(
n

k

)
s0n(12 · · · (`− k)), (1)

where
(
n
k

)
counts the possibilities of placing k �’s. For instance, if ` = k + 3 then skn(12 · · · `) =(

n
k

)
s0n(123), and it is well known that s0n(123) = Cn, the n-th Catalan number. We remark that for

general `, Regev [Reg81] found an asymptotic formula for s0n(12 · · · `), which can be used to obtain a
(rather complicated) asymptotic formula for skn(12 · · · `) as n tends to infinity.

2 Partial fillings
In this section, we introduce the necessary definitions related to partial fillings of Ferrers diagrams. These
notions will later be useful in our proofs of ?-Wilf equivalence of patterns.

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) be a non-increasing sequence of k nonnegative integers. A Ferrers
diagram with shape λ is a bottom-justified array D of cells arranged into k columns, such that the j-th
column from the left has exactly λj cells. Note that our definition of Ferrers diagram is slightly more
general than usual, in that we allow columns with no cells. If each column of D has at least one cell,
then we call D a proper Ferrers diagram. Every row of a Ferrers diagram D has nonzero length (while
we allow columns of zero height). If all the columns of D have zero height—in other words, D has no
rows—then D is called degenerate.

For the sake of consistency, we assume throughout this paper that the rows of each diagram and each
matrix are numbered from bottom to top, with the bottom row having number 1. Similarly, the columns
are numbered from left to right, with column 1 being the leftmost column.

By cell (i, j) of a Ferrers diagram D we mean the cell of D that is the intersection of i-th row and j-th
column of the diagram. We assume that the cell (i, j) is a unit square whose corners are lattice points with
coordinates (i − 1, j − 1), (i, j − 1), (i − 1, j) and (i, j). The point (0, 0) is the bottom-left corner of
the whole diagram. We say a diagram D contains a lattice point (i, j) if either j = 0 and the first column
of D has height at least i, or j > 0 and the j-th column of D has height at least i. A point (i, j) of the
diagram D is a boundary point if the cell (i + 1, j + 1) does not belong to D (see Figure 1). Note that a
Ferrers diagram with r rows and c columns has r + c+ 1 boundary points.

Fig. 1: A Ferrers diagram with shape (3, 3, 2, 2, 0, 0, 0). The black dots represent the points. The black dots in
squares are the boundary points.

A 01-filling of a Ferrers diagram assigns to each cell the value 0 or 1. A 01-filling is transversal if each
row and each column has exactly one 1-cell. A 01-filling is sparse if each column and each row has at
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most one 1-cell. A permutation p = p1p2 · · · p` ∈ S` can be represented by a permutation matrix which is
a 01-matrix of size `×`, whose cell (i, j) is equal to 1 if and only if pj = i. If there is no risk of confusion,
we abuse terminology by identifying a permutation pattern p with the corresponding permutation matrix.
Note that a permutation matrix is a transversal filling of a diagram with square shape.

Let P be a permutation matrix of size n× n, and let F be a sparse filling of a Ferrers diagram. We say
that F contains P if F has a (not necessarily contiguous) square subdiagram of size n× n which induces
in F a subfilling equal to P . This notion of containment generalizes usual permutation containment.

We now extend the notion of partial permutations to partial fillings of diagrams. Let D be a Ferrers
diagram with k columns. LetH be a subset of columns ofD. Let φ be a function that assigns to every cell
of D one of the three symbols 0, 1 and �, such that every cell in a column belonging to H is filled with �,
while every cell in a column not belonging toH is filled with 0 or 1. The pair F = (φ,H), will be referred
to as a partial 01-filling (or a partial filling) of the diagram D. See Figure 2. The columns from the set
H will be called the �-columns of F , while the remaining columns will be called the standard columns.
Observe that if the diagram D has columns of height zero, then φ itself is not sufficient to determine the
filling F , because it does not allow us to determine whether the zero-height columns are �-columns or
standard columns. For our purposes, it is necessary to distinguish between partial fillings that differ only
by the status of their zero-height columns.

1

0

0 1

0

⋄
⋄
⋄

⋄
⋄

1 2 3 4 5 6 7

Fig. 2: A partial filling with �-columns 1, 4 and 6.

We say that a partial 01-filling is transversal if every row and every standard column has exactly one
1-cell, and we say that a partial 01-filling is sparse if every row and every standard column has at most
one 1-cell. A partial 01-matrix is a partial filling of a (possibly degenerate) rectangular diagram .

There is a natural correspondence between partial permutations and transversal partial 01-matrices. Let
π ∈ Skn be a partial permutation. A partial permutation matrix representing π is a partial 01-matrix P
with n− k rows and n columns, with the following properties:

• If the j-th symbol of π is �, then the j-th column of P is a �-column.

• If the j-th symbol of π is a number i, then the j-th column is a standard column. Also, the cell in
column j and row i is filled with 1, and the remaining cells in column j are filled with 0’s.

To define pattern-avoidance for partial fillings, we first introduce the concept of substitution into a �-
column, which is analogous to substituting a number for a � in a partial permutation. The idea is to insert
a new row with a 1-cell in the �-column; this increases the height of the diagram by one. Let us now
describe the substitution formally.

Let F be a partial filling of a Ferrers diagram with m columns. Assume that the j-th column of F is
a �-column. Let h be the height of the j-th column. A substitution into the j-th column is an operation
consisting of the following steps:
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1. Choose a number i, with 1 ≤ i ≤ h+ 1.

2. Insert a new row into the diagram, between rows i − 1 and i. The newly inserted row must not be
longer than the (i− 1)-th row, and it must not be shorter than the i-th row, so that the new diagram
is still a Ferrers diagram. If i = 1, we also assume that the length of the new row is at most m, so
that the number of columns does not increase during the substitution.

3. Fill all the cells in column j with the symbol 0, except for the cell in the newly inserted row, which
is filled with 1. Remove column j from the set of �-columns.

4. Fill all the remaining cells of the new row with 0 if they belong to a standard column, and with � if
they belong to a �-column.

Figure 3 illustrates an example of substitution.

1

0

0 1

0

⋄
⋄
⋄

⋄
⋄

1 2 3 4 5 6 7

1

0

0 1

0 ⋄
⋄

1 2 3 4 5 6 7

0

0

0

1 0 0 new row

Fig. 3: A substitution into the first column of a partial filling, involving an insertion of a new row between the second
and third rows of the original partial filling.

Note that a substitution into a partial filling increases the number of rows by 1. A substitution into
a transversal (resp. sparse) partial filling produces a new transversal (resp. sparse) partial filling. A
partial filling F with k �-columns can be transformed into a (non-partial) filling F ′ by a sequence of k
substitutions; we then say that F ′ is an extension of F .

Let P be a permutation matrix. We say that a partial filling F of a Ferrers diagram avoids P if every
extension of F avoids P . Note that a partial permutation π ∈ Snk avoids a permutation p, if and only if
the partial permutation matrix representing π avoids the permutation matrix representing p.

We say that two permutation matrices P andQ are shape-?-Wilf-equivalent, if for every Ferrers diagram
D there is a bijection between P -avoiding and Q-avoiding partial transversal fillings of D that preserves
the set of �-columns. Observe that if two permutations are shape-?-Wilf-equivalent, then they are also
strongly ?-Wilf-equivalent, because a partial permutation is a special case of a partial transversal filling
of a Ferrers diagram.

The notion of shape-?-Wilf-equivalence is motivated by the following proposition, which extends an
analogous result of Babson and West [BW00] for shape-Wilf-equivalence of non-partial permutations.

Proposition 1 Let P and Q be shape-?-Wilf-equivalent permutations, let X be an arbitrary permutation.
Then the two permutations ( 0 X

P 0 ) and
(

0 X
Q 0

)
are strongly ?-Wilf-equivalent.

Due to space constraints, the proof of Proposition 1 is omitted in this extended abstract.
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3 Strong ?-Wilf-equivalence of 12 · · · `X and `(`− 1) · · · 1X
We will use Proposition 1 as the main tool to prove strong ?-Wilf equivalence. To apply the proposition,
we need to find pairs of shape-?-Wilf-equivalent patterns. A family of such pairs is provided by the next
proposition, which extends previous results of Backelin, West and Xin [BWX07].

Proposition 2 Let I` = 12 · · · ` be the identity permutation of order `, and let J` = `(`− 1) · · · 21 be the
anti-identity permutation of order `. The permutations I` and J` are shape-?-Wilf-equivalent.

Before sketching the proof of this proposition, we introduce some notation and terminology. Let F
be a partial filling with r rows and c columns. Let i and j be numbers such that the point (i, j) is in F .
Let F (≤i,≤j) denote the submatrix of F whose bottom-left corner is the point (0, 0) and whose top-
right corner is the point (i, j); in other words, F (≤i,≤j) is the intersection of the bottom i rows with
the leftmost j columns of F . We assume that F (≤i,≤0) is the empty matrix, while F (≤0,≤j) is the
degenerate matrix with no rows but with j columns of zero height.

Let F be a sparse partial filling of a Ferrers diagram, and let (i, j) be a boundary point of F . Let h(F, j)
denote the number of �-columns among the first j columns of F . Let I(F, i, j) denote the largest integer
` such that the partial matrix F (≤ i,≤ j) contains I`. Similarly, let J(F, i, j) denote the largest ` such
that F (≤ i,≤j) contains J`.

We let F0 denote the (non-partial) sparse filling obtained by replacing all the symbols � in F by zeros.
Let us state without proof the following simple observation.

Observation 3 Let F be a sparse partial filling.

1. F contains a permutation matrix P if and only if F has a boundary point (i, j) such that F (≤ i,≤
j) contains P .

2. For any boundary point (i, j), we have I(F, i, j) = h(F, j)+I(F0, i, j) and J(F, i, j) = h(F, j)+
J(F0, i, j).

The key to the proof of Proposition 2 is the following theorem, which follows directly from the powerful
results of Krattenthaler [Kra06] obtained using the theory of growth diagrams.

Theorem 4 (Krattenthaler [Kra06]) Let D be a Ferrers diagram. There is a bijective mapping κ from
the set of all (non-partial) sparse fillings of D onto itself, with the following properties.

1. For any boundary point (i, j) of D, and for any sparse filling F , we have I(F, i, j) = J(κ(F ), i, j)
and J(F, i, j) = I(κ(F ), i, j).

2. The mapping κ preserves the number of 1-cells in each row and column. In other words, if a row
(or column) of a sparse filling F has no 1-cell, then the same row (or column) of κ(F ) has no 1-cell
either.

In Krattenthaler’s paper, the results are stated in terms of proper Ferrers diagrams. However, the bi-
jection obviously extends to Ferrers diagrams with zero-height columns as well. This is because adding
zero-height columns to a (non-partial) filling does not affect pattern containment.

From the previous theorem, we easily obtain the proof of the main proposition in this section.

Proof of Proposition 2: Let D be a Ferrers diagram. Let F be an I`-avoiding transversal partial filling
of D. Let F0 be the sparse filling obtained by replacing all the � characters of F by zeros. Define
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G0 = κ(F0), where κ is the bijection from Theorem 4. Note that all the �-columns of F are filled with
zeros both in F0 and G0. Let G be the sparse partial filling obtained from G0 by replacing zeros with � in
all such columns. Then G is a sparse partial filling with the same set of �-columns as F .

We see that for any boundary point (i, j) of the diagram D, h(F, j) = h(G, j). By the properties
of κ, we further obtain I(F0, i, j) = J(G0, i, j). In view of Observation 3, this implies that G is a J`-
avoiding filling. It is clear that this construction can be inverted, thus giving the required bijection between
I`-avoiding and J`-avoiding transversal partial fillings of D. 2

Combining Proposition 1 with Proposition 2, we get directly the main result of this section.

Theorem 5 For any ` ≤ m, and for any permutation X of {` + 1, . . . ,m}, the permutation pattern
123 · · · (`− 1)`X is strongly ?-Wilf-equivalent to the pattern `(`− 1) · · · 21X .

Notice that Theorem 5 implies, among other things, that all the patterns of size three are strongly
?-Wilf-equivalent.

4 Strong ?-Wilf-equivalence of 312X and 231X
We will now focus on the two patterns 312 and 231. The main result of this section is the following
theorem.

Theorem 6 The patterns 312 and 231 are shape-?-Wilf-equivalent. By Proposition 1, this implies that
for any permutation X of the set {4, 5, . . . ,m}, the two permutations 312X and 231X are strongly ?-
Wilf-equivalent.

Theorem 6 generalizes a result of Stankova and West [SW02], who have shown that 312 and 231 are
shape-Wilf equivalent. The original proof of Stankova and West [SW02] is rather complicated, and does
not seem to admit a straightforward generalization to the setting of shape-?-Wilf-equivalence. Our proof
of Theorem 6 is different from the argument of Stankova and West, and it is based on a bijection of
Jelı́nek [Jel07], obtained in the context of pattern-avoiding ordered matchings.

Due to space limitations, we omit the whole very long proof from this extended abstract.

5 The k-Wilf-equivalence of patterns of length k + 2
We will now consider the structure of pattern-avoiding partial permutations in which the number of �’s is
close to the length of the forbidden pattern.

Let us begin by an easy observation.

Observation 7 Assume that p is a pattern of length `. Any partial permutation with at least ` occurrences
of � contains p. Almost as obviously, a partial permutation with ` − 1 occurrences of � and of length at
least `, contains p as well. In particular, for every k ≥ ` − 1, we have skn(p) = 0, and hence all the
patterns of length ` are k-Wilf-equivalent.

In the rest of this section, we will deal with k-Wilf-equivalence of patterns of length ` = k + 2.
As we will see, an important part in k-Wilf-equivalence is played by Baxter permutations, which are

defined as follows.

Definition 8 A permutation p ∈ S` is called a Baxter permutation, if there is no four-tuple of indices
a < b < c < d ∈ [`] such that
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• c = b+ 1, and

• the subpermutation pa, pb, pc, pd is order-isomorphic to 2413 or to 3142.

In the terminology of Babson and Steingrı́msson [BS00], Baxter permutations are exactly the permutations
avoiding simultaneously the two patterns 2-41-3 and 3-14-2.

Baxter permutations have been introduced by G. Baxter [Bax64] in 1964. They were originally encoun-
tered in the context of common fixed points of commuting continuous functions [Bax64, Boy81]. Later,
it has been discovered that Baxter permutations are also closely related to other combinatorial structures,
such as plane bipolar orientations [BBMF08], noncrossing triples of lattice paths [FFNO08], and standard
Young tableaux [DG96]. An explicit formula for the number of Baxter permutations has been found by
Chung et al. [CGJK78], with several later refinements [Mal79, Vie81, DG98].

It is not hard to see that for any pattern of length ` = k+2, and for any n from the set {k, k+1, k+2},
we always have skn(p) =

(
n
k

)
. Thus, for these small values of n, all patterns have the same behavior.

However, for all larger values of n, the Baxter patterns are separated from the rest, as the next proposition
and theorem show. We omit the proofs of these results.

Proposition 9 Let p be a permutation pattern of size `, and let k = ` − 2. The following statements are
equivalent.

1. The pattern p is a Baxter permutation.

2. For each n ≥ k and each k-element subset H ⊆ [n], sHn (p) = 1.

3. For n = k + 3 and each k-element subset H ⊆ [n], sHn (p) = 1.

4. There exists n ≥ k + 3 such that for each k-element subset H ⊆ [n], sHn (p) = 1.

Theorem 10 Let p ∈ S` be a permutation pattern. Let k = ` − 2. If p is a Baxter permutation then
skn(p) =

(
n
k

)
for each n ≥ k. If p is not a Baxter permutation, then skn(p) <

(
n
k

)
whenever n ≥ k + 3.

Moreover, all the Baxter permutations are strongly k-Wilf equivalent.

We remark that by a slightly more careful analysis of the arguments leading to Proposition 9 and
Theorem 10, we could give a stronger upper bound for skn(p) when p is not a Baxter permutation. In
particular, it is not hard to show that in that case, skn(p) is eventually equal to a polynomial in n of degree
at most k − 1, with coefficients depending on k.

6 Short patterns
In the rest of this paper, we focus on explicit formulas for skn(p), where p is a pattern of length `. We
may assume that k < `− 1, and ` > 2, since for any other values of (k, `) the enumeration is trivial (see
Observation 7). We also restrict ourselves to k ≥ 1, since the case k = 0, which corresponds to classical
pattern-avoidance in permutations, has already been extensively studied [B0́4].

For a pattern p of length three, the situation is very simple. Theorem 10 implies that s1n(p) = n, since
all permutations of length three are Baxter permutations.

Let us now deal with patterns of length four. In Figure 4, we depict the k-Wilf equivalence classes,
where the four rows, top to bottom, correspond to the four values k = 0, 1, 2, 3. Since all the k-Wilf
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equivalences are closed under complements and reversals (but not inversions), we represent the 24 patterns
of length four by eight representatives, one from each symmetry class. For instance, {1342, 1423} in the
second row represents the union of {1342, 2431, 3124, 4213} and {1423, 2314, 3241, 4132}.

{1342, 1423}

{1234, 1243, 1324, 1342, 1423, 1432, 2143, 2413}

{2413}

{1342, 1423, 2413} {1324}

{1234, 1243, 1324, 1432, 2143}

{1234, 1243, 1324, 1342, 1423, 1432, 2143}

{1234, 1243, 1432, 2143}

{2413}

k = 0

k = 1

k = 2

k = 3

Fig. 4: The k-Wilf-equivalence classes of permutations of size 4.

All patterns p of length four except 2413 and 3142 are Baxter permutations, and hence they satisfy
s2n(p) =

(
n
2

)
by Theorem 10. It is possible to show that s2n(2413) = s2n(3142) = 3n − 6. We omit the

details of this routine argument in this extended abstract.
In the rest of the paper, we deal with 1-Wilf equivalence of patterns of length four, and with the enu-

meration of the corresponding avoidance classes. Theorem 5 and symmetry arguments imply that all
the patterns 1234, 1243, 1432 and 2143 are strongly ?-Wilf-equivalent, and Theorem 6 with appropriate
symmetry arguments shows that 1342 and 1423 are strongly ?-Wilf-equivalent as well. The only case
not covered by these general theorems is the 1-Wilf equivalence of 1324 and 1234, which is handled
separately by the next proposition.

Proposition 11 The patterns 1234 and 1324 are strongly 1-Wilf-equivalent.

The proof of Proposition 11 is omitted.
Let us now state the formulas for s1n(p), where p has length four. The proofs are omitted.

Theorem 12 The number of partial permutations of length n ≥ 1 with a single hole, avoiding a pattern
of length four, is given by these formulas:

• s1n(1234) = s1n(1243) = s1n(1324) = s1n(1432) = s1n(2143) =
(
2n−2
n−1

)
,

• s1n(1342) = s1n(1423) =
(
2n−2
n−1

)
−
(
2n−2
n−5

)
, and

• s1n(2413) = 2
n+1

(
2n
n

)
− 2n−1.

7 Directions of further research
We have shown that classical Wilf equivalence may be regarded as a special case in a hierarchy of k-Wilf
equivalence relations, and that many properties previously established in the context of Wilf equivalence
can be generalized to all the k-Wilf equivalences. In many situations, understanding the k-Wilf equiva-
lence class of a given pattern p becomes easier as k increases. In particular, the k-Wilf equivalence class
of the permutation p = 12 · · · (k + 1)(k + 2) contains exactly the Baxter permutations of length k + 2.
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What can we say about the k-Wilf equivalence class of the permutation 12 · · · (k + 3)? For k = 0
and k = 1 this class contains exactly the layered permutations of length k + 3. Computer enumeration
suggests that the same is true for larger values of k as well, but we have no proof.
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Electron. J. Combin, 12(1), 2005. Research paper 47, 31 pp.
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Abstract. We show that there are n! matchings on 2n points without, so called, left (neighbor) nestings. We also
define a set of naturally labeled (2 + 2)-free posets, and show that there are n! such posets on n elements. Our work
was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909].
They gave bijections between four classes of combinatorial objects: matchings with no neighbor nestings (due to
Stoimenow), unlabeled (2 + 2)-free posets, permutations avoiding a specific pattern, and so called ascent sequences.
We believe that certain statistics on our matchings and posets could generalize the work of Bousquet-Mélou et al. and
we make a conjecture to that effect. We also identify natural subsets of matchings and posets that are equinumerous
to the class of unlabeled (2 + 2)-free posets.

We give bijections that show the equivalence of (neighbor) restrictions on nesting arcs with (neighbor) restrictions
on crossing arcs. These bijections are thought to be of independent interest. One of the bijections maps via certain
upper-triangular integer matrices that have recently been studied by Dukes and Parviainen [Electron. J. Combin. 17
(2010) #R53]

Résumé. Nous montrons qu’il y a n! couplages sur 2n points sans emboı̂tement (de voisins) à gauche. Nous
définissons aussi un ensemble d’EPO (ensembles partiellement ordonnés) sans motif (2+2) naturellement étiquetés,
et montrons qu’il y a n! tels EPO sur n éléments. Notre travail a été inspiré par Bousquet-Mélou, Claesson, Dukes
et Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. Ces auteurs donnent des bijections entre quatre classes
d’objets combinatoires: couplages sans emboı̂tement de voisins (dû à Stoimenow), EPO sans motif (2 + 2) non
étiquetés, permutations évitant un certain motif, et des objets appelés suites à montées. Nous pensons que certaines
statistiques sur nos couplages et nos EPO pourraient généraliser le travail de Bousquet-Mélou et al. et nous pro-
posons une conjecture à ce sujet. Nous identifions aussi des sous-ensembles naturels de couplages et d’EPO qui sont
énumérés par la même séquence que la classe des EPO sans motif (2 + 2) non étiquetés.

Nous donnons des bijections qui démontrent l’équivalence entre les restrictions sur les emboı̂tements (d’arcs voisins)
et les restrictions sur les croisements (d’arcs voisins). Nous pensons que ces bijections présentent un intérêt pro-
pre. L’une de ces bijections passe par certaines matrices triangulaires supérieures à coefficients entiers qui ont été
récemment étudiées par Dukes et Parviainen [Electron. J. Combin. 17 (2010) #R53]
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1 Introduction
A matching of the integers {1, 2, . . . , 2n} is a partition of that set into blocks of size 2. An example of a
matching is

M = {(1, 3), (2, 7), (4, 6), (5, 8)}.
In the diagram below there is an arc connecting i with j precisely when (i, j) ∈M .

1 2 3 4 5 6 7 8

A nesting of M is a pair of arcs (i, `) and (j, k) with i < j < k < `:

i j k `

We call such a nesting a left-nesting if j = i + 1. Similarly, we call it a right-nesting if ` = k + 1. The
example matching has one nesting, formed by the two arcs (2, 7) and (4, 6). It is a right-nesting.

To give upper bounds on the dimension of the space of Vassiliev’s knot invariants of a given degree,
Stoimenow [14] was led to introduce what he calls regular linearized chord diagrams. In the terminology
of this paper, Stoimenow’s diagrams are matchings with no neighbor nestings, that is, matchings with
neither left-nestings, nor right-nestings. Following Stoimenow’s paper, Zagier [16] derived the following
beautiful generating function enumerating such matchings with respect to size:

∑

n≥0

n∏

i=1

(
1− (1− t)i

)
.

Recently, Bousquet-Mélou et al. [2] gave bijections between matchings on [2n] with no neighbor nest-
ings and three other classes of combinatorial objects, thus proving that they are equinumerous. The other
classes were unlabeled (2 + 2)-free posets (or interval orders) on n nodes; permutations on [n] avoiding
the pattern ; and ascent sequences of length n. Let fn be the cardinality of any, and thus all, of the
above classes—it is the coefficient in front of tn in Zagier’s generating function. We call fn the nth Fish-
burn number; the first few numbers are 1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240. Fishburn [7, 8, 9] did
pioneering work on interval orders; for instance, he showed the basic theorem that a poset is an interval
order if and only if it is (2+ 2)-free.

The pattern avoiding permutations and the ascent sequences were both defined by Bousquet-Mélou et
al. We shall recall those definitions there. In a permutation π = a1 . . . an, an occurrence of the pattern
is a 3 letter subsequence aiai+1aj of π such that aj + 1 = ai < ai+1. As an example, the permutation
π = 351426 contains one such occurrence, namely 352. If π contains no such occurrence we say that π
avoids the pattern. An integer sequence (x1, . . . , xn) is an ascent sequences if

x1 = 0 and 0 ≤ xi ≤ 1 + asc(x1, . . . , xi−1),

for 2 ≤ i ≤ n. Here, asc(x1, . . . , xk) denotes the number of ascents in (x1, . . . , xk), and an ascent is a
j ∈ [k−1] such that xj < xj+1. Bousquet-Mélou et al. [2] derived a closed expression for the generating
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function enumerating ascent sequences with respect to length and number of ascents; hence they gave a
new proof of Zagier’s result, or rather a refinement of it.

Recall that Stoimenow’s diagrams are matchings with no neighbor nestings. The discovery that led to
the present paper is that there are exactly n! matchings on [2n] with no left-nestings (Theorem 1). As an
example, these are the 6 such matchings on {1, . . . , 6}:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Can we also “lift” ascent sequences and unlabeled (2+ 2)-free posets to the level of all permutations?
That is, can we define “certain sequences” and “certain posets”, both of cardinality n!, that are supersets of
ascent sequences and unlabeled (2+ 2)-free posets, respectively? For ascents sequences this is easy, and
inversion tables is a natural choice. The poset case is more challenging. However, we show (Definition 2
and Theorem 5) that there are exactly n! naturally labeled posets P on [n] such that i <P k whenever
i < j <P k for some j ∈ [n]; we call them factorial posets. Here is a list of the 6 factorial posets on
{1, 2, 3}:

3

2

1

2

1 3

3

1 2

3

1 2 1

2 3

1 2 3

It is not hard to see (Proposition 4) that factorial posets are (2+ 2)-free. Moreover, we give an additional
restriction on the labeling of factorial posets under which the labeling is unique (Proposition 6), and thus
the subset of factorial posets meeting that restriction is trivially in bijection with unlabeled (2 + 2)-free
posets.

The bijections we give to prove that inversion tables, factorial posets and matchings with no left-nesting
are equinumerous do however not specialize to give back the results from [2]. This remains an interesting
challenge. In Section 5 we prove that we could have studied matchings with restrictions on crossings
instead of on nestings and present bijections to verify this.

Let p = . As mentioned before, Bousquet-Mélou et al. [2] gave a bijection between matchings
with no neighbor nestings and p-avoiding permutations. We conjecture (Conjecture 19) a generalization
of that result. Namely, we conjecture that the distribution of right-nestings over matchings on [2n] with
no left-nestings coincides with the distribution of p over permutations on [n].

In a recent paper, Dukes and Parviainen [6] study upper triangular matrices with non-negative integer
entries such that each row and column has at least one nonzero entry and the total sum of the entries is n.
They provide a recursive encoding of those matrices as ascent sequences. We have found a direct bijection
(Theorem 8) from the same matrices to matchings with no neighbor nestings. In addition, we show
(Proposition 11) that the subset of the matrices whose entries are 0 or 1 are in bijection with matchings
with no left-nestings and no right-crossings.

2 Matchings with no left-nestings
Let Mn be the set of matchings on [2n], and let M ∈Mn. If i < j and α = (i, j) is an arc of M we call
i the opener of α, and we call j the closer of α. In what follows it will be convenient to order the arcs
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with respect to closer. In particular, “the last arc” refers to the arc with closer 2n. In the introduction we
defined what left- and right-nestings are, and by lne(M) and rne(M) we shall denote the number of left-
and right-nestings, respectively. Let

Nn = {M ∈Mn : lne(M) = 0 }
and N = ∪n≥0Nn. Define In as the Cartesian product In = [0, 0] × [0, 1] × · · · × [0, n − 1], where
[i, j] = {i, i+1, . . . , j}. In other words, In is the set of inversion tables of length n. Also, let I = ∪n≥0In.

Theorem 1 Matchings of [2n]with no left-nestings are in bijection with inversion tables of length n, and
thus |Nn| = n!.

Proof: Using recursion we define a bijection f : I → N. Let f(ε) = ∅, that is, let the empty inversion
table map to the empty matching. Let w = (a1, . . . , an) be any inversion table in In with n > 0. Let
w′ = (a1, . . . , an−1) and let M ′ = f(w′). Now create a matching M in Nn by inserting a new last arc in
M ′ whose opener is immediately to the left of the (an+1)st closer of M ′ if an < n− 1 and immediately
to the left of its own closer if an = n − 1. Set f(w) = M . Note that the opener of the last arc has to be
immediately to the left of some closer, otherwise a left-nesting would be created. Also note that removing
the last arc from a matching in Nn cannot create a left-nesting. From a simple induction argument it thus
follows that the described map is a bijection.

It is also easy to give a direct, non-recursive, description of the inverse of f . Indeed, f−1(M) =
(a1, . . . , an) where ai is the number of closers to the left of the opener of the ith arc; here, as before, arcs
are ordered by closer. 2

As an example, let w = (a1, a2, a3, a4) = (0, 1, 0, 1). To construct the matching corresponding to that
inversion table we insert the arcs one at the time, so that—as in the proof—the opener of the new last arc
is immediately to the left of the (ai + 1)st closer:

1 2
1?

1 2 3 4
1 2?

1 2 3 4 5 6
1 2 3?

1 2 3 4 5 6 7 8
1 2 3 4?

Here the star marks the opener of the new arc. Reading the number to the right of the star we get (1, 2, 1, 2)
and subtracting one from each coordinate we recover the inversion table (0, 1, 0, 1).

3 Factorial posets
A poset P of cardinality n is said to be labeled if its elements are identified with the integers 1, . . . , n. A
poset P is naturally labeled if i < j in P implies i < j in the usual order.

Definition 2 We call a naturally labeled poset P on [n] such that, for i, j, k ∈ [n],

i < j <P k =⇒ i <P k

a factorial poset, and by Fn we denote the set of factorial posets on [n]. Similarly, we call a naturally
labeled poset P on [n] such that, for i, j, k ∈ [n],

i > j >P k =⇒ i >P k

a dually factorial poset.
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There are 6 factorial posets on {1, 2, 3}, and we listed them on page 1. It is easy to check that of those

posets, exactly one is not dually factorial: With P = 2
1 3

we have 3 > 2 >P 1, but 3 6>P 1.

Definition 3 The predecessor set of j ∈ P is Pred(j) = {i : i <P j}, and we denote by pred(j) =
#Pred(j) the number of predecessors of j. Similarly we define Succ(j) = {i : i >P j} as the successor
set of j and succ(j) = #Succ(j) as the number of successors of j.

Note that P is factorial if, and only if, for all k in P , there is a j in [0, n − 1], such that Pred(k) =
[1, j]. It is well known—see for example Bogart [1]—that a poset is (2 + 2)-free if, and only if, the
collection {Pred(k) : k ∈ P } of predecessor sets can be linearly ordered by inclusion; hence the
following proposition.

Proposition 4 Factorial posets are (2+ 2)-free.

Theorem 5 Factorial posets on [n] are in bijection with inversion tables of length n, and thus |Fn| = n!.

Proof: Define g : Fn → In by g(P ) = (a1, . . . , an) where ak = pred(k). To see that g is a bijection
we describe its inverse. Given an inversion table w = (a1, . . . , an) in In we construct a factorial poset
P = P (w) by postulating that i <P k precisely when 1 ≤ i ≤ ak. That this definition is consistent is
easily seen by building P recursively. 2

We now have two bijections, f from inversion tables to matchings with no left-nestings, and g from
factorial posets to inversion tables. Let h = f ◦ g be their composition:

Fn Nn

Ing f

h

Let P ∈ Fn. From the proofs of Theorems 5 and 1 it is immediate that to build M = h(P ) we insert the
arcs one at the time so that, in the ith step, the opener of the new last arc is immediately to the left of the
(pred(i) + 1)st closer.

Next we describe the inverse map, h−1. Take M ∈ Nn and let α1, . . . , αn be its arcs ordered by closer.
Then i < j in P = h−1(M) if and only if the closer of αi is to the left of the opener of αj .

An interval order is a poset with the property that each element x can be assigned an interval I(x) of
real numbers so that x < y in the poset if and only if every point in I(x) is less than every point in I(y).
Such an assignment is called an interval representation of the poset. In 1970, Fishburn [8] showed that a
poset is (2+2)-free precisely when it has an interval representation. Let us for a moment identify the arcs
of a matching with intervals of the real line. Then the function h, above, gives an interval representation
of each factorial poset.

4 A unique labeling
Let M ∈ Nn and let α1, . . . , αn be its arcs ordered by closer. Let P = h−1(M). Assume that 1 ≤ i <
j ≤ n in the usual order. Note that if αi and αj form a nesting, then we cannot have pred(i) = pred(j)
since then it would be a left-nesting which can never occur by the definition of g−1. Thus αi and αj form
a nesting precisely when pred(i) > pred(j). If, in addition, j = i+1 and succ(i) = succ(j) then αi and
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αj form a right-nesting. Thus M is non-neighbor-nesting precisely when for each i ∈ [n − 1] we have
pred(i) ≤ pred(i+ 1) or succ(i) > succ(i+ 1). By applying the bijection of Bousquet-Mélou et al. [2]
from non-neighbor-nesting matchings to unlabeled (2+ 2)-free posets we get the following result.

Proposition 6 Factorial posets on [n] such that for each i ∈ [n− 1] we have

pred(i) ≤ pred(i+ 1) or succ(i) > succ(i+ 1) (1)

are in bijection with unlabeled (2+ 2)-free posets on n nodes; hence there are exactly fn such posets.

An alternative way to see the above result is that given an unlabeled (2+2)-free poset P there is exactly
one way to label P so that the resulting poset is factorial and satisfies (1). The key observation to such a
labeling is that if P is factorial and (1) holds then the pairs (succ(1),pred(1)), . . . , (succ(n),pred(n))
are ordered weakly decreasing with respect to the first coordinate, and on equal first coordinate weakly
increasing with respect to the second coordinate. We, however, omit the details of this argument.

5 Crossings versus nestings
A crossing of a matching M is a pair of arcs (i, k) and (j, `) with i < j < k < `, and we can define
left- and right-crossings analogously to how it was defined for nesting arcs. With A and B as in the table
below there are bijections between

{M ∈Mn :M is non A} and {M ∈Mn :M is non B}.

A B
nesting crossing

neighbor nesting neighbor crossing
left-nesting left-crossing

The first case is well known: for bijections between non-nesting matchings and non-crossing matchings
see for instance [4, 5, 10]. We give bijections for the two remaining cases in this section. There exist a
more complicated bijection [3] that can explain all three levels at once; see comment at the end of this
section.

The second case is the most challenging, so let us look at the third case first. The proof of Theorem 1
gives a bijection f from inversion tables to non-left-nesting matchings. That bijection can be modified to
give a bijection fnc from inversion tables to non-left-crossing matchings (Theorem 7), and so fnc ◦ f−1
is a bijection from non-left-nesting to non-left-crossing matchings.

Theorem 7 Matchings of [2n] with no left-crossing are in bijection with inversion tables of length n;
hence there are exactly n! such matchings.

Proof: As in the proof of Theorem 1 we define a bijection fnc recursively. The difference is that this time
the opener of the new last arc is immediately to the right of the anth closer if an > 0, or to the extreme
left if an = 0. 2

For the second case, we shall give a bijection via matrices of a certain kind. Let Tn be the set of upper
triangular matrices with non-negative integer entries, such that no row or column has only zeros and the
total sum of the entries is n. These matrices have recently been studied by Dukes and Parviainen [6,
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§2]; they gave a recursive encoding of the matrices in Tn as ascent sequences, and thus they showed
that |Tn| = fn. This fact seems to have been first observed by Vladeta Jovovic [11]. We shall give a
surjection ψ from the set of matchings of [2n] to Tn. Further, we shall show that if ψ is restricted to
non-neighbor-nesting matchings, or non-neighbor-crossing matchings, then ψ is a bijection.

Before we describe ψ we need a few definitions. Let M be a matching and let O(M) and C(M) be the
set of openers and closers of M , respectively. Write

O(M) = O1 ∪ · · · ∪Ok and C(M) = C1 ∪ · · · ∪O`
as disjoint unions of maximal intervals. Clearly, k = `; we denote this number int(M). As an example,
for M = {(1, 2), (3, 5), (4, 6)} we have O(M) = [1, 1] ∪ [3, 4], C(M) = [2, 2] ∪ [5, 6] and int(M) = 2.

We are now in a position to define the promised map from matchings to matrices. Assume that M is
a matching and that its intervals of openers and closers are ordered in the natural order. Let ψ(M) = T
where T = (tij) is an int(M)× int(M) matrix and

tij = |M ∩ Oi×Cj |.

In other words, tij is the number of arcs whose opener is inOi and closer inCj . For instance, the preimage
of ( 1 1

0 1 ) under ψ consists of the following 4 matchings:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Note that of these matchings exactly one has no neighbor nestings and exactly one has no neighbor cross-
ings. We shall see that this is no coincidence. (For brevity the proofs of the fllowing results have been
excluded from this extended abstract.)

Theorem 8 When restricted to matchings of [2n]with no neighbor nestings ψ is a bijection onto Tn.

Theorem 9 When restricted to matchings of [2n]with no neighbor crossings ψ is a bijection onto Tn.

We have now explained the hierarchy of nesting and crossing conditions that we set out to explain in the
beginning of this section. As we pointed out, the bijections for the more general cases do not specialize to
give bijections between the smaller sets. Indeed, if we specialize the map ψ to matchings with no nestings
we get the subset of matrices (tij) ∈ Tn such that for all i, j, x, y > 0, at least one of ti,j and ti−x,j+y
must be zero. The non-zero entries in such a matrix will form a “path” with the entries as vertices, which
can be seen to be equivalent to a Motzkin path. Thus, the matrices just described are in bijection with
Motzkin paths with positive integer weights on the vertices of the path such that the sum of the weights is
n. If we on the other hand specialize ψ to matchings with no crossings we get the somewhat odd constraint
that for all i < i+ x ≤ j < j + y at least one of ti,j and ti+x,j+y must be zero.

Corollary 10 The two subsets of Tn mentioned above are enumerated by the Catalan numbers.

Before we close this section we give one more result that is almost for free given the map ψ. Let
T01
n ⊂ Tn be the set of zero-one matrices in Tn. For instance,

T01
3 =

{
( 1 1
0 1 ) ,

(
1 0 0
0 1 0
0 0 1

)}
.
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Dukes and Parviainen [6, §4] showed that the matrices in T01
n correspond to those ascent sequences that

have no two equal consecutive entries. We offer the following proposition.

Proposition 11 When restricted to matchings of [2n]with no left-nestings and no right-crossings ψ is a
bijection onto T01

n .

An important remark is that there exist a recent bijection by Chen et.al. [3], via certain walks in the
Youngs lattice called vacillating tableaux, that uniformly shows all three cases above. For readers familiar
with this bijection let us briefly describe why this is the case.

Let M be a matching of [2n] in which j and j+1 are two consecutive closers. In the notation of [3], let
φ(M) = (λ0, . . . , λ4n) be the vacillating tableau corresponding to M . The assumption that j and j + 1
are closers means that λ2j+2 ( λ2j and λ2j ( λ2j−2. Let rj be the row where λ2j+2 has fewer elements
than λ2j and let rj−1 be the row where λ2j has fewer elements than λ2j−2. The arcs ending in j and j+1
form a right-nesting if and only if rj−1 ≤ rj , and thus they form a right-crossing if and only if rj−1 > rj .

Now, consider the involution M∗ obtained by conjugating each partition in φ(M) and then applying
φ−1. A moment of thought gives that the arcs ending in j and j +1 form a right-nesting in M if and only
if they form a right-crossing in M∗.

Similarly, if i and i + 1 are two consecutive openers of M, then λ2i−1 ( λ2i and λ2i ( λ2i+2. This
time let rx be the row in which λ2x is greater than λ2x−2. Then the arcs with openers i and i+ 1 form a
left-crossing if and only if ri < ri+1. Hence i and i+ 1 form a left-nesting in M if and only if they form
a left-crossing in M∗.

This shows that the bijection in [3] may be used to explain all three levels discussed here at once. It also
shows that using the above restrictions we get two different subets of all vacillating tableaux enumerated
by n! and one subset, satisfying both restrictions, that is enumerated by the Fishburn numbers.

6 Ascent and descent correcting sequences
It is easy to see that condition (1) in Proposition 6 is equivalent to

i >P k and i+ 1 6>P k =⇒ i = pred(`) for some ` in P . (2)

Let a descent correcting sequence be an inversion table (a1, . . . , an) such that

ai > ai+1 =⇒ a` = i for some ` > i.

That is, if there is a descent at position i then this has to be “corrected” by the value i occurring later in
the sequence. Condition (2) translates directly to the condition for a descent correcting sequence, and thus
we have the following Proposition (in which fn is the nth Fishburn number).

Proposition 12 There are exactly fn descent correcting sequences of length n.

We may similarly use the map fnc from matchings with no left-crossings to inversion tables. We then
get that the sequences corresponding to matchings with no neighbor crossings are the inversion tables
(a1, . . . , an) such that

ai < ai+1 6= i+ 1 =⇒ a` = i for some ` > i.

We call them ascent correcting sequences. Using Theorem 9 we arrive at the following result.

Proposition 13 There are exactly fn ascent correcting sequences of length n.
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7 Posets that are both factorial and dually factorial
Note that being dually factorial entails the condition in Proposition 6. So, under h, matchings corre-
sponding to dually factorial posets have no right-nestings. In fact, they do not have any nestings at all.
To see this, assume that M ∈ Nn and let α1, . . . , αn are its arcs ordered by closer. Also, assume that
1 ≤ i < j ≤ n. Recall that the arcs αi and αj form a nesting precisely when pred(i) > pred(j), which
is equivalent to there being a k <P i such that k 6<P j; this cannot happen in a dually factorial poset.
It is easy to see that this argument works both ways, so M = h(P ) is non-nesting if and only if P is
dually factorial. It is well known that non-nesting matchings are counted by the Catalan numbers. See for
instance Stanley [13, Ex. 6.19uu]. One way to associate a given non-nesting matching with a Dyck path
is to map its openers to up-steps and its closers to down-steps.

Proposition 14 Exactly Cn =
(
2n
n

)
/(n+ 1) posets on [n] are both factorial and dually factorial.

Let us mention an alternative proof. To the right is the smallest example of a factorial
poset that is not dually factorial but satisfies the condition of Proposition 6: As stated by
Proposition 4, factorial posets are (2+ 2)-free; those that, in addition, are dually factorial
are (3+ 1)-free. However, we omit the details of this argument.

4

2

1 3

Proposition 15 If P is a factorial poset satisfying (1) from Proposition 6, then P is dually factorial if and
only if P is (3+ 1)-free.

Since posets that are both factorial and dually factorial have a unique labeling we can regard them as
unlabeled. Further, unlabeled posets that are both (2+ 2)- and (3+ 1)-free (also called semiorders) are
known to be enumerated by the Catalan numbers; see [13, Ex. 6.19ddd] and [15].

8 Statistics and equidistributions
One question we shall consider in this section is what statistics are respected by the bijections f , g and h.
For reference, we list the size 3 matchings, inversion tables, permutations and posets that correspond to
each other under those bijections:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

012 011 002 001 010 000
123 132 213 231 312 321

3
2
1 1

2 3 3

1 2

3

1 2

2

1 3 1 2 3

There are several well known ways of translating between permutations and inversion tables. Here we
have chosen the following way: Given π ∈ Sn, we build the corresponding inversion table w from right
to left. The right most letter of w is π−1(n)− 1. The remaining letters of w are obtained by repeating this
procedure on the length n− 1 permutation that results from π by deleting n.
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We shall now define the relevant statistics, and we start with statistics on posets. The ordinal sum [12,
§3.2] of two posets P and Q is the poset P ⊕Q on the union P ∪Q such that x ≤ y in P ⊕Q if x ≤P y
or x ≤Q y, or x ∈ P and y ∈ Q. Let us say that P has k components, and write comp(P ) = k, if P
is the ordinal sum of k, but not k + 1, nonempty posets. The number of minimal elements of a poset P
is denoted min(P ). The number of levels of P—in other words, the number of distinct predecessor sets
in P—is denoted lev(P ). A pair of elements x and y in P are said to be incomparable if x 6≤P y and
y 6≤P x. The number of incomparable pairs in P we denote by ip(P ).

Let π be a permutation. An ascent in π is a letter followed by a larger letter; a descent in π is a
letter followed by a smaller letter. The number of ascents and descents are denoted asc(π) and des(π),
respectively. An inversion is a pair i < j such that π(i) > π(j). The number of inversions is denoted
inv(π). A left-to-right minimum of π is a letter with no smaller letter to the left of it; the number of
left-to-right minima is denoted lmin(π). The statistics right-to-left minima (rmin), left-to-right maxima
(lmax), and right-to-left maxima (rmax) are defined similarly. For permutations π and σ, let π⊕σ = πσ′,
where σ′ is obtained from σ by adding |π| to each of its letters, and juxtaposition denotes concatenation.
We say that π has k components, and write comp(π) = k, if π is the sum of k, but not k + 1, nonempty
permutations. Let dent(π) denote the number of distinct entries of the inversion table associated with π.

ForM a matching on [2m] andN a matching on [2n], letM⊕N =M ∪N ′, whereN ′ is the matching
on [2m+1, 2m+2n] obtained from N by adding 2m to all of its openers and closers. Let us say that M
has k components, and write comp(M) = k, if M is the sum of k, but not k + 1, nonempty matchings.
Let min(M) = j − 1 where j is the smallest closer of M ; for a factorial poset, j is the closer of the
arc with opener 1. Let last(M) be the number of closers that are smaller than the opener of the last arc.
Recall from Section 5 that int(M) denotes the number of intervals in the list of openers of M . Let us
assume that k is the closer of some arc of M , and let α = (i, j) be another arc of M . If i < k < j we say
that k is embraced by α, and by emb(M) we denote the number of pairs (k, α) in M such that the closer
k is embraced by α.

Proposition 16 Let f and g be as in the proofs of Theorems 1 and 5. Let P be a factorial poset on [n].
Let w = g(P ) and M = f(w) be the corresponding inversion table and matching, respectively. Let π be
the permutation corresponding to w. Then

( comp(P ), min(P ), pred(n), lev(P ), ip(P ) ) =
( comp(π), lmin(π), π−1(n)− 1, dent(π), inv(π) ) =
( comp(M), min(M), last(M), int(M), emb(M) )

Proof: For brevity the proof of this theorem has been excluded from this extended abstract. 2

Let us note a few direct consequences of the above proposition.

Corollary 17 The statistic ip is Mahonian on Fn. That is, it has the same distribution as inv on Sn. Also,
the statistic emb is Mahonian on Nn.

Corollary 18 The statistic lev is Eulerian on the set Fn. That is, it has the same distribution as des on
Sn. Also, the statistic int is Eulerian on Nn.

Proof: It suffices to show that the statistic dent is Eulerian. The following proof is due to Emeric Deutsch
(personal communication, May 2009). Let d(n, k) be the number of inversion tables of length n with k
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distinct entries. Clearly, d(n, 0) = 0 for n > 0 and d(n, k) = 0 for k > n. We shall show that, for
0 < k ≤ n, d(n, k) = kd(n − 1, k) + (n − k + 1)d(n − 1, k − 1) (the Eulerian recursion). Inversion
tables of length n with k distinct entries fall into two disjoint classes: Those whose last entry is equal to
at least one of the preceding n− 1 entries; there are kd(n− 1, k) such inversion tables. Those whose last
entry is different from the preceding n− 1 entries; there are (n− (k − 1))d(n− 1, k − 1) such inversion
tables. 2

Recall that lne(M) and rne(M) denote the number of left- and right-nestings, respectively. Let lcr(M)
and rcr(M) denote the number of left- and right-crossings, respectively. The bijections f : In → Nn and
g : Fn → In that we have presented do not specialize to the bijections presented by Bousquet-Mélou et
al. [2]. If one were to find bijections that do specialize in the desired way, then one could also hope to
prove the following conjecture (checked by computer for n ≤ 7). Here we view p = as a function
counting the occurrences of the pattern p.

Conjecture 19 These three triples of statistics are equidistributed.

( rne, comp, min ) on Fn,
( p, comp, lmin ) on Sn,
( rne, comp, min ) on Nn.

9 Two additional conjectures and a generalization
Conjecture 20 Assume that i < j < k < `. Let us say that the arcs (i, `) and (j, k) are m-left-nesting if
j − i ≤ m. Note that a 1-left-nesting is the same as a left-nesting. This conjecture claims that among all
the matchings on [2n] there are exactly fn that have no 2-left-nestings.

Conjecture 21 The distribution of lne over the set of all matchings on [2n] is given by the “Second-order
Eulerian triangle”, entry A008517 in OEIS [11].

Conjectures 20 and 21 have been checked by computer for n ≤ 7.

Problem 22 Consider the following generalization of factorial posets. Let P and Q be labeled posets on
[n] such that i <P j =⇒ i <Q j. If, in addition,

i <Q j <P k =⇒ i <P k

then we say that P is Q-factorial. Note that n-factorial coincides with factorial, where n is the n-chain.
Note also that Q itself is always a Q-factorial poset and it is the only one if Q is an antichain. Is this
generalization useful? How many Q-factorial posets are there?

Note added in proof: Paul Levande has found proofs for Conjectures 20 and 21.
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The Frobenius Complex

Eric Clark and Richard Ehrenborg
Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027

Abstract. Motivated by the classical Frobenius problem, we introduce the Frobenius poset on the integers Z, that is,
for a sub-semigroup Λ of the non-negative integers (N,+), we define the order by n ≤Λ m if m− n ∈ Λ. When Λ
is generated by two relatively prime integers a and b, we show that the order complex of an interval in the Frobenius
poset is either contractible or homotopy equivalent to a sphere. We also show that when Λ is generated by the integers
{a, a+ d, a+ 2d, . . . , a+ (a− 1)d}, the order complex is homotopy equivalent to a wedge of spheres.

Résumé. Motivé par le problème de Frobenius classique, nous introduisons l’ensemble partiellement ordonné de
Frobenius sur les entiers Z, c.à.d. que pour un sous-semigroupe Λ de les entiers non-négatifs (N,+) nous définissons
l’ordre par n ≤Λ m si m − n ∈ Λ. Quand le Λ est engendré par deux nombres a et b, relativement premiers entre
eux, noux montrons que le complexe des chaı̂nes d’un intervalle quelquonque dans l’ensemble partiellement ordonné
de Frobenius est soit contractible soit homotopiquement équivalent à une sphère. Nous montrons aussi que dans le
cas où Λ est engendré par les entiers {a, a + d, a + 2d, . . . , a + (a − 1)d}, le complexe des chaı̂nes a le type de
homotopie d’un bouquet de sphères.

Keywords: order complex, homotopy type, Morse matching, cylindrical posets

1 Introduction
The classical Frobenius problem is to find the largest integer for which change cannot be made using
coins with the relatively prime denominations a1, a2, . . . , ad; see for instance [2, Section 1.2]. We will
reformulate this question by introducing the following poset.

Let Λ be a sub-semigroup of the non-negative integers N, that is, Λ is closed under addition and the
element 0 lies in Λ. We define the Frobenius poset P = (Z,≤Λ) on the integers Z by the order relation
n ≤Λ m if m− n ∈ Λ. We denote by [n,m]Λ the interval from n to m in the Frobenius poset, that is,

[n,m]Λ = {i ∈ [n,m] : i− n,m− i ∈ Λ}.

Observe that the interval [n,m]Λ in the Frobenius poset is isomorphic to the interval [n+ i,m+ i]Λ, that
is, the interval [n,m]Λ only depends on the difference m− n. Also note that each interval is self-dual by
sending i in [0, n]Λ to n− i.

In this form, the original Frobenius problem would be to find the largest integer n that is not comparable
to zero in the Frobenius poset when Λ is generated by {a1, a2, . . . , ad}. The largest such integer is known
as the Frobenius number. In general, calculating the Frobenius number is difficult. However, in the
case where the semigroup is generated by two relatively prime integers a and b, it is well known that
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Fig. 1: The filter generated by 0 in the Frobenius poset corresponding to the semigroup Λ generated by a = 3 and
b = 4, that is, Λ = N− {1, 2, 5}. Note that you get a better picture by rolling the page into a cylinder.

the Frobenius number is given by ab − a − b. Also, when the semigroup is generated by the arithmetic
sequence {a, a+ d, . . . , a+ sd}, the Frobenius number was shown by Roberts [17] to be

(⌊
a− 2

s

⌋
+ 1

)
· a+ (d− 1)(a− 1)− 1. (1)

We study the topology of the order complex of intervals of this poset in the two generator case and when
the generators form an arithmetic sequence where s = a− 1.

The technique we use is discrete Morse theory which was developed by Forman [8, 9]. Thus we
construct an acyclic partial matching on the face poset of the order complex by using the Patchwork
Theorem. We then identify the unmatched, or critical, cells. These tell us the number and dimension of
cells in a CW-complex to which our order complex is homotopy equivalent. Using extra structure about
the critical cells, we can determine exactly what the homotopy type is.

A more general situation is to consider a semigroup Λ of Nd and define a partial order on Zd by µ ≤Λ λ
if λ−µ ∈ Λ. Define the semigroup algebra k[Λ] as the linear span of the monomials whose powers belong
to Λ, that is, k[Λ] = span{xλ = xλ1

1 · · ·xλd

d : λ ∈ Λ}. Laudal and Sletsjøe [14] makes the connection
between the homology of the order complex of intervals in this partial order and the semigroup algebra
k[Λ].

Theorem 1.1 (Laudal and Sletsjøe) For Λ a sub-semigroup of Nd with the associated monoid Λ, the
following equality holds

dimk Tor
k[Λ]
i (k, k)λ = dimk H̃i−2(∆([0, λ]Λ), k),
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for all λ ∈ Λ and i ≥ 0.

The papers [5, 10, 16] continue to study the topology of the intervals in this partial order. Hersh and
Welker [10] give bounds on the indices of the non-vanishing homology groups of the order complex of
the intervals. Peeva, Reiner, and Sturmfels [16] show that the semigroup ring k[Λ] is Koszul if and only
if each interval in Λ is Cohen-Macaulay.

We end this paper with some open questions and concluding remarks.

2 Discrete Morse theory
We recall the following definitions and theorems from discrete Morse theory. See [8, 9, 12] for further
details.

Definition 2.1 A partial matching in a poset P is a partial matching in the underlying graph of the Hasse
diagram of P , that is, a subset M ⊆ P ×P such that (x, y) ∈M implies x ≺ y and each x ∈ P belongs
to at most one element of M . For (x, y) ∈ M we write x = d(y) and y = u(x), where d and u stand for
down and up, respectively.

Definition 2.2 A partial matching M on P is acyclic if there does not exist a cycle

z1 � d(z1) ≺ z2 � d(z2) ≺ · · · ≺ zn � d(zn) ≺ z1,

in P with n ≥ 2, and all zi ∈ P distinct. Given a partial matching, the unmatched elements are called
critical. If there are no critical elements, the acyclic matching is perfect.

We now state the main result from discrete Morse theory. For a simplicial complex ∆, let F(∆) denote
the poset of faces of ∆ ordered by inclusion.

Theorem 2.3 Let ∆ be a simplicial complex. If M is an acyclic matching on F(∆)−{0̂} and ci denotes
the number of critical i-dimensional cells of ∆, then the complex ∆ is homotopy equivalent to a CW
complex ∆c which has ci cells of dimension i.

For us it will be convenient to work with the reduced discrete Morse theory, that is, we include the
empty set.

Corollary 2.4 Let ∆ be a simplicial complex and let M be an acyclic matching on F(∆). Then the
space ∆ is homotopy equivalent to a CW complex ∆c which has c0 + 1 cells of dimension 0 and ci cells
of dimension i for i > 0.

In particular, if the matching from Corollary 2.4 is perfect, then ∆c is contractible. Also, if the matching
has exactly one critical cell then ∆c is a combinatorial d-sphere where d is the dimension of the cell.

Given a set of critical cells of differing dimension, in general it is impossible to conclude that the CW
complex ∆c is homotopy equivalent to a wedge of spheres. See Kozlov [13] for an example. However, in
certain cases, this is possible.

Theorem 2.5 Let M be a Morse matching on F(∆) such that all ci critical cells of dimension i are
maximal. Then

∆ '
∨

i

ci∨

j=1

Si.
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Proof: By the above statement, the complex ∆ without the critical cells is contractible. In particular, the
boundary of each of the critical cells contracts to a point. Since all of the critical cells are maximal, they
can be independently added back into the complex. 2

Kozlov [13] gives a more general sufficient condition on an acyclic Morse matching for the complex to
be homotopy equivalent to a wedge of spheres enumerated by the critical cells.

We are interested in finding an acyclic matching on the face poset of the Frobenius complex. The
Patchwork Theorem [12] gives us a way of constructing one.

Theorem 2.6 Assume that ϕ : P → Q is an order-preserving poset map, and assume that there are
acyclic matchings on the fibers ϕ−1(q) for all q ∈ Q. Then the union of these matchings is itself an
acyclic matching on P .

3 Two generators
With two generators, the associated Frobenius poset can be embedded on a cylinder. By Bezout’s identity
there are two integers p and q such that p · a + q · b = 1. Define a group morphism γ : Z −→ Z2ab × Z
by γ(x) = ((p · a − q · b) · x, x), that is, the first coordinate is modulo 2 · a · b which corresponds to
encircling the cylinder. Observe that γ(a) = ((p · a − q · b) · a, a) = ((p · a + q · b) · a, a) = (a, a) and
γ(b) = ((p ·a−q ·b) ·b, b) = ((−p ·a−q ·b) ·b, b) = (−b, b). Hence the two cover relations x ≺ x+a and
x ≺ x+ b in the Frobenius poset translates to γ(x) + (a, a) = γ(x+ a) and γ(x) + (−b, b) = γ(x+ b).
In other words, to take an a step we make the step (a, a) on the cylinder and a b step corresponds to the
step (−b, b). As an example, see Figure 1 where a = 3 and b = 4.

In general, the Frobenius poset is not a lattice. When Λ is generated by two relatively prime integers
a and b, we have the four relations a <Λ a + b, b <Λ a + b, a <Λ ab, and b <Λ ab. However, since
ab − a − b is the Frobenius number we have a + b 6≤Λ ab, showing that the poset is not a lattice. In
Figure 1, we see that 3 and 4 are both lower bounds for 7 and 12.

Let ck(n) denote the number of chains in the Frobenius interval [0, n]Λ of length k. Using multiplication
of generating functions, we have

∑

n≥k
ck(n) · qn =


∑

n≥1

c1(n) · qn


k

.

By taking the alternating sum over k and using Philip Hall’s expression for the Möbius function, we have

∑

n≥0

µ(n) · qn =
1

1 +
∑
n≥1 c1(n) · qn , (2)

where µ(n) denotes the Möbius function of the interval [0, n]Λ. Now assuming that Λ is generated by two
relatively prime positive integers a and b, we have that

1 +
∑

n≥1

c1(n) · qn =
1− qab

(1− qa) · (1− qb) ;
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see [1, Exercise VIII.1.5]. Hence the Möbius function is given by
∑

n≥0

µ(n) · qn =
(1− qa) · (1− qb)

1− qab

= 1− qa − qb + qa+b + qab − qab+a − qab+b + qab+a+b + · · · .
Note that the coefficients are all ±1 or 0. We will consider this fact in a topological setting. Recall that

the order complex ∆(P ) of a bounded poset P is the collection of chains in P , that is,

∆(P ) = {{x1, x2, . . . , xk} : 0̂ < x1 < x2 < · · · < xk < 1̂}
ordered by inclusion. Also, the reduced Euler characteristic of the order complex ∆(P ) is given by the
Möbius function of P . We call the order complex of the face poset of a Frobenius interval the Frobenius
complex. We wish to study the homotopy type of the Frobenius complex. Since the reduced Euler char-
acteristic of the Frobenius complex takes on the values +1, −1, or 0, we are lead to the following main
theorem.

Theorem 3.1 Let the sub-semigroup Λ be generated by two relatively prime positive integers a and b
with 1 < a < b. The order complex of the associated Frobenius interval [0, n]Λ, for n ≥ 1, is homotopy
equivalent to either a sphere or contractible, according to

∆([0, n]Λ) '





S2n/ab−2 if n ≡ 0 mod a · b,
S2(n−a)/ab−1 if n ≡ a mod a · b,
S2(n−b)/ab−1 if n ≡ b mod a · b,
S2(n−a−b)/ab if n ≡ a+ b mod a · b,

point otherwise.

Observe that if n does not belong to the sub-semigroup Λ then we consider the order complex ∆([0, n]Λ)
to be the empty set which we view as contractible. This is distinct from the case when n equals a or b,
that is, when the order complex ∆([0, n]Λ) only contains the empty set. In this case, we view this as a
sphere of dimension −1.

In the case where the two generators are 2 and 3, the semigroup is N − {1} and the order complex
∆([0, n]Λ) consists of all subsets of the interval [2, n − 2] that do not contain two consecutive integers.
This is known as the complex of sparse subsets. Its homotopy type was first determined by Kozlov [11].
See also [7] where it appears as the independence complex of a path. Billera and Myers [4] showed this
complex is non-pure shellable.

As a corollary to Theorem 1.1, we obtain

Corollary 3.2 Let a and b be relatively prime integers such that 1 < a < b. Let R denote the ring
k[y, z]/(yb − za). Then the multigraded Poincaré series

PRk (t, q) =
∑

n∈Λ

∑

i≥0

dimk

(
TorRi (k, k)n

)
tiqn

is given by the rational function
1 + tqa + tqb + t2qa+b

1− t2qab .
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Proof: Let Λ the semigroup generated by a and b. Observe that the ring R is isomorphic to the semigroup
ring k[Λ]. By combining Theorems 1.1 and 3.1 the multigraded Poincaré series is given by

PRk (t, q) = 1 + tqa + tqb + t2qa+b + t2qab + t3qab+a + t3qab+b + t4qab+a+b + · · · ,

which is the sought after rational generating function. 2

We now turn our attention to the proof of Theorem 3.1. Let Λ be generated by two relatively prime
positive integers a and b with 1 < a < b. Consider the Frobenius interval [0, n]Λ. Define the three sets
B`, C` and D` as follows:

B` = {`ab+ 2b, `ab+ 3b, . . . , `ab+ (a− 1)b},
C` = {b, ab, ab+ b, 2ab, 2ab+ b, 3ab, . . . , (`− 1)ab+ b, `ab},
D` = C` ∪ {`ab+ b}.

Note that C0 = ∅, D0 = {b}, and C`+1 = D` ∪ {(`+ 1)ab}.
Let Q be the infinite chain {a < a+ b < ab+ a < ab+ a+ b < 2ab+ a < · · · } adjoined with a new

maximal element 1̂Q, that is,

Q = {m ∈ N : m ≡ a, a+ b mod ab} ∪ {1̂Q}.

We now define a map ϕ from the face poset of the order complex ∆([0, n]Λ) to the poset Q. We will
later show that ϕ is an order-preserving poset map with natural matchings on the fibers. Let ϕ be defined
by

ϕ(x) =





`ab+ a if `ab+ a <Λ n,
C` ⊆ x,
Bt ∩ x = ∅ for 0 ≤ t ≤ `,
and `ab+ b 6∈ x;

`ab+ a+ b if `ab+ a+ b <Λ n,
D` ⊆ x,
Bt ∩ x = ∅ for 0 ≤ t ≤ `,
and `ab+ ab 6∈ x;

1̂Q otherwise.

In order to make acyclic pairings on the fibers of ϕ, it will be useful to have a description of the chains
that are mapped to the maximal element 1̂Q and their structure. Let Γ denote this collection of chains in
the Frobenius poset, that is, Γ = ϕ−1(1̂Q).

Lemma 3.3 The collection Γ consists of the chains x that satisfy one of the following four conditions:

1. There exists a non-negative integer λ such that Cλ ⊆ x, λab+ b 6∈ x, Bλ ∩ x 6= ∅, and Bt ∩ x = ∅
for 0 ≤ t ≤ λ− 1.

2. There exists a non-negative integer λ such that Dλ ⊆ x, Bλ ∩ x 6= ∅, and Bt ∩ x = ∅ for
0 ≤ t ≤ λ− 1.

3. There exists a non-negative integer λ such that x = Cλ and λab+ a 6<Λ n.
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4. There exists a non-negative integer λ such that x = Dλ and λab+ a+ b 6<Λ n.

We will refer to the condition met by a chain as its type and the associated λ as its parameter. The
structure of Γ is given in the following lemma.

Lemma 3.4 The following four conditions hold for the collection Γ.

(i) Let x be a chain of type 1 with parameter λ in Γ. Then x ∪ {λab+ b} is a chain in Γ of type 2 with
the same parameter λ.

(ii) Let y be a chain of type 2 with parameter λ in Γ. Then y − {λab+ b} is a chain in Γ of type 1 with
the same parameter λ.

(iii) Let x be a chain of type 1 with parameter λ and y be a chain of type 2 with parameter µ such that
x ≺ y. Then λ ≥ µ holds with equality if and only if y = x ∪ {λab+ b}.

(iv) If z is an element of type 4, then z does not cover any element of type 1 or 2.

We now turn our attention to the map ϕ.

Lemma 3.5 The map ϕ : F(∆([0, n]Λ)) −→ Q is an order-preserving poset map.

Lemma 3.6 For m <Q 1̂Q, the collection {(x, x ∪ {m}) : m 6∈ x ∈ ϕ−1(m)} is a perfect acyclic
matching on the fiber ϕ−1(m).

Thus we have reduced the problem to finding an acyclic matching on the fiber Γ = ϕ−1(1̂Q).

Lemma 3.7 The collection {(x, x ∪ {λab + b}) : x is a chain of type 1 with parameter λ} is an acyclic
matching on Γ where the critical cells are the chains of type 3 and 4.

Proof: We have seen from parts (i) and (ii) of Lemma 3.4 that to every element x of type 1 there exists
a corresponding element y of type 2 with the same parameter and vice-versa. In other words, this is a
perfect matching on chains of type 1 and 2. Chains of type 3 and 4 are left unmatched.

We must now show that this matching is acyclic, that is, a directed cycle of the form described in
Definition 2.2 cannot exist. Let z1 be a chain of type 2 with parameter λ. Then d(z1) = z1 − {λab + b}
is an element of type 1 with the same λ. Part (iii) of Lemma 3.4 tells us that any z2 different from z1 will
have a smaller parameter. Therefore, we cannot return to z1 using our matching. Hence the matching is
acyclic. 2

Lemma 3.8 Let n = kab + r for 0 ≤ r < ab. If r = 0, a, b, or a + b, then the matching given in
Lemma 3.7 has exactly one critical cell. If r = jb for 2 ≤ j ≤ a − 1, there are exactly two unmatched
chains of Γ. Otherwise, there are no critical cells in Γ. More precisely, the critical cells of Γ are given by





{Dk−1} if n = kab,
{Ck} if n = kab+ a,
{Ck} if n = kab+ b,
{Dk} if n = kab+ a+ b,
{Ck, Dk} if n = kab+ ib, 2 ≤ i ≤ a− 1,
∅ otherwise.
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Proof: The only elements of Γ that were not matched are those of type 3 and 4 in Lemma 3.3. Thus, we
need to determine the number of type 3 and 4 elements in Γ, that is, the number of integers λ such that
λab <Λ n and λab+a 6<Λ (type 3) and integers λ such that λab+b <Λ n and λab+a+b 6<Λ n (type 4).

Using the Frobenius number, we know that every integer smaller than n− (ab− a− b) = (k− 1)ab+
a + b + r is comparable with n with respect to the order <Λ. We do not need to check `ab + a or
`ab + a + b for 0 ≤ ` < k because this number is always comparable to n (unless r = 0 when we must
check (k − 1)ab+ a+ b). We also do not need to consider `ab+ a or `ab+ a+ b for ` ≥ k + 1 because
we would have `ab+ a, `ab, `ab+ a+ b, and `ab+ b all not contained in [0, n]Λ. Thus, we only need to
check (k − 1)ab+ a+ b (if r = 0), kab+ a, and kab+ a+ b

There are nine cases to consider.

– r 6∈ Λ. Then we have both kab+a 6<Λ n and kab 6<Λ n, and also kab+a+b 6<Λ and kab+b 6<Λ n.
Therefore, there are no critical cells.

Otherwise, r belongs to the semigroup Λ and we can write r = ia + jb, where i and j are unique non-
negative integers.

– (i, j) = (0, 0). We see that kab+a 6<Λ n, but also kab 6<Λ n. Similarly, we have kab+a+b 6<Λ n
and kab+b 6<Λ n. Finally, we check and see that (k−1)ab+a+b 6<Λ n because kab−(k−1)ab+
a+b = ab−a−b 6∈ Λ. Also (k−1)ab+b <Λ n because kab−(k−1)ab+b = ab−b = (a−1)b ∈ Λ.
Thus we have the one critical cell Dk−1.

– (i, j) = (1, 0). We can easily see that kab + a + b 6<Λ n and kab + b 6<Λ n. However, we have
kab+ a 6<Λ n while kab <Λ n. Therefore, we have the one critical cell Ck.

– (i, j) = (0, 1). In this case we again see that kab + a + b 6<Λ n and kab + b 6<Λ n. However, we
still have kab+ a 6<Λ n, while kab <Λ n. Thus we have the one critical cell Ck.

– (i, j) = (1, 1). First we note that kab+ a <Λ n. Thus we only check to see that kab+ a+ b 6<Λ n
and kab+ b <Λ n. This is easily true, so there is one critical cell Dk.

– i = 0, 2 ≤ j ≤ a− 1. Clearly kab+ a 6<Λ n while kab <Λ n. Also, we see that kab+ a+ b 6<Λ n
while kab+ b <Λ n. Thus the unmatched cells are Ck and Dk.

– i ≥ 1, j ≥ 2. Both kab + a and kab + a + b are both comparable with n. Therefore there are no
critical cells.

– i ≥ 2, j = 0. We see that kab + a is comparable with n. Also, both kab + a + b and kab + b are
not comparable with n. Therefore there are no critical cells.

– i ≥ 2, j = 1. Then kab + a and kab + a + b are both comparable with n. Therefore there are no
critical cells.

2

Proof of Theorem 3.1.: By applying the Patchwork Theorem to the function ϕ we see that the homotopy
type of ∆([0, n]Λ) depends only on the fiber ϕ−1(1̂Q) = Γ. Applying Lemmas 3.7 and 3.8, there is only
one critical cell when n ≡ 0, a, b, a + b mod ab and no critical cells in every other case except when
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i = 0 and 2 ≤ j ≤ a − 1. However, we claim in this last case we can add the pair (Ck, Dk) to the
matching on Γ and still be left with an acyclic matching.

Lemma 3.4 (iv) shows that a chain of type 4 does not cover any chain of type 1. Hence, when adding
the edge (Ck, Dk) to the Morse matching of Γ, it will not create any directed cycles through the chainDk.
Hence the matching is still acyclic and there are no critical cells in this case.

The critical cells for n ≡ 0, a, b, a+ b mod ab can be easily seen to be of dimension 2n/ab−2, 2(n−
a)/ab− 1, 2(n− b)/ab− 1, and 2(n− a− b)/ab, respectively. Therefore, applying the main theorem of
reduced discrete Morse theory, Corollary 2.4, proves the result. 2

4 Generators in an arithmetic sequence
Recall that the q-analogue is defined as follows: [a]qd = 1 + qd + (qd)2 + · · ·+ (qd)a−1.

Theorem 4.1 Let Λ be the sub-semigroup generated by the integers {a, a+ d, a+ 2d, . . . , a+ (a− 1)d}
where a and d are relatively prime. The order complex of the associated Frobenius interval [0, n]Λ is
homotopy equivalent to a wedge of spheres where the ith Betti number satisfies

∑

n≥0

β̃iq
n = qa+(i+1)(a+d) · [a]qd · [a− 1]i+1

qd
.

Example 4.2 For the generators {4, 5, 6, 7}, that is a = 4 and d = 1, we have

∑

n≥0

β̃1q
n = q14 · [4] · [3]2 = q14 + · · ·+ 3q20 + q21,

∑

n≥0

β̃2q
n = q19 · [4] · [3]3 = q19 + 4q20 + · · ·+ q28,

and no other generating polynomial contains the q20 term. Hence the Frobenius complex ∆([0, 20]Λ) is
homotopy equivalent to a wedge of three circles and four 2-spheres.

The Frobenius number of an arithmetic sequence was given in equation (1). Therefore, for the genera-
tors {a, a+ d, a+ 2d, . . . , a+ (a− 1)d}, we have the Frobenius number

(⌊
a− 2

a− 1

⌋
+ 1

)
· a+ (d− 1)(a− 1)− 1 = (a− 1)d.

We will proceed as before and use Discrete Morse theory and the Patchwork theorem. Let A be the set
{a+ d, a+ 2d, . . . , a+ (a− 1)d}.

Definition 4.3 Given n, let R be the chain {1, 2, 3, 4, . . . , n − a} with a maximal element 1̂R adjoined.
That is,

R = {1, 2, 3, . . . , n− a} ∪ {1̂R}.
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If x = {x1, x2, . . . , xk} ∈ ∆([0, n]Λ) and we define x0 = 0, let ψ : F(∆([0, n]Λ)) → R be a map
defined by

ψ(x) =





xi−1 + a, xi − xi−1 6∈ A,
xj − xj−1 ∈ A
for 1 ≤ j ≤ i− 1,

xk + a, n− xk 6∈ {a} ∪A,
xj − xj−1 ∈ A
for 1 ≤ j ≤ k,

1̂R, otherwise.

Lemma 4.4 The element m · d is not contained in Λ for 1 ≤ m ≤ (a− 1).

Proof: Suppose m · d ∈ Λ for 1 ≤ m ≤ (a− 1). Then for 0 ≤ si ≤ (a− 1), we have

m · d = (a+ s1d) + (a+ s2d) + · · ·+ (a+ skd)

= ka+ (s1 + · · ·+ sk)d.

The fact that d and a are relatively prime implies that d divides k. That is, k = ` · d. Therefore,
m = ` · a+ (s1 + · · ·+ sk) which implies that m ≥ a. This is a contradiction. 2

Lemma 4.5 Let xi and xj be elements of a chain x such that xi − xj ∈ {a} ∪A. Then the open interval
(xi, xj)Λ is empty.

The following lemma is an immediate consequence of Lemma 4.5 and the definition of the function ψ.

Lemma 4.6 If x and y are chains such that x ⊆ y and ψ(x) = xi−1 + a then xj = yj for 1 ≤ j ≤ i− 1.
In particular, if ψ(x) = 1̂R then x = y.

We can finally give a few properties of the map ψ.

Lemma 4.7 The map ψ : F(∆([0, n]Λ))→ R is an order preserving poset map.

Lemma 4.8 For m <R 1̂R, the collection {(x, x ∪ {m}) : m 6∈ x ∈ ψ−1(m)} is a perfect acyclic
matching on the fiber ψ−1(m).

Proof: Suppose ψ(x) = xi−1+a and xi−1+a ∈ x. That is, xi = xi−1+a. It is clear that d(x) = x−{xi}
is a valid chain in the Frobenius complex since we are simply removing an element. We need to check
that ψ(d(x)) = xi−1 + a. We know that d(x)j − d(x)j−1 = xj − xj−1 ∈ A for 1 ≤ j ≤ (i − 1).
Suppose d(x)i − d(x)i−1 = xi+1 − xi−1 ∈ A. Then, by Lemma 4.5, (xi−1, xi+1)Λ would have to be
empty. This contradicts the fact that xi ∈ (xi−1, xi+1)Λ in the chain x. Since d(x)i − d(x)i−1 6∈ A and
d(x)j − d(x)j−1 ∈ A for 1 ≤ j ≤ (i− 1), we have ψ(d(x)) = d(x)i−1 + a = xi−1 + a.

Now suppose that ψ(x) = xi−1 + a and xi−1 + a 6∈ x. It is clear that u(x) = x ∪ {xi−1 + a} would
be mapped to xi−1 + a. Thus, it must be shown that u(x) is a valid chain, that is, xi−1 + a is comparable
to xi. We know that xi − xi−1 6∈ A. Suppose

xi − xi−1 = (a+ s1d) + (a+ s2d) + · · ·+ (a+ skd)
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where s1 ≤ s2 ≤ · · · ≤ sk and k ≥ 2. Then

xi − (xi−1 + a) = (a+ (s1 + s2)d) + (a+ s3d) + · · ·+ (a+ skd).

If s1 +s2 ≤ a−1, then we have written this difference as a sum of generators. Therefore, xi and xi−1 +a
are comparable.

If s1 + s2 > a − 1, then the difference is larger than (a − 1)d, which is the Frobenius number of the
generators. Thus, xi and xi−1 + a are comparable. Therefore, u(x) is a valid chain.

Finally, the matching on the fiber is clearly acyclic since the same element is either added or removed
from a chain. 2

Using the Patchwork theorem, we have an acyclic matching on F(∆([0, n]Λ)) whose only critical cells
are the elements of the fiber ψ−1(1̂R). Note that Lemma 4.6 says that each of these cells are maximal.
Therefore, due to Theorem 2.5, we will have that ∆([0, n]Λ is homotopy equivalent to a wedge of spheres
whose number and dimension corresponds to the number and dimension of the critical cells. Thus, we are
interested in counting the number of chains that are mapped to 1̂R. The following lemma is straightfor-
ward from the definition of the function ψ.

Lemma 4.9 The fiber ψ−1(1̂R) consists of elements x = {x1, x2, . . . , xk} where xi − xi−1 ∈ A for
1 ≤ i ≤ k and n− xk ∈ {a} ∪A.

Proof of Theorem 4.1: We know from Lemma 4.9 that the critical cells are in bijection with compositions
of nwhere the last part belongs to the set {a}∪A and the remaining parts belong to the setA. Furthermore
if such a composition has i + 2 parts, it will contribute to the i-dimensional homology. Hence, fixing i,
we obtain the generating function

∑

n≥0

β̃iq
n =

(
a−1∑

k=0

qa+kd

)
·
(
a−1∑

`=1

qa+`d

)i+1

= qa+(i+1)(a+d) ·
(
a−1∑

k=0

qkd

)
·
(
a−2∑

`=0

q`d

)i+1

= qa+(i+1)(a+d) · [a]qd · [a− 1]i+1
qd

.

2

5 Concluding remarks
The Frobenius poset generated by two relatively prime integers can be embedded on a cylinder. There
are many results (see, for example, [3, 6]) on posets that can be embedded in the plane. Can any of these
results be extended to cylindrical posets?

There are other classes of generators, such as a geometric sequence, that have closed formulas for the
Frobenius number, see [15]. Does the Frobenius complex have a nice topological representation in this
case?

More generally, all computational evidence suggests that the Frobenius complex - even for randomly
selected generators - has a relatively simple topology, that is, it is torsion-free. Is there a set of generators
that creates torsion in the associated Frobenius complex?
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Extended Abstract for Enumerating Pattern
Avoidance for Affine Permutations

Andrew Crites†

Department of Mathematics, University of Washington, Box 354350, Seattle, Washington, 98195-4350

Abstract. In this paper we study pattern avoidance for affine permutations. In particular, we show that for a given
pattern p, there are only finitely many affine permutations in S̃n that avoid p if and only if p avoids the pattern 321.
We then count the number of affine permutations that avoid a given pattern p for each p in S3, as well as give some
conjectures for the patterns in S4. This paper is just an outline; the full version will appear elsewhere.

Résumé. Dans cet œuvre, on étudie comment les permutations affines évitent les motifs. Spécifiquement, on peut dire
que pour le motif p, il existe un nombre limité de permutations affines dans S̃n qui évite p si et seulement si p évite
le motif 321. Après, on compte le nombre de permutations affines qui évitent le motif p pour chaque p de S3. Puis,
on donne des conjectures pour les motifs de S4. Ceci n’est qu’un aperçu; la version complète apparaı̂tra ailleurs.

Keywords: pattern avoidance, affine permutation, generating function, Catalan number

1 Introduction
Given a property Q, it is a natural question to ask if there is a simple characterization of all permutations
with property Q. For example, in Lakshmibai and Sandhya (1990) the permutations corresponding to
smooth Schubert varieties are exactly the permutations that avoid the two patterns 3412 and 4231. In
Tenner (2007) it was shown that the permutations with Boolean order ideals are exactly the ones that
avoid the two patterns 321 and 3412. A searchable database listing which classes of permutations avoid
certain patterns can be found at Tenner (2009).

Since we know pattern avoidance can be used to describe useful classes of permutations, we might ask
if we can enumerate the permutations avoiding a given pattern or set of patterns. For example, in Marcus
and Tardos (2004) it was shown that if Sn(p) is the number of permutations in the symmetric group, Sn,
that avoid the pattern p, then there is some constant c such that Sn(p) ≤ cn. Thus the rate of growth
of pattern avoiding permutations is bounded. This result was known as the Stanley-Wilf conjecture, now
called the Marcus-Tardos Theorem.

We can express elements of the affine symmetric group, S̃n, as an infinite sequence of integers, and it is
still natural to ask if there exists a subsequence with a given relative order. Thus we can extend the notion
of pattern avoidance to these affine permutations and we can try to count how many ω ∈ S̃n avoid a given
pattern.

†Andrew Crites acknowledges support from grant DMS-0800978 from the National Science Foundation.
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For p ∈ Sm, let

fpn = #
{
ω ∈ S̃n : ω avoids p

}
(1)

and consider the generating function

fp(t) =
∞∑

n=2

fpnt
n. (2)

For a given pattern p there could be infinitely many ω ∈ S̃n that avoid p. In this case, the generating
function in (2) is not even defined. As a first step towards understanding fp(t), we will prove the following
theorem.

Theorem 1 Let p ∈ Sm. For any n ≥ 2 there exist only finitely many ω ∈ S̃n that avoid p if and only if p
avoids the pattern 321.

It is worth noting that 321-avoiding permutations and 321-avoiding affine permutations appear as an
interesting class of permutations in their own right. In (Billey et al., 1993, Theorem 2.1) it was shown
that a permutation is fully commutative if and only if it is 321-avoiding. This means that every reduced
expression for ω may be obtained from any other reduced expression using only relations of the form
sisj = sjsi with |i− j| > 1. Moreover, a proof that this result can be extended to affine permutations as
well appears in (Green, 2002, Theorem 2.7). For a detailed discussion of fully commutative elements in
other Coxeter groups, see Stembridge (1996).

Even in the case where there might be infinitely many ω ∈ S̃n that avoid a pattern p, we can always
construct the following generating function. Let

gpm,n = #
{
ω ∈ S̃n : ω avoids p and `(ω) = m

}
. (3)

Then set

gp(x, y) =

∞∑

n=2

∞∑

m=0

gpm,nx
myn. (4)

Since there are only finitely many elements in S̃n of a given length, we always have gpm,n < ∞. The
generating function g321(x, y) is computed in (Hanusa and Jones, 2009, Theorem 3.2).

The outline of this abstract is as follows. In Section 2 we will review the definition of the affine
symmetric group and list several of its useful properties. In Section 3 we will outline the proof of Theorem
1. Finally, in Section 4 we will give some basic results and conjectures for fp(t) for the patterns in S3 and
S4. The full text of this paper has been submitted for publication and is currently available on the math
arXiv:1002.1933.

2 Background
For n ≥ 2, let S̃n denote of the set of all bijections ω : Z → Z with ω(i + n) = ω(i) + n for all i ∈ Z
and

n∑

i=1

ω(i) =

(
n+ 1

2

)
. (5)
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S̃n is called the affine symmetric group, and the elements of S̃n are called affine permutations. This
definition of affine permutations first appeared in (Lusztig, 1983, §3.6) and was then developed in Shi
(1986). Note that S̃n also occurs as the affine Weyl group of type Ãn−1.

We can view an affine permutation in its one-line notation as the infinite string of integers

· · ·ω−1ω0ω1 · · ·ωnωn+1 · · · ,

where, for simplicity of notation, we write ωi = ω(i). An affine permutation is completely determined
by its action on [n] := {1, . . . , n}. Thus we only need to record the base window [ω1, . . . , ωn] to capture
all of the information about ω. Sometimes, however, it will be useful to write down a larger section of the
one-line notation.

Given i 6≡ j mod n, let tij denote the affine transposition that interchanges i +mn and j +mn for
all m ∈ Z and leaves all k not congruent to i or j fixed. Since tij = ti+n,j+n in S̃n, it suffices to assume
1 ≤ i ≤ n and i < j. Note that if we restrict to the affine permutations with {ω1, . . . , ωn} = [n], then we
get a subgroup of S̃n isomorphic to Sn, the group of permutations of [n]. Hence if 1 ≤ i < j ≤ n, the
above notion of transposition is the same as for the symmetric group.

Given a permutation p ∈ Sk and an affine permutation ω ∈ S̃n, we say that ω contains the pattern
p if there is a subsequence of integers i1 < · · · < ik such that the subword ωi1 · · ·ωik of ω has the
same relative order as the elements of p. Otherwise, we say that ω avoids p. For example, if ω =
[8, 1, 3, 5, 4, 0] ∈ S̃6, then 8,1,5,0 is an occurrence of the pattern 4231 in ω, so that ω contains p. However,
ω avoids the pattern 3412. A pattern can also come from terms outside of the base window [ω1, . . . , ωn].
In the previous example, ω also has 2,8,6 as an occurrence of the pattern 132. Choosing a subword
ωi1 · · ·ωik with the same relative order as p will be referred to as placing p in ω.

2.1 Coxeter Groups

For a general reference on the basics of Coxeter groups, see Björner and Brenti (2005) or Humphreys
(1990). Let S = {s1, . . . , sn} be a finite set, and let F denote the free group consisting of all words of
finite length whose letters come from S. Here the group operation is concatenation of words, so that the
empty word is the identity element. Let M = (mij)

n
i,j=1 be any symmetric n × n matrix whose entries

come from Z>0∪{∞} with 1’s on the diagonal andmij > 1 if i 6= j. Then letN be the normal subgroup
of F generated by the relations

R = {(sisj)mij = 1}ni,j=1 .

If mij = ∞, then there is no relationship between si and sj . The Coxeter group corresponding to S and
M is the quotient group W = F/N .

Any w ∈W can be written as a product of elements from S in infinitely many ways. Every such word
will be called an expression for w. Any expression of minimal length will be called a reduced expression,
and the number of letters in such an expression will be denoted `(w), the length of w. Call any element
of S a simple reflection and any element conjugate to a simple reflection, a reflection.

We graphically encode the relations in a Coxeter group via its Coxeter graph. This is the labeled graph
whose vertices are the elements of S. We place an edge between two vertices si and sj if mij > 2 and
we label the edge mij whenever mij > 3. The Coxeter graphs of all the finite Coxeter groups have been
classified. See, for example, (Humphreys, 1990, §2).
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In (Björner and Brenti, 2005, §8.3) it was shown that S̃n is the Coxeter group with generating set
S = {s0, s1, . . . , sn−1}, and relations

R =





s2i = 1,

(sisj)
2
= 1, if |i− j| ≥ 2,

(sisi+1)
3
= 1, for 0 ≤ i ≤ n− 1,

where all of the subscripts are taken mod n. Thus the Coxeter graph for S̃n is an n-cycle, where every
edge is unlabeled.

s0

s1 s2
· · ·

sn−2 sn−1

Fig. 1: Coxeter graph for S̃n.

If J ( S is a proper subset of S, then we call the subgroup of W generated by just the elements of
J a parabolic subgroup. Denote this subgroup by WJ . In the case of the affine symmetric group we
have the following characterization of parabolic subgroups, which follows easily from the fact that when
J = S\{si}, (S̃n)J = Stab([i, i+ n− 1]) (Björner and Brenti, 2005, Proposition 8.3.4).

Proposition 2 Let J = S\{si}. Then ω ∈ S̃n is in the parabolic subgroup (S̃n)J if and only if there
exists some integer i ≤ j ≤ i+ n− 1 such that ωj ≤ ωk < ωj + n for all i ≤ k ≤ i+ n− 1.

2.2 Length Function for S̃n

For ω ∈ S̃n, let `(ω) denote the length of ω when S̃n is viewed as a Coxeter group. Recall that for a
non-affine permutation π ∈ Sn we can define an inversion as a pair (i, j) such that i < j and πi > πj . For
an affine permutation, if ωi > ωj for some i < j, then we also have ωi+kn > ωj+kn for all k ∈ Z. Hence
any affine permutation with a single inversion has infinitely many inversions. Thus we standardize each
inversion as follows. Define an affine inversion as a pair (i, j) such that 1 ≤ i ≤ n, i < j, and ωi > ωj . If
we let InvS̃n

(ω) denote the set of all affine inversions in ω, then `(ω) = #InvS̃n
(ω), (Björner and Brenti,

2005, Proposition 8.3.1).
We also have the following characterization of the length of an affine permutation, which will be useful

later.

Theorem 3 (Shi, 1986, Lemma 4.2.2) Let ω ∈ S̃n. Then

`(ω) =
∑

1≤i<j≤n

∣∣∣∣
⌊
ωj − ωi

n

⌋∣∣∣∣ = inv(ω1, . . . , ωn) +
∑

1≤i<j≤n

⌊ |ωj − ωi|
n

⌋
, (6)

where inv(ω1, . . . , ωn) = #{1 ≤ i < j ≤ n : ωi > ωj}.
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For 1 ≤ i ≤ n define Invi(ω) = #{j ∈ N : i < j, ωi > ωj}. Now let Inv(ω) = (Inv1(ω), . . . , Invn(ω)),
which will be called the affine inversion table of ω. In (Björner and Brenti, 1996, Theorem 4.6) it was
shown that there is a bijection between S̃n and elements of Zn≥0 containing at least one zero entry.

3 Outline of Proof of Theorem 1
The Proof of Theorem 1 is broken up into two parts. First, if p ∈ Sm contains the pattern 321, then we
exhibit an infinite family of affine permutations, all of which avoid 321 and hence avoid p. Second, if p
avoids the pattern 321, then we show that there exists a constant L, depending on p, such that if `(ω) > L,
then ω must contain p as follows. Using the length formula in Theorem 3, if `(ω) is large, then there must
be two indices 1 ≤ i < j ≤ n with |ωi − ωj | large. Once |ωi − ωj | is large enough, we then show how
to use translates ωi+rn and ωj+sn of ωi and ωj to construct an occurrence of p in ω. Hence if ω avoids p,
`(ω) must be bounded above, so that there can be only a finite number of such ω.

The algorithm for constructing an occurrence of p gives the length bound `(ω) ≤ (m`+1 + 2)
(
n
2

)
,

where p ∈ Sm, ω ∈ S̃n and ` is the length of the sequence of left-to-right maxima in p. In general, this
upper bound is much larger than needed. For example, let p = 3412 ∈ S4. Then our algorithm gives that
if ω ∈ S̃n avoids p, then `(ω) ≤ 66

(
n
2

)
. However, we can actually prove a tighter bound `(ω) ≤ 3

(
n
2

)

for this particular pattern. Thus it would be nice to find an algorithm that gives a tighter upper bound on
length.

4 Generating Functions for Patterns in S3 and S4

Let fpn and fp(t) be as in (1) and (2) in Section 1. Then by Theorem 1 we have f321n = ∞ for all n.
However, for all of the other patterns p ∈ S3 we can still compute fp(t).

Theorem 4 Let fp(t) be as above. Then

f123(t) = 0, (7)

f132(t) = f213(t) =
∞∑

n=2

tn, (8)

f231(t) = f312(t) =
∞∑

n=2

(
2n− 1

n

)
tn. (9)

The only tricky part in the proof of Theorem 4 is Equation 9. The proof involves using the affine
inversion table of an affine permutation and some identities amongst the Catalan numbers.

We now look at pattern avoidance for patterns in S4. There are 24 patterns to consider, although for all
but three patterns, fp(t) is easy to compute. First let

P = {1432, 2431, 3214, 3241, 3421, 4132, 4213, 4231, 4312, 4321}.

By Theorem 1, if p ∈ P , then fpn =∞, so fp(t) is not defined.
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Theorem 5 We have

f1234(t) = 0, (10)

f1243(t) = f1324(t) = f2134(t) = f2143(t) =
∞∑

n=2

tn, (11)

f1342(t) = f1423(t) = f2314(t) = f3124(t) =

∞∑

n=2

(
2n− 1

n

)
tn. (12)

Based on some initial calculations, we also have the following conjectures for the remaining three
patterns in S4.

Conjecture 1 The following equalities hold:

f3142n =

n−1∑

k=0

(n− k)
n

(
n− 1 + k

k

)
2k (13)

f3412n = f4123n =
1

3

n∑

k=0

(
n

k

)2(
2k

k

)
. (14)

Note that (13) is sequence A064062 and (14) is sequence A087457 in Sloane (2009). It is also worth
comparing (14) to the number of 3412-avoiding, non-affine permutations given in (Gessel, 1990, §7) as

u3(n) = 2

n∑

k=0

(
n

k

)2(
2k

k

)
3k2 + 2k + 1− n− 2kn

(k + 1)2(k + 2)(n− k + 1)
. (15)
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Tropical secant graphs of monomial curves
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Abstract. We construct and study an embedded weighted balanced graph in Rn+1 parameterized by a strictly increas-
ing sequence of n coprime numbers {i1, . . . , in}, called the tropical secant surface graph. We identify it with the
tropicalization of a surface in Cn+1 parameterized by binomials. Using this graph, we construct the tropicalization of
the first secant variety of a monomial projective curve with exponent vector (0, i1, . . . , in), which can be described
by a balanced graph called the tropical secant graph. The combinatorics involved in computing the degree of this
classical secant variety is non-trivial. One earlier approach to this is due to K. Ranestad. Using techniques from
tropical geometry, we give algorithms to effectively compute this degree (as well as its multidegree) and the Newton
polytope of the first secant variety of any given monomial curve in P4.

Résumé. On construit et on étude un graphe plongé dans Rn+1 paramétrisé par une suite strictement croissante de n
nombres entiers {i1, . . . , in}, premiers entre eux. Ce graphe s’appelle graphe tropical surface sécante. On montre
que ce graphe est la tropicalisation d’une surface dans Cn+1 paramétrisé par des binômes. On utilise ce graphe
pour construire la tropicalisation de la première sécante d’une courbe monomiale ayant comme vecteur d’exponents
(0, i1, . . . , in). On répresent ce variété tropical pour un graphe balancé (le graphe tropical sécante). La combinatoire
qu’on utilise pour le calcul du degré de ces variétés sécantes classiques n’est pas triviale, et a été developé par K.
Ranestad. En utilisant des techniques de la géométrie tropicale, on donne des algorithmes qui calculent le degré
(même le multidegré) et le polytope de Newton de la première sécante d’une courbe monomiale de P4.

Keywords: monomial curves, secant varieties, resolution graphs, tropical geometry, Newton polytope

1 Introduction
In this paper, we define and study an abstract graph (the abstract tropical secant surface graph) which we
embed in Rn+1, assigning integer coordinates to each node. This graph is parameterized by a sequence
of n coprime positive integers i1 < . . . < in. The abstract graph is constructed by gluing two caterpillar
trees and several star trees, according to the combinatorics of the given integer sequence. Our embedding
has a key feature: we can endow this graph with weights on all edges in such a way that it satisfies
the balancing condition (Theorem 3). We call this weighted graph the tropical secant surface graph
or master graph (Section 2). As the name suggests, this balanced graph is closely related to a tropical
surface and it will be the cornerstone of our paper. More precisely, it is the building block for constructing
the tropicalization of a threefold: the first secant variety of a monomial projective curve whose set of
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exponents is {0, i1, . . . , in}. By definition, this secant variety is the closure of the union of lines that meet
the curve in two distinct points. These varieties have been studied extensively in the literature (Cox and
Sidman, 2007; Ranestad, 2006). We describe this tropical connection in Section 6.

The tropicalization of the first secant variety of a monomial projective curve strictly contains, as a sub-
fan, the set of all tropical lines between any two points in the tropicalization of the monomial curve itself,
i.e. points that are obtained as coordinatewise minima of two points in the classical plane spanned by the
lattice Λ = 〈1(0, i1, . . . , in)〉. The latter is the first tropical secant variety of the corresponding classical
line in the n-dimensional tropical projective torus TPn = Rn+1/(1, . . . , 1). The union of these tropical
lines is precisely the cone from the classical line R〈(0, i1, . . . , in)〉 over the pure 1-dimensional subfan
of the secondary fan of the point configuration {0, i1, . . . , in} ⊂ R consisting of all regular subdivisions
with the property that two of its facets contains all n + 1 points. By (Theorem 3.1, Develin, 2006), we
know that this subfan is precisely the cone from the plane R ⊗ Λ over the complex of lower faces of the
cyclic polytope C(2, n−1) (i.e. n−1 points in dimension 2). This complex is the subgraph of the tropical
secant graph consisting of the chain graph with n− 1 nodes Ei1 , . . . , Ein−1

, depicted in Figure 1.
In recent years, tropical geometry has provided a new approach to attack implicitization problems

(Dickenstein et al., 2007; Sturmfels et al., 2007; Cueto et al., 2010). In particular, tropicalization interplays
nicely with several classical constructions, such as Hadamard products of subvarieties of tori. Using
such techniques, we can effectively compute the Chow polytope of these secant varieties, as we discuss
in Section 7. In the case of the secants of monomial curves in P4, the Chow polytopes coincide with
the Newton polytopes of these hypersurfaces. Interpolation techniques can then be used to obtain their
defining equations.

As one may suspect, computing the tropicalization of an algebraic variety without information on its
defining ideal is not an easy task. Such methods rely on a parametric representation of the variety and
the characterization of tropical varieties in terms of valuations (Bieri and Groves, 1984), and they are
known as geometric tropicalization (Theorem 7). As we explain in Section 4, the main difficulty lies
in finding a suitable compactification of the variety such that its boundary has simple normal crossings,
or combinatorial normal crossings in the case of surfaces. However, this geometric construction does
not provide information about the tropical variety as a weighted set: the multiplicities are missing in the
construction of Hacking et al. (2009) and they are essential for tropical implicitization methods. We give a
formula to compute these numbers in Theorem 8. The combinatorics involved in the construction of such
compactifications is non-trivial, since they are the combinatorial counterpart of the algebro-geometric
process of resolution of singularities.

In the case of surfaces, the resolution can be achieved in theory by blowing up plane curves at finitely
many points, as described in Section 5. We then use the rational parameterization of the original surface
to obtain a resolution of this surface from the resolution of the arrangement of plane curves in T2. In prac-
tice, knowing which points to blow up and how the intersection multiplicities of proper transforms and
exceptional divisors are carried along the various blow-ups can be a combinatorial challenge. However,
the surfaces studied in this paper (binomial surfaces obtained from a dehomogeneization of the first secant
of monomial projective curves) have very rich combinatorial structures, and we can make full use of this
feature to compute their tropicalizations via resolutions. Indeed, our methods allow us to read off the in-
tersection numbers of the boundary divisors directly from the master graphs, which encode the resolution
diagrams of these surfaces (Figure 1). This is carried out in Section 3, in particular in Theorem 3.

Finally, we use this tropical surface to effectively compute the first secant variety of any monomial
curve as a collection of 4-dimensional cones with multiplicities (Theorem 16). From this construction we
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recover the multidegree of this secant variety with respect to the rank-two lattice generated by the all-one’s
vector and the exponent vector parameterizing the curve. The degree of this variety was previously worked
out in (Ranestad, 2006), and our work gives similar combinatorial formulas for this degree in terms of the
exponent vector. But tropical methods enable us to obtain more information, namely the Chow polytope
of the secant variety. We illustrate all our results in Example 18 which was inspired by (Ranestad, 2006).

2 The master graph
In this section, we describe the main object of this paper: the master graph. We start by defining an
abstract graph, called the abstract tropical secant surface graph, parameterized by a list (i1, . . . , in) of
n distinct, coprime, nonnegative integers. Throughout the paper, we set n ≥ 4 and we call i0 = 0 to
simplify notation. We construct this abstract graph by gluing three different families of graphs along the
common labeled nodes Dij , as depicted in Figure 1. The first two graphs GE,D and Gh,D are caterpillar
trees with 2n − 1 and 2n nodes, grouped in two levels, with labels D0, Di1 , . . . , Din , Ei1 , . . . , Ein−1

and hi1 , . . . , hin−1
respectively. The third family of graphs is parameterized by subsets of the index set

{0, i1, . . . , in} of size at least two, which are obtained by intersecting an arithmetic progression of integers
with the index set. Note that several arithmetic progressions can give the same subset of {0, i1, . . . , in}
and all of them will give the same node Fa in the graph. If a = {ij1 , . . . , ijk} then the graph GFa,D has
k + 1 nodes and k edges: a central node Fa and k nodes labeled Dij1

, . . . , Dijk
. The central node is

connected to the other k nodes in the graph.

a = {ij1 , . . . , ijk}

Fig. 1: The graphs GE,D , Gh,D and GFa,D glue together to form the abstract tropical secant surface graph.

Next, we embed this graph in Rn+1, mapping each node to an integer vector, as in Definition 1. Our
chosen embedding has addition data: a weight on each edge that makes the graph balanced. We call this
weighted graph the tropical secant surface graph or master graph. For a numerical example, see Figure 2.

Definition 1 The master graph is a weighted graph in Rn+1 parameterized by {i1, . . . , in} with nodes:

(i) Dij = ej := (0, . . . , 0, 1, 0, . . . , 0) (0 ≤ j ≤ n),

(ii) Eij = (0, i1, . . . , ij−1, ij , . . . , ij) , hij = (−ij ,−ij , . . . ,−ij ,−ij+1, . . . ,−in) (1 ≤ j ≤ n−1),



544 Marı́a Angélica Cueto and Shaowei Lin

(iii) Fa =
∑
ij∈a ej where a ⊆ {0, i1, . . . , in} has size at least two and is obtained by intersecting an

arithmetic progression of integers with the index set {0, i1, . . . , in}.

Its edges agree with the edges of the abstract tropical secant surface graph, and have weights:

(i) mDi0
,hi1

= 1 , mDin ,Ein−1
= gcd(i1, . . . , in−1) , mDin ,hin−1

= in,

(ii) mDij
,Eij

= gcd(i1, . . . , ij) , mDij
,hij

= gcd(ij , . . . , in) (1 ≤ j ≤ n− 1),

(iii) mEij
,Eij+1

=gcd(i1, . . . , ij) , mhij
,hij+1

=gcd(ij+1, . . . , in) (1 ≤ j ≤ n− 2),

(iv) mFa,Dij
=
∑
r ϕ(r), where we sum over the common differences r of all arithmetic progressions

containing ij and giving the same subset a. Here, ϕ denotes Euler’s phi function.

Definition 2 Let (G,m) ⊂ RN be a weighted graph where each node has integer coordinates. Let w
be a node in G and let {w1, . . . , wr} be the set of nodes adjacent to w. Consider the primitive lattices
Λw = R〈w〉 ∩ ZN and Λw,wi = R〈w,wi〉 ∩ ZN . Then Λw,wi/Λw is a rank one lattice, and it admits
a unique generator ui lifting to the cone R≥0〈w,wi〉/R〈w〉. We say that the node w is balanced if∑r
i=1m(wi, w)ui = 0 ∈ RN/R〈w〉. If all nodes are balanced, then G satisfies the balancing condition.

Theorem 3 The master graph satisfies the balancing condition.

Remark 4 If the arithmetic progression a has two elements, then Fa is a bivalent node and we can safely
eliminate it from the graph if desired, replacing its two adjacent edges by a single edge. Both edges have
the same multiplicity, which we assign to the new edge. To simplify notation, we keep these bivalent nodes.

3 The master graph is a tropical surface
In this section, we explain the suggestive name “tropical secant surface graph.” More concretely, we
show that the master graph is the tropicalization of a surface in Cn+1 parameterized by the binomial map
(λ,w) 7→ (1− λ,wi1 − λ, . . . , win − λ). Before that, we review the basics of tropical geometry.

Definition 5 Given a variety X ⊂ CN with defining ideal I = IX , we define the tropicalization of X as

T X = T I = {w ∈ RN : inw(I) does not contain a monomial}.

Here, inw(I) = 〈inw(f) : f ∈ I〉, and if f =
∑
α cα x

α where all cα 6= 0, then inw(f) =
∑
α·w=W cα x

α

where W = min{α · w : cα 6= 0}. In the case of an embedded projective variety X ⊂ PN , the
tropicalization of X is defined as T (X ′) ⊂ RN+1 where X ′ is the affine cone over X in CN+1.

Although it may not be clear from Definition 5, tropicalizations are toric in nature. More precisely, let
TN = (C∗)N be the algebraic torus. Let Y be a subvariety of TN with defining ideal IY ⊆ C[TN ] =
C[y±1 , . . . , y

±
N ]. We define the tropicalization of Y ⊂ TN as

T Y = {v ∈ RN : 1 /∈ inv(IY )}.

Here, the initial ideal with respect to a vector v is the same as that in Definition 5. Consider the Zariski
closure Y of Y in CN . It is easy to see that T Y equals T Y . Indeed, this follows from the fact that IY
is the saturation ideal

(
IY C[TN ] : (y1 · · · yN )∞

)
and IY = IY ∩ C[y1, . . . , yN ]. Therefore, if we start
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with an irreducible variety X ⊂ CN not contained in a coordinate hyperplane, then we can consider the
very affine variety Y = X ∩ TN , which has the same dimension as X . The tropical variety T Y is a pure
polyhedral subfan of the Gröbner fan of I and it preserves an important invariant of Y : both objects have
the same dimension (Bieri and Groves, 1984). We can choose to study T Y or T X , and both sets will give
us equivalent information about X . This approach will be useful in subsequent sections.

Tropical implicitization is a recently developed technique to approach classical implicitization prob-
lems (Sturmfels and Tevelev, 2008). For instance, when Y is a codimension-one hypersurface, IY = 〈g〉
is principal and T Y is the union of non-maximal cones in the normal fan of the Newton polytope of g,
so knowing T Y can help us in finding g. But to achieve this, we need to compute T Y without explicitly
knowing IY . We show how to do this in Section 4.

A point w ∈ T X is called regular if T X is a linear space locally near w. We can assign a positive
integer number to regular points of the tropical variety, to have good properties. More precisely, we define
the multiplicity mw of a regular point w as the sum of multiplicities of all minimal associated primes of
the initial ideal inw(I). For a given maximal cone σ in T X , we define its multiplicity as the multiplicity
at a regular point w in σ, that is, the multiplicity of any point in the relative interior. One can show that
this assignment does not depend on the choice of w and that with these multiplicities, the tropical variety
satisfies the balancing condition (Corollary 3.4, Sturmfels and Tevelev, 2008).

In the case of projective varieties, or in general, when we have a torus action, the tropical variety T X
has a lineality space, that is, the maximal linear space contained in all cones of the fan T X . For example,
the lineality space of a tropical hypersurface T (g) will equal the orthogonal complement of the affine span
of the Newton polytope of g, after appropriate translation to the origin. The extreme cases correspond to
toric varieties globally parameterized by a monomial map with associated matrixA. Their tropicalizations
T X will be classical linear spaces: the row span of A. In particular, T X coincides with its lineality space
as sets with constant multiplicity one (Dickenstein et al., 2007).

We now realize the master graph as a tropical surface in Rn+1:

Theorem 6 Fix a strictly increasing sequence (0, i1, . . . , in) of coprime integers. Let Z be the surface in
Cn+1 parameterized by (λ, ω) 7→ (1− λ, ωi1 − λ, . . . , ωin − λ). Then, the tropical surface T Z ⊂ Rn+1

coincides with the cone over the master graph as weighted polyhedral fans, with the convention that we
assign the weight mDi1 ,Ei1

+mFe,Di1
to the cone over the edge Di1Ei1 and we disregard the cone over

the edge Di1Fe, if the ending sequence e = {i1, . . . , in} gives a node Fe in the master graph.

The proof of this statement involves techniques from geometric tropicalization and resolution of singular-
ities of plane curves. Beautiful combinatorics emerge from them, as we will see in the next sections.

4 Geometric Tropicalization
In this section, we present the basics of geometric tropicalization. The spirit of this approach relies on
computing the tropicalization of subvarieties of tori by analyzing the combinatorics of their boundary in
a suitable compactification of the torus and of the subvariety therein. In what follows, we describe the
method and its applications to implicitizations of subvarieties of tori.

Let f1, . . . , fN be Laurent polynomials in C[t±1 , . . . , t
±
r ] and consider the rational map f : Tr 99K TN ,

f = (f1, . . . , fN ). For simplicity, we will assume that the fiber of f over a generic point of Y ⊂ TN
is finite. Our goal is to compute the tropicalization T Y of the closure of the image of the map f inside
the torus without knowledge of its defining ideal. When the coefficients of f1, . . . , fN are generic with
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respect to their Newton polytopes, a method for constructing T Y was given in (Thm 2.1, Sturmfels et al.,
2007) and proved in (Thm 5.1, Sturmfels and Tevelev, 2008). We describe an algorithm proposed in (§5,
Sturmfels and Tevelev, 2008) which may be applied to maps f which are non-generic. For simplicity, we
state it for the case of parametric surfaces, although the method generalizes to higher dimensions as well.

Theorem 7 (Geometric Tropicalization (Hacking et al., 2009, §2)) Let TN be theN -dimensional torus
over C with coordinate functions t1, . . . , tN , and let Y be a closed surface in TN . Suppose Y is smooth
and Y ⊃ Y is any compactification whose boundary D = Y \ Y is a smooth divisor with simple nor-
mal crossings. Let D1, . . . , Dm be the irreducible components of D, and write ∆Y,D for the intersection
complex of the boundary divisor D, i.e. the graph on {1, . . . ,m} defined by

{ki, kj} ∈ ∆Y,D ⇐⇒ Dki ∩Dkj 6= ∅.

Define the integer vectors [Dk] := (valDk
(t1), . . . , valDk

(tN )) ∈ ZN (k = 1, . . . ,m), where valDk
(tj)

is the order of zero-poles of tj along Dk. For any σ ∈ ∆Y,D, let [σ] be the cone in ZN spanned by
{[Dk] : k ∈ σ} and let R≥0[σ] be the cone in RN spanned by the same integer vectors. Then,

T Y =
⋃

σ∈∆Y,D

R≥0[σ].

We complement the previous result by a formula giving the multiplicities of regular points in tropical
surfaces. A similar formula will hold in higher dimensions:

Theorem 8 (Cueto, 2011) In the notation of Theorem 7, the multiplicity of a regular point w in the
tropical surface equals:

mw =
∑

σ∈∆Y,D

w∈R≥0[σ]

(Dk1 ·Dk2) index
(
(R⊗Z [σ]) ∩ ZN : Z[σ]

)
,

where Dk1 ·Dk2 denotes the intersection number of these divisors and we sum over all two-dimensional
cones σ whose associated rational cone R≥0[σ] contains the point w.

To compute T Y using the previous theorems, we require a compactification Y ⊃ Y whose boundary
has simple normal crossings (SNC). In words, all components of the divisor D should be smooth and they
show intersect “as transversally as possible.” One method for producing such a tropical compactification
is taking the closure Y of Y in PN ⊃ TN and finding a resolution of singularities for the boundary Y \Y .
This latter step can be difficult. However, in the case of surfaces, it is enough to require the boundary
to have combinatorial normal crossings (CNC), that is, “no three divisors intersect at a point” (Sturmfels
and Tevelev, 2008). We describe the resolution process for our binomial surface Z in the next section.

5 Combinatorics of Monomial Curves
In this section, we compute the tropical variety of the surfaceZ described in Theorem 6. Let fij := ωij−λ
(0 ≤ j ≤ n) and consider the parameterization f : C2 → Z given by these n + 1 polynomials. Since
geometric tropicalization involves subvarieties of tori, we restrict our domain toX = T2r

⋃n
j=1(fij = 0).
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We give a compactification of X which, in turn, gives a tropical compactification of Z ∩Tn+1 with CNC
boundary via the map f .

First, we naively compactify X inside P2. The components of the boundary divisor are Dij =
(fhij (ω, λ, u) = 0) and D∞ = (u = 0), where fhij is the homogenization of fij with respect to the
new variable u. We encounter three types of singularities: the origin, the point (0 : 1 : 0) at infinity,
and isolated singularities in T2. We resolve them by blowing up these points and contracting divisors
with negative self-intersection (encoded by superfluous bivalent nodes), in a way that preserves the CNC
condition. The resolutions diagrams will precisely be the graphs in Figure 1, where h1 corresponds to the
divisor D∞. The nodes Eij (1 ≤ j ≤ n − 1) and hij (2 ≤ j ≤ n − 1) will correspond to exceptional
divisors. All intersection multiplicities will equal one, so to compute the multiplicities of the edges in T Z
involving nodes hij or Eij , we only need to calculate indices of suitable lattices associated to these edges.

We now describe the resolution process at each one of our three types of singular points. At the origin,
all curvesDij (except forD0) intersect and they are tangential to each other. For any j, the strict transform
of a given Dij , after a single blow-up, equals Dij−1, so we can resolve this singularity after in−1-blow-
ups. The exceptional divisors are labeled Ek (1 ≤ k ≤ in−1) and all of them give bivalent nodes in the
resolution diagram, except for the n − 1 nodes Eij . We eliminate the bivalent nodes by contraction. By
induction, we see that the valuation of each exceptional divisor is the integer vectors Eij from Theorem 3.

At infinity, the resolution process is more delicate. Here, the singular point p = (0 : 1 : 0) corresponds
to the intersection of D∞ and all divisors Dij with ij ≥ 2. However, we know that p is a singular point of
all prime divisorsDij . Therefore, we first need to perform a blow-up to smooth them out. More precisely,
if π denotes this blow-up and H is the exceptional divisor, we obtain π∗(Dij ) = Dij + (ij − 1)H ,
π∗(D∞) = D′∞ + H , where H = (t = 0), and D′ij = (ω − tij−1 = 0), D′∞ = (w = 0) are the strict
transforms. Therefore, the new setting is very similar to the one we described before for the singularity
of the boundary D at the origin. The main difference with the resolution at the origin is that along the
series of blow-ups, the strict transform of H will continue to be tangential to the divisors intersecting at
a “fat point”, whereas H was not present in the resolution at the origin. All exceptional divisors will be
denoted by hk (k = 2, . . . , in) and again we only keep the non-bivalent nodes hij (2 ≤ j ≤ n) after
appropriate contractions. For simplicity, we denote the strict transform of D∞ by h1. At the end of the
resolution processH gets contracted, explaining why we do not see it in the resolution diagram (Figure 1).
As expected, we recover the integer vectors hij from Theorem 3.

Finally, we come to multiple intersections among the divisors Dij in T2. If (λ, ω) satisfies fij =
λ− ωij = 0 and fik = λ− ωik = 0, then ωij = λ = ωik , so ω is a primitive r-th root of unity for some
r | (ik − ij). Alternatively, ij ≡ ik ≡ s (mod r), ω = e2πip/r and λ = ωs for p coprime to r. All other
curves (fil = 0) with il ≡ s (mod r) will also meet at (λ, ω). We represent this crossing point (λ, ω) by
xp,r,s and the index set of curves meeting at xp,r,s by ar,s, or a for short. That is,

xp,r,s = (e2πips/r, e2πip/r), a = ar,s := {ij |ij ≡ s (mod r)}.
Furthermore, the curves Dij = (fij = 0) meeting at xp,r,s intersect transversally.

If three or more curves meet at a point, we blow up this point to separate the curves. To simplify
notations, we also blow up crossings with |a| = 2. After a single blow-up at each crossing point xp,r,s we
obtain a new divisor Fa,xp,r,s

(the exceptional divisor associated to the point xp,r,s) which intersects the
proper transform of all Dij normally, for j ∈ a. After studying the coefficient of Fa,xp,r,s in the pull-back
of each character of the torus Tn+1 under the map f , we get the node Fa = [Fa,xp,r,s ] =

∑
ij∈a ej , as

desired. The resolution diagram will correspond to the graph in the right-hand side of Figure 1.
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Finally, we use Theorem 8 to compute the multiplicity of the edge FaDij in T Z. All summands equal
one and so the multiplicity is just the number of such summands, that is, the number of points xp,r,s such
that Fa = [Fa,xp,r,s ]. This number equals the sum

∑
l ϕ(l) over all common differences l giving a.

6 The tropical secant graph is a Hadamard product
In this section, we use the master graph to effectively compute the tropicalization of the first secant
variety of a monomial projective curve C. Without loss of generality, we may assume that the curve is
parameterized as (1 : ti1 : . . . : tin), where 0 < i1 < . . . < in are coprime integers. By definition,

Sec1(C) = {a · p+ b · q : a, b ∈ C, p, q ∈ C} ⊂ Pn.

As discussed in Section 3, tropicalizations are toric in nature. Thus, for the rest of this section, instead of
looking at the projective varieties C and Sec1(C), we study the corresponding very affine varieties which
are intersections of their affine cones in Rn+1 with the algebraic torus Tn+1. To simplify notation, we will
also denote them by C and Sec1(C) in a way that is clear from the context. Tropicalizations of projective
varieties and their corresponding very affine varieties are the same.

We parameterize this secant variety by the secant map φ : T4 → Tn+1, φ(a, b, s, t) = (asik +
btik)0≤k≤n. After a monomial change of coordinates b = −λa and t = ωs, this map can be written as

φ(a, s, ω, λ) =
(
asik (ωik − λ)

)
0≤k≤n.

From this observation, it is natural to consider the Hadamard product of subvarieties of tori:

Definition 9 Let X,Y ⊂ TN be two subvarieties of tori. The Hadamard product of X and Y equals

X � Y = {(x1y1, . . . , xNyN ) |x ∈ X, y ∈ Y } ⊂ TN .

From the construction, we get the following characterization of our secant variety:

Proposition 10 The first secant variety Sec1(C) ⊂ Rn+1 of the monomial curve C parameterized by
t 7→ (1 : ti1 : . . . : tin) ∈ Pn equals C � Z ⊂ Tn+1 where Z is the surface parameterized by (λ, ω) 7→
(1− λ, ωi1 − λ, . . . , ωin − λ).

We now explain the relationship between Hadamard products and their tropicalization:

Proposition 11 (Corollary 13, Cueto et al., 2010) Given C,Z as in Proposition 10, then as sets

T Sec1(C) = T C + T Z, (1)

where the sum on the (RHS) denotes the Minkowski sum in Rn+1.

As we mentioned earlier, T C = R〈1, (0, i1, . . . , in)〉 with constant weight one. By construction, the
lineality space of T Z ⊂ Rn+1 is the origin, and the lineality space of T Sec1(C) ⊂ Rn+1 equals T C.

As occurs in general with Hadamard products and their tropicalizations, the right-hand side of (1) has
no canonical fan structure. Some maximal cones can be subdivided, whereas others can be merged into
bigger cones. Hence, we present this set as a collection of four-dimensional weighted cones in Rn+1

obtained as a Minkowski sum of maximal cones in T C and T Z. The multiplicity at a regular point would
simply be the sum of multiplicities of all cones in the collection containing it. Moreover, we will be able
to express this number in terms of the multiplicities in T Z, using the following result from (Sturmfels and
Tevelev, 2008) that shows the interplay between maps on tori and their tropicalization. Let α : Tr → TN
be a homomorphism of tori, that is, a monomial map whose exponents are encoded in a matrixA ∈ ZN×r.
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Theorem 12 (Sturmfels and Tevelev, 2008) Let V ⊂ Tr be a subvariety. Then T (α(V )) = A(T V ).
Moreover, if α induces a generically finite morphism of degree δ on V , then the multiplicity of T (α(V ))

at a regular point w is

mw =
1

δ
·
∑

v

mv · index (Lw ∩ ZN : A(Lv ∩ Zr)), (2)

where the sum is over all points v ∈ T V withAv = w. We also assume that the number of such v is finite,
and that all of them are regular in T V . In this setting, Lv,Lw denote the linear spans of neighborhoods
of v ∈ T V and w ∈ A(T V ) respectively.

The key fact in the computation of multiplicities for T Sec1(C) is that we can express the Hadamard
product in terms of the monomial map α : T2n+2 → Tn+1 given by the matrix A = (In+1 | In+1) ∈
Z(n+1)×2(n+1). The subvariety V ⊂ T2n+2 is the Cartesian product C × Z, where we consider each
surface inside the torus. From (Cueto et al., 2010), we have T V = T (C × Z) = T C × T Z and the
multiplicity mv at a regular point v = (c, z) of V equals mz . By dimension arguments, we see that α is
generically finite when restricted to V , so we can use formula (2) to compute multiplicities in T Sec1(C).

Lemma 13 For V = C × Z and α as above, the generic fiber of α|V has size 2, hence δ = 2.

Next, we compute the fiber of a regular point w in T (α(V )) under the linear map A. The strategy
will be to pick all possible pairs of maximal cones σ, σ′ in T Z and to compute the dimension of (Rσ +
T C)

⋂
(Rσ′ + T C). If this dimension is strictly less than four, then we know that generic points in

T C × σ and T C × σ′ belong to different fibers of A. If it equals four, we compute the fiber of A at any
point in the intersection. In particular, we conclude:

Lemma 14 (i) The cones 〈D0, hi1〉+T C, 〈F{0,i1,...,in}, Dij 〉+T C (0 ≤ j ≤ n), 〈Din , Ein−1
〉+T C

and 〈Din , hin−1
〉+T C are not maximal, so we disregard them together with the node F{0,i1,...,in}.

(ii) For all 1 ≤ j ≤ n−2, we have equalities 〈Eij , Dij 〉+T C = 〈hij , Dij 〉+T C and 〈Eij , Eij+1
〉+

T C = 〈hij , hij+1
〉+ T C because Eij ≡ hij modulo T C. Hence, we disregard all nodes hij .

(iii) i1 · Fe = Ei1 and (in − in−1) · Fb ≡ Ein−1
modulo T C, where e = {i1, . . . , in} and b =

{0, i1, . . . , in−1}. Thus, the maximal cones R〈Fe, Di1〉+ T C and R〈Ei1 , Di1〉+ T C coincide, as
well as R〈Fb, Din−1〉+ T C and R〈Ein−1 , Din−1〉+ T C.

(iv) All other fibers have size one.

As a consequence of this lemma, in numerical examples we will identify the nodes Ei1 and Fe, as well as
Ein−1 and Fb. In this identification, the nodes Fe and Fb are removed, and the edges adjacent to the nodes
Fe and Fb are added to those of Ei1 and Ein−1 . We also merge the corresponding edges Ei1Di1 and
FeDi1 (resp. Ein−1

Din−1
and FbDin−1

) in the tropical secant graph, assigning the sum of their weights
to the new edge.

The indices involved in (2) are calculated as follows. Let l1 = 1 and l2 = (0, i1, . . . , in) be the
generators of T C. For each edge of T Z, we pick its two end points x, y. The index in (2) associated
to a point v ∈ T C + R≥0〈x, y〉 ⊂ T C + T Z is the quotient of the gcd of the 4-minors of the matrix
(x | y | l1 | l2) by the gcd of the 2-minors of the matrix (x | y). These gcd’s are computed as the product
of the nonzero diagonal elements of the Smith normal form of each matrix. Here is our main result:
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Definition 15 The tropical secant graph is a weighted subgraph of the master graph in Rn+1, with nodes:

(i) Dij = ej := (0, . . . , 0, 1, 0, . . . , 0) (0 ≤ j ≤ n),

(ii) Eij = (0, i1, . . . , ij−1, ij , . . . , ij) =
∑
k<j ik · ek + ij · (

∑
k≥j ek) (1 ≤ j ≤ n− 1),

(iii) Fa =
∑
ij∈a ej where a ( {0, i1, . . . , in} varies among all proper subsets containing at least

two elements that are obtained from an arithmetic progression.

The edges are a subset of the edges of the master graph. Their positive weights are assigned as follows:

(i) mEij
,Eij+1

= gcd(i1, . . . , ij) gcd
j<t<n

(in − it) (1 ≤ j ≤ n− 2),

(ii) mDij
,Eij

= gcd
(

gcd(i1, . . . , ij−1) gcd
j<s≤n

(is−ij) ; gcd
0≤k<j

(ij−ik) gcd(ij+1, . . . , in)
)

(1 ≤ j ≤ n−1),

(iii) mFa,Dij
= 1

2

∑
r
ϕ(r) · gcd

(
gcd
il,ik /∈a

(| il − ik |) ; gcd
il,ik∈a
l,k 6=j

(| il − ik |)
)

(ij ∈ a, where the sum runs

over all common differences r of arithmetic progressions giving the subset a).

(By convention, a gcd over an empty set of indices is taken to be 0.)

Theorem 16 Given a monomial curve C with primitive exponent vector (0, i1, . . . , in), 0 = i0 < i1 <
. . . < in, the tropicalization of the first secant variety of C can be characterized set-theoretically as
a collection of 4-dimensional weighted cones (with no fan structure). Each cone has a 2-dimensional
lineality space with basis given by the intrinsic lattice Λ = 〈(1, . . . , 1), (0, i1, . . . , in)〉. The collection is
obtained as the cone from the subspace R⊗Z Λ over the tropical secant graph, preserving all weights.

7 The Newton polytope of the secant graph for P4

In this section, we focus our attention on the inverse problem. That is, given the tropical variety of an
irreducible hypersurface, we wish to recover its defining equation. A first step towards a satisfactory
answer would consist of computing the Newton polytope of the defining equation f =

∑
a cax

a, i.e. the
convex hull of integer vectors a such that xa appears with a nonzero coefficient in f . This will let us find
the defining equation via interpolation.

We now explain the connection between T (f) and NP(f) for an irreducible polynomial f in n + 1
variables defined over C. For a vector w ∈ Rn+1, the initial form inw(f) is a monomial if and only if
w is in the interior of a maximal cone (chamber) of the normal fan of NP(f). The tropical variety of the
hypersurface (f = 0) is the union of codimension one cones of the normal fan of NP(f). The multiplicity
of a maximal cone in T (f) is the lattice length of the edge of NP(f) normal to that cone.

A construction for the Newton polytope NP(f) from its normal fan T (f) equipped with multiplicities
was developed in Dickenstein et al. (2007). We describe this ray-shooting algorithm in Theorem 17:

Theorem 17 Suppose w ∈ Rn+1 is a generic vector so that the ray (w + R>0 ei) intersects T (f) only
at regular points of T (f), for all i. Let Pw be the vertex of the polytope P = NP(f) that attains the
maximum of {w · x : x ∈ P}. Then the ith coordinate of Pw equals

∑
vmv · |lvi |, where the sum is taken

over all points v ∈ T (f) ∩ (w + R>0ei), mv is the multiplicity of v in T (f), and lvi is the ith coordinate
of the primitive integral normal vector lv to the maximal cone in T (f) containing v.
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Fig. 2: The master graph and the tropical secant graph of the monomial curve (1 : t30 : t45 : t55 : t78).

Note that we do not need a fan structure on T (f) to use Theorem 17. A description of T (f) as a
set, together with a way to compute the multiplicities at regular points, gives us enough information to
compute vertices of NP(f) in any generic directions. Computing a single vertex using Theorem 17 will
give us the multidegree of f with respect to the grading given by the intrinsic lattice Λ from Theorem 16.

The entire polytope NP(f) can be computed by iterating the ray-shooting algorithm with different
objective vectors (one per chamber). A method to choose these vectors appropriately was developed in
(Algorithm 2, Cueto et al., 2010): the walking algorithm. The core of the method is to keep track of the
cones that we meet while ray-shooting from a given objective vector, to use the list of such cones to walk
from chamber to chamber in the normal fan of NP(f), picking objective vectors along the way, and to
repeat the shooting algorithm with these new vectors. We illustrate these methods with an example.

Example 18 The first secant variety of the monomial curve t 7→ (1 : t30 : t45 : t55 : t78) in P4 is known
to be a hypersurface of degree 1820 (Example 3.3, Ranestad, 2006). We use geometric tropicalization
to compute the tropicalization of this variety. By Theorems 6 and 16, we construct the two graphs in
Figure 2: the leftmost picture corresponds to the master graph, whereas the rightmost picture is the
tropical secant graph. The ten nodes in the tropical secant graph have coordinates D0 = e0, D30 = e1,
D45 = e2, D55 = e3, D78 = e4, E30 = (0, 30, 30, 30, 30), E45 = (0, 30, 45, 45, 45), F{0,30,45,55} ≡
E55 = (0, 30, 45, 55, 55), F{0,30,78} = (1, 1, 0, 0, 1), F{0,30,45,78} = (1, 1, 1, 0, 1), and F{0,30,45} =
(1, 1, 1, 0, 0). The master graph has the five extra nodes h30 = (−30,−30,−45,−55,−78), h45 =
(−45,−45,−45,−55,−78), h55 = (−55,−55,−55,−55,−78), F{0,30,45,55,78} = (1, 1, 1, 1, 1), and
F{0,30,45,55} = (1, 1, 1, 1, 0). The unlabeled nodes in Figure 2 indicate nodes of type Fa, where the
subset a consists of the indices of all nodes Dij adjacent to the unlabeled node. Notice that the nodes E55

and Fb coincide in the tropical secant graph, as predicted by Lemma 14.
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Finally, we apply the ray-shooting and walking algorithms to recover the Newton polytope of this
hypersurface. Its multidegree with respect to the lattice Λ = Z〈1, (0, 30, 45, 55, 78)〉 is (1 820, 76 950).
The polytope has 24 vertices and f -vector (24, 38, 16). Using LattE we see that it contains 7 566 849
lattice points, which gives an upper bound for the number of monomials in the defining equation.

The implicitization methods discussed in this section can be generalized to monomial curves in higher
dimensional projective spaces, where the first secant has no longer codimension one. In this case, one can
recover the Chow polytope of the secant variety by a natural generalization of the ray-shooting method:
the orthant-shooting algorithm (Theorem 2.2, Dickenstein et al., 2007). Instead of shooting rays, we
shoot orthants (i.e. cones spanned by vectors in the canonical basis of Rn+1) of dimension equal to the
codimension of our variety. A formula similar to the one described in Theorem 17 will give us the vertex of
the Chow polytope associated to the input objective vector. However, an analog to the walking algorithm
still needs to be developed, since there is, a priori, no canonical way of ordering the intersection points for
walking along the complement of the tropical variety. We hope to pursue this direction in the near future.
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Abstract. We present a simple technique to compute moments of derivatives of unitary characteristic polynomials.
The first part of the technique relies on an idea of Bump and Gamburd: it uses orthonormality of Schur functions over
unitary groups to compute matrix averages of characteristic polynomials. In order to consider derivatives of those
polynomials, we here need the added strength of the Generalized Binomial Theorem of Okounkov and Olshanski.
This result is very natural as it provides coefficients for the Taylor expansions of Schur functions, in terms of shifted
Schur functions. The answer is finally given as a sum over partitions of functions of the contents. One can also obtain
alternative expressions involving hypergeometric functions of matrix arguments.

Résumé. Nous introduisons une nouvelle technique, en deux parties, pour calculer les moments de dérivées de
polynômes caractéristiques. La première étape repose sur une idée de Bump et Gamburd et utilise l’orthonormalité
des fonctions de Schur sur les groupes unitaires pour calculer des moyennes de polynômes caractéristiques de matri-
ces aléatoires. La deuxième étape, qui est nécessaire pour passer aux dérivées, utilise une généralisation du théorème
binomial due à Okounkov et Olshanski. Ce théorème livre les coefficients des séries de Taylor pour les fonctions de
Schur sous la forme de “shifted Schur functions”. La réponse finale est donnée sous forme de somme sur les parti-
tions de fonctions des contenus. Nous obtenons aussi d’autres expressions en terme de fonctions hypergéométriques
d’argument matriciel.

Keywords: random matrix theory, hook-content formula, moment of characteristic polynomials, shifted Schur func-
tion, generalized Pochhammer symbol, hypergeometric function of matrix argument

1 Introduction
We take for the characteristic polynomial of a N ×N unitary matrix U

ZU (θ) :=
N∏

j=1

(
1− ei(θj−θ)

)
, (1)

where the θjs are the eigenangles of U and set

VU (θ) := eiN(θ+π)/2e−i
∑N
j=1 θj/2ZU (θ). (2)

It is easily checked that for real θ, VU (θ) is real and that |VU (θ)| equals |ZU (θ)|.
1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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For k and r integers, with 0 ≤ r ≤ 2k, we will investigate the averages (with respect to Haar measure)

(M)N (2k, r) :=

〈
|ZU (0)|2k

(
Z ′U (0)

ZU (0)

)r〉

U(N)

, (3)

|V|N (2k, r) :=

〈
|VU (0)|2k

∣∣∣∣
V ′U (0)

VU (0)

∣∣∣∣
r〉

U(N)

. (4)

This is notation we already used in [Deh08] (where a |M| was also present but is not needed here), and
is only notation in the LHS: the (M) and |V| are thus meant each as one symbol and are supposed to
mnemotechnically remind the reader of what is in the RHS. We immediately state the following easy
lemma.

Lemma 1 For k ≥ h non-negative integers, we have the relation

|V|N (2k, 2h) =

2h∑

i=0

(
2h

i

)
(M)N (2k, i)

(
iN

2

)2h−i
. (5)

Proof: This is available (in the same notation) in [Deh08] and a consequence of Equation (2), which leads
to the polynomial relations between Z′

U (0)
ZU (0) , V

′
U (0)
VU (0) and their norms. These relations give

|V|N (2k, 2h) =

h∑

j=0

(
h

j

)(−N2

4

)h−j j∑

l=0

(iN)j−l
(
j

l

)
(M)N (2k, j + l), (6)

which is easily deduced from [Deh08]. 2

We are actually more concerned with the renormalizations

(M) (2k, r) = lim
N→∞

(M)N (2k, r)

Nk2+r
(7)

|V| (2k, r) = lim
N→∞

|V|N (2k, r)

Nk2+r
. (8)

Theorem 2 will show that these normalizations are appropriate.
The random matrix theory problem of evaluating (M) (2k, r) and |V| (2k, r) has applications in num-

ber theory (see [Deh08] for a more detailed exposition of these ideas). Indeed, these values are related to
the factor g(k, h) in the formula

lim
T→∞

1

T

1

(log T
2π )k2+2h

∫ T

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2k−2h ∣∣∣∣ζ ′

(
1

2
+ it

)∣∣∣∣
2h

dt = a(k)g(k, h), (9)

where a(k) is a (known) factor defined as a product over primes. This, along with a discrete moment
version due to Hughes, is the principal underlying motivation for the all the random matrix theory analysis
that occurs in [HKO00, Hug01, Hug05, Mez03, CRS06, FW06].
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Another application is tied to the work of Hall [Hal02a, Hal02b, Hal04, Hal08], where results on the
objects studied here can be used to hint towards optimizations of rigorous arguments in number theory, and
serve as (conjectural) inputs on theorems there. The number theory statements concern average spacings
between zeroes of the Riemann zeta function. The works of Steuding [Ste05] and Saker [Sak09] follow
similar approaches.

In [Deh08], the author investigated for fixed r ratios of those quantities and established they were a
rational function. We reprove this result here, but with a much simpler method leading to a much simpler
result. In particular, rationality of the RHS is transparent from the following statement (definitions are
given in Section 2), since the RHS sums are finite sums over partitions of r:

Theorem 2 For 0 ≤ r ≤ 2k, with r, k ∈ N,

(M)N (2k, r)

(M)N (2k, 0)
ir =

∑

µ`r

r!

h2µ

(N ↑ µ)((−k) ↑ µ)

(−2k) ↑ µ , (10)

(M)(2k, r)

(M)(2k, 0)
ir =

∑

µ`r

r!

h2µ

k ↑ µ
(2k) ↑ µ, (11)

while the denominators on the left are known ([BG06],[KS00]):

(M)N (2k, 0) = s〈Nk〉
(
{1}2k

)
=
G(N + 2k + 1)G(N + 1)

G(N + k + 1)2
G(k + 1)2

G(2k + 1)
(12)

and

(M)(2k, 0) = lim
N→∞

s〈Nk〉
(
{1}2k

)

Nk2
=
G(k + 1)2

G(2k + 1)
, (13)

where G(·) is the Barnes G-function.

We now briefly discuss the technique used to obtain this theorem. The first idea will be similar to an
idea of Bump and Gamburd [BG06] of using orthonormality of Schur functions to efficiently compute
matrix averages. The new idea here is to combine this with the Generalized Binomial Theorem (23) of
Okounkov and Olshanski [OO97] in order to obtain information about the moments of derivatives instead
of moments of polynomials directly.

This paper is structured as follows. We give in Section 2 the basic definitions needed. In Section 3,
we explain the Generalized Binomial Theorem. We prove Theorem 2 in Section 4. We use this result
to deduce in Section 5 further properties of the rational functions obtained. We present in Section 6
an alternative interpretation of these results in terms of hypergeometric functions of a matrix argument.
Finally, we announce briefly in Section 7 further results.

2 Definitions
Since Theorem 2 presents its result as a sum over partitions, we first need to define some classical objects
associated to them. We follow conventions of [Sta99] throughout.
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Fig. 1: The Ferrers diagram of partition (9, 6, 2, 1).

0 1 2 3 4 5 6 7 8
-1 0 1 2 3 4
-2 -1
-3

1210 8 7 6 5 3 2 1
8 6 4 3 2 1
3 1
1

Fig. 2: The contents and hook lengths of the partition (9, 6, 2, 1). Its hook number is thus 4180377600.

Partitions are weakly decreasing sequences λ1 ≥ λ2 ≥ · · ·λl(λ) of positive integers, its parts. The
integer l = l(λ) is called the length of the partition λ. We call the sum

∑
i λi of its parts the size |λ| of the

partition λ. We sometimes say that λ partitions |λ|, which is written λ ` |λ|. If the partition has k parts
of equal size N , we simplify notation to

〈
Nk
〉
.

We always prefer to think of partitions graphically. To each partition we associate a Ferrers diagram,
i.e. the Young diagram of the partition presented in the English convention. We only give one example
(Figure 1) as it should be clear from it how the diagram is constructed: the parts λi indicate how many
standard boxes to consider on each row.

There exists an involution acting on partitions, which we denote by λt. Its action on diagrams amounts
to a reflection along the main diagonal.

Partitions can be indexed in many different ways. Indeed, we have already seen that finite sequences
of (decreasing) part sizes can be used as an index set. Shifted part lengths are essential for the work of
Okounkov and Olshanski underlying Section 3, but we do not need to define that system of coordinates.

Define the content of a box � located at position (i, j) in a partition λ as c(�) = j − i (see Figure 2).
We use this to define the symbol

k ↑ µ :=
∏

�∈µ
(k + c(�)). (14)

This definition leads to k ↑ (n) = k(k + 1) · · · (k + n − 1) and k ↑ (1n) = k(k − 1) · · · (k − n + 1).
We sometimes abbreviate the first k ↑ n and the second k ↓ n. This is clearly a generalization of the
Pochhammer symbol. Indeed, we even adopt the convention that N ↑ (−k) = 1/((N + 1) ↑ k), which
guarantees

(N + a− 1) ↓ (a+ b) = (N ↑ a) · ((N − 1) ↓ b). (15)

To get back to the generalization to partitions, we have an immediate relation under conjugation:

k ↑ µt = (−1)|µ|((−k) ↑ µ). (16)



Moments of derivatives of characteristic polynomials 557

Given a box � ∈ λ, define its hook (set)

h� = h(i,j) := {(i, j′) ∈ λ : j′ ≥ j} ∪ {(i′, j) ∈ λ : i′ ≥ i} . (17)

Remark that the box � itself is in its hook. Define the hook length |h(i,j)| as the cardinality of the hook
(see Figure 2) and call their product the hook number of a partition λ:

hλ :=
∏

�∈λ
h�. (18)

Hook numbers are of importance thanks to the hook length formula of Frame, Robinson and Thrall
[FRT54]. This counts the number fλ of standard tableaux of shape λ, which is also the dimension
dimχλ = χλ(1) of the character associated to the partition λ for the symmetric group S|λ| (see [Sag01,
Sta99]):

fλ := dimχλS|λ| =
|λ|!
hλ

. (19)

The last classical combinatorial object we need is the Schur functions. To each partition λ we associate
an element sλ of degree |λ| of the ring ΛQ[X] of polynomials symmetric in a countable set of variables
X = {xi}. We refer the reader to [Bum04] for definitions, and only state a few properties.

Let r ∈ N, and take a partition λ of size r. One can define a map from χλN from U(N) to C in the
following way:

χλN (g) := sλ(g) := sλ(eiθ1 , · · · , eiθN , 0, 0, 0, · · · ), (20)

with the eiθj the eigenvalues of g ∈ U(N). When l(λ) > N , χλN (g) ≡ 0, but once N ≥ l(λ), the χλN (g)
become (different) irreducible characters of U(N). We thus have the formula

〈
χλN , χ

µ
N

〉
U(N)

= 〈sλ(·), sµ(·)〉U(N) =

{
1 if λ = µ and N ≥ |λ|,
0 otherwise. (21)

The last formula we need concerns the evaluation of Schur polynomials, at repeated values of the argu-
ments. Denote by {a}R the multiset consisting of the union of R copies of a and countably many copies
of 0. The hook-content formula (see [Sta99, Bum04]), a consequence of the Weyl Dimension Formula,
states then that

sλ

(
{1}k

)
=

k ↑ λ
hλ

. (22)

3 Shifted Schur Functions and Generalized Binomial Theorem
The Generalized Binomial Theorem as formulated in [OO97, Theorem 5.1] can be interpreted as a Taylor
expansion of the character χλn = sλ(·) of U(n) around the identity Idn×n. It says explicitly that

sλ(1 + x1, · · · , 1 + xn)

sλ ({1}n)
=

∑

µ
l(µ)≤n

s∗µ(λ1, · · · , λn)sµ(x1, · · · , xn)

n ↑ µ , (23)
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where the s∗µ are shifted Schur functions. Those were introduced by Okounkov and Olshanski in [OO97]
and need not be defined here as we only need their values on a very limited set of arguments. This is
given by the following lemma, which is very elegant and seems to be new. Note the (almost-)symmetry
between k and N .

Lemma 3

s∗µ
(
{N}k

)
= hµ · sµt

(
{1}N

)
· sµ

(
{1}k

)
(24)

= (−1)|µ|
((−N) ↑ µ)(k ↑ µ)

hµ
(25)

Proof: We will need two equations from [OO97]. Equation (11.28) tells us that

s∗µ(x1, · · · , xn) = det
[
h∗µi−i+j(x1 + j − 1, · · · , xn + j − 1)

]R,R
i,j=1

(26)

for large enough R (it is then stable in R). Equation (11.22) from [OO97] deals precisely with those h∗:

h∗r
(
{N}k

)
= (N ↓ r) · hr

(
{1}k

)
. (27)

Combining these equations, we obtain

s∗µ
(
{N}k

)
= det

[
((N + j − 1) ↓ (µi − i+ j)) · h∗µi−i+j

(
{1}k

)]R,R
i,j=1

(28)

= det
[
(N ↑ j)((N − 1) ↓ (µi − i)) · h∗µi−i+j

(
{1}k

)]R,R
i,j=1

(29)

=

(
R∏

i=1

((N − 1) ↓ (µi − i))
)


R∏

j=1

(N ↑ j)


 det

[
h∗µi−i+j

(
{1}k

)]R,R
i,j=1

(30)

=

(
R∏

i=1

((N + i− 1) ↓ µi)
)
sµ

(
{1}k

)
(31)

=


∏

�∈µ
N − c(�)


 sµ

(
{1}k

)
(32)

= hµsµt
(
{1}N

)
sµ

(
{1}k

)
. (33)

The fourth line follows from Equation (15), the fifth from reorganizing a product over rows into a product
over boxes, and the sixth from Equation (22). 2

We are now ready to launch into the proof of Theorem 2.



Moments of derivatives of characteristic polynomials 559

4 Proof of Theorem 2
The method of proof will be very similar to the technique presented in [BG06]. In particular, both the
Cauchy identity [Bum04]

∏

i,j

1 + xiyj =
∑

λ

sλt(xi)sλ(yj), (34)

where xi and yj are finite sets of variables, and the asymptotic orthonormality of the Schur functions will
again play a crucial role. However, the power of their technique is now supplemented by the General-
ized Binomial Theorem, which will provide for a dramatic simplification of the arguments and results in
[Deh08].

Proof of Theorem 2: We have

ZU (0) =
N∏

j=1

(
1− e−iθj

)
(35)

=
N∏

j=1

−e−iθj
(
1− eiθj

)
(36)

= (−1)NdetUZU (0) (37)

and thus

ZU (0)
k

= (−1)kNdetU
k
ZU (0)k (38)

= (−1)kNs〈kN 〉(U)ZU (0)k. (39)

We use the Cauchy Identity from Equation (34) to obtain

ZU (a1) · · ·ZU (ar) =
∑

λ

sλt(U)sλ
(
−e−ia1 , · · · ,−e−iar

)
(40)

=
∑

λ

(−1)|λ|sλt(U)sλ
(
e−ia1 , · · · , e−iar

)
. (41)

To the first order in small a, we have e−ia ≈ 1− ia, so

Z ′U (0)r =
∑

λ

(−1)|λ|sλt(U) ∂1 · · · ∂rsλ (1− ia1, · · · , 1− iar)
∣∣
a1=···=ar=0

, (42)

where ∂i := ∂ai .
Putting everything together, we obtain

|ZU (0)|2k
(
Z ′U (0)

ZU (0)

)r
= (−1)(kN)s〈kN 〉(U)·

∑

λ

(−1)|λ|sλt(U) ∂1 · · · ∂rsλ ((2k − r)× {1} ∪ {1− ia1, · · · , 1− iar})
∣∣
a1=···=ar=0

. (43)
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Just as in the original proof of Bump and Gamburd, orthogonality of the Schur polynomials kills all terms
in the sum but one (where λt equals

〈
kN
〉
) under averaging over U(N). Hence this simplifies to

〈
|ZU (0)|2k

(
Z ′U (0)

ZU (0)

)r〉

U(N)

=

∂1 · · · ∂rs〈Nk〉 ((2k − r)× {1} ∪ {1− ia1, · · · , 1− iar})
∣∣
a1=···=ar=0

. (44)

This is the perfect opportunity to apply the Generalized Binomial Theorem. We wish to set n = 2k, and

xi =

{
−iai for 1 ≤ i ≤ r

0 for r + 1 ≤ i ≤ 2k
(45)

in Equation (23) to get
〈
|ZU (0)|2k

(
Z ′U (0)

ZU (0)

)r〉

U(N)

= s〈Nk〉
(
{1}2k

)
×

(−i)r
∑

µ`r

s∗µ
(
{N}k

)
∂1 · · · ∂rsµ(a1, · · · , ar)

∣∣
a1=···=ar=0

(2k) ↑ µ . (46)

The (additional) restriction on µ is obtained because of the derivatives: since the Schur functions are
evaluated at ai = 0, and sµ is of total degree |µ| in the ai, we must have |µ| = r for something to survive
∂1 · · · ∂r.

When µ ` r, we have(i)

∂1 · · · ∂rsµ(a1, · · · , ar)
∣∣
a1=···=ar=0

=
〈
sµ, p〈1r〉

〉
= dimχµS|µ| =

|µ|
hµ

(47)

since derivation and multiplication by power sums are adjoint.
Combined with Lemma (3), Equation (16) and Equation (22), this gives Equation (10), which then

quickly implies (11). 2

5 Properties of the Rational Functions
In the RHS of formulas (10) and (11), we have a sum of rational multiples of ratios of polynomials in k
(and N ), hence rational functions of k. We will now explain some of the properties of these functions,
which are easily deduced from Equation (11) and the limiting version of Lemma 1.

Proposition 4 For a fixed r, h ∈ N, there exists sequences of even polynomials Xr, Yr and X̃2h such that
for all k ≥ r, 2h,

(M)(2k, r)

(M)(2k, 0)
=

(
− i

2

)r
Xr(2k)

Yr(2k)
, (48)

|V| (2k, 2h)

|V| (2k, 0)
=

X̃2h(2k)

Y2h(2k)
, (49)

(i) Observe that higher derivatives require knowledge of values of symmetric group characters at other group elements than the
identity.
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and such that Xr and Yr are of the same degree, monic, and with integer coefficients. We also have
deg X̃2h ≤ deg Y2h and that X̃2h has integer coefficients.

This Proposition leads or relies on a few easy facts.

Remarks.

• All polynomials are even due to Equation (16).

• We emphasize that we are not quite taking the simplest possible form of Xr(2k), X̃r(2k) and
Yr(2k) here. For some (presumably small) rs, some spurious cancellations will occur. However,
an explicit expression, given in [Deh08], can be obtained for the Yr such that all the previous
statements are true. Let us just say that we are taking for Yr the common denominator not of every
term in the sum over partitions λ, but of every (1-or-2-terms-)subsum over orbits of the involution
on partitions, after all the simplifications of the type k+i

2k+2i = 1
2 that occur in k↑λ

(2k)↑λ .

• With this convention, the zeroes of Yr are exactly at the odd integers between 1− r and r − 1.

• Since the squares of dimension of characters of a finite group G sum to the order of G, or due
to the existence of the Robinson-Schensted-Knuth correspondence between permutations of n and
pairs of Young tableaux of the same shape partitioning n, we have starting from Equation (19) the
identity

∑

λ`n

n!

h2λ
= 1, (50)

which defines the Plancherel measure on partitions of n. The polynomial Xr is monic thanks to
this last identity.

• The sum appearing in Equation (11) is a special case of a problem studied by Jonathan Novak in
Equation (9.21) of his thesis [Nov09].

6 Hypergeometric Functions of Matrix Arguments
For completeness, we now discuss an alternative way to approach the expression in (10). Hypergeometric
functions of a N ×N matrix argument M are generalizations of hypergeometric functions of a complex
variable. Originally, this extension is defined on multisets of complex numbers, which can then be seen as
eigenvalues of a matrix using the trick of Equation (20). There is extensive literature on those functions,
most of it tied to multivariate statistical analysis. For a recent, accessible presentation, consider [FW08].

For M a N ×N matrix, we define [DGR96, GR91] a function of M as follows:

pFq(ai, bj ;M) =
∑

λ

∏p
i=1 ai ↑ λ∏q
j=1 bj ↑ λ

· sλ(M)

hλ
(51)

where sλ(M) is the Schur polynomial evaluated at the eigenvalues of M . This generalizes the classical
hypergeometric functions of a complex variable z to (the multiset of eigenvalues of) a square matrix
variable M , via the following substitutions:
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• the sum over integers is replaced by a sum over partitions;

• the generalized Pochhammer symbol replaces the rising factorial;

• the extra factorial that is always introduced for classical hypergeometric functions (by convention
then) is replaced by a hook number;

• powers of z are replaced by Schur functions of the eigenvalues of M .

• They admit integral representations, closely related to Selberg integrals (see [Kan93]).

By forming an exponential generating series of Equation (10) and with the help of Equation (22), we
are able to obtain the (confluent) hypergeometric function

∑

r≥0

(M)N (2k, r)

(M)N (2k, 0)

(iz)r

r!
=

∑

µ

1

h2µ

(N ↑ µ)((−k) ↑ µ)

(−2k) ↑ µ z|λ| = 1F1(−k;−2k; z IdN×N ). (52)

We can then substitute for the RHS of this last equation many different expressions: the theory of hy-
pergeometric functions of matrix arguments also involves integral expressions, differential equations and
recurrence relations. However, since we are interested in asymptotics of these expressions for largeN , for
which little theory is developed, this is unfortunately of no real use at the moment. Note though that the
hypergeometric function that appears is special, as it is only evaluated at scalar matrices. In that special
case, N ×N determinantal formulas have been developed [GR85] (but not in the confluent case).

7 Further Work
The occurrence of the Plancherel measure is not a coincidence. In fact, much can be derived from this,
and this will be the basis of further work: we will prove in a subsequent paper that the leading term of
X̃2h has coefficient 2h!

h!23h
and is of degree 2h lower than X2h.
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f -vectors of subdivided simplicial complexes
(extended abstract)
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Abstract. We take a geometric point of view on the recent result by Brenti and Welker, who showed that the roots of
the f -polynomials of successive barycentric subdivisions of a finite simplicial complex X converge to fixed values
dependinig only on the dimension of X .
We show that these numbers are roots of a certain polynomial whose coefficients can be computed explicitely. We
observe and prove an interesting symmetry of these roots about the real number −2. This symmetry can be seen via
a nice realization of barycentric subdivision as a simple map on formal power series. We then examine how such a
symmetry extends to more general types of subdivisions. The generalization is formulated in terms of an operator on
the (formal) ring on the set of simplices of the complex.

Résumé. On applie un point de vue géométrique à un récent résultat de Brenti et Welker, qui ont montré que les
racines des polynômes f de subdivisions barycentriques successives d’un complexe simplicialX convergent vers des
valeurs fixes, ne dépendant que de la dimension de X .
On preuve que ces nombres sont en effet eux-mêmes racines d’un polynôme dont les coefficients peuvent être calculés
explicitement. De plus, on observe et on démontre une symétrie particulière de ces nombres autour du numéro −2.
Cette symétrie se révèle en exprimant l’opération de subdivision barycentrique par une fonction sur des séries de
puissances formelles. Une symétrie pareille existe pour des méthodes de subdivision plus générales, où elle s’exprime
par des operateurs sur l’anneau des sommes formelles de simplexes du complexe.

Keywords: subdivisions of simplicial complexes, f-vectors, f-polynomials

1 Motivation and setup
This is an extended abstract of our paper Delucchi et al. (2009), to which we refer for a full exposition
and the proofs of the statements. Let us begin here by stating the theorem which motivated our work.

Let X be an arbitrary finite simplicial complex of dimension d − 1, and for convenience assume that
all vectors and matrices are indexed by rows and columns starting at 0. We are interested in roots of the
f -polynomial of X , defined as follows. Let fXi denote the number of i-dimensional faces of X . We
declare that fX−1 = 1, where the (−1)-dimensional face corresponds to the empty face, ∅. The face vector,
or f -vector of X is the vector

fX := (fX−1, f
X
0 , . . . , f

X
d−1).

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Let t denote the column vector of powers of t, (td, td−1, . . . t0)T . The f -polynomial fX(t) encodes the
f -vector as a polynomial:

fX(t) :=
d∑

j=0

fXj−1t
d−j = fXt

We now focus on the recent result of Brenti and Welker Brenti and Welker (2008) that motivated our
investigations. Let X ′ denote the barycentric subdivision of X , and more generally let X(n) denote the
nth barycentric subdivision of X .

Theorem 1.1 Brenti and Welker (2008) Let X be a d-dimensional simplicial complex. Then, as n grows,
the roots of fX

(n)

converge to d− 1 negative real numbers which depend only on d, not on X .

This theorem may be surprising at first: there is no dependence on the initial complex X , only on
the dimension d. However, geometrically this makes perfect sense. Barycentrically subdividing a sim-
plicial complex X over and over again causes the resulting complex X(n) to have far more cells than
the original X . Because higher-dimensional cells contribute more new cells (in every dimension) upon
subdividing than lower-dimensional ones, the top-dimensional cells begin to dominate in their ‘number of
contributions’ to subdivisions.

More precisely, each of the fXd−1 top-dimensional cells of X contribute the same amount of cells
to X(n). Since these cells eventually dominate contributions from smaller-dimensional cells, the f -
polynomial for X(n) can be approximated by fXd−1 times the f -polynomial associated to the n-fold

subdivision of a single top-dimensional cell, σ(n)
d . Since the roots of a polynomial are unaffected by

multiplication by constants, the roots of fX
(n)

converge to the roots of fσ
(n)
d as n increases.

We will see that both these sequences converge to the roots of a specific polynomial, and these roots
satisfy an interesting symmetry.

We begin by observing the effect on f -vectors of barycentric subdivision. One key observation is that
barycentric subdivision multiplies f -vectors by a fixed matrix, Fd:

Definition 1.2 Define f̊Xi to be the number of interior i-faces of X for i ≥ 0. We set f̊X−1 = 1 if the
dimension of X is −1, and 0 otherwise. Let σd denote the standard (d− 1)-dimensional simplex. Define
Fd to be the (d+ 1)× (d+ 1) matrix determined by the interior (j−1)-faces of the subdivided i-simplex:

Fd := [f̊
σ′i
j−1].

With this notation in place, we have the following.

Corollary 1.3 For any n ≥ 0,

fX
(n)

= fXFnd .

Thus, to understand barycentric subdivision, we need to understand the matrix Fd. We will compute
the entries in Fd more explicitly later, but for now we simply observe a formula which follows from
Inclusion-Exclusion:
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Lemma 1.4 If j > i then f̊σ
′
i

j = 0. If j ≤ i, then

f̊
σ′i
j =

i∑

k=0

(−1k)

(
i

k

)
f
σ′i−k

j .

By this lemma, Fd is lower triangular with diagonal entries f̊σ
′
i

i = f
σ′i
i = i!. Thus, the eigenvalues of

Fd are 0!, 1!, 2!, 3!, . . . , d!.

2 Main results
2.1 The limit polynomial
The goal of this section is to prove that the limit values of the roots of the fσ

n
d are themselves roots of

a polynomial of which we can explititely compute the roots. The geometric intuition behing this fact
is obtaining by noticing that, by definition, the coefficients of fσ

(n)
d record the number of cells of each

dimension occurring in σ(n)
d . Moreover, the number of cells in each dimension is bounded by a constant

times the number of top-dimensional cells. Thus, if we normalize fσ
(n)
d by dividing by the number of

top-dimensional cells, we have coefficients which, for each k, record the density of k-cells relative to the
number of top-dimensional cells. As this density is positive but strictly decreases upon subdividing, there
is a limiting value for the coefficient. Thus, there should be a limiting polynomial, with well-defined roots.
Let us make this precise.

By Corollary 1.3, fX
(n)

(t) = fXFnd t. As the greatest eigenvalue of Fd is d!, we normalize fX
(n)

(t)
by dividing by (d!)n - let pXn (t) denote the result:

pXn (t) :=
1

(d!)n
fX

(n)

(t).

Note this normalization does not alter the roots. It will also often be convenient to reverse the order of the
coefficients of pXn (t), with the effect of inverting the roots of pXn (t) (that is, the roots of fX

(n)

(t)) about
the unit circle in the extended complex plane:

qXn (t) := tdpXn (t−1).

To take powers of Fd, we diagonalize,

Fd = PdDdP
−1
d ,

whereDd is the diagonal matrix of eigenvalues 0!, 1!, . . . , d! and Pd is the (lower triangular) diagonalizing
matrix of eigenvectors. Thus, Fnd = PdD

n
dP
−1
d .

Now, let D̃d := 1
d!Dd. Let t denote the column vector t in reverse order, t = (t0, t1, . . . td)T . For any

simplicial complex X , we thus have the following equations:

fX
(n)

(t) = fXPdD
n
dP
−1
d t = (d!)n

(
fXPd

) (
D̃d

)n (
P−1
d

)
t

pXn (t) =
(
fXPd

) (
D̃d

)n (
P−1
d

)
t , qXn (t) =

(
fXPd

) (
D̃d

)n (
P−1
d

)
t
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As the eigenvalues of Fd are 0!, 1!, . . . , d!, for large n,Dn
d is dominated by its dth diagonal entry, (d!)n.

In the limit, the powers of the matrix D̃d = 1
d!Dd converge to the matrix

Md,d :=




0 · · · 0
...

. . .
...

0 · · · 1


 .

Thus, as n grows, the polynomials pXn and qXn respectively approach the polynomials

pX∞(t) :=
(
fXPd

)
Md,d

(
P−1
d

)
t , qX∞(t) :=

(
fXPd

)
Md,d

(
P−1
d

)
t

in the sense that each sequence converges coefficient-wise in the vector space of polynomials of degree at
most d.

By Corollary 1.3 and Lemma 1.4, we know the leading and trailing coefficients of pXn (t) and qXn (t):
pXn (t) = (d!)−ntd + . . .+ fXd−1 and qXn (t) = (d!)−n + . . .+ fXd−1t

d. Hence, in the limit, pX∞(t) does not
have 0 as a root, but has degree less than d (one root of the pXn diverges to −∞), while qX∞(t) is of degree
d with 0 as a root. Because the polynomials qXn (t) converge coefficient-wise to the polynomial qX∞(t) of
the same degree, their roots also converge (see for instance Tyrtyshnikov (1997)):

Because the matrix Pd is lower triangular and Md,d has only one nonzero entry in position (d, d), we
have (

fXPd
)
Md,d = cX,de

T
d ,

where ed is the unit vector with a 1 in the dth row, and cX,d is a constant depending on fX and Pd. As
both fX and Pd do not depend on the amount of subdivision n, the roots of pX∞ and qX∞ do not depend
on the value of cX,d, and thus do not depend on any coefficient of fXd . This leads us to the following
definition:

Definition 2.1 Define the limit p-polynomial and the limit q-polynomial by

pd(t) := eTd Pdt , qd(t) := eTd Pdt.

To summarize:

1. The roots of fX
(n)

(t) are equal to the roots of pXn (t).

2. The roots of qXn (t) (resp. pXn (t) converge to the roots of qd(t) (resp. pXd (t)), and depend only on
the dimension of X .

3. The coefficient of ti in the polynomial pd(t) (resp. qd(t)) is the (d− i)th (resp. the ith) entry in last
row of P−1

d .

In the full paper Delucchi et al. (2009) we derive explicit formulas for the computation of the coef-
ficients of the matrix P−1

d . We reproduce the result of some of these computations in our last section
here.

Using the fact, proved by Brenti and Welker, that the limit of the roots of the f -polynomial are distinct
and all real, we can summarize as follows.

Theorem A Let X be a d-dimensional simplicial complex. Then, as n increases, the roots of fX
(n)

converge to the d−1 (distinct) roots of a polynomial pd(t), whose coefficients can be explicitely computed
and depend only on d, not on X .



f -vectors of subdivided simplicial complexes (extended abstract) 569

2.2 Symmetry of the limit values
Our result about the symetry of the ’limit roots’ is the following.

Theorem B For any dimension d, the d− 1 ’limit’ roots are invariant under the map x 7→ −x
x+1 .

We will prove the corresponding symmetry for the roots of qd instead of pd, as it becomes a mirror
symmetry instead of a Möbius invariance.

Theorem 2.2 For every dimension d,

q∞(t) = (−1)dq∞(−1− t).

In particular, the roots of q∞(t) are (linearly) symmetric with respect to − 1
2 .

As a first step, note that Lemma 1.4 gives the following expressions.

Lemma 2.3 Let X be a simplicial complex. The f -polynomial of its barycentric subdivision fX
′
(t) and

the corresponding qX1 (t) are given by

fX
′
(t) =

d∑

j=0

∆j{fX(l)}ltd−j , (d!)qX1 (t) =
d∑

k=0

∆k{qX0 (l)}ltk.

This prompts us to consider barycentric subdivision as a function on polynomials in t defined by

b : Z[t]→ Z[t], g(t) 7→
∑

k≥0

∆k{g(l)}ltk,

so that, for a simplicial complex X of dimension d we have then b(qXj (t)) = d!qXj+1(t). The function b is
linear, and thus it is given by its values on monomials, which we arrange in a formal power series in the
variable x over the ring Z[t]. We thus consider a function B on the ring Z[t][[x]] defined as

B :
∑

k≥0

gk(t)xk 7−→
∑

k≥0

b
(
gk(t)

)
xk.

Theorem C In Z[t][[x]], barycentric subdivision satisfies the identity

B(etx) =
1

1− (ex − 1)t
.

To investigate the stated symmetry, we consider the following map

ι : Z[t]→ Z[t], g(t) 7→ g(−1− t).

One readily checks by explicit calculation that ιB(etx) = Bι(etx). This suffices to prove the follwing
key fact.

Lemma 2.4 The map ι is an involution, and it satisfies

ιbι = b.
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Recall that barycentric subdivision has the effect on each p- and q-polynomial of multiplying on the
right by F before the t and t, respectively, and rescaling by dividing by d!. In the limit, the limit p- and
q-polynomials are invariant under barycentric subdivision up to this scaling: thus b

(
q∞(t)

)
= d!q∞(t).

Moreover, since the eigenvalues of F are all distinct, q∞ is characterized by this identity and by having
leading coefficient fXd−1.

A computation based on Lemma 2.4 shows b
(
q∞(−1 − t)

)
= d!

(
q∞(−1 − t)

)
and since the lead

coefficient of q∞(−1− t) is (−1)dfXd−1, the stated symmetry holds.

3 Symmetry for Other Subdivision Methods
In general, given any polynomial g(t) ∈ Z[t], we can consider the polynomial ιg(t) = g(−1 − t). The
coefficient of tk in g(t) contributes (−1)k

(
k
j

)
times itself to the coefficient of tj in ιg(t): this contribution

is exactly the number of (j − 1)-dimensional faces of the (k − 1)-dimensional simplex. Thus, we can
interpret ι as a map on formal sums of simplices, as follows.

Let S be the set of simplices of a given simplicial complex X with vertex set V X . We will think of
every simplex σ ∈ S as a subset of V X . Now we can write

ι : Z[S]→ Z[S], σ 7→ (−1)dimσ+1
∑

τ⊆σ
τ.

We will identify a subdivision of X by the triple (X, X̃, φ), where X̃ is the simplicial complex sub-
dividing X (the ’result’ of the subdivision) and φ : S̃ → S is the function associating to each simplex
σ̃ ∈ S̃ its support in X . Now, a subdivision (X, X̃, φ) induces a linear map

bφ : Z[S]→ Z[S̃], σ 7→
∑

φ(σ̃)=σ

σ̃.

A subdivision method Φ is a collection of subdivisions Φ := {(σn, σ̃n, φn)}n≥0 such that for every
k-face ik : σk → σm of the standard m-simplex, the map φk is the restriction of φm to ikσk. This
ensures that, given any simplicial complex X , the complex Φ(X), called subdivision of X according to
the rule Φ is uniquely defined by requiring that every n-simplex of X is subdivided as (σn, σ̃n, φn) ∈ Φ.
A subdivision method is nontrivial in dimension n if φk is not the identity map for some k ≤ n. Clearly
if a subdivision is nontrivial in dimension n, then φn is not the identity map.

Given a subdivision method Φ, in view of the linearity of bφ for each subdivision, it makes sense to
write

bΦ(
∑

σ∈X
σ) =

∑

σ∈X
bΦσ.

As with the map b given by barycentric subdivision, for any subdivision method the induced map bΦ
always commutes with the map ι:

Lemma 3.1 For any subdivision method Φ, ιbΦ = bΦι.

This commutativity was the key step in proving the symmetry for the barycentric subdivision, together
with the fact that Fd had a dominating eigenvalue with geometric multiplicity 1. The latter property holds
for the matrix realizing any subdivision method that is nontrivial in the top dimension. We thus have the
desired result.
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Theorem D For any dimension n and any subdivision method Φ which is nontrivial in dimension n,
there exists a unique ‘limit polynomial’ pn,Φ(t), such that, for any d-dimensional simplicial complex X ,
the roots of fΦk(X)(t) converge to the roots of pn,Φ(t) as k increases. The roots of pn,Φ(t) are invariant
under the Möbius transformation x 7→ −x

x+1 .

Remark 3.2 Since the above interpretation is on the level of formal sums of simplices, the most natural
context in which to study it seems to be the Stanley-Reisner ring K[X], defined by any simplicial complex
X and any field K. A good introduction to these rings can be found in Stanley (1996), where some
properties of the Stanley-Reisner ring of a subdivision of a simplicial complex are explored. This brings
us to ask the following question.

Question 3.3 Is there a (multi-)complex in each dimension whose f -polynomial is related to the limit
polynomials pX∞(t) or qX∞(t)? More generally, is there a geometric interpretation of the coefficients or the
roots of pX∞(t) (equivalently, qX∞(t))?

Brenti and Welker raise the question of defining a general concept of ”barycentric subdivision” for a
standard graded algebra. We can broaden the question to involve all subdivision methods, and ask whether
the formulas developed in (Delucchi et al., 2009, Section 5) can be taken as a starting point to answer this
question.

3.1 Computations
Our method allows us to explicitly compute the coefficients of pd(t), of qd(t), and thus also the limit
roots. We carry out these computations in our full paper. As a sample, we give the values of the roots of
qd(t) for d ≤ 10 (computations which take less than 1 second of processor time using the formulae we
derive in Delucchi et al. (2009)). The roots of qd(t) are, for d ≤ 10, approximated by:

d = 2 : −1 0
d = 3 : −1 −.5 0
d = 4 : −1 −.76112 −.23888 0
d = 5 : −1 −.88044 −.5 −.11956 0
d = 6 : −1 −.93787 −.68002 −.31998 −.06213 0
d = 7 : −1 −.9668 −.79492 −.5 −.20508 −.0332 0
d = 8 : −1 −.98189 −.86737 −.63852 −.36148 −.13263 −.01811 0
d = 9 : −1 −.98996 −.91332 −.73961 −.5 −.26039 −.08668 −.01004 0
d = 10 : −1 −.99437 −.94277 −.81205 −.61285 −.38715 −.18795 −.05723 −.00563 0
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A Combinatorial Formula for Orthogonal
Idempotents in the 0-Hecke Algebra of SN

Tom Denton1†

1Department of Mathematics, University of California Davis, One Shields Ave, Davis, California 95616

Abstract. Building on the work of P.N. Norton, we give combinatorial formulae for two maximal decompositions of
the identity into orthogonal idempotents in the 0-Hecke algebra of the symmetric group, CH0(SN ). This construction
is compatible with the branching from H0(SN−1) to H0(SN ).

Résumé. En s’appuyant sur le travail de P.N. Norton, nous donnons des formules combinatoires pour deux décom-
positions maximales de l’identité en idempotents orthogonaux dans l’algèbre de HeckeH0(SN ) du groupe symétrique
à q = 0. Ces constructions sont compatibles avec le branchement de H0(SN−1) à H0(SN ).

Keywords: Iwahori-Hecke algebra, idempotents, semigroups, combinatorics, representation theory

1 Introduction
The 0-Hecke algebra CH0(SN ) for the symmetric group SN can be obtained as the Iwahori-Hecke algebra
of the symmetric groupHq(SN ) at q = 0. It can also be constructed as the algebra of the monoid generated
by anti-sorting operators on permutations of N .

P.N. Norton described the full representation theory of CH0(SN ) in Norton (1979): In brief, there
is a collection of 2N−1 simple representations indexed by subsets of the usual generating set for the
symmetric group, and an additional collection of 2N−1 projective indecomposable modules. Norton gave
a construction for some elements generating these projective modules, but these elements were neither
orthogonal nor idempotent. While it was known that an orthogonal collection of idempotents to generate
the indecomposable modules exists, there was no known formula for these elements.

Herein, we describe an explicit construction for two different families of orthogonal idempotents in
CH0(SN ), one for each of the two orientations of the Dynkin diagram for SN . The construction proceeds
by creating a collection of 2N−1 demipotent elements, which we call diagram demipotents, each indexed
by a copy of the Dynkin diagram with signs attached to each node. These elements are demipotent in the
sense that for each element X , there exists some number k ≤ N − 1 such that Xj is idempotent for all
j ≥ k. The collection of idempotents thus obtained provides a maximal orthogonal decomposition of the
identity.

An important feature of the 0-Hecke algebra is that it is the monoid algebra of a J -trivial monoid. As
a result, its representation theory is highly combinatorial. This paper is part of an ongoing effort with
†Supported in part by the VIGRE grant NSF–DMS0636297 and NSF grants DMS–0652641 and DMS–0652652.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Florent Hivert, Anne Schilling, and Nicolas Thiéry to characterize the representation theory of general
J-trivial monoids, continuing the work of Norton (1979), Hivert and Thiéry (2009), Hivert et al. (2009).
The fundamentals of the representation theory of semigroups can be found in Ganyushkin et al. (2009).
All proofs of statements in this paper will appear in Denton et al. (2010).

The diagram demipotents obey a branching rule which compares well to the situation in Okounkov and
Vershik (1996) in their ‘New Approach to the Representation Theory of the Symmetric Group.’ In their
construction, the branching rule for SN is given primary importance, and yields a canonical basis for the
irreducible modules for SN which pull back to bases for irreducible modules for SN−M .

Okounkov and Vershik further make extensive use of a maximal commutative algebra generated by the
Jucys-Murphy elements. In the 0-Hecke algebra, their construction does not directly apply, because the
deformation of Jucys-Murphy elements (which span a maximal commutative subalgebra of CSN ) to the
0-Hecke algebra no longer commute. Instead, the idempotents obtained from the diagram demipotents
play the role of the Jucys-Murphy elements, generating a commutative subalgebra of CH0(SN ) and giv-
ing a natural decomposition into indecomposable modules, while the branching diagram describes the
multiplicities of the irreducible modules.

The Okounkov-Vershik construction is well-known to extend to group algebras of general finite Coxeter
groups (Ram (1997)). It remains to be seen whether our construction for orthogonal idempotents general-
izes beyond typeA. However, the existence of a process for typeA gives hope that the Okounkov-Vershik
process might extend to more general 0-Hecke algebras of Coxeter groups.

Section 2 establishes notation and describes the relevant background necessary for the rest of the paper.
For further background information on the properties of the symmetric group, one can refer to the books
of Humphreys (1990) and Stanley (1997). Section 3 gives the construction of the diagram demipotents.
Section 4 describes the branching rule the diagram demipotents obey, and also establishes the Sibling
Rivalry Lemma, which is useful in proving the main results, in Theorem 4.8. Section 5 establishes bounds
on the power to which the diagram demipotents must be raised to obtain an idempotent. Finally, remaining
questions are discussed in Section 6.

2 Background and Notation
Let SN be the symmetric group defined by the generators si for i ∈ I = {1, . . . , N − 1} with the usual
relations:

• Reflection: s2i = 1,

• Commutation: sisj = sjsi for |i− j| > 1,

• Braid relation: sisi+1si = si+1sisi+1.

The relations between distinct generators are encoded in the Dynkin diagram for SN , which is a graph
with one node for each generator si, and an edge between the pairs of nodes corresponding to generators
si and si+1 for each i. Here, an edge encodes the braid relation, and generators whose nodes are not
connected by an edge commute. (See figure 3.)

Definition 2.1 The 0-Hecke monoid H0(SN ) is generated by the collection πi for i in the set I =
{1, . . . , N − 1} with relations:

• Idempotence: π2
i = πi,
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• Commutation: πiπj = πjπi for |i− j| > 1,

• Braid Relation: πiπi+1πi = πi+1πiπi+1.

The 0-Hecke monoid can be realized combinatorially as the collection of anti-sorting operators on
permutations of N . For any permutation σ, πiσ = σ if i + 1 comes before i in the one-line notation for
σ, and πiσ = siσ otherwise.

Additionally, σπi = σsi if the ith entry of σ is less than the i+ 1th entry, and σπi = σ otherwise. (The
left action of πi is on values, and the right action is on positions.)

Definition 2.2 The 0-Hecke algebra CH0(SN ) is the monoid algebra of the 0-Hecke monoid.

Words for SN and H0(SN ) Elements. The set I = {1, . . . , N−1} is called the index set for the Dynkin
diagram. A word is a sequence (i1, . . . , ik) of elements of the index set. To any word w we can associate
a permutation sw = si1 . . . sik and an element of the 0-Hecke monoid πw = πi1 · · ·πik . A word w is
reduced if its length is minimal amongst words with permutation sw. The length of a permutation σ is
equal to the length of a reduced word for σ.

Elements of the 0-Hecke monoid are indexed by permutations: Any reduced word s = si1 . . . sik for a
permutation σ gives a reduced word in the 0-Hecke monoid, πi1 · · ·πik . Furthermore, given two reduced
words w and v for a permutation σ, then w is related to v by a sequence of braid and commutation
relations. These relations still hold in the 0-Hecke monoid, so πw = πv .

From this, we can see that the 0-Hecke monoid has N ! elements, and that the 0-Hecke algebra has
dimension N ! as a vector space. Additionally, the length of a permutation is the same as the length of the
associated H0(SN ) element.

We can obtain a parabolic sub-object (group, monoid, algebra) by considering the object whose gener-
ators are indexed by a subset J ⊂ I , retaining the relations of the original object. The Dynkin diagram of
the corresponding object is obtained by deleting the relevant nodes and connecting edges from the original
Dynkin diagram. Every parabolic subgroup of SN contains a unique longest element, being an element
whose length is maximal amongst all elements of the subgroup. We will denote the longest element in
the parabolic sub-monoid of H0(SN ) with generators indexed by J ⊂ I by w+

J , and use Ĵ to denote the
complement of J in I . For example, inH0(S8) with J = {1, 2, 6}, thenw+

J = π1216, andw+

Ĵ
= π3453437.

Definition 2.3 An element x of a semigroup or algebra is demipotent if there exists some k such that
xω := xk = xk+1. A semigroup is aperiodic if every element is demipotent.

The 0-Hecke monoid is aperiodic. Namely, for any element x ∈ H0(SN ), let:

J(x) = {i ∈ I | s.t. i appears in some reduced word for x}.

This set is well defined because if i appears in some reduced word for x, then it appears in every reduced
word for x. Then xω = w+

J(x).

The Algebra Automorphism Ψ of CH0(SN ). CH0(SN ) is alternatively generated as an algebra by el-
ements π−i := (1− πi), which satisfy the same relations as the πi generators. There is a unique automor-
phism Ψ of CH0(SN ) defined by sending πi → (1− πi).

For any longest element w+
J , the image Ψ(w+

J ) is a longest element in the (1 − πi) generators; this
element is denoted w−J .
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The Dynkin diagram Automorphism of CH0(SN ). A Dynkin diagram automorphism is a graph au-
tomorphism of the underlying graph. For the Dynkin diagram of SN , there is exactly one non-trivial
automorphism, sending the node i to N − i.

This diagram automorphism induces an automorphism of the symmetric group, sending the generator
si → sN−i and extending multiplicatively. Similarly, there is an automorphism of the 0-Hecke monoid
sending the generator πi → πN−i and extending multiplicatively.

Bruhat Order. The (left) weak order on the set of permutations is defined by the relation σ ≤ τ if
there exist reduced words v, w such that σ = sv, τ = sw, and v is a prefix of w in the sense that
w = v1, v2, . . . , vj , wj + 1, . . . , wk. The right weak order is defined analogously, where v must appear as
a suffix of w.

The left weak order also exists on the set of 0-Hecke monoid elements, with exactly the same definition.
Indeed, sv ≤ sw if and only if πv ≤ πw.

For a permutation σ, we say that i is a (left) descent of σ if siσ ≤ σ. We can define a descent in the
same way for any element πw of the 0-Hecke monoid. We write DL(σ) and DL(πw) for the set of all
descents of σ and m respectively. Right descents are defined analogously, and are denoted DR(σ) and
DR(πw), respectively.

It is well known that i is a left descent of σ if and only if there exists a reduced word w for σ with
w1 = i. As a consequence, if DL(πw) = J , then w+

J πw = πw. Likewise, i is a right descent if and only
if there exists a reduced word for σ ending in i, and if DR(πw) = J , then πww+

J = πw.
Bruhat order is defined by the relation σ ≤ τ if there exist reduced words v and w such that sv = σ and

sw = τ and v appears as a subword of w. For example, 13 appears as a subword of 123, so s12 ≤ s123 in
strong Bruhat order.

Representation Theory The representation theory of CH0(SN ) was described in Norton (1979) and
expanded to generic finite Coxeter groups in Carter (1986). A more general approach to the representation
theory can be taken by approaching the 0-Hecke algebra as a semigroup algebra, as per Ganyushkin et al.
(2009). The principal results are reproduced here for ease of reference.

For any subset J ⊂ I , let λJ denote the one-dimensional representation of H defined by the action of
the generators:

λJ(πi) =

{
0 if i ∈ J,
−1 if i 6∈ J.

The λJ are 2N−1 non-isomorphic representations, all one-dimensional and thus simple. In fact, these are
all of the simple representations of CH0(SN ).

The nilpotent radical N in CH0(SN ) is spanned by elements of the form x − w+
J(x), where x is an

element of the monoid H0(SN ), and w+
J(x) is the longest element in the parabolic submonoid whose

generators are exactly the generators in any given reduced word for x. This element w+
J(x) is idempotent.

If y is already idempotent, then y = w+
J(y), and so y −w+

J(y) = 0 contributes nothing to N . However, all
other elements x− w+

J(x) for x not idempotent are linearly independent, and thus give a basis of N .
Norton further showed that

CH0(SN ) =
⊕

J⊂I
H0(SN )w−J w

+

Ĵ

is a direct sum decomposition of CH0(SN ) into indecomposable left ideals.
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1+ 2+ 3− 4− 5− 6+ 7−

Fig. 1: A signed Dynkin diagram for S8.

Theorem 2.4 (Norton, 1979) Let {pJ |J ⊂ I} be a set of mutually orthogonal primitive idempotents with
pJ ∈ CH0(SN )w−J w

+

Ĵ
for all J ⊂ I such that

∑
J⊂I pJ = 1.

Then CH0(SN )w−J w
+

Ĵ
= CH0(SN )pJ , and if N is the nilpotent radical of CH0(SN ), Nw−J w+

Ĵ
=

NpJ is the unique maximal left ideal of CH0(SN )pJ , and CH0(SN )pJ/NpJ affords the representation
λJ .

Finally, the commutative algebra CH0(SN )/N =
⊕

J⊂I CH0(SN )pJ/NpJ = C2N−1

.

The proof of this theorem is non-constructive, and does not give a formula for the idempotents.

3 Diagram Demipotents
The elements πi and (1 − πi) are idempotent. There are actually 2N−1 idempotents in H0(SN ), namely
the elements w+

J for any J ⊂ I . These idempotents are clearly not orthogonal, though.
The goal of this paper is to give a formula for a collection of orthogonal idempotents in CH0(SN ).

Definition 3.1 A signed diagram is a Dynkin diagram in which each vertex is labeled with a + or −.

Figure 3 depicts a signed diagram for type A7, corresponding to H0(S8). For brevity, a diagram can be
written as just a string of signs. For example, the signed diagram in the Figure is written + +−−−+−.

We now construct a diagram demipotent corresponding to each signed diagram. Let P be a composition
of the index set I obtained from a signed diagram D by grouping together sets of adjacent pluses and
minuses. For the diagram in Figure 3, we would have P = {{1, 2}, {3, 4, 5}, {6, 7}}. Let Pk denote the
kth subset in P . For each Pk, let wsgn(k)Pk

be the longest element of the parabolic sub-monoid associated
to the index set Pk, constructed with the generators πi if sgn(k) = + and constructed with the (1 − πi)
generators if sgn(k) = −.

Definition 3.2 Let D be a signed diagram with associated composition P = P1 ∪ · · · ∪ Pm. Set:

LD = w
sgn(1)
P1

w
sgn(2)
P2

· · ·wsgn(m)
Pm

, and

RD = w
sgn(m)
Pm

w
sgn(m−1)
Pm−1

· · ·wsgn(1)P1
.

The diagram demipotent CD associated to the signed diagram D is then LDRD. The opposite diagram
demipotent C ′D is RDLD.

Thus, the diagram demipotent for the diagram in Figure 3 is π+
121π

−
345343π

+
6 π
−
7 π

+
6 π
−
345343π

+
121.

It is not immediately obvious that these elements are demipotent; this is a direct result of Lemma 4.4.
For N = 1, there is only the empty diagram, and the diagram demipotent is just the identity.
For N = 2, there are two diagrams, + and −, and the two diagram demipotents are π1 and 1 − π1

respectively. Notice that these form a decomposition of the identity, as πi + (1− πi) = 1.
For N = 3, we have the following list of diagram demipotents. The first column gives the diagram, the

second gives the element written as a product, and the third expands the element as a sum. For brevity,
words in the πi or π−i generators are written as strings in the subscripts. Thus, π1π2 is abbreviated to π12.
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D CD Expanded Demipotent
++ π121 π121
+− π1π

−
2 π1 π1 − π121

−+ π−1 π2π
−
1 π2 − π12 − π21 + π121

−− π−121 1− π1 − π2 + π12 + π21 − π121
Observations.

• The idempotent π−121 is an alternating sum over the monoid. This is a general phenomenon: By
Norton (1979), w−J is the length-alternating signed sum over the elements of the parabolic sub-
monoid with generators indexed by J .

• The shortest element in each expanded sum is an idempotent in the monoid with πi generators;
this is also a general phenomenon. The shortest term is just the product of longest elements in
nonadjacent parabolic sub-monoids, and is thus idempotent. Then the shortest term of CD is π+

J ,
where J is the set of nodes in D marked with a +. Each diagram yields a different leading term,
so we can immediately see that the 2N−1 idempotents in the monoid appear as a leading term for
exactly one of the diagram demipotents, and that they are linearly independent.

• For many purposes, one only needs to explicitly compute half of the list of diagram demipotents;
the other half can be obtained via the automorphism Ψ. A given diagram demipotent x is orthogonal
to Ψ(x), since one has left and right π1 descents, and the other has left and right π−1 descents, and
π1π

−
1 = 0.

• The diagram demipotents CD and CE for D 6= E do not necessarily commute. Non-commuting
demipotents first arise with N = 6. However, the idempotents obtained from the demipotents are
orthogonal and do commute.

• It should also be noted that these demipotents (and the resulting idempotents) are not in the projec-
tive modules constructed by Norton, but generate projective modules isomorphic to Norton’s.

• The diagram demipotents CD listed here are not fixed under the automorphism induced by the
Dynkin diagram automorphism. In particular, the ‘opposite’ diagram demipotents C ′D = RDLD
really are different elements of the algebra, and yield an equally valid but different set of orthog-
onal idempotents. For purposes of comparison, the diagram demipotents for the reversed Dynkin
diagram are listed below for N = 3.

D C ′D Expanded Demipotent
++ π212 π212
+− π2π

−
1 π2 π2 − π212

−+ π−2 π1π
−
2 π1 − π12 − π21 + π212

−− π−212 1− π1 − π2 + π12 + π21 − π212

For N ≤ 4, the diagram demipotents are actually idempotent and orthogonal. For larger N , raising the
diagram demipotent to a sufficiently large power yields an idempotent (see below 4.8); in other words, the
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diagram demipotents are demipotent. The power that an diagram demipotent must be raised to in order to
obtain an actual idempotent is called its nilpotence degree.

For N = 5, two of the diagram demipotents need to be squared to obtain an idempotent. For N = 6,
eight elements must be squared. For N = 7, there are four elements that must be cubed, and many others
must be squared. Some pretty good upper bounds on the nilpotence degree of the diagram demipotents
are given in Section 5. As a preview, for N > 4 the nilpotence degree is always ≤ N − 3, and conditions
on the diagram can often greatly reduce this bound.

As an alternative to raising the demipotent to some power, we can express the idempotents as a product
of diagram demipotents for smaller diagrams. Let Dk be the signed diagram obtained by taking only
the first k nodes of D. Then, as we will see, the idempotents can also be expressed as the product
CD1

CD2
CD3
· · ·CDN−1=D.

The following is an adaptation of a standard lemma for Coxeter groups to the 0-Hecke algebra, which
yields triangularity of the diagram demipotents with respect to the weak order.

Lemma 3.3 Let m be a standard basis element of the 0-Hecke algebra in the πi basis. Then for any
i ∈ DL(m), πim = m, and for any i 6∈ DL(m) then πim is lower than m in left weak order.

Corollary 3.4 (Diagram Demipotent Triangularity) Let CD be a diagram demipotent and m an ele-
ment of the 0-Hecke monoid in the πi generators. Then CDm = λm + x, where x is an element of H
spanned by monoid elements lower in Bruhat order than m, and λ ∈ {0, 1}. Furthermore, λ = 1 if and
only if Des(m) is exactly the set of nodes in D marked with pluses.

Theorem 3.5 Each diagram demipotent is the sum of a non-zero idempotent part and a nilpotent part.
That is, all eigenvalues of a diagram demipotent are either 1 or 0.

4 Branching
There is a very convenient branching of the diagram demipotents for H0(SN ) into diagram demipotents
for H0(SN+1).

Lemma 4.1 Let J = {i, i + 1, . . . , N − 1} Then w+
J πNw

+
J is the longest element in the generators i

through N . Likewise, w+
J πi−1w

+
J is the longest element in the generators i − 1 through N − 1. Similar

statements hold for w−J π
−
Nw
−
J and w−J π

−
i−1w

−
J .

The proof of this lemma relies on the formation of the longest words in the symmetric group; one can
find an expression for the longest element in the generators i − 1 through N − 1 as a subword of the
product w+

J πi−1w
+
J . The result then follows immediately.

Recall that each diagram demipotent CD is the product of two elements LD and RD. For a signed
diagram D, let D+ indicate the diagram with an extra + adjoined at the end. Define D− analogously.

Corollary 4.2 Let CD = LDRD be the diagram demipotent associated to the signed diagram D for SN .
Then CD+ = LDπNRD and CD− = LDπ

−
NRD. In particular, CD+ + CD− = CD.

Corollary 4.3 The sum of all diagram demipotents for H0(SN ) is the identity.

Next we have a key lemma for proving many of the remaining results in this paper:

Lemma 4.4 (Sibling Rivalry) Sibling diagram demipotents commute and are orthogonal: CD−CD+ =
CD+CD− = 0. Equivalently, CDCD+ = CD+CD = C2

D+ and CDCD− = CD−CD = C2
D−.



580 Tom Denton

The proof uses induction on the tree of diagram demipotents, checking four different cases depend-
ing on the last two entries of the diagram D. In particular, it is directly checked that CD+++CD++ =
C2
D+++, and CD+−+CD+− = C2

D+−+; all other cases and statements follow from symmetry or ap-
plication of the automorphism Ψ. The first of these calculations, CD+++CD++ = C2

D+++, is quite
instructive.

Corollary 4.5 The diagram demipotents CD are demipotent.

This follows immediately by induction: if CkD = Ck+1
D , then CD+C

k
D = CD+C

k+1
D , and by sibling

rivalry, Ck+1
D+ = Ck+2

D+ .
Now we can say a bit more about the structure of the diagram demipotents.

Proposition 4.6 Let p = CD, x = CD+, y = CD−, so p = x+ y and xy = 0. Let v be an element of H .
Furthermore, let p, x, and y have abstract Jordan decomposition p = pi + pn, x = xi +xn, y = yi + yn,
with pipn = pnpi and p2i = pi, pkn = 0 for some k, and similar relations for the Jordan decompositions
of x and y.

Then we have the following relations:

1. If there exists k such that pkv = 0, then xk+1v = yk+1v = 0.

2. If pv = v, then x(x− 1)v = 0

3. If (x− 1)kv = 0, then (x− 1)v = 0

4. If pv = v and xkv = 0 for some k, then yv = v.

5. If xv = v, then yv = 0 and pv = v.

6. Let uxi be a basis of the 1-space of x, so that xuxi = uxi , yuxi = 0 and puxi = v, and uyj a basis of
the 1-space of y. Then the collection {uxi , uyj} is a basis for the 1-space of p.

7. pi = xi + yi, pn = xn + yn, xiyi = 0.

The proof follows mainly from simple algebraic manipulations.

Corollary 4.7 There exists a linear basis vjD of CH0(SN ), indexed by a signed diagram D and some
numbers j, such that the idempotent ID obtained from the abstract Jordan decomposition of CD fixes
every vjD. For every signed diagram E 6= D, the idempotent IE kills vjD.

The proof of the corollary further shows that this basis respects the branching from H0(SN−1) to
H0(SN ). In particular, finding this linear basis for H0(SN ) allows the easy recovery of the bases for the
indecomposable modules for any M < N .

We now state the main result. For D a signed diagram, let Di be the signed sub-diagram consisting of
the first i entries of D.

Theorem 4.8 Each diagram demipotent CD (see Definition 3.2) forH0(SN ) is demipotent, and yields an
idempotent ID = CD1

CD2
· · ·CD = CND . The collection of these idempotents {ID} form an orthogonal

set of primitive idempotents that sum to 1.

This follows from the previous result and the construction of the diagram demipotents.



Idempotents in the 0-Hecke algebra 581

1

1 . . .

+ −

1 1

+ −

1 1 1 1

+ − + −

1 1 1 1 2 2 1 1

+ − + − + − + −

1 1 1 1 2 2 1 1 2 2 2 2 2 2 1 1

+ − + − + − + −+− +− +− +−

1 1 2 1 3 2 2 1 2 2 3 2 2 2 2 1

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

Fig. 2: Nilpotence degree of diagram demipotents. The root node denotes the diagram demipotent with empty
diagram (the identity). Since sibling diagram demipotents have the same nilpotence degree, the lowest row has been
abbreviated for readability.

5 Nilpotence Degree of Diagram Demipotents
Take any m in the 0-Hecke monoid whose descent set is exactly the set of positive nodes in the signed
diagram D. Then CDm = m + (lower order terms), by a previous lemma, and IDm = (CD)k(m) =
m + (lower order terms). The set {IDm|Des(m) = {positive nodes in D}} is thus linearly independent
in H0(SN ), and gives a basis for the projective module corresponding to the idempotent ID.

We have shown that for any diagram demipotent CD, there exists a minimal integer k such that (CD)k

is idempotent. Call k the nilpotence degree of CD. The nilpotence degree of all diagram demipotents for
N ≤ 7 is summarized in Figure 5.

The diagram demipotent C+···+ with all nodes positive is given by the longest word in the 0-Hecke
monoid, and is thus already idempotent. The same is true of the diagram demipotent C−···− with all
nodes negative. As such, both of these elements have nilpotence degree 1.

The following Lemma is easily proved.

Lemma 5.1 The nilpotence degree of sibling diagram demipotents CD+ and CD− is at most one more
than the nilpotence degree of the parent CD. If the nilpotence degree of one sibling is less than or equal
to the nilpotence degree of the parent, then the nilpotence degree of the other sibling is equal to the
nilpotence degree of the parent.

Lemma 5.2 Let D be a signed diagram with a single sign change, or the sibling of such a diagram. Then
CD is idempotent (and thus has nilpotence degree 1).
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In particular, this lemma is enough to see why there is no nilpotence before N = 5; every signed
Dynkin diagrams with three or fewer nodes has no sign change, one sign change, or is the sibling of a
diagram with one sign change.

Theorem 5.3 Let D be any signed diagram with n nodes, and let E be the largest prefix diagram such
that E has a single sign change, or is the sibling of a diagram with a single sign change. Then if E has k
nodes, the nilpotence degree of D is at most n− k.

This result follows directly from the previous lemma and the fact that the nilpotence degree can increase
by at most one with each branching.

This bound is not quite sharp for H0(SN ) with N ≤ 7: The diagrams + − ++, + − + + +, and
+ − + + ++ all have nilpotence degree 2. However, at N = 7, the highest expected nilpotence degree
is 3 (since every diagram demipotent with three or fewer nodes is idempotent), and this degree is attained
by 4 of the demipotents. These diagram demipotents are + +−+ ++, +−+−++, and their siblings.

An open problem is to find a formula for the nilpotence degree directly in terms of the diagram of a
demipotent.

6 Remaining Questions
A number of questions still remain.

1. We conjecture that the diagram demipotents CD have ±1 coefficients when expanded over C, as
this holds for all of the diagram demipotents for N ≤ 8.

2. Problem: Express the nilpotence degree of CD as a function of the signed diagram D.

3. Problem: Extend the construction for the idempotents to a more general construction applicable to
the 0-Hecke algebra of a general Coxeter group, or, even better, general J -Trivial monoids. The
key properties of the idempotents constructed in this paper are construction via a branching rule
and invariance of the set of idempotents under the automorphism Ψ; one hopes that a more general
construction would retain these properties. One of the impediments to extending to other Coxeter
groups is that Lemma 4.1 does not hold for any families of finite Coxeter groups other than SN ,
suggesting that other methods of branching must be found.
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Abstract. We look at the number of permutations β of [N ] with m cycles such that (1 2 . . . N)β−1 is a long cycle.
These numbers appear as coefficients of linear monomials in Kerov’s and Stanley’s character polynomials. D. Zagier,
using algebraic methods, found an unexpected connection with Stirling numbers of size N + 1. We present the first
combinatorial proof of his result, introducing a new bijection between partitioned maps and thorn trees. Moreover,
we obtain a finer result, which takes the type of the permutations into account.

Résumé. Nous étudions le nombre de permutations β de [N ] avecm cycles telles que (1 2 . . . N)β−1 a un seul cycle.
Ces nombres apparaissent en tant que coefficients des monômes linéaires des polynômes de Kerov et de Stanley. À
l’aide de méthodes algébriques, D. Zagier a trouvé une connexion inattendue avec les nombres de Stirling de taille
N+1. Nous présentons ici la première preuve combinatoire de son résultat, en introduisant une nouvelle bijection
entre des cartes partitionnées et des arbres épineux. De plus, nous obtenons un résultat plus fin, prenant en compte le
type des permutations.

Keywords: Kerov’s Character Polynomials, Bicolored Maps, Long Cycle Factorization

1 Introduction
The question of the number of factorizations of the long cycle (1 2 . . . N) into two permutations with

given number of cycles has already been studied via algebraic or combinatorial(i) methods (see [Adr98,
SV08]). In these papers, the authors obtain nice generating series for these numbers. Note that the
combinatorial approach has been refined to state a result on the number of factorizations of the long cycle
(1 2 . . . N) in two permutations with given type (see [MV09]).
Unfortunately, in all these results, extracting one coefficient of the generating series gives complicated
formulas. The case where one of the two factors has to be also a long cycle is particularly interesting.
Indeed, the number B′(N,m) of permutations β of [N ] with m cycles, such that (1 2 . . . N)β−1 is a
long cycle, is known to be the coefficient of some linear monomial in Kerov’s and Stanley’s character
polynomials (see [Bia03, Theorem 6.1] and [Sta03, Fér10]). These polynomials express the character

(i) It can be reformulated in terms of unicellular bicolored maps with given number of vertices, see paragraph 2.1.
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value of the irreducible representation of the symmetric group indexed by a Young diagram λ on a cycle
of fixed length in terms of some coordinates of λ.
A very simple formula for these numbers was found by D. Zagier [Zag95, Application 3] (see also [Sta09,
Corollary 3.3]):

Theorem 1.1 (Zagier, 1995) Let m ≤ N be two positive integers such that m ≡ N [2]. Then

N(N + 1)

2
B′(N,m) = s(N + 1,m), (1)

where s(N + 1,m) is the unsigned Stirling number of the first kind.

It is well-known that s(N + 1,m) is the number of permutations of [N + 1] with m cycles. As former
proofs of this result are purely algebraic, R. Stanley [Sta09] asked for a combinatorial proof of Theorem
1.1. This paper presents the first bijective approach proving this formula. We even prove a finer result,
which takes the type(ii) of the permutations into consideration and not only their number of cycles. To
state it, we need to introduce a few notations. First, we refine the numbers s(N + 1,m) and B′(N,m):
if λ ` n (i.e. λ is a partition of n), let A(λ) (resp. B(λ)) be the number of permutations β ∈ Sn of type
λ (resp. with the additional condition that (1 2 . . . N)β−1 is a long cycle). Then, as Stanley’s result
deals with permutations of [N ] and [N + 1], we need operators on partitions which modify their size,
but not their length. If µ (resp. λ) has at least one part i + 1 (resp. i), let µ↓(i+1) (resp. λ↑(i)) be the
partition obtained from µ (resp. λ) by erasing a part i + 1 (resp. i) and adding a part i (resp. i + 1).
For instance, using exponential notations (see [Mac95, chapter 1, section 1]), (123142)↓(4) = 123241 and
(22324)↑(2) = 213341.
Now we can state our main theorem, which implies immediately Theorem 1.1:

Theorem 1.2 (Main result) For each partition µ ` N + 1 of length p with p ≡ N [2], one has:

N + 1

2

∑

λ=µ↓(i+1),i>0

i mi(λ) B(λ) = A(µ) =
(N + 1)!

zµ
, (2)

where mi(λ) is the number of parts i in λ and zµ =
∏
i i
mi(µ)mi(µ)!.

To be comprehensive on the subject, we mention that G. Boccara found an integral formula for B(λ) (see
[Boc80]), but there does not seem to be any direct link with our result.
As in paper [MV09], the first step (section 2) of our proof of Theorem 1.2 consists in a change of basis in
the ring of symmetric functions in order to show the equivalence with the following statement:

Theorem 1.3 Let λ be a partition of N of length p. Choose randomly (with uniform probability) a set-
partition π of {1, . . . , N} of type λ and then (again with uniform probability) a permutation β in Sπ (that
means that each cycle of β is contained in a block of π). Then the probability for (1 2 . . . n)β−1 to be a
long cycle is exactly 1/(N − p+ 1).

Once again, such a simple formula is surprising. We give a bijective proof in sections 3, 4 and 5.

Remark 1 Theorem 1.2, written for all µ ` N + 1, gives the collection of numbers B(λ) as solution of
a sparse triangular system. Indeed, if we endow the set of partitions of N with the lexicographic order,
Theorem 1.2, written for µ = λ↑(λ1), gives B(λ) in terms of the quantities A(µ) and B(ν) with ν > λ.

(ii) The type of a permutation is the sequence of the lengths of its cycles, sorted in increasing order.
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2 Link between Theorems 1.2 and 1.3
2.1 Black-partitioned maps

By definition, a map is a graph drawn on a two-dimensional oriented surface (up to deformation), i.e. a
graph with a cyclic order on the incident edges to each vertex.

As usual, a couple of permutations (α, β) in SN can be represented as a bicolored map with N edges
labeled with integers from 1 to N . In this identification, α(i) (resp. β(i)) is the edge following i when
turning around its white (resp. black) extremity. White (resp. black) vertices correspond to cycles of α
(resp. β). The condition α · β = (1 2 . . . N) (which we will assume from now on) means that the map
is unicellular (i.e. if we remove the edges of the maps from the oriented surface, the resulting surface
is homeomorphic to an open disc) and that the positions of the labels are determined by the choice of
the edge labeled by 1 (which can be seen as a root). In this case, the couple of permutations is entirely
determined by β.

Therefore, if λ ` N , the quantity A(λ) (resp. B(λ)) is the number of rooted unicellular maps (resp.
star maps, that means that we make the additional assumption that the map has only one white vertex)
with black vertices’ degree distribution λ.
As in the papers [SV08] and [MV09], our combinatorial construction deals with maps with additional
information:

Definition 2.1 A black-partitioned (rooted unicellular) map is a rooted unicellular map with a set parti-
tion π of its black vertices. We call degree of a block of π the sum of the degrees of the vertices in π. The
type of a black-partitioned map is its blocks’ degree distribution.

In terms of permutations, a black-partitioned map consists in a couple (α, β) in SN with the condition
αβ = (1 2 . . . N) and a set partition π of {1, . . . , N} coarser than the set partition in orbits under the
action of β (in other words, if i and j lie in the same cycle of β, they must be in the same part of π).

Example 1 Let β = (1)(25)(37)(4)(6), α = (1234567)β−1 = (1267453), and π be the partition
{{1, 3, 6, 7}; {2, 5}; {4}}. Associating the triangle, circle and square shape to the blocks, (β, π) is the
black-partitioned star map pictured on figure 1.

Fig. 1: The black-partitioned map defined in example 1

We denote by C(λ) (resp. D(λ)) the number of black-partitioned maps (resp. black-partitioned star
maps) of partition type λ. Equivalently, C(λ) (resp. D(λ)) is the number of couples (β, π) as above such
that π is a partition of type λ (resp. and (1 2 . . . N)β−1 is a long cycle). QuantitiesA and C (resp. B and
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D) are linked by the following equations (whose proofs are identical to the one of [MV09, Proposition 1],
see also [Mac95, Chapter 1, equation (6.9)])

∑

µ`N+1

C(µ) Aut(µ)mµ =
∑

ν`N+1

A(ν)pν ; (3)

∑

λ`N
D(λ) Aut(λ)mλ =

∑

π`N
B(π)pπ, (4)

where m• and p• denote the monomial and power sum basis of the ring of symmetric functions.

2.2 Permuted star thorn trees and Morales’-Vassilieva’s bijection
The main tool of this article is to encode black-partitioned maps into star thorn trees, which have a very

simple combinatorial structure. Note that they are a particular case of the notion of thorn trees, introduced
by A. Morales and the second author in [MV09].

Definition 2.2 (star thorn tree) An (ordered rooted bicolored) star thorn tree of size N is a tree with a
white root vertex, p black vertices and N −p thorns connected to the white vertex (the order in which they
are connected matters) and N − p thorns connected to the black vertices. A thorn is an edge connected to
only one vertex. We call type of a star thorn tree its black vertices’ degree distribution (taking the thorns
into account). If µ is an integer partition, we denote by S̃T (µ) the number of star thorn trees of type µ.

An example is given on Figure 2 (for the moment, please do not pay attention to the labels). The interest
of this object lies in the following theorem, which corresponds to the case λ = (N) of [MV09, Theorem
2] (note that the proof is entirely bijective).

Theorem 2.1 Let µ ` N be a partition of length p. One has:

C(µ) = (N − p)! · S̃T (µ). (5)

The right-hand side of (5) is the number of couples (τ, σ) where:

• τ is a star thorn tree of type µ.

• σ is a permutation of [N − p], which happens to be exactly the number of thorns with a white (resp.
black) extremity in τ . So σ may be seen as a bijection between the thorns with a white extremity
and thorns with a black extremity.

We call such a couple a permuted (star) thorn tree. By definition, the type of (τ, σ) is the type of τ .
Examples of graphical representations are given on Figure 2: we put symbols on edges and thorns with
the following rule. Two thorns have the same label if they are associated by σ and except from that rule,
all labels are different (the chosen symbols and their order do not matter, we call that a symbolic labeling).

It is easy to transform a permuted thorn tree (τ, σ) where τ has type λ ` N to a permuted thorn tree
(τ ′, σ′) where τ ′ has type µ = λ↑(i). We just add a thorn anywhere on the white vertex (N + 1 possible
places) and a thorn anywhere on a black vertex of degree i (there are i possible places on each of the
mi(λ) black vertices of degree i). Then we choose σ′ to be the extension of σ associating the two new
thorns. This procedure is invertible if we remember which thorn of black extremity is the new one (it
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Fig. 2: Example of two permuted star thorn trees (τ1ex, σ
1
ex) of type 1121 and (τ2ex, σ

2
ex) of type 2232

must be on a black vertex of degree i+ 1, so there are i ·mi+1(µ) choices). This leads immediately to the
following relation:

S̃T (µ) · (N + 1− p)! · i ·mi+1(µ) = (N + 1) · i ·mi(λ) · S̃T (λ) · (N − p)!. (6)

2.3 Reduction of the main theorem
Proposition 2.2 For any partition λ ` N of length p, one has:

D(λ) =
1

N − p+ 1
(N − p)!S̃T (λ).

Sections 3, 4 and 5 are devoted to the proof. It is easy to see, with the definition of subsection 2.1 and
the bijection of subsection 2.2, that this proposition is a reformulation of Theorem 1.3.

Lemma 2.3 Proposition 2.2 implies Theorem 1.2.

Proof: We fix a partition µ ` N + 1 of length p < N + 1 and sum equation (6) on λ = µ↓(i+1):

S̃T (µ) · (N + 1− p)! · (N + 1− p) = (N + 1)
∑

λ=µ↓(i+1),i>0

i ·mi(λ) · S̃T (λ) · (N − p)!.

Using Morales’-Vassilieva’s bijection and Proposition 2.2, this equality becomes:

C(µ) · (N + 1− p) = (N + 1)
∑

λ=µ↓(i+1),i>0

i ·mi(λ) ·D(λ) · (N + 1− p).

Hence,
∑

µ`N+1

µ6=1(N+1)

C(µ) Aut(µ)mµ = (N + 1)
∑

µ`N+1

µ6=1(N+1)

∑

i>0

λ=µ↓(i+1)

i ·mi(λ) Aut(µ)D(λ)mµ;

= (N + 1)
∑

λ`N
Aut(λ)D(λ)



∑

i>0

µ=λ↑(i)

i ·mi+1(µ)mµ


 .

The last equality has been obtained by changing the order of summation and using the trivial fact that,
if µ = λ↑(i), one has Aut(µ) ·mi(λ) = Aut(λ) ·mi+1(µ). Now, observing that the expression in the
bracket can be written ∆(mλ), where ∆ is the differential operator

∑
i x

2
i ∂/∂xi, one has:

∑

µ`N+1

C(µ) Aut(µ)mµ − (N + 1)!m1N+1 = (N + 1) ·∆
(∑

λ`N
Aut(λ)D(λ)mλ

)
.
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Let us rewrite this equality in the power sum basis. The expansion of the two summations in this basis are
given by equations (3) and (4). Furthermore, one has: ∆(pπ) =

∑
i i ·mi(π)pπ↑(i) . Indeed, the one-part

case (∆(pk) = k · pk+1) is trivial and the general case follows because ∆ is a derivation. We also need
the power-sum expansion of (N + 1)!m1N+1 , which is (see [Mac95, Chapter I, equation (2.14’)]):

(N + 1)!m1N+1 = (N + 1)!eN+1 = (N + 1)!
∑

ν`N+1

(−1)N+1−`(ν)

zν
pν =

∑

ν`N+1

A(ν)(−1)N+1−`(ν)pν ,

where eN+1 is the N + 1-th elementary function. Putting everything together, we have:
∑

ν`N+1

A(ν)pν +
∑

ν`N+1

A(ν)(−1)N−`(ν)pν = (N + 1)
∑

π

B(π)
∑

ρ=π↑(i),i>0

i ·mi(π)pρ.

If we identify the coefficients of pµ in both sides, we obtain exactly Theorem 1.2 2

Remark 2 Using Remark 1, the converse statement of Lemma 2.3 can be proved the same way.

3 Mapping black-partitioned star maps to permuted thorn trees
The following sections provide a combinatorial proof of Proposition 2.2. We proceed in a three step

fashion. First we define a mapping Ψ from the set of black-partitioned star maps of type λ (counted by
D(λ)) to a set of permuted star thorn trees of the same type and show it is injective. As a final step, we
compute the cardinality of the image set of Ψ and show it is exactly (1/(N − p+ 1)) (N − p)!S̃T (λ).
Although there are some related ideas, Ψ is not the restriction of the bijection of paper [MV09].

3.1 Labeled thorn tree
Let (β, π) be a black-partitioned star map. We first construct a labeled star thorn tree τ :

(i) Let (αk)(1≤k≤N) be integers such that α1 = 1 and the long cycle α = (1 2 . . . N)β−1 is equal to
(α1α2α3 . . . αN ). The root of τ is a white vertex with N descending edges labeled from right to left
with α1, α2, α3, . . . , αN (α1 is the rightmost descending edge and αN the leftmost).

(ii) Let mi be the maximum element of block πi. For k = 1 . . . N , if αk = β(mi) for some i, we draw
a black vertex at the other end of the descending edge labeled with αk. Otherwise the descending
edge is a thorn.

Remark 3 As αN = α−1(1) = β(N) the leftmost descending edge isn’t a thorn and is labeled with
β(N) (N is necessarily the maximum element of the block containing it).

(iii) For i = 1 . . . p, let (βu1 . . . β
u
lu

)
1≤u≤c be the c cycles included in block πi such that βulu is the

maximum element of cycle u. (We have Σulu =| πi |). We also order these cycles according to
their maximum, i.e. we assume that βclc < βc−1lc−1

< . . . < β1
l1

= mi. As a direct consequence,
β1
1 = β(mi).

We connect | πi | −1 thorns to the black vertex linked to the root by the edge β(mi). Moving
around the vertex counter-clockwise and starting right after edge β(mi), we label the thorn with
β1
2 , β

1
3 , . . . , β

1
l1
, β2

1 , . . . , β
2
l2
, β3
l3
, . . . βclc . Then τ is the resulting thorn tree.
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Remark 4 Moving around a black vertex clockwise starting with the thorn right after the edge (in
clockwise order), a new cycle of β begins whenever we meet a left-to-right maximum of the labels.
Remark 5 As the long cycle α and the repartition of the cycles of β in the various blocks appear
explicitly in τ , one can recover the black-partitioned star map from it.

The idea behind this construction is to add a root to the map (α, β), select one edge per block, cut all
other edges into two thorns and merge the vertices corresponding to the same black block together. Step
(i) tells us where to place the root, step (ii) which edges we select and step (iii) how to merge vertices (in
maps unlike in graphs, one has to do some choices to merge vertices).

Example 2 Let us take the black-partitioned star map of example 1. Following construction rules (i) and
(ii), one has m4 = 7, m© = 5, m2 = 4 and the descending edges indexed by β(m4) = 3, β(m©) = 2
and β(m2) = 4 connect a black vertex to the white root. Other descending edges from the root are thorns.
Using (iii), we add labeled thorns to the black vertices to get the labeled thorn tree depicted on Figure 3.
Focusing on the one connected to the root through the edge 3, we have (β1

1β
1
l1

)(β2
l2

)(β3
l3

) = (37)(6)(1).
Reading the labels clockwise around this vertex, we get 1, 6, 7, 3. The three cycles can be simply recovered
looking at the left-to-right maxima 1, 6 and 7.

Fig. 3: Labeled thorn tree associated to the black-partitioned star map of Figure 1

3.2 Permuted thorn tree
Using τ , we call τ the star thorn tree obtained by removing labels and σ the permutation that associates

to a white thorn in τ the black thorn with the same label in τ .
Finally, we define: Ψ(β, π) = (τ, σ).

Example 3 Following up with example 1, we get the permuted thorn tree (τ3ex, σ
3
ex) drawn on Figure 4.

Graphically we use the same convention as in section 2 to represent σ.

Fig. 4: Permuted thorn tree (τ3ex, σ
3
ex) associated to the black-partitioned star map of Figure 1
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4 Injectivity and reverse mapping
Assume (τ, σ) = Ψ(β, π) for some black partitioned star map (β, π). We show that (β, π) is actually

uniquely determined by (τ, σ).
As a first step, we recover the labeled thorn tree τ . Let us draw the permuted thorn tree (τ, σ) as explained
in subsection 2.2. We show by induction that there is at most one possible integer value for each symbolic
label.

(i) By construction, the label α1 of the right-most edge or thorn descending from the root is necessarily
1.

(ii) Assume that for i ∈ [N − 1], we have identified the symbols of values 1, 2, . . ., and i. We look at
the edge or thorn with label i connected to a black vertex b. In this step, we determine which symbol
corresponds to β(i).
Recall that, when we move around b clockwise finishing with the edge (in this step, we will always
turn in this sense), a new cycle begins whenever we meet a left-to-right maximum. So, to find β(i),
one has to know whether i is a left-to-right maximum or not.
If all values of labels of thorns before i haven’t already been retrieved, then i is not a left-to-right
maximum. Indeed, the remaining label values are i + 1, . . . , N and at least one thorn’s label on
the left of i lies in this interval. Following our construction, necessarily β(i) corresponds to the
symbolic label of the thorn right at the left of i.
If all the thorns’ label values on the left of i have already been retrieved (or there are no thorns at all),
then i is a left-to-right maximum. According to the construction of τ , β(i) corresponds necessarily
to the symbolic label of the thorn preceding the next left-to-right maximum. But one can determine
which thorn (or edge) corresponds to the next left-to-right maximum: it is the first thorn (or edge)
e without a label value retrieved so far (again moving around the black vertex from left to right).
Indeed, all the value retrieved so far are less than i and those not retrieved greater than i. Therefore
β(i) is the thorn right at the left of e. If all the values of the labels of the thorns connected to b
have already been retrieved then i is the maximum element of the corresponding block and β(i)
corresponds to the symbolic label of the edge connecting this black vertex to the root.

(iii) Consider the element (thorn of edge) of white extremity with the symbolic label corresponding to
β(i). The next element (turning around the root in counter-clockwise order) has necessarily label
α(β(i)) = i+ 1.
As a result, the knowledge of the thorn or edge with label i uniquely determines the edge or thorn
with label i+ 1.

Applying the previous procedure up to i = N − 1 we see that τ is uniquely determined by (τ, σ) and
so is (β, π) (see Remark 5).

Example 4 Take as an example the permuted thorn tree (τ1ex, σ
1
ex) drawn on the left-hand side of Figure

2, the procedure goes as described on figure 5. First, we identify α1 = 1. Then, as there is a non (value)
labeled thorn (α2) on the left of the thorn connected to a black vertex with label value 1, necessarily 1 is
not a left-to-right maximum and α2 is the label of the thorn right on the left of 1, that is α2. Then as α3

follows α2 = β(1) around the white root, we have α3 = α(β(1)) = 2.
We apply the procedure up to the full retrieval of the edges’ and thorns’ labels. We find α2 = 3, α4 = 4,
α5 = 5. Finally, we have α = (13245), β = (213)(4)(5), π = {{1, 2, 3}; {4, 5}} as shown on figure 5.
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Fig. 5: Reconstruction of the map

5 Characterization and size of the image set =(Ψ)

5.1 A necessary and sufficient condition to belong to =(Ψ)

Why Ψ is not surjective? Let us fix a permuted star thorn tree (τ, σ). We can try to apply to it the
procedure of section 4 and we distinguish two cases:

• it can happen, for some i < N , when one wants to give the label i + 1 to the edge following β(i)
(step (iii)), that this edge has already a label j. If so, the procedure fails and (τ, σ) is not in =(Ψ).

• if this never happens, the procedure ends with a labeled thorn tree τ . In this case, one can find the
unique black-partitioned star map M corresponding to τ and by construction Ψ(M) = (τ, σ).

For instance, if we take as (τ, σ) the couple (τ2ex, σ
2
ex) on the right of Figure 2, the procedure gives suc-

cessively : α1 = 1, α9 = 2, α10 = 3, α6 = 4, α5 = 5 and then we should choose α1 = 6, but this is
impossible because we already have α1 = 1.

Lemma 5.1 If the procedure fails, the label j of the edge that should get a second label i+ 1 is always 1.

Proof: If j > 1, this means that β(j − 1) = β(i). Let us distinguish two cases.
If j − 1 is a left-to-right maximum, the label i must be at the right of β(j − 1) and not a left-to-right
maximum. But this is impossible because all thorns at the left of β(j−1) (including β(j−1)) have labels
smaller than j.
If j − 1 is not a left-to-right maximum, the label j − 1 must be at the right of β(j − 1) = β(i) and i is
a left-to-right maximum. Then β(i) is before the next left-to-right maximum. So the edge at the right of
β(i) has a label greater than i and can not be j − 1. 2

An auxiliary oriented graph Remark 3 gives a necessary condition for (τ, σ) to be in =(Ψ): its left-
most edge leaving the root must be a real edge e0, and not a thorn. From now on, we call this property
(P1): note that, among all permuted thorn tree of a given type λ ` N of length p, exactly p over N have
this property. When (P1) is satisfied, we denote π0 the black extremity of e0. The lemma above shows
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Fig. 6: Two examples of auxiliary graphs.

that the procedure fails if and only if e0 is chosen as β(i) for some i < N . But this can not happen at any
time. Indeed, the following lemma is a direct consequence from step (ii) of the inverting procedure:

Lemma 5.2 A real edge (i.e. which is not a thorn) e can be chosen as β(i) only if the edge and all thorns
leaving the corresponding black vertex have labels smaller or equal to i. If this happen, we say that the
black vertex is completed at step i.

Corollary 5.3 Let e be a real edge of black extremity π 6= π0. Let us denote e′ the element (edge or
thorn) right at the left of e on the white vertex. Let π′ be the black extremity of the element e′′ associated
to e′ (i.e. e′ itself if it is an edge, its image by σ else). Then π′ can not be completed before π.

Proof: If π′ is completed at step i, by Lemma 5.2, element e′′ has a label j ≤ i. As e′ has the same label,
this implies that e has label β(j − 1) or in other words, that π is completed at step j − 1 < i. 2

When applied for every black vertex π 6= π0, this corollary gives some partial information on the order
in which the black vertices can be completed. We will summarize this in an oriented graph G(τ, σ): its
vertices are the black vertices of τ and its edges are π → π′, where π and π′ are in the situation of the
corollary above. This graph has one edge leaving each of its vertex, except for π0. As examples, the
graphs corresponding to (τ2ex, σ

2
ex) and to (τ3ex, σ

3
ex) (see Figures 2 and 4) are drawn on Figure 6.

The graph G(τ, σ) gives all the information we need! Can we decide, using only G(τ, σ), whether
(τ, σ) belongs to =(Ψ) or not? There are two cases, in which the answer is obviously yes:

1. Let us suppose that G(τ, σ) is an oriented tree of root π0 (all edges are oriented towards the root).
In this case, we say that (τ, σ) has property (P2). Then, the vertex π0 can be completed only when
all other vertices have been completed, i.e. when all edges and thorns have already a label. That
means that e0 can be chosen as β(i) only for i = N . Therefore, in this case, the procedure always
succeeds and (τ, σ) belongs to =(Ψ). This is the case of (τ3ex, σ

3
ex).

2. Let us suppose that G(τ, σ) contains an oriented cycle (eventually a loop). Then all the vertices of
this cycle can never be completed. Therefore, the procedure always fails in this case and (τ, σ) does
not belong to =(Ψ). This is the case of (τ2ex, σ

2
ex).

In fact, we are always in one of these two cases (the proof of the following lemma is left to the reader):

Lemma 5.4 Let G be an oriented graph whose vertices have out-degree 1, except for one vertex v0 which
has out-degree 0. Then G is either an oriented tree of root v0 or contains an oriented cycle.

Finally, one has the following result:

Proposition 5.5 The mapping Ψ defines a bijection:
{

black-partitioned star maps
of type λ

}
'
{

permuted star thorn trees of type λ
with properties (P1) and (P2)

}
. (7)
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5.2 Proportion of permuted thorn trees (τ, σ) in =(Ψ)

To finish the proof of Proposition 2.2, one just has to compute the size of the right-hand side of (7):

Proposition 5.6 Let λ be a partition of N of length p. Denote by P (λ) (resp. P ′(λ)) the proportion of
couples (τ, σ) with properties (P1) and (P2) among all the permuted thorn trees of type λ (resp. among
permuted thorn trees of type λ with property (P1)) of type λ. Then, one has:

P ′(λ) =
N

p(N − p+ 1)
and, hence, P (λ) =

1

N − p+ 1
.

Proof (by induction on p): The case p = 1 is easy: as G(τ, σ) has only one vertex and no edges, it is
always a tree. Therefore, for any N ≥ 1, one has P ′((N)) = 1.
Suppose that the result is true for any λ of length p−1 and fix a partition µ ` N of length p > 1. Consider
the permuted thorn trees (τ, σ) of type µ, verifying (P1), with a marked black vertex π 6= π0: as there are
always p− 1 choices for the marked vertex, the proportion of these objects verifying (P2) is still P ′(µ).
Let us now split this set, depending on the degrees (in τ ) of the marked vertex and of the end of the edge
leaving π in the graph G(τ, σ). The proportion of marked star thorn trees of type µ (with property (P1))
whose marked vertex has degree k0 ismk0(µ)/p. We denote k = degτ (π) and µ′ = µ\k (i.e. the partition
obtained from µ by deleting one part k).

• In k − 1 cases over N − 1, this second extremity is also π. So G(τ, σ) contains a loop and (τ, σ)
does not fulfill (P2).

• For every j, in j ·mj(µ
′) cases over N − 1, this second extremity is a vertex π′ 6= π of degree j (in

τ ). But one has an easy bijection ϕ:




(τ, σ) of type µ verifying (P1)
with a marked black vertex π 6= π0

of size k such that π →G(τ,σ) π
′

with π′ 6= π of size j




'





(τ ′, σ′) of type µ↓(j,k) := µ\(j, k) ∪ (j + k − 1)
verifying (P1) with the edge or one of the first j − 1

thorns of a black vertex of size j + k − 1 marked
(always j ·mj+k−1(µ↓(j,k)) choices)





� .

From left-to-right: erase the marked black vertex π with its edge eπ and move its thorns to the black
vertex π′ (at the right of its own thorns). Choose as marked the element (edge of thorn) with a black
extremity with the same symbolic label as the element right at the left of eπ .
From right to left: look at the white thorn corresponding to the marked thorn e (if the marked ele-
ment is an edge, just take the edge itself). Then add a new edge with a black vertex just at the right
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of this thorn (or edge). Finally, move the k − 1 right-most thorns of the black extremity of e to this
new black vertex. The marked black vertex is the new one.
This bijection keeps property (P2). Indeed, if ϕ(τ, σ, π) = (τ ′, σ′, e), the graph G(τ ′, σ′) is ob-
tained fromG(τ, σ) by contracting the edge of origin π. Therefore, the proportion of couples having
property (P2) on the left-hand side is the same as on the right-hand side. But, as µ↓(j,k) has length
p− 1 and size N − 1, by induction hypothesis, this proportion is:

N − 1

(p− 1)
(
(N − 1)− (p− 1) + 1

) .

We can now put the different cases together to compute P ′(µ):

P ′(µ) =
∑

k

mk(µ)

p


∑

j

j ·mj(µ
′)

N − 1
· N − 1

(p− 1)
(
N − p+ 1

)


 =

N

p
(
N − p+ 1

) .

The last equality is obtained by a straight-forward computation and ends the proof of Proposition 5.6 and,
therefore, of Proposition 2.2. 2

References
[Adr98] NM Adrianov. An analogue of the Harer-Zagier formula for unicellular two-color maps. Funct.

Anal. Appl, 31(3):149–155, 1998.

[Bia03] P. Biane. Characters of symmetric groups and free cumulants. In Asymptotic combinatorics with
applications to mathematical physics (St. Petersburg, 2001), volume 1815 of Lecture Notes in
Math., pages 185–200. Springer, Berlin, 2003.
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Balanced binary trees in the Tamari lattice
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Abstract. We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that
the intervals [T0, T1] where T0 and T1 are balanced trees are isomorphic as posets to a hypercube. We introduce tree
patterns and synchronous grammars to get a functional equation of the generating series enumerating balanced tree
intervals.

Résumé. Nous montrons que l’ensemble des arbres équilibrés est clos par intervalle dans le treillis de Tamari. Nous
caractérisons la forme des intervalles du type [T0, T1] où T0 et T1 sont équilibrés en montrant qu’en tant qu’ensembles
partiellement ordonnés, ils sont isomorphes à un hypercube. Nous introduisons la notion de motif d’arbre et de gram-
maire synchrone dans le but d’établir une équation fonctionnelle de la série génératrice qui dénombre les intervalles
d’arbres équilibrés.

Keywords: balanced trees, Tamari lattice, posets, grammars, generating series, combinatorics

1 Introduction
Binary search trees are used as data structures to represent dynamic totally ordered sets [7, 6, 3]. The
algorithms solving classical related problems such as the insertion, the deletion or the search of a given
element can be performed in a time logarithmic in the cardinality of the represented set, provided that the
encoding binary tree is balanced. Recall that a binary tree is balanced if for each node x, the height of the
left subtree of x and the height of the right subtree of x differ by at most one.

The algorithmic of balanced trees relies fundamentally on the so-called rotation operation. An insertion
or a deletion of an element in a dynamic ordered set modifies the tree encoding it and can imbalance it.
The efficiency of these algorithms comes from the fact that binary search trees can be rebalanced very
quickly after the insertion or the deletion, using no more than two rotations [2].

Surprisingly, this operation appears in a different context since it defines a partial order on the set of
binary trees of a given size. A tree T0 is smaller than a tree T1 if it is possible to transform the tree T0
into the tree T1 by performing a succession of right rotations. This partial order, known as the Tamari
order [8, 10], defines a lattice structure on the set of binary trees of a given size.

Since binary trees are naturally equipped with this order structure induced by rotations, and the balance
of balanced trees is maintained doing rotations, we would like to investigate if balanced trees play a
particular role in the Tamari lattice. Our goal, in this is paper, is to combine the two points of view of the
rotation operation. A first simple computer observation is that the intervals [T0, T1] where T0 and T1 are
balanced trees are only made up of balanced trees. The main goal of this paper is to prove this property. As
a consequence, we give a characterization on the shape of these intervals and, using grammars allowing
to generate trees, enumerate them.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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This article is organized as follows. In Section 2, we set the essential notions about binary trees and
balanced trees, and we give the definition of the Tamari lattice in our setting. Section 3 is devoted to
establish the main result: the set of balanced trees is closed by interval in the Tamari lattice. In Section 4,
we define tree patterns and synchronous grammars. These grammars allow us to generate trees avoiding a
given set of tree patterns. We define a subset of balanced trees where elements hold a peculiar position in
the Tamari lattice and we give, using the synchronous grammar generating these, a functional equation of
the generating series enumerating these. Finally, in Section 5, we look at balanced tree intervals and show
that they are, as posets, isomorphic to hypercubes. Encoding balanced tree intervals by particular trees,
and establishing the synchronous grammar generating these trees, we give a functional equation satisfied
by the generating series enumerating balanced tree intervals.
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2 Preliminaries
2.1 Complete rooted planar binary trees
In this article, we consider complete rooted planar binary trees. Nodes are denoted by circles like and
leaves by squares like . The empty tree is also denoted by . Assuming L and R are complete rooted
planar binary trees, let L ∧ R be the (unique) complete rooted planar binary tree which has L as left
subtree and R as right subtree. Let also Tn be the set of complete rooted planar binary trees with n nodes
and T be the set of all complete rooted planar binary trees. We use in the sequel the standard terminology
(ie. child, ancestor, edge, path, . . . ) about complete rooted planar binary trees [3].

Recall that the nodes of a complete rooted planar binary tree T can be visited in the infix order: it
consists in visiting recursively the left subtree of T , then the root, and finally the right subtree. We say
that a node y is on the right compared to a node x in T if the node x appears strictly before the node y in
the infix order and we denote that by x T y. We extend this notation to subtrees saying that a subtree S
of root y of T is on the right compared to a node x in T if for all nodes y′ of S we have x T y

′. We say
that a node x of T is the leftmost node of T if x is the first visited node in the infix order.

If T is a complete rooted planar binary tree, we shall denote by ht(T ) the height of T , that is the
length of the longest path connecting the root of T to one of its leaves. For example, we have ht ( ) = 0,

ht ( ) = 1, and ht
( )

= 2.
In the sequel, we shall mainly talk about complete rooted planar binary trees so we shall call them

simply trees.

2.2 Balanced trees
Let us define, for each tree T , the mapping γT called the imbalance mapping which associates an element
of Z with a node x of T , namely the imbalance value of x. It is defined for a node x by:

γT (x) = ht(R)− ht(L) (2.1)

where L (resp. R) is the left (resp. right) subtree of x.
Balanced trees form a subset of T composed of trees which have the property of being balanced:
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Definition 2.1 A tree T is balanced if for all node x of T , we have

γT (x) ∈ {−1, 0, 1}. (2.2)

Let us denote by Bn the set of balanced trees with n nodes (see Figure 1 for the first sets) and B the set
of all balanced trees.

n Bn
0
1

2

3

4

5

6

Fig. 1: The first balanced trees.

2.3 The Tamari lattice
The Tamari lattice can be defined in several ways [10, 5] depending on which kind of catalan object (ie.
in bijection with trees) the order relation is defined. We give here the most convenient definition for our
use. First, let us recall the right rotation operation:

Definition 2.2 Let T0 be a tree and S0 = (A ∧ B) ∧ C be the subtree of root y of T0. If T1 is the tree
obtained by replacing the tree S0 by the tree A∧ (B ∧C) in T0 (see Figure 2), we say that T1 is obtained
from T0 by a right rotation of root y.

y

x

A B

C

x

A y

B C

T0 : : T1

Fig. 2: The right rotation of root y.

We write T0 i T1 if T1 can be obtained by a right rotation from T0. We call the relation i the partial
Tamari relation.

Remark 2.3 Applying a right rotation to a tree does not change the infix order of its nodes.

In the sequel, we only talk about right rotations, so we call these simply rotations. We are now in a
position to give our definition of the Tamari relation:

Definition 2.4 The Tamari relation, written 4, is the reflexive and transitive closure of the partial Tamari
relation i.

The Tamari relation is an order relation. For n ≥ 0, the set Tn with the4 order relation defines a lattice:
the Tamari lattice. We denote by Tn = (Tn,4) the Tamari lattice of order n.
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(a) T3 (b) T4

Fig. 3: The Tamari lattices T3 and T4.

3 Closure by interval of the set of balanced trees
3.1 Rotations and balance
Let us first consider the modifications of the imbalance values of the nodes of a tree T0 = (A ∧ B) ∧ C
when a rotation at its root is applied. Let T1 be the tree obtained by this rotation, y the root of T0 and x
the left child of y in T0. Note first that the imbalance values of the nodes of the trees A, B and C are not
modified by the rotation. Indeed, only the imbalance values of the nodes x and y are changed. Since T0
is balanced, we have γT0

(x) ∈ {−1, 0, 1} and γT0
(y) ∈ {−1, 0, 1}. Thus, the pair (γT0

(x), γT0
(y)) can

take nine different values. Here follows the list of the imbalance values of the nodes x and y in the trees
T0 and T1:

(B1) (U1) (U2) (B2) (U3) (U4) (U5) (U6) (U7)
(γT0(x), γT0(y)) (-1, -1) (-1, 0) (-1, 1) (0, -1) (0, 0) (0, 1) (1, -1) (1, 0) (1, 1)
(γT1(x), γT1(y)) (1, 1) (2, 2) (3, 3) (1, 0) (2, 1) (3, 2) (2, 0) (3, 1) (4, 2)

Tab. 1: Imbalance values of the nodes x and y in T0 and T1.

Notice that only in (B1) and (B2) the tree T1 is balanced. We have the following lemma:

Lemma 3.1 Let T0 and T1 be two balanced trees such that T0 i T1. Then, the trees T0 and T1 have the
same height.

Proof: Since T0 and T1 are both balanced, the rotation modifies a subtree S0 of T0 such that the imbalance
values of the root of S0, namely y, and the left child of y, namely x, satisfy (B1) or (B2). Let S1 be the
tree obtained by the rotation of root y from S0. Computing the height of the trees S0 and S1, we have
ht(S0) = ht(S1). Thus, as a rotation modifies a tree locally, we have ht(T0) = ht(T1). 2

A rotation transforming a tree T0 into a tree T1 is a conservative balancing rotation if both T0 and T1
are balanced. Considering y the root of this rotation and x the left child of y, we see, by the previous
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computations and Lemma 3.1, that T0 and T1 are both balanced if and only if T0 is balanced and

(γT0
(x), γT0

(y)) ∈ {(−1,−1), (0,−1)}. (3.1)

Similarly, a rotation is an unbalancing rotation if T0 is balanced but T1 not.

Lemma 3.2 Let T0 be a balanced tree and T1 be an unbalanced tree such that T0iT1. Then, there exists
a node z in T1 such that γT1

(z) ≥ 2 and the left subtree and the right subtree of z are both balanced.

Proof: Immediate, looking at (U1), (U2), (U3), (U4), (U5), (U6) and (U7). 2

3.2 Admissible words
Definition 3.3 A word z ∈ N∗ is admissible if either |z| ≤ 1 or we have z1 − 1 ≤ z2, and the word
obtained by applying the substitution

z1.z2 −→
{
max{z1, z2}+ 1 if z1 − 1 ≤ z2 ≤ z1 + 1,
z2 otherwise

(3.2)

to z is admissible. Let us denote by A the set of admissible words.

For example, we can check that the word z = 00122 is admissible. Indeed, applying the substitution
(3.2), we have 00122→ 1122→ 222→ 32→ 4 and at each step, the condition z1 − 1 ≤ z2 holds. The
word z′ = 1234488 is also admissible: 1234488 → 334488 → 44488 → 5488 → 688 → 88 → 9. The
word z′′ = 3444 is not admissible because we have 3444→ 544→ 64 and since that 6− 1 � 4, we have
z′′ /∈ A.

Remark 3.4 If z is an admissible word, then, for all 1 ≤ i ≤ |z| − 1 the inequality zi − 1 ≤ zi+1 holds.

Remark 3.5 The prefixes and suffixes of an admissible word are still admissible.

Remark 3.6 If z = u.v where z, u, v ∈ N∗ are admissible words, after applying the substitution (3.2) to
v to obtain the word v′, the word z′ = u.v′ is still admissible.

Let the potential P(z) of an admissible word z be the outcome of the application of the substitution
(3.2). In the previous examples, we have P(z) = 4 and P(z′) = 9.

Let T be a tree, x be a node of T , (x = x1, x2, . . . , x`) be the sequence of all ancestors of x whose
right sons are not themselves ancestors of x, ordered from bottom to top and (Sxi)1≤i≤` be the sequence
of the right subtrees of the nodes xi (see Figure 4). The word z on the alphabet N defined by zi = ht(Sxi

)
is called the characteristic word of the node x in the tree T and denoted by cT (x).

Lemma 3.7 Let T be a balanced tree, x a node of T , and z the characteristic word of x. Then, z is
admissible and P(z) ≤ ht(T ).

Proof: By structural induction on balanced trees. The lemma is obviously true for the trees of the set
B0 ∪ B1. Let L and R be two balanced trees such that T = L ∧ R is balanced too and assume that the
lemma is true for both L and R. Let x be a node of T . Distinguishing the cases where x is a node of L, a
node of R, or the root of T , we have, by induction, the statement of the lemma. 2

Lemma 3.8 Let T be a tree and y a node of T such that cT (y) is admissible and all subtrees of the
sequence (Syi)1≤i≤` are balanced. Then, for all node x of T such that y  T x, the word cT (x) is
admissible.
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x`

x`−1

x2

x1

Sx1

Sx2

Sx`−1

Sx`

Fig. 4: The sequence (Sxi)1≤i≤` associated to the node x = x1.

Proof: If x is an ancestor of y, the word cT (x) is a suffix of cT (y), thus we have, by Remark 3.5,
cT (x) ∈ A. Otherwise, let S be the subtree of T such that x is a node of S and the parent of S in T is
an ancestor of y. We have cT (y) = u.ht(S).v where u, v ∈ A. As y  T S, we have S ∈ B and by
Lemma 3.7, we have cS(x) ∈ A and P(cS(x)) ≤ ht(S). Thus, thanks to Remark 3.5, ht(S).v ∈ A, so
that cT (x) = cS(x).v ∈ A. 2

3.3 The main result
Theorem 3.9 Let T0 and T1 be two balanced trees such that T0 4 T1. Then, the interval [T0, T1] only
contains balanced trees. In other words, all successors of a tree obtained doing an unbalancing rotation
into a balanced tree are unbalanced.

Proof: To prove the theorem, we shall show that for all balanced tree T0 and an unbalanced tree T1 such
that T0 i T1, all trees T2 such that T1 4 T2 are unbalanced. Indeed, T1 has a property guaranteeing it is
unbalanced that can be kept for all its successors.

Let ImbT (x) be the property: the node x of T and the node y which is the leftmost node of the left
subtree of x satisfy: (see Figure 5):

(1) γT (x) ≥ 2;

(2) the left subtree of x is balanced;

(3) all the subtrees S such that y  T S are balanced;

(4) cT (y) ∈ A.

Point (2) guarantees that each tree having the previous property is unbalanced.
First, let us show that there exists a node x such that ImbT1(x) is true. The tree T1 is obtained by an

unbalancing rotation from T0. By Lemma 3.2, there exists a node x in T1 satisfying points (1) and (2). As
the left and right subtrees of x are balanced and as all the trees on the right compared to x are balanced in
T0, they remain balanced in T1, so that point (3) checks out. To establish (4), denoting by y the leftmost
node of the left subtree of x in T1, we have, by Remark 3.6 and Lemmas 3.7 and 3.8, cT1

(y) ∈ A.
Now, let us show that given a tree T1 such that ImbT1(x) is satisfied for a node x of T1, for all tree T2

such that T1iT2, there exists a node x′ of T2 such that ImbT2(x
′) is satisfied. Let y be the leftmost node

of the left subtree of x in T1 and r be the root of the rotation that transforms T1 into T2. We will treat all
cases depending on the position of r compared to y.

If the node r belongs to a subtree of T1 which is on the left compared to y, the rotation does not modify
any of the subtrees on the right compared to y. Thus we have ImbT2

(x).
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x`

x`−1

x2

x

∈ B
y

Sx1 ∈ B

Sx2 ∈ B

Sx`−1 ∈ B

Sx` ∈ B

T :

Fig. 5: The imbalance property ImbT (x). The node y is the leftmost node of the left subtree of the node x.

If the subtree S1 of root r satisfies y  T1
S1, let S2 be the subtree of T2 obtained by the rotation of S1

which transforms T1 into T2. If S2 is balanced, by Lemma 3.1, ht(S1) = ht(S2) and we have ImbT2
(x).

If S2 is not balanced, by the study of the initial case, we have ImbS2
(x′) for a node x′ of S2. Besides,

by Remark 3.6 and Lemma 3.8, denoting by y′ the leftmost node of the left subtree of x′ in T2, we have
cT2(y

′) ∈ A and thus, ImbT2(x
′).

If the node r is an ancestor of y and the left child of r is still an ancestor of y, let B be the right subtree
of r and A the right subtree of the left child of r in T1. The rotation replaces the trees A and B by the
tree A ∧ B. As cT1

(y) ∈ A, we have, by Remark 3.4, ht(A) − 1 ≤ ht(B). Thus, if A ∧ B is balanced,
we have ImbT2(x). Indeed, points (1), (2) and (3) are clearly satisfied and, by Remark 3.6, we have (4).
If A ∧ B is unbalanced, calling x′ the root of this tree in T2, we have γT2(x

′) ≥ 2, and, calling y′ the
leftmost node of A, we have, by Lemma 3.8, cT2

(y′) ∈ A. Thus we have ImbT2
(x′).

If the node r is an ancestor of y and the right child of r is still an ancestor of y, the rotation does not
modify any of the subtrees on the right compared to y. Thus, we have ImbT2(x). 2

4 Tree patterns and synchronous grammars
Word patterns are usually used to describe languages by considering the set of words avoiding them. We
use the same idea to describe sets of trees. We show first that we can describe two interesting subsets of
the set of balanced trees only by two-nodes patterns.

Next, we follow the methods of [7, 4] to characterize, in our setting, a way to obtain a functional
equation admitting as fixed point the generating series enumerating balanced trees. In this purpose, we
introduce synchronous grammars, allowing to generate trees iteratively. This method gives us a way to
enumerate trees avoiding a set of tree patterns because, as we shall see, functional equations of generating
series can be extracted from synchronous grammars.

4.1 Tree patterns
Definition 4.1 A tree pattern is a nonempty non complete rooted planar binary tree with labels in Z.

Let T be a tree and Tγ be the labeled tree of shape T where each node of Tγ is labeled by its imbalance
value. The tree T admits an occurrence of a tree pattern p if a connected component of Tγ has the same
shape and same labels as p.

Now, given a set P of tree patterns, we can define the set composed of the trees that do not admit any
occurrence of the elements of P . For example, the set

{ i | i /∈ {−1, 0, 1}} (4.1)
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describes the set of balanced trees; the set

{ i | i 6= 0} (4.2)

describes the set of perfect trees and {

i

j

| i, j ∈ Z
}

(4.3)

describes the set of right comb trees.

4.2 Two particular subsets of balanced trees
Let us describe a subset of the balanced trees and its counterpart such that its elements are, roughly
speaking, at the end of the balanced trees subset in the Tamari lattice:

Definition 4.2 A balanced tree T0 (resp. T1) is maximal (resp. minimal) if for all balanced tree T1 (resp.
T0) such that T0 i T1 we have T1 (resp. T0) unbalanced.

Proposition 4.3 A balanced tree T is maximal if and only if it avoids the set of tree patterns

Pmax :=

{
−1

−1
,

0

−1
}
. (4.4)

Similarly, a balanced tree T is minimal if and only if it avoids the set of tree patterns

Pmin :=

{
1

1
,

1

0

}
. (4.5)

Proof: Assume that T is maximal. For all tree T1 such that T i T1 we have T1 unbalanced. Thus, it is
impossible to do a conservative balancing rotation from T and it avoids the set Pmax.

Assume that T avoids the two tree patterns of Pmax, then, for every tree T1 such that T i T1, the tree
T1 is unbalanced because we can do only unbalancing rotations in T . Thus, the tree T is maximal.

The proof of the second part of the proposition is done in an analogous way. 2

4.3 Synchronous grammars and enumeration of balanced trees
Let us first describe a way to obtain the functional equation admitting as fixed point the generating series
which enumerates balanced trees [7, 4].

The idea is to generate trees by allowing them to grow from the root to the leaves step by step. For
that, we generate bud trees, that are non complete rooted planar binary trees with the particularity that
the set of external nodes (the nodes without descendant) are buds. A bud tree grows by simultaneously
substituting all of its buds by new bud trees. Trees are finally obtained replacing buds by leaves. The rules
of substitution allowing to generate bud trees form a synchronous grammar. The link between tree patterns
and synchronous grammars is that synchronous grammars generate trees controlling the imbalance value
of the nodes. The rules generating balanced trees are

x −→
x

-1

y
+

x

0

x
+

y

1

x (4.6)
y −→ x (4.7)

The role of the bud x is to generate a node which has −1, 0 or 1 as imbalance value, the only values
that a balanced tree can have. The role of the bud y is to delay the growth of the bud tree to enable the
creation of the imbalance values −1 and 1. We have the following theorem:
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Theorem 4.4 Let B be a bud tree generated from the bud x by the previous synchronous grammar. If B
does not contain any bud y , replacing all buds x by leaves, we obtain a tree T where each node z of T
is labeled by γT (z). In this way, the previous synchronous grammar generates exactly the set of balanced
trees.

Figure 6 shows an example of such a generation.

x −→
y

1

x
−→

1

x −1

x y
−→

1

-1

x y

-1

1

y x

x −→

1

-1

0

x x

x

-1

1

x 0

x x

0

x x
−→

Fig. 6: Generation of a balanced tree.

The main purpose of synchronous grammars is to obtain a way to enumerate the trees generated. We
can translate the set of rules to obtain a functional equation of the generating series enumerating them.
For balanced trees, we have [7, 4, 9]:

Theorem 4.5 The generating series enumerating balanced trees according to the number of leaves of
trees is Gbal(x) := A(x, 0) where

A(x, y) := x+A(x2 + 2xy, x). (4.8)

The resolution, or, in other words, the coefficient extraction for this kind of functional equation, is made
by iteration. We proceed by computing the sequence of polynomials (Ai)i≥0 defined by:

Ai(x, y) =

{
x if i = 0,
x+Ai−1(x2 + 2xy, x) otherwise.

(4.9)

The first iterations give

A0 = x, (4.10)
A1 = x+ 2xy + x2, (4.11)
A2 = x+ 2xy + x2 + 4x2y + 2x3 + 4x2y2 + 4x3y + x4. (4.12)

The fixed point of the sequence (Ai)i≥0, after substituting 0 to the parameter y in order to ignore bud
trees with some buds y , is the generating series of balanced trees counted according to the number of
leaves.

We can refine this idea to enumerate maximal balanced trees:

Proposition 4.6 The generating series enumerating maximal balanced trees according to the number of
leaves of the trees is Gmax(x) := A(x, 0, 0) where

A(x, y, z) := x+A(x2 + xy + yz, x, xy). (4.13)

Proof: To obtain this functional equation, let us use the following synchronous grammar which generates
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maximal balanced trees:

x −→
x

0

x
+

y

1

x
+

z

-1

y (4.14)
y −→ x (4.15)

z −→
y

1

x (4.16)

This grammar must generate only maximal balanced trees. By Proposition 4.3, the generated trees
must avoid the two tree patterns of Pmax. To do that, we have to control the growth of the bud x when it
generates a tree S such that its root has an imbalance value of −1. Indeed, if the root of the left subtree
of S grows with an imbalance value of −1 or 0, one of the two tree patterns is not avoided. The idea is to
force the imbalance value of the root of left subtree of S to be 1, role played by the bud z . 2

The solution of this functional equation give us the following first values for the number of maximal
trees in the Tamari lattice: 1, 1, 1, 1, 2, 2, 2, 4, 6, 9, 11, 13, 22, 38, 60, 89, 128, 183, 256, 353, 512, 805,
1336, 2221, 3594, 5665, 8774, 13433, 20359.

5 The shape of the balanced tree intervals
5.1 Isomorphism between balanced tree intervals and hypercubes
A hypercube of dimension k can be seen as a poset whose elements are subsets of a set {e1, . . . , ek}
ordered by the relation of inclusion. Let us denote by Hk the hypercube poset of dimension k.

We have the following characterization of the shape of balanced tree intervals:

Theorem 5.1 Let T0 and T1 be two balanced trees such that T0 4 T1. Then there exists k ≥ 0 such that
the posets ([T0, T1],4) and Hk are isomorphic.

Proof: First, note by Theorem 3.9, that I = [T0, T1] ⊆ B. Thus, every covering relation of the interval I
is a conservative balancing rotation.

Then, note that the rotations needed to transform T0 into T1 are disjoint in the sense that if y is a node
of T2 ∈ I and x its left child, if we apply a conservative balancing rotation of root y in T2 to obtain
T3 ∈ I , all the rotations in the successors of T3 of root y and of root x are unbalancing rotations. Indeed,
by Lemma 3.1, each conservative balancing rotation modifies only the imbalance values of the root of the
rotation and its left child, and, according to the values obtained, these two nodes cannot thereafter be roots
of conservative balancing rotations.

Besides, by the nature of the conservative balancing rotations and by Theorem 3.9, we can see that all
the ways to transform T0 into T1 solicit the same rotations, possibly in a different order.

Now, we can associate to a tree T ∈ I a subset of N containing the positions in the infix order of the
nodes y such that, to obtain T from T0, we have done, among other, a rotation of root y. The interval I is
isomorphic to the poset Hk where k is the number of rotations needed to transform T0 into T1. 2

5.2 Enumeration of balanced tree intervals
Let us make use again of the synchronous grammars:

Proposition 5.2 The generating series enumerating balanced tree intervals in the Tamari lattice accord-
ing to the number of leaves of the trees is Ginter(x) := A(x, 0, 0) where

A(x, y, z) := x+A(x2 + 2xy + z, x, x3 + x2y). (5.1)
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(a) (B0,4) (b) (B1,4) (c) (B2,4) (d) (B3,4) (e) (B4,4) (f) (B5,4) (g) (B6,4)

(h) (B7,4) (i) (B8,4) (j) (B9,4)

(k) (B10,4) (l) (B11,4)

Fig. 7: Hasse diagrams of the first (Bn,4) posets.

Proof: Let I = [T0, T1] be a balanced tree interval. This interval can be encoded by the tree T0 in which
we mark the nodes which are roots of the conservative balancing rotations needed to transform T0 into T1.
If a node y of T0 is marked, then its left child cannot be marked too because the rotations of the interval I
are disjoint (see the proof of Theorem 5.1). To generate these objects, we use the following synchronous
grammar that generates marked trees (the marked nodes are represented by a rectangle instead of a circle):

x −→
x

-1

y
+

x

0

x
+

y

1

x
+ z

(5.2)
y −→ x (5.3)

z −→
x

0

x

-1

x +
x

-1

y

-1

x

(5.4)

2

The solution of this functional equation gives us the following first values for the number of balanced
tree intervals in the Tamari lattice: 1, 1, 3, 1, 7, 12, 6, 52, 119, 137, 195, 231, 1019, 3503, 6593, 12616,
26178, 43500, 64157, 94688, 232560, 817757, 2233757, 5179734.

The interval [T0, T1] is a maximal balanced tree interval if T0 (resp. T1) is a minimal (resp. maximal)
balanced tree.

Proposition 5.3 The generating series enumerating maximal balanced tree intervals in the Tamari lattice
according to the number of leaves of the trees is Gintermax(x) := A(x, 0, 0, 0) where

A(x, y, z, t) := x+A(x2 + 2yz + t, x, yz + t, x3 + x2y). (5.5)

Proof: Let I = [T0, T1] be a maximal balanced tree interval. This interval can be encoded by the minimal
tree T0 in which we mark the nodes which are roots of the conservative balancing rotations needed to
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transform T0 into T1. Since T1 is a maximal balanced tree, by Proposition 4.3, it avoids the tree patterns
of Pmax, thus, the object which encodes I must not have a node which is root of a conservative balancing
rotation not marked if its parent or its left child is not marked. To generate these objects, we use the
following synchronous grammar:

x −→
x

0

x
+

y

1

z1
+

z2

-1

y
+ t

(5.6)
y −→ x (5.7)

z1 −→
z2

-1

y
+ t

(5.8)

z2 −→
y

1

z1
+ t

(5.9)

t −→
x

0

x

-1

x +
x

-1

y

-1

x

(5.10)

Note that the buds z1 and z2 play the same role so that the functional equation is simplified. 2

The solution of this functional equation gives us the following first values for the number of maximal
balanced tree intervals in the Tamari lattice: 1, 1, 1, 1, 3, 2, 2, 6, 9, 15, 15, 17, 41, 77, 125, 178, 252, 376,
531, 740, 1192, 2179, 4273, 7738, 13012, 20776, 32389, 49841, 75457, 113011.
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Enumeration of inscribed polyominos
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Abstract. We introduce a new family of polyominos that are inscribed in a rectangle of given size for which we
establish a number of exact formulas and generating functions. In particular, we study polyominos inscribed in a
rectangle with minimum area and minimum area plus one. These results are then used for the enumeration of lattice
trees inscribed in a rectangle with minimum area plus one.

Résumé. Nous introduisons une nouvelle famille de polyominos inscrits dans un rectangle de format donné pour
lesquels des formules exactes et des séries génératrices sont présentées. Nousétudions en particulier les polyominos
inscrits d’aire minimale et ceux d’aire minimale plus un. Ces résultats sont ensuite utilisés pour l’énumération de
polyominos arbres inscrits dans un rectangle d’aire minimum plus un.

Keywords: inscribed polyomino, enumeration, rectangle, generating function, lattice tree, minimal area.

1 Introduction
S. Golomb introduced polyominos in 1952 [6]. Various families of polyomominos have been defined and
investigated since then (see [1], [2], [4], [5] and ref. therein). Algorithms have also been developed for
their enumeration (see [7]). But the problem of their enumeration in the general case remains unsolved.
In this work, we have developed formulas that, to our knowledge, are counting polyominos of a family
not described in the existing literature so we could not connect our work with it.

A polyomino, sometimes called an animal, is a set of unit square cells in the discrete plane N × N
connected by their edges up to translation. We are interested in the number p(n) of polyominos with
n cells where n is called the area of these polyominos. A polyomino is inscribed in a rectangle b × k
when it is included in the rectangle and each of the four edges of the rectangle is touched by a cell of the
polyomino. The minimum number of cells in a polyomino inscribed in a b × k rectangle has b + k − 1
cells and we will denote respectively by pmin(b, k) and pmin+1(b, k) the number of polyominos that are
inscribed in a b × k rectangle and have minimum area and minimum area plus one. A lattice tree is a
polyomino that contains no cycle and we will also be interested with lattice trees inscribed in a rectangle.
The main results of this work are the following.

†Work supported in part by NSERC

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Theorem 1 For integers b ≥ 2, k ≥ 2, the number pmin(b, k) of polyominos inscribed in a rectangle
b× k with minimal area n = b+ k − 1 is given by the fomula

pmin(b, k) = 2k + 2b− 3bk − 8 + 8

(
k + b− 2

b− 1

)

Corollary 1 For all integers n ≥ 1 the number pmin(n) of polyominos with n cells inscribed in a rect-
angle of perimeter 2(n+ 1) is given by the fomula

pmin(n) = 2n+2 − 1

2
(n3 − n2 + 10n+ 4)

The polyominos in the previous corollary can also be seen as animals occupying a rectangular region of
maximal perimeter with respect to their area.

Theorem 2 The two variables generating function for the number pmin(b, k) of polyominos of minimal
area inscribed in a rectangle b× k has the following rational form :

∑

b,k≥1
fmin(b, k)x

byk = 2

(
1 +

xy

(1− x)(1− y)

)2
xy

(1− x− y) −
(

xy

(1− x)2(1− y)2 −
xy2

(1− y)2 −
x2y

(1− x)2
)

Theorem 3 For all integers b, k ≥ 1, the number pmin+1(b, k) of polyominos inscribed in a rectangle
b× k that have minimum area plus one is

pmin+1(b, k) =





0 if b = 1 or k = 1
1 if b = k = 2

4b2 − 16b+ 18 if k = 2 and b > 2

8(b+ k − 22)
(
b+k−4
b−2

)
+ 8(2k2+2kb+b−13k+13)

(k−2)
(
b+k−4
b−1

)

+ 8(2b2+2kb+k−13b+13)
(b−2)

(
b+k−4
k−1

)
+ 48

(
b+k−2
b−1

)

− 4
3 (b

3 + k3)− 12(b2k + bk2) + 16(b2 + k2)
+72bk − 266

3 (b+ k) + 120 if b ≥ 3 and k ≥ 3

Corollary 2 For all integers n ≥ 5, the number pmin+1(n) of polyominos with n cells inscribed in a
rectangle of perimeter 2n is

pmin+1(n) = 2n−1(5n− 6)− 2

3
(4n4 − 44n3 + 215n2 − 451n+ 318)

A consequence of theorem 3 and corollary 2 is to obtain exact formulas for corresponding sets of lattice
trees inscribed in a rectangle.

It is clear that any general polyomino is always inscribed in a rectangle so that the set Po(n) of poly-
ominos with area n can be partitionned into classes given by the the dimensions b×k of the circonscribed
rectangles. Our approach in counting inscribed polyominos thus constitute a fair strategy to attack the
well known problem of counting the total number po(n) = card(Po(n)) of polyominos of area n.
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Notations. As a general rule we will use capital letters for sets and corresponding small letters for their
cardinalities. We will introduce specific notations as they are needed.

2 Proofs of the formulas
Proof of theorem 1. We begin with two geometric observations on inscribed polyominos with minimal
area. 1- All inscribed polyominos with minimal area are oriented along one of the two diagonals of
the b × k rectangle noting that polyominos with a cross shape (figure (1 d)) are the only polyominos
with minimal area that can be seen as oriented along both diagonals. 2- Minimal area polyominos all
have a structure in three parts: one hook, possibly reduced to a unique cell, on each end of the diagonal
connected on their corner by a stair polyomino in the direction of the diagonal as shown in figure 1 c).
A stair polyomino (figure (1 b)) along one diagonal, going say from north-west to south-east \ is a path
allowed only two directions for adjacent cells: east→ and south ↓.

b

k

d) Cross polyomino b) Stair polyomino a) Fundamental hook c) Generic polyomino
    with minimal area

Fig. 1: Inscribed minimal polyominos

The geometric triple-structure of polyominos with minimal area appearing in figure 1 c) can also be
given a biological interpretation. Animals with n cells that need to touch the edges of a rectangle of
maximal perimeter must have this geometric triple-structure and shape.

We have produced two proofs of theorem 1. Each proof consists in a case study of the set of polyominos
of minimal area. The first proof uses the triple-structure hook-stair-hook of minimal polyominos and the
second proof is a dynamic construction of the polyominos beginning with the fundamental hook (figure 1
a)) and moving the square cells horizontally or vertically to form a new inscribed polyomino. We present
here only the first proof.

Let Pmin,\(b, k) be the set of polyominos of minimal area inscribed in a rectangle b×k along the diago-
nal from north-west to south-east. Denote by pmin,\(b, k) the cardinality of Pmin,\(b, k). Let Pmin,/(b, k)
and pmin,/(b, k) be similarly defined for the other diagonal. Since there is clearly a bijection between the
two sets Pmin,\(b, k) and Pmin,/(b, k), we need only consider one of the diagonals of the rectangle. The
set P+(b, k) of Cross polyominos satisfies P+(b, k) = Pmin,\(b, k) ∩ Pmin,/(b, k), so that we have

pmin(b, k) = 2pmin,\(b, k)− p+(b, k) (1)

Let Pmin,(i,j)(b, k) be the set of polyominos in Pmin,\(b, k) having the corner cell of their upper left hook
in position (i, j) in matrix notation. Thus pmin,(1,1)(b, k) is the number of polyominos in Pmin,\(b, k)
that have a cell in the upper left corner of the rectangle b×k. Let us count these polyominos. First observe
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that the cell in position (1, 1) must be in one of three situations: a) it is connected to a cell on its right
with no cell below. b) it is connected to a cell below with no cell on the right. c) It has a cell on the right
and a cell below. In the first two cases, if we remove the cell (1, 1) we obtain polyominos with minimal
areas inscribed in a smaller rectangle. There is only one polyomino with minimal area in the third case.
Thus we obtain the recurrence

pmin,(1,1)(b, k) = pmin,(1,1)(b, k − 1) + pmin,(1,1)(b− 1, k) + 1 ∀ b, h ≥ 1 (2)

with the initial conditions pmin,(1,1)(b, 0) = pmin,(1,1)(0, k) = 0. There is also an exact expression for
pmin,(1,1)(b, k). The key observation is the well known fact that the number of stair polyominos inscribed
in a rectangle with cells in each corner of a diagonal is given by a binomial coefficient. Let Pstair(b, k) be
the set of stair polyominos in Pmin,\(b, k) with end cells in each end of the main diagonal of the rectangle
b× k. Then

pstair(b, k) =

(
b+ k − 2

b− 1

)
(3)

Polyominos inPmin,(1,1)(b, k) are in bijective correspondance with polyominos in (∪i<b,j<kPstair(i, j))∪
Pstair(b.k) so that using basic binomial identities we obtain

pmin,(1,1)(b, k) =
b−1∑

i=1

k−1∑

j=1

(
i+ j − 2

i− 1

)
+

(
b+ k − 2

b− 1

)
= 2

(
b+ k − 2

b− 1

)
− 1 (4)

Moreover it is also immediate that

pmin,(i,j)(b, k) = pmin,(1,1)(b− i+ 1, k − j + 1) (5)

so that by equation (4) we have

pmin,(i,j)(b, k) = 2

(
b+ k − i− j

b− i

)
− 1. (6)

Since p+(b, k) = bk and

pmin,\(b, k) = pmin,(1,1)(b, k) +
b∑

i=2

k∑

j=2

pmin,(i,j)(b, k), (7)

using (1) we obtain

pmin(b, k) = 2


pmin,(1,1)(b, k) +

b∑

i=2

k∑

j=2

pmin,(i,j)(b, k)


− bk, (8)

Now using (8) and (6) we obtain an exact expression for pmin(b, k):

pmin(b, k) = 2


2

(
b+ k − 2

b− 1

)
− 1 +

b∑

i=2

k∑

j=2

(
2

(
b+ k − i− j

b− i

)
− 1

)
− bk

= 8

(
b+ k − 2

b− 1

)
− 6− 2(b− 1)(k − 1)− bk ∀b, k ≥ 1. (9)

which proves theorem 1. �
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Proof of corollary 1. Polyominos with minimal area inscribed in a rectangle can also be seen as poly-
ominos that are maximally stretched. These polyominos occupy a rectangle of maximal perimeter 2n+2
when their area is n. If we sum maximally stretched polyominos over all rectangles of perimeter 2n+ 2,
we obtain the number pmin(n) of maximally stretched polyominos:

pmin(n) =
n∑

b=1

pmin(b, k) = 2 +
n−1∑

b=2

(
8

(
b+ k − 2

b− 1

)
− 6− 2(b− 1)(k − 1)− bk

)
(10)

= 2n+2 − 1

2
(n3 − n2 + 10n+ 4)

which proves corollary 1. Observe that we have computed separately the cases b = 1 and b = n in
equation (10) �

n 1 2 3 4 5 6 7 8 9 10
pmin(n) 1 2 6 18 51 134 328 758 1677 3594

Tab. 1: Numbers pmin(n) of maximally stretched polyominos of area n

Proof of theorem 2. We construct the rational form of the generating function
∑
b,k≥1 fmin,\(b, k)x

byk

from its triple-structure hook − stair − hook described before and the multiplication principle.
Since there is at most one hook in the upper left corner of the rectangle having its corner in position
(i, j) and because we choose not to count the corner cell, the generating function for hooks with corner in
position (i, j) is

1 +
∑

i,j≥2
xi−1yj−1 = 1 +

xy

(1− x)(1− y) (11)

Recall that the number of stairs from the upper left corner of a rectangle to the cell (i, j) is
(
i+j−2
i−1

)
so

that the generating function for stair polyominos is

∑

i,j≥1

(
i+ j − 2

i− 1

)
xiyj = xy

∑

i,j≥1

(
i+ j − 2

i− 1

)
xi−1yj−1 = xy

∑

k≥0
(x+ y)k

=
xy

1− x− y (12)

Now applying the multiplication principle and equations (11) and (12) we obtain

∑

b,k≥1
fmin,\(b, k)x

byk =

(
1 +

xy

(1− x)(1− y)

)2
xy

(1− x− y) (13)

Finally recalling equation 1 we deduce theorem 2 when we agree that the generating function for crosses
is
∑

b,k≥1
f+(b, k)x

byk =
∑

k≥1
xyk +

∑

b≥2
xby +

∑

b,k≥2
bkxbyk =

xy

(1− x)2(1− y)2 −
xy2

(1− y)2 −
x2y

(1− x)2
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Proof of theorem 3. The proof of theorem 3 is also a case study, with more cases though than in the
proof of theorem 1. We will need 2 × t bench polyominos that we define as polyominos of area t + 2
inscribed in a 2× t rectangle, t ≥ 2, with one full row, or column, of cells plus the two cells at each end of
the other row as shown in figure 2 a). We will use the following triple-structure description of polyominos

0 0

…
…

… …

00

…
………

t

t

t

t

0

0

0

0

0 0
,

a) b)

0 0

c)

,

Fig. 2: Bench polyominos

of area min+ 1 inscribed in a rectangle.

Facts. a) A polyomino of area min+ 1 inscribed in a rectangle contains exactly one bench polyomino
in one of the four possibles positions of figure 2 a). b) Moreover there is exactly two ways to complete a
fixed bench into a polyomino of areamin+1 along one diagonal of the b×k rectangle. First, a polyomino
of minimal area is attached to a corner of the bench (figure 2 b)) and if it is a hook, it may have its corner
cell on any cell of the 2 × t circonscribed rectangle (figure 2 c)), provided the connectivity condition is
satisfied. Second, a polyomino of minimal area is attached on the opposite corner and if it is a hook, it
may have its corner on any cell of the 2× t circonscribed rectangle up to connectivity.
c) Starting on the north-west corner and moving clockwise, let c1, c2, c3 and c4 be the four corner cells
of a bench polyomino B included in a b × k rectangle. Let f1, f2, f3, f4 be the number of polyominos
inscribed in the respective rectangles determined by the diagonals from the northwest corner of the b× k
rectangle to the northwest corner c1 ∈ B and so on for the other three rectangles as in figure 3.

0 0
c4 c3
c1 c2

f3

f2

f4

f1

Fig. 3: A polyomino of area min+ 1 constructed from a bench polyomino

The number p(B) of polyominos of area min+1 inscribed in a b× k rectangle and containing the bench
polyomino B is given by the formula

p(B) = f1 · f3 + f2 · f4 − 8t (14)

Case 1. The bench is in a corner. Let us start by considering the case where a bench is in one corner
of the rectangle.
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Proposition 1 For integers t ≥ 2 let pt,1(b, k), resp. pt,2(b, k), be the number of polyominos inPmin+1(b, k)
containing a 2× t bench in the northwest corner of the rectangle with the seating part (figure 4 a), resp.
the leg part (figure 4 b), upward. Then we have

pt,1(b, k) = 2

(
b+ k − t− 2

b− 2

)
+ 2 (15)

pt,2(b, k) = 2

(
b+ k − t− 2

b− 2

)
+ 2(t− 1) (16)

Proof: We have to observe that once a bench is placed in a corner of the rectangle, we may complete it
into a polyomino of area min + 1 either by adding a polyomino of minimal area inscribed in the sub-
rectangle with corners given by the southeast corner of the bench and the southeast corner of the rectangle
or by adding a hook as shown in figure 4. In the case where the legs of the bench are upwards, the corner
of the hook, sometimes absent, is any of the 2t cells of the rectangle containing the bench. In the case
where the legs of the bench are downwards, there are 4 possible hooks, one of which is already counted.
Formulas (15) and (16) then follow from equation (4). 2

0 0

min+1
= hooks+

t

…
… 0 0

min

t

…
…

(2t-1)
0 0

min+1

= hooks,+

t

…
…

0 0

min

t

…
…

3

a) b)

Fig. 4: Case 1. A bench in a corner

Corollary 3 For integers b, k ≥ 3, the number g1(b, k) of polyominos of area min + 1 inscribed in a
b× k rectangle with a bench polyomino 2× t in any corner of the rectangle is given by the formula

g1(b, k) = (4
k−1∑

t=3

pt,1(b, k) + 4) + (4
k−1∑

t=3

pt,2(b, k) + 2k) (17)

+(4
b−1∑

t=3

pt,1(k, b) + 4) + (4
b−1∑

t=3

pt,2(k, b) + 2b),

= 16

((
b+ k − 4

b− 1

)
+

(
b+ k − 4

k − 1

))
+ 2k(2k − 1) + 2b(2b− 1)− 72 (18)

Proof: This is a consequence of proposition 1 and of a careful study of the particular cases involved. In
each corner of the rectangle there are up to four benches to consider; the sums in formula (17) cannot be
taken up to t = k because there are less cases to consider. Also symmetry in b, k have been integrated to
shorten the expressions. 2
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min+1

t

0 0
…
…

0 0

min+1

t

…
…

0 0

t

…
…

j j

i

a) b) c)

Fig. 5: The three dispositions of a horizontal bench along one side

Case 2. The bench touches one side of the rectangle and is not in a corner. There are three ways to
put a horizontal bench on one side of a b× k rectangle as shown in figure 5.

Proposition 2 Let g2−horiz(b, k) be the number of polyominos of area min + 1 inscribed in a b × k
rectangle with a horizontal bench polyomino of length t ≥ 3 along one of the sides without being in a
corner of the b× k rectangle. We have

g2−horiz(b, k) = 2



k−2∑

t=3

k−t∑

j=2

2pt,1(b, k − j + 1) + 2pt,1(b, j + t− 1)− 8


+

2



k−2∑

t=3

k−t∑

j=2

2pt,2(b, k − j + 1) + 2pt,2(b, j + t− 1)− 4t


+

4

[
k−1∑

t=3

b−2∑

i=2

tpt,1(b− i+ 1, k) + 2pt,2(i+ 1, k)− 4t

]
+ 4k(b− 3)

= 8

[
−2k + 6 + 2

(
b+ k − 4

b

)]
+ 2

[
8

(
b+ k − 4

b

)
+

2

3
(k − 3)(k2 − 6k − 4)

]

+2

[
2(5b+ k − 7)

(k − 2)

(
b+ k − 4

b− 1

)
− 7bk + 2b+ bk2 − 4k2 + 14k + 2

]
+ 4k(b− 3)

Proof: Omitted. 2

Corollary 4 Let g2(b, k) be the number of polyominos inscribed in a b × k rectangle and area min + 1
containing a bench polyomino 2 × t, t ≥ 3 touching one of the sides without being in a corner of the
b× k rectangle. We have

g2(b, k) = g2−horiz(b, k) + g2−horiz(k, b)

= 32

((
b+ k − 4

b

)
+

(
b+ k − 4

k

))
+

8

(
(5k + b− 7)

(b− 2)

(
b+ k − 4

k − 1

)
+

(5b+ k − 7)

(k − 2)

(
b+ k − 4

b− 1

))
+

4

3
(b3 + k3)− 28(k2 + b2)− 48bk +

164

3
(b+ k) + 4(bk2 + b2k) + 144
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Proof: The first equality partitions polyominos into polyominos containing horizontal and vertical benches
and the second equality is obtained from proposition 2. 2

Case 3. The bench touches no side of the rectangle. Let g3−horiz(b, k) and g3−vert(b, k) be the
number of polyominos inscribed in a b×k rectangle and areamin+1 containing a 2× t, t ≥ 3 horizontal
and vertical bench polyomino respectively that touches no side of the rectangle.

Proposition 3 We have

g3−horiz(b, k) = 2
k−2∑

t=3

b−2∑

i=2

k−t∑

j=2

pt,1(i+ 1, k − j + 1)pt,2(b− i+ 1, j + t− 1) +

pt,1(i+ 1, j + t− 1)pt,2(b− i+ 1, k − j + 1)− 8t

= 2
k−2∑

t=3

b−2∑

i=2

k−t∑

j=2

(2

(
i+ k − j − t

i− 1

)
+ 2)(2

(
b+ j − i− 2

j − 1

)
+ 2(t− 1)) +

2
k−2∑

t=3

b−2∑

i=2

k−t∑

j=2

(2

(
i+ j − 2

i− 1

)
+ 2)(2

(
b+ k − j − i− t

b− i− 1

)
+ 2(t− 1)− 8t

= 64 kb− 352

3
k − 8

3
k3 + 40k2 − 32(b− 1)− 16k2b+ 16 (k − 4)

(
b+ k − 4

b− 2

)
+

16b
(
k2 − 5 k + 8

)

(b+ k − 3)

(
b+ k − 3

k − 2

)
− 32

(
b+ k − 4

k − 4

)

Proof: As before, we surround the bench with rectangles that reduce our enumeration to case 1 using
inclusion-exclusion for two sets. The four surrounding rectangles are arranged in pairs that allow the
completion of polyominos along one of the diagonals of the rectangle as shown in figure 6. This gives
the first equality of proposition 3. Then we use equations (15) and (16) to obtain the second binomial
expression which we reduce to the third expression using standard binomial identities. 2

min+1

t

0 0
…
…

j

i

t

0 0
…
…

j

i

b-i+1

j+t-1

k-j+1

i+1

min+1

b-i+1

i+1

k-j+1

j+t-1

Fig. 6: Decompositions of a polyomino with an inner horizontal bench

Now to complete our count for polyominos in case 3, observe that g3−vert(b, k) = g3−horiz(k, b).
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Corollary 5 The number g3(b, k) of polyominos inscribed in a rectangle b×k of areamin+1 containing
a bench polyomino of length t ≥ 3 touching no side of the rectangle is given by

g3(b, k) = g3−horiz(b, k) + g3−horiz(k, b)

=
8

3

[
24− 6(b2k + bk2) + 48bk − 56(b+ k) + 15(b2 + k2)− (b3 + k3)

−12
((

b+ k − 4

b

)
+

(
b+ k − 4

k

))
+ 6(b+ k − 6)

((
b+ k − 4

b− 1

)
+

(
b+ k − 4

k − 1

))

−60
(
b+ k − 4

b− 2

)
+ 18

(
b+ k − 2

b− 1

)]

Proof: This is immediate from proposition 3. 2

One ingredient is missing to obtain a formula for the number fmin+1(b, k). We have to analyse sep-
arately the case where the bench has format 2 × 2 because it contains more symmetries than the other
benches and the formulas are not special cases of the formulas for 2× t benches.

Case 4. 2× 2 benches. The cases are similar to the cases for 2× t benches with t ≥ 3.

Proposition 4 a) The number p2×2−corner(b, k) of polyominos inscribed in a b×k rectangle and of area
min+ 1 containing a 2× 2 bench in the upper left corner satisfies the formulas

p2×2−corner(b, k) = pmin,(1,1)(b− 1, k − 1) + 3

=

(
2

(
b+ k − 4

b− 2

)
− 1

)
+ 3 (19)

b) The number p2×2−side(b, k) of polyominos inscribed in a b× k rectangle of area min+ 1 containing
a 2× 2 bench along one side and not in a corner of the rectangle satisfies the formula

p2×2−side(b, k) =





4(b− 3) if k = 2 and b ≥ 3
4(k − 3) if b = 2 and k ≥ 3

16
[(
b+k−4
k−1

)
+
(
b+k−4
b−1

)
− 2
]

if k ≥ 3 and b ≥ 3
(20)

c) For integers b ≥ 3 and k ≥ 3, the number p2×2−center(b, k) of polyominos inscribed in a rectangle
b × k, of area min + 1 and containing a 2 × 2 bench polyomino that touches no side of the rectangle is
given by

p2×2−center(b, k) = 8

[(
b+ k − 4

b− 3

)
(k − 3) +

(
b+ k − 4

k − 3

)
(b− 3) +

(
b+ k − 4

b− 2

)
+ b+ k − bk + 1

]

(21)

Proof: The proof is similar to the proof for benches of length t ≥ 3 and we will not repeat the arguments.
2
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Corollary 6 For all positive integers b, k, the number p2×2(b, k) of polyominos inscribed in a rectangle
with area min+ 1 and containing a 2× 2 bench is given by the formula

p2×2(b, k) =





0 if k = 1 or b = 1
1 if k = 2 and b = 2

4(b+ k − 4) if (k = 2 and b > 2) or (k > 2 and b > 2)

8
[(
b+k−4
b−2

)
+ 2
(
b+k−4
b−1

)
+ 2
(
b+k−4
k−1

)
− 3
]

if (k = 3 and b ≥ 3) or (k ≥ 3 and b = 3)

8
[((

b+k−4
b−2

)
+ 1
)
(b+ k − 2)− bk

]
if k ≥ 4 and b ≥ 4

Proof: The first three cases are immediate and the last two cases are consequences of proposition 4. 2

We are now ready to complete the proof of theorem 3 which is an immediate consequence of the identity

pmin+1(b, k) = g1(b, k) + g2(b, k) + g3(b, k) + p2×2(b, k)

and of corollaries 3, 4, 5 and 6.

Proof of corollary 2. This is a consequence of theorem 3 and the identity

pmin+1(n) =
n−2∑

b=2

pmin+1(b, n− b)

n 4 5 6 7 8 9 10 11 12 13
pmin+1(n) 1 12 80 384 1468 4756 13656 35982 88740 209420

Tab. 2: Number pmin+1(n) of polyominos of area n inscribed in a rectangle of perimeter 2n

3 Applications
We observe two consequences of the formulas developped in the previous section. First, it is possible to
count the number `min+1(b, k) of lattice animals inscribed in a b×k rectangle with area min+1 because

`min+1(b, k) = pmin+1(b, k)− p2×2(b, k). (22)

Proposition 5 For positive integers b, k, the number `min+1(b, k) of lattice trees inscribed in a rectangle
b× k and of area min+ 1 is given by the formula

`min+1(b, k) =





0 if k ≤ 2 and b ≤ 2
4b2 − 20b+ 26 if (k = 2 and b > 2)

or (k > 2 and b > 2)

8(b+ k − 23)
(
b+k−4
b−2

)
+ 8(2k2+2kb+b−15k+17)

k−2

(
b+k−4
b−1

)

+ 8(2b2+2kb+k−15b+17)
b−2

(
b+k−4
k−1

)
+ 48

(
b+k−2
b−1

)
− 4

3
(b3 + k3) if (k = 3 and b ≥ 3)

−12(b2k + bk2) + 16(b2 + k2) + 72bk − 266
3
(b+ k) + 144, or (k ≥ 3 and b = 3)

−160
(
b+k−4
b−2

)
+ 8(2k2+2kb+b−13k+13)

k−2

(
b+k−4
b−1

)
+ 136

+ 8(2b2+2kb+k−13b+13)
b−2

(
b+k−4
k−1

)
+ 48

(
b+k−2
b−1

)
+ 80bk

− 4
3
(b3 + k3)− 12(b2k + bk2) + 16(b2 + k2)− 290

3
(b+ k), if k ≥ 4 and b ≥ 4
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Proof: This is an immediate consequence of equation (22), theorem 3 and corollary 6. 2

Corollary 7 For all integers n ≥ 5 the number `min+1(n) of lattice trees of area n inscribed in a rect-
angle of perimeter 2n is given by the formula

`min+1(n) = 2n+1(n− 1)− 2

3
(4n4 − 46n3 + 227n2 − 473n+ 318) (23)

Proof: This is a consequence of proposition 5 and the equation

`min+1(n) =
n−2∑

b=2

`min+1(b, n− b)

2

n 4 5 6 7 8 9 10 11 12 13
`min+1(n) 0 4 40 232 988 3420 10240 27680 69588 166132

Tab. 3: Number `min+1(n) of lattice trees of area n inscribed in a rectangle of perimeter 2n

Remark. All the formulas described in this paper have been verified numerically with independent
computer programs that can construct and count the relevant polyominos.
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Abstract. We study equations in groups G with unique m-th roots for each positive integer m. A word equation in
two letters is an expression of the form w(X,A) = B, where w is a finite word in the alphabet {X,A}. We think
of A,B ∈ G as fixed coefficients, and X ∈ G as the unknown. Certain word equations, such as XAXAX = B,
have solutions in terms of radicals: X = A−1/2(A1/2BA1/2)1/3A−1/2, while others such as X2AX = B do not.
We obtain the first known infinite families of word equations not solvable by radicals, and conjecture a complete
classification. To a word w we associate a polynomial Pw ∈ Z[x, y] in two commuting variables, which factors
whenever w is a composition of smaller words. We prove that if Pw(x

2, y2) has an absolutely irreducible factor in
Z[x, y], then the equation w(X,A) = B is not solvable in terms of radicals.

Résumé. Nous étudions des équations dans les groupes G avec les m-th racines uniques pour chaque nombre en-
tier positif m. Une équation de mot dans deux lettres est une expression de la forme w(X,A) = B, où w est
un mot fini dans l’alphabet {X,A}. Nous pensons A,B ∈ G en tant que coefficients fixes, et X ∈ G en tant
que inconnu. Certaines équations de mot, telles que XAXAX = B, ont des solutions en termes de radicaux:
X = A−1/2(A1/2BA1/2)1/3A−1/2, alors que d’autres tel que X2AX = B ne font pas. Nous obtenons les
familles infinies d’abord connues des équations de mot non solubles par des radicaux, et conjecturons une classifi-
cation complété. Á un mot w nous associons un polynôme Pw ∈ Z[x, y] dans deux variables de permutation, qui
factorise toutes les fois que w est une composition de plus petits mots. Nous montrons que si Pw(x

2, y2) a un facteur
absolument irréductible dans Z[x, y], alors l’équation w(X,A) = B n’est pas soluble en termes de radicaux.

Keywords: absolutely irreducible, polynomials over finite fields, solutions in radicals, uniquely divisible group, word
equation

1 Introduction
A group G is called uniquely divisible if for every B ∈ G and each positive integer m, there exists a
unique X ∈ G such that Xm = B. We denote the unique such X by B1/m, and its inverse by B−1/m. In
the literature, such groups are also referred to as Q-groups. Note that if it is not the trivial group, then G
must be torsion-free, hence infinite. Examples of uniquely divisible groups include the group of positive
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units of a real closed field, unipotent matrix groups, noncommutative power series with unit constant term,
and the group of characters of a connected Hopf algebra over a field of characteristic zero [1].

Inspired by trace conjectures in matrix analysis (see section 2), we study here the natural question
of which equations in a uniquely divisible group have solutions in terms of radicals. As a motivating
example, consider the Riccati equation XAX = B with A,B ∈ G given and X ∈ G unknown. This
equation has a unique solution X in any uniquely divisible group; moreover, its solution may be written
explicitly (albeit in two distinct ways) as

X = A−1/2(A1/2BA1/2)1/2A−1/2 = B1/2(B−1/2A−1B−1/2)1/2B1/2. (1)

More generally, let w(X,A) be a finite word in the two-letter alphabet {X,A}. An expression of the
form

w(X,A) = B (2)

is called a word equation. We are interested in classifying those word equations that have a solution in
every uniquely divisible group. Clearly, the more general situation in which positive rational exponents
on X , A, and B are allowed reduces to this one.

The main tool in our analysis is a new combinatorial object Pw ∈ Z[x, y], called the word polynomial.
If w = Aa0XAa1X · · ·Aan−1XAan , we define

Pw(x, y) := ya0 + xya0+a1 + x2ya0+a1+a2 + · · ·+ xn−1ya0+···+an−1 . (3)

For a prime p, let (Z/pZ)∗ denote the set of nonzero elements of the finite field Fp = Z/pZ.

Theorem 1.1 There exists a uniquely divisible group G with the following property: For all finite words
w in the alphabet {X,A}, if the equation Pw(x2, y2) = 0 has a solution (xp, yp) ∈ (Z/pZ)∗ × (Z/pZ)∗

for all but finitely many primes p, then there exist elements A,B,B′ ∈ G for which the word equation
w(X,A) = B has no solution X ∈ G, and the word equation w(X,A) = B′ has at least two solutions
X ∈ G.

We prove this theorem in section 6. The groupG is constructed from an infinite collection of pq-groups
whose orders are chosen using Dirichlet’s theorem on primes in arithmetic progressions.

Despite appearances, Theorem 1.1 yields a computationally efficient sufficient condition for the equa-
tion w(X,A) = B to have no solution in G (see Corollary 1.7). To put Theorem 1.1 in context, we next
discuss a family of word equations which do have solutions in every uniquely divisible group, along with
a conjectured complete classification of such words.

In this paper, “word” will always mean a finite word over the alphabet {X,A} (unless another alphabet
is specified). The word w is called universal if (2) has a solution X ∈ G for every uniquely divisible
group G and each two elements A,B ∈ G; if this solution is always unique, then we say that w is
uniquely universal. A related class of words is those for which (2) has a solution “in terms of radicals.”
This notion is defined carefully in section 3. Our explorations give evidence for the surprising conjecture
that all three of these classes are in fact the same, and can be characterized as follows.

Definition 1.2 A word w in the alphabet {X,A} is totally decomposable if it is the image of the letter X
under a composition of maps of the form

• πm,k : w 7→ (wAk)mw, for m ≥ 1, k ≥ 0
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• r : w 7→ wA

• l : w 7→ Aw.

For example, the word w = XAX2AXAXAX2AX is totally decomposable, as witnessed by the
composition w = π1,1 ◦ π1,0 ◦ π1,1(X). According to the following lemma, any totally decomposable
word is uniquely universal.

Lemma 1.3 Let G be a uniquely divisible group, and let w be a totally decomposable word. For any
A,B ∈ G, the equation w(X,A) = B has a unique solution X ∈ G, and this solution can be expressed
in terms of radicals.

We conjecture the converse: totally decomposable words are the only universal words.

Conjecture 1.4 Let w be a finite word in the alphabet {X,A}. The following are equivalent.

1. w is totally decomposable.

2. w is uniquely universal.

3. w is universal.

4. w(X,A) = B has a solution in terms of radicals. (see Definition 3.4)

The implications (1) ⇒ (2) ⇒ (3) and (3) ⇔ (4) are straightforward (see section 3). The remaining
implication (4)⇒ (1) is the difficult one. Theorem 1.1 arose out of our attempts to prove this implication.
It reduces the noncommutative question about word equations to a commutative question about solutions
to polynomial equations mod p. More concretely, we use Theorem 1.1 to prove that several infinite
families of word equations are not solvable in terms of radicals (Corollary 1.8). To our knowledge, these
are the first such infinite families known.

Together with Theorem 1.1, the following would imply Conjecture 1.4.

Conjecture 1.5 If w is a word that is not totally decomposable, then the equation Pw(x2, y2) = 0 has a
solution (xp, yp) ∈ (Z/pZ)∗ × (Z/pZ)∗ for all but finitely many primes p.

The questions outlined above (e.g., asking whether a particular word w is universal, or uniquely univer-
sal, or solvable in terms of radicals) are examples of decidability questions in first-order theories of groups.
Determining whether a set of equations has a solution in a group is known as the Diophantine problem.
More generally, given a set of axioms for a class of groups, one would like to provide an algorithm which
decides the truth or falsehood of any given sentence in the theory. That such an algorithm exists for free
groups follows from pioneering work of Kharlampovich and Myasnikov [16] (see also the independent
work of Sela [27]), but it is still open whether one exists for free uniquely divisible groups FQ. The
Diophantine problem for FQ does admit such an algorithm [15] although the time complexity of the al-
gorithm described there is likely at least doubly exponential (the proof uses the decidability of Presburger
arithmetic). In contrast, Conjecture 1.4 says that the Diophantine problem of a single equation in one
variable reduces to an easily verifiable combinatorial condition (total decomposability).
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Example 1 Consider the word w = X2AX , which is not totally decomposable; we use Theorem 1.1 to
show that w is not universal. Its word polynomial is Pw(x, y) = 1 + x + x2y. We need to verify that
the equation 1 + x2 + (x2y)2 = 0 has a nonzero solution modulo p, for all sufficiently large primes p.
A standard pigeonhole argument shows that for all primes p, there exist a, b ∈ Z with a 6= 0 such that
1 + a2 + b2 ≡ 0 (mod p). If b = 0 and p ≥ 5, then 1 + (−1 + 4−1)2 + (a+ a4−1)2 ≡ 0 (mod p) so that
we may assume both a, b nonzero. Setting x = a and y = ba−2 gives us our solution.

The word polynomial for the totally decomposable word v = XAXAX , on the other hand, isPv(x, y) =
1 + xy + x2y2. Let p be a prime greater than 3. If x, y ∈ (Z/pZ)∗ satisfy Pv(x2, y2) = 0, then setting
z = x2y2 we have z3 = 1 and z 6= 1, which forces p ≡ 1 (mod 3). 2

Recall that a polynomial over a field K is absolutely irreducible if it remains irreducible over every
algebraic extension of K. The next result shows that to verify Conjecture 1.5 for a particular word w, it
suffices to prove that a factor of Pw(x2, y2) is absolutely irreducible.

Proposition 1.6 Suppose F ∈ Z[x, y] satisfies F (0, 0) 6= 0, and F has a factor f ∈ Z[x, y] which is
irreducible over C[x, y]. Then the equation F (x, y) = 0 has a solution (xp, yp) ∈ (Z/pZ)∗ × (Z/pZ)∗

for all but finitely many primes p.

Corollary 1.7 If w is a word in the alphabet {X,A} beginning with X , and if Pw(x2, y2) has a factor
f ∈ Z[x, y] such that f is irreducible in C[x, y], then w is not universal.

Example 2 We show the usefulness of Corollary 1.7 by revisiting Example 1. The word w = X2AX
has Pw(x2, y2) = 1 + x2 + x4y2, which is irreducible over C (since 1 + x2 is not a square in C(x)).
It follows that X2AX is not universal. In contrast, the totally decomposable word v = XAXAX has
Pv(x

2, y2) = 1 + x2y2 + x4y4 = (1 + xy + x2y2)(1 − xy + x2y2). Each factor on the right side is
irreducible over Z but factors over C. 2

In Section 7, we use Corollary 1.7 to verify Conjecture 1.5 for the following infinite families of words.

Corollary 1.8 The following families of words do not have their equations solvable in terms of radicals:

XnAXm, m, n ≥ 1, m 6= n; XAm+2nXAm+nXAmX, m ≥ 0, n ≥ 1;

XAXnAX, n ≥ 3; X2(AX)nX, n ≥ 2.

Using Corollary 1.7 and the symbolic computation software Maple, we have also verified Conjec-
ture 1.4 for all words of length at most 10. The most difficult part of the computation is to check whether
a given bivariate polynomial over Z is irreducible over C. This can be done in polynomial-time using the
algorithm of Gao [8] (and is implemented in Maple).

We do not know if the condition in Corollary 1.7 is sufficient to prove Conjecture 1.4.

Question 1.9 If the wordw is not totally decomposable and begins withX , must Pw(x2, y2) have a factor
in Z[x, y] which is irreducible over C[x, y]?

The remainder of the paper is organized as follows. In section 2, we give additional motivation arising
from the BMV trace conjecture in quantum statistical mechanics. In section 3, we review the basic prop-
erties of uniquely divisible groups and construct a free uniquely divisible group on two free generators.
This construction allows us to define the notion of solvability in terms of radicals, but it is not needed
for the proof of Theorem 1.1. Section 4 describes some important examples of uniquely divisible groups.
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Most of the standard examples have the property that every word equation with nonnegative exponents
has a unique solution; the need to construct more exotic groups is part of what makes Conjecture 1.4 so
difficult. Section 5 discusses properties of the word polynomial Pw, and section 6 is devoted to the proof
of Theorem 1.1. These two sections form the heart of the paper. Finally, Section 7 contains the proof of
Corollary 1.8.

2 Background and Motivation
The Lieb-Seiringer formulation [23] of the long-standing Bessis-Moussa-Villani (BMV) trace conjecture
[5, 21, 26, 11, 9, 19, 18, 17, 7] in statistical physics says that the trace of Sm,k(A,B), the sum of all words
of length m in A and B with k Bs, is nonnegative for all n × n positive semidefinite matrices A and B.
In the case of 2× 2 matrices, more is true: every word in two positive semidefinite letters has nonnegative
trace (in fact, nonnegative eigenvalues). It was unknown whether such a fact held in general until [14]
appeared where it was found (with the help of Shaun Fallat) that the word w = BABAAB has negative
trace with the positive definite matrices

A1 =




1 20 210
20 402 4240
210 4240 44903


 and B1 =



36501 −3820 190
−3820 401 −20
190 −20 1


 .

Finding such examples is surprisingly difficult, and randomly generating millions of matrices (from
the Wishart distribution) fails to produce them. Nonetheless, it is believed that most words can have
negative trace, and it was conjectured [14] that if a word has positive trace for every pair of real positive
definite A and B, then it is a palindrome or a product of two palindromes (the converse is well-known).
If we replace the words “positive trace” in the previous sentence with “positive eigenvalues,” we obtain
a weaker conjecture which was also studied in [14]. Further evidence for this conjecture can be found in
[12], where it was proved that a generic word has positive definite complex Hermitian matrices A and B
giving it a nonpositive eigenvalue.

Positive definite matrices which give a word a negative trace are also potential counterexamples to the
BMV conjecture, and it is useful to be able to generate these matrices (see [10, §4.1] and [2, §11] for two
such examples). As remarked above, this is difficult since random sampling does not seem to work. This
discussion explains some of the subtlety of the BMV conjecture: most words occurring in Sm,k(A,B)
likely can be made to have negative trace; however, a particular word has a small proportion of matrices
which witness this.

Although the set of n × n positive definite matrices is not a group for n > 1, every positive definite
matrix has a unique positive definite m-th root for any m. More remarkably, it turns out [13, 2] that every
word equation w(X,A) = B with w palindromic (and containing at least one X) has a positive definite
solution X for each pair of positive definite A and B (although this solution can be non-unique [2]).
Using A1 and B1, it follows that any word of the form wAwAAw with w = w(B,A) palindromic (and
containing at least one B) can have negative trace. This gives an infinite family verifying the conjecture
of [14], and moreover, provides an infinite number of potential counterexamples to the BMV conjecture.
The existence proof in [13] uses fixed point methods, although for special cases (e.g. when w contains
four or less Xs), one may express solutions X explicitly (and computationally efficiently) in terms of
A,B and fractional powers [2, §5]. Computing solutions without using these formal representations “in
terms of radicals” is difficult [2, Remark 11.3], and it is believed that most equations do not have solutions
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expressable in this manner. For instance, there is no known expression for the solution toXAX3AX = B
although there is always a unique positive definite solution [20].

3 Radical words and the free uniquely divisible group
In this section we review some basic properties of uniquely divisible groups, and construct the free
uniquely divisible group on two generators. This construction allows us to define precisely the notion
of “solvability in terms of radicals” (but we emphasize that the proof of Theorem 1.1 does not rely on this
construction). The following lemma shows that rational powers of group elements are well-defined and
behave as expected.

Lemma 3.1 LetG be a uniquely divisible group and a ∈ G. Define an/m := (an)1/m for n ∈ Z and 0 6=
m ∈ N, and define a0 := 1. Then if p, q ∈ Q, we have (ap)q = (aq)p = apq and apaq = aqap = ap+q .

A detailed study of uniquely divisible groups can be found in the thesis of Baumslag [3] where they are
called divisible R-groups. See also [22] for a study of the metabelian case. As remarked in [3], one of the
difficulties is that there is no clear normal form for uniquely divisible group elements (for example, see
(1) from the introduction). There is, however, the notion of a free uniquely divisible group which comes
out of Birkhoff’s theory of “varieties of algebras” [6]. Since the construction is simple, we briefly outline
the main ideas here. Our perspective is model-theoretic (see [25] for background) although we will use
only basic notions from that subject.

Let T be the first-order theory of uniquely divisible groups. The underlying language and axioms of
this theory are those of groups, with an additional (countably infinite) set of axioms expressing that every
element has a unique m-th root for each positive integer m. Consider the smallest set S of finite, formal
expressions containing letters {A,B}, exponents of the form n/m (n ∈ Z, 0 6= m ∈ N), and balanced
parentheses that is closed under taking concatenations and powers (and contains the empty expression).
For example, S contains the two rightmost expressions in (1).

If G is a uniquely divisible group and a, b ∈ G, then an expression e = e(A,B) ∈ S defines unam-
biguously (by Lemma 3.1) an element e(a, b) ∈ G by replacing letters {A,B} with corresponding group
elements {a, b} and then evaluating the result in G. When two expressions e, f ∈ S evaluate to the same
group element for each pair a, b ∈ G in every uniquely divisible group G, we write e ∼ f . For instance,
the two rightmost expressions in (1) are equivalent in this way. Although we will not need it here, Gödel’s
completeness theorem (along with soundness) implies that e ∼ f if and only if there is a (finite) formal
proof from the axioms of T that they are equal.

Note that∼ is an equivalence relation on S, and we write [e] for the equivalence class containing e ∈ S.

Definition 3.2 The set F := {[e] : e ∈ S} with multiplication [e] · [f ] = [ef ] is called the free uniquely
divisible group on letters L = {A,B}.

The definition extends in the obvious way to define the free uniquely divisible group on any set L, but
(except for a remark at the very end of the paper) we shall only use the case of two generators.

The main facts about F that we will need are summarized in the following lemma. We remark that any
homomorphism ψ : F → G between uniquely divisible groups is easily seen to satisfy ψ(aq) = ψ(a)q

for all a ∈ F and q ∈ Q.

Lemma 3.3 F is a uniquely divisible group. Moreover, F satisfies a universal property with respect to
the map θ : L→ F sending A 7→ [A] and B 7→ [B]: Given any uniquely divisible group G and any map
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φ : L → G, there exists a unique homomorphism (of uniquely divisible groups) ψ : F → G such that
ψ ◦ θ = φ.

This discussion allows us to formally define the concept of solution in terms of radicals mentioned in
the introduction (specifically, in the statement of Conjecture 1.4).

Definition 3.4 A word w is called radical (and has equation w(X,A) = B solvable in terms of radicals)
if the equation w(X, [A]) = [B] has a solution X ∈ F .

We now connect this definition with the idea of word equations having solutions in radicals. Let G be
a uniquely divisible group. A subgroup R ⊆ G is radical if xm ∈ R implies x ∈ R for all x ∈ G and all
positive integers m. Given a subset H of G, recursively define sets Rn for n ≥ 0 by setting R0 = H and

Rn+1 = {(xy)q : x, y ∈ Rn, q ∈ Q}.

We call the unionR(H) :=
⋃
n∈NRn the radical subgroup of G generated by H . One easily checks that

R(H) is a radical subgroup of G and that it is the intersection of all radical subgroups containing H .
For a uniquely divisible group G and a, b ∈ G, the subgroupR({a, b}) can be thought of as the radical

expressions generated by a and b. Given a specific instance of the word equation w(x, a) = b, any
solution x ∈ R({a, b}) can be viewed as one “in terms of radicals.” Of course, whether a particular word
equation in a group has a solution in terms of radicals in this sense depends on the group (and the elements
a, b ∈ G). However, as the next lemma shows, a radical word always has such a solution. Note that this
verifies the implication (4)⇒ (3) in Conjecture 1.4.

Lemma 3.5 Let w be a radical word, and let G be a uniquely divisible group. For any a, b ∈ G, the
equation w(x, a) = b has a solution x which lies in the radical subgroupR({a, b}) ⊆ G.

The proof of Lemma 1.3 shows that (1)⇒ (2) in Conjecture 1.4. As the implications (2)⇒ (3)⇒ (4)
are trivial, the sole unproved implication is (4)⇒ (1).

4 Examples of Uniquely Divisible Groups
In addition to the free uniquely divisible group encountered in the previous section, there are many in-
teresting examples of uniquely divisible groups. We discuss several of them here, although this list is far
from exhaustive.

Recall that a real closed field is an ordered field K whose positive elements are squares and such that
any polynomial of odd degree with coeffients inK has a zero inK. It follows from the definition that each
positive element of a real closed field has a positive m-th root for every positive integer m. Moreover,
since the field is ordered, this positive root is unique. The group of positive elements of a real closed field
is therefore uniquely divisible.

The rest of our examples are noncommutative. The free group F2 on the alphabet {A,B} may be
embedded via the Magnus homomorphism φM [24] into the algebra Q〈〈a, b〉〉 of noncommutative power
series via A 7→ 1 + a and B 7→ 1 + b. The image of this map is a subgroup of the group D of noncom-
mutative power series with constant term 1. Using the binomial series, it can be shown that D is uniquely
divisible (see also Proposition 4.1 below for another proof). In particular, F2 is a subgroup of a uniquely
divisible group.

Our next result shows that every word equation with coefficients in D has a unique solution in that set.
However, this solution might not be in the radical subgroupR(φM (F2)) generated by φM (F2).
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Proposition 4.1 For any A1, . . . , Am, B ∈ D, the equation
∏m
i=1 (AiX) = B has a unique solution

X ∈ D.

Let ψ : F → D be the homomorphism of uniquely divisible groups with ψ([A]) = 1 + a and
ψ([B]) = 1 + b given by Lemma 3.3. Surprisingly, while the Magnus homomorphism φM : F2 → D
is an embedding of groups, it is a very old open question whether ψ is also an embedding. As far as we
know, Baumslag has the best result on this problem [4], giving injectivity when ψ is restricted to certain
one-relator subgroups of F .

Our next example is a matrix group. Let K be a field of characteristic 0 and let UTn be the group of
n× n unipotent matrices over K. These are the upper triangular matrices with coefficients in K with 1’s
along the diagonal.

Proposition 4.2 For any A1, . . . , Am, B ∈ UTn, the equation
∏m
i=1 (AiX) = B has a unique solution

X ∈ UTn. (In particular, UTn is a uniquely divisible group.)

5 The word polynomial
Given a finite word w over the alphabet {X,A}, write w = Aa0XAa1X · · ·Aan−1XAan for nonnegative
integers a0, . . . , an. The word polynomial of w is the polynomial in commuting variables x and y given
by (3). For example, the word w = Xn−1AX has word polynomial: Pw(x, y) = 1 + x + x2 + · · · +
xn−2 + xn−1y. Note that if w ends in X (i.e., an = 0) then w can be uniquely recovered from Pw.

If u is another word over the same alphabet, the composition u ◦ w is the word obtained by replacing
each occurrence of the letter X in u by the word w. Although composition of words is not commutative,
it can be modeled by multiplication of polynomials according to the following lemma.

Lemma 5.1 Let u and w be finite words in the alphabet {X,A} ending with X , and let m,n be respec-
tively the number of letters in w equal to A,X . Then Pu◦w(x, y) = Pu(x

nym, y)Pw(x, y).

Our next lemma shows another context in which the word polynomial Pw arises: from substituting
certain affine transformation matrices for the letters of w.

Lemma 5.2 Let x, y, z be commuting indeterminates, letw(X,A) be a word, and letm,n be respectively

the number of letters in w equal to A,X . Then, w
([
x z
0 1

]
,

[
y 0
0 1

])
=

[
xnym Pw(x, y)z
0 1

]
.

6 Proof of Thoerem 1.1
We begin with the following elementary fact.

Lemma 6.1 Let G be a group of order n. If m and n are relatively prime, then every element of G has a
unique m-th root.

Let Gi (i = 1, 2, . . .) be an infinite sequence of finite groups with the following property: For every
positive integer m, there exists an N such that

m and #Gi are relatively prime for all i > N. (4)

By Lemma 6.1, these groups have a limiting kind of unique divisibility, which suggests taking the quotient
of the direct product of the Gi by their direct sum.
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Lemma 6.2 If G1, G2, . . . is a sequence of finite groups satisfying (4), then G =
∏∞
i=1Gi

/⊕∞
i=1Gi is

uniquely divisible.

This lemma allows us to construct many examples of uniquely divisible groups. Next we describe the
sequence of groups Gi that we will use to prove Theorem 1.1.

Let p be an odd prime, and let q = p−1
2 . Since the group (Z/pZ)∗ of units mod p is cyclic of order

p − 1, we can pick an element t ∈ (Z/pZ)∗ whose multiplicative order mod p is q (namely, t can be
the square of any generator). The powers of t are exactly the nonzero squares, i.e. quadratic residues, in
Z/pZ. We take Gp to be the semidirect product (Z/qZ)n (Z/pZ), which has the presentation

Gp =
〈
S, T : StT = TS, T q = 1, Sp = 1

〉
.

The group Gp can be realized concretely as the group of affine transformations of Z/pZ of the form
z 7→ az + b, where a ∈ (Z/pZ)∗ is a quadratic residue and b ∈ Z/pZ is arbitrary. Thus we can view

Gp as the group of all 2 × 2 matrices of the form
[
tk b
0 1

]
where k ∈ Z/qZ and b ∈ Z/pZ. The

generators S and T correspond to the affine transformations z 7→ z + 1 and z 7→ tz, or the matrices:

S =

[
1 1
0 1

]
, T =

[
t 0
0 1

]
.

Lemma 6.3 Let α, β ∈ {0, . . . , q−1} and γ ∈ {0, . . . , p−1}. For any wordw = w(X,A), the following
identity holds in the group Gp: w

(
SγT β , Tα

)
= SγPw(tβ ,tα)Tαm+βn, where m and n are respectively

the number of A’s and X’s in w.

Lemma 6.4 Let w be a finite word in the alphabet {X,A}, and let n be the number of letters in w equal
to X . Let p be a prime such that q = p−1

2 is relatively prime to n. If the equation Pw(x2, y2) = 0
has a solution (x, y) ∈ (Z/pZ)∗ × (Z/pZ)∗, then there exist a, b ∈ Gp for which the word equation
w(X, a) = b has no solution X ∈ Gp.

Proof: Suppose (x, y) ∈ (Z/pZ)∗× (Z/pZ)∗ solves Pw(x2, y2) = 0. Since any quadratic residue mod p
is a power of t, we can find integers α, δ such that x2 = tδ and y2 = tα. Let a = Tα and b = STαm+δn,
where m is the number of letters in w equal to A. By Lemma 6.3, an element X = SγT β ∈ Gp solves
the word equation w(X, a) = b if and only if

SγPw(tβ ,tα)Tαm+βn = b = STαm+δn. (5)

Equating powers of T , we obtain βn ≡ δn (mod q). Since n and q are relatively prime, it follows that
β ≡ δ (mod q), and hence tβ ≡ tδ (mod p). Now equating powers of S in (5) yields

1 ≡ γPw(tβ , tα) ≡ γPw(tδ, tα) ≡ γPw(x2, y2) ≡ 0 (mod p),

so there is no solution X to w(X, a) = b in Gp. 2

Proof of Theorem 1.1: Let π0 = 2, π1 = 3, . . . be the primes in increasing order. By the Chinese
remainder theorem, for each i ≥ 1 there is an integer ki satisfying

ki ≡ 3 (mod 4)

ki ≡ 2 (mod πj), j = 1, . . . , i.
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By Dirichlet’s theorem on primes in arithmetic progression, for each i there exists a prime pi satisfying
pi ≡ ki (mod 4π1 . . . πi). By construction, pi−12 is not divisible by any of 2, π1, . . . , πi. Since #Gpi =
pi(pi−1)

2 , the sequence of groupsGp1 , Gp2 , . . . satisfies condition (4), so by Lemma 6.2 the quotient group

G =
∏
i≥1Gpi

/⊕
i≥1Gpi is uniquely divisible.

Now let w be a word in the alphabet {X,A}, and let n be the number of letters in w equal to X . Let
πi0 be the largest prime divisor of n. For i > i0 we have pi−1

2 relatively prime to n. By hypothesis,
we can choose i1 ≥ i0 sufficiently large so that the equation P (x2, y2) = 0 has a solution (xi, yi) ∈
(Z/piZ)

∗ × (Z/piZ)
∗ for all i > i1. By Lemma 6.4, for each i > i1, there exist ai, bi ∈ Gpi for which

the word equation w(X, ai) = bi has no solution X ∈ Gpi . Let A,B ∈ G be the images of the sequences
(ai)i>i1 and (bi)i>i1 under the quotient map

∏
i>i1

Gpi −→ G. The equation w(X,A) = B has no
solution X ∈ G.

Finally, we prove that there exists B′ ∈ G such that w(X,A) = B′ has at least two solutions X ∈ G.
Using the result just proved, for all i > i1, the map Gpi → Gpi sending g 7→ w(g, ai) is not surjective,
hence not injective. Let gi, g̃i be distinct elements ofGpi such that w(g, ai) = w(g̃i, ai), and letB′ be the
image in G of the sequence (w(gi, ai))i>i1 . Then the images in G of the sequences (gi)i>i1 and (g̃i)i>i1
are distinct solutions to w(X,A) = B′. 2

7 Word equations not solvable by radicals
In this section, we use Corollary 1.7 to find several infinite families of words that are not universal, and
consequently not solvable in terms of radicals.

Lemma 7.1 Let m and n be distinct positive integers, and let w = XmAXn. Then Pw(x2, y2) is irre-
ducible in C[x, y].

Proof: We view the word polynomial Pw(x2, y2) = x2m−1
x2−1 + y2x2mx2n−1

x2−1 as a polynomial in y with
coefficients in C(x). If m < n, then there exists ζ ∈ C such that ζ2m 6= 1 and ζ2n = 1, in which case ζ is
a simple pole of f(x) = x−2m(x2m − 1)/(x2n − 1); likewise, if m > n, then f has a simple root. Thus
f is not a square in C(x), which implies that Pw(x2, y2) is irreducible in C(x)[y]. 2

By Corollary 1.7, it follows that for positive integers m 6= n, the word equation XmAXn = B has
no solution in terms of radicals. Our next result shows that for m ≥ 0 and n ≥ 1, the word equation
XAm+2nXAm+nXAmX = B has no solution in terms of radicals.

Lemma 7.2 Let m ≥ 0 and n ≥ 1 be integers, and let w = XAm+2nXAm+nXAmX . Then Pw(x2, y2)
has a factor in Z[x, y] which is irreducible over C[x, y].

Next, we show that the word equation XAXnAX = B has no solution in terms of radicals if n ≥ 3.

Lemma 7.3 Let n ≥ 3 be an integer, and let w = XAXnAX . Then Pw(x2, y2) is irreducible in C[x, y].

To further extend these families of words not solvable by radicals, note that under the hypotheses of
Theorem 1.1, we can actually derive a slightly stronger conclusion.

Corollary 7.4 Let u,w be finite words in the alphabet {X,A}. If Pw(x2, y2) = 0 has a solution
(xp, yp) ∈ (Z/pZ)∗× (Z/pZ)∗ for all but finitely many primes p, then the word equations u◦w(X,A) =
B and w ◦ u(X,A) = B have no solution in terms of radicals.
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A simple substitution also proves the following.

Corollary 7.5 Let n ≥ 2 be an integer. The word equation X2(AX)nX = B is not solvable by radicals.
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Abstract. Based on constant term evaluation, we present a new method to compute a closed form of the summation∑n−1
k=0

∏r
j=1 Fj(ajn+bjk+cj), where {Fj(k)} areC-finite sequences and aj and aj+bj are nonnegative integers.

Our algorithm is much faster than that of Greene and Wilf.

Résumé. En s’appuyant sur l’évaluation de termes constants, nous présentons une nouvelle méthode pour calculer
une forme close de la somme

∑n−1
k=0

∏r
j=1 Fj(ajn+ bjk+ cj), où les {Fj(k)} sont des suites C-finies, et où les aj

et les aj + bj sont des entiers positifs ou nuls. Notre algorithme est beaucoup plus rapide que celui de Greene et Wilf.

Keywords: C-finite sequences, constant term, summation, closed form

1 Introduction
A sequence {F (k)}k≥0 is C-finite (see [Zei90]) if there exist constants c1, . . . , cd such that

F (k) = c1F (k − 1) + c2F (k − 2) + · · ·+ cdF (k − d), ∀ k ≥ d.

Correspondingly, the integer d is called the order of the recurrence. Greene and Wilf [GW07] provided a
method to compute a closed form of the summation

n−1∑

k=0

r∏

j=1

Fj(ajn+ bjk + cj),

where {Fj(k)} are C-finite sequences and aj , bj are integers satisfying aj ≥ 0 and aj + bj ≥ 0. They
proved that the sum must be a linear combination of the terms

r∏

j=1

Fj((aj + bj)n+ ij) and φi1,...,ij (n)

r∏

j=1

Fj(ajn+ ij), (0 ≤ ij < dj)

where dj is the order of the recurrence of {Fj(k)} and φi1,...,ir (n) is a polynomial in n with given degree
bound. Then the explicit formula of the sum can be computed by the method of undetermined coefficients.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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In this paper, we provide another approach which is based on MacMahon’s partition analysis [Mac16]
and the Omega calculations [APR01, Xin04]. We first introduce an extra variable z and consider the
summation

S(z) =
n−1∑

k=0

zk
r∏

j=1

Fj(ajn+ bjk + cj).

Then we rewrite S(z) as the constant term (with respect to x1, . . . , xr) of the Laurent series

f1(x1)f2(x2) · · · fr(xr)
n−1∑

k=0

zk
r∏

j=1

x
−ajn−bjk−cj
j ,

where

fj(xj) =

∞∑

k=0

Fj(k)xkj

is the generating function. Using partial fraction decomposition, we can derive an explicit formula for
S(z) in terms of

∏r
j=1 Fj((aj + bj)n + ij) and

∏r
j=1 Fj(ajn + ij), where 0 ≤ ij < dj . Finally, the

substitution of z = 1 leads to a closed form of the original summation.

2 Basic tools by partial fraction decomposition
LetK be a field. Fix a polynomialD(x) ∈ K[x]. For any polynomialP (x) ∈ K[x], we use rem(P (x), D(x), x)
(or rem(P (x), D(x)) for short) to denote the remainder of P (x) when divided by D(x). This notation is
extended for rational function R(x) = P (x)/Q(x) when Q(x) is coprime to D(x):

rem(R(x), D(x)) := rem(P (x)β(x), D(x)), if α(x)D(x) + β(x)Q(x) = 1. (1)

In algebraic language, the remainder is the standard representative in the quotient ring K[x]/〈D(x)〉.
It is convenient for us to use the following notation:

{
P (x)/Q(x)

D(x)

}
=

rem(P (x)/Q(x), D(x))

D(x)
. (2)

Equivalently, if we have the following partial fraction decomposition:

P (x)

Q(x)D(x)
= p(x) +

r1(x)

D(x)
+
r2(x)

Q(x)
,

where p(x), r1(x), r2(x) are polynomials with deg r1(x) < degD(x), then we claim that r1(x) =
rem(P (x)/Q(x), D(x)) and hence

{
P (x)/Q(x)

D(x)

}
=
r1(x)

D(x)
.

Note that we do not need deg r2(x) < degQ(x).
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The following properties are transparent:

P1(x) ≡ P2(x) (mod D(x))⇒
{
R(x)P1(x)

D(x)

}
=

{
R(x)P2(x)

D(x)

}
; (3)

α(x)D(x) + β(x)Q(x) = 1⇒
{
P (x)/Q(x)

D(x)

}
=

{
P (x)β(x)

D(x)

}
; (4)

{
aR1(x) + bR2(x)

D(x)

}
=a

{
R1(x)

D(x)

}
+ b

{
R2(x)

D(x)

}
, ∀a, b ∈ K. (5)

The crucial lemma in our calculation is as follows.

Lemma 1 Let R(x), D(x) be as above and assume D(0) 6= 0. Then for any Laurent polynomial L(x)
with degL(x) ≤ 0, we have

CT
x
L(x)

{
R(x)

D(x)

}
= CT

x

{
L(x)R(x)

D(x)

}
, (6)

where CT
x
g(x) means to take constant term of the Laurent series g(x) in x.

Proof: By linearity, we may assume L(x) = x−k for some k ≥ 0.
Assume r(x) = rem(R(x), D(x)). Since D(0) 6= 0, we have the following partial fraction decompo-

sition:

r(x)

xkD(x)
=
p(x)

xk
+
r1(x)

D(x)
,

where deg p(x) < k and deg r1(x) < degD(x). Then taking constant term in x gives

CT
x

r(x)

xkD(x)
= CT

x

r1(x)

D(x)
= CT

x

{
x−kr(x)

D(x)

}
= CT

x

{
x−kR(x)

D(x)

}
.

This is just (6) when L(x) = x−k. 2

Let Z and N denote the set of integers and nonnegative integers respectively. Suppose that {F (k)}k∈N
is a C-finite sequence such that

F (k) = c1F (k − 1) + c2F (k − 2) + · · ·+ cdF (k − d) (7)

holds for any integer k ≥ d. Then its generating function is of the form

f(x) =

∞∑

k=0

F (k)xk =
p(x)

1− c1x− c2x2 − · · · − cdxd
,

where p(x) is a polynomial in x of degree less than d. We will say that {F (k)}k≥N is a C-finite sequence
with generating function p(x)/q(x), where q(x) = 1− c1x− c2x2 − · · · − cdxd.

It is well-known [Sta86, Section 4.2] that we can uniquely extend the domain of F (k) to k ∈ Z by
requiring that (7) holds for any k ∈ Z. The k-th term of the extended sequence can be given by the
following lemma.
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Lemma 2 Let {F (k)}k∈N be a C-finite sequence with generating function p(x)/q(x) and {F (k)}k∈Z be
its extension. Then

F (k) = CT
x

{
x−kp(x)

q(x)

}
=

{
x−kp(x)

q(x)

} ∣∣∣
x=0

∀ k ∈ Z. (8)

Proof: Since q(0) = 1, the second equality holds trivially. Let

G(k) = CT
x

{
x−kp(x)

q(x)

}
.

Then for k ≥ 0, applying Lemma 1 gives

G(k) = CT
x
x−k

{
p(x)

q(x)

}
= CT

x
x−k

p(x)

q(x)
= [xk]f(x) = F (k),

where [xk]f(x) means to take the coefficient of xk in f(x).
Therefore, by the uniqueness of the extension, it suffices to show that G(k) also satisfy the recursion

(7) for all k ∈ Z. We compute as follows:

G(k)− c1G(k − 1)− · · · − cdG(k − d)

= CT
x

{
x−kp(x)

q(x)

}
− c1

{
x−k+1p(x)

q(x)

}
− · · · − cd

{
x−k+dp(x)

q(x)

}

= CT
x

{
x−kp(x)q(x)

q(x)

}
= 0.

This completes the proof. 2

3 Constant term evaluation
Let {Fj(k)}k∈Z beC-finite sequences with generating functions fj(x) = pj(x)/qj(x) for j = 1, 2, . . . , r.
We denote the degree of the denominators by dj = deg qj(x). To evaluate the sum

S =
n−1∑

k=0

r∏

j=1

Fj(ajn+ bjk + cj),

we evaluate the more general sum Sr(z) instead, where Sm(z) is defined by

Sm(z) =
n−1∑

k=0

zk
m∏

j=1

Fj(ajn+ bjk + cj), 0 ≤ m ≤ r. (9)
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The advantage is that Sm(z) can be evaluated recursively. Since aj ≥ 0 and aj + bj ≥ 0, we have
ajn+ bjk ≥ 0 for any n ≥ 0 and 0 ≤ k < n. By Lemmas 1 and 2, we have

Sm(z) =

n−1∑

k=0

zk
m−1∏

j=1

Fj(ajn+ bjk + cj) CT
x

{
x−amn−bmk−cmpm(x)

qm(x)

}

=

n−1∑

k=0

zk
m−1∏

j=1

Fj(ajn+ bjk + cj) CT
x
x−amnx−bmk

{
x−cmpm(x)

qm(x)

}

= CT
x
x−amn

{
x−cmpm(x)

qm(x)

} n−1∑

k=0

(zx−bm)k
m−1∏

j=1

Fj(ajn+ bjk + cj).

Therefore, we obtain the recursion

Sm(z) = CT
x
x−amn

{
pm(x)x−cm

qm(x)

}
Sm−1(zx−bm). (10)

The initial condition is S0(z) = 1 + z + · · ·+ zn−1 = 1−zn
1−z .

Let Lm and L′m be the linear operators acting on Laurent polynomials in x1, . . . , xm by

Lm

(∏m
j=1 x

αj

j

)
=
∏m
j=1 Fj(ajn− αj),

L′m
(∏m

j=1 x
αj

j

)
=
∏m
j=1 Fj((aj + bj)n− αj).

(11)

Then Sm(z) have simple rational function representations.

Theorem 3 For any 0 ≤ m ≤ r, there exist a polynomial Pm(z) with coefficients being Laurent polyno-
mials in x1, . . . , xm and a non-zero polynomial Qm(z) ∈ K[z] such that

Sm(z) =
Lm(Pm(z))− znL′m(Pm(z))

Qm(z)
, (12)

where Lm, L′m are defined by (11).

Proof: We prove the theorem by induction on m.
Setting P0(z) = 1 and Q0(z) = 1 − z, we see that the assertion holds for m = 0. Suppose that

the assertion holds for m − 1. We can compute Pm(z) and Qm(z) as follows. For brevity, we write
R(z) = Pm−1(z)/Qm−1(z).

By definition Sm−1(z) is a polynomial in z of degree less than n. If bm ≥ 0, then −amn ≤ 0; If
bm ≤ 0, then −amn − bm(n − 1) ≤ 0. Thus x−amnSm−1(zx−bm) is always a Laurant polynomial of
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degree no more than 0. Therefore, by Lemma 1 and the recursion (10), we have

Sm(z) = CT
x

{
pm(x)x−cm

qm(x)

}
x−amnSm−1(zx−bm)

= CT
x

{
pm(x)x−cmx−amnSm−1(zx−bm)

qm(x)

}

= CT
x

{
pm(x)x−cmx−amn

(
Lm−1(R(zx−bm))− znx−bmnL′m−1(R(zx−bm))

)

qm(x)

}

= Lm−1 CT
x
x−amnG(x, z)− znL′m−1 CT

x
x−(am+bm)nG(x, z),

where G(x, z) is given by

G(x, z) =

{
pm(x)x−cmR(zx−bm)

qm(x)

}
.

Now set
u(x, z)

w(z)
= rem(xdm−1−cmR(zx−bm), qm(x), x), (13)

where u(x, z) is a polynomial in x, z and w(z) is a polynomial in z. Then

G(x, z) =

{
pm(x)x−dm+1 · xdm−1−cmR(zx−bm)

qm(x)

}

=

{
pm(x)x−dm+1u(x, z)/w(z)

qm(x)

}

=
1

w(z)

{
pm(x) · x−dm+1u(x, z)

qm(x)

}
.

Since x−dm+1u(x, z) is a Laurent polynomial of degree in x less than or equal to 0, we obtain

Sm(z) = Lm−1 CT
x

x−dm+1u(x, z)

xamn

{
pm(x)

qm(x)

}
− znL′m−1 CT

x

x−dm+1u(x, z)

x(am+bm)n

{
pm(x)

qm(x)

}

= Lm−1 CT
x

x−dm+1u(x, z)

xamn
fm(x)− znL′m−1 CT

x

x−dm+1u(x, z)

x(am+bm)n
fm(x).

Now set
Pm(z) = x−dm+1

m u(xm, z), Qm(z) = w(z). (14)

It is then easy to check that Sm(z) has the desired form. This completes the induction. 2

Remark 1. Form the above proof we see that the degree of xm in Pm(z) is between −dm + 1 and 0.
Therefore the coefficients of the numerator of S(z) are linear combinations of the form

r∏

j=1

Fj(ajn+ ij),
r∏

j=1

Fj((aj + bj)n+ ij),
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where 0 ≤ ij ≤ dj − 1.
Remark 2. Let {F (k)} be a sequence with generating function p(x)/q(x). We call the sequence {F (k)}
with generating function 1/q(x) its primitive sequence. It is more convenient to represent S(z) in terms
of the primitive sequences {F j(k)} instead of the sequences {Fj(k)} themselves. The existence of a such
representation is obvious since Fj(k) is a linear combination of F j(k). In this way, the coefficients of the
numerator of S(z) will be linear combinations of the form

r∏

j=1

F j(ajn− ij),
r∏

j=1

F j((aj + bj)n− ij),

where 0 ≤ ij ≤ dj − 1. Then we can take advantage of the fact F̄j(−ij) = 0, 1 ≤ ij ≤ dj − 1 if aj = 0
or aj + bj = 0. The computation is similar and in a natural way. In fact, if we define

Pm(z)

Qm(z)
= rem

(
pm(x)x−cm

Pm−1(zx−bm)

Qm−1(zx−bm)
, qm(x), x

)
,

then we have

Sm(z) =
Lm(Pm(z))− znL′m(Pm(z))

Qm(z)
,

where
Lm

(∏m
j=1 x

αj

j

)
=
∏m
j=1 F j(ajn− αj),

L
′
m

(∏m
j=1 x

αj

j

)
=
∏m
j=1 F j((aj + bj)n− αj).

4 Evaluation of Sr(z) at z = 1
In this section, we consider the evaluation of Sr(z) at z = 1, which is equals to the sum

S =

n−1∑

k=0

r∏

j=1

Fj(ajn+ bjk + cj). (15)

The evaluation of Sr(z) at z = 1 can be obtained by the following lemma.

Lemma 4 Let f(z) =
∑
i fiz

i, g(z) =
∑
i giz

i and h(z) =
∑
i hiz

i be polynomials in z. Suppose that

S(z) =
f(z)− zng(z)

h(z)

is a polynomial in z and
h(z) =

∑

i≥e
h̃i(z − 1)i, h̃e 6= 0. (16)

Then

S(1) =
1

h̃e

∑

i

(
fi

(
i

e

)
− gi

(
n+ i

e

))
.
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Proof: By expanding f(z)− zng(z) at the point z = 1, we obtain

f(z)− zng(z) =
∑

i

fi(z − 1 + 1)i − gi(z − 1 + 1)n+i =
∑

j

(z − 1)jAj ,

where

Aj =
∑

i

(
fi

(
i

j

)
− gi

(
n+ i

j

))
.

Since S(z) is a polynomial in z and h̃e 6= 0, we have Aj = 0 for any j < e and and S(1) = Ae/h̃e, as
desired. 2

Remark. Alternatively, we can write

S(z) = zn
z−nf(z)− g(z)

h(z)
.

A similar argument yields

S(1) =
1

h̃e

∑

i

(
fi

(
i− n
e

)
− gi

(
i

e

))
,

The algorithm CFsum for finding a closed form of the sum (15).

Input: The generating functions pj(x)/qj(x) of Fj(k) and the parameters (aj , bj , cj)

Output: A closed formula for S =
∑n−1
k=0

∏r
j=1 Fj(ajn+ bjk + cj).

1. Initially set P (z) = 1 and Q(z) = 1− z.

2. For j = 1, 2, . . . , r do

Set R(z) = P (z)/Q(z).

Let
u(x, z)

w(z)
= rem(pj(x)x−cjR(zx−bj ), qj(x), x).

Set P (z) = u(xj , z) and Q(z) = w(z).

3. Set A = B = P .

4. For j = 1, 2, . . . , r do

A =

dj−1∑

i=0

F j(ajn+ dj − i)[xij ]A, B =

dj−1∑

i=0

F j((aj + bj)n+ dj − i)[xij ]B,

where [xi]f(x) denotes the coefficient of xi in f(x) and {F j(k)} is the primitive sequence corre-
sponding to {Fj(k)}.

5. Let e be the lowest degree of z in Q(z + 1) and h = [ze]Q(z + 1).
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6. Finally, return

S =
1

h

∑

i

((
i

e

)
[zi]A−

(
n+ i

e

)
[zi]B

)
.

Our algorithm suggested a new way to look at the degree bound for the coefficients φi1,...,ir (n). One
bound is just the multiplicity of 1 as a root of Qr(z). To study the e described in (16), it is better to use
the alternative representation of S(z) = Sr(z):

S(z) = CT
x1,...,xr

(
1

xa11 · · ·xarr

)n 1− ( z

x
b1
1 ···x

br
r

)n

1− z

x
b1
1 ···x

br
r

r∏

j=1

{
pj(xj)x

−cj
j

qj(xj)

}
.

Suppose that αj is a root of qj(x) with multiplicity νj(αj). By partial fraction decomposition, S(z) can
be written as a linear combination of the terms

S(z;α, s) = CT
x1,...,xr

(
1

xa11 · · ·xarr

)n 1− ( z

x
b1
1 ···x

br
r

)n

1− z

x
b1
1 ···x

br
r

r∏

j=1

1

(1− xj/αj)sj
,

where sj ≤ νj(αj). From the discussion on Omega operator [Xin04], we see that the denominator of
S(z;α, s) is given by (

1− z

αb11 · · ·αbrr

)s1+s2+···+sr−r+1

Therefore, by summing over all α, s and take common denominator, we see that

e ≤ max{ν1 + · · ·+ νr − r + 1 : αb11 · · ·αbrr = 1 and qj(αj) = 0}.

5 Examples
We have implement the algorithm CFSum in Maple, which can be download from
http://www.combinatorics.net.cn/homepage/xin/maple/CFsum.txt .
Example 1. Let

f(n) =
n−1∑

k=0

F (k)2F (2n− k),

where {F (k)} is the Fibonacci sequence defined by

F (0) = 0, F (1) = 1, F (k) = F (k − 1) + F (k − 2), ∀ k ≥ 2.

We see that the generating function for {F (k)} is x/(1 − x − x2). Using the package, we immediately
derive that

f(n) =
1

2
(−F (2n) + F (2n− 1) + F (n)3 + F (n)F (n− 1)2 − F (n− 1)F (n)2),
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where {F (k)} is the primitive sequence of {F (k)}. In fact, F (k) = F (k + 1) and hence

f(n) =
1

2
(−F (2n+ 1) + F (2n) + F (n+ 1)3 + F (n+ 1)F (n)2 − F (n)F (n+ 1)2).

Example 2. Let

S(z) =
n−1∑

k=0

F (k)4zk,

where {F (k)} is the Fibonacci sequence defined as in Example 1. Using the package, we find that

S(z) =

4∑

i=0

fi(z)z
nF (n− 1)iF (n)4−i − z(z + 1)(z2 − 5z + 1)

(z − 1)(z2 + 3z + 1)(z2 − 7z + 1)

=

4∑

i=0

fi(z)z
nF (n)iF (n+ 1)4−i − z(z + 1)(z2 − 5z + 1)

(z − 1)(z2 + 3z + 1)(z2 − 7z + 1)
,

where

f0(z) = z(z + 1)(z2 − 5z + 1), f1(z) = −4z2(z2 − 3z − 1), f2(z) = 6z2(z2 − z + 1),

and
f3(z) = −4z2(z2 + 3z − 1), f4(z) = z4 + 11z3 − 14z2 − 5z + 1.

6 D-finite sequence involved
The readers are referred to [Sta99, Chapter 6.4] for definitions of D-finite generating functions and P-
recursive sequence. Let {G(k)}k∈N be a P-recursive sequence with D-finite generating function g(x). We
wish to find a similar representation of the sum

S =
n−1∑

k=0

r+1∏

j=1

Fj(k)

with Fj as before except for Fr+1(k) = G(k) being P-recursive. We shall only consider the case cr = 0
for brevity.

Define Sm(z) as in (9). The recursion (10) still holds for m ≤ r, and a similar calculation yields

Sr+1(z) = CT
x
x−ar+1ng(x)Sr(zx

−br+1).

By Theorem 3, we can write

Sr(z) =
Lr(Pr(z))− znL̃r(Pr(z))

Qr(z)
. (17)
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Since Sr(z) is a polynomial in z of degree less than n, degPr(z) < degQr(z) and Qr(0) 6= 0.
Now put (17) into the recursion and set z = 1, we obtain

Sr+1(1) = CT
x
x−ar+1ng(x)

Lr(Pr(x
−br+1))− x−nbr+1L̃r(Pr(x

−br+1))

Qr(x−br+1)

This expression can be written as

Sr+1(1) = CT
x
x−ar+1nḡ(x)Lr(P̄ (x))− x−n(ar+1+br+1)L̃r(P̄ (x))ḡ(x),

where ḡ(x) = g(x)Q̄(x)−1, with
Pr(x

−br+1)

Qr(x−br+1)
=
P̄ (x)

Q̄(x)

being in its standard representation.
Now if we let Ḡ(k) = [xk]ḡ(x). Then we have a representation of Sr+1(1) by a linear combination of

terms of the form
r+1∏

j=1

F̄j(ujn+ vj),

where F̄j(k) is the primitive sequence of Fj(k) as before, except that F̄r+1(k) = Ḡ(k).
It is clear that ḡ(x) is also D-finite and hence Ḡ(k) is P-recursive. It can be shown that if G(k) satisfy

a P-recursion of order e then we can find for Ḡ(k) a P-recursion of order e+ deg Q̄(x).
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The Möbius function of separable
permutations (extended abstract)
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1The Mathematics Institute, School of Computer Science, Reykjavik University, Kringlan 1, IS-103 Reykjavik, Iceland
2Department of Applied Mathematics, Charles University, Malostranské náměstı́ 25, 118 00 Praha, Czech Republic

Abstract. A permutation is separable if it can be generated from the permutation 1 by successive sums and skew sums
or, equivalently, if it avoids the patterns 2413 and 3142. Using the notion of separating tree, we give a computationally
efficient formula for the Möbius function of an interval (q, p) in the poset of separable permutations ordered by pattern
containment. A consequence of the formula is that the Möbius function of such an interval (q, p) is bounded by the
number of occurrences of q as a pattern in p. The formula also implies that for any separable permutation p the
Möbius function of (1, p) is either 0, 1 or −1.

Résumé. Une permutation est séparable si elle peut être générée á partir de la permutation 1 par des sommes directes
et des sommes indirectes, ou de façon équivalente, si elle évite les motifs 2413 et 3142. En utilisant le concepte de
l’arbre séparant, nous donnons une formule pour le calcul efficace de la fonction de Möbius d’un intervalle de (q, p)
dans l’ensemble partiellement ordonné des permutations séparables. Une conséquence est que la fonction de Möbius
de (q, p) pour q et p séparables est bornée par le nombre d’occurrences de q comme un motif en p. Nous montrons
aussi que pour une permutation p séparable, la fonction de Möbius de (1, p) est soit 0, 1 ou −1.

Keywords: Möbius function, pattern poset, separable permutations.

1 Introduction
Let Sn be the set of permutations of the integers {1, 2, . . . , n}. The union of all Sn for n = 1, 2, . . . forms
a poset, which we call P , with respect to pattern containment. That is, we define q ≤ p in P if there is a
subsequence of p whose letters are in the same order of size as the letters in q. For example, 132 ≤ 24153,
because 2,5,3 appear in the same order of size as 132. We denote the number of occurrences of q in p by
q(p), for example 132(24153) = 3, since 243, 253 and 153 are all the occurrences of the pattern 132 in
24153.

A classical question to ask for any combinatorially defined poset is what its Möbius function is. For our
poset P this seems to have first been mentioned explicitly by Wilf [8]. The first result in this direction was
given by Sagan and Vatter [5], who showed that an interval (q, p) of layered permutations is isomorphic
to a certain poset of compositions of an integer, and they gave a formula for the Möbius function in this

†Jelı́nek and Steingrı́msson were supported by grant no. 090038011 from the Icelandic Research Fund.
‡Jelı́nková was supported by project 1M0021620838 of the Czech Ministry of Education.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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case. In this paper, we find a (computationally effective) formula for the Möbius function of an interval
(q, p), where p is a separable permutation. This is a generalization of the results of Sagan and Vatter, and
is based on similar principles.

Recently, Steingrı́msson and Tenner [7] exhibited a class of intervals whose Möbius function is zero and
described certain other intervals where the Möbius function is either 1 or−1. In addition, they conjectured
that for permutations q and p avoiding the pattern 132 the absolute value of the Möbius function of the
interval (q, p), denoted µ(q, p), is bounded by the number of occurrences of q in p.

With the help our formula for µ(q, p), we prove a more general version of this conjecture. We show
that for any interval (q, p) of separable permutations q and p we have µ(q, p) ≤ q(p) (for general p and q
this inequality does not hold). In particular, if p has a single occurrence of q then µ(q, p) is either 1, 0 or
−1.

We also prove a conjecture mentioned in [7], showing that for any separable permutation p, µ(1, p)
is either 1, 0 or −1, where 1 in (1, p) is the single permutation of length 1. In addition, we give some
results on the Möbius function of various special intervals of arbitrary permutations, which we then use
to conclude that µ(1, p) is bounded on certain classes of permutations. These results show how to express
the Möbius function µ(1, p) for a decomposable permutation p in terms of µ(1, pi), where pi are the
summands in the decomposition of p. For “most” decomposable permutations p this shows that µ(1, p) is
zero.

2 Definitions and Preliminaries
An interval (q, p) in a poset (P,≤) is the set {r : q ≤ r ≤ p}. In this paper, we deal exclusively with
intervals of the poset of permutations ordered by pattern containment.

The Möbius function µ(q, p) of an interval (q, p) is uniquely defined by setting µ(q, q) = 1 for all q
and requiring that ∑

r∈(q,p)
µ(q, r) = 0 (1)

for every q < p.
An equivalent definition is given by Philip Hall’s Theorem [6, Proposition 3.8.5], which says that

µ(q, p) =
∑

C∈C(q,p)
(−1)|C| =

∑

i

(−1)ici, (2)

where C is the set of chains in (q, p) that contain both q and p, and ci is the number of such chains of
length i in (q, p). For details and further information on this see [6].

The direct sum, a + b, of two nonempty permutations a and b is the permutation obtained by con-
catenating a and b′, where b′ is b with all letters incremented by the number of letters in a. A permuta-
tion that can be written as a direct sum is decomposable, otherwise it is indecomposable. Examples are
2314576 = 231 + 12 + 21, and 231, which is indecomposable. In the skew sum of a and b, denoted by
a ∗ b, we increment the letters of a by the length of b to obtain a′ and then concatenate a′ and b. For
example, 6743512 = 12 ∗ 213 ∗ 12.

A decomposition of p is an expression p = p1 + p2 + · · · + pk in which each summand pi is inde-
composable. The summands p1, . . . , pk will be called the blocks of p. Every permutation p has a unique
decomposition (including an indecomposable permutation p, whose decomposition has a single block p).
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A permutation is separable if it can be generated by successive sums and skew sums of the permu-
tation 1. Being separable is equivalent to avoiding the patterns 2413 and 3142, that is, containing no
occurrences of them. Separable permutations have nice algorithmic properties. For instance, Bose, Buss
and Lubiw [2] have shown that it can be decided in polynomial time whether q ≤ p when p and q are
separable, while for general permutations the problem is NP-hard.

3 Möbius function of separable permutations
Let us now consider the values of µ(q, p) for separable permutations q and p.

The recursive structure of separable permutations makes it often convenient to represent a separable
permutation by a tree that describes how the permutation may be obtained from smaller permutations as a
sum or skew sum. Let us formalize this concept. A separating tree T is a rooted tree T with the following
properties:

• Each internal node of T has one of two types: it is either a direct node or a skew node.

• Each internal node has at least two children. The children of a given internal node are ordered into
a sequence from left to right.

Each separating tree T represents a unique separable permutation p, defined recursively as follows:

• If T has a single vertex, it represents the singleton permutation 1.

• Assume T has more than one vertex. LetN1, . . . , Nk be the children of the root in their left-to-right
order, and let Ti denote the subtree of T rooted at the node Ni. Let p1, . . . , pk be the permutations
represented by the trees T1, . . . , Tk. If the root of T is a direct node (skew node), then T represents
the permutation p1 + · · ·+ pk (p1 ∗ · · · ∗ pk, respectively).

Note that the leaves of T correspond bijectively to the elements of p. In fact, when we perform a depth-
first left-to-right traversal of T , we encounter the leaves in the order that corresponds to the left-to-right
order of the elements of p.

A given separable permutation may be represented by more than one separating tree. A separating tree
is called reduced tree if it has the property that the children of a direct node are leaves or skew nodes, and
the children of a skew node are leaves or direct nodes.

Each separable permutation p is represented by a unique reduced tree, denoted by T (p). We assume
that each leaf of T is labelled by the corresponding element of p.

The (slightly modified) concept of separating tree and its relationship with separable permutations have
been previously studied in algorithmic contexts [2, 9]. We will now show that the reduced tree allows us
to obtain a simple formula for the Möbius function of separable permutations.

Let [n] denote the set {1, . . . , n}. Let p = (p(1), p(2), . . . , p(n)) and q = (q(1), q(2), . . . , q(m)) be
two permutations, with q ≤ p. An embedding of q into p is a function f : [m] → [n] with the following
two properties:

• for every i, j ∈ [m], if i < j then f(i) < f(j) (i.e., f is monotone increasing).

• for every i, j ∈ [m], if q(i) < q(j), then p(f(i)) < p(f(j)) (i.e., f is order-preserving).
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Let f be an embedding of q into p. We say that a leaf ` of T (p) is covered by the embedding f if the
element of p corresponding to ` is in the image of f . A leaf is omitted by f if it is not covered by f . An
internal node N of T (p) is omitted by f if all the leafs in the subtree rooted at N are omitted. A node is
maximal omitted, if it is omitted but its parent in T (p) is not omitted.

Assume that p is a separable permutation and T (p) its reduced tree. Two nodes N1 and N2 of a tree
T (p) are called twins if they are siblings (i.e., share a common parent P ), they appear consecutively in
the sequence of children of P , and the two subtrees of T rooted at N1 and N2 are isomorphic (i.e., they
only differ by the labeling of their leaves, but otherwise have the same structure). In particular, any two
adjacent leaves are twins.

A run under a node N in T is a maximal sequence N1, . . . , Nk of children of N such that each two
consecutive elements of the sequence are twins. Note that the sequence of children of each internal node
is uniquely partitioned into runs (possibly consisting of a single node). A leaf run is a run whose nodes
are leaves, and a non-leaf run is a run whose nodes are non-leaves. The first (i.e., leftmost) element of
each run is called the leader of the run, the remaining elements are called followers.

Using the tree structure of T (p), we will show that µ(q, p) can be expressed as a signed sum over a set
of particularly ‘nice’ embeddings of q into p. Following the terminology of Sagan and Vatter [5], we call
these nice embeddings ‘normal’.

Definition 1 Let q and p be separable permutations, let T (p) be the reduced tree of p. An embedding f
of q into p is called normal if it satisfies the following two conditions.

• If a leaf ` is maximal omitted by f , then ` is the leader of its corresponding leaf run.

• If an internal node N is maximal omitted by f , then N is a follower in its non-leaf run.

Let N(q, p) denote the set of normal embeddings of q into p. The defect of an embedding f ∈ N(q, p),
denoted by d(f) is the number of leaves that are maximal omitted by f . The sign of f , denoted by sgn(f)
is defined as (−1)d(f).

We now present our main result.

Theorem 2 If q and p are separable permutations, then

µ(q, p) =
∑

f∈N(q,p)

sgn(f).

Consider, as an example, the two permutations p and q depicted on Figure 1. The children of the root
of T (p) are partitioned into three runs, where the first run has three internal nodes, the second run has a
single leaf, and the last run has a single internal node. Accordingly, there are five normal embeddings of
q into p, depicted in Figure 2. Of these five normal embeddings, two have sign -1 and three have sign 1,
giving µ(q, p) = 1.

Although the formula for µ(q, p) given in Theorem 2 may in general involve exponentially many sum-
mands, it allows us to compute µ(q, p) in time which is polynomial in |p| + |q|, using a simple dynamic
programming approach which we outline in Subsection 3.1.

To prove Theorem 2, we show that the formula for µ(q, p) satisfies the Möbius function recurrence∑
r∈(q,p) µ(q, r) = 0 for each nontrivial interval (q, p) of separable permutations. To verify this re-

currence, we construct a sign-reversing involution on the set
⋃
r∈(q,p)N(q, r). The construction of this
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Fig. 1: The separating trees of two permutations q and p
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Fig. 2: The normal embeddings of q in p, together with their signs. The leaves covered by the embedding are repre-
sented by black disks, the leaves that are maximal omitted are represented by empty circles. Dotted lines represent
subtrees rooted at a maximal omitted internal vertex. Note that the leaves of such subtrees do not contribute to the
sign of the embedding.
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bijection is very technical and relies on a complicated case analysis. We omit the construction from this
extended abstract.

Let us now state several consequences of Theorem 2.

Corollary 3 If p is separable, then µ(1, p) ∈ {0, 1,−1}.

Proof: The permutation 1 can have at most one normal embedding into p. It is in fact easy to observe that
if |p| > 1, then T (p) has at least one leaf ` that is not a leader of its leaf run, but each of its ancestors is
a leader of its non-leaf run. Such a leaf ` must be covered by any normal embedding of any permutation
into p. 2

The next Corollary confirms a (more general version of a) conjecture of Steingrı́msson and Tenner [7].

Corollary 4 If p and q are separable permutations, then |µ(q, p)| is at most the number of occurrences
of q in p.

Proof: This follows from the fact that the number of occurrences of q in p is clearly at least the number
of normal embeddings of q into p. 2

3.1 The algorithm
As we already pointed out, Theorem 2 allows us to compute µ(p, q) in polynomial time for any separable
permutations p and q. We outline the main ideas of the algorithm.

Given p and q, we construct the trees T (p) and T (q). We then check all the subtrees of T (p) and mark
each subtree which is a follower in its non-leaf run. We call such a subtree marked.

In order to use dynamic programming to compute the Möbius function, we define an extension of
normal embeddings of trees.

Let N be an internal node of a tree, and let T1, . . . , Tk be the subtrees rooted at the children of N .
A range (N, i, j) is the subtree of T (p) induced by N ∪ Ti ∪ Ti+1 ∪ · · · ∪ Tj . Observe that a tree has
quadratically many ranges.

The leaves of each range in T (p) represent a subsequence of p. We may thus speak of embeddings of a
range in T (q) into a range of T (p).

An embedding f of a range in T (q) to a range (Np, i, j) in T (p) is called normal if it satisfies the
following conditions.

• If a leaf ` in (Np, i, j) is a maximal omitted node in f , then ` is the leader of its corresponding leaf
run in p.

• If an internal node N ′ in (Np, i, j) is maximal omitted by f , then N ′ is marked.

We say that a normal embedding to a range (Np, i, j) is even if it has an even number of maximal
omitted leaves, and odd otherwise.

For every pair of ranges (Nq, `,m) ⊆ T (q) and (Np, i, j) ⊆ T (q), we compute the number of odd
and even normal embeddings of (Nq, `,m) to (Np, i, j), denoted by emb-odd(Nq, `,m,Np, i, j) and
emb-even(Nq, `,m,Np, i, j) respectively.

For a range (Np, i, j) with a single leaf, emb-odd(Nq, `,m,Np, i, j) and emb-even(Nq, `,m,Np, i, j)
can be easily computed. To compute emb-odd(Nq, l,m,Np, i, j) and emb-even(Nq, `,m,Np, i, j) for a
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range (Np, i, j) that contains more than one leaf, we assume that we already know the values of emb-odd
and emb-even for any range of T (q) and for any range of T (p) properly contained in (Np, i, j). It is not
difficult to see that the values of emb-odd(Nq, `,m,Np, i, j) and emb-even(Nq, `,m,Np, i, j) can then
be determined in linear time from previously computed values of emb-odd and emb-even.

Having computed all the values of emb-odd and emb-even, we evaluate µ(q, p). Let Rp and Rq be
the root vertices of T (p) and T (q), and assume that Rp has k children and Rq has j children. Then
µ(q, p) = emb-even(Rq, 1, j, Rp, 1, k)− emb-odd(Rq, 1, j, Rp, 1, k).

It is clear that the algorithm works in polynomial time.

4 The Möbius function for general permutations
In this section, we demonstrate several basic properties of µ(p, q), for general (not necessarily separable)
permutations p and q.

Lemma 5 Let q be an indecomposable permutation. Let p be a permutation containing q that has the
form p = r + 1 + s, where r, s are nonempty permutations. Then µ(q, p) = 0.

Proof: Proceed by induction on |p|. The smallest permutations p satisfying the assumptions of the lemma
are p = q + 1 + 1 and p = 1 + 1 + q. For these permutations, the statement holds. Assume now that
|p| > |q|+ 2, and p = r + 1 + s with r and s nonempty. We have

µ(q, p) = −
∑

t<p

µ(q, t) = −


 ∑

t≤r+s
µ(q, t) +

∑

t<p, t 6≤r+s
µ(q, t)


 .

The sum
∑
t≤r+s µ(q, t) is zero by the definition of µ (note that r + s 6= q), while every summand in∑

t<p, t 6≤r+s µ(q, t) is zero by induction (note that both r+ 1 and 1 + s are subpermutations of r+ s). 2

Let us say that a permutation p is low if p can be written as p = 1+ r, where r is a nonempty permuta-
tion. A permutation is high if it is not low. Note that the permutation 1 is high, and each indecomposable
permutation is high as well.

Lemma 6 If p and q are high permutations, then µ(q, 1 + p) = −µ(q, p).

Proof: We know that µ(q, 1 + p) can be written as

µ(q, 1 + p) =
∑

C chain from q to 1 + p

(−1)`(C), (3)

where `(C) denotes the length of the chain C.
We now distinguish two types of chains from q to p.
Type 1: A chain from q to 1+ p is of Type 1 if it contains the element p (which is high by assumption).

Necessarily, p is the penultimate element of the chain. There is a parity-reversing bijection between all
chains from q to p and the Type 1 chains: the bijection works by simply adding 1 + p at the end of the
chain from q to p. This shows that Type 1 chains contribute −µ(q, p) to the right hand side of (3).
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Type 2: A chain from q to 1+ p is of Type 2 if it does not contain p. We claim that the contributions of
Type 2 chains to (3) sum to 0. For such a chain C, let h(C) be the largest high permutation appearing in
the chain C. We split Type 2 chains into two groups:

Group A contains the Type 2 chains with the property that the permutation h(C) is followed by the
permutation 1 + h(C) in the chain. Note that by assumption, h(C) is different from p (else the chain
would be of Type 1), so 1 + h(C) is not the last element of the chain.

Group B contains the Type 2 chains where h(C) is followed by a permutation r different from 1+h(C).
The permutation r must be low, so it is of the form 1 + s, where s 6= h(C). Since r = 1 + s contains
h(C), and h(C) is high, it follows that h(C) is in fact (properly) contained in s.

There is then a parity-reversing bijection between Group A and Group B, which works by removing
the element 1 + h(C) from a chain C. This shows that Type 2 chains contribute 0 to µ(q, 1 + p). 2

Let us make some simple observations about embeddings. Assume that p has a decomposition p =
p1 + p2 + · · · + pk, and assume that q is indecomposable. Let f be an embedding of q into p. Since
q is indecomposable, it is easy to see that the embedding f must in fact embed q into a single block px
of p (formally speaking, for every i ∈ [m], we have |p1 + · · · + px−1| < f(i) ≤ |p1 + · · · + px|). More
generally, if q has a decomposition q = q1 + · · ·+ q` and f is an embedding of q into p, then each block
of q is embedded by f into a single block of p.

For an integer α and a permutation q, let αq denote the sum q + q + · · ·+ q with α summands.

Theorem 7 Let p be a decomposable permutation of order at least 3. Assume p has a decomposition
p1+p2+· · ·+pk, where neither p1 nor pk are equal to 1. Assume that q is an indecomposable permutation.

If µ(q, p) 6= 0, then all the blocks of p are equal to a single indecomposable permutation r, and in such
case µ(q, p) = µ(q, r).

The rest of this text is devoted to the proof of Theorem 7.
The proof proceeds by induction on |p|. For |p| ≤ 3, the statement holds trivially. Let us assume that

p is a decomposable permutation of order at least 4, and that neither the first nor the last block of the
decomposition of p is equal to 1. If any of the internal blocks of p is equal to 1, we use Lemma 5 to show
that µ(q, p) = 0.

In the rest of the proof, we assume that all the blocks of p have order at least 2. To compute µ(q, p), we
use the expression

µ(q, p) = −
∑

t<p

µ(q, t) (4)

and we will show that all the terms on the right-hand side of (4) cancel out, except at most one term,
whose value we will be able to determine.

We classify all the permutations t < p into the following four types:

• The permutations of the form t = 1 + 1 + r, where r is not empty. For any such permutation, we
have µ(q, t) = 0 by Lemma 5, so these permutations do not contribute anything to the right-hand
side of (4).

• The permutations of the form t = 1 + r, where r is high. We will call such permutations extended.

• The permutations t such that t is high and 1 + t < p. We will call such permutations extendable.
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• The permutations t such that t is high, and 1+ t is not contained in p. (Note that we can never have
1 + t = p, because we assume that all the blocks of p have order at least 2.) We will call these
permutations significant.

Note that a permutation t is extendable if and only if 1+ t is extended, and that this provides a bijection
between extendable and extended proper subpermutations of p. Moreover, for any extendable t, we have
µ(q, t) = −µ(q, 1 + t) by Lemma 6. This shows that the contribution of extendable permutations on the
right side of (4) cancels exactly with the contribution of the extended permutations. Consequently, we
have

µ(q, p) = −
∑

t significant

µ(q, t) (5)

Applying induction, we see that a significant permutation t that has nonzero µ(q, t) can be of one of
the following two forms:

• t has the decomposition t = αr for some α ≥ 1 and some indecomposable permutation r of order
at least 2. In such case, we know from induction hypothesis that µ(q, t) = µ(q, r). We call such a
permutation t a significant permutation of type 1 and we say that t is an r-permutation. Note that
we allow the possibility that t = r.

• t has the decomposition t = βr + 1, for some β ≥ 1 and some indecomposable permutation r
of order at least 2. In such case, we know from induction hypothesis and from Lemma 6 that
µ(q, t) = −µ(q, r). We call such a permutation t a significant permutation of type 2, and we again
say that t is an r-permutation.

To complete the proof of Theorem 7, we plan to show that for any given indecomposable permutation
r < p, the contribution of r-permutations of type 1 on the right side of (5) cancels with the contribution of
r-permutations of type 2. The only exception to this exact cancellation will occur when the permutation p
has the decomposition p = γr for some γ ≥ 2 — in such case, there is a type-2 r-permutation (γ−1)r+1,
but there is no significant type-1 r-permutation. To prove that the cancellations work as required, we first
need to prove several claims.

Let us introduce some more notation. For an indecomposable permutation r < p, we define αr =
max{α; αr ≤ p} and βr = max{β; βr + 1 ≤ p}. Observe that αr − 1 ≤ βr ≤ αr.
Claim 8 Let r < p be an indecomposable permutation. If t is a significant r-permutation of type 1, then
t = αrr. If t is a significant r-permutation of type 2, then t = βrr + 1.

Proof: Assume that t is an r-permutation of type 1. By definition, t = αr for some α ≥ 1. If α were
greater than αr, then t would not be a subpermutation of p. If α were smaller than αr, then t would be
extendable, because 1 + t < αrr ≤ p. Thus, if t is to be significant, it must be of the form t = αrr. The
argument for permutations of type 2 is the same. 2

Claim 8 shows that for a given r there can be at most one significant r-permutation of each type.
However, for some r it might happen that even the permutations of the ‘correct’ form αrr and βrr+1 are
extendable, and hence not significant.

From the definition of αr, it is clear that αr > 0 for any r < p. However, we might have βr = 0 even
when r < p. The next claim allows us to avoid such degenerate cases in our considerations.
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Claim 9 Let r < p be an indecomposable permutation. If βr = 0, then there is no significant r-
permutation of any kind.

Proof: Assume that βr = 0 for some indecomposable permutation r < p. This implies that αr = 1, and
that the permutation r+ 1 is not contained in p. Recall that p has the decomposition p1 + · · ·+ pk. Since
r is indecomposable, r must be contained in at least one block of p.

Since r + 1 is not contained in p, we know that the last block pk is the only block of p that contains r.
Since p is assumed to have at least two blocks, this shows that p contains 1 + r. This means that the
permutation αrr = r is extendable, hence not significant. The permutation βrr+1 = 1 is also extendable.
By Claim 8, there can be no significant r-permutations different from αrr and βrr + 1. Thus, there are
no significant r-permutations. 2

Before we state our next claim, we need some preparation. Consider the decomposition p1 + · · ·+ pk
of p. For an integer i ≤ k and for an indecomposable permutation r < p, we define

α(i)
r = max{α; αr ≤ pi}

and

β(i)
r = max{β; βr + 1 ≤ pi}.

Notice that αr = α
(1)
r + α

(2)
r + · · ·+ α

(k)
r and βr = α

(1)
r + α

(2)
r + · · ·+ α

(k−1)
r + β

(k)
r .

Claim 10 Let r < p be an indecomposable permutation. The following statements are equivalent:

1. The permutation αrr is extendable.

2. The permutation βrr + 1 is extendable.

3. The block p1 contains the permutation 1 + α
(1)
r r.

Proof: Let us prove that 1 implies 3. Assume that αrr is extendable. This means that the permutation
t = 1 + αrr is contained in p. Consider an embedding f of t into p. Choose f in such a way that the
value of f(1) is as small as possible.

The embedding f cannot embed into any given block pi more than α(i)
r copies of r, because that would

contradict the definition of α(i)
r . In particular, f embeds α(1)

r copies of r inside p1.
Note also that the leftmost element of t (which is equal to 1) is embedded inside p1 by f . If f would

embed the leftmost element of q into any other block, it would mean that f does not embed anything into
p1, and this would contradict the choice of f . We conclude that f embeds the permutation 1 + α

(1)
r r

inside p1, which shows that 1 implies 3, as claimed. By an analogous argument, we may also see that 2
implies 3.

Let us now prove that 3 implies 1. Assume that 1 + α
(1)
r r is contained in p1. By definition, we also

know that for each i ≥ 2, the block pi contains the permutation α(i)
r r. Putting this together, we see that p

contains 1 + α
(1)
r r+ α

(2)
r r+ · · ·+ α

(k)
r r = 1+ αrr. This shows that αrr is extendable, and 1 holds. By

the same reasoning, we see that 3 implies 2. This completes the proof of the claim. 2
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Let r be again an indecomposable permutation contained in p. It is clear that the permutation βrr+1 is
either significant or extendable. It is also clear that the permutation αrr is either significant, or extendable,
or equal to p. In view of Claim 10, for each r, exactly one of the following three cases must occur:

• The permutation αrr is extendable, and so is βrr + 1. In this case there is no significant r-
permutation of any type.

• The permutation αrr is significant, and so is βrr + 1. In this case, these two permutations are
exactly the only two significant r-permutations, and their contributions to the sum on the right-hand
side of Equation (5) cancel out.

• The permutation αrr is equal to p. In this case, it is easy to see that βr = αr − 1, and that the
permutation βrr+1 is significant. This case arises if and only if all the blocks in the decomposition
of p are equal to r. From the induction hypothesis and from Lemma 6, we know that µ(q, βrr+1) =
−µ(q, r).

We conclude that if the blocks in the decomposition of p are all equal to r, then µ(q, p) = µ(q, r).
On the other hand, if the blocks of p are not all equal, then µ(q, p) = 0. This completes the proof of
Theorem 7.

Let us say that a class of permutations C is sum-closed if for each p, q ∈ C, the class C also contains
p+ q. Similarly, C is skew-closed if p, q ∈ C implies p ∗ q ∈ C. For a set P of permutations, the closure of
P , denoted by cl(P), is the smallest sum-closed and skew-closed class of permutations that contains P .
Notice that cl({1}) is exactly the set of separable permutations.

The next corollary is an immediate consequence of Lemma 6 and Theorem 7.

Corollary 11 Suppose that q is a permutation that is neither decomposable nor skew-decomposable. Let
P be any set of permutations. Then

max{|µ(q, p)|; p ∈ P} = max{|µ(q, p)|; p ∈ cl(P)}.

Moreover, the computation of µ(q, p) for p ∈ cl(P) can be efficiently reduced to the computation of the
values µ(q, r) for r ∈ P .

5 Concluding remarks and open problems
We have shown that the Möbius function µ(q, p) can be computed efficiently whenever p and q are sepa-
rable permutations. With some additional arguments (omitted from this extended abstract), we can in fact
show that the values of µ(q, p) can be computed in polynomial time whenever p belongs to a fixed class
of permutations that is the closure of a finite set. We do not know whether this result can be extended to
larger classes of permutations.

Bose, Buss and Lubiw [2] have shown that it is NP-hard, for given permutations p and q, to decide
whether p contains q. In view of this, it seems unlikely that µ(q, p) could be computed efficiently for
general permutations q and p.

Our results imply that for a separable permutation p, the Möbius function µ(1, p) has absolute value
at most 1. In fact, the class of separable permutations is the largest hereditary class with this property,
since any hereditary class not contained in the class of separable permutations must contain 2413 or 3142,
and µ(1, 2413) = µ(1, 3142) = −3. We have also seen that µ(1, p) is bounded on any permutation class
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that is a closure of finitely many permutations. Is there another example of a class on which µ(1, p) is
bounded?
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Abstract.

We provide the unique affine crystal structure for type E(1)
6 Kirillov–Reshetikhin crystals corresponding to the mul-

tiples of fundamental weights sΛ1, sΛ2, and sΛ6 for all s ≥ 1 (in Bourbaki’s labeling of the Dynkin nodes, where 2
is the adjoint node). Our methods introduce a generalized tableaux model for classical highest weight crystals of type
E and use the order three automorphism of the affine E(1)

6 Dynkin diagram. In addition, we provide a conjecture for
the affine crystal structure of type E(1)

7 Kirillov–Reshetikhin crystals corresponding to the adjoint node.

Résumé.

Nous donnons l’unique structure cristalline affine pour les cristaux de Kirillov–Reshetikhin de type E(1)
6 correspon-

dant aux multiples des poids fondamentaux sΛ1, sΛ2 et sΛ6 pour tout s ≥ 1 (dans l’étiquetage de Bourbaki des
noeuds de Dynkin, où 2 est le noeud adjoint). Pour ceci, nous introduisons un modèle de tableaux généralisés pour
les cristaux classiques du plus haut poids de type E et nous employons l’automorphisme d’ordre trois du diagramme
de Dynkin du type E(1)

6 . En outre, nous fournissons une conjecture pour la structure affine pour les cristaux de
Kirillov–Reshetikhin de type E(1)

7 correspondant au noeud adjoint.

Keywords: Affine crystals, Kirillov–Reshetikhin crystals, type E6

This document is an extended abstract of Jones and Schilling (2009). Please see the full paper for
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1 Introduction
Let g be an affine Kac–Moody algebra and U ′q(g) be the associated quantized affine algebra. Kirillov–
Reshetikhin modules are finite dimensional U ′q(g)-modules labeled by a node r of the Dynkin diagram
together with a nonnegative integer s. It is expected that each Kirillov–Reshetikhin module has a crystal
basis.
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In this paper, we provide the unique affine crystal structure for the Kirillov–Reshetikhin crystals Br,s

of type E(1)
6 for the Dynkin nodes r = 1, 2, and 6 in the Bourbaki labeling, where node 2 corresponds

to the adjoint node (see Figure 1). In addition, we provide a conjecture for the affine crystal structure for
type E(1)

7 Kirillov–Reshetikhin crystals of level s corresponding to the adjoint node.
Our construction of the affine crystals uses the classical decomposition given by Chari (2001) together

with a promotion operator. Combinatorial models of all Kirillov–Reshetikhin crystals of nonexceptional
types were constructed using promotion and similarity methods in Schilling (2008); Okado and Schilling
(2008); Fourier et al. (2009) and perfectness was proven in Fourier et al. (2010). Affine crystals of type
E

(1)
6 and E(1)

7 of level 1 corresponding to minuscule coweights (r = 1, 6) have also been studied in
Magyar (2006) using the Littelmann path model. Hernandez and Nakajima (2006) gave a construction of
the Kirillov–Reshetihkin crystals Br,1 for all r for type E(1)

6 and most nodes r in type E(1)
7 .

For nonexceptional types, the classical crystals appearing in the decomposition can be described using
Kashiwara–Nakashima tableaux Kashiwara and Nakashima (1994). We provide a similar construction
for general types (see Theorem 2.6). This involves the explicit construction of the highest weight crystals
B(Λi) corresponding to fundamental weights Λi using the Lenart–Postnikov Lenart and Postnikov (2008)
model and the notion of pairwise weakly increasing columns (see Definition 2.1).

This paper is structured as follows. In Section 2, the fundamental crystals B(Λ1) and B(Λ6) are
constructed explicitly for type E6 and it is shown that all other highest weight crystals B(λ) of type E6

can be constructed from these. In Section 2.4, a generalized tableaux model is given for B(λ) for general
types. These results are used to construct the affine crystals in Section 3. Our main results are stated in
Theorem 3.10 and Conjecture 3.11.

2 A tableau model for finite-dimensional highest weight crystals
In this section, we describe a model for the classical highest weight crystals in type E. In Section 2.1, we
introduce our notation and give the axiomatic definition of a crystal. The tensor product rule for crystals
is reviewed in Section 2.2. In Section 2.3, we give an explicit construction of the highest weight crystals
associated to the fundamental weights in types E6 and E7. In Section 2.4, we give a generalized tableaux
model to realize all of the highest weight crystals in these types. The generalized tableaux are type-
independent, and can be viewed as an extension of the Kashiwara–Nakashima tableaux Kashiwara and
Nakashima (1994) to type E. For a general introduction to crystals we refer to Hong and Kang (2002).

2.1 Axiomatic definition of crystals
Denote by g a symmetrizable Kac-Moody algebra, P the weight lattice, I the index set for the vertices
of the Dynkin diagram of g, {αi ∈ P | i ∈ I} the simple roots, and {α∨i ∈ P ∗ | i ∈ I} the simple
coroots. Let Uq(g) be the quantized universal enveloping algebra of g. A Uq(g)-crystal Kashiwara (1995)
is a nonempty set B equipped with maps wt : B → P and ei, fi : B → B ∪ {0} for all i ∈ I , satisfying

fi(b) = b′ ⇔ ei(b
′) = b if b, b′ ∈ B

wt(fi(b)) = wt(b)− αi if fi(b) ∈ B
〈α∨i ,wt(b)〉 = ϕi(b)− εi(b).
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Here, we have

εi(b) = max{n ≥ 0 | eni (b) 6= 0}
ϕi(b) = max{n ≥ 0 | fni (b) 6= 0}

for b ∈ B, and we denote 〈α∨i ,wt(b)〉 by wti(b). A Uq(g)-crystal B can be viewed as a directed edge-
colored graph called the crystal graph whose vertices are the elements of B, with a directed edge from b
to b′ labeled i ∈ I , if and only if fi(b) = b′. Given i ∈ I and b ∈ B, the i-string through b consists of the
nodes {fmi (b) : 0 ≤ m ≤ ϕi(b)} ∪ {emi (b) : 0 < m ≤ εi(b)}.

Let {Λi | i ∈ I} be the fundamental weights of g. For every b ∈ B define ϕ(b) =
∑
i∈I ϕi(b)Λi and

ε(b) =
∑
i∈I εi(b)Λi. An element b ∈ B is called highest weight if ei(b) = 0 for all i ∈ I . We say that

B is a highest weight crystal of highest weight λ if it has a unique highest weight element of weight λ.
For a dominant weight λ, we let B(λ) denote the unique highest-weight crystal with highest weight λ.

An isomorphism of crystals is a bijection Ψ : B∪{0} → B′∪{0} such that Ψ(0) = 0, ε(Ψ(b)) = ε(b),
ϕ(Ψ(b)) = ϕ(b), fiΨ(b) = Ψ(fi(b)), and Ψ(ei(c)) = eiΨ(c) for all b, c ∈ B, Ψ(b),Ψ(c) ∈ B′ where
fi(b) = c.

When λ̃ is a weight in an affine type, we call

〈λ̃, c〉 =
∑

i∈I
a∨i 〈λ̃, α∨i 〉 (1)

the level of λ̃, where c is the canonical central element and λ̃ =
∑
i∈I λiΛi is the affine weight. In our

work, we will often compute the 0-weight λ0Λ0 at level 0 for a node b in a classical crystal from the
classical weight λ =

∑
i∈I\{0} λiΛi = wt(b) by setting 〈λ0Λ0 + λ, c〉 = 0 and solving for λ0.

When g is a finite-dimensional Lie algebra, every integrable Uq(g)-module decomposes as a direct sum
of highest weight modules. On the level of crystals, this implies that every crystal graph B corresponding
to an integrable module is a union of connected components, and each connected component is the crystal
graph of a highest weight module. We denote this by B =

⊕
B(λ) for some set of dominant weights λ,

and we call these B(λ) the components of the crystal.
Suppose that g is a symmetrizable Kac–Moody algebra and let U ′q(g) be the corresponding quantum

algebra without derivation. The goal of this work is to study crystals Br,s that correspond to certain finite
dimensional U ′q(g)-modules known as Kirillov–Reshetikhin modules. Here, r is a node of the Dynkin
diagram and s is a nonnegative integer. The existence of the crystals Br,s that we study follows from
results in (Kang et al., 1992, Proposition 3.4.4) for r = 1, 6 and (Kang et al., 1992, Proposition 3.4.5) for
r = 2, while the classical decomposition of these crystals is given in Chari (2001).

2.2 Tensor products of crystals
Let B1, B2, . . . , BL be Uq(g)-crystals. The Cartesian product B1 ×B2 × · · · ×BL has the structure of a
Uq(g)-crystal using the so-called signature rule. The resulting crystal is denotedB = B1⊗B2⊗· · ·⊗BL
and its elements (b1, . . . , bL) are written b1 ⊗ · · · ⊗ bL where bj ∈ Bj . The reader is warned that our
convention is opposite to that of Kashiwara Kashiwara (1995). Fix i ∈ I and b = b1⊗ · · · ⊗ bL ∈ B. The
i-signature of b is the word consisting of the symbols + and − given by

− · · ·−︸ ︷︷ ︸
ϕi(b1) times

+ · · ·+︸ ︷︷ ︸
εi(b1) times

· · · − · · · −︸ ︷︷ ︸
ϕi(bL) times

+ · · ·+︸ ︷︷ ︸
εi(bL) times

.
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The reduced i-signature of b is the subword of the i-signature of b, given by the repeated removal of
adjacent symbols +− (in that order); it has the form

− · · ·−︸ ︷︷ ︸
ϕi times

+ · · ·+︸ ︷︷ ︸
εi times

.

If ϕi = 0 then fi(b) = 0; otherwise

fi(b1 ⊗ · · · ⊗ bL) = b1 ⊗ · · · ⊗ bj−1 ⊗ fi(bj)⊗ · · · ⊗ bL

where the rightmost symbol − in the reduced i-signature of b comes from bj . Similarly, if εi = 0 then
ei(b) = 0; otherwise

ei(b1 ⊗ · · · ⊗ bL) = b1 ⊗ · · · ⊗ bj−1 ⊗ ei(bj)⊗ · · · ⊗ bL

where the leftmost symbol + in the reduced i-signature of b comes from bj . It is not hard to verify that
this defines the structure of a Uq(g)-crystal with ϕi(b) = ϕi and εi(b) = εi in the above notation, and
weight function

wt(b1 ⊗ · · · ⊗ bL) =
L∑

j=1

wt(bj).

2.3 Fundamental crystals for type E6 and E7

Let I = {1, 2, 3, 4, 5, 6} denote the classical index set for E6. We number the nodes of the affine Dynkin
diagram as in Figure 1.

•0

•2

•1 •3 •4 •5 •6

•2

•0 •1 •3 •4 •5 •6 •7

Fig. 1: Affine E(1)
6 and E(1)

7 Dynkin diagrams

Classical highest-weight crystals B(λ) for E6 can be realized by the Lenart–Postnikov alcove path
model described in Lenart and Postnikov (2008). We implemented this model in Sage and have recorded
the crystal B(Λ1) in Figure 2. This crystal has 27 nodes.

To describe our labeling of the nodes, observe that all of the i-strings in B(Λ1) have length 1 for each
i ∈ I . Therefore, the crystal admits a transitive action of the Weyl group. Also, it is straightforward
to verify that all of the nodes in B(Λ1) are determined by weight. For our work in Section 3, we also
compute the 0-weight at level 0 of a node b in any classical crystal from the classical weight as described
in Remark 3.4.

Thus, we label the nodes of B(Λ1) by weight, which is equivalent to recording which i-arrows come
in and out of b. The i-arrows into b are recorded with an overline to indicate that they contribute negative
weight, while the i-arrows out of b contribute positive weight.
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By the symmetry of the Dynkin diagram, we have that B(Λ6) also has 27 nodes and is dual to B(Λ1)
in the sense that its crystal graph is obtained from B(Λ1) by reversing all of the arrows. Reversing the
arrows requires us to label the nodes of B(Λ6) by the weight that is the negative of the weight of the
corresponding node in B(Λ1). Moreover, observe that B(Λ1) contains no pair of nodes with weights µ,
−µ, respectively. Hence, we can unambiguously label any node of B(Λ1) ∪B(Λ6) by weight.

0̄1
1 // 0̄1̄3

3 // 0̄3̄4
4 // 0̄4̄25

5 //

2

��

0̄5̄26
6 //

2

��

0̄6̄2

2

��
2̄5

5 // 2̄5̄46
6 //

4

��

2̄6̄4

4

��
4̄36

6 //

3

��

4̄6̄35
5 //

3

��

5̄3

3

��
3̄16

6 //

1

��

3̄6̄15
5 //

1

��

3̄5̄14
4 //

1

��

4̄12
2 //

1

��

2̄10

1

��
1̄6

6 // 1̄6̄5
5 // 1̄5̄4

4 // 1̄4̄23
2 //

3

��

1̄2̄30

3

��
3̄2

2 // 2̄3̄40

4

��
4̄50

5

��
5̄60

6

��
6̄0

Fig. 2: Crystal graph for B(Λ1) of type E6

It is straightforward to show using characters that every classical highest-weight representation B(Λi)
for i ∈ I can be realized as a component of some tensor product of B(Λ1) and B(Λ6) factors. On the
level of crystals, the tensor products B(Λ1)⊗k, B(Λ6)⊗k and B(Λ6) ⊗ B(Λ1) are defined for all k by
the tensor product rule of Section 2.2. Therefore, we can realize the other classical fundamental crystals
B(Λi) as shown in Table 1. There are additional realizations for these crystals obtained by dualizing.

There is a similar construction for the fundamental crystals for type E7. The highest weight crystal
B(Λ7) has 56 nodes and these nodes all have distinct weights. Also, ϕi(b) ≤ 1 and εi(b) ≤ 1 for
all i ∈ {1, 2, . . . , 7} and b ∈ B(Λ7). Using character calculations, we can show that every classical
highest-weight representation B(Λi) appears in some tensor product of B(Λ7) factors.



660 Brant Jones and Anne Schilling

Tab. 1: Fundamental realizations for E6

Generator in Dimension

B(Λ2) 21̄0̄⊗ 0̄1 B(Λ6)⊗B(Λ1) 78
B(Λ3) 0̄1̄3⊗ 0̄1 B(Λ1)⊗2 351
B(Λ4) 0̄3̄4⊗ 0̄1̄3⊗ 0̄1 B(Λ1)⊗3 2925
B(Λ5) 56̄0̄⊗ 60̄ B(Λ6)⊗2 351

2.4 Generalized tableaux
In this section, we describe how to realize the crystal B(Λi1 + Λi2 + · · ·+ Λik) inside the tensor product
B(Λi1)⊗B(Λi2)⊗· · ·⊗B(Λik), where the Λi are all fundamental, or more generally dominant weights.
Our arguments use only abstract crystal properties, so the results in this section apply to any finite type.

If b is the unique highest weight node in B(λ) and c is the unique highest weight node in B(µ), then
B(λ+ µ) is generated by b⊗ c ∈ B(λ)⊗B(µ). Iterating this procedure provides a recursive description
of any highest-weight crystal embedded in a tensor product of crystals. Our goal is to give a non-recursive
description of the nodes of B(Λi1 + Λi2 + · · ·+ Λik) for any collection of fundamental weights Λi.

For an ordered set of dominant weights (µ1, µ2, . . . , µk) and for each permutation w in the symmetric
group Sk, define

Bw(µ1, . . . , µk) = B(µw(1))⊗B(µw(2))⊗ · · · ⊗B(µw(k))

so Be(µ1, . . . , µk) is B(µ1)⊗ · · · ⊗B(µk) where e ∈ Sk is the identity.

Definition 2.1 Let (µ1, µ2, . . . , µk) be dominant weights. Then, we say that

b1 ⊗ b2 ⊗ · · · ⊗ bk ∈ B(µ1)⊗B(µ2)⊗ · · · ⊗B(µk)

is pairwise weakly increasing if

bj ⊗ bj+1 ∈ B(µj + µj+1) ⊂ B(µj)⊗B(µj+1)

for each 1 ≤ j < k.

Next, we fix an isomorphism of crystals

Φ(µ1,...,µk)
w : Bw(µ1, . . . , µk)→ Be(µ1, . . . , µk)

for each w ∈ Sk. Observe that each choice of Φ
(µ1,...,µk)
w corresponds to a choice for the image of each

of the highest-weight nodes in Bw(µ1, . . . , µk).
Let b∗j denote the unique highest weight node of the jth factor B(µj). Since we are fixing the dominant

weights (µ1, . . . , µk), we will sometimes drop the notation (µ1, . . . , µk) from Bw and Φw.

Definition 2.2 Let w be a permutation and choose j to be the maximal integer such that w that fixes
{1, 2, . . . , j}. We say that Φ

(µ1,...,µk)
w is a lazy isomorphism if the image of every highest weight node of

the form
b1 ⊗ b2 ⊗ · · · ⊗ bj ⊗ b∗j+1 ⊗ · · · ⊗ b∗k
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under Φ
(µ1,...,µk)
w is equal to

b1 ⊗ b2 ⊗ · · · ⊗ bj ⊗ b∗w−1(j+1) ⊗ · · · ⊗ b∗w−1(k) .

We want to choose our isomorphisms Φ
(µ1,...,µk)
w to be lazy, but our results do not otherwise depend

upon the choice of Φ
(µ1,...,µk)
w .

Definition 2.3 Let T be any subset of Sk, and {Φ(µ1,...,µk)
w }w∈T be a collection of lazy isomorphisms.

We define I(µ1,...,µk)(T ) to be
⋂

w∈T
Φ(µ1,...,µk)
w ({pairwise weakly increasing nodes of Bw(µ1, . . . , µk) }) ⊂ Be(µ1, . . . , µk).

Proposition 2.4 Let T be any subset of Sk. Then, whenever b ∈ I(µ1,...,µk)(T ) we have ei(b), fi(b) ∈
I(µ1,...,µk)(T ).

Corollary 2.5 For any subset T of Sk, we have that I(µ1,...,µk)(T ) is a direct sum of highest weight
crystals

⊕
λB(λ) for some collection of weights λ.

Proof: Proposition 2.4 implies that whenever b ∈ I(µ1,...,µk)(T ), the entire connected component of the
crystal graph containing b is in I(µ1,...,µk)(T ). 2

Theorem 2.6 Fix a sequence (µ1, . . . , µk) of dominant weights. Then,

I(µ1,...,µk)(Sk) ∼= B(µ1 + µ2 + . . .+ µk).

Proof: Let b∗j be the unique highest weight node of Bj with highest weight µj for each j = 1, . . . , k.
Then b∗ = b∗1 ⊗ b∗2 ⊗ · · · ⊗ b∗k generates B(µ1 + . . .+ µk) and this node lies in I(µ1,...,µk)(Sk).

The proof proceeds to show that b∗ is the only highest weight node of I(µ1,...,µk)(Sk) using calculations
involving the tensor product rule. 2

Remark 2.7 The condition that there is a unique highest weight element that we used in the proof of
Theorem 2.6 is equivalent to the hypothesis of (Kashiwara and Nakashima, 1994, Proposition 2.2.1) from
which the desired conclusion also follows.

Remark 2.8 Because we only require a constant amount of data to check the pairwise weakly increasing
condition for each pair of tensor factors, Theorem 2.6 and its refinements will allow us to formulate
arguments that apply to all highest-weight crystals simultaneously, regardless of the number of tensor
factors.

When we are considering a specific highest-weight crystal, it may be computationally easier to generate
B(µ1 + · · ·+ µk) by simply applying fi operations to the highest-weight node in all possible ways.

We say that any node of I(µ1,...,µk)(Sk) is weakly increasing. It turns out that we can often take T
to be much smaller than Sk by starting with T = {e} and adding permutations to T until I(µ1,...,µk)(T )
contains a unique highest weight node. In particular, the next result shows that we can take T = {e} when
we are considering a linear combination of two distinct fundamental weights.
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Lemma 2.9 Let Λi1 and Λi2 be distinct fundamental weights, and k1, k2 ∈ Z≥0 with k = k1 + k2. Then,
the nodes of

B(k1Λi1 + k2Λi2) ⊂ B(Λi1)⊗k1 ⊗B(Λi2)⊗k2

are precisely the pairwise weakly increasing tensor products b1⊗b2⊗· · ·⊗bk ofB(Λi1)⊗k1⊗B(Λi2)⊗k2 .

All of the crystals in our work have classical decompositions that have been given by Chari (2001).
These crystals satisfy the requirement of Lemma 2.9 that at most two fundamental weights appear. On the
other hand, there exist examples showing that no ordering of the factors in B(Λ2) ⊗ B(Λ1) ⊗ B(Λ6) in
typeE6 admits an analogous weakly increasing condition that is defined using only pairwise comparisons.

We now restrict to type E6. Lemma 2.9 implies that we have a non-recursive description of all B(kΛi)
determined by the finite information in B(2Λi). In the case of particular fundamental representations, we
can be more specific about how to test for the weakly increasing condition.

Proposition 2.10 We have that b1 ⊗ b2 ∈ B(2Λ1) ⊂ B(Λ1)⊗2 if and only if b2 can be reached from b1
by a sequence of fi operations in B(Λ1).

Proof: This is a finite computation on B(2Λ1). 2

The crystal graph for B(Λ1) of Figure 2 can be viewed as a poset. Then Proposition 2.10 implies in
particular that incomparable pairs in B(Λ1) are not weakly increasing.

There are 78 nodes in B(Λ2). We construct B(Λ2) as the highest weight crystal graph generated by
21̄0̄ ⊗ 0̄1 inside B(Λ6) ⊗ B(Λ1). Note that we only need to use the nodes in the “top half” of Figure 2
and their duals. There are 2430 nodes in B(2Λ2).

Proposition 2.11 We have that

(b1 ⊗ c1)⊗ (b2 ⊗ c2) ∈ B(2Λ2) ⊂ (B(Λ6)⊗B(Λ1))⊗2

if and only if

(1) b2 can be reached from b1 by fi operations inB(Λ6), and c2 can be reached from c1 by fi operations
in B(Λ1), and

(2) Whenever c1 is dual to b2, we have that there is a path of fi operations from (b1 ⊗ c1) to (b2 ⊗ c2)
of length at least 1 (so in particular, the elements are not equal) in B(Λ2).

Proof: This is a finite computation on B(2Λ2). 2

3 Affine structures
In this section, we study the affine crystals of type E(1)

6 . We introduce the method of promotion to obtain
a combinatorial affine crystal structure in Section 3.1 and the notion of composition graphs in Section 3.2.
It is shown in Theorem 3.7 that order three twisted isomorphisms yield regular affine crystals. This is
used to construct Br,s of type E(1)

6 for the minuscule nodes r = 1, 6 and the adjoint node r = 2. We
summarize these results in Section 3.3 along with a conjecture for B1,s of type E(1)

7 .
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3.1 Combinatorial affine crystals and twisted isomorphisms
The following concept is fundamental to this work.

Definition 3.1 Let C̃ be an affine Dynkin diagram and C the associated finite Dynkin diagram (obtained
by removing node 0) with index set I . Let ṗ be an automorphism of C̃, and B be a classical crystal of
type C. We say that ṗ induces a twisted isomorphism of crystals if there exists a bijection of crystals
p : B ∪ {0} → B′ ∪ {0} satisfying

p(b) = 0 if and only if b = 0, and (2)

p ◦ fi(b) = fṗ(i) ◦ p(b) and p ◦ ei(b) = eṗ(i) ◦ p(b) (3)

for all i ∈ I \ {ṗ−1(0)} and all b ∈ B.
We frequently abuse notation and denote B′ by p(B) even though the isomorphism p : B → p(B) may

not be unique.
If we are given two classical crystalsB andB′, and there exists a Dynkin diagram automorphism ṗ that

induces a twisted isomorphism between B and B′, then we say that B and B′ are twisted-isomorphic.

Definition 3.2 Let B be a directed graph with edges labeled by I . Then B is called regular if for any
2-subset J ⊂ I , we have that the restriction of B to its J-arrows is a classical rank two crystal.

Definition 3.3 Let B be a classical crystal with index set I . Suppose B̃ is a labeled directed graph on the
same nodes as B and with the same I-arrows, but with an additional set of 0-arrows. If B̃ is regular with
respect to I ∪ {0}, then we say that B̃ is a combinatorial affine structure for B.

Remark 3.4 Although we do not assume that B̃ is a crystal graph for a U ′q(g)-module, Kashiwara
(2002, 2005) has shown that the crystals of such modules must be regular and have weights at level
0. Therefore, we compute the 0-weight λ0Λ0 of the nodes b in a classical crystal from the classical weight
λ =

∑
i∈I λiΛi = wt(b) using the formula given in Equation (1) (recall that I in this section is the index

set of the Dynkin diagram without 0).

Remark 3.5 Here are some consequences of Definitions 3.1 and 3.3.

(1) Any crystal p(B) induced by ṗ is just a classical crystal that is isomorphic to B up to relabeling. In
particular, any graph automorphism ṗ induces at least one twisted isomorphism p: If we view B as
an edge-labeled directed graph, the image of p is given on the same nodes as B by relabeling all of
the arrows according to ṗ. On the other hand, it is important to emphasize that there is no canonical
labeling for the nodes of p(B). Also, some crystal graphs may have additional symmetry which lead
to multiple twisted isomorphisms of crystals associated with a single graph automorphism ṗ.

(2) For b ∈ B, we have ϕ(p(b)) =
∑
i∈I ϕṗ−1(i)(b)Λi and ε(p(b)) =

∑
i∈I εṗ−1(i)(b)Λi. In addition,

we can compute the 0-weight of any node in B by Remark 3.4. Therefore, ṗ permutes all of the
affine weights, in the sense that

wti(b) = wtṗ(i)(p(b)) for all b ∈ B and i ∈ I ∪ {0} .
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(3) Since the node ṗ(0) becomes the affine node in p(B), it is sometimes possible to define a combina-
torial affine structure for B “by promotion.” Namely, we define f0 on B to be p−1 ◦ fṗ(0) ◦ p. Note
that in order for this to succeed, we must take the additional step of identifying the image p(B) with
a canonically labeled classical crystal so that we can infer the fṗ(0) edges.

Example 3.6 The E6 Dynkin diagram automorphism of order two that interchanges nodes 1 and 6 in-
duces the dual map between B(Λ1) and B(Λ6).

The Dynkin diagram of E(1)
6 has an automorphism of order three that we can use to construct combi-

natorial affine structures by promotion.

Theorem 3.7 Let B be a classical E6 crystal. Suppose there exists a bijection p : B → B that is a
twisted isomorphism satisfying p ◦ f1 = f6 ◦ p, and suppose that p has order three. Then, there exists a
combinatorial affine structure on B. This structure is given by defining f0 to be p2 ◦ f1 ◦ p.

Proof: If we apply p on the left and right of pf1 = f6p, we obtain ppf1p = pf6pp. Since p has order
three, this is

p−1f1p = pf6p
−1. (4)

Because p is a bijection on B, we may define 0-arrows on B by the map p−1f1p. By the hypotheses, p
must be induced by the unique Dynkin diagram automorphism ṗ of order three that sends node 0 to 1.

To verify that this affine structure satisfies Definition 3.3, we need to check that restricting B to {0, i}-
arrows is a crystal for all i ∈ I . Each of these restrictions corresponds to a rank 2 classical crystal, and
Stembridge has given local rules in Stembridge (2003) that characterize such classical crystals in simply
laced types. These rules depend only on calculations involving ϕi(b) and εi(b) at each node b ∈ B, and
these quantities are preserved by twisted isomorphism.

Hence, we obtain a combinatorial affine structure for B. 2

From now on, we use the notation p to denote a twisted isomorphism induced by ṗ sending

0 7→ 1 7→ 6 7→ 0, 2 7→ 3 7→ 5 7→ 2, 4 7→ 4.

Also, we let ṗ act on the affine weight lattice as in Remark 3.5(2).

3.2 Composition graphs
Let I = {1, 2, . . . , 6} be the index set for the Dynkin diagram of E6, and Ĩ = I ∪ {0} be the index set
of E(1)

6 . Suppose J ⊂ I . Consider a classical crystal B of the form
⊕
B(kΛ) where Λ is a fundamental

weight and we sum over some collection of nonnegative integers k. Let HJ(B) denote the (I \ J)-
highest weight nodes of B. We will study affine crystals with B as underlying classical crystal. For a
given such affine crystal, let HJ;0(B) be the (Ĩ \ J)-highest weight nodes. Using the level 0 hypothesis
of Remark 3.4, we can prove properties of HJ;0(B) for any given affine crystal with B as underlying
classical crystal.

Our general strategy to define a twisted isomorphism p on a classical crystal B is to first define p
on HJ(B), and then extend this definition to the rest of B using Equation (3). To accomplish this, we
introduce the following model for the nodes in HJ(B) and HJ;0(B).
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Definition 3.8 Fix J ⊂ I and form directed graphs GJ and GJ;0 as follows.
We construct the vertices of GJ and GJ;0 iteratively, beginning with all of the (I \ J)-highest weight

nodes of B(Λ). Then, we add all of the vertices b ∈ B(Λ) such that

{i ∈ I : εi(b) > 0} ⊂ J ∪ {i ∈ I : there exists b′ ∈ GJ with b ⊗ b′ pairwise
weakly increasing and ϕi(b′) > 0 }

to GJ . Moreover, if b also satisfies the property that there exists b′ ∈ GJ;0 with b ⊗ b′ pairwise weakly
increasing and wt0(b′) > 0 whenever wt0(b) < 0, then we add b to GJ;0. We repeat this construction
until no new vertices are added. This process eventually terminates since B(Λ) is finite.

The edges of GJ and GJ;0 are determined by the pairwise weakly increasing condition described in
Definition 2.1. Note that some nodes may have loops. We call GJ and GJ;0 the complete composition
graph for J and J ; 0, respectively.

Lemma 3.9 Every element of HJ(B) and HJ;0(B) is a pairwise weakly increasing tensor product of
vertices that form a directed path in GJ , respectively GJ;0, where the element in B(0) ⊂ HJ(B) is
identified with the empty tensor product.

3.3 Further results
Using composition graphs and the tableau model, we are able to prove the following result which gives
an affine structure for the Kirillov–Reshetikhin crystal B2,s.

Theorem 3.10 There exists a unique twisted isomorphism p :
⊕s

k=0B(kΛ2)→⊕s
k=0B(kΛ2) of order

three. This isomorphism sends an I \ {6}-highest weight node b from component k to the unique I \ {1}-
highest weight node b′ in component (s−k)+(wt2(b)+wt3(b)+wt5(b)) satisfying wtṗ(i)(b

′) = wti(b)
for each i ∈ {2, 3, 5}.

We also obtain analogous results for B1,s and B6,s. Furthermore, we provide a conjecture for the
adjoint crystal B1,s in type E(1)

7 .

Conjecture 3.11 Define p :
⊕s

k=0B(kΛ1) → ⊕s
k=0B(kΛ1) on the I \ {7}-highest weight nodes by

sending b ∈ B(kΛ1) to the unique I \ {7}-highest weight node b′ in component (s − k) + (wt1(b) +
wt2(b) + wt6(b)) satisfying wtṗ(i)(b

′) = wti(b) for each i ∈ {1, 2, 6}.
Let f0 = p ◦ f7 ◦ p. Then f0 commutes with f7 so we obtain a combinatorial affine structure on⊕s
k=0B(kΛ1), which is isomorphic to B1,s of type E(1)

7 .

We have verified this conjecture for s ≤ 2.
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Abstract. We provide formulas for the Weyl-Kac denominator and superdenominator of a basic classical Lie super-
algebra for a distinguished set of positive roots.

Résumé. Nous donnons les formules pour les dénominateurs et super-dénominateurs de Weyl-Kac d’une super-
algèbre de Lie basique classique pour un ensemble distingué de racines positives.

Keywords: Lie superalgebra, denominator identity, dual pair

1 Introduction
The Weyl denominator identity

∏

α∈∆+

(1− e−α) =
∑

w∈W
sgn(w) ew(ρ)−ρ (1.1)

is one of the most intriguing combinatorial identities in the character ring of a complex finite dimensional
simple Lie algebra. It admits far reaching generalizations to the Kac-Moody setting, where it provides a
proof for the Macdonald’s identities (including, as easiest cases, the Jacobi triple and quintuple product
identities). Its role in representation theory is well-understood, since the inverse of the l.h.s of (1.1) is the
character of the Verma module M(0) with highest weight 0.

The goal of the present paper is to provide an expression of the character M(0) in the case of a basic
classical Lie superalgebra; the analog of the l.h.s of (1.1) is the Weyl-Kac denominator [6]

R =

∏
α∈∆+

0
(1− e−α)

∏
α∈∆+

1
(1 + e−α)

. (1.2)

Here and in the remaining part of the Introduction we refer the reader to Section 2 for undefined notation.
Generalizations of formulas for R to affine superalgebras and their connection with number theory and
the theory of special functions are thoroughly discussed in [7]. The striking differences which make the
super case very different from the purely even one are the following. First, it is no more true that the sets

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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of positive roots are conjugate under the Weyl group (to get transitivity on the set of set of positive rootss
one has to consider Serganova’s odd reflections, which however play no role in this paper). In particular,
the denominator identity looks very different according to the chosen set of positive roots. Moreover the
restriction of the supersymmetric nondegenerate invariant bilinear form to the real span of roots may be
indefinite, hence isotropic sets of roots appear naturally. Indeed, one defines the defect d of g (notation
def g) as the dimension of a maximal isotropic subspace of

∑
α∈∆

Rα. It is shown in [7] that d equals the

cardinality of a maximal isotropic subset of ∆+ (a subset S ⊂ ∆+ is isotropic if it is formed by linearly
independent pairwise orthogonal isotropic roots).

Definition 1.1 We call a set of positive roots distinguished if the corresponding set of simple roots has
exactly one odd root.

Distinguished sets of positive roots exist for any basic classical Lie superalgebra; they are implicitly
classified in [5]. The main result of the paper is the following theorem.

Theorem 1.1 Let g = g0⊕g1 be a basic classical Lie superalgebra of defect d, where g = A(d−1, d−1)
is replaced by gl(d, d). Then, for any distinguished set of positive roots, we have

eρR =
1

C

∑

w∈W
sgn(w)w

eρ

(1 + e−γ1)(1− e−γ1−γ2) · · · (1 + (−1)n+1e−γ1−γ2−...−γd)
, (1.3)

eρŘ =
1

C

∑

w∈W
sgn′(w)w

eρ

(1− e−γ1)(1− e−γ1−γ2) · · · (1− e−γ1−γ2−...−γd)
(1.4)

where W is the Weyl group of g, {γ1, . . . , γd} is an explicitly defined maximal isotropic subset of ∆+ and
C is the following constant:

C =





1 if g = A(n,m),

2min{m,n} if g = B(m,n),

2n if g = D(m,n), m > n,

2m−1 if g = D(m,n), n ≥ m,
2 if g = D(2, 1, α), F (4), G(3).

(1.5)

A suitable modification of the previous statement holds for g of type A(d−1, d−1) too: see Remark 3.1.
The elements γi are defined in (3.11), (4.9) for types A, B, respectively.

Theorem 1.1 has been proved by Kac and Wakimoto in the defect 1 case [7] (see Theorem 3.1 below),
so we are reduced to discuss the cases in which the defect of g is greater than 1. Hence we have to deal
with superalgebras of type A(m,n), B(m,n), D(m,n). Our approach to these cases is based on the
analysis of the g0-module structure of the oscillator representation of the Weyl algebra W (g1) of g1. This
is done in Sections (3) and (4) relying on methods coming from the theory of Lie groups. More precisely
we use Howe theory of dual pairs, and results of Kashiwara-Vergne and Li-Paul-Than-Zhu which provide
explictly the Theta correspondence. The key result in this respect is Theorem 4.1. Proofs are only outlined
and sometimes skipped (mainly in the case of purely representation-theoretical results). We work out in
some detail the case A(m,n), where a simpler treatment using Cauchy formulas in place of Howe duality
is available: see Section 3.1. We also explain our general approach in typeB(m,n), providing a complete
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proof when m ≥ n and presenting an example to give the flavour of the general case when m < n. Type
D is not treated here at all. Finally, in Section 5 we reformulate our main Theorem in a form which leads
to a general conjecture for the expression of R, Ř for any set of positive roots, involving certain maximal
isotropic subsets S of positive roots. A purely combinatorial proof of this conjecture for some special
choices of S will appear in a forthcoming publication, publication, where we actually derive the theta
correspondence of [8] and [9] from the denominator identity.

2 Setup
In this Subsection we collect some notation and definitions which will be constantly used throughout the
paper. Let g be a basic classical Lie superalgebra. This means that g = g0 ⊕ g1 is a finite dimensional
simple Lie superalgebra such that g0 is a reductive Lie algebra and that g admits a nondegenerate invariant
supersymmetric bilinear form (·, ·) [5].

Recall that for a Lie superalgebra g the Casimir operator is defined as Ωg =
∑
i x

ixi if {xi} is a
basis of g and {xi} its dual basis w.r.t. (·, ·) (see [5, pag. 85]).Then Ωg acts on g as 2gIg, where g is
a constant. Choose a Cartan subalgebra h ⊂ g0, and let ∆,∆0,∆1 be the set of roots, even roots, odd
roots, respectively. Let W ⊂ GL(h∗) be the group generated by the reflections w.r.t. even roots. Choose
a set of positive roots ∆+ ⊂ ∆ and set ∆+

i = ∆i ∩ ∆+, i = 0, 1. Set also, as usual, for i = 0, 1,

ρi = 1
2

∑
α∈∆+

i
α, ρ = ρ0 − ρ1. Assume that g 6= 0. Then set ∆]

0 = {α ∈ ∆0 | g · (α, α) > 0} and let

W ] be the subgroup of W generated by the reflections in roots from ∆]
0. We refer to [7, Remark 1.1, b)]

for the definition of W ] when g = 0. Set

∆0 = {α ∈ ∆0 | 1
2α /∈ ∆}, ∆1 = {α ∈ ∆1 | (α, α) = 0}. (2.1)

Finally, for w ∈W , set

sgn(w) = (−1)`(w), sgn′(w) = (−1)m (2.2)

where ` is the usual length function on W and m is the number of reflections from ∆
+

0 occurring in an
expression of w.

Beyond the Weyl denominator R defined in (1.2) it will be very important for us the Weyl-Kac super-
denominator, defined as

Ř =

∏
α∈∆+

0
(1− e−α)

∏
α∈∆+

1
(1− e−α)

. (2.3)

As a notational convention, we denote by LX(µ) the irreducible highest weight module of highest
weight µ for a Lie algebra of type X .

3 Denominator formulas for distinguished set of positive roots
Kac and Wakimoto provided an expression for R, Ř for certain systems of positive roots.
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Theorem 3.1 Let g be a classical Lie superalgebras and let ∆+ be any set of positive roots such that a
maximal isotropic subset S of ∆+ is contained in the set of simple roots Π corresponding to ∆+. Then

eρR =
∑

w∈W ]

sgn(w)w
eρ∏

β∈S(1 + e−β)
, (3.1)

eρŘ =
∑

w∈W ]

sgn′(w)w
eρ∏

β∈S(1− e−β)
. (3.2)

This result has been stated in [7], and fully proved if |S| = 1 by using representation theoretical methods.
A complete combinatorial proof has recently been obtained by Gorelik [3]. Note that a distinguished set
of positive roots verifies the hypothesis of Theorem 3.1 if and only if def g = 1 (i.e., |S| = 1).

The choice of a set of positive roots ∆+determines a polarization g1 = g+
1 +g−1 , where g±1 =

⊕
α∈∆±1

gα.

Hence we can consider the Weyl algebra W (g1) of (g1, ( , )|g1
) and construct the W (g1)-module

M∆+

(g1) = W (g1)/W (g1)g+
1 , (3.3)

with action by left multiplication. The module M∆+

(g1) is also a sp(g1, ( , ))–module with T ∈
sp(g1, ( , )) acting by left multiplication by

θ(T ) = −1

2

dim g1∑

i=1

T (xi)x
i, (3.4)

where {xi} is any basis of g1 and {xi} is its dual basis w.r.t. ( , ). It is easy to check that, in W (g1),
relation

[θ(T ), x] = T (x) (3.5)

holds for any x ∈ g1. This implies that we have a h-module isomorphism

M∆+

(g1) ∼= S(g−1 )⊗ C−ρ1 (3.6)

where ρ1 is the half sum of positive odd roots and S(g−1 ) is the symmetric algebra of g−1 . Hence its
h-character is given by

chM∆+

(g1) =
e−ρ1∏

α∈∆+
1

(1− e−α)
. (3.7)

The key of our approach to the denominator formula is the following observation: since ad(g0) ⊂
sp(g1, ( , )), we obtain an action of g0 on M∆+

(g1). Upon multiplication by eρ0
∏
α∈∆+

0
(1 − e−α) the

r.h.s. of (3.7) becomes eρŘ and equating it with the g0-character of M∆+

(g1) one obtains our formula.
Our approach to the calculation of the g0-character of M∆+

(g1) is outlined in Section 4. Next we deal
the special case of type I Lie superalgebras (cf. [5]).
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3.1 Type I superalgebras
The key of our approach is the following fact, which is easily proved.

Lemma 3.2 Let g be a type I basic classical Lie superalgebra and let ∆+ be a distinguished set of positive
roots. Then g+

1 and g−1 are g0-modules.

Corollary 3.3 For type I superalgebras, we have

M∆+

(g1) ∼= S(g−1 )⊗ C−ρ1 (3.8)

as g0-modules.

The previous corollary reduces the problem of computing the g0-character of M∆+

(g1) to the calculation
of the g0-character of S(g−1 ). This latter character is well-known: for a uniform approach one might e.g.
refer to the work of Schmid [10].

We start discussing the denominator formula in typeA(m,n),m 6= n. Introduce the following notation:
h is the set of diagonal matrices in gl(m + 1|n + 1) with zero supertrace, {εi} is the standard basis of
(Cm+n+2)∗ and δi = εm+i+1, 1 ≤ i ≤ n+ 1.

It follows from the analysis made in [5, 2.5.4] that in this case there are two distinguished sets of positive
roots up to W -action: if we fix ∆+

0 = {εi − εj | 1 ≤ i < j ≤ m+ 1} ∪ {δi − δj | 1 ≤ i < j ≤ n+ 1},
and we set ∆+

1 = {εi − δj | 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1}, then the only distinguished sets of positive
roots containing ∆+

0 are ∆+
0 ∪∆+

1 and ∆+
0 ∪ −∆+

1 . The arguments which follow clearly hold for both
systems, hence we deal only with ∆+

0 ∪∆+
1 which we denote by ∆+

A (or just by ∆+). Its corresponding
set of simple roots is Π = {ε1 − ε2, ε2 − ε3, . . . , εm+1 − δ1, δ1 − δ2, . . . , δn − δn+1}.

By Corollary 3.3 we have to calculate the g0-character of S(g−1 ). Note that, according to our identifica-
tions, the action of g0 on g−1 is the natural action of {(A,B) ∈ gl(n+1)×gl(m+1) | tr(A)+tr(B) = 0}
on (Cn+1)∗ ⊗ Cm+1. Assume m > n. Cauchy formulas in our setting give

ch(S(g−1 )) = ch(S((Cn+1)∗ ⊗ Cm+1)) =
∑

λ

LAm(τ(λ))LAn(λ) (3.9)

where for λ1 ≥ λ2 ≥ . . . ≥ λn+1

λ =
n+1∑

i=1

λiδi, τ(λ) = −w0(
n+1∑

i=1

λiεi). (3.10)

and w0 is the longest element in the symmetric group W (Am). Set

γ1 = εm+1 − δ1, γ2 = εm − δ2, . . . . . . , γn+1 = εm−n+1 − δn+1. (3.11)

Then (3.8) and (3.9) imply

S(g−1 )⊗ C−ρ1 =
⊕

s1≥s2≥...≥sn+1

LAm×An(−ρ1 − s1γ1 − . . .− sn+1γn+1). (3.12)
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Denote by λs1,...,sn+1
the g0-dominant weight appearing in the r.h.s. of the above expression. Taking the

g0-supercharacter of both sides of (3.12) and using the Weyl character formula, we have

e−ρ1∏
β∈∆+

1

(1 + e−β)
=

∑

s1≥s2≥...≥sn+1

(−1)s1+s2+...+sn+1chLAm×An(λs1,...,sn+1
) = (3.13)

∑

s1≥s2≥...≥sn+1

(−1)s1+s2+...+sn+1

∑

w∈W
sgn(w)

ew(λs1,...,sn+1
+ρ0)

eρ0
∏

β∈∆+
0

(1− e−α)
.

Then, multiplying the first and last member of the equalities in (3.13) by eρ0
∏
β∈∆+

0
(1− e−β), we obtain

eρR =
∑

s1≥s2≥...≥sn+1

(−1)s1+s2+...+sn+1

∑

w∈W
sgn(w)ew(ρ−s1γ1−...−sn+1γn+1).

Hence we have proven formula (3.14) below, which is an instance of (1.3). Deriving the companion
formula (3.15) is even easier: start from

e−ρ1∏
β∈∆+

1

(1− e−β)
=

∑

s1≥s2≥...≥sn+1

chLAm×An(λs1,...,sn+1
)

and proceed as above. So we have proved the following proposition.

Proposition 3.4 Let g be a Lie superalgebra of type A(m,n),m > n. Then for a distinguished set of
positive roots we have:

eρR =
∑

w∈W
sgn(w)w

eρ

(1 + e−γ1)(1− e−γ1−γ2) · · · (1 + (−1)n+1e−γ1−γ2−...−γn+1)
, (3.14)

eρŘ =
∑

w∈W
sgn(w)w

eρ

(1− e−γ1)(1− e−γ1−γ2) · · · (1− e−γ1−γ2−...−γn+1)
. (3.15)

Remark 3.1 The above formulas hold clearly in gl(n+ 1, n+ 1), but do not restrict to sl(n+ 1, n+ 1),
since the last factor in the r.h.s. of (3.15) has a pole. Note that this factor is W -invariant, hence can be
taken out of the sum. Since the left hand side restricts to sl(n+ 1, n+ 1), the sum

∑

w∈W
sgn(w)w

eρ

(1− e−γ1)(1− e−γ1−γ2) · · · (1− e−γ1−γ2−...−γn)

is divisible by 1 − e−γ1−γ2−...−γn+1 . After simplifying, we may restrict to the Cartan subalgebra of
A(n, n) getting a superdenominator formula in this type too.

Remark 3.2 The above reasoning works also in type C. There are two distinguished sets of positive roots
(cf. [5, 2.5.4]), one being the opposite of the other. Using Corollary 3.3 and a theorem of Schmid [10] in
place of Cauchy formulas we get (1.3) and (1.4) in this case.
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4 The g0-character of M∆+

(g1) via compact dual pairs
We start discussing the possible distinguished root systems up to W -equivalence for type II Lie superal-
gebras of defect greater than 1, following [5].

In type B(m,n) there is a unique distinguished set of positive roots ∆+
B , which, with notation as in [5],

can be described as follows. We have, for 1 ≤ i 6= j ≤ m, 1 ≤ k 6= l ≤ n,

∆+
0 = {εi ± εj , εi, δk ± δl, 2δk}, ∆+

1 = {δk ± εi, δk}, (4.1)

∆
+

0 = {εi ± εj , εi, δk ± δl}, ∆
+

1 = {δk ± εi}, (4.2)
Π = {δ1 − δ2, . . . , δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm}, (4.3)
2ρ1 = (2m+ 1)(δ1 + . . .+ δn). (4.4)

Note that ±{εi ± εj , εi} is a root system of type Bm (which will be denoted by ∆(Bm)), that ±{δk ±
δl, 2δk} is a root system of type Cn (which will be denoted by ∆(Cn)) and that ±{δk − δl | 1 ≤ k 6= l ≤
n} is a root system of type An−1 (which will be denoted by ∆(An−1)).

In type D(m,n) there are three distinguished sets of positive roots ∆+
D1,∆

+
D2,∆

+
D2′ . The correspond-

ing sets of simple roots are

Π1 = {δ1 − δ2, . . . , δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm},
Π2 = {ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn},
Π′2 = {ε1 − ε2, . . . , εm−1 + εm,−εm − δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn}.

Theorem 4.1 The character ofM∆+

(g1) as a g0-module is afforded by the Theta correspondence for the
compact dual pairs (G1, G2) as in the following table

∆+ (G1, G2)

∆+
B (O(2m+ 1), Sp(2n,R))

∆+
A (U(m), U(n))

∆+
D1 (O(2m), Sp(2n,R))

∆+
D2 (Sp(m), O∗(2n))

∆+
D2′ (Sp(m), O∗(2n))

(4.5)

For a quick review of the Theta correspondence see e.g. [1]. The explicit Theta correspondence is provided
in [8] for the first, second and third dual pairs and in [9] for the fourth and fifth.

4.1 B(m,n),m ≥ n.
Theorem 7.2 of [8] and (3.7) give

chM∆+

(g1) =
e−ρ1∏

β∈∆+
1

(1− e−β)
= (4.6)

∑

a1≥a2≥...≥an≥0

chLCn(−(an +m+ 1
2 )δ1 − . . .− (a1 +m+ 1

2 )δn) chLBm(a1ε1 + . . .+ anεn).
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By [4, Theorem 9.2 a)], LCn(−(an + m + 1
2 )δ1 − . . . − (a1 + m + 1

2 )δn) is an irreducible parabolic
Verma module w.r.t. ∆(An−1). To prove irreducibility we have to show that if λ = −(an +m+ 1

2 )δ1 −
. . .− (a1 +m+ 1

2 )δn then

(λ+ ρCn , ψ) /∈ Z>0 ∀ψ ∈ ∆+(Cn) \∆+(An−1).

Since λ+ ρCn = (n− an−m− 1
2 )δ1 + (n− an−1−m− 3

2 )δ2 + . . .+ (−a1−m− 1
2 )δn, the condition

m ≥ n implies that all coefficients of the δi, δi + δj are not positive integers and the claim follows.
Therefore the character is given by

chLCn(−(an +m+ 1
2 )δ1 − . . .− (a1 +m+ 1

2 )δn)

=
chLAn−1(−(an +m+ 1

2 )δ1 − . . .− (a1 +m+ 1
2 )δn)∏

1≤k, l≤n
(1− e−(δk+δl))

=

∑
w∈W (An−1) sgn(w)weρ

An−1−(an+m+
1
2 )δ1−...−(a1+m+

1
2 )δn

∏
1≤k, l≤n

(1− e−(δk+δl)) · ∏
1≤k<l≤n

(1− e−(δk−δl))
(4.7)

where the second equality has been obtained using the Weyl character formula. Again Weyl formula
allows us to make explicit the character of LBm(a1ε1 + . . .+ anεn):

chLBm(a1ε1 + . . .+ anεn) =

∑
w∈W (Bm) sgn(w)weρ

Bm+a1ε1+...+anεn

∏
1≤i<j≤m

(1− e−(εi−εj))(1− e−(εi+εj))
m∏
i=1

(1− e−εi)
. (4.8)

Set now
γ1 = δn − ε1, γ2 = δn−1 − ε2, . . . , γn = δ1 − εn. (4.9)

Combining (4.6), (4.7),(4.8),(4.4) we obtain

Proposition 4.2 If γ1, . . . , γn are defined by (4.9), we have

eρR =
∑

w∈W (An−1)×W (Bm)

sgn(w)w
eρ

(1 + e−γ1)(1− e−(γ1+γ2)) · · · (1 + (−1)n+1e−(γ1+...+γn))
, (4.10)

eρŘ =
∑

w∈W (An−1)×W (Bm)

sgn(w)w
eρ

(1− e−γ1)(1− e−(γ1+γ2)) · · · (1− e−(γ1+...+γn))
. (4.11)

Remark 4.1 We want to prove that (4.11) coincides with (1.4). Recall that eρŘ is such that w(eρŘ) =
sgn′(w)eρŘ. Take g ∈ Γ = W (Cn)/W (An−1), i.e., a sign change on the δi, and compute:

∑

g∈Γ

sgn′(g)g(eρŘ) = 2neρŘ.

On the other hand, note that ΓW (An−1) = W (Cn), therefore if we apply
∑
g∈Γ sgn

′(g)g we get the
(suitably signed) summation over the full Weyl group W , and (4.11) becomes (1.4).
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4.2 B(2, 4).
This is a defect 2 case. By Kashiwara-Vergne theorem,

M∆+

(g1) =
∑

a1≥a2≥0

L(− 5
2δ1 − 5

2δ2 − ( 5
2 + a2)δ3 − ( 5

2 + a1)δ4)⊗ L(a1ε1 + a2ε2)+ (4.12)

∑

a1≥a2≥1

L(− 5
2δ1 − 7

2δ2 − ( 5
2 + a2)δ3 − ( 5

2 + a1)δ3)⊗ L(a1ε1 + a2ε2)

A computation with Kazhdan-Lusztig polynomials shows that we can write the sp(8,C)-modules appear-
ing in terms of the ∆(A3)-parabolic Verma modules whose highest weights shifted by ρC4 are

3
2δ1 + 1

2δ2 − ( 1
2 + a2)δ3 − ( 3

2 + a1)δ4, − 1
2δ1 − 3

2δ2 − ( 1
2 + a2)δ3 − ( 3

2 + a1)δ4, (4.13)
3
2δ1 − 1

2δ2 − ( 1
2 + a2)δ3 − ( 3

2 + a1)δ4,
1
2δ1 − 3

2δ2 − ( 1
2 + a2)δ3 − ( 3

2 + a1)δ4.

Hence we have

eρŘ =
∑

w∈W (A3)

∑

u∈A

∑

v∈W (B2)

sgn(w)sgn(v)w uv
eρ

(1− e−δ3+ε1)(1− e−δ3−δ4+ε1+ε2)
(4.14)

where A is a set of coset representatives related to the list (4.13). Now argue as in Remark 4.1. Take
g ∈ Γ = W (C4)/W (A3). On the one hand

∑
g∈Γ sgn

′(g)g(eρŘ) = 16eρŘ. On the other hand, note
that ΓW (A3) = ΓW (A3)A = W (C4), therefore if we apply

∑
g∈Γ sgn

′(g)g to the r.h.s. of (4.14) we
get four times the r.h.s. of (4.14). So

eρŘ =
1

4

∑

w∈W
sgn′(w)w

eρ

(1− e−δ3+ε1)(1− e−δ3−δ4+ε1+ε2)

proving (1.4) in this case. In the general case, the calculation of the KL-polynomials is replaced by the
use of a result of Enright on the u-homology of unitary highest weight modules (cf. [2]).

5 Final remarks
We would like to rephrase our main theorem in a form which seems most suitable for a generalization.
We need to single out a special maximal isotropic subset S of positive roots. Fix a distinguished set of
positive roots ∆+. Construct S = S1∪ . . .∪Sm = {γ1, . . . , γd}, d = def g, as follows: S1 is an isotropic
subset having maximal cardinality in the set of simple roots, and inductively Si is such a subset in the set
of indecomposable roots of S⊥i−1 \ Si−1. Define

γ≤i = {β ∈ S, β ≤ γi}, 〈γi〉 =
∑

β∈γ≤i

β, sgn(γi) = (−1)|γ
≤
i |+1 (5.1)

where as usual α ≤ β if β−α is a sum of positive roots. This procedure determines uniquely S once ∆+

is fixed (up to a mild exception in type D) and gives rise to the set {γ1, . . . , γd} of Theorem 1.1.
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Theorem 5.1 Let g = g0⊕g1 be a basic classical Lie superalgebra of defect d, where g = A(d−1, d−1)
is replaced by gl(d, d). Then, for any distinguished set of positive roots, if S is as above, we have

eρR =
1

C

∑

w∈W
sgn(w)w

eρ
∏d
i=1(1 + sgn(γi)e−〈γi〉)

, (5.2)

eρŘ =
1

C

∑

w∈W
sgn′(w)w

eρ
∏d
i=1(1− e−〈γi〉)

, (5.3)

where C is defined in (1.5).

We would like to remark that the above statement holds true in the hypothesis of Kac-Wakimoto-Gorelik
theorem (in which case e−〈γi〉 = e−γi and C = |W/W ]|).

Denote by Q, Q0 the lattices generated by all roots and even roots, respectively. Set

ε(η) =

{
1 if η ∈ Q0

−1 if η ∈ Q \Q0

, ||γ|| =
∑

β∈γ≤
ε(γ − β)β.

Note that for the γi appearing in (5.2), (5.3) the equality 〈γi〉 = ||γi|| holds. We modify the construction
of S as follows: S1 is an isotropic subset having maximal cardinality in a maximal subdiagram of type
A of odd cardinality having only odd simple roots, and inductively Si is such a subset in the set of
indecomposable roots of S⊥i−1 \ Si−1. This time the choice of S is not unique.

Conjecture 5.2 Let g be a basic classical Lie superalgebra of defect d, where g = A(d − 1, d − 1) is
replaced by gl(d, d), and ∆+ any set of positive roots. Let S be any maximal isotropic subset of ∆+ built
up as above. Then

eρR =
1

K

∑

w∈W
sgn(w)w

eρ
∏d
i=1(1 + sgn(γi)e−||γi||)

,

eρŘ =
1

K

∑

w∈W
sgn′(w)w

eρ
∏d
i=1(1− e−||γi||)

,

where

K =
C d!

∏
γ∈S

ht(γ)+1
2

,

C is defined in (1.5) and ht(γ) denotes the height of the root γ w.r.t. to the simple roots corresponding
to ∆+. Moreover, there exists a choice of S for which ||γi|| is a linear combination with non negative
coefficients of positive roots for any i = 1, . . . , d.
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Chain enumeration of k-divisible noncrossing
partitions of classical types

Jang Soo Kim†

LIAFA, Université Paris Diderot, 175 rue du Chevaleret, 75013 Paris, France

Abstract. We give combinatorial proofs of the formulas for the number of multichains in the k-divisible noncrossing
partitions of classical types with certain conditions on the rank and the block size due to Krattenthaler and Müller. We
also prove Armstrong’s conjecture on the zeta polynomial of the poset of k-divisible noncrossing partitions of type A
invariant under the 180◦ rotation in the cyclic representation.

Résumé. Nous donnons une preuve combinatoire de la formule pour le nombre de multichaı̂nes dans les partitions
k-divisibles non-croisées de type classique avec certaines conditions sur le rang et la taille du bloc due à Krattenthaler
et Müller. Nous prouvons aussi la conjecture d’Amstrong sur le polynôme zeta du poset des partitions k-divisibles
non-croisées de type A invariantes par la rotation de 180◦ dans la représentation cyclique.

Keywords: noncrossing partitions, chain enumeration

1 Introduction
For a finite set X , a partition of X is a collection of mutually disjoint nonempty subsets, called blocks, of
X whose union isX . Let Π(n) denote the poset of partitions of [n] = {1, 2, . . . , n} ordered by refinement,
i.e. π ≤ σ if each block of σ is a union of blocks of π. There is a natural way to identify π ∈ Π(n) with an
intersection of reflecting hyperplanes of the Coxeter group An−1. For this reason, we will call π ∈ Π(n)
a partition of type An−1. With this observation Reiner [12] defined partitions of type Bn and type Dn as
follows. A partition of type Bn is a partition π of [±n] = {1, 2, . . . , n,−1,−2, . . . ,−n} such that if B
is a block of π then −B = {−x : x ∈ B} is also a block of π, and there is at most one block, called zero
block, which satisfies B = −B. A partition of type Dn is a partition of type Bn such that its zero block,
if exists, has more than two elements. Let ΠB(n) (resp. ΠD(n)) denote the poset of type Bn (resp. type
Dn) partitions ordered by refinement.

A noncrossing partition of type An−1, or simply a noncrossing partition, is a partition π ∈ Π(n) with
the following property: if integers a, b, c and d with a < b < c < d satisfy a, c ∈ B and b, d ∈ B′ for
some blocks B and B′ of π, then B = B′.

Let k be a positive integer. A noncrossing partition is called k-divisible if the size of each block is
divisible by k. Let NC(n) (resp. NC(k)(n)) denote the subposet of Π(n) (resp. Π(kn)) consisting of the
noncrossing partitions (resp. k-divisible noncrossing partitions).
†The author was supported by the grant ANR08-JCJC-0011.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Bessis [4], Brady and Watt [5] defined the generalized noncrossing partition poset NC(W ) for each fi-
nite Coxeter group W , which satisfies NC(An−1) ∼= NC(n). Armstrong [1] defined the poset NC(k)(W )
of generalized k-divisible noncrossing partitions for each finite Coxeter group W , which reduces to
NC(W ) for k = 1 and satisfies NC(k)(An−1) ∼= NC(k)(n).

For each classical Coxeter group W , we have a combinatorial realization of NC(k)(W ). In other
words, similar to NC(n) and NC(k)(n), there are combinatorial posets NCB(n) ⊂ ΠB(n), NC

(k)
B (n) ⊂

ΠB(kn), NCD(n) ⊂ ΠD(n) and NC
(k)
D (n) ⊂ ΠD(kn), which are isomorphic to NC(Bn), NC(k)(Bn),

NC(Dn) and NC(k)(Dn) respectively. Reiner [12] defined the poset NCB(n) of noncrossing partitions
of type Bn, which turned out to be isomorphic to NC(Bn). This poset is naturally generalized to the
poset NC

(k)
B (n) of k-divisible noncrossing partitions of type Bn. Armstrong [1] showed that NC

(k)
B (n) ∼=

NC(k)(Bn). Athanasiadis and Reiner [3] defined the poset NCD(n) of noncrossing partitions of type Dn

and showed that NCD(n) ∼= NC(Dn). Krattenthaler [10] defined the poset NC
(k)
D (n) of the k-divisible

noncrossing partitions of type Dn using annulus and showed that NC
(k)
D (n) ∼= NC(k)(Dn); see also [9].

In this paper we are mainly interested in the number of multichains in NC(k)(n), NC
(k)
B (n) and

NC
(k)
D (n) with some conditions on the rank and the block size.

Definition 1. For a multichain π1 ≤ π2 ≤ · · · ≤ π` in a graded poset P with the maximum element 1̂,
the rank jump vector of this multichain is the vector (s1, s2, . . . , s`+1), where s1 = rank(π1), s`+1 =
rank(1̂)− rank(π`) and si = rank(πi)− rank(πi−1) for 2 ≤ i ≤ `.

We note that all the posets considered in this paper are graded with the maximum element, however,
they do not necessarily have the minimum element. We also note that the results in this introduction have
certain ‘obvious’ conditions on the rank jump vector or the block size, which we will omit for simplicity.

Edelman [6, Theorem 4.2] showed that the number of multichains in NC(k)(n) with rank jump vector
(s1, s2, . . . , s`+1) is equal to

1

n

(
n

s1

)(
kn

s2

)
· · ·
(
kn

s`+1

)
. (1)

Modifying Edelman’s idea of the proof of (1), Reiner found an analogous formula for the number of
multichains in NCB(n) with given rank jump vector. Later, Armstrong generalized Reiner’s idea to find
the following formula [1, Theorem 4.5.7] for the number of multichains in NC

(k)
B (n) with rank jump

vector (s1, s2, . . . , s`+1): (
n

s1

)(
kn

s2

)
· · ·
(
kn

s`+1

)
. (2)

Athanasiadis and Reiner [3, Theorem 1.2] proved that the number of multichains in NCD(n) with rank
jump vector (s1, s2, . . . , s`+1) is equal to

2

(
n− 1

s1

)(
n− 1

s2

)
· · ·
(
n− 1

s`+1

)
+
`+1∑

i=1

(
n− 1

s1

)
· · ·
(
n− 2

si − 2

)
· · ·
(
n− 1

s`+1

)
. (3)

To prove (3), they [3, Lemma 4.4] showed the following using incidence algebras and the Lagrange
inversion formula: the number of multichains π1 ≤ π2 ≤ · · · ≤ π` in NCB(n) with rank jump vector
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(s1, s2, . . . , s`+1) such that i is the smallest integer for which πi has a zero block is equal to

si
n

(
n

s1

)(
n

s2

)
· · ·
(

n

s`+1

)
. (4)

Since (4) is quite simple and elegant, it deserves a combinatorial proof. In this paper we prove a general-
ization of (4) combinatorially; see Lemma 11.

The number of noncrossing partitions with given block sizes has been studied as well. In the literature,
for instance [1, 2, 3], type(π) for π ∈ Π(n) is defined to be the integer partition λ = (λ1, λ2, . . . , λ`)
where the number of parts of size i is equal to the number of blocks of size i of π. However, to state the
results in a uniform way, we will use the following different definition of type(π).

Definition 2. The type of a partition π ∈ Π(n), denoted by type(π), is the sequence (b; b1, b2, . . . , bn)
where bi is the number of blocks of π of size i and b = b1 + b2 + · · · + bn. The type of π ∈ ΠB(n) (or
π ∈ ΠD(n)), denoted by type(π), is the sequence (b; b1, b2, . . . , bn) where bi is the number of unordered
pairs (B,−B) of nonzero blocks of π of size i and b = b1 + b2 + · · · + bn. For a partition π in either
Π(kn), ΠB(kn) or ΠD(kn), if the size of each block of π is divisible by k, then we define the k-type
type(k)(π) of π to be (b; bk, b2k, . . . , bkn) where type(π) = (b; b1, b2, . . . , bkn).

Kreweras [11, Theorem 4] proved that the number of π ∈ NC(n) with type(π) = (b; b1, b2, . . . , bn) is
equal to

n!

b1!b2! · · · bn!(n− b+ 1)!
=

1

b

(
b

b1, b2, . . . , bn

)(
n

b− 1

)
. (5)

Athanasiadis [2, Theorem 2.3] proved that the number of π ∈ NCB(n) with type(π) = (b; b1, b2, . . . , bn)
is equal to

n!

b1!b2! · · · bn!(n− b)! =

(
b

b1, b2, . . . , bn

)(
n

b− 1

)
. (6)

Athanasiadis and Reiner [3, Theorem 1.3] proved that the number of π ∈ NCD(n) with type(π) =
(b; b1, b2, . . . , bn) is equal to

(n− 1)!

b1!b2! · · · bn!(n− 1− b)! =

(
b

b1, b2, . . . , bn

)(
n− 1

b− 1

)
, (7)

if b1 + 2b2 + · · ·+ nbn ≤ n− 2, and

(2(n− b) + b1)
(n− 1)!

b1!b2! · · · bn!(n− b)!

= 2

(
b

b1, b2, . . . , bn

)(
n− 1

b

)
+

(
b− 1

b1 − 1, b2, . . . , bn

)(
n− 1

b− 1

)
, (8)

if b1 + 2b2 + · · ·+ nbn = n.
Armstrong [1, Theorem 4.4.4 and Theorem 4.5.11] generalized (5) and (6) as follows: the number of

multichains π1 ≤ π2 ≤ · · · ≤ π` in NC(k)(n) and in NC
(k)
B (n) with type(k)(π1) = (b; b1, b2, . . . , bn)

are equal to, respectively,

(`kn)!

b1!b2! · · · bn!(`kn− b+ 1)!
=

1

b

(
b

b1, b2, . . . , bn

)(
`kn

b− 1

)
, (9)
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and
(`kn)!

b1!b2! · · · bn!(`kn− b)! =

(
b

b1, b2, . . . , bn

)(
`kn

b

)
. (10)

Krattenthaler and Müller [9] generalized all the above known results except (4) in the following three
theorems.

Theorem 1. [9, Corollary 12] Let b, b1, b2, . . . , bn and s1, s2, . . . , s`+1 be nonnegative integers satis-
fying

∑n
i=1 bi = b,

∑n
i=1 i · bi = n,

∑`+1
i=1 si = n − 1 and s1 = n − b. Then the number of multi-

chains π1 ≤ π2 ≤ · · · ≤ π` in NC(k)(n) with rank jump vector (s1, s2, . . . , s`+1) and type(k)(π1) =
(b; b1, b2, . . . , bn) is equal to

1

b

(
b

b1, b2, . . . , bn

)(
kn

s2

)
· · ·
(
kn

s`+1

)
.

Theorem 2. [9, Corollary 14] Let b, b1, b2, . . . , bn and s1, s2, . . . , s`+1 be nonnegative integers satisfying∑n
i=1 bi = b,

∑n
i=1 i · bi ≤ n,

∑`+1
i=1 si = n and s1 = n− b. Then the number of multichains π1 ≤ π2 ≤

· · · ≤ π` in NC
(k)
B (n) with rank jump vector (s1, s2, . . . , s`+1) and type(k)(π1) = (b; b1, b2, . . . , bn) is

equal to (
b

b1, b2, . . . , bn

)(
kn

s2

)
· · ·
(
kn

s`+1

)
.

Theorem 3. [9, Corollary 16] Let b, b1, b2, . . . , bn and s1, s2, . . . , s`+1 be nonnegative integers satisfying∑n
i=1 bi = b,

∑n
i=1 i · bi ≤ n,

∑n
i=1 i · bi 6= n − 1,

∑`+1
i=1 si = n and s1 = n − b. Then the

number of multichains π1 ≤ π2 ≤ · · · ≤ π` in NC
(k)
D (n) with rank jump vector (s1, s2, . . . , s`+1)

and type(k)(π1) = (b; b1, b2, . . . , bn) is equal to
(

b

b1, b2, . . . , bn

)(
k(n− 1)

s2

)
· · ·
(
k(n− 1)

s`+1

)
,

if b1 + 2b2 + · · ·+ nbn ≤ n− 2, and

2

(
b

b1, b2, . . . , bn

)(
k(n− 1)

s2

)
· · ·
(
k(n− 1)

s`+1

)

+
si − 1

b− 1

(
b− 1

b1 − 1, b2, . . . , bn

) `+1∑

i=2

(
k(n− 1)

s2

)
· · ·
(
k(n− 1)

si − 1

)
· · ·
(
k(n− 1)

s`+1

)
,

if b1 + 2b2 + · · ·+ nbn = n.

Krattenthaler and Müller’s proofs of Theorems 1, 2 and 3 were not combinatorial. Especially, in the
introduction, they wrote that Theorems 1 and 2 seem amenable to combinatorial proofs, however, to find a
combinatorial proof of Theorem 3 seems rather hopeless. In this paper, we will give combinatorial proofs
of Theorems 1 and 2. For a combinatorial proof of Theorem 3, see the full version [8] of this paper.

This paper is organized as follows. In Section 2 we recall the definition of NCB(n) and NCD(n). In
Section 3 we recall the bijection ψ in [7] between NCB(n) and the set of pairs (σ, x), where σ ∈ NC(n)
and x is either ∅, an edge or a block of σ. Then we find a necessary and sufficient condition for the two



682 Jang Soo Kim

1

2

3

4

56

7

8

9

10

Fig. 1: The circular representation of {{1, 2, 5, 10}, {3, 4}, {6, 7, 9}, {8}}.

pairs (σ1, x1) and (σ2, x2) to be ψ−1(σ1, x1) ≤ ψ−1(σ2, x2) in the poset NCB(n). This property will
play a crucial role to prove Theorem 3. In Section 4 we prove Theorem 1 by modifying the argument
of Edelman [6]. For 0 < r < k, we consider the subposet NC(k)(n; r) of NC(nk + r) consisting
of the partitions π such that all but one blocks of π have sizes divisible by k. Then we prove similar

chain enumeration results for NC(k)(n; r). We also prove that the poset ÑC
(2k)

(2n + 1) suggested
by Armstrong is isomorphic to NC(2k)(n; k). With this, we prove Armstrong’s conjecture on the zeta

polynomial of ÑC
(2k)

(2n+ 1) and answer the question on rank-, type-selection formulas [1, Conjecture
4.5.14 and Open Problem 4.5.15]. In Section 5 we prove a generalization of (4) and Theorem 2. All the
arguments in this paper are purely combinatorial.

2 Noncrossing partitions of classical types
Recall that Π(n) denotes the poset of partitions of [n] and ΠB(n) (resp. ΠD(n)) denotes the poset of
partitions of type Bn (resp. Dn). For simplicity, we will write a partition of type Bn or Dn in the
following way:

{±{1,−3, 6}, {2, 4,−2,−4},±{5, 8},±{7}},
which means

{{1,−3, 6}, {−1, 3,−6}, {2, 4,−2,−4}, {5, 8}, {−5,−8}, {7}, {−7}}.

The circular representation of π ∈ Π(n) is the drawing obtained as follows. Arrange n vertices around
a circle which are labeled with the integers 1, 2, . . . , n. For each blockB of π, draw the convex hull of the
vertices whose labels are the integers in B. For example, see Figure 1. It is easy to see that the following
definition coincides with the definition of a noncrossing partition in the introduction: π is a noncrossing
partition if the convex hulls in the circular representation of π do not intersect.

Let π ∈ ΠB(n). The circular representation of π is the drawing obtained as follows. Arrange 2n
vertices in a circle which are labeled with the integers 1, 2, . . . , n,−1,−2, . . . ,−n. For each block B of
π, draw the convex hull of the vertices whose labels are the integers inB. For example, see Figure 2. Note
that the circular representation of π ∈ ΠB(n) is invariant, if we do not concern the labels, under the 180◦

rotation, and the zero block of π, if exists, corresponds to the convex hull containing the center. Then π is
a noncrossing partition of type Bn if the convex hulls do not intersect.

Let π ∈ ΠD(n). The circular representation of π is the drawing obtained as follows. Arrange 2n − 2
vertices labeled with 1, 2, . . . , n − 1,−1,−2, . . . ,−(n − 1) in a circle and put a vertex labeled with ±n
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1

−1

2

−2

3−3

4

−4

5

−5 1

−1
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3−3

4

−4

5

−5

Fig. 2: The circular representations of {±{1, 4,−5},±{2, 3}} and {{1, 4, 5,−1,−4,−5},±{2, 3}}.

1

−1

2

−2

3
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−7
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−1
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−2

3

−3 4

−4

5

−5

6

−6

7

−7

Fig. 3: The type D circular representations of {±{1,−5,−6},±{2, 4,−7},±{3}} and
{{1, 6,−1,−6},±{2, 4, 5},±{3}}.

at the center. For each block B of π, draw the convex hull of the vertices whose labels are in B. Then π
is a noncrossing partition of type Dn if the convex hulls do not intersect in their interiors. For example,
see Figure 3.

Let π ∈ Π(n). An edge of π is a pair (i, j) of integers with i < j such that i, j ∈ B for a block
B of π and there is no other integer k in B with i < k < j. The standard representation of π is the
drawing obtained as follows. Arrange the integers 1, 2, . . . , n in a horizontal line. For each edge (i, j) of
π, connect the integers i and j with an arc above the horizontal line. For example, see Figure 4. Then π is
a noncrossing partition if and only if the arcs in the standard representation do not intersect.

Let π ∈ ΠB(n). The standard representation of π is the drawing obtained as follows. Arrange the
integers 1, 2, . . . , n,−1,−2, . . . ,−n in a horizontal line. Then connect the integers i and j with an arc
above the horizontal line for each pair (i, j) of integers such that i, j are in the same block B of π and
there is no other integer in B between i and j in the horizontal line. For example, see Figure 5. Then π is
a noncrossing partition of type Bn if and only if the arcs in the standard representation do not intersect.

Let NCB(n) denote the subposet of ΠB(n) consisting of the noncrossing partitions of type Bn. Note

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4: The standard representation of {{1, 2, 5, 10}, {3, 4}, {6, 7, 9}, {8}, {11}, {12, 14}, {13}}.
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1 2 3 4 5 6 7 8 −1−2−3−4−5−6−7−8

Fig. 5: The standard representation of {±{1, 2,−8},±{3,−7},±{4, 5},±{6}}.

1 2 3 4 5 6 7 8

Fig. 6: The partition τ obtained from the partition π in Figure 5 by removing all the negative integers. Then X =
{{1, 2}, {3}, {7}, {8}} is the set of blocks of τ which are not blocks of π.

that for π ∈ NCB(n), rank(π) = n−nz(π), where nz(π) denotes the number of unordered pairs (B,−B)
of nonzero blocks of π.

3 Interpretation of noncrossing partitions of type Bn

Let B(n) denote the set of pairs (σ, x), where σ ∈ NC(n) and x is either ∅, an edge or a block of σ. Note
that since for each σ ∈ NC(n), we have n+ 1 choices for x with (σ, x) ∈ B(n), one may consider B(n)
as NC(n)× [n+ 1].

Let us recall the bijection ψ : NCB(n)→ B(n) in [7].
Let π ∈ NCB(n). Then let τ be the partition of [n] obtained from π by removing all the negative

integers and let X be the set of blocks of τ which are not blocks of π. For example, see Figure 6. Now
assume that X has k blocks A1, A2, . . . , Ak with max(A1) < max(A2) < · · · < max(Ak). Let σ be the
partition obtained from τ by unioning Ar and Ak+1−r for all r = 1, 2, . . . , b(k − 1)/2c. Let

x =




∅, if k = 0;
(min(Ak/2),max(Ak/2+1)), if k 6= 0 and k is even;
A(k+1)/2, if k is odd.

Then we define ψ(π) to be the pair (σ, x). For example, see Figure 7.

Theorem 4. [7] The map ψ : NCB(n) → B(n) is a bijection. Moreover, for π ∈ NCB(n) with
type(π) = (b; b1, b2, . . . , bn) and ψ(π) = (σ, x), we have type(σ) = type(π) if π does not have a zero
block; and type(σ) = (b+ 1; b1, . . . , bi + 1, . . . , bn) if π has a zero block of size 2i.

Now we will find a necessary and sufficient condition for (σ1, x1), (σ2, x2) ∈ B(n) to beψ−1(σ1, x1) ≤
ψ−1(σ2, x2) in NCB(n).

1 2 3 4 5 6 7 8

Fig. 7: The partition σ obtained from the partition τ in Figure 5 by unioning {1, 2}, {8} and {3}, {7} which
are the blocks in X = {{1, 2}, {3}, {7}, {8}}. Since X has even number of blocks, x is the edge (3, 7). Then
ψ(π) = (σ, x) for the partition π in Figure 5.
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For a partition π (either in Π(n) or in ΠB(n)), we write i π∼ j if i and j are in the same block of π and

i
π

6∼ j otherwise. Note that if ψ(π) = (σ, x), then we have i σ∼ j if and only if i π∼ j or i π∼ −j. The
following lemmas are clear from the construction of ψ.

Proposition 5. Let ψ(π1) = (σ1, x1) and ψ(π2) = (σ2, x2). Then π1 ≤ π2 if and only if σ1 ≤ σ2 and
one of the following holds:

1. x1 = x2 = ∅,

2. x2 is an edge (a, b) of σ2 and x1 is the unique minimal length edge (i, j) of σ1 with i ≤ a < b ≤ j
if such an edge exists; and x1 = ∅ otherwise.

3. x2 is a block of σ2, and x1 is a block of σ1 with x1 ⊂ x2,

4. x2 is a block of σ2 and x1 is an edge (i, j) of σ1 with i, j ∈ x2.

5. x2 is a block of σ2 and x1 is the minimal length edge (i, j) of σ1 with i < min(x2) ≤ max(x2) < j
if such an edge exists; and x1 = ∅ otherwise.

4 k-divisible noncrossing partitions of type A

Let k be a positive integer. A noncrossing partition π ∈ NC(kn) is k-divisible if the size of each block
is divisible by k. Let NC(k)(n) denote the subposet of NC(kn) consisting of k-divisible noncrossing
partitions. Then NC(k)(n) is a graded poset with the rank function rank(π) = n − bk(π), where bk(π)
is the number of blocks of π.

To prove (1), Edelman [6] found a bijection between the set of pairs (c, a) of a multichain c : π1 ≤
π2 ≤ · · · ≤ π`+1 in NC(k)(n) with rank jump vector (s1, s2, . . . , s`+1) and an integer a ∈ [n] and the set
of (` + 1)-tuples (L,R1, R2, . . . , R`) with L ⊂ [n], |L| = n − s1, Ri ⊂ [kn], and |Ri| = si for i ∈ [`].
This bijection has been extended to the noncrossing partitions of type Bn [1, 12] and type Dn [3].

In this section we prove Theorem 1 by modifying the idea of Edelman. Let us first introduce several
notations.

4.1 The cyclic parenthesization
Let P (n) denote the set of pairs (L,R) of subsets L,R ⊂ [n] with the same cardinality. Let (L,R) ∈
P (n). We can identify (L,R) with the cyclic parenthesization of (L,R) defined as follows. We place a
left parenthesis before the occurrence of i for each i ∈ L and a right parenthesis after the occurrence of i
for each i ∈ R in the sequence 1, 2, . . . , n. We consider this sequence in cyclic order.

For x ∈ R, the size of x is defined to be the number of integers enclosed by x and its corresponding
left parenthesis, which are not enclosed by any other matching pair of parentheses. The type of (L,R),
denoted by type(L,R), is defined to be (b; b1, b2, . . . , bn), where bi is the number of x ∈ R whose sizes
are equal to i and b = b1 + b2 + · · ·+ bn.

Example 1. Let (L,R) = ({2, 3, 9, 11, 15, 16}, {1, 4, 5, 8, 9, 12}) ∈ P (16). Then the cyclic parenthe-
sization is the following:

1) (2 (3 4) 5) 6 7 8) (9) 10 (11 12) 13 14 (15 (16 (11)
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Since we consider (11) in the cyclic order, the right parenthesis of 1 is matched with the left parenthesis
of 16 and the right parenthesis of 8 is matched with the left parenthesis of 15. The sizes of 5 and 8 in R
are 2 and 4 respectively. We have type(L,R) = (6; 1, 4, 0, 1, 0, . . . , 0).

Let P (n) denote the set of elements (L,R) ∈ P (n) such that the type (b; b1, b2, . . . , bn) of (L,R)
satisfies

∑n
i=1 ibi < n. Thus we have (L,R) ∈ P (n) if and only if there is at least one integer in the

cyclic parenthesization of (L,R) which is not enclosed by any matching pair of parentheses.
We define a map τ from P (n) to the set of pairs (B, π), where π ∈ NC(n) and B is a block of π as

follows. Let (L,R) ∈ P (n). Find a matching pair of parentheses in the cyclic parenthesization of (L,R)
which do not enclose any other parenthesis. Remove the integers enclosed by these parentheses, and make
a block of π with there integers. Repeat this procedure until there is no parenthesis. Since (L,R) ∈ P (n),
we have several remaining integers after removing all the parentheses. These integers also form a block
of π and B is defined to be this block.

Example 2. Let (L,R) be the pair in Example 1 represented by (11). Note that (L,R) ∈ P (16). Then
τ(L,R) = (B, π), where π consists of the blocks {1, 16}, {2, 5}, {3, 4}, {6, 7, 8, 15}, {9}, {11, 12} and
{10, 13, 14}, and B = {10, 13, 14}.
Proposition 6. The map τ is a bijection between P (n) and the set of pairs (B, π), where π ∈ NC(n)
and B is a block of π. Moreover, if τ(L,R) = (B, π), type(π) = (b; b1, b2, . . . , bn) and |B| = j, then
type(L,R) = (b− 1, b1, . . . , bj − 1, . . . , bn).

We define P (n, `) to be the set of (`+1)-tuples (L,R1, R2, . . . , R`) such that L,R1, R2, . . . , R` ⊂ [n]
and |L| = |R1| + |R2| + · · · + |R`|. Similarly, we can consider the labeled cyclic parenthesization
of (L,R1, R2, . . . , R`) by placing a left parenthesis before i for each i ∈ L and right parentheses
)j1)j2 · · · )jt labeled with j1 < j2 < · · · < jt after i if Rj1 , Rj2 , . . . , Rjt are the sets containing i
among R1, R2, . . . , R`. For each element x ∈ Ri, the size of x is defined in the same way as in the case
of (L,R). We define the type of (L,R1, R2, . . . , R`) similarly to the type of (L,R).

Example 3. Let T = (L,R1, R2) = ({2, 4, 5}, {2}, {2, 6}) ∈ P (7, 2). Then the labeled cyclic parenthe-
sization of T is the following:

1 (2)1)2 3 (4 (5 6)2 7 (12)

Then the size of 2 ∈ R1 is 1, the size of 2 ∈ R2 is 3 and the size of 6 ∈ R2 is 2. Thus the type of T is
(3; 1, 1, 1, 0, . . . , 0).

Lemma 7. Let b, b1, b2, . . . , bn and c1, c2, . . . , c` be nonnegative integers with b = b1 + b2 + · · ·+ bn =
c1+c2+· · ·+c`. Then the number of elements (L,R1, R2, . . . , R`) in P (n, `) with type (b; b1, b2, . . . , bn)
and |Ri| = ci for i ∈ [`] is equal to

(
b

b1, b2, . . . , bn

)(
n

c1

)(
n

c2

)
· · ·
(
n

c`

)
.

Let P (n, `) denote the set of (L,R1, R2, . . . , R`) ∈ P (n, `) such that the type (b; b1, b2, . . . , bn) of
(L,R1, R2, . . . , R`) satisfies

∑n
i=1 ibi < n.

Using τ , we define a map τ ′ from P (n, `) to the set of pairs (B, c), where c : π1 ≤ π2 ≤ · · · ≤ π` is
a multichain in NC(n) and B is a block of π1 as follows. Let P = (L,R1, R2, . . . , R`) ∈ P (n, `). Ap-
plying the same argument as in the case of τ to the labeled cyclic parenthesization of P , we get (B1, π1).
Then remove all the right parentheses in R1 from the cyclic parenthesization and their corresponding left
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parentheses. By repeating this procedure, we get (Bi, πi) for i = 2, 3, . . . , `. Then we obtain a multichain
c : π1 ≤ π2 ≤ · · · ≤ π` in NC(n). We define τ ′(P ) = (B1, c).

Proposition 8. The map τ ′ is a bijection between P (n, `) and the set of pairs (B, c) where c : π1 ≤ π2 ≤
· · · ≤ π` is a multichain in NC(n) and B is a block of π1. Moreover, if τ ′(L,R1, R2, . . . , R`) = (B, c),
the rank jump vector of c is (s1, s2, . . . , s`+1), type(π1) = (b; b1, b2, . . . , bn) and |B| = j, then the type
of (L,R1, R2, . . . , R`) is (b− 1; b1, . . . , bj − 1, . . . , bn) and (|R1|, |R2|, . . . , |R`|) = (s2, s3, . . . , s`+1).

Theorem 9. Let b, b1, b2, . . . , bn and s1, s2, . . . , s`+1 be nonnegative integers satisfying
∑n
i=1 bi = b,∑n

i=1 i · bi = n,
∑`+1
i=1 si = n− 1 and s1 = n− b. Then the number of multichains π1 ≤ π2 ≤ · · · ≤ π`

in NC(n) with rank jump vector (s1, s2, . . . , s`+1), type(π1) = (b; b1, b2, . . . , bn) is equal to

1

b

(
b

b1, b2, . . . , bn

)(
n

s2

)
· · ·
(

n

s`+1

)
.

Proof. By Lemma 7 and Proposition 8, the number of pairs (B, c), where c is a multichain satisfying the
conditions and B is a block of π1, is equal to

n∑

j=1

(
b− 1

b1, . . . , bj − 1, . . . , bn

)(
n

s2

)
· · ·
(

n

s`+1

)
=

(
b

b1, b2, . . . , bn

)(
n

s2

)
· · ·
(

n

s`+1

)
.

Since there are b = bk(π1) choices of B for each c, we get the theorem. Note that Lemma 7 states the
number of elements in P (n, `). However, by the condition on the type, all the elements in consideration
are in P (n, `).

Now we can prove Theorem 1.

Proof of Theorem 1. Let π1 ≤ π2 ≤ · · · ≤ π` be a multichain in NC(k)(n) with rank jump vector
(s1, s2, . . . , s`+1) and type(k)(π1) = (b; b1, b2, . . . , bn). Then this is a multichain in NC(kn) with rank
jump vector (kn − 1 − b, s2, . . . , s`+1) and type(π1) = (b; b′1, b

′
2, . . . , b

′
kn) where b′ki = bi for i ∈ [n]

and b′j = 0 if j is not divisible by k. By Theorem 9, the number of such multichains is equal to

1

b

(
b

b′1, b
′
2, . . . , b

′
kn

)(
kn

s2

)
· · ·
(
kn

s`+1

)
=

1

b

(
b

b1, b2, . . . , bn

)(
kn

s2

)
· · ·
(
kn

s`+1

)
.

4.2 Augmented k-divisible noncrossing partitions of type A

If all the block sizes of a partition π are divisible by k then the size of π must be divisible by k. Thus k-
divisible partitions can be defined only on [kn]. We extend this definition to partitions of size not divisible
by k as follows.

Let k and r be integers with 0 < r < k. A partition π of [kn+ r] is augmented k-divisible if the sizes
of all but one of the blocks are divisible by k.

Let NC(k)(n; r) denote the subposet of NC(kn + r) consisting of the augmented k-divisible non-
crossing partitions. Then NC(k)(n; r) is a graded poset with the rank function rank(π) = n − bk′(π),
where bk′(π) is the number of blocks of π whose sizes are divisible by k. We define type(k)(π) to be
(b; b1, b2, . . . , bn) where bi is the number of blocks B of size ki and b = b1 + b2 + · · ·+ bn.



688 Jang Soo Kim

Theorem 10. Let 0 < r < k. Let b, b1, b2, . . . , bn and s1, s2, . . . , s`+1 be nonnegative integers satis-
fying

∑n
i=1 bi = b,

∑n
i=1 i · bi ≤ n,

∑`+1
i=1 si = n and s1 = n − b. Then the number of multichains

c : π1 ≤ π2 ≤ · · · ≤ π` in NC(k)(n; r) with rank jump vector (s1, s2, . . . , s`+1) and type(k)(π1) =
(b; b1, b2, . . . , bn) is equal to

(
b

b1, b2, . . . , bn

)(
kn+ r

s2

)
· · ·
(
kn+ r

s`+1

)
.

5 k-divisible noncrossing partitions of type B
Let π ∈ NCB(kn). We say that π is a k-divisible noncrossing partition of type Bn if the size of each
block of π is divisible by k.

Let NC
(k)
B (n) denote the subposet of NCB(kn) consisting of k-divisible noncrossing partitions of type

Bn. Then NC
(k)
B (n) is a graded poset with the rank function rank(π) = n− nz(π), where nz(π) denotes

the number of unordered pairs (B,−B) of nonzero blocks of π.
We can prove Theorem 2 using a similar method in the proof of Theorem 1. Instead of doing this,

we will prove the following lemma which implies Theorem 2. Note that the following lemma is also a
generalization of (4).

For a multichain c : π1 ≤ π2 ≤ · · · ≤ π` in NC
(k)
B (n), the index ind(c) of c is the smallest integer i

such that πi has a zero block. If there is no such integer i, then ind(c) = `+ 1.

Lemma 11. Let b, b1, b2, . . . , bn and s1, s2, . . . , s`+1 be nonnegative integers satisfying
∑n
i=1 bi = b,∑n

i=1 i · bi ≤ n,
∑`+1
i=1 si = n and s1 = n− b. Then the number of multichains c : π1 ≤ π2 ≤ · · · ≤ π`

in NC
(k)
B (n) with rank jump vector (s1, s2, . . . , s`+1), type(k)(π1) = (b; b1, b2, . . . , bn) and ind(c) = i

is equal to (
b

b1, b2, . . . , bn

)(
kn

s2

)
· · ·
(
kn

s`+1

)
,

if i = 1, and
si
b

(
b

b1, b2, . . . , bn

)(
kn

s2

)
· · ·
(
kn

s`+1

)
,

if i ≥ 2.

5.1 Armstrong’s conjecture

Let ÑC
(k)

(n) denote the subposet of NC(k)(n) whose elements are fixed under the 180◦ rotation in the
circular representation.

Armstrong [1, Conjecture 4.5.14] conjectured the following. Let n and k be integers such that n is even
and k is arbitrary, or n is odd and k is even. Then

Z(ÑC
(k)

(n), `) =

(b(k`+ 1)n/2c
bn/2c

)
.

If n is even then ÑC
(k)

(n) is isomorphic to NC
(k)
B (n/2), whose zeta polynomial is already known. If

both n and k are odd, then ÑC
(k)

(n) is empty. Thus the conjecture is only for n and k such that n is odd
and k is even.
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Armstrong’s conjecture is a consequence from the following theorem and Theorem 10.

Theorem 12. Let n and k be positive integers. Then

ÑC
(2k)

(2n+ 1) ∼= NC(2k)(n; k).
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Enumerating (2+2)-free posets by the number
of minimal elements and other statistics
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Abstract. A poset is said to be (2+ 2)-free if it does not contain an induced subposet that is isomorphic to 2+ 2,
the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent
sequences, the generating function for the number of (2+ 2)-free posets: P (t) =

∑
n≥0

∏n
i=1

(
1− (1− t)i

)
.

We extend this result by finding the generating function for (2+ 2)-free posets when four statistics are taken into
account, one of which is the number of minimal elements in a poset. We also show that in a special case when only
minimal elements are of interest, our rather involved generating function can be rewritten in the form P (t, z) =∑

n,k≥0 pn,kt
nzk = 1+

∑
n≥0

zt
(1−zt)n+1

∏n
i=1(1− (1− t)i) where pn,k equals the number of (2+ 2)-free posets

of size n with k minimal elements.

Résumé. Un poset sera dit (2+ 2)-libre s’il ne contient aucun sous-poset isomorphe à 2+ 2, l’union disjointe
de deux chaı̂nes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l’aide de “suites de
montées”, la fonction génératrice des nombres de posets (2+ 2)-libres: c’est P (t) =

∑
n≥0

∏n
i=1

(
1− (1− t)i

)
.

Nous étendons ce résultat en trouvant la fonction génératrice des posets (2+ 2)-libres rendant compte de qua-
tre statistiques, dont le nombre d’éléments minimaux du poset. Nous montrons aussi que lorsqu’on ne s’intéresse
qu’au nombre d’éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en P (t, z) =∑

n,k≥0 pn,kt
nzk = 1 +

∑
n≥0

zt
(1−zt)n+1

∏n
i=1(1 − (1 − t)i), où pn,k est le nombre de posets (2+ 2)-libres de

taille n avec k éléments minimaux.

Keywords: (2+2)-free posets, minimal elements, generating function

1 Introduction
A poset is said to be (2 + 2)-free if it does not contain an induced subposet that is isomorphic to 2 + 2,
the union of two disjoint 2-element chains. We let P denote the set of (2 + 2)-free posets. Fishburn [7]
showed that a poset is (2 + 2)-free precisely when it is isomorphic to an interval order. Bousquet-Mélou
et al. [1] showed that the generating function for the number pn of (2 + 2)-free posets on n elements is

P (t) =
∑

n≥0
pn t

n =
∑

n≥0

n∏

i=1

(
1− (1− t)i

)
. (1)
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In fact, El-Zahar [4] and Khamis [9] used a recursive description of (2 + 2)-free posets, different from
that of [1], to derive a pair of functional equations that define the series P (t). However, they did not solve
these equations. Haxell, McDonald and Thomasson [8] provided an algorithm, based on a complicated
recurrence relation, to produce the first numbers pn. Moreover, the above series was proved by Zagier [12]
to count certain involutions introduced by Stoimenow [10]. Bousquet-Mélou et al. [1] gave a bijection
between (2 + 2)-free posets and the involutions, as well as a certain class of restricted permutations and so
called ascent sequences. Given an integer sequence (x1, . . . , xi), the number of ascents of this sequence
is

asc(x1, . . . , xi) = |{ 1 ≤ j < i : xj < xj+1 }|.
A sequence (x1, . . . , xn) ∈ Nn an ascent sequence of length n if it satisfies x1 = 0 and xi ∈ [0, 1 +
asc(x1, . . . , xi−1)] for all 2 ≤ i ≤ n. For instance, (0, 1, 0, 2, 3, 1, 0, 0, 2) is an ascent sequence. We let
A denote the set of all ascent sequences (we assume the empty word to be an ascent sequence).

Amongst other results concerning (2 + 2)-free posets [5, 6], the following characterization plays an
important role in [1]: a poset is (2 + 2)-free if and only if the collection of strict principal down-sets (for
an element, a down-set is the set of its predecessors) can be linearly ordered by inclusion [6]. Here for
any poset P = (P,<p) and x ∈ P , the strict principal down set of x, D(x), in P is the set of all y ∈ P
such that y <p x. The trivial down-set is the empty set. Thus if P is a (2 + 2)-free poset, we can write
D(P ) = {D(x) : x ∈ P} as

D(P ) = {D0, D1, . . . , Dk}
where ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk. In such a situation, we say that x ∈ P has level i if D(x) = Di.

Bousquet-Mélou et al. [1] described a decomposition of a (2 + 2)-free poset removing at each step a
maximal element located on the lowest level, together with certain relations. Recording the levels from
which we just removed a maximal element, and reading the obtained sequence backwards after removing
all the elements, one obtains an ascent sequence. This gives a bijection between (2 + 2)-free posets and
ascent sequences. We note that in the process of decomposing a (2 + 2)-free poset, element by element,
at some point, the current poset will be a (possibly 1-element) antichain. The statistic lds is defined as the
size of the (maximum) antichain in the last sentence, which is the size of the down-set of the last removed
element that has a non-trivial down-set. By definition, the value of lds on an antichain is 0 (there are no
non-trivial down-sets there). We refer to [1, Section 3] for the detailed description of the decomposition,
as it is rather space-consuming to state here.

Bousquet-Mélou et al. [1] studied a more general generating function F (t, u, v) of (2 + 2)-free posets,
which are counted by size=“number of elements” (variable t), levels=“number of levels” defined below
(variable u), and minmax=“level of minimum maximal element” (variable v). The first few terms of
F (t, u, v) are

F (t, u, v) = 1 + t+ (1 + uv)t2 + (1 + 2uv + u+ u2v2)t3 +O(t4).

An explicit form of F (t, u, v) can be obtained from [1, Lemma 13] and [1, Proposition 14]. The main
result of this paper, Theorem 4, is an explicit form of the generating function G(t, u, v, z, x) for a gen-
eralization of F (t, u, v), when two more statistics are taken into account — min=“number of minimal
elements” in a poset (variable z) and lds=“size of non-trivial last down-set” (variable x). That is, we shall
study the following generating function:

G(t, u, v, z, x) =
∑

p∈P
tsize(p)ulevels(p)vminmax(p)zmin(p)xlds(p).
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Reduction of the main problem to considering ascent sequences. The basic idea used by Bousquet-
Mélou et al. [1] to find the generating function F (t, u, v) was to reduce the problem to counting ascent se-
quences using their bijection between (2 + 2)-free posets and ascent sequences. We follow a similar strat-
egy to find G(t, u, v, z, x). That is, we define the following statistics on an ascent sequence: length=“the
number of elements in the sequence,” last=“the rightmost element of the sequence,” zeros=“the number
of 0’s in the sequence,” run=“the number of elements in the leftmost run of 0’s”=“the number of 0’s to
the left of the leftmost non-zero element.” By definition, if there are no non-zero elements in an ascent
sequence, the value of run is 0.

Lemma 1 The function G(t, u, v, z, x) defined above can alternatively be defined on ascent sequences as

G(t, u, v, z, x) =
∑

w∈A
tlength(w)uasc(w)vlast(w)zzeros(w)xrun(w) =

∑

n,a,`,m,r≥0
Gn,a,`,m,rt

nuav`zmxr.

Proof: To prove the statement we need to show equidistribution of the statistics involved. All but one
case follow from the results in [1]. More precisely, we can use the bijection from (2 + 2)-free posets
to ascent sequences presented in [1] which sends size → length, levels → asc, minmax → last, and
min→ zeros.

The fact that lds goes to run follows from the definition of the statistics and the idea of the bijection
in [1] described above. Indeed, while recording levels of just removed elements, after we removed the
element, say e, whose down-set gives lds, we will be left with incomparable elements located on level 0,
which gives in the corresponding ascent sequence the initial run of 0’s followed by 1 corresponding to e
located on level 1. 2

Note that G(t, u, v, 1, 1) = F (t, u, v) as studied in [1].

Organization of the paper. In Section 2 we find explicitly the function G = G(t, u, v, z, x) using ascent
sequences (see Theorem 4). In Section 3 we show that in a special case when only minimal elements are
of interest, a rather involved generating function G(t, u, v, z, x) can be rewritten in the form

P (t, z) =
∑

n,k≥0
pn,kt

nzk = 1 +
∑

n≥0

zt

(1− zt)n+1

n∏

i=1

(1− (1− t)i)

where pn,k equals the number of (2 + 2)-free posets of size n with k minimal elements. We shall see
that our expression for P (t, z) cannot be directly derived from G(t, u, v, z, x) by substituting 1 for the
variables u, v, and x.

2 Main results
For r ≥ 1, let Gr(t, u, v, z) denote the coefficient of xr in G(t, u, v, z, x). Thus Gr(t, u, v, z) is the
generating function of those ascent sequences that begin with r ≥ 1 0’s followed by 1. We let Gra,l,m,n
denote the number of ascent sequences of length n which begin with r 0’s followed by 1, have a ascents,
the last letter `, and a total of m zeros. We then let

Gr := Gr(t, u, v, z) =
∑

a,`,m≥0,n≥r+1

Gra,l,m,nt
nuav`zm. (2)
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Clearly, since the sequence 0 . . . 0 has no ascents and no initial run of 0’s (by definition), we have that
the generating function for such sequences is

1 + tz + (tz)2 + · · · = 1

1− tz
where 1 corresponds to the empty word. Thus, we have the following relation between G and Gr:

G =
1

1− tz +
∑

r≥1
Gr x

r. (3)

Lemma 2 For r ≥ 1, the generating function Gr(t, u, v, z) satisfies

(v − 1− tv(1− u))Gr = (v − 1)tr+1uvzr + t((v − 1)z − v)Gr(t, u, 1, z) + tuv2Gr(t, uv, 1, z). (4)

Proof:
Our proof follows the same steps as in Lemma 13 in [1]. Fix r ≥ 1. Let x′ = (x1, . . . , xn−1) be an

ascent sequence beginning with r 0’s followed by 1, with a ascents and m zeros where xn−1 = `. Then
x = (x1, . . . , xn−1, i) is an ascent sequence if and only if i ∈ [0, a+ 1]. Clearly x also begins with r 0’s
followed by 1. Now, if i = 0, the sequence x has a ascents and m+ 1 zeros. If 1 ≤ i ≤ `, x has a ascents
and m zeros. Finally if i ∈ [` + 1, a + 1], then x has a + 1 ascents and m zeros. Counting the sequence
0 . . . 01 with r 0’s separately, we have

Gr = tr+1u1v1zr +
∑

a,`,m≥0

n≥r+1

Gra,`,m,nt
n+1

(
uav0zm+1 +

∑̀

i=1

uavizm +
a+1∑

i=`+1

ua+1vizm

)

= tr+1uvzr + t
∑

a,`,m≥0

n≥r+1

Ga,`,m,nt
nuazm

(
z +

v`+1 − v
v − 1

+ u
va+2 − v`+1

v − 1

)

= tr+1uvzr + tzGr(t, u, 1, z) + tv
Gr −Gr(t, u, 1, z)

v − 1
+ tuv

vGr(t, uv, 1, z)−Gr
v − 1

.

The result follows. 2

Next just like in Subsection 6.2 of [1], we use the kernel method to proceed. Setting (v − 1− tv(1−
u)) = 0 and solving for v, we obtain that the substitution v = 1/(1 + t(u− 1)) will kill the left-hand side
of (4). We can then solve for Gr(t, u, 1, z) to obtain that

Gr(t, u, 1, z) =
(1− u)tr+1uzr + uGr

(
t, u

1+t(u−1) , 1, z
)

(1 + zt(u− 1))(1 + t(u− 1))
. (5)

Next we define

δk = u− (1− t)k(u− 1) and (6)
γk = u− (1− zt)(1− t)k−1(u− 1) (7)
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for k ≥ 1. We also set δ0 = γ0 = 1. Observe that δ1 = u − (1 − t)(u − 1) = 1 + t(u − 1) and
γ1 = u− (1− zt)(u− 1) = 1 + zt(u− 1). Thus we can rewrite (5) as

Gr(t, u, 1, z) =
tr+1zru(1− u)

δ1γ1
+

u

δ1γ1
Gr(t,

u

δ1
, 1, z). (8)

For any function of f(u), we shall write f(u)|u= u
δk

for f(u/δk). It is then easy to check that

1. (u− 1)|u= u
δk

=
(1− t)k(u− 1)

δk
,

2. δs|u= u
δk

=
δs+k
δk

,

3. γs|u= u
δk

=
γs+k
δk

, and

4.
u

δs
|u= u

δk
=

u

δs+k
.

Using these relations, one can iterate the recursion (8) to prove by induction that for all n ≥ 1,

Gr(t, u, 1, z) =
tr+1zru(1− u)

δ1γ1
+

(
tr+1zru(1− u)

2n−1∑

s=2

us(1− t)s
δsδs+1

∏s+1
i=1 γi

)
+ (9)

u2
n

δ2n
∏2n

i=1 γi
Gr(t,

u

δ2n
, 1, z).

Since δ0 = 1, it follows that as a power series in u,

Gr(t, u, 1, z) = tr+1zru(1− u)
∑

s≥0

us(1− t)s
δsδs+1

∏s+1
i=1 γi

. (10)

We have used Mathematica to compute that

G1(t, u, 1, z) = uzt2 +
(
uz + u2z + uz2

)
t3

+
(
uz + 3u2z + u3z + uz2 + 3u2z2 + uz3

)
t4

+
(
uz + 6u2z + 7u3z + u4z + uz2 + 8u2z2 + 7u3z2 + uz3 + 5u2z3 + uz4

)
t5 +O[t]6.

For example, the coefficient of t4u2, 3z + 3z2 makes sense as there are 3 ascent sequences of length 4
with 2 ascents and 1 zero, namely, 0112, 0121, and 0122, while there are 3 ascent sequences of length 4
with 2 ascents and 2 zeros, namely, 0101, 0102, and 0120 (there are no other ascents sequences of length
4 with 2 ascents).

Note that we can rewrite (4) as

Gr(t, u, v, z) =
tr+1zruv(1− v)

vδ1 − 1
+
t(z(v − 1)− v)

vδ1 − 1
Gr(t, u, 1, z) +

uv2t

vδ1 − 1
Gr(t, uv, 1, z). (11)
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For s ≥ 1, we let

δ̄s = δs|u=uv = uv − (1− t)s(uv − 1) and
γ̄s = γs|u=uv = uv − (1− zt)(1− t)s−1(uv − 1)

and set δ̄0 = γ̄0 = 1. Then using (11) and (10), we have the following theorem.

Theorem 3 For all r ≥ 1,

Gr(t, u, v, z) =
tr+1zru

vδ1 − 1


v(v − 1) + t(1− u)(z(v − 1)− v)

∑

s≥0

us(1− t)s
δsδs+1

∏s+1
i=1 γi

+uv3t(1− uv)
∑

s≥0

(uv)s(1− t)s
δ̄sδ̄s+1

∏s+1
i=1 γ̄i


 (12)

It is easy to see from Theorem 3 that

Gr(t, u, v, z) = tr−1zr−1G1(t, u, v, z). (13)

This is also easy to see combinatorially since every ascent sequence counted by Gr(t, u, v, z) is of the
form 0r−1a where a is an ascent sequence a counted by G1(t, u, v, z).

We have used Mathematica to compute that

G1(t, u, v, z) = uvzt2 +
(
uvz + u2v2z + uz2

)
t3

+
(
uvz + u2vz + 2u2v2z + u3v3z + uz2 + u2z2 + u2vz2 + u2v2z2 + uz3

)
t4

+
(
uvz + 3u2vz + u3vz + 3u2v2z + 2u3v2z + 4u3v3z + u4v4z + uz2 + 3u2z2 + u3z2 + 3u2vz2

+u3vz2 + 2u2v2z2 + 2u3v2z2 + 3u3v3z2 + uz3 + 3u2z3 + u2vz3 + u2v2z3 + uz4
)
t5 +O[t]6.

For example, the coefficient of t4u is zv+ z2 + z3 which makes sense since the sequences counted by the
terms are 0111, 0110, and 0100, respectively.

Note that

G(t, u, v, z, x) =
1

(1− tz) +
∑

r≥1
Gr(t, u, v, z)x

r

=
1

(1− tz) +
∑

r≥1
tr−1zr−1G1(t, u, v, z)xr

=
1

(1− tz) +
1

1− tzxxG1(t, u, v, z)

Thus we have the following theorem.
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Theorem 4

G(t, u, v, z, x) =
1

(1− tz) +
t2zxu

(1− tzx)(vδ1 − 1)

(
v(v − 1)

+ t(1− u)(z(v − 1)− v)
∑

s≥0

us(1− t)s
δsδs+1

∏s+1
i=1 γi

+ uv3t(1− uv)
∑

s≥0

(uv)s(1− t)s
δ̄sδ̄s+1

∏s+1
i=1 γ̄i

)
. (14)

Again, we have used Mathematica to compute the first few terms of this series:

G(t, u, v, z, x) = 1 + zt+
(
uvxz + z2

)
t2 +

(
uvxz + u2v2xz + uxz2 + uvx2z2 + z3

)
t3

+
(
uvxz + u2vxz + 2u2v2xz + u3v3xz + uxz2 + u2xz2 + u2vxz2

+u2v2xz2 + uvx2z2 + u2v2x2z2 + uxz3 + ux2z3 + uvx3z3 + z4
)
t4

(
uvxz + 3u2vxz + u3vxz + 3u2v2xz + 2u3v2xz + 4u3v3xz + u4v4xz

+uxz2 + 3u2xz2 + u3xz2 + 3u2vxz2 + u3vxz2 + 2u2v2xz2 + 2u3v2xz2 + 3u3v3xz2

+uvx2z2 + u2vx2z2 + 2u2v2x2z2 + u3v3x2z2 + uxz3 + 3u2xz3 + u2vxz3 + u2v2xz3

+ux2z3 + u2x2z3 + u2vx2z3 + u2v2x2z3 + uvx3z3 + u2v2x3z3 + uxz4

+ux2z4 + ux3z4 + uvx4z4 + z5
)
t5 +O[t]6.

One can check that, for instance, the 3 sequences corresponding to the term 3u2v2xzt5 are 01112, 01122
and 01222.

3 Counting (2+ 2)-free posets by size and number of minimal
elements

In this section, we shall compute the generating function of (2 + 2)-free posets by size and the number
of minimal elements which is equivalent to finding the generating function for ascent sequences by length
and the number of zeros.

For n ≥ 1, let Ha,b,`,n denote the number of ascent sequences of length n with a ascents and b zeros
which have last letter `. Then we first wish to compute

H(u, z, v, t) =
∑

n≥1,a,b,`≥0
Ha,b,`,nu

azbv`tn. (15)

Using the same reasoning as in the previous section, we see that

H(u, z, v, t) = tz +
∑

a,b,`≥0

n≥1

Ha,b,`,nt
n+1

(
uav0zb+1 +

∑̀

i=1

uavizb +
a+1∑

i=`+1

ua+1vizb

)

= tz + t
∑

a,b,`≥0

n≥r+1

Ha,b`,nt
nuazb

(
z +

v`+1 − v
v − 1

+ u
va+2 − v`+1

v − 1

)

= tz +
tv(1− u)

v − 1
H(u, v, z, t) +

t(z(v − 1)− v)

v − 1
H(u, 1, z, t) +

tuv2

v − 1
H(uv, 1, z, t).
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Thus we have the following lemma.

Lemma 5

(v− 1− tv(1− u))H(u, v, z, t) = tz(v− 1) + t(z(v− 1)− v)H(u, 1, z, t) + tuv2H(uv, 1, z, t). (16)

Setting (v− 1− t(1− u)) = 0, we see that the substitution v = 1 + t(u− 1) = δ1 kills the left-hand side
of (16). We can then solve for H(u, 1, z, t) to obtain the recursion

H(u, 1, z, t) =
zt(1− u)

γ1
+

u

δ1γ1
H(uv, 1, z, t). (17)

By iterating (17), we can prove by induction that for all n ≥ 1,

H(u, 1, z, t) =
zt(1− u)

γ1
+

(
2n−1∑

s=1

zt(1− u)us(1− t)s
δs
∏s+1
i=1 γi

)
+

u2
n

δ2n
∏2n

i=1 γi
H(

u

δ2n
, 1, z, t). (18)

Since δ0 = 1, we can rewrite (18) as

H(u, 1, z, t) =

(
2n−1∑

s=0

zt(1− u)us(1− t)s
δs
∏s+1
i=1 γi

)
+

u2
n

δ2n
∏2n

i=1 γi
H(

u

δ2n
, 1, z, t). (19)

Thus as a power series in u, we can conclude the following.

Theorem 6

H(u, 1, z, t) =

∞∑

s=0

zt(1− u)us(1− t)s
δs
∏s+1
i=1 γi

. (20)

We would like to set u = 1 in the power series
∑∞
s=0

zt(1−u)us(1−t)s
δs

∏s+1
i=1 γi

, but the factor (1 − u) in the
series does not allow us to do that in this form. Thus our next step is to rewrite the series in a form where
it is obvious that we can set u = 1 in the series. To that end, observe that for k ≥ 1,

δk = u− (1− t)k(u− 1) = 1 + u− 1− (1− t)k(u− 1) = 1− (1− t)k − 1)(u− 1)

so that

1

δk
=
∑

n≥0
((1− t)k − 1)n(u− 1)n

∑

n≥0
(u− 1)n =

n∑

m=0

(−1)n−m
(
n

m

)
(1− t)km. (21)
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Substituting (21) into (20), we see that

H(u, 1, z, t) =
zt(1− u)

γ1
+
∑

k≥1

zt(1− u)uk(1− t)k
∏k+1
i=1 γi

∑

n≥0
(u− 1)n

n∑

m=0

(−1)n−m
(
n

m

)
(1− t)km

=
zt(1− u)

γ1
+
∑

n≥0

n∑

m=0

(−1)n−m−1
(
n

m

)
(u− 1)n−mzt

∑

k≥1

(u− 1)m+1uk(1− t)k(m+1)

∏k+1
i=1 γi

=
zt(1− u)

γ1
+
∑

n≥0

n∑

m=0

(−1)n−m−1
(
n

m

)
(u− 1)n−m

zt

(1− zt)m+1
×

∑

k≥1

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)

∏k+1
i=1 γi

.

Next we need to study the series

∑

k≥1

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)

∏k+1
i=1 γi

where m ≥ 0. We can rewrite this series in the form

− (u− 1)m+1(1− zt)m+1

γ1
+
∑

k≥0

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)

∏k+1
i=1 γi

.

We let

ψm+1(u) =
∑

k≥0

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)

∏k+1
i=1 γi

. (22)

We shall show that ψm+1(u) is in fact a polynomial for all m ≥ 0. First, we claim that ψm+1(u) salsifies
the following recursion:

ψm+1(u) =
(u− 1)m+1(1− zt)m+1

γ1
+
uδm1
γ1

ψm+1

(
u

δ1

)
. (23)

That is, one can easily iterate (23) to prove by induction that for all n ≥ 1,

ψm+1(u) =

(
2n−1∑

s=0

(u− 1)m+1(1− zt)m+1us(1− t)s(m+1)

∏s+1
i=1 γi

)
+
u2n(δ2n)m∏2n

i=1 γi
ψm+1(

u

δ2n
). (24)

Hence it follows that if ψm+1(u) satisfies the recursion (23), then ψm+1(u) is given by the power series
in (22). However, it is routine to check that the polynomial

φm+1(u) = −
m∑

j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− ((1− t)i) (25)
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satisfies the recursion that

γ1φm+1(u) = (u− 1)m+1(1− zt)m+1 + uδm1 φm+1

(
u

δ1

)
. (26)

Thus we have proved the following lemma.

Lemma 7

ψm+1(u) =
∑

k≥0

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)

∏k+1
i=1 γi

= −
m∑

j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− ((1− t)i). (27)

It thus follows that

H(u, 1, z, t) =
zt(1− u)

γ1
+
∑

n≥0

n∑

m=0

(−1)n−m−1
(
n

m

)
(u− 1)n−m

zt

(1− zt)m+1
×

− (u− 1)m+1(1− zt)m+1

γ1
−

m∑

j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− ((1− t)i).

There is no problem in setting u = 1 in this expression to obtain that

H(1, 1, z, t) =
∑

n≥0

zt

(1− zt)n+1

n∏

i=1

(1− (1− t)i). (28)

Clearly our definitions ensure that 1 +H(1, 1, z, t) = P (t, z) as defined in the introduction so that we
have the following theorem.

Theorem 8

P (t, z) =
∑

n,k≥0
pn,kt

nzk = 1 +
∑

n≥0

zt

(1− zt)n+1

n∏

i=1

(1− (1− t)i). (29)

For example, we have used Mathematica to compute the first few terms of P (t, z) as

P (t, z) = 1 + zt+
(
z + z2

)
t2 +

(
2z + 2z2 + z3

)
t3 +

(
5z + 6z2 + 3z3 + z4

)
t4

+
(
15z + 21z2 + 12z3 + 4z4 + z5

)
t5 +

(
53z + 84z2 + 54z3 + 20z4 + 5z5 + z6

)
t6 +O[t]7.

Next we observe that one can easily derive the ordinary generating function for the number of (2 + 2)-
free posets or, equivalently, for the number of ascent sequences proved by Bousquet-Mélou et al. [1] from
Theorem 8. That is, for any sequence of natural numbers a = a1 . . . an, let a+ = (a1 + 1) . . . (an + 1) be
the result of adding one from each element of the sequence. Moreover, if all the elements of a = a1 . . . an
are positive, then we let a− = (a1− 1) . . . (an− 1) be the result of subtracting one to each element of the
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sequence. It is easy to see that if a = a1 . . . an is an ascent sequence, then 0a+ is also an ascent sequence.
Vice versa, if b = 0a is an ascent sequence with only one zero where a = a1 . . . an, then a− is an ascent
sequence. It follows that the number of ascent sequences of length n is equal to the number of ascent
sequences of length n+ 1 which have only one zero. Hence

P (t) =
∑

n≥0
pnt

n =
1

t

∂P (t, z)

∂z

∣∣
z=0

=
∑

n≥0

n∏

i=1

(1− (1− t)i).

Results in [1, 2, 3] show that (2 + 2)-free posets of size n with k minimal elements are in bijection
with the following objects. (See [1, 2, 3] for the precise definitions.)

• ascent sequences of length n with k zeros;

• permutations of length n avoiding whose leftmost-decreasing run is of size k;

• regular linearized chord diagrams on 2n points with initial run of openers of size k;

• upper triangular matrices whose non-negative integer entries sum up to n, each row and column
contains a non-zero element, and the sum of entries in the first row is k.

Thus (29) provides generating functions for -avoiding permutations by the size of the leftmost-
decreasing run, for regular linearized chord diagrams by the size of the initial run of openers, and for
the upper triangular matrices by the sum of entries in the first row. Moreover, Theorem 4, together with
bijections in [1, 2, 3] can be used to enumerate the permutations, diagrams, and matrices subject to 4
statistics.
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Abstract. We prove a closed character formula for the symmetric powers SNV (λ ) of a fixed irreducible representation
V (λ ) of a complex semi-simple Lie algebra g by means of partial fraction decomposition. The formula involves
rational functions in rank of g many variables which are easier to determine than the weight multiplicities of SNV (λ )
themselves. We compute those rational functions in some interesting cases. Furthermore, we introduce a residue-
type generating function for the weight multiplicities of SNV (λ ) and explain the connections between our character
formula, vector partition functions and iterated partial fraction decomposition.

Résumé. Nous établissons une formule fermée pour le caractère de la puissance symétrique SNV (λ ) d’une représen-
tation irréductible V (λ ) d’une algèbre de Lie semi-simple complexe g, en utilisant des décompositions en fractions
partielles. Cette formule exprime ce caractère en termes de fractions rationnelles en r variables, où r est le rang de g.
Ces fractions sont plus faciles à déterminer que les multiplicités de la décomposition de SNV (λ ) elles-mêmes. Nous
calculons ces fonctions rationnelles dans quelques cas intéressants. Nous introduisons par ailleurs une fonction géné-
ratrice de type résidu pour les multiplicités de SNV (λ ) et relions notre formule aux fonctions de partitions vectorielles
et aux décompositions itérées en fractions partielles.

Keywords: character, symmetric power, irreducible representation, generating function, residue, partial fraction
decomposition, vector partition function

1 Notation
Let g be a complex semi-simple Lie algebra of rank r. Fix a Borel b and a Cartan subalgebra h in g and
let Q =

⊕r
i=1Zαi and X =

⊕r
i=1Zωi be the corresponding root and weight lattice spanned by the simple

roots and fundamental weights respectively. Let α∨1 , . . . ,α
∨
r be the simple coroots and W the Weyl group.

An irreducible representation of g of highest weight λ ∈ X+, where X+ stands for all dominant weights,
is denoted by V (λ ). Its character will be written as CharV (λ ) and it is well-known that it is an element of
Z[X ], the integral group ring associated to the weight lattice. Each generator eµ ∈ Z[X ] yields a function
on hR, the real span of the simple coroots, by x 7→ e〈µ,x〉. In this sense we have the associated Fourier
series of the character of V (λ ) as a function of hR, i.e. CharV (λ )(ix) = ∑µ∈X mµ ei〈µ,x〉. To simplify

†Supported by the Max Planck Institute for Mathematics and the Deutsche Forschungsgemeinschaft SFB/TR12 Symmetries and
Universality in Mesoscopic Systems.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



A Closed Character Formula for Symmetric Powers of Irreducible Representations 703

notation in what follows we define q = ei〈·,x〉, i.e. qµ = ei〈µ,x〉. Then, with respect to the coordinate system
{α∨1 , . . . ,α∨r } of hR we have q = (q1, . . . ,qr) with qi = ei〈·,xiα∨i 〉 and for µ = c1ω1 + . . .+ crωr

qµ = (q1, . . . ,qr)
(c1,...,cr) = qc1

1 · · ·qcr
r ∈ Z[q±1

1 , . . . ,q±1
r ]. (1)

Note, whenever we write N we mean the non-negative integers {0,1,2, . . .}.

2 Introduction and the Main Theorem
Let mλ ,N : X → N be the weight multiplicity function for the N-th symmetric power of a fixed irreducible
representation V (λ ) of g, i.e. CharSNV (λ ) = ∑ν∈X mλ ,N(ν)eν ∈ Z[X ]. Then, we have the combinatorial
identity

mλ ,N(ν) = ∑
{ν1,...,νN}⊂X
ν1+...+νN=ν

mλ ,1(ν1) · · ·mλ ,1(νN). (2)

In general it is a non-trivial problem to determine mλ ,N . That is, to establish a formula depending on N
that counts the unordered pairs {ν1, . . . ,νN} subject to the restriction ν1 + . . .+νN = ν .

We will instead identify the Fourier series associated to the character of SNV (λ ) as an element of
C(q1, . . . ,qr)[X ] (see section 1 for the notation). The key point is that this identification involves data
(apart from terms in N) which is easier to determine than the function mλ ,N and depends only on the fixed
representation V (λ ). Starting point will be Molien’s formula (see (Procesi, 2007, Chapter 9, §4.3)) which
identifies the graded character of the symmetric algebra of V (λ ) as a product of geometric series. We will
state this result here for a quick reference.

Lemma 2.1 (compare (Procesi, 2007, Chapter 9, §4.3)).

CharSV (λ ) =
∞

∑
N=0

zN CharSNV (λ ) = ∏
ν∈X

1
(1− eν z)dimV (λ )ν

(3)

Our main result will be Theorem 3.4 in Section 3. That is,

Theorem (Character formula). Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a fixed
irreducible representation of g with weight space decomposition V (λ ) =

⊕
ν∈X V (λ )ν and weight multi-

plicity function mλ : X → N. Then, with q = ei〈·,x〉 = (q1, . . . ,qr) as above, we have

CharSNV (λ )(ix) = ∑
ν∈X

qNν
mλ (ν)

∑
k=1

Aν ,k(q) · pk(N) ∈ C(q1, . . . ,qr)[X ] (4)

with rational functions Aν ,k(q) ∈ C(q1, . . . ,qr) and polynomials pk(N) ∈Q[N] of degree k−1 given by

pk(N) =

(
N + k−1

N

)
. (5)

Furthermore, for a weight µ ∈ X and l = 0, . . . ,mλ (µ)−1 we have

Aµ,mλ (µ)−l(q) =
(−1)l

l!qlµ ·
dl

(dz)l

[
∏

ν∈X\µ

1
(1−qν z)mλ (ν)

]

z=q−µ

. (6)
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We will apply this theorem to prove character formulas in some interesting cases, involving in particular
concrete expressions for the rational functions. To the authors’ knowledge there is no formula of such
type known so far although the derivation of the Main Theorem is based on simple observations(i).

In Section 4, Proposition 4.1 we will prove an integral expression for the generating function associated
to the weight multiplicity functions mN,λ (evaluated at a fixed weight µ ∈ X) of the sequence of represen-
tations SNV (λ ). Based on this identity and our Main Theorem above we will explain the nature of this
generating function and in particular why it is of residue-type.

Section 5 will be a short sketch of the connections between the results of section 3, 4 and vector partition
functions and iterated partial fraction decomposition (see e.g. Beck (2004) and Bliem (2009)).

Section 6 comments on an important continuation of the present discussion. That is, the character for-
mula established in the Main Theorem can be split into individual parts belonging to the Weyl group orbits
of dominant weights. The question is what can be expected from the iterated partial fraction decomposi-
tion of those individual terms. We illustrate a possible answer by an example. A detailed treatment will
appear in the full version of this extended abstract.

3 A closed character formula for symmetric powers
We will derive a closed character formula for the representation SNV (λ ) in terms of a basis of weight
vectors of the irreducible representation V (λ ) with weight multiplicity function mλ and the parameter N.
The term “closed” will be explained in detail in Note 3.5 once we have proven our main result, Theorem
3.4. The method we use is the partial fraction decomposition. That is, consider the identity of Lemma 2.1
for q = ei〈·,x〉, x ∈ hR,

∞

∑
N=0

zN CharSNV (λ )(ix) = ∏
ν∈X

1
(1−qν z)mλ (ν)

. (7)

Partial fraction decomposition with respect to the variable z (abbreviated by PFDz) of the right-hand side
of Equation (7) gives

Proposition 3.1. Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a fixed irreducible rep-
resentation of g with weight space decomposition V (λ ) =

⊕
ν∈X V (λ )ν and weight multiplicity function

mλ : X → N. With q = ei〈·,x〉 = (q1, . . . ,qr) as above,

PFDz

(
∏
ν∈X

1
(1−qν z)mλ (ν)

)
= ∑

ν∈X

mλ (ν)

∑
k=1

Aν ,k(q)
1

(1−qν z)k (8)

where for each ν ∈ X and k ∈ N we have Aν ,k(q) ∈ C(q1, . . . ,qr).

Proof. See e.g. Eustice and Klamkin (1979), Lang (2002), (Bliem, 2009, Lemma 1).

Note 3.2. The right-hand side of Equation (8) is a finite sum since the second summation gives zero if a
weight ν does not appear in V (λ ), i.e. mλ (ν) = 0.

We aim at a power series expansion of the right-hand side of Equation (8) with respect to the variable
z. The following proposition will make life easier.

(i) and on “Mickey Mouse”-analysis as Alan Huckleberry has put it to me in private communication
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Proposition 3.3. For ν ∈ X and q = ei〈·,x〉 as above, we have

1
(1−qν z)k =

∞

∑
N=0

zNqNν pk(N) (9)

where pk(N) is a polynomial in N of degree k−1 given by pk(N) =
(N+k−1

N

)
.

Proof. Write down the Cauchy product of the k-th power of the geometric series (1−qν z)−1. Then, you
see that pk(N) is given by

pk(N) =
N

∑
jk−1=0

jk−1

∑
jk−2=0

· · ·
j2

∑
j1=0

1 =

(
N + k−1

N

)
. (10)

As a direct consequence of Equation (8) and Proposition 3.3 we obtain our main result.

Theorem 3.4 (Character formula). Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a
fixed irreducible representation of g with weight space decomposition V (λ ) =

⊕
ν∈X V (λ )ν and weight

multiplicity function mλ : X → N. Then, with q = ei〈·,x〉 = (q1, . . . ,qr) as above, we have

CharSNV (λ )(ix) = ∑
ν∈X

qNν
mλ (ν)

∑
k=1

Aν ,k(q) · pk(N) ∈ C(q1, . . . ,qr)[X ] (11)

with rational functions Aν ,k(q) ∈ C(q1, . . . ,qr) and polynomials pk(N) ∈Q[N] of degree k−1 given by

pk(N) =

(
N + k−1

N

)
. (12)

Furthermore, for a weight µ ∈ X and l = 0, . . . ,mλ (µ)−1 we have

Aµ,mλ (µ)−l(q) =
(−1)l

l!qlµ ·
dl

(dz)l

[
∏

ν∈X\µ

1
(1−qν z)mλ (ν)

]

z=q−µ

. (13)

Proof. From Equation (8) we see that

CharSNV (λ )(ix) = Resz=0

[
1

zN+1 ∑
ν∈X

mλ (ν)

∑
k=1

Aν ,k(q)
1

(1−qν z)k

]
. (14)

Then, Proposition 3.3 finishes the first part of the proof. For the second part multiply the right-hand side of
Equation (8) by (1−qµ z)mλ (µ) which is equivalent to take the product over X \µ in Equation (13). By the
product rule of differentiation we see that all summands except the µ-th one give zero after differentiation
and evaluation at q−µ . Therefore, the remaining part is

dl

(dz)l

[
mλ (µ)

∑
k=1

Aµ,k(q)(1−qν z)mλ (µ)−k

]

z=q−µ

(15)
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=

[
mλ (µ)

∑
k=mλ (µ)−l

Aµ,k(q)(−1)lqlµ
l

∏
i=0

(mλ (µ)− k− i)(1−qν z)mλ (µ)−k−l

]

z=q−µ

= Aµ,mλ (µ)−l(q)(−1)lqlµ l!.

Note 3.5. Now we are able to explain the term “closed” used in the beginning of this section. Namely,
the identity stated in Theorem 3.4 shows that all relevant data needed to describe the character of SNV (λ ),
in particular the rational functions Aν ,k(q), depends on the weight space decomposition and weight mul-
tiplicity function mλ of the fixed representation V (λ ).
Note 3.6. Equation (13) might be a simple observation but it is a very effective method to compute
the rational functions associated to weights of multiplicity 1. Then, we have no differentiation but just
simple evaluation. In particular, one can immediately compute the character of the symmetric powers of a
multiplicity free irreducible representation V . Note that in this case one could also obtain the character of
SNV by plugging the k-many weights of the representation V into the complete homogeneous symmetric
polynomial identity

hN(x1, . . . ,xk) =
k

∑
i=1

xN
i

∏ j 6=i(1− x jx−1
i )

. (16)

As a consequence of Note 3.6 we can prove concrete character formulas for the symmetric powers of
the irreducible representations V (m) of g being of type A1 and furthermore for the symmetric powers of
the fundamental representation V (ω1) of g of type Ar.

Corollary 3.7. For g= sl(2,C) and its irreducible representation V (m), m ∈ N, the Fourier series of the
character of SNV (m) is given by

CharSNV (m)(ix) =
m

∑
i=0

qN(m−2i)Am−2i,1(q) ∈ C(q)[X ] (17)

where q = eix as above and with rational functions

Am−2i,1(q) = (−1)iq(m−i)(m−i+1)
m

∏
j=0
j 6=i

1
q2|i− j|−1

. (18)

Proof. The weights of V (m) are given by (m−2i)ω1 where i = 0, . . . ,m. By Theorem 3.4 we immediately
obtain the claimed character formula and

Am−2i,1(q) =
(−1)0

0!q0(m−2i)ω1

d0

(dz)0




m

∏
j=0
j 6=i

1
1−q(m−2 j)z




z=q−(m−2i)

=
m

∏
j=0
j 6=i

1
1−q(m−2 j)q−(m−2i)

(19)

= ∏
0≤ j<i

1
1−q2(i− j) ∏

i< j≤m

q2( j−i)

q2( j−i)−1
= (−1)iq(m−i)(m−i+1)

m

∏
j=0
j 6=i

1
q2|i− j|−1

.
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Example 3.8. Let g= sl(2,C). Since SNV (0) =V (0) and SNV (1) =V (N), the first non-trivial example
is given by the adjoint representation V (2) and its symmetric powers SNV (2). By Corollary 3.7 we have

CharSNV (2)(ix) =
q6

(q4−1)(q2−1)
·q2N +

−q2

(q2−1)2 ·q
0 +

1
(q4−1)(q2−1)

·q−2N . (20)

Corollary 3.9. Let g= sl(r+1,C) and consider its fundamental representation V (ω1). Set ω0 = ωr+1 =
0, i.e. extend q = ei〈·,x〉 = (q1, . . . ,qr) by q0 = qr+1 = 1. Then,

CharSNV (ω1)(ix) =
r

∑
i=0

q−N
i qN

i+1A−ωi+ωi+1,1(q) ∈ C(q1, . . . ,qr)[X ] (21)

with rational functions

A−ωi+ωi+1,1(q) = qr
i+1

r

∏
j=0
j 6=i

q j

q jqi+1−q j+1qi
. (22)

Proof. The weights of the fundamental representation V (ω1) are ω1,−ω1 +ω2, . . . ,−ωn−1 +ωn,−ωn all
of multiplicity 1. Again, by Theorem 3.4 the claimed character formula follows and

A−ωi+ωi+1,1(q) =
(−1)0

0!q0(−ωi+ωi+1)

d0

(dz)0




r

∏
j=0
j 6=i

1
1−q−1

j q j+1z




z=qiq
−1
i+1

=
r

∏
j=0
j 6=i

1
1−q−1

j q j+1qiq
−1
i+1

(23)

=
r

∏
j=0
j 6=i

q jqi+1

q jqi+1−q j+1qi
= qr

i+1

r

∏
j=0
j 6=i

q j

q jqi+1−q j+1qi
.

Remark 3.10. For g= sl(r+1,C) we have an interesting aspect coming up. Since SNV (ω1) =V (Nω1),
it is interesting to ask how the formulas obtained in Corollary 3.9 compare to the asymptotic theory of the
Duistermaat-Heckman measure with respect to the sequence of representations V (Nω1).

Note 3.11. Similarly to Corollary 3.9 one can compute the characters of the symmetric powers of the rep-
resentations V (ωi) for i = 2, . . . ,r. Note that although the number of weights contributing to SNV (ω1) =
V (Nω1) grows with N, their multiplicities always remain equal to 1. Nevertheless, the rational functions
associated to V (ω1) do not carry only trivial information, the number 1, but also encode which weights
appear in SNV (ω1). In contrast, the weight multiplicities in SNV (ωi) for i = 2, . . . ,r are non-trivial and
consequently their associated rational functions encode much more information. It is part of the full
version of this extended abstract to compute the characters of the SNV (ωi) and compare those formulas.

For representations with higher dimensional weight spaces (dim ≥ 2) the computations become more
difficult. We will demonstrate this by an example.

Example 3.12. Let g= sl(3,C) and V (ω1+ω2) be its adjoint representation which decomposes as shown
in the following picture, where q= ei〈·,x〉=(q1,q2)= (a,b) with respect to the fundamental weights ω1,ω2
and the simple coroots α∨1 ,α

∨
2 .
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qω1+ω2 = ab

q2ω1−ω2 = a2b−1

qω1−2ω2 = ab−2q−ω1−ω2 = a−1b−1

q−2ω1+ω2 = a−2b

q−ω1+2ω2 = a−1b2

q0 = a0b0

ω1

ω2

The picture shows the Littelmann paths Pω1+ω2 of shape ω1 +ω2 (see e.g. Littelmann (1994)) and the
elements of Z[a±1,b±1] corresponding to the weights of V (ω1+ω2). Here the difficulty lies in computing
the rational function associated to the zero weight which has multiplicity 2. This is a first example of a
non-trivial polynomial pk(N) coming up, namely p2(N) = N +1. We have

CharV (Nω1)(ix) =(A0,1(q)+A0,2(q)p2(N)) ·qN0 (24)

+A2ω1−ω2,1(q) ·qN(2ω1−ω2)+A−2ω1+ω2,1(q) ·qN(−2ω1+ω2)

+Aω1−2ω2,1(q) ·qN(ω1−2ω2)+A−ω1+2ω2,1(q) ·qN(−ω1+2ω2)

+A−ω1−ω2,1(q) ·qN(−ω1−ω2)+Aω1+ω2,1(q) ·qN(ω1+ω2).

The difficult part is

A0,1(q) =
d
dz

[
∏

ν∈X\0

1

(1−qν z)mω1+ω2 (ν)

]

z=q0=a0b0=1

=
−3a4b4

(ab−1)2(a−b2)2(a2−b)2 (25)

and we obtain

CharV (Nω1)(ix) =
−(3a4b4 +a4b4 p2(N))

(ab−1)2(a−b2)2(a2−b)2 ·a
0b0 (26)

+
a16b

(ab−1)(a−b2)(a2−b)2(a3−1)(a3−b3)(a4−b2)
·a2Nb−N

+
−b9

(ab−1)(a−b2)(a2−b)2(a3−1)(a3−b3)(a4−b2)
·a−2NbN

+
a9

(ab−1)(a−b2)2(a2−b)(b3−1)(a3−b3)(a2−b4)
·aNb−2N

+
−ab16

(ab−1)(a−b2)2(a2−b)(b3−1)(a3−b3)(a2−b4)
·a−Nb2N

+
ab

(ab−1)2(a−b2)(a2−b)(b3−1)(a3−1)(a2b2−1)
·a−Nb−N

+
−a9b9

(ab−1)2(a−b2)(a2−b)(b3−1)(a3−1)(a2b2−1)
·aNbN .
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Let us end this section with an important note.

Note 3.13. In the notation of Theorem 3.4 note that iterated partial fraction decomposition with respect to
the variables q1, . . . ,qr gives the Fourier series associated to the character of SNV (λ ). Thus, decomposing
the character formula in Theorem 3.4 further with respect to q1, . . . ,qr yields the weight multiplicity
functions mλ ,N . We illustrate this by elaborating on Example 3.8 where r = 1. That is, let us decompose
the character

CharSNV (2)(ix) =
q6

(q4−1)(q2−1)
·q2N +

−q2

(q2−1)2 ·q
0 +

1
(q4−1)(q2−1)

·q−2N (27)

further with respect to q. For e.g. N = 0, . . . ,5 this gives

N CharSNV (2)(ix)

1 q2 +1+q−2

2 q4 +q2 +2+q−2 +q−4

3 q6 +q4 +2q2 +2+2q−2 +q−4 +q−6

4 q8 +q6 +2q4 +2q2 +3+2q−2 +2q−4 +q−6 +q−8

5 q10 +q8 +2q6 +2q4 +3q2 +3+3q−2 +2q−4 +2q−6 +q−8 +q−10.

4 A residue-type generating function for the weight multiplicities
Consider the Fourier series associated to the character of the representation SNV (λ ) of our Lie algebra
g, i.e. CharSNV (λ )(ix) = ∑ν∈X mλ ,N(ν)ei〈ν ,x〉. Here mλ ,N denotes the weight multiplicity function of
SNV (λ ). Then, by inverse Fourier transform we can recover the Fourier coefficients mλ ,N(ν) as

mλ ,N(ν) =
1

(2π)r

∫

hR/2πX∗

e−i〈ν ,x〉CharSNV (λ )(ix)dx. (28)

Here dx is Lebesgue measure on hR normalized such that the volume of the torus T r = hR/2πX∗ is (2π)r.
Note that r is the rank of g. This yields the generating function for the weight multiplicity functions mλ ,N
evaluated at a specific weight. That is,

Proposition 4.1. Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a fixed irreducible
representation of g. Let mλ ,N be the weight multiplicity function of the N-th symmetric power SNV (λ ).
Let µ ∈ X be a fixed weight. Then, the formal power series ∑∞

N=0 zNmλ ,N(µ) is a holomorphic function in
the variable z on |z| ≤ R< 1. Moreover, we have the identity

∞

∑
N=0

zNmλ ,N(µ) =
1

(2π)r

∫

T r

e−i〈µ,x〉 ∏
ν∈X

1

(1− ei〈ν ,x〉z)mλ ,1(ν)
dx. (29)

Proof. The assertion follows from the fact that the dimension of the symmetric power of a representation
grows sub-exponentially in N as

dimSNV (λ ) =
(

dimV (λ )−1+N
N

)
. (30)
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This amounts to say that for the fixed weight µ ∈ X the power series ∑∞
N=0 zNe−i〈µ,x〉CharSNV (λ )(ix)

converges absolutely on |z| ≤ R< 1 uniformely in x ∈ T r. Namely, for arbitrary such x we have

|e−i〈µ,x〉CharSNV (λ )(ix)|= | ∑
ν∈X

mλ ,N(ν)ei〈ν ,x〉| (31)

(triangle inequality)≤ ∑
ν∈X

mλ ,N(ν)

=

(
dimV (λ )−1+N

N

)

(C some constant) =CNdimV (λ )−1 + lower terms.

Therefore the radius of convergence is given by

r =
1

limsup
N→∞

N
√
|e−i〈µ,x〉CharSNV (λ )(ix)|

=
1

limsup
N→∞

N
√
|CNdimV (λ )−1 + lower terms|

= 1. (32)

By Lemma 2.1 the right-hand side of Equation (29) equals

1
(2π)r

∫

T r

e−i〈µ,x〉
∞

∑
N=0

zN CharSNV (λ )(ix)dx (33)

and since the previous convergence arguments allow us to integrate term by term, this finishes the proof.

Now we are able to explain why the generating function in Equation (29) is of residue-type.

Corollary 4.2 (Residue-type). Let g be a semi-simple complex Lie algebra of rank r and V (λ ) a fixed
irreducible representation of g. Let mλ ,N be the weight multiplicity function of the N-th symmetric power
SNV (λ ). Let µ ∈ X be a fixed weight and denote qµ = ei〈µ,x〉 as above. Then,

mλ ,N(µ) =
1

(2π)r

∫

T r

q−µ ∑
ν∈X

qNν
mλ (ν)

∑
k=1

Aν ,k(q) · pk(N)dx. (34)

In particular, the multiplicity mλ ,N(µ) equals the constant term of the function CharSNV (λ )(ix) shifted
by q−µ .

Proof. This is a direct consequence of Proposition 4.1 and Theorem 3.4.

Example 4.3. In the case g= sl(2,C) and the symmetric powers SNV (2) of the adjoint representation we
have described in Note 3.13 that, e.g. for N = 4,

CharS4V (2)(ix) = q8 +q6 +2q4 +2q2 +3+2q−2 +2q−4 +q−6 +q−8. (35)

Note that q = eix. Now, in view of Corollary 4.2, the multiplicity of the weight µ = 2ω1 in S4V (2) is given
by

mλ ,N(µ) = m2,4(2) =
1

2π

∫

S1

q−2(q8 +q6 +2q4 +2q2 +3+2q−2 +2q−4 +q−6 +q−8)dx (36)
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=
1

2π

∫

S1

q6 +q4 +2q2 +2q0 +3q−2 +2q−4 +2q−6 +q−8 +q−10dx =
1

2π

∫

S1

2q0dx = 2

Remark 4.4. Similar to Proposition 4.1 we have a generating function for the weight multiplicity func-
tions mΛ

λ ,N of the exterior powers ΛNV (λ ) of an irreducible representation V (λ ). First, realize (see (Pro-
cesi, 2007, Chapter 9, §4.3)) that the graded character of the exterior algebra of V (λ ) is given by

CharΛV (λ ) =
∞

∑
N=0

zN CharΛNV (λ ) = ∏
ν∈X

(1+ eν z)mΛ
λ ,1(ν). (37)

Then, again by inverse Fourier transform and the same convergence arguments we obtain a generating
function with radius of convergence equal to 1, satisfying the identity

∞

∑
N=0

zNmΛ
λ ,N(µ) =

1
(2π)r

∫

T r

e−i〈µ,x〉 ∏
ν∈X

(1+ ei〈ν ,x〉z)mΛ
λ ,1(ν)dx. (38)

Remark 4.5. For the tensor powers T NV (λ ) of a fixed irreducible representation V (λ ) with weight
multiplicity functions mT

λ ,N we have the identity CharT NV (λ ) = (CharV (λ ))N and consequently

(2π)r
∞

∑
N=0

zNmT
N(µ) =

∫

T r

e−i〈µ,x〉
∞

∑
N=0

zN CharT NV (λ )(ix)dx =
∫

T r

e−i〈µ,x〉 1
1−CharV (λ )(ix)z

dx. (39)

This constitutes a holomorphic function with radius of convergence equal to 1
dimV (λ ) .

5 Connection to vector partition functions
For an integral matrix A ∈ Z(m,d) with ker(A)∩Rd

+ = {0} we define the vector partition function φA :
Zm→ N by

φA(b) = #{x ∈ Nd : Ax = b}. (40)

Let c1, . . . ,cd denote the columns of A and use multiexponent notation zb = zb1
1 · · ·zbm

m , b ∈ Zm. Then, as
stated in (Bliem, 2009, Equation (1)), on {z ∈ Cm : |zck |< 1 for k = 1, . . . ,d} we have the identity

fA(z) := ∑
b∈Zm

φA(b)zb =
d

∏
k=1

1
1− zck

(41)

and

φA(b) = const
[

fA(z) · z−b
]
. (42)

Now, there is an obvious connection between the graded character of the symmetric algebra SV (λ ) of
an irreducible representation V (λ ) of a complex semi-simple Lie algebra g and the theory of vector
partition functions, which is given by Lemma 2.1. Namely, if g is of rank r, then one has a matrix
A ∈ Z(r+1,dimV (λ )) encoding the weights of V (λ ) in terms of the coordinate system given by the funda-
mental weights ω1, . . . ,ωr. This information corresponds to the first r rows of each column of A. In
addition to that, we have the (r+1)-th row which associates to the grading given by z in Lemma 2.1. That
is, our particular matrix A has the following properties
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1. The last row of A equals (1, . . . ,1). (grading)

2. The columns of A reflect the Weyl group action. (symmetry)

3. The columns of A appear with multiplicities. (multiplicity)

In contrast to the computational and algorithmic aspects of iterated partial fraction decomposition as
proposed in Beck (2004) and continued e.g. in Bliem (2009) for “arbitrary” matrices A, our interests are
different. They lie in investigating further the closed character formulas for the symmetric powers and the
impact of the grading, symmetry and multiplicity properties of our matrix A on the iterated partial fraction
decomposition. One aspect is described in detail in Section 6.

6 Weyl group orbits and the Main Theorem
In the notation of Theorem 3.4 write the character of SNV (λ ) as the sum over the dominant weights and
their Weyl group orbits, i.e.

CharSNV (λ )(ix) = ∑
ν∈X+

∑
w∈W/Wν

qNw.ν
mλ (ν)

∑
k=1

Aw.ν ,k(q) · pk(N). (43)

Here Wν denotes the stabilizer of the weight ν . Note that the multiplicity of a weight is invariant under
the operation of the Weyl group (see e.g. (Carter, 2005, Proposition 10.22)). Now, for a fixed dominant
weight ν ∈ X+ let

fν ,N(q) = ∑
w∈W/Wν

qNw.ν
mλ (ν)

∑
k=1

Aw.ν ,k(q) · pk(N) ∈ C(q1, . . . ,qr)[X ] (44)

so that CharSNV (λ )(ix) = ∑ν∈X+ fν ,N(q). It is interesting to ask how the iterated partial fraction decom-
position with respect to the variables q1, . . . ,qr of a single summand fν ,N(q) looks like. Examples indicate
that this decomposition of fν ,N(q) does not yield information about the weights outside the convex hull
of the Weyl group orbit W.(Nν). Furthermore, some additional terms appear which sum up to zero when
taken over all dominant weights X+. We will illustrate this by an example in the case of g being of rank 1
to avoid confusing computations.

Example 6.1. Consider the sequence of representations SNV (3) of g = sl(2,C). Then, by Corollary 3.7
we have

CharSNV (3)(ix) =
q12

(q6−1)(q4−1)(q2−1)
·q3N +

−q6

(q4−1)(q2−1)2 ·q
N (45)

+
q2

(q4−1)(q2−1)2 ·q
−N +

−1
(q6−1)(q4−1)(q2−1)

·q−3N

where q = eix. Hence, following the notation introduced in Equation (44) we set

f1,N(q) =
−q6

(q4−1)(q2−1)2 ·q
N +

q2

(q4−1)(q2−1)2 ·q
−N (46)



A Closed Character Formula for Symmetric Powers of Irreducible Representations 713

f3,N(q) =
q12

(q6−1)(q4−1)(q2−1)
·q3N +

−1
(q6−1)(q4−1)(q2−1)

·q−3N . (47)

Now, e.g. for N = 4, we obtain

PFDq( f1,4(q)) =−q2−2−q−2− 3
4(q−1)2 +

3
4(q+1)

− 3
4(q−1)

− 3
4(q+1)2 (48)

and

PFDq( f3,4(q)) =q12 +q10 +2q8 +3q6 +4q4 +5q2 +7+5q−2 +4q−4 +3−6 +2q−8 (49)

+q−10 +q−12 +
3

4(q−1)2 −
3

4(q+1)
+

3
4(q−1)

+
3

4(q+1)2 ,

where in each individual decomposition the last four summands are the additional terms which sum up
to zero. Unfortunately this example indicates that we cannot expect a positive formula for the weight
multiplicities of the symmetric powers.
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On extensions of the Newton-Raphson
iterative scheme to arbitrary orders
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Abstract. The classical quadratically convergent Newton-Raphson iterative scheme for successive approximations of
a root of an equation f(t) = 0 has been extended in various ways by different authors, going from cubical convergence
to convergence of arbitrary orders. We introduce two such extensions, using appropriate differential operators as well
as combinatorial arguments. We conclude with some applications including special series expansions for functions
of the root and enumeration of classes of tree-like structures according to their number of leaves.

Résumé. Le schéma itératif classique à convergence quadratique de Newton-Raphson pour engendrer des approxi-
mations successives d’une racine d’une équation f(t) = 0 a été étendu de plusieurs façons par divers auteurs, allant
de la convergence cubique à des convergences d’ordres arbitraires. Nous introduisons deux telles extensions en util-
isant des opérateurs différentiels appropriés ainsi que des arguments combinatoires. Nous terminons avec quelques
applications incluant des développements en séries exprimant des fonctions de la racine et l’énumération de classes
de structures arborescentes selon leur nombre de feuilles.

Keywords: Newton-Raphson iteration, order of convergence, combinatorial species, tree-like structures

1 Introduction
Let (tn)n≥0 be a sequence of real numbers converging to a. The convergence is said to be of order p if

tn+1 − a = O ((tn − a)
p
) , as n→∞. (1)

This means that the convergence is very rapid, when p ≥ 2, since the number of correct decimal digits
in the approximation of a is essentially multiplied by p at each step. Now, let U ⊆ R be an open set and
f : U → R be twice differentiable. If the equation f (t) = 0 has a simple root a ∈ U , then the classical
Newton-Raphson iterative scheme(i),

tn+1 = N (tn) , n = 0, 1, 2, ..., with N (t) = t− f (t)

f ′ (t)
, (2)

†With the support of NSERC (Canada)
(i) Also called the tangent method

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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produces a quadratically convergent (p = 2) sequence of approximations tn → a, as n → ∞, whenever
the first approximation, t0, is sufficiently near to a. For suitably regular functions, cubical convergence
(p = 3), can be achieved using Householder’s method (see Householder (1970)),

N (t) = t− f (t)

f ′ (t)

(
1 +

f (t) f ′′ (t)

2f ′ (t)2

)
, (3)

or the method of the astronomer Halley (1656-1743),

N (t) = t− 2f (t) f ′ (t)

2f ′ (t)2 − f (t) f ′′ (t)
. (4)

More generally, to achieve convergence of order k + 1, k ≥ 3, one can use the general Householder’s
method (see Householder (1970)),

N (t) = t+ k
(1/f)

(k−1)
(t)

(1/f)
(k)

(t)
. (5)

Another way to achieve arbitrary order convergence is to make use of the method of indeterminate coeffi-
cients together with a Taylor expansion around the root (see Sebah and Gourdon (2001)). In Section 2, we
use the inverse function theorem and differential operators to replace (5) by two explicit finite sums which
also provide arbitrary order convergence. Section 3 is devoted to a combinatorial approach to these finite
sums. We conclude, in Section 4, with some applications including special series expansions for functions
of the root and enumeration of classes of tree-like structures according to their number of leaves.

2 Differential operators and higher order convergence
Assume that f is of class Ck+1 around the simple root a. Then, by the inverse function theorem, there
exists an open interval V containing the root a which is mapped bijectively by f onto an open interval W
containing 0. Moreover, the inverse function f<−1> : W → V is also of class Ck+1. Using these facts,
we can express the root a in the following way,

a = f<−1>(0) = f<−1>(f(t)− f(t)) = f<−1>(f(t) + u)|u:=−f(t), (6)

whenever t is sufficiently near of a. Now, fix such a t and consider the function

Φt(u) = f<−1>(f(t) + u). (7)

Then, by Taylor’s expansion with remainder, we have, for every small value of u,

Φt(u) =
k∑

ν=0

Φ
(ν)
t (0)

uk

k!
+ Φ

(k+1)
t (θu)

uk+1

(k + 1)!
, 0 ≤ θ ≤ 1. (8)

The Taylor’s coefficients can be computed very easily in terms of f as follows :



716 Gilbert Labelle

Lemma 2.1 Let D = d/dt, then for ν ≤ k + 1,

Φ
(ν)
t (0) =

(
1

f ′(t)
D

)ν
t. (9)

Proof: Of course, Φ
(ν)
t (0) = (f<−1>)(ν)(f(t)). Applying the operator D on both sides, we get by the

chain-rule,

DΦ
(ν)
t (0) = D(f<−1>)(ν)(f(t)) = (f<−1>)(ν+1)(f(t))f ′(t) = f ′(t)Φ(ν+1)

t (0). (10)

Hence, Φ
(ν+1)
t (0) =

(
1

f ′(t)D
)

Φ
(ν)
t (0) and we conclude using the fact that, for ν = 0, Φt(0) =

(f<−1>)(f(t)) = t. 2

Since a = Φt(u)|u=−f(t) and f(t)k+1 ∼ f ′(a)
k+1 · (t− a)k+1, as t→ a, we finally obtain,

Proposition 2.2 Let f be of class Ck+1 around the simple root a and let

N (t) =
k∑

ν=0

(−1)ν
f(t)ν

ν!

(
1

f ′(t)
D

)ν
t. (11)

Then N (t) − a = O((t − a)k+1) and, for every t0 sufficiently near to a, the sequence (tn)n≥0, defined
by tn+1 = N (tn), converges to a to the order k + 1. More precisely,

tn+1 − a ∼ C · (tn − a)k+1, n→∞, (12)

where

C = (−1)k+1

[
f ′(t)k+1

(k + 1)!

(
1

f ′(t)
D

)k+1

t

]

t:=a

. (13)

2

Note that for k = 1 (resp. k = 2), (11) corresponds to the Newton-Raphson (resp. Householder)
iterative step. However, for k ≥ 3, (11) and the general Houseolder’s iterative step (5) are completely
different. For example, for k = 3, (5) is given by

N (t) = t− f(t)

(
f ′(t)2 − f(t)f ′′(t)/2

f ′(t)3 − f(t)f ′(t)f ′′(t) + f ′′′(t)f(t)2/6

)
, (14)

while (11) has the form

N (t) = t− f(t)

f ′(t)

(
1 +

f(t)f ′′(t)
2!f ′(t)2

+
f(t)2

(
3f ′′(t)2 − f ′(t)f ′′′(t)

)

3!f ′(t)4

)
. (15)

The iteration step (11) can also be written the following equivalent way,

N (t) =
k∑

ν=0

(−1)ν
( f(t)
f ′(t)D

ν

)
t, (16)
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where the binomial coefficient is interpreted as the polynomial
(
z
ν

)
= z(z−1)(z−2)···(z−ν+1)

ν! . This can be
seen as follows : let

θν(t) = (−1)ν
f(t)ν

ν!

(
1

f ′(t)
D

)ν
t, (17)

and apply the operator 1
f ′(t)D on both sides of the equality,

ν!(−f(t))−νθν(t) =

(
1

f ′(t)
D

)ν
t. (18)

Multiplying both sides of the resulting equality by (−f(t))ν+1, one gets after some computation,

θν+1(t) = − 1

ν + 1

(
f(t)

f ′(t)
D − ν

)
θν(t), (19)

from which (16) follows immediately.

Corollary 2.3 Let f be analytic around the simple root a. Then, for every g, analytic around a, the
following identities hold,

g(a) =

∞∑

ν=0

(−1)ν
f(t)ν

ν!

(
1

f ′(t)
D

)ν
g(t) (20)

=
∞∑

ν=0

(−1)ν
( f(t)
f ′(t)D

ν

)
g(t), (21)

whenever t belongs to a suitably small neigborhood of a.

Proof: (Sketch) Use the analytical version of the inverse function theorem, apply Taylor expansion to
the function Ψt(u) = g ◦ f<−1>(f(t) + u), in ascending powers of u, and use the fact that g(a) =
Ψt(u)|u:=−f(t) for every t sufficiently near to a. 2

It is interesting to note that the function defined by the right members of (20-21) is a constant function
in a neigborhood of a. Examples of this phenomenon and of Proposition 2.2 will be given in Section 4.

3 A combinatorial approach
Recall that a combinatorial species in the sense of Joyal is essentially a class of combinatorial structures
which is closed under arbitrary relabellings of their underlying sets (ii). Given a combinatorial species, R,
the species, A = A(X), of R-enriched rooted trees is recursively defined by the combinatorial equation,

A = XR(A), (22)

whereX denotes the species of singletons. Figure 1 describes anA-structure, where the black dots denote
X-singletons and each circular arc, centered at a black dot, denotes an R-structure put on the (possibly
empty) set of its children.
(ii) Technically speaking, a species is an endofunctor of the category of finite sets with bijections. See Joyal (1981) and Bergeron

et al. (1998)
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Fig. 1: An R-enriched rooted tree

The species of R-enriched rooted trees was introduced by the author (see Labelle (1981)) in order
to give a combinatorial proof of Lagrange inversion. Equivalently, considering X as a combinatorial
parameter, the species, A = A(X), can be seen as the solution of the combinatorial equation

F (T ) = 0, where F (T ) = T −XR(T ). (23)

Later, Décoste, Labelle, and Leroux (see Décoste et al. (1982)) used R-enriched rooted trees to give a
combinatorial proof of the classical (order 2) Newton-Raphson iterative scheme (2). They also sketched a
combinatorial model for higher order iterations but their approach was non explicit and computationally
unsatisfactory. The purpose of the present section is to give a combinatorial proof of the general (arbitrary
order) Newton-Raphson iterative scheme (11) and of the full expansion (20).

LetD = d/dT denote the usual combinatorial differentiation operator with respect to singletons of sort
T . Since −F (T ) = XR(T ) − T and DF (T ) = F ′(T ) = 1 −XR′(T ), the analytical iterative scheme
(11) suggests the following combinatorial iterative scheme, T 7→ N (T ), where

N (T ) =

k∑

ν=0

1

Sν
(XR(T )− T )ν

(
1

1−XR′(T )
D

)ν
T , (24)

and where Sν denotes the symmetric group of order ν. In other words, the right-hand side of (24) should
be a finite sum of quotient species under some actions of the symmetric groups Sν , ν = 0, 1, . . . , k, into
which the successive approximations of A should be substituted for T .

The first approximation T0 should be of the form T0 = α, where α = A|≤m denotes the species of
R-enriched rooted trees restricted to small sets, say of cardinalities ≤ m, the value of m being fixed. Fol-
lowing the terminology of Décoste et al. (1982), α-structures will be called light R-enriched rooted trees.
AnA-structure which is not light is called heavy. Convergence of order k+1 is interpreted combinatorially
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as follows:

α = A|≤m ⇒ N (α)|≤(k+1)(m+1) = A|≤(k+1)(m+1). (25)

In other words, if α coincides with the species A on sets of cardinality≤ m thenN (α) will coincide with
the species A on sets of cardinality ≤ (k + 1)(m+ 1). In order to make this statement more precise, we
introduce the auxiliary concepts.

Given m, the species, B = B(X), of m-broccolis, is defined by B = XR(α) − α. In other words, a
m-broccoli is an heavy A-structure consisting of a root (of sort X) followed by an R-assembly of light
R-enriched rooted trees, see Figure 2, where m = 6.

α

α

α

α

heavy=

Fig. 2: A m-broccoli for m = 6

Using the terminology of Labelle (1985), the differential operator ,

D =
1

1−XR′(T )
D, (26)

can be called an eclosion operator. Since 1/(1 − XR′(T )) is the species of lists of XR′(T )-structures,
the eclosion operator D transforms any species K = K(X,T ) to another species DK = DK(X,T ) as
shown in Figure 3, where the T -singletons are represented by black triangles.

K

7−→
D

K

Fig. 3: The eclosion operator D applied to a species K
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Now consider an R-enriched rooted tree τ on a set (of X-singletons) of cardinality ≤ (k + 1)(m+ 1).
Let ν be the number of broccolis contained in τ . Then 0 ≤ ν ≤ k, since each broccoli contains at least
m+ 1 points. Number arbitrarily these broccolis from 1 to ν as in Figure 4 (where m = 6, ν = 3).

b1

b2

b3

Fig. 4: Numbering the broccolis

Detach next the numbered broccolis and put them as a list b1, b2, . . . , bν as in Figure 5. This shows that
for 0 ≤ ν ≤ k, the species A[ν] of R-enriched rooted trees having exactly ν broccolis numbered 1 to ν
coincides with the species

[
(XR(T )− T )ν

(
1

1−XR′(T )
D

)ν
T

]

T :=α

, (27)

on sets of cardinality ≤ (k + 1)(m+ 1).
Finally, since the symmetric group Sν acts faithfully on the A[ν]-structures by simply renumbering the

broccolis, we can erase the numbering by considering the quotient species of A[ν]/Sν . Summarizing, we
can state the following combinatorial version of the Newton-Raphson scheme of arbitrary orders.

Proposition 3.1 Let m ≥ 0 be a fixed integer, D = d/dT , and consider a species α coinciding with the
species A = XR(A) of R-enriched rooted trees on sets up to cardinality m. Then, the species

N (α) =

k∑

ν=0

1

Sν
(XR(α)− α)ν

[(
1

1−XR′(T )
D

)ν
T

]

T :=α

, (28)

coincides with the species A on sets up to cardinality (k + 1)(m+ 1).

2

The following combinatorial analogue of (20) also holds. The proof is similar and left to the reader.
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b1 b2 b3

:= α

1

3

2

Fig. 5:
[
(XR(α)− α)3D3T

]
T :=α

-structure

Corollary 3.2 Let m ≥ 0 be a fixed integer, D = d/dT , and consider a species α coinciding with the
species A = XR(A) of R-enriched rooted trees on sets up to cardinality m. Then, for any species G we
have the following expansion

G(A) =
∞∑

ν=0

1

Sν
(XR(α)− α)ν

[(
1

1−XR′(T )
D

)ν
G(T )

]

T :=α

. (29)

2

Note that since there is no A-structure on the empty set, we can take, in particular, m = 0 and α = 0
(the empty species), in Corollary 3.2. In this case, broccolis are (R-enriched) leaves in expansion (29).
Special instances of Proposition 3.1 and of Corollary 3.2 will be given in the next section.

4 Examples and applications

4.1 Analytical examples

The analytical iterative scheme (11) and the corresponding full expansions (20-21) can be illustrated in a
variety of ways. We now give three typical such illustrations.
• Root extraction. Let 0 6= n ∈ Z, 0 < c ∈ R, and consider the equation tn − c = 0, whose solution is

a = c1/n. Then, for t near c1/n, the (k + 1)th order iteration step (11) takes the form,

N (t) =
k∑

ν=0

(−1)ν
( 1
n

ν

)
t
(

1− c

tn

)ν
. (30)
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Of course, when k = 1, this reduces to the classicalN (t) = (t+c/t)/2, if n = 2, and toN (t) = t(2−ct),
if n = −1. It is worthwhile to note that, taking g(t) = tm and t near c1/n, (20) becomes

cm/n =

∞∑

ν=0

(−1)ν
(m
n

ν

)
tm
(

1− c

tn

)ν
, (31)

in which the right-hand-side corresponds to the full expansion, in ascending powers of (1− c/tn), of the
trivial identity cm/n = tm (1− (1− c/tn))

m
n .

• Computing logarithms. Let 0 < c ∈ R and consider the equation et − c = 0, whose solution is
a = ln(c). This time, for t near ln(c), the (k + 1)th order iteration step (11) takes the form,

N (t) = t−
k∑

ν=1

(1− ce−t)ν
ν

, (32)

and for any analytic function g around ln(c), (20) becomes,

g(ln(c)) =
∞∑

ν=0

(ce−t − 1)ν
(
D

ν

)
g(t). (33)

In particular, if g(t) = t, this last equality corresponds to the full expansion, in ascending powers of
(1− ce−t), of the trivial identity, ln(c) = t+ ln(1− (1− ce−t)).

• Approximating π. Consider the simple root a = π of the equation sin(t) = 0. It turns out that the form
(16) of the iteration step is easier to manipulate in this case. Note first that (f(t)/f ′(t))D = tan(t)D. It
is then easy to check by induction that, for ν > 0,

(
tan(t)D

ν

)
t = a polynomial function of tan(t) with constant coefficients. (34)

Collecting alike powers of tan(t) in (16), massive cancellation produces the following (2p + 1)th order
iterative scheme, tn+1 = N (tn), for successive approximations of π, where,

N (t) = t− tan(t) +
tan(t)3

3
− tan(t)5

5
+ · · ·+ (−1)2p−1

tan(t)2p−1

2p− 1
, (35)

and 3
4π < t0 <

5
4π (one can take t0 = 3, for example). Moreover, for analytic g near π, (20) becomes,

g(π) =
∞∑

ν=0

(−1)ν
(

tan(t)D

ν

)
g(t), (36)

whenever t is sufficiently near to π. In particular, if g(t) = t, this last equality corresponds to the full
expansion, in ascending powers of tan(t), of the trivial identity, π = t− arctan(tan(t)), 3

4π < t ≤ 5
4π.
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4.2 Combinatorial applications
It is well-known that the classical classes of rooted-trees are special instances of R-enriched rooted trees.
For example, if 1, X, L,E,En, C, respectively denote the species of the empty set, of singletons, of lists,
of sets, of n-sets, of oriented cycles, then,

• the class of ordinary (Cayley) rooted trees corresponds to the species R = E,
• the class of topological rooted trees corresponds to the species R = E −X ,
• the class of binary rooted trees corresponds to the species R = 1 +X2,
• the class of unary-binary rooted trees corresponds to the species R = 1 +X +X2,
• the class of unoriented binary rooted trees corresponds to the species R = 1 + E2,
• the class of unoriented unary-binary rooted trees corresponds to the species R = 1 +X + E2,
• the class of ordered rooted trees corresponds to the species R = L,
• the class of mobiles (see Bergeron et al. (1998) ) corresponds to the species R = 1 + C,

etc.

For each choice of the speciesR, the iteration step (28) produces a combinatorial computational scheme
of order k + 1 for successive approximations of the species A = XR(A) of R-enriched rooted trees. For
example, taking R = 1 +X + E2, then, R′(X) = 1 +X , and (28) becomes,

N (α) =

k∑

ν=0

1

Sν
(X(1 + α+ E2(α))− α)ν

[(
1

1−X(1 + T )
D

)ν
T

]

T :=α

, (37)

where D = d/dT and α is the species of light A-structures, namely, the class of unoriented unary-binary
rooted trees that are living on sets of cardinality≤ m. Moreover, for arbitraryR, takingm = 0 and α = 0
in (29), the 0-broccolis becomeXR(0)-structures (enriched singletons) and we get the following two new
full expansions involving the species A of R-enriched rooted trees according to their number ν of leaves:

A =

∞∑

ν=0

1

Sν
Xν

[(
R(0)

1−XR′(T )
D

)ν
T

]

T :=0

, (38)

G(A) =
∞∑

ν=0

1

Sν
Xν

[(
R(0)

1−XR′(T )
D

)ν
G(T )

]

T :=0

. (39)

For example, taking R = E, the species or ordinary (Cayley) rooted trees can be written in the form

A =
∞∑

ν=0

1

Sν
Xν

[(
1

1−XE(T )
D

)ν
T

]

T :=0

, (40)

and taking, for G, the species of permutations, S, the species of endofunctions, End = S(A), can be
written in the form

End =

∞∑

ν=0

1

Sν
Xν

[(
1

1−XE(T )
D

)ν
S(T )

]

T :=0

. (41)
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We have the following result concerning the enumeration ofG(A)-structures according to their number
of leaves ( = 0-broccolis ).

Corollary 4.1 Let R(x) =
∑∞
n=0 rnx

n/n! and G(x) =
∑∞
n=0 gnx

n/n! be the exponential generating
series of the species R and G. Let γn,ν be the number of G-assemblies of R-enriched rooted trees on [n]
having exactly ν leaves. Then, for ν ≥ 1,

∞∑

n=0

γn,νx
n/n! =

rν0x
ν

ν!(1− r1x)2ν−1
pν(x), (42)

where pν(x) = ων(x, 0) is a polynomial, with ω1(x, t) = G′(t), and for ν > 1,

ων(x, t) =

(
(1− xR′(t)) ∂

∂t
+ (2ν − 3)xR′′(t)

)
ων−1(x, t). (43)

Proof: Take the underlying power series of (39), and use induction on ν. 2

This provides an uniform algorithm for the computation of the sequences (γn,ν)n≥0 which is easily
implementable in computer algebra systems. If r0 and r1 are formal variables, they can be interpreted
as ”leafs” and ”nodes having one child” counters, respectively. Moreover, since (42) is always a rational
function of x, exact and asymptotic expressions for γn,ν are easily obtained using partial fractions expan-
sions. For special choices of R and G, reccurence (43) can often be simplified, as the following examples
show.

• Counting ordinary rooted trees having ν leaves. TakingR = E andG = X , one finds that ων(x, t) =
pν(xet). Consequently, the exponential generating series of the species of ordinary rooted trees having
exactly ν leaves is given by the rational function, xν(1− x)−2ν+1pν(x)/ν!, where,

p1(x) = 1, pν(x) = x
(
(1− x)p′ν−1(x) + (2ν − 3)pν−1(x)

)
, ν > 1. (44)

For small values of ν, the resulting sequences (γn,ν)n≥0 can be found in Sloane (2009).

• Counting mobiles having ν leaves. Taking R = 1 + C and G = X , one finds that ων(x, t) =
Qν(x, t)/(1 − t)2(ν−1), where Qν(x, t) is a polynomial in x and t. Consequently, the exponential
generating series of the species of mobiles having exactly ν leaves is given by the rational function,
xν(1− x)−2ν+1qν(x)/ν!, where, qν(x) = Qν(x, 0), Q1(x, t) = 1, and for ν > 1,

Qν(x, t) =

(
(1− t)(1− t− x)

∂

∂t
+ x+ (2ν − 4)(1− t)

)
Qν−1(x, t). (45)

Again, for small values of ν, the resulting sequences (γn,ν)n≥0 can be found in Sloane (2009).

• Counting topological rooted trees having ν leaves. Taking R = E − X and G = X , one finds
that ων(x, t) = Pν(x, xet), where Pν(x, y) is a polynomial in x and y. Since, in this case, r1 = 0,
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the exponential generating series of the species of topological rooted trees having exactly ν leaves is a
polynomial function of the form, xνpν(x)/ν!, where, pν(x) = Pν(x, x), P1(x, y) = 1, and for ν > 1,

Pν(x, y) =

(
(1 + x− y)y

∂

∂y
+ (2ν − 3)y

)
Pν−1(x, y). (46)

• Counting endofunctions according to their number of leaves. As mentioned before, takingR = E and
G = S, the species G(A) = S(A) coincides with the species, End, of endofunctions. In this case, being
a leaf of an endofunction φ is the same as being a leave of a rooted tree in the S-assembly of rooted trees
corresponding to φ. Equivalently, a leave of an endofunction φ is a periodic element having a 1-element
fiber or an element having an empty fiber. In this case, it turns out that ων(x, t) = Kν(xet, t)/(1− t)ν+1,
whereKν(x, t) is a polynomial in x and t. The corresponding exponential generating series of the species
of endofunctions having exactly ν leaves is given by the rational function, xν(1− x)−2ν+1εν(x)/ν!,
where, εν(x) = Kν(x, 0), K1(x, t) = 1, and for ν > 1,

Kν(x, t) =

(
(1− x)(1− t)

(
x
∂

∂x
+
∂

∂t

)
+ ν + (ν − 3)x− (2ν − 3)xt

)
Kν−1(x, t). (47)
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Combinatorial formulas for double parabolic
R-polynomials
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Abstract. The well-knownR-polynomials in Z[q], which appear in Hecke algebra computations, are closely related to
certain modified R-polynomials in N[q] whose coefficients have simple combinatorial interpretations. We generalize
this second family of polynomials, providing combinatorial interpretations for expressions arising in a much broader
class of computations. In particular, we extend results of Brenti, Deodhar, and Dyer to new settings which include
parabolic Hecke algebra modules and the quantum polynomial ring.

Résumé. Les bien connues polynômes-R en Z[q], qui apparaissent dans les calcules d’algébre de Hecke, sont re-
lationés à certaines polynômes-R modifiés en N[q], dont les coefficients ont simples interprétations combinatoires.
Nous généralisons cette deuxième famille de polynômes, fournissant des interprétations combinatoires pour les ex-
pressions qui se posent dans une catégorie beaucoup plus vaste de calculs. En particulier, nous étendons des résultats
de Brenti, Deodhar, et Dyer à des situations nouvelles, qui comprennent modules paraboliques pour l’algébre de
Hecke, et l’anneau des polynômes quantiques.

Resumen. Los ilustres polinomios-R en Z[q], que aparecen en los cálculos del álgebra de Hecke, están relacionados
con ciertos polinomios-R modificados en N[q], cuyos coeficientes tienen interpretaciones combinatorias sencillas.
Generalizamos esta segunda familia de polinomios, proporcionando interpretaciones combinatorias para las expre-
siones que surgen en una clase de cálculos más amplia. En particular, se amplian unos resultados de Brenti, Deodhar,
y Dyer a nuevas situaciones que incluyen los módulos parabólicos del álgebra de Hecke, y el anillo de polinomios
cuánticos.

Keywords: Immanants, Kazhdan-Lusztig polynomials, quantum groups

1 Introduction
An important ingredient in the definition of Kazhdan and Lusztig’s basis [KL79] for the Hecke algebra
Hn(q) of a Coxeter group W is a map now known as the bar involution. Applying this involution to a
natural basis of the algebra, one obtains a second basis, related to the first by polynomials {Ru,v(q) |u, v ∈
W} in Z[q] now known as R-polynomials. Alternatively, one may relate this second basis to the first by
polynomials {R̃u,v(q) |u, v ∈ W} in N[q] which we call modified R-polynomials. Coefficients of the
modifiedR-polynomials and their combinatorial interpretations were studied by Brenti [Bre94], [Bre97a],
[Bre97b], [Bre98], [Bre02], Deodhar [Deo85], and Dyer [Dye93].

Certain C[q 1
2 , q¯

1
2 ]-submodules of Hn(q) called double parabolic modules inherit a bar involution from

Hn(q), and therefore inherit analogs of R-polynomials called parabolic R-polynomials. Also belonging

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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to Z[q], these parabolic R-polynomials appear in numerous papers, yet somehow have not received the
modification and combinatorial interpretation granted to their nonparabolic syblings.

Related to the bar involutions on the type-A Hecke algebra and its parabolic modules is another in-
volution on a certain noncommutative polynomial ring A(n; q) which we call the quantum polynomial
ring. This last involution, also called the bar involution, is an important ingredient in the definition of a
certain dual canonical basis of the quantum polynomial ring, related by Hopf algebra duality to Kashi-
wara’s [Kas91] and Lusztig’s [Lus90] canonical basis of sl(n,C). Again, applying this involution to a
natural basis of A(n; q), one obtains a second basis, related to the first by inverse R-polynomials and
inverse parabolic R-polynomials (equivalently, by modifications of these).

To summarize, we have several algebras with the property that a natural basis and its bar image are
related by a transition matrix whose entries are variations of R-polynomials. Using an elementary family
of bases ofA(n; q), we show that in all cases, the above entries have simple combinatorial interpretations
in terms of walks in the Bruhat order. These interpretations enable us to express all double parabolic
analogs of R-polynomials as sums of the nonparabolic polynomials. In all sections, we work specifically
in type A, but many of our results carry over to Hecke algebras of other types.

In Section 2 we review definitions concerning the symmetric group Sn and Hecke algebra Hn(q) of
type A. We define the bar involution on Hn(q), R-polynomials, and modified R-polynomials. We also
define double parabolic analogs of these, thus extending one of the two parabolic conventions appearing
in the literature. These polynomials are easily seen to be sums of nonparabolic R-polynomials and mod-
ified R-polynomials. In Section 3, we define the quantum polynomial ring A(n; q), its bar involution,
inverse R-polynomials, and modified inverse R-polynomials. We also define double parabolic analogs
of these, thus extending the second of the two parabolic conventions appearing in the literature. These
polynomials are not easily seen to be sums of nonparabolic inverse R-polynomials and modified inverse
R-polynomials. In Section 4, we consider various bases of the so-called immanant subspace of A(n; q)
and provide combinatorial interpretations for the transition matrices relating these to the natural basis
of the subspace. These lead to interpretations in Section 5 for all variations of the R-polyomials men-
tioned above, and to our main result which expresses double parabolic inverse R-polynomials as sums of
nonparabolic inverse R-polynomials.

2 The symmetric group and Hecke algebra
Let Sn be the Coxeter group of type An−1, i.e., the symmetric group on n letters. Sn is generated by the
standard adjacent transpositions s1, . . . , sn−1, subject to the relations

si
2 = e for i = 1, . . . , n− 1,

sisjsi = sjsisj for |i− j| = 1,

sisj = sjsi for |i− j| ≥ 2.

(2.1)

A standard action of Sn on rearrangements of the word 1 · · ·n is defined by letting si swap the letters in
positions i and i+ 1,

si ◦ a1 · · · an = a1 · · · ai+1ai · · · an. (2.2)

For each element v = si1 · · · si` ∈ Sn, we define the one-line notation of v to be the word v1 · · · vn =
v ◦ 1 · · ·n. Thus the one-line notation of the identity permutation e is 12 · · ·n. Using this convention, the
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one-line notation of vw is

(vw)1 · · · (vw)n = v ◦ (w ◦ 1 · · ·n) = wv1
· · ·wvn . (2.3)

Let `(w) be the minimum length of an expression for w in terms of generators, and let w0 denote the
longest word in Sn. Let ≤ denote the Bruhat order on Sn , i.e., v ≤ w if every reduced expression for w
contains a reduced expression for v as a subword.

The (Iwahori-)Hecke algebra Hn(q) of Sn is the C[q 1
2 , q¯

1
2 ]-algebra generated by the set of (modified)

natural generators, T̃s1 , . . . , T̃sn−1
, subject to the relations

T̃ 2
si = (q

1
2 − q¯1

2 )T̃si + 1 for i = 1, . . . , n− 1,

T̃si T̃sj T̃si = T̃sj T̃si T̃sj for |i− j| = 1,

T̃si T̃sj = T̃sj T̃si for |i− j| ≥ 2.

(2.4)

(We follow the notation of [Lus85], using modified generators T̃si instead of the more common generators
Tsi = q

1
2 T̃si .) If si1 · · · si` is a reduced expression for w ∈ Sn we define T̃w = T̃si1 · · · T̃si` , where

T̃e = 1. It is known that the definition of T̃w does not depend upon the choice of a reduced expression for
w. We shall call the elements {T̃w | w ∈ Sn} the (modified) natural basis of Hn(q). For u, v ∈ Sn, we
define εu,v = (−1)`(v)−`(u) and qu,v = (q

1
2 )`(v)−`(u).

An involutive automorphism on Hn(q) commonly known as the bar involution is defined by

q
1
2 = q¯

1
2 , T̃w = (T̃w−1)−1. (2.5)

Taking the bar involution of an element of Hn(q) and expanding in terms of the natural basis [KL79],
we have

T̃w =
∑

v≤w
εv,wq

−1
v,wRv,w(q)T̃v, (2.6)

where {Rv,w(q) | v, w ∈ Sn} are polynomials in Z[q], which are commonly called R-polynomials.
Modifying the R-polynomials by

q−1
v,wRv,w(q) = R̃v,w(q

1
2 − q¯1

2 ) (2.7)

gives us the modified R-polynomials {R̃v,w(q) | v, w ∈ Sn}, which belong to N[q]. Thus we may rewrite
(2.6) as

T̃w =
∑

v≤w
εv,wR̃v,w(q

1
2 − q¯1

2 )T̃v. (2.8)

Often appearing in the literature are C[q 1
2 , q¯

1
2 ]-submodules of Hn(q) spanned by sums of natural basis

elements corresponding to cosets of Sn. For a subset I of generators of Sn, the subgroup WI of Sn

generated by I is said to be parabolic. Note that we have W∅ = {e} and W{s1,...,sn−1} = Sn.
Two parabolic subgroups WI and WJ partition Sn into double cosets of the form WIwWJ . If J = ∅

or I = ∅, these cosets are denoted WIw and wWJ , respectively. Thus, ordinary single cosets are special
cases of double cosets. It is known that each double coset is an interval in the Bruhat order, containing a
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unique maximal element and a unique minimal element. Denote the collections of maximal and minimal
coset representatives by W I,J

+ and W I,J
− , respectively. Denote the longest element of a subgroup WI by

wI0 .
The C[q 1

2 , q¯
1
2 ]-submodule of Hn(q) corresponding to parabolic subgroups WI , WJ and their double

cosets WIwWJ is the span of certain double coset sums. For each permutation w ∈ W I,J
+ , define the

element
T̃ ′WIwWJ

=
∑

v∈WIwWJ

(−q 1
2 )`(w)−`(v)T̃v. (2.9)

Let H ′I,J denote the submodule of Hn(q) spanned by these elements,

H ′I,J = spanC[q
1
2 ,q¯

1
2 ]
{T̃ ′WIwWJ

| w ∈W I,J
+ }. (2.10)

The bar involution on Hn(q) induces a bar involution on H ′I,J . Curtis [Cur85] and Du [Du94] showed

that the elements {T̃ ′WIwWJ
| w ∈ W I,J

+ } form a basis of H ′I,J . Expanding this basis in terms of the
natural basis, Du showed that we have

T̃ ′WIwWJ
=

∑

v∈W I,J
+

v≤w

(q
1
2 )`(w)−`(v)RI,Jv,w(q

−1)T̃ ′WIvWJ
, (2.11)

where {RI,Jv,w | v, w ∈ W I,J
+ } are polynomials belonging to Z[q]. When I = ∅ or J = ∅, we call these

single parabolic R-polynomials and if neither are empty we call them double parabolic R-polynomials.
Douglass [Dou90] and Deodhar [Deo87] looked at the single parabolic R-polynomials, while Du was
probably the first to mention the double parabolic versions. Applying the bar involution to both sides
of (2.9) and comparing terms, one sees that double parabolic R-polynomials are related to ordinary R-
polynomials by

RI,Ju,w(q) =
∑

v∈WIwWJ

Rv,w(q). (2.12)

It is often necessary to factor a permutation w in Sn in terms of elements of WI , WJ , and a minimal
or maximal representative of the coset WIwWJ . For instance, each element v of a single coset WIv has
a unique factorization v = uw with u ∈ WI and v ∈ W I,∅

− . Similarly, each element v of a single coset
vWJ has a unique factorization v = wu with u ∈ WJ and v ∈ W ∅,J− . Factorization in double cosets
is a bit more complicated. For v ∈ WIwWJ , there is not always a unique h ∈ WI and k ∈ WJ such
that v = hwk. On the other hand, we can define a canonical factorization in terms of a third parabolic
subgroup of Sn. For every u ∈W I,J

− we define a set of generators

K ′ = K ′(u) = {si ∈ I | siu = usjfor some sj ∈ J}, (2.13)

By definitionWK′ is contained inWI and thus we can construct single cosets of the formwWK′ within
WI . As before, there are unique maximal and minimal representatives for each coset wWK′ ⊂ WI .
Denote the sets of maximal and minimal coset representatives by (WI)

∅,K′
+ and (WI)

∅,K′
− , respectively.

It follows that for u ∈W I,J
− each double coset factors as

WIuWJ = (WI)
∅,K′
− WK′uWJ . (2.14)
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In other words each element v of the double coset WIuWJ has a unique factorization v = vI−uv
J satis-

fying
vI− ∈ (WI)

∅,K′
− , vJ ∈WJ . (2.15)

Furthermore the length of the word is the sum of the lengths of the factors.

3 The quantum polynomial ring
For each n > 0, let the quantum polynomial ring A(n; q) be the noncommutative C[q 1

2 , q¯
1
2 ]-algebra

generated by n2 variables x = (x1,1, . . . , xn,n) representing matrix entries, subject to the relations

xi,`xi,k = q
1
2xi,kxi,`,

xj,kxi,k = q
1
2xi,kxj,k,

xj,kxi,` = xi,`xj,k,

xj,`xi,k = xi,kxj,` + (q
1
2 − q¯1

2 )xi,`xj,k,

(3.1)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n. A(n; q) often arises in conjunction with the the
quantum group Oq(SL(n,C)). In particular, we have

Oq(SL(n,C)) ∼= A(n; q)/(detq(x)− 1), (3.2)

where
detq(x) =

def

∑

w∈Sn

(−q¯1
2 )`(w)x1,w1

· · ·xn,wn
(3.3)

is the quantum determinant. Notice that A(n; 1) is the commutative polynomial ring C[x1,1, . . . , xn,n].
We can use the relations above to convert any monomial into a linear combination of monomials in

lexicographic order. Thus as a C[q 1
2 , q¯

1
2 ]-module, A(n; q) is spanned by monomials in lexicographic

order. A(n; q) has a natural grading by degree,

A(n; q) =
⊕

r≥0

Ar(n; q), (3.4)

where Ar(n; q) consists of the homogeneous degree r polynomials within A(n; q). Furthermore, we
may decompose each homogeneous component Ar(n; q) by considering pairs (L,M) of multisets of r
integers, written as weakly increasing sequences 1 ≤ `1 ≤ · · · ≤ `r ≤ n, and 1 ≤ m1 ≤ · · · ≤ mr ≤
n. Let AL,M (n; q) be the C[q 1

2 , q¯
1
2 ]-span of monomials whose row indices and column indices (with

multiplicity) are equal to the multisets L and M , respectively. This leads to the multigrading

A(n; q) =
⊕

r≥0

⊕

L,M

AL,M (n; q). (3.5)

The graded component A[n],[n](n; q) is spanned by the monomials

{x1,w1
· · ·xn,wn

| w ∈ Sn}. (3.6)
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Defining xu,v = xu1,v1
· · ·xun,vn for any u, v ∈ Sn, we may express the above basis as {xe,w | w ∈

Sn}. We will call elements of this submodule (quantum) immanants and we will call the module itself
the (immanant space) of A(n; q).

In general, AL,M (n; q) is the C[q 1
2 , q¯

1
2 ]-submodule of A(n; q) spanned by the monomials

{x`1,mw1
· · ·x`r,mwr

| w ∈ Sr} = {(xL,M )e,w | w ∈ Sr}, (3.7)

where the generalized submatrix xL,M of x is defined by

xL,M =




x`1,m1 x`1,m2 · · · x`1,mr

x`2,m1 x`2,m2 · · · x`2,mr

...
...

...
x`r,m1

x`r,m2
· · · x`n,mr


 . (3.8)

An involutive automorphism on A(n; q) commonly known as the bar involution is defined by by q
1
2 =

q¯
1
2 , xi,j = xi,j and

xa1,b1 · · ·xar,br = (q
1
2 )α(a)−α(b)xar,br · · ·xa1,b1 , (3.9)

where α(a) is the number of pairs i < j for which ai = aj . Equivalently, for xa1,b1 · · ·xar,br ∈
AL,M (n; q), we have

xa1,b1 · · ·xar,br = qwJ
0 ,w

I
0
xar,br · · ·xa1,b1 , (3.10)

where
I = I(L) = {si ∈ Sr | `i = `i+1}

J = J(M) = {sj ∈ Sr | mj = mj+1}.
(3.11)

In the immanant space, the bar involution reduces to

xe,v = xn,vn · · ·x1,v1
= xw0,w0v. (3.12)

Taking the bar involution of an element of A[n],[n](n; q) and expanding in terms of the natural basis,
we have

xe,v =
∑

w≥v
q−1
v,wSv,w(q)x

e,w, (3.13)

where {Sv,w(q) | v, w ∈ Sn} are polynomials in Z[q], which we call inverse R-polynomials. Modifying
these polynomials by

q−1
v,wSv,w(q) = S̃v,w(q

1
2 − q¯1

2 ) (3.14)

gives us the modified inverse R-polynomials {S̃v,w(q) | v, w ∈ Sn}, which belong to N[q]. Thus we may
rewrite (3.13) as

xe,v =
∑

w≥v
S̃v,w(q

1
2 − q¯1

2 )xe,w. (3.15)

In an arbitrary multigraded component AL,M (n; q) of A(n; q), for v ∈W I,J
+ we have

(xL,M )e,v =
∑

w∈W I,J
+

w≥v

εv,wqv,wS
I,J
v,w(q

−1)xe,w, (3.16)
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where {SI,Jv,w(q) | v, w ∈W I,J
+ } are polynomials in Z[q], which we call parabolic inverseR-polynomials.

Modifying these polynomials in an analogous way as in the immanant space creates some difficulty, since
they must be expressed as functions of two variables, q

1
2 −q¯1

2 and q¯
1
2 . The algebraic relationship between

these two variables causes problems when we try to define modified parabolic inverse R-polynomials in
a manner analogous to (3.14). Instead for all v, w ∈ W I,J

+ , given any reduced expression si1 · · · sik for
u, let us define the polynomials {S̃I,Jv,w(q1, q2) ∈ N[q1, q2] | v, w ∈ W I,J

+ } to be the polynomials whose
coefficient of qa1q

b
2 is equal to the number of sequences (π(0), . . . , π(k)) of permutations satisfying

1. π(0) = w0v, π
(k) ∈WIwWJ ,

2. π(j) ∈ {π(j−1), sijπ
(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly a indices j,

5. `(w)− `(π(k)) = b.

It will be shown later that this definition will lead to

(xL,M )e,v =
∑

w∈W I,J
+

w≥v

S̃I,Jv,w(q
1
2 − q¯1

2 , q¯
1
2 )xe,w, (3.17)

and therefore
εv,wqv,wS

I,J
v,w(q

−1) = S̃I,Jv,w(q
1
2 − q¯1

2 , q¯
1
2 ), (3.18)

as desired.
Unlike the double parabolic R-polynomials {RI,Jv,w(q) | v, w ∈ W I,J

+ }, the double parabolic inverse
R-polynomials {SI,Jv,w(q) | v, w ∈W I,J

+ } can not readily be written as sums of nonparabolic polynomials
{Sv,w(q) | v, w ∈ Sn}. That is, we know of no identity in AL,M (n; q) analogous Equation (2.9)
which might lead to an analog of Equation (2.12) for inverse parabolic R-polynomials. While actions of
Hn(q) on submodules of A(n; q) corresponding to L = [n] or M = [n] can help produce identities for
polynomials of the forms SI,∅u,v(q) and S∅,Ju,v (q), this method fails in the general double parabolic setting.

Nevertheless, we will succeed in expressing a polynomial S̃I,Jv,w(q) in terms of nonparabolic polynomi-
als. To do so we will consider various bases of the immanant space A[n],[n](n; q).

4 A family of bases for the quantum immanant space
Working in the quantum immanant space A[n],[n](n; q), one often obtains a monomial of the form xu,v

and wishes to express it in terms of the natural basis. The relations (3.1) imply that we have

xu,v ∈ xe,u−1v +
∑

w>u−1v

N[q
1
2 − q¯1

2 ]xe,w. (4.1)

It follows that for each permutation u ∈ Sn, the set {xu,v | v ∈ Sn} is a basis for A[n],[n](n; q).
Indeed the natural basis and barred natural basis are special cases corresponding to u = e and u = w0,
respectively.
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To state transition matrices relating all of these bases to the natural basis, let us define polynomials
pu,v,w(q) in N[q] by the equations

xu,v =
∑

w≥u−1v

pu,v,w(q
1
2 − q¯1

2 )xe,w. (4.2)

Apparently we have the special cases

pe,v,w(q) =

{
1 if v = w

0 otherwise,
pw0,w0v,w(q) = S̃v,w(q). (4.3)

The polynomials {pu,v,w(q) | u, v, w ∈ Sn} have an elementary combinatorial interpretation. The
following result generalizes those of Deodhar [Deo85] and Dyer [Dye93], for the special case u = w0.

Theorem 4.1 Given any reduced expression si1 · · · si` for u, the coefficient of qk in pu,v,w(q) is equal to
the number of sequences (π(0), . . . , π(`)) of permutations satisfying

1. π(0) = v, π(`) = w.

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , `.

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1).

4. π(j) = π(j−1) for exactly k values of j.

Proof: Omitted. 2

These sequences of permutations can be thought of as walks in the Bruhat order from v to w, with steps
up, steps down, and repeated vertices constrained by the fixed reduced expression for u. We remark that
since the definition (4.2) does not depend on the chosen reduced expression for u, Theorem 4.1 implies
several sets of walks in the Bruhat order are equinumerous.

Problem 4.2 Find bijections between the sets of walks in Theorem 4.1 which correspond to different
reduced expressions for u.

An alternate basis for the immanant space consists of the monomials

{xw−1,e | w ∈ Sn}. (4.4)

Using this fact, we obtain the following identity.

Proposition 4.3 For all u, v, w ∈ Sn, we have

pv,u,w−1(q) = pu,v,w(q). (4.5)

Proof: Omitted. 2

Theorem 4.1 then implies that two sets of walks in the Bruhat order are equinumerous.

Problem 4.4 Find a bijective proof of the identity in Proposition 4.3.
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A straightforward argument shows that the polynomials {pu,v,w(q) | u, v, w ∈ Sn} also describe the
expansions of certain products of natural basis elements of Hn(q).

Corollary 4.5 For u, v in Sn, we have

T̃u−1 T̃v =
∑

w≥u−1v

pu,v,w(q
1
2 − q¯1

2 )T̃w. (4.6)

Proof: Omitted. 2

5 Main results
The double parabolic inverse R-polynomials {SI,Jv,w(q) | u, v ∈W I,J

+ } and the modified double parabolic
inverse R-polynomials {S̃I,Jv,w(q1, q2) | u, v ∈W I,J

+ } satisfy

SI,Ju,w(q) =
∑

v∈WIwWJ

εv,wq
2
v,wSu,v(q),

S̃I,Ju,w(q
1
2 − q¯1

2 , q¯
1
2 ) =

∑

v∈WIwWJ

q−1
v,wS̃u,v(q

1
2 − q¯1

2 ).
(5.1)

As we have already mentioned, these identies are not easily seen unless I = ∅ or J = ∅. Following the
results in Section 4, we will obtain these identities by considering various bases of AL,M (n; q).

The relations (3.1) imply that we have

(xL,M )u,v ∈ q k
2 (xL,M )e,u

−1v +
∑

w∈W I,J
+

w>u−1v

N[q
1
2 − q¯1

2 , q¯
1
2 ](xL,M )e,w. (5.2)

It follows that for each permutation u ∈ Sn, the set {(xL,M )u,v | u−1v ∈ W I,J
+ } is a basis for

AL,M (n; q). Indeed the natural basis and barred natural basis are special cases corresponding to u = e
and u = w0, respectively.

To state transition matrices relating all of these bases to the natural basis, for all u ∈ Sn, v ∈ W ∅,J−
and w ∈ W I,J

+ , given any reduced expression si1 · · · sik for u, let us define the Laurent polynomi-
als pI,Ju,v,w(q1, q2) to be the polynomials whose coefficient of qa1q

b
2 is equal to the number of sequences

(π(0), . . . , π(k)) of permutations satisfying

1. π(0) = v, π(k) ∈WIwWJ ,

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , k,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly a values of j,

5. `(wI−)− `
(
(π(k))I−

)
− `
(
(π(k))J

)
+ `(uI) = b.
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We remark that this definition of pI,Ju,v,w(q1, q2) depends upon the chosen reduced expression for u, unlike
our definition (4.2) of pu,v,w(q). Nevertheless, we will suppress this dependence from the notation.

These sequences of permutations can be thought of as walks in the Bruhat order from v to any per-
mutation in WIwWJ , with steps up, steps down, and repeated vertices constrained by the fixed reduced
expression for u. Apparently we have the special cases

pI,Je,v,w(q1, q2) =

{
1 if v = w

0 otherwise,
pI,Jw0,w0v,w(q1, q2) = q

`(wI
0)−`(wJ

0 )
2 S̃I,Jv,w(q1, q2). (5.3)

Using the relations (3.1) and facts about double cosets of Sn, we can show that certan transition
matrices consist of the polynomials {pI,Ju,v,w(q1, q2) | u ∈ Sn, v ∈ W ∅,J− , w ∈ W I,J

+ } evaluated at
q1 = q

1
2 − q¯1

2 and q2 = q¯
1
2 .

Theorem 5.1 For u ∈ Sn, any reduced expression for u, and v ∈W ∅,J− ,

(xL,M )u,v =
∑

w∈W I,J
+

pI,Ju,v,w(q
1
2 − q¯1

2 , q¯
1
2 )(xL,M )e,w. (5.4)

Proof: Omitted. 2

Problem 5.2 Modify the definition of pI,Ju,v,w(q1, q2) to include all v ∈ Sn in such a way that Theorem 5.1
holds for all u, v ∈ Sn.

The combinatorial defintion above leads to the following identity connecting the parabolic and non-
parabolic polynomials.

Corollary 5.3 For all u, v ∈ Sn and w ∈W I,J
+ ,

pI,Ju,v,w(q
1
2 − q¯1

2 , q¯
1
2 ) =

∑

z∈WIwWJ

(q¯
1
2 )`(w

I
0w

K′
0 )−`(zI−)−`(zJ )+`(uI)pu,v,z(q

1
2 − q¯1

2 ). (5.5)

Proof: Omitted. 2

Now, using Equation (5.3) and Theorem 5.1 we can derive the desired identity (3.17) relating double
parabolic inverse R-polynomials and modified double parabolic inverse R-polynomials.

Theorem 5.4 For all v ∈W I,J
+

(xL,M )e,v =
∑

w∈W I,J
+

w≥v

S̃I,Jv,w(q
1
2 − q¯1

2 , q¯
1
2 )(xL,M )e,w. (5.6)

Proof: Omitted. 2

Finally, using the previous theorem along with Theorem 4.1 and Equations (4.3) and (5.3) we can derive
the desired identity (5.1) relating double parabolic and nonparabolic inverse R-polynomials.
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Theorem 5.5 The double parabolic inverse R-polynomials {SI,Jv,w(q) | u, v ∈W I,J
+ } and their modifica-

tions {S̃I,Jv,w(q1, q2) | u, v ∈W I,J
+ } satisfy

SI,Ju,w(q) =
∑

v∈WIwWJ

εv,wq
2
v,wSu,v(q),

S̃I,Ju,w(q
1
2 − q¯1

2 , q¯
1
2 ) =

∑

v∈WIwWJ

q−1
v,wS̃u,v(q

1
2 − q¯1

2 ).
(5.7)

Proof: Omitted. 2
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Abstract. We study the crystal structure on categories of graded modules over algebras which categorify the negative
half of the quantum Kac-Moody algebra associated to a symmetrizable Cartan data. We identify this crystal with
Kashiwara’s crystal for the corresponding negative half of the quantum Kac-Moody algebra. As a consequence, we
show the simple graded modules for certain cyclotomic quotients carry the structure of highest weight crystals, and
hence compute the rank of the corresponding Grothendieck group.

Résumé. Nous étudions la structure cristalline sur les catégories de modules gradués sur algèbres qui categorify la
moitié négative du quantum de Kac-Moody algèbre associée à un ensemble de data symétrisables Cartan. Nous iden-
tifions ce cristal avec des cristaux de Kashiwara pour le négatif correspondant la moitié de l’algèbre de Kac-Moody
quantum. En conséquence, nous montrons la simples modules classés pour certains quotients cyclotomique porter le
structure des cristaux de poids le plus élevé, et donc de calculer le rang de le groupe correspondant Grothendieck.

Keywords: Khovanov-Lauda-Rouquier algebras, quiver Hecke algebras, categorification

1 Introduction
In [KL09, KL08a] a family R of graded algebras was introduced that categorifies the integral form
AU−q := AU−q (g) of the negative half of the quantum enveloping algebra Uq(g) associated to a sym-
metrizable Kac-Moody algebra g. Similar algebras were also independently introduced by Rouquier
[Rou08]. The grading on these algebras equips the Grothendieck group K0(R−pmod) of the category
of finitely-generated graded projective R-modules with the structure of a Z[q, q−1]-module. Natural
parabolic induction and restriction functors give K0(R−pmod) the structure of a (twisted) Z[q, q−1]-
bialgebra. In [KL09, KL08a] an explicit isomorphism of twisted bialgebras was given between AU−q and
K0(R−pmod).

Several conjectures were also made in [KL09, KL08a]. One conjecture that remains unsolved is the
so called cyclotomic quotient conjecture which suggests a close connection between certain finite dimen-
sional quotients of the algebras R and the integrable representation theory of quantum Kac-Moody alge-
bras. While this conjecture has been proven in finite and affine typeA by Brundan and Kleshchev [BK09],
very little is known in the case of an arbitrary symmetrizable Cartan datum. Here we show that simple
graded modules for these cyclotomic quotients carry the structure of highest weight crystals. Hence we
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‡partially supported by the NSA grant #H982300910076

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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identify the rank of the corresponding Grothendieck group with the rank of the integral highest weight
representation, thereby laying to rest a major component of the cyclotomic conjecture.

This submission is an extended abstract of the preprint [LV09]. We refer the reader there the complete
proofs and details, as well as more background and context on these results.

2 The algebra R(ν)

We are given a Cartan data: the weight lattice P , simple roots αi indexed by i ∈ I , simple coroots
hi ∈ P∨ = HomZ(P,Z), a bilinear form (, ) : P×P → Z, and the canonical pairing 〈·, ·〉 : P∨×P → Z,
such that [〈hi, αj〉]i,j∈I is a symmetrizable generalized Cartan matrix. In what follows we write aij =
−〈i, j〉 := −〈hi, αj〉 for i, j ∈ I . Let Λi ∈ P+ be the fundamental weights defined by 〈hj ,Λi〉 = δij .

Let qi = q
(αi,αi)

2 , [a]i =
qai −q−ai
qi−q−1

i

, [a]i! = [a]i[a− 1]i . . . [1]i.

Recall the definition from [KL09, KL08a] of the algebra R associated to a Cartan datum. Let k be an
algebraically closed field (of arbitrary characteristic).

For ν =
∑
i∈I νi · i ∈ N[I] let Seq(ν) be the set of all sequences of vertices i = i1 . . . im where

ir ∈ I for each r and vertex i appears νi times in the sequence. The length m of the sequence is equal to
|ν| = ∑i∈I νi. It is sometimes convenient to identify ν =

∑
i∈I νi · i ∈ N[I] as ν ∈∑i∈I νiαi ∈ Q+ =

⊕i∈IZ≥0αi.
For ν ∈ N[I] with |ν| = m, let R(ν) denote the associative, k-algebra on generators 1i for i ∈ Seq(ν),

xr for 1 ≤ r ≤ m, and ψr for 1 ≤ r ≤ m− 1 subject to the following relations for i, j ∈ Seq(ν):

1i1j = δi,j1i, xr1i = 1ixr, ψr1i = 1sr(i)ψr,

xrxt = xtxr, ψrψt = ψtψr if |r − t| > 1,

ψrψr1i =





0 if ir = ir+1

1i if (αir , αir+1
) = 0(

x
−〈ir,ir+1〉
r + x

−〈ir+1,ir〉
r+1

)
1i if (αir , αir+1) 6= 0 and ir 6= ir+1,

(ψrψr+1ψr − ψr+1ψrψr+1) 1i =

=





−〈ir,ir+1〉−1∑
t=0

xtrx
−〈ir,ir+1〉−1−t
r+2 1i if ir = ir+2 and (αir , αir+1

) 6= 0

0 otherwise,

(
ψrxt − xsr(t)ψr

)
1i =





1i if t = r and ir = ir+1

−1i if t = r + 1 and ir = ir+1

0 otherwise.

The algebra is graded with generators defined to have degrees deg(1i) = 0, deg(xr1i) = (αir , αir ),
and deg(ψr1i) = −(αir , αir+1

).
We let the (nonunital) algebra R be defined by R =

⊕
ν∈N[I]

R(ν).

Rouquier has independently defined a generalization of the algebras R, where the relations depend on
Hermitian matrices [Rou08].
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Remark 2.1 For i, j ∈ Seq(ν) let jSi be the subset of Sm consisting of permutations w that take i to j via
the standard action of permutations on sequences. Denote the subset {ŵ}w∈jSi of 1jR1i by jŜi. It was
shown in [KL09, KL08a] that the vector space 1jR(ν)1i has a basis consisting of elements of the form
{ψŵ · xa1

1 · · ·xamm 1i | ŵ ∈ jŜi, ar ∈ Z≥0}.
Let w0 denote the longest element of S|ν|. We define an involution σ = σν : R(ν) → R(ν) by

σ(1i) = 1w0(i), σ(xr) = x|ν|+1−r, σ(ψr) = ψ|ν|−r. Given an R(ν)-module M , we let σ∗M denote the
R(ν)-module whose underlying set is M but with twisted action r · u = σ(r)u.

Define the character ch(M) of an R(ν)-module M as ch(M) =
∑

i∈Seq(ν) gdim(1iM) · i, where
gdim denotes the graded dimension. When M is finite dimensional, ch(M) is an element of the free
Z[q, q−1]-module with basis Seq(ν).

3 Functors on the modular category
Let R(ν)−fmod be the category of finite dimensional graded R(ν)-modules. The morphisms are
grading-preserving module homomorphisms. Note that this category contains all of the simples. Hence-
forth, by an R(ν)-module we will mean a finite dimensional graded R(ν)-module, unless we say other-
wise. We will denote the zero module by 0. Let R−fmod

def
=
⊕

ν∈N[I]R(ν)−fmod.
For any two R(ν)-modules M , N denote by Hom(M,N) or HomR(ν)(M,N) the k-vector space of

degree preserving homomorphisms, and by Hom(M{r}, N) = Hom(M,N{−r}) the space of homo-
geneous homomorphisms of degree r. Here N{r} denotes N with the grading shifted up by r, so that
ch(N{r}) = qrch(N). Then we write HOM(M,N) :=

⊕
r∈Z Hom(M,N{r}), for the Z-graded

k-vector space of all R(ν)-module morphisms.
Though it is essential to work with the degree preserving morphisms to get the Z[q, q−1]-module struc-

ture for the categorification theorems in [KL09, KL08a], for our purposes it will often be convenient to
work with degree homogenous morphisms, but not necessarily degree preserving. Since any homoge-
nous morphism can be interpreted as a degree preserving morphism by shifting the grading on the source
or target, all results stated using homogeneous morphisms can be recast as degree zero morphisms for an
appropriate shift on the source or target.

3.1 Induction and Restriction functors
There is an inclusion of graded algebras

ιν,ν′ : R(ν)⊗R(ν′) ↪→ R(ν + ν′)

taking the idempotent 1i ⊗ 1j to 1ij and the unit element 1ν ⊗ 1ν′ to an idempotent of R(ν + ν′) denoted
1ν,ν′ . This inclusion gives rise to restriction and induction functors denoted by Resν,ν′ and Indν,ν′ ,
respectively. When it is clear from the context, or when no confusion is likely to arise, we often simplify
notation and write Res and Ind.

We can also consider these notions for any tuple ν = (ν(1), ν(2), . . . , ν(k)) and sometimes refer to the
image R(ν)

def
= Im ιν ⊆ R(ν(1) + · · · + ν(k)) as a parabolic subalgebra. This subalgebra has identity

1ν . Let µ = ν(1) + · · · + ν(k), m =
∑
r |ν(r)|, and P = Pν be the composition (|ν(1)|, . . . , |ν(k)|) of

m so that SP is the corresponding parabolic subgroup of Sm. It follows from Remark 2.1 that R(µ)1ν is
a free right R(ν)-module with basis {ψŵ1ν | w ∈ Sm/SP } and 1νR(µ) is a free left R(ν)-module with
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basis {1νψŵ | w ∈ SP \Sm}. By abuse of notation we will write Sm/SP to denote the minimal length
left coset representatives, i.e. {w ∈ Sm | `(wv) = `(w) + `(v)∀ v ∈ SP }, and SP \Sm for the minimal
length right coset representatives.

Remark 3.1 It is easy to see that if M is an R(ν)-module with basis U consisting of weight vectors, then

{ψŵ ⊗ u | u ∈ U , w ∈ Sm/SP } is a weight basis of IndνM
def
= R(µ)⊗R(ν) M (where for each w we fix

just one reduced expression ŵ). Note R(µ)⊗R(ν)M = R(µ)1ν⊗R(ν)M since ψŵ1ν⊗u = ψŵ⊗1νu =
ψŵ ⊗ u.

One extremely important property of the functor Indν − def
= R(µ) ⊗R(ν) − is that it is left adjoint to

restriction, i.e., there is a functorial isomorphism HOMR(µ)(Indν A,B) ∼= HOMR(ν)(A,Resν B) where
A, B are finite dimensionalR(ν)- andR(µ)-modules, respectively. We refer to this property as Frobenius
reciprocity and use it repeatedly, often for deducing information about characters.

3.2 Refining the restriction functor
ForM inR(ν)−mod and i ∈ I let ∆iM = (1ν−i⊗1i)M = Resν−i,iM, and, more generally, ∆inM =
(1ν−ni⊗1ni)M = Resν−ni,niM. We view ∆in as a functor into the category R(ν−ni)⊗R(ni)−mod.
By Frobenius reciprocity, there are functorial isomorphisms

HOMR(ν)(Indν−ni,niN � L(in),M) ∼= HOMR(ν−ni)⊗R(ni)(N � L(in),∆inM),

for M as above and N ∈ R(ν − ni)−mod.
Define

ei := Resν−i,iν−i ◦∆i : R(ν)−mod→ R(ν − i)−mod (1)

and for M an irreducible R(ν)-module, set

ẽiM := soc eiM, f̃iM := cosoc Indν+i
ν,i M � L(i), εi(M) := max{n ≥ 0 | ẽinM 6= 0}.

We also define their σ-symmetric versions, which are indicated with a ∨. Note that σ∗(∆i(σ
∗M)) =

Resi,ν−iM . Set e∨i := σ∗(ei(σ∗M)), ẽi
∨M := σ∗(ẽi(σ∗M)), f̃i

∨
M := σ∗(f̃i(σ∗M)), ε∨i (M) :=

εi(σ
∗M). Observe that the functors ei and e∨i are exact. It is a theorem of [KL09] that ifM is irreducible,

so are f̃iM and ẽiM (so long as the latter is nonzero), and likewise for f̃i
∨
M and ẽi

∨M . For other key
properties of the functors ẽi and f̃i on simple modules, see [KL09] or [LV09].

3.3 The cyclotomic algebras RΛ(ν)

For Λ =
∑
i∈I λiΛi ∈ P+ consider the two-sided ideal J Λ

ν of R(ν) generated by elements (x11i)
λi1

over all sequences i ∈ Seq(ν). We sometimes write J Λ
ν = J Λ when no confusion is likely to arise.

Define
RΛ(ν) := R(ν)/J Λ

ν

By analogy with the Ariki-Koike cyclotomic quotient of the affine Hecke algebra [AK94] (see also
[Ari02]) this algebra is called the cyclotomic quotient at weight Λ of R(ν). As above we form the non-
unital ring

RΛ =
⊕

ν∈N[I]

RΛ(ν).
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For bookkeeping purposes we will denote RΛ(ν) modules byM but R(ν)-modules by M .
We introduce functors

inflΛ : RΛ(ν)−mod→ R(ν)−fmod prΛ : R(ν)−fmod→ RΛ(ν)−mod

where inflΛ is the inflation along the epimorphism R(ν)→ RΛ(ν), so thatM = inflΛM on the level of
sets. IfM,N are RΛ(ν)-modules, then HomRΛ(ν)(M,N ) ∼= HomR(ν)(inflΛM, inflΛN ). NoteM is
irreducible if and only if inflΛM is. We define prΛM = M/J ΛM . If M is irreducible then prΛM is
either irreducible or zero. Observe inflΛ is an exact functor and its left adjoint is prΛ which is only right
exact.

A careful study of the modules L(im) yields that for simple modules M , the algebraic statement
J ΛM = 0 is equivalent to the measurement that ε∨i (M) ≤ λi for all i ∈ I , see [Lau09, Proposition
2.8]. Likewise J ΛM = M if and only if there exists some i ∈ I such that ε∨i (M) > λi. Hence, given a
finite dimensional R(ν)-module M , there exists a Λ ∈ P+ such that J ΛM = 0, so that we can identify
M with the RΛ(ν)-module prΛM . For instance, take any Λ =

∑
i∈I miλi with mi > dimkM . We

deduce the following remark.

Remark 3.2 Let M be a simple R(ν)-module. Then prΛM 6= 0 iff ε∨i (M) ≤ λi for all i ∈ I .

LetM be an irreducible RΛ(ν)-module. As in Section 3.2 define eΛ
iM := prΛ ◦ei ◦ inflΛM which is

a functor RΛ(ν)−mod→ RΛ(ν − i)−mod, as well as ẽi
ΛM = prΛ ◦ẽi ◦ inflΛM, f̃i

ΛM = prΛ ◦f̃i ◦
inflΛM, εΛ

i (M) = εi(inflΛM). LetM∈ RΛ(ν)−mod and M = inflΛM. Then prΛM =M. Since
J ΛM = 0 then J ΛeiM = 0 too, so that eΛ

iM is an R(ν − i)Λ-module with inflΛ(eΛ
iM) = eiM . In

particular, dimk eΛ
iM = dimk eiM . If furthermoreM is irreducible, then ẽi

ΛM = soc eΛ
iM.

3.4 Operators on the Grothendieck group

Let the Grothendieck groups G0(R) =
⊕

ν∈N[I]

G0(R(ν)−fmod), G0(RΛ) =
⊕

ν∈N[I]

G0(RΛ(ν)−fmod).

They have the structure of a Z[q, q−1]-module given by shifting the grading, q[M ] = [M{1}].
The functor ei defined in (1) is clearly exact so descends to an operator on the Grothendieck group

G0(R(ν)−mod) −→ G0(R(ν − i)−mod) and hence ei : G0(R) −→ G0(R). By abuse of notation,
we will also call this operator ei. Likewise eΛ

i : G0(RΛ) −→ G0(RΛ). We also define divided powers
e

(r)
i : G0(R) −→ G0(R) given by e(r)

i [M ] = 1
[r]!i

[eriM ], which are well-defined.

For irreducible M , we define ẽi[M ] = [ẽiM ], f̃i[M ] = [f̃iM ], and extend the action linearly.
The quantum Serre relations (2) are certain (minimal) relations that hold among the operators ei on

G0(R). The operator
a+1∑

r=0

(−1)re
(a+1−r)
i eje

(r)
i = 0. (2)

In Section 6.2 below, we give an alternate proof to that of Khovanov-Lauda that the quantum Serre
relation (2) holds by examining the structure of all simple R((a+ 1)i+ j)-modules. We further construct
simple R(ci+ j)-modules that are witness to the nonvanishing of the analogous relation taking c ≤ a.
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4 Reminders on crystals
A main result of this paper is the realization of a crystal graph structure on G0(R) which we identify as
the crystal B(∞). We assume the reader is familiar with the language and notation of crystals.

Example 4.1 (TΛ (Λ ∈ P ))
Let TΛ = {tΛ} with wt(tΛ) = Λ, εi(tΛ) = ϕi(tΛ) = −∞, ẽitΛ = f̃itΛ = 0. Tensoring a crystal B with
the crystal TΛ has the effect of shifting the weight wt by Λ and leaving the other data fixed.

Example 4.2 (Bi (i ∈ I)) Bi = {bi(n);n ∈ Z} with wt(bi(n)) = nαi, εi(bi(n)) = −n = −ϕi(bi(n)),
εj(bi(n)) = −∞ = ϕj(bi(n)) if j 6= i; ẽibi(n − 1) = bi(n) = f̃ibi(n + 1), ẽjbi(n) = f̃jbi(n) = 0 if
j 6= i. We write bi for bi(0).

4.1 Description of B(∞)

B(∞) is the crystal associated with the crystal graph of U−q (g) where g is the Kac-Moody algebra de-
fined from the Cartan data above. One can also define B(∞) as an abstract crystal. As such, it can be
characterized by Kashiwara-Saito’s Proposition 4.3 below.

Proposition 4.3 ([KS97] Proposition 3.2.3) Let B be a crystal and b0 an element of B with weight zero.
Assume the following conditions.

(B1) wt(B) ⊂ Q−.

(B2) b0 is the unique element of B with weight zero.

(B3) εi(b0) = 0 for every i ∈ I .

(B4) εi(b) ∈ Z for any b ∈ B and i ∈ I .

(B5) For every i ∈ I , there exists a strict embedding Ψi : B → B ⊗Bi.

(B6) Ψi(B) ⊂ B × {f̃i
n
bi;n ≥ 0}.

(B7) For any b ∈ B such that b 6= b0, there exists i such that Ψi(b) = b′ ⊗ f̃i
n
bi with n > 0.

Then B is isomorphic to B(∞).

5 Module theoretic realizations of certain crystals
Let B denote the set of isomorphism classes of irreducible R-modules. Let 0 denote the zero module.

Let M be an irreducible R(ν)-module, so that [M ] ∈ B. By abuse of notation, we identify M with [M ]
in the following definitions. Hence, we are defining operators and functions on B t {0} below.

Recall from Section 3.2 the definitions of ẽi, f̃i, εi. For ν =
∑
i∈I νiαi, i ∈ I and M ∈ R(ν)−mod

set
wt(M) = −ν, wti(M) = 〈hi,wt(M)〉, ϕi(M) = εi(M) + 〈hi,wt(M)〉.

Proposition 5.1 The tuple (B, εi, ϕi, ẽi, f̃i,wt) defines a crystal.
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We write 1 ∈ B for the class of the trivial R(ν)-module where ν = ∅ and |ν| = 0.
One of the main theorems of this paper is Theorem 7.4 that identifies the crystal B as B(∞). However

we need the many auxiliary results that follow before we can prove this.
Let BΛ denote the set of isomorphism classes of irreducibleRΛ-modules. As in the previous section, by

abuse of notation we writeM for [M] below. Recall from Section 3.3 the definitions of ẽi
Λ, f̃i

Λ
, εΛ
i . Let

wtΛ(M) = −ν+Λ whenM is anRΛ(ν)-module andϕΛ
i (M) = max{k ∈ Z | prΛ ◦f̃i

k◦inflΛM 6= 0}.
Note εΛ

i (M) = max{k ∈ Z | (ẽiΛ)kM 6= 0}, and 0 ≤ ϕΛ
i (M) <∞.

It is true, but not at all obvious, that with this definition ϕΛ
i (M) = εΛ

i (M) + 〈hi,wtΛM〉; see Corol-

lary 6.18. The proof that the data (BΛ, εΛ
i , ϕ

Λ
i , ẽi

Λ, f̃i
Λ
,wtΛ) defines a crystal is delayed until Section 7.

6 Understanding R(ν)-modules and the crystal data of B
This section contains a summary of how the quantities ε∨j , εi, ϕΛ

i change with the application of f̃j .
Throughout this section we assume j 6= i and set a = aij = −〈hi, αj〉.

6.1 Jump
Given an irreducible module M , prΛ f̃iM is either irreducible or zero. In the following subsection, we
measure exactly when the latter occurs. More specifically, we compare ε∨i (M) to ε∨i (f̃iM) and compute
when the latter “jumps” by +1. In this case, we show f̃iM ∼= f̃i

∨
M . Understanding exactly when this

jump occurs is a key ingredient in constructing the strict embedding of crystals in Section 7.1.

Proposition 6.1 Let M be an irreducible R(ν)-module.

i) For any i ∈ I , either ε∨i (f̃iM) = ε∨i (M) or ε∨i (M) + 1.

ii) For any i, j ∈ I with i 6= j, we have ε∨i (f̃jM) = ε∨i (M) and εi(f̃j
∨
M) = εi(M).

Definition 6.2 Let M be an irreducible R(ν)-module and let Λ ∈ P+. Define ϕΛ
i (M) = max{k ∈ Z |

prΛ f̃i
k
M 6= 0}, where we take the convention that f̃i

k
= ẽi

−k when k < 0.

Definition 6.3 Let M be a simple R(ν)-module and let i ∈ I . Then jumpi(M) := max{J ≥ 0 |
ε∨i (M) = ε∨i (f̃i

J
M)}.

Lemma 6.4 (Jump Lemma) Let M be irreducible. The following are equivalent:
1) jumpi(M) = 0 2) f̃iM ∼= f̃i

∨
M

3) f̃i
m
M ∼= (f̃i

∨
)mM for all m ≥ 1 4) IndM � L(i) ∼= IndL(i)�M

5) IndM � L(im) ∼= IndL(im)�M
for all m ≥ 1

6) f̃iM ∼= IndM � L(i) 6’) f̃i
∨
M ∼= IndL(i)�M

7) IndM � L(i) is irreducible 7’) IndL(i)�M is irreducible
8) IndM � L(im) is irreducible 8’) IndL(im)�M is irreducible

for all m ≥ 1 for all m ≥ 1

9) ε∨i (f̃iM) = ε∨i (M) + 1 9’) εi(f̃i
∨
M) = εi(M) + 1

10) jumpi(f̃i
m
M) = 0 for all m ≥ 0 11) ε∨i (f̃i

m
M) = ε∨i (M) +m for all m ≥ 1
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Proposition 6.5 Let M be a simple R(ν)-module and let i ∈ I . Then the following hold.

i) jumpi(M) = max{J ≥ 0 | εi(M) = εi((f̃i
∨

)JM)}

ii) jumpi(M) = min{J ≥ 0 | f̃i(f̃i
J
M) ∼= f̃i

∨
(f̃i

J
M)}

iii) jumpi(M) = min{J ≥ 0 | f̃i((f̃i
∨

)JM) ∼= f̃i
∨

((f̃i
∨

)JM)}
iv) If ϕΛ

i (M) > −∞, then jumpi(M) = ϕΛ
i (M) + ε∨i (M)− λi.

v) jumpi(M) = εi(M) + ε∨i (M) + wti(M).

Remark 6.6 Given Λ,Ω ∈ P+ and irreducible modules A and B with prΛA 6= 0, prΩA 6= 0, prΛB 6=
0, prΩB 6= 0, then ϕΛ

i (A)− ϕΛ
i (B) = ϕΩ

i (A)− ϕΩ
i (B) since by Proposition 6.5 (iv) we compute

ϕΛ
i (A)− ϕΛ

i (B) = (jumpi(A)− ε∨i (A) + λi)− (jumpi(B)− ε∨i (B) + λi)

= jumpi(A)− jumpi(B) + ε∨i (B)− ε∨i (A) = ϕΩ
i (A)− ϕΩ

i (B).

6.2 The Structure Theorems for simple R(ci+ j)-modules
In this section we describe the structure of all simple R(ci + j)-modules. We will henceforth refer to
Theorems 6.7, 6.8 as the Structure Theorems for simple R(ci+ j)-modules. Throughout this section we
assume j 6= i and set a = aij = −〈hi, αj〉.

In the theorems below we introduce the notation L(ic−njin) and L(n)
def
= L(ia−njin) for the simple

R(ci+ j)-modules (up to grading shift) when c ≤ a. They are characterized by εi (L(ic−njin)) = n.

Theorem 6.7 Let c ≤ a and let ν = ci + j. Up to isomorphism and grading shift, there exists a unique
irreducible R(ν)-module denoted L(ic−njin) with εi (L(ic−njin)) = n for each n with 0 ≤ n ≤ c.
Furthermore, ε∨i (L(ic−njin)) = c− n and

ch(L(ic−njin)) = [c− n]i![n]i!i
c−njin.

In particular, in the Grothendieck group e(c−s)
i eje

(s)
i [L(ic−njin)] = 0 unless s = n.

In the previous theorem we introduced the notation L(ic−njin) for the unique (up to isomorphism
and grading shift) simple R(ci + j)-module with εi = n when c ≤ a. Theorem 6.8 below extends this
uniqueness to c ≥ a. In the special case that c = a, we denote L(n) = L(ia−njin). The following
theorem motivates why we distinguish the special case c = a.

Theorem 6.8 Let 0 ≤ n ≤ a.

i) The module
IndL(im)� L(n) ∼= IndL(n)� L(im)

is irreducible for all m ≥ 0.

ii) Let c ≥ a. Let N be an irreducible R(ci+ j)-module with εi(N) = n. Then c− a ≤ n ≤ c, and up
to grading shift

N ∼= IndL(n− (c− a))� L(ic−a).

The proofs of the Structure Theorems are given by careful calculations on special weight bases of the
above modules. In the interest of space, they are ommitted here.
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6.3 Understanding ϕΛ
i

The following theorems measure how the crystal data differs for M and f̃jM .

Theorem 6.9 Let M be a simple R(ν)-module and let Λ ∈ P+ such that prΛM 6= 0 and prΛ f̃jM 6= 0.
Let m = εi(M), k = ϕΛ

i (M). Then there exists an n with 0 ≤ n ≤ a such that εi(f̃jM) = m− (a− n)

and ϕΛ
i (f̃jM) = k + n.

Proof: This follows from Theorem 6.16 which proves the theorem in the case ν = ci + dj and from
Proposition 6.17 which reduces it to this case. 2

One important rephrasing of the Theorem is

ϕΛ
i (f̃jM)− εi(f̃jM) = a+ (ϕΛ

i (M)− εi(M)) = −〈hi, αj〉+ (ϕΛ
i (M)− εi(M)).

First we introduce several lemmas that will be needed.

Lemma 6.10 Suppose c+ d ≤ a.

i) IndL(icjid)� L(im) has irreducible cosocle equal to

f̃i
mL(icjid) = f̃i

m+dL(icj) =

{
IndL(a− c)� L(im−a+c+d) m ≥ a− (c+ d)

L(icjid+m) m < a− (c+ d).

ii) Suppose there is a nonzero map IndL(c1) � L(c2) � · · · � L(cr) � L(im) −→ Q where Q is
irreducible. Then εi(Q) = m+

∑r
t=1 ct and ε∨i (Q) = m+

∑r
t=1(a− ct).

iii) Let B and Q be simple with a nonzero map IndB � L(c)→ Q. Then εi(Q) = εi(B) + c.

Lemma 6.11 Let N be an irreducible R(ci+ dj)-module with εi(N) = 0. Suppose c+ d > 0.

i) There exists irreducible N with εi(N) = 0 and a surjection IndN � L(ibj)� N with b ≤ a.

ii) There exists an r ∈ N and bt ≤ a for 1 ≤ t ≤ r such that IndL(ib1j)�L(ib2j)�· · ·�L(ibrj)� N.

Lemma 6.12 Suppose Q is irreducible and we have a surjection

IndL(ib1j)� L(ib2j)� · · ·� L(ibrj)� L(ih)� Q.

i) Then for h � 0 we have a surjection IndL(a − b1) � L(a − b2) � · · · � L(a − br) � L(ig) � Q
where g = h−∑r

t=1(a− bt).

ii) In the case h < ar −∑r
t=1 bt, we have

IndL(ib1j)� · · ·� L(ibs−1j)� L(ibsjig
′
)� L(a− bs+1)� · · ·� L(a− br)� Q

where g′ = h−∑r
t=s+1(a− bt) and s is such that

∑r
t=s+1(a− bt) ≤ h <

∑r
t=s(a− bt).

Lemma 6.13 Let M be an irreducible R(ν)-module and suppose IndA�B�L(ih)�M is a nonzero

map where εi(A) = 0 and B is irreducible. Then there exists a surjective map IndA� f̃i
h
B �M .
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The following two lemmas discuss ways of detecting when prΛ of an induced module is zero.

Lemma 6.14 Let A be an irreducible R(ν)-module with prΛA 6= 0 and k = ϕΛ
i (A).

i) Let U be an irreducible R(µ)-module and let t ≥ 1. Then prΛ IndA� L(ik+t)� U = 0.

ii) LetB be irreducible with ε∨i (B) > k. Then prΛ IndA�B = 0. In particular, ifQ is any irreducible
quotient of IndA�B, then prΛQ = 0.

Lemma 6.15 Let A be an irreducible R(ν)-module with prΛA 6= 0 and k = ϕΛ
i (A). Further suppose

εi(A) = εj(A) = 0 and thatB is an irreducibleR(ci+dj)-module with ε∨i (B) ≤ k. LetQ be irreducible
such that IndA�B � Q is nonzero. Then ε∨i (Q) ≤ λi. Further, if ε∨j (B) ≤ ϕΛ

j (A) (or if λj � 0) then
prΛQ 6= 0.

Theorem 6.16 Let M be an irreducible R(ci + dj)-module and let Λ ∈ P+ be such that prΛM 6= 0

and prΛ f̃jM 6= 0. Let m = εi(M), k = ϕΛ
i (M) . Then there exists an n with 0 ≤ n ≤ a such that

εi(f̃jM) = m− (a− n) and ϕΛ
i (f̃jM) = k + n.

We have just shown in Theorem 6.16 that Theorem 6.9 holds for all R(ci + dj)-modules. Next we show
that to deduce the theorem for R(ν)-modules for arbitrary ν it suffices to know the result for ν = ci+ dj.

Proposition 6.17 Let Λ ∈ P+ and let M be an irreducible R(ν)-module such that prΛM 6= 0 and
prΛ f̃jM 6= 0. Suppose εi(M) = m and εi(f̃jM) = m− (a−n) for some 0 ≤ n ≤ a. Then there exists
c, d and an irreducible R(ci + dj)-module B such that εi(B) = m, εi(f̃jB) = m − (a − n) and there
exists Ω ∈ P+ with prΩ(B) 6= 0, prΩ(f̃jB) 6= 0, prΩ(M) 6= 0, prΩ(f̃jM) 6= 0, and furthermore

ϕΩ
i (f̃jM)− ϕΩ

i (M) = ϕΩ
i (f̃jB)− ϕΩ

i (B).

Note that by Remark 6.6 ϕΛ
i (f̃jM)−ϕΛ

i (M) = ϕΩ
i (f̃jM)−ϕΩ

i (M), so once we prove this proposition,
it together with Theorem 6.16 proves Theorem 6.9.

Corollary 6.18 (Corollary of Theorem 6.9) Let Λ =
∑
i∈I λiΛi ∈ P+ and let M an irreducible R(ν)-

module such that prΛM 6= 0. Then

ϕΛ
i (M) = λi + εi(M) + wti(M).

7 Main Results
Now that we have built up the machinery of Section 6, we can prove the module theoretic crystal B is
isomorphic to B(∞). Once we have completed this step, it is not much harder to show BΛ ∼= B(Λ).

7.1 Constructing the strict embedding Ψ

Proposition 7.1 Let M be a simple R(ν)-module, and write c = ε∨i (M).

i) Suppose ε∨i (f̃iM) = ε∨i (M) + 1. Then ẽi
∨f̃iM ∼= M up to grading shift.

ii) Suppose ε∨i (f̃jM) = ε∨i (M) where i and j are not necessarily distinct. Then (ẽi
∨)c(f̃jM) ∼=

f̃j(ẽi
∨cM) up to grading shift.
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Proposition 7.2 Let M be an irreducible R(ν)-module, and write c = ε∨i (M), M = (ẽi
∨)c(M).

i) εi(M) = max
{
εi(M), c− wti(M)

}
.

ii) Suppose εi(M) > 0. Then

ε∨i (ẽiM) =

{
c if εi(M) ≥ c− wti(M),
c− 1 if εi(M) < c− wti(M).

iii) Suppose εi(M) > 0. Then

(ẽi
∨)ε
∨
i (ẽiM)(ẽiM) =

{
ẽi(M) if εi(M) ≥ c− wti(M),
M if εi(M) < c− wti(M).

Proposition 7.3 For each i ∈ I define a map Ψi : B → B ⊗Bi by

M 7→ (ẽi
∨)c(M)⊗ bi(−c),

where c = ε∨i (M). Then Ψi is a strict embedding of crystals.

Theorem 7.4 (First Main Theorem) The crystal B is isomorphic to B(∞).

Now we will show the data (BΛ, εΛ
i , ϕ

Λ
i , ẽi

Λ, ẽi
Λ,wtΛ) of Section 5 defines a crystal graph and identify

it as the highest weight crystal B(Λ).

Theorem 7.5 (Second Main Theorem) BΛ is a crystal; the crystal BΛ is isomorphic to B(Λ).

7.2 U+
q -module structures

Set
G∗0(R) =

⊕

ν

G0(R(ν))∗ G∗0(RΛ) =
⊕

ν

G0(RΛ(ν))∗

where, by V ∗ we mean the linear dual HomA(V,A). Because G0(R) and G0(RΛ) are AU+
q -modules,

we can endow G∗0(R), G∗0(RΛ) with a left AU+
q -module structure. G0(R(ν))∗ has basis given by

{δM |M ∈ B,wt(M) = −ν} defined by

δM ([N ]) =

{
q−r M ∼= N{r}
0 otherwise,

where N ranges over simple R(ν)-modules. We set wt(δM ) = −wt(M). Likewise G0(RΛ(ν))∗ has
basis {dM | M ∈ BΛ,wt(M) = −ν + Λ} defined similarly. Note that if δM has degree d then
δM{1} = q−1δM has degree d− 1. Recall 1 ∈ B denotes the trivial R(0)-module and we will also write
1 ∈ BΛ for the trivial RΛ(0)-module.

Lemma 7.6 The maps F : AU+
q → G∗0(R), F : AU+

q → G∗0(RΛ) defined by F (y) = y · δ1 , F(y) =

y · d1 respectively are surjective AU+
q -module homomorphisms, and kerF 3 e(λi+1)

i for all i ∈ I .
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Recall that as a left AU+
q -module AV ∗(Λ) ∼= AU+

q /
∑
i∈I AU

+
q · e(λi+1)

i . So the map F factors through
AV ∗(Λ), and the resulting induced map to G∗0(RΛ) must be injective as the ranks of their weight spaces
coincide by Theorem 7.5.

Theorem 7.7 As AU+
q modules

1.AU
+
q
∼= G∗0(R), 2.AV

∗(Λ) ∼= G∗0(RΛ), 3.AV (Λ) ∼= G0(RΛ).
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On the diagonal ideal of (C2)n and q, t-Catalan
numbers
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Abstract. Let In be the (big) diagonal ideal of (C2)n. Haiman proved that the q, t-Catalan number is the Hilbert
series of the graded vector space Mn =

⊕
d1,d2

(Mn)d1,d2 spanned by a minimal set of generators for In. We
give simple upper bounds on dim (Mn)d1,d2 in terms of partition numbers, and find all bi-degrees (d1, d2) such that
dim (Mn)d1,d2 achieve the upper bounds. For such bi-degrees, we also find explicit bases for (Mn)d1,d2 .

Résumé. Soit In l’idéal de la (grande) diagonale de (C2)n. Haiman a démontré que le q, t-nombre de Catalan
est la série de Hilbert de l’espace vectoriel gradué Mn =

⊕
d1,d2

(Mn)d1,d2 engendré par un ensemble minimal
de générateurs de In. Nous obtenons des bornes supérieures simples pour dim (Mn)d1,d2 en termes de nombres de
partitions, ainsi que tous les bi-degrés (d1, d2) pour lesquels ces bornes supérieures sont atteintes. Pour ces bi–degrés,
nous trouvons aussi des bases explicites de (Mn)d1,d2 .

Keywords: q, t-Catalan number, diagonal ideal

1 introduction
1.1 Background
The goal of this paper is to study the q, t-Catalan numbers and the (thick) diagonal ideal in (C2)n, and
discuss some technique that we have developed recently.

Let n be a positive integer. Consider the set of n-tuples {(xi, yi)}1≤i≤n in the plane C2. They form
an affine space (C2)n with coordinate ring C[x, y] = C[x1, y1, ..., xn, yn]. There is a natural symmetric
group Sn acting on C[x, y] by permuting the coordinates in x, y simultaneously. With this group action, a
polynomial f ∈ C[x, y] is called alternating if

σ(f) = sgn(σ)f for all σ ∈ Sn.

Define C[x, y]ε to be the vector space of alternating polynomials in C[x, y].

†Research of the first author partially supported by NSF grant DMS 0901367.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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There is a more combinatorial way to describe C[x, y]ε. Denote by N the set of nonnegative integers.
Let Dn be the set of n-tuples D = {(α1, β1), ..., (αn, βn)} ⊂ N× N. For D ∈ Dn, define

∆(D) := det



xα1

1 yβ1

1 xα2
1 yβ2

1 ... xαn
1 yβn

1
...

...
. . .

...
xα1
n yβ1

n xα2
n yβ2

n ... xαn
n yβn

n




Then {∆(D)}D∈Dn
forms a basis for the C-vector space C[x, y]ε.

It is easy to see that any alternating polynomial vanishes on the thick diagonal of (C2)n. (By thick
diagonal we mean the set of n-tuples of points in C2 where at least two points coincide.) A theorem of
Haiman asserts that the converse is also true: any polynomial that vanishes on the diagonal of (C2)n can
be generated by alternating polynomials, i.e.

⋂

1≤i<j≤n
(xi − xj , yi − yj) = ideal generated by ∆(D)’s.

We call the above ideal the diagonal ideal and denote it by In. the number of minimal generators of
In, which is the same as the dimension of the vector space Mn = In/(x,y)In, is equal to the n-th
Catalan number. The spaceMn is doubly graded as⊕d1,d2(Mn)d1,d2 . The q, t-Catalan number, originally
introduced by A.M.Garsia and M.Haiman in [4], can be defined as

Cn(q, t) =
∑

d1,d2

td1qd2 dim(Mn)d1,d2 .

The q, t-Catalan number Cn(q, t) also has a combinatorial interpretation using Dyck paths. To be more
precise, take the n × n square whose southwest corner is (0, 0) and northeast corner is (n, n). Let Dn
be the collection of Dyck paths, i.e. lattice paths from (0, 0) to (n, n) that proceed by NORTH or EAST
steps and never go below the diagonal. For any Dyck path Π, let ai(Π) be the number of squares in the
i-th row that lie in the region bounded by Π and the diagonal. A.M.Garsia and J.Haglund ([2], [3]) among
others showed that

Cn(q, t) =
∑

Π∈Dn

qarea(Π)tdinv(Π),

where

dinv(Π) := |{(i, j) | i < j and ai(Π) = aj(Π)}| + |{(i, j) | i < j and ai(Π) + 1 = aj(Π)}|.

Haiman posed a question asking for a rule that associate to each Dyck path Π an element D(Π) ∈ Dn

such that degx ∆(D(Π)) = area(Π), degy ∆(D(Π)) = dinv(Π), and that the set {∆(D(Π))} generates
In. The last condition is equivalent to requiring the images {∆(D(Π))} form a basis of Mn). It is natural
to ask the following more general question:

Question 1.1 Given a bi-degree (d1, d2), is there a combinatorially significant construction of the basis
for each (Mn)d1,d2?
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1.2 Main results
This paper initiates the approach to the study of Mn by comparing it with Mn′ for a large integer n′. On
the one hand, there is a natural map Mn → Mn′ for any n′ > n. On the other hand, for n′ sufficiently
large, the basis of (Mn′)d′1,d2 becomes “stable” if we fix d2 and fix

k =

(
n

2

)
− d1 − d2 =

(
n′

2

)
− d′1 − d2.

Therefore we can take the “limit” of such basis for n′ → ∞. This basis is indexed by the partitions of k.
As a consequence, (Mn′)d′1,d2 can be imbedded as a subspace of the polynomial ring with infinite many
variables C[ρ1, ρ2, . . . ]. The induced map

ϕ̄ : (Mn)d1,d2 → C[ρ1, ρ2, . . . ],

which will be defined explicitly in subsection 1.2.3, provides a powerful tool to study Mn.

1.2.1 Asymptotic behavior when k � n

We shall show that if k � n, then (Mn)d1,d2 has a basis {∆(D)} where D are so-called minimal
staircase forms that will be defined later.

The essential step is to observe the following three linear relations that turn the questions into combi-
natorial games First we introduce some notations.
• For D = {P1, . . . , Pn} ∈ Dn where Pi = (αi, βi), define |Pi| = αi + βi.

Relation 1. Given positive integers 1 ≤ i 6= j ≤ n such that |Pi| = i − 1, |Pi+1| = i, |Pj | = j − 1,
|Pj+1| = j, βi > 0, αj > 0 (we assume |Pn+1| = n). Let D′ be obtained from D by moving Pi to
southeast and Pj to northwest, i.e.

D′ = {P1, . . . , Pi−1, Pi + (1,−1), Pi+1, . . . , Pj−1, Pj + (−1, 1), Pj+1, . . . , Pn}.

Then ∆(D) = ∆(D′).

Example: n = 9, i = 2, j = 6.

D = vv
v v v vv vv@@R @@I

−→ D′ = v v
v v v v v vv

Relation 2. Given positive integers h, ` andm such that 2 ≤ h < h+`+m ≤ n+1, |Ph| = h−1, |Ph+`| =
h+ `− 1, |Ph+`+m| = h+ `+m− 1 (by convention, the last equality holds if h+ `+m = n+ 1) and
αh+`, ..., αh+`+m−1 ≥ `. Let D′ be obtained from D by moving the m points Ph+`, . . . , Ph+`+m−1 to
the left by ` units and moving the ` points Ph, . . . , Ph+`−1 to the right by m units, i.e.

D′ = {P1, P2, . . . , Ph−1, Ph+` − (`, 0), Ph+`+1 − (`, 0), . . . , Ph+`+m−1 − (`, 0),

Ph + (m, 0), Ph+1 + (m, 0), . . . , Ph+`−1 + (m, 0), Ph+`+m, . . . , Pn}.

Then ∆(D) = ∆(D′).



Diagonal ideal and q, t-Catalan numbers 753

Example: n = 10, h = 3, ` = 4,m = 3.

D = v vv vv v
v v v v

p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p p p p p p
p p p p p p p p p p

p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p
p p p p p

yx

−→ D′ = v v
v v v v vv v v

p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

p p p p p
p p p p p
p p p p p p p p p p p p p p

p p p p p p p p p p p p p p
p p p p p p p p

p p p p p p p p
Relation 3. Given positive integers j and s. Suppose Ps0 is the last point in D satisfying |Pi| = i − 1.
Define j = (s0−1−|Ps0 |)+(s0−|Ps0+1|)+· · ·+(n−1−|Pn|). Suppose |Pi| = i−1 for 1 ≤ i ≤ j+2,
P2 = (1, 0), s0 ≤ s ≤ n, and αs, βs ≥ 1. Let

D↖ = {P1, . . . , Pj+1, Pj+2 + (1,−1), Pj+3, . . . , Ps−1, Ps + (−1, 1), Ps+1, . . . , Pn},
D↘ = {P1, (0, 1), P3, . . . , Ps−1, Ps + (1,−1), Ps+2, . . . , Pn}.

Then 2∆(D) = ∆(D↖) + ∆(D↘).

Example: n = 9, i = 2, j = 6.

D = v v vv v vv@@II @@R
@@I
R@@R −→ D↖ =v v v vv v

v
, D↘ =vv vv v v v

We call D = {P1, . . . , Pn} a minimal staircase form if |Pi| = i− 1 or i− 2 for every 1 ≤ i ≤ n. For
a minimal staircase form D, let {i1 < i2 < · · · < i`} be the set of i’s such that |Pi| = i − 1, we define
the partition type of D to be the partition of (

(
n
2

)
−∑ |Pi|) consisting of all the positive integers in the

sequence
(i1 − 1, i2 − i1 − 1, i3 − i2 − 1, . . . , i` − i`−1 − 1, n− i`).

Example: Let n = 8 and D = {P1, . . . , P8} satisfying (|P1|, . . . , |P8|) = (0, 1, 1, 2, 4, 4, 5, 6). Then

D is a minimal staircase form. The set {i
∣∣ |Pi| = i − 1} equals {1, 2, 5}. The positive integers in the

sequence (1− 1, 2− 1− 1, 5− 2− 1, 8− 5) are (2, 3), so the partition type of D is (2, 3).

vv v v v v v v
Let p(k) denote the number of partitions of an integer k and Πk denote the set of partitions of k.

Theorem 1.2 Let k be any positive integer. There are positive constants c1 = 8k + 5, c2 = 2k + 1 such
that the following holds:

For integers n, d1, d2 satisfying n ≥ c1, d1 ≥ c2n, d2 ≥ c2n and d1 + d2 =
(
n
2

)
− k, the vector space

(Mn)d1,d2 has dimension p(k), and the p(k) elements
{

a minimal staircase form of bi-degree (d1, d2) and of partition type µ
}
µ∈Πk

form a basis of (Mn)d1,d2 .

Note that N.Bergeron and Z.Chen have found explicit bases for (Mn)d1,d2 for certain bi-degrees using
a different method [1].
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1.2.2 For arbitrary k and n

Denote by p(k) the partition number of k and by convention p(0) = 1 and p(k) = 0 for k < 0. Denote
by p(b, k) the partition number of k into no more than b parts, and by convention p(0, k) = 0 for k > 0,
p(b, 0) = 1 for b ≥ 0. One of our main results is as follows.

Theorem 1.3 Let d1, d2 be non-negative integers d1, d2 with d1 + d2 ≤
(
n
2

)
. Define k =

(
n
2

)
− d1 − d2

and δ = min(d1, d2). Then the coefficient of qd1td2 in Cn(q, t) is less than or equal to p(δ, k), and the
equality holds if and only if one the following conditions holds:

• k ≤ n− 3, or

• k = n− 2 and δ = 1, or

• δ = 0.

This theorem is a consequence of Theorem C. It contains [8, Theorem 6] and a result of N.Bergeron and
Z.Chen [1, Corollary 8.3.1] as special cases. In fact it proves [8, Conjecture 8]. We feel that the coefficient
of qd1td2 for general k can also be expressed in terms of partition numbers, only that the expression might
be complicated. For example, we give the following conjecture which is verified for 6 ≤ n ≤ 10.
Conjecture. Let n, d1, d2, δ, k be as in Theorem 1.3. If n − 2 ≤ k ≤ 2n − 8 and δ ≥ k, then the
coefficient of qd1td2 in Cn(q, t) equals

p(k)− 2[p(0) + p(1) + · · ·+ p(k − n+ 1)]− p(k − n+ 2).

As a corollary of Theorem 1.3 , we can compute some higher degree terms of the specialization at
t = q.

Corollary 1.4

Cn(q, q) =

n−3∑

k=0

(
p(k)

((
n

2

)
− 3k + 1

)
+ 2

k−1∑

i=1

p(i, k)

)
q(

n
2)−k + (lower degree terms).

The following theorem immediately implies Theorem 1.3.

Theorem 1.5 Let d1, d2 be non-negative integers d1, d2 with d1+d2 ≤
(
n
2

)
. Define k =

(
n
2

)
−d1−d2 and

δ = min(d1, d2). Then dim(Mn)d1,d2 ≤ p(δ, k), and the equality holds if and only if one the following
conditions holds:

• k ≤ n− 3, or

• k = n− 2 and δ = 1, or

• δ = 0.

In case the equality holds, there is an explicit construction of a basis of (Mn)d1,d2 .



Diagonal ideal and q, t-Catalan numbers 755

The idea of the construction of the basis in the above theorem consists of two parts:
(1) Prove that

dim(Mn)d1,d2 ≤ p(δ, k)

using a new characterization of q, t-Catalan numbers. The characterization is as follows, and is discovered
independently by A. Woo [10].

Let Dcatalan
n be the set consisting of D ⊂ N × N, where D contains n points satisfying the following

conditions.
(a) If (p, 0) ∈ D then (i, 0) ∈ D,∀i ∈ [0, p].
(b) For any p ∈ N,

#{j | (p+ 1, j) ∈ D}+ #{j | (p, j) ∈ D} ≥ max{j | (p, j) ∈ D}+ 1.

(If {j | (p, j) ∈ D} = ∅, then we require that no point (i, j) ∈ D satisfies i ≥ p.) Denote by degxD

(resp. degyD) the sum of the first (resp. second) components of the n points in D.

Proposition 1.6 The coefficient of qd1td2 in the q, t-Catalan number Cn(q, t) is equal to

#{D ∈ Dcatalan
n | degxD = d1,degyD = d2}.

(2) Construct a set of p(δ, k) linearly independent elements in (Mn)d1,d2 . It seems difficult (as least to the
authors) to test directly whether a given set of elements in (Mn)d1,d2 are linearly independent. We define
a map ϕ sending an alternating polynomial f ∈ C[x, y]ε to a polynomial ring

C[ρ] := C[ρ1, ρ2, ρ3, . . . ].

The map has two desirable properties: (i) for many f , ϕ(f) can be easily computed, and (ii) for each
bi-degree (d1, d2), ϕ induces a morphism ϕ̄ : (Mn)d1,d2 → C[ρ] of C-modules. Then we use the fact the
linear dependency is easier to check in C[ρ] than in (Mn)d1,d2 . The map ϕ is defined as below.

1.2.3 Maps ϕ and ϕ̄.
(a) Define the map ϕ : Dn → Z[ρ] as follows. Let D = {(a1, b1), ..., (an, bn)} ∈ Dn, k =

(
n
2

)
−∑n

i=1(ai + bi), and define

ϕ(D) := (−1)k
∑

σ∈Sn

sgn(σ)

n∏

i=1

(∑
ρw1ρw2 · · · ρwbi

)
,

where (w1, . . . , wbi) in the sum
∑
ρw1

ρw2
· · · ρwbi

runs through the set

{(w1, . . . , wbi) ∈ Nbi | w1 + ...+ wbi = σ(i)− 1− ai − bi},

with the convention that

∑
ρw1

...ρwbi
=





0 if σ(i)− 1− ai − bi < 0;
0 if bi = 0 and σ(i)− 1− ai − bi > 0;
1 if bi = 0 and σ(i)− 1− ai − bi = 0.
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(b) Here is an equivalent definition of ϕ(D). Define the weight of ρi to be i for i ∈ N+ and define
the weight of ρ0 = 1 to be 0. Naturally the weight of any monomial cρi1 ...ρin (c ∈ Z) is defined to be
i1 + ... + in. For w ∈ N and a power series f ∈ Z[[ρ1, ρ2, . . . ]], denote by {f}w the sum of terms of
weight-w in f , which is a polynomial. Define

h(b,w) :=
{

(1 + ρ1 + ρ2 + · · · )b
}

w
, b ∈ N,w ∈ Z.

Naturally h(b,w) = 0 if w < 0. Also assume (1 + ρ1 + ρ2 + · · · )0 = 1. Then

ϕ(D) = (−1)k

∣∣∣∣∣∣∣∣∣

h(b1,−|P1|) h(b1, 1− |P1|) h(b1, 2− |P1|) · · · h(b1, n− 1− |P1|)
h(b2,−|P2|) h(b2, 1− |P2|) h(b2, 2− |P2|) · · · h(b2, n− 1− |P2|)

...
...

...
. . .

...
h(bn,−|Pn|) h(bn, 1− |Pn|) h(bn, 2− |Pn|) · · · h(bn, n− 1− |Pn|)

∣∣∣∣∣∣∣∣∣
.

(c) Let D1, . . . , D` ∈ D′ be of the same bi-degree and
∑`
i=1 ciDi be the formal sum for any ci ∈ C

(1 ≤ i ≤ `). Define

ϕ(
∑̀

i=1

ciDi) :=
∑̀

i=1

ci ϕ(Di).

For any bi-homogeneous alternating polynomials f =
∑`
i=1 ci ∆(Di) ∈ C[x, y]ε, we define

ϕ(f) := ϕ(
∑̀

i=1

ciDi) =
∑̀

i=1

ci ϕ(Di)

by abuse of notation. 2

Proposition 1.7 Fix any pair of nonnegative integers (d1, d2), the map ϕ induces a well-defined linear
map

ϕ̄ : (Mn)d1,d2 −→ C[ρ].

Moreover, this map ϕ̄ is conjecturally injective. And our future work is to generalizing it to the case
Imn /(x, y)Imn for any positive integer m.
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Toric Ideals of Flow Polytopes
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Abstract. We show that toric ideals of flow polytopes are generated in degree 3. This was conjectured by Diaconis
and Eriksson for the special case of the Birkhoff polytope. Our proof uses a hyperplane subdivision method developed
by Haase and Paffenholz.

It is known that reduced revlex Gröbner bases of the toric ideal of the Birkhoff polytope Bn have at most degree n.
We show that this bound is sharp for some revlex term orders. For (m× n)-transportation polytopes, a similar result
holds: they have Gröbner bases of at most degree bmn/2c. We construct a family of examples, where this bound is
sharp.

Résumé. Nous démontrons que les idéaux toriques des polytopes de flot sont engendrés par un ensemble de degré 3.
Cela a été conjecturé par Diaconis et Eriksson pour le cas particulier du polytope de Birkhoff. Notre preuve utilise
une méthode de subdivision par hyperplans, développée par Haase et Paffenholz.

Il est bien connu que les bases de Gröbner revlex réduite du polytope de Birkhoff Bn sont au plus de degré n.
Nous démontrons que cette borne est optimale pour quelques ordres revlex. Pour les polytopes de transportation de
dimension (m × n), il existe un résultat similaire : leurs bases de Gröbner sont au plus de degré bmn/2c. Nous
construisons une famille d’exemples pour lesquels cette borne est atteinte.

Resumen. Demostramos que los ideales tóricos de politopos de flujo se generan en grado 3. Esto fue conjeturado
por Diaconis y Eriksson para el caso especial del politopo de Birkhoff. Nuestra demostración utiliza un método de
subdivisión de hiperplanos desarrollado por Haase y Paffenholz.

Se sabe que las bases de Gröbner revlex reducidas de los ideales tóricos del politopo de Birkhoff Bn tienen como
máximo grado n. Se demuestra que este lı́mite es tight en algunos ordenes de termines revlex. Para politopos de
transporte (m × n), existe un resultado similar: tienen bases de Gröbner de máximo grado bmn/2c. Construimos
una familia de ejemplos, mostrando que este lı́mite es tight.

Keywords: Toric ideal, Flow polytope, Transportation polytope, Gröbner basis, Markov basis

1 Introduction
Let G = (V,A) be a directed graph and d ∈ ZV , l,u ∈ NA. A flow on G is a function f : A→ R≥0 that
respects the lower and upper bounds l and u and satisfies the demand d, i. e. for every vertex v, the flow
entering v minus the flow leaving v equals dv . A flow polytope is the set of all flows with fixed parameters
G,d,u, l.

An important special case are transportation polytopes. They can be written as sets of (m×n)-matrices
whose row and column sums equal some fixed positive integers.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Given a lattice polytope P , the relations among the lattice points in P define the toric ideal IP . Gene-
rating sets of toric ideals correspond to Markov bases that are used in statistics e. g. for sampling from the
set of all contingency tables with given marginals ([2]). In particular, small generating systems that can
be handled by computers are of practical interest. Diaconis and Eriksson ([1]) conjectured that the toric
ideal of the Birkhoff polytope Bn (the convex hull of all (n × n)-permutation matrices) is generated in
degree 3. They proved this by massive computations for n ≤ 6. For arbitrary n ≥ 4, they showed that
IBn

has a generating set of degree n− 1.
Haase and Paffenholz ([4]) proved that the toric ideals of almost all (3 × 3)-transportation polytopes

and particularly the smooth ones are generated in degree 2. The only exception is the Birkhoff polytope
B3, whose toric ideal is generated in degree 3.

Our Main Theorem proves the Diaconis-Eriksson conjecture and generalizes the result of Haase and
Paffenholz:

Theorem 1.1 (Main Theorem) Toric ideals of flow polytopes are generated in degree 3.

Toric ideals define toric varieties, which are an important class of examples in algebraic geometry. A
lattice polytope P is smooth if the normal fan at all vertices is unimodular. Equivalently, the corresponding
projective variety XP has to be smooth. It was conjectured that if P is smooth, then the defining ideal is
generated by quadrics ([11, Conjecture 2.9]). The original motivation of our research was to check if this
conjecture holds for flow polytopes.

In Section 2, we review some important definitions and theorems. In Section 3, we describe a method
that can be used to prove degree bounds for generating sets and Gröbner bases of toric ideals: first, we
choose a nice triangulation of the point set and then, we use a correspondence between Gröbner bases and
triangulations established by Sturmfels. This hyperplane subdivision method was developed by Haase and
Paffenholz in [4]. In Section 4, we briefly describe how the method described in Section 3 can be used to
prove our Main Theorem.

Diaconis and Sturmfels showed that all revlex Gröbner bases of IBn
are at most of degree n ([2, The-

orem 6.1], [10, Theorem 14.8]). Computational experiments provide evidence that this bound might be
optimal ([1, Remark 9]). In Section 5 we show that for some revlex term orders, this bound is indeed
optimal. Both the bound and the examples can be generalized to (m × n)-transportation polytopes: re-
duced Gröbner bases with respect to a certain class of term orders are at most of degree bmn/2c and we
construct a family of transportation polytopes and term orders, where this bound is almost sharp.

The proofs that are missing in this extended abstract are contained in the arXiv version ([6]).

2 Background
In this section, we review some important definitions and theorems.

Notation: N = {0, 1, 2, . . .}. Matrices are denoted by capital letters, vectors by bold faced small letters.
Their entries are denoted by the corresponding small letters. Let a = (a1, . . . , an) ∈ Nn. We write xa to
denote the monomial

∏n
i=1 x

ai
i ∈ k[x] = k[x1, . . . , xn].

The term polytope always refers to a convex lattice polytope i. e. all vertices of our polytopes are
integral. For background information on polyhedral geometry and polytopes see Schrijver’s or Ziegler’s
book [9, 12].
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Flow polytopes: Flow polytopes (or transshipment polytopes) are the main geometric objects we are
dealing with. Let G = (V,A) be a directed graph and d ∈ ZV , l,u ∈ NA. Let MG ∈ {−1, 0, 1}V×A
denote the vertex-arc incidence matrix of G.

Note that the definition of flow polytopes given in the introduction is equivalent to

F = FG = FG,d,u,l =
{
f ∈ RA≥0

∣∣MGf = d, l ≤ f ≤ u
}

(1)

It is a standard fact that MG is totally-unimodular. This implies that the polytope F has integral vertices.
Throughout this paper, we suppose that all our flow polytopes F are homogeneous, i. e. F is contained

in an affine hyperplane, that does not contain the origin. If d 6= 0 this statement holds. Otherwise, we
consider the homogenized polytope {1} × F .

An important special case of flow polytopes are transportation polytopes. In statistics, they appear
under the name 2-way contingency tables.

Let m,n ∈ Z≥1, r ∈ Zm≥1, c ∈ Zn≥1 be two vectors satisfying
∑n
i=1 ci =

∑m
i=1 ri =: s. The

transportation polytope Trc is defined as

Trc =



A ∈ Rm×n≥0

∣∣∣∣∣∣

m∑

i=1

aij = cj ,

n∑

j=1

aij = ri



 (2)

The upper ((m − 1) × (n − 1))-minor of a matrix A ∈ Trc determines all other entries. Hence, the
dimension of Trc is at most (m−1)(n−1). On the other hand, aij = ricj/s determines an interior point,
so that the dimension is exactly (m− 1)(n− 1).

If r = c = (1, . . . , 1), we obtain an important example: the Birkhoff polytope Bn.

Toric ideals and Gröbner bases: This paragraph defines toric ideals and Gröbner bases as in Sturm-
fels’s book ([10]). Let k be a field and let P ⊆ Rd be a homogeneous lattice polytope. The set of its lattice
points A = {ai | i ∈ I} defines a semigroup homomorphism π : NI → Zd,u 7→∑

i∈I uiai, which can
be lifted to a ring homomorphism

π̂ : k[xi | i ∈ I]→ k[t±1
1 , . . . t±1

d ], xi 7→ tai (3)

Its kernel is the homogeneous ideal IA =
〈
xu − xv

∣∣ ∑
i∈I uiai =

∑
i∈I viai

〉
. This ideal is called the

toric ideal associated to A (or P respectively).
A binomial xu − xv ∈ IA corresponds to a relation between points in A. For example, for A = B3 ∩

Z3×3, IA is generated by the binomial that corresponds to the relation
∑

det(M)=1M =
∑

det(M)=−1M .

A total order ≺ on Nn is a term order if a ≺ b implies a + c ≺ b + c for all a, b, c ∈ Nn and the zero
vector is the unique minimal element. An important example is the graded reverse lexicographic (revlex)
order: a ≺revlex b if

∑
i ai <

∑
i bi or

∑
i ai =

∑
i bi and the rightmost non-zero entry in a − b is

positive. Note that the revlex order depends on the order of the variables.
Let I ⊆ k[x1, . . . , xn] be an ideal and let ≺ denote a term order on Nn. For f ∈ k[x1, . . . , xn], let

in≺(f) denote the initial (largest) term of f with respect to ≺. A finite set G ⊆ I is a Gröbner basis of I
if for every f ∈ I , there exists a g ∈ G, s. t. in≺(g)| in≺(f). A Gröbner basis G is called reduced if for
two distinct elements g, g′ ∈ G, no term of g′ is divisible by in≺(g). The reduced Gröbner basis is unique
if we fix an ideal and a term order and require the coefficient of the initial term of every element to be 1.
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Triangulations: We assume that the reader is familiar with regular and pulling triangulations (see
e. g. [5] or [8]). A triangulation is called unimodular if the normalized volume of all simplices contained
in it equals 1. Furthermore, we will use the fact that regular triangulations of a point set correspond to a
certain class of term orders (see [10, Chapter 8]).

3 The Hyperplane Subdivision Method
In this section, we describe a general method for showing degree bounds of generating sets and Gröbner
bases of toric ideals that was developed by Haase and Paffenholz ([4], see also [3, Proposition IV.2.5]).

A flow polytope has a canonical subdivision into polytopes contained in lattice translates of a unit cube:
we slice F along hyperplanes of type Hak = {x |xa = k}. Let F = FG,d,u,l be a flow polytope. For
k ∈ ZA we define a cell of F as ZF (k) = {f ∈ F | ka ≤ fa ≤ ka + 1 for all a ∈ A}. Cells are flow
polytopes using the same graph with tighter upper and lower bounds. Thus, they are lattice polytopes. For
our purposes, it is acceptable to identify a cell with the translated cell ZF (k)− k ⊆ [0, 1]A.

We will use a particular class of regular triangulations that we call subdivide-and-pull triangulations.
They are obtained in the following way: start by subdividing the flow polytope along hyperplanes into
cells as defined above. Then determine a pulling triangulation of each of the cells.

The following theorem is used in our proof of the Main Theorem:

Theorem 3.1 Let F be a flow polytope and k ≥ 2. IF contains a generating set of at most degree k if the
toric ideal of every cell of F contains a generating set of at most degree k.

Let ∆ be a subdivide-and-pull triangulation of F and G the reduced Gröbner basis with respect to the
term order that corresponds to ∆. G has at most degree k if all cells have a Gröbner basis of at most
degree k.

The main ingredient of the proof is the following theorem, which is a conglomerate of Corollaries 8.4
and 8.9 in Sturmfels’s book ([10]):

Theorem 3.2 Let P be a polytope and ∆ be a regular, unimodular triangulation of P . Let ≺∆ be the
term order corresponding to ∆. Then, the initial ideal of IP with respect to ≺∆ is given by

in≺∆
(IP ) =

〈
xF |F is a minimal non-face of ∆

〉
(4)

4 On the Proof of the Main Theorem
In this section, we briefly describe the idea of the proof of the Main Theorem. First, the result is proved
for transportation polytopes. The general statement can be reduced to this special case.

Theorem 4.1 Toric ideals of transportation polytopes are generated in degree 3.

Proof (idea): Due to Theorem 3.1, it suffices to show that the bound holds for all cells. Let Z be a cell of
an (m× n)-transportation polytope and let A = Z ∩ Zm×n. Consider the set JA of binomials in IA that
cannot be expressed by binomials of smaller degree. Let xu−xv ∈ JA be a binomial s. t. min{d(M,N) |
M ∈ supp(u), N ∈ supp(v)} is minimal over all binomials in JA, where d denotes the Hamming
distance. LetM ∈ supp(u) andN ∈ supp(v) be two matrices realizing this minimal Hamming distance.
Suppose deg(xu − xv) ≥ 4. By an analysis of the matrices M and N , we can reach a contradiction. 2
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Proof of the Main Theorem: The Main Theorem can be reduced to Theorem 4.1 by the transformation
described in [9, 21.6a]. 2

5 Gröbner Bases for Transportation Polytopes
In this section, we discuss degree bounds for Gröbner bases of transportation polytopes and we construct
Gröbner bases in high degree.

For the toric ideal of the Birkhoff polytope, the following degree bound for their revlex Gröbner bases
is known:

Theorem 5.1 ([2, Theorem 6.1],[10, Theorem 14.8]) Let IBn be the toric ideal of the Birkhoff polytope
Bn. Let G be a reduced Gröbner basis of IBn

with respect to an arbitrary reverse lexicographic term
order.

Then, G has at most degree n.

The proof of this theorem can easily be generalized to prove degree bounds for Gröbner bases of
transportation polytopes:

Theorem 5.2 Let Trc be an (m × n)-transportation polytope and let ≺ denote a term order that corre-
sponds to a subdivide-and-pull triangulation (as defined in Section 3).

Then, the reduced Gröbner basis of ITrc has at most degree
⌊
m·n

2

⌋
.

This improves a known degree bound for reduced Gröbner bases ([10, Proposition 13.15]) by a factor
of approximately 2.

Both theorems are (almost) as good as they can get, in the following sense:

Theorem 5.3 (Bn has revlex Gröbner bases in degree n) Let n be even. Then there exists a revlex
term order ≺, s. t. the reduced Gröbner basis G≺ of IBn

has exactly degree n.

Theorem 5.4 (Gröbner bases in high degree for transportation polytopes) Letm and n be even. Then
there exists a smooth (m× n)-transportation polytope Trc and a term order ≺, s. t. the reduced Gröbner
basis G≺ of ITrc has degree at least m(n−2)

2 .
The term order can be chosen to be revlex or it can correspond to a subdivide-and-pull triangulation

(as defined in Section 3).

Theorem 5.3 supports the experimental result of Diaconis and Eriksson, who suggested that Gröbner
bases of IBn

have exactly degree n ([1, Remark 9]).
We illustrate the constructions used to prove Theorems 5.3 and 5.4 in two examples:

Example 5.5 This example shows that Theorem 5.3 holds for n = 6.
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1
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︸ ︷︷ ︸
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1
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1
1

1
1




︸ ︷︷ ︸
A3

+




1
1

1
1

1
1




︸ ︷︷ ︸
B1

+




1
1

1
1

1
1




︸ ︷︷ ︸
B2

+




1
1

1
1

1
1




︸ ︷︷ ︸
B3

(5)
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=




1
1

1
1

1
1




︸ ︷︷ ︸
J6

+




1
1

1
1

1
1




︸ ︷︷ ︸
B

+2 ·




1
1

1
1

1
1




︸ ︷︷ ︸
C

+




1
1

1
1

1
1




︸ ︷︷ ︸
D1

+




1
1

1
1

1
1




︸ ︷︷ ︸
D2

=




1 1 3 1
1 1 1 2 1

1 1 1 3
3 1 1 1
1 2 1 1 1

1 3 1 1




(6)

This equation corresponds to an element of IB6 . We order the lattice points in B6 s. t. J6 is minimal and
A1, A2, A3, B1, B2, B3 are smaller than all the remaining points. In the revlex order ≺ defined by this
ordering, the left side of the equation corresponds to the initial term. One can show that it is a minimal
generator of the initial ideal in≺(IB6

). Hence, the reduced Gröbner basis of IB6
with respect to≺ contains

an element of degree 6.

Example 5.6 This example shows that Theorem 5.4 holds for n = m = 6. The following equation is
a relation of lattice points in the polytope Trc with r = c = (3, 3, 3, 3, 3, 3). A translated version of
this relation is contained in the transportation polytope with marginals r = (39, 39, 39, 39, 39, 39) and
c = (3, 3, 3, 3, 3, 219). By [4, Lemma 1], this polytope is smooth.
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A13
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1 1 1
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A22
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1 1 1
1 1 1

1 1 1
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1 1 1
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A23
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1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1




︸ ︷︷ ︸
A32

+




1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1




︸ ︷︷ ︸
A33

(7)
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B12
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1 1 1
1 1 1
1 1 1
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B13
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1 1 1
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B22
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B23
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1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1
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B32

+




1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1




︸ ︷︷ ︸
B33

(8)

=




2 1 1 10 11 11
2 1 1 10 11 11
2 1 1 10 11 11
10 11 11 2 1 1
10 11 11 2 1 1
10 11 11 2 1 1




= 1 ·




1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1




︸ ︷︷ ︸
C

+10 ·




1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1




︸ ︷︷ ︸
D

+




1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1




︸ ︷︷ ︸
E

(9)

We order the lattice points of Trc s. t.E is minimal and theAijs andBijs are smaller than all the remaining
points.
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In the revlex order ≺ defined by this ordering, the left side of the equation corresponds to the initial
term. One can show that it is a minimal generator of the initial ideal in≺(ITrc). Hence, the reduced
Gröbner basis of ITrc with respect to ≺ contains an element of degree 12.
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Nonzero coefficients in restrictions and tensor
products of supercharacters of Un(q)
(extended abstract)
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1 Department of Mathematics, University of Washington
2 Department of Mathematics, University of Colorado at Boulder

Abstract. The standard supercharacter theory of the finite unipotent upper-triangular matrices Un(q) gives rise to a
beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings
of Um(q) ⊆ Un(q) for m ≤ n lead to branching rules. Diaconis and Isaacs established that the restriction of
a supercharacter of Un(q) is a nonnegative integer linear combination of supercharacters of Um(q) (in fact, it is
polynomial in q). In a first step towards understanding the combinatorics of coefficients in the branching rules of
the supercharacters of Un(q), this paper characterizes when a given coefficient is nonzero in the restriction of a
supercharacter and the tensor product of two supercharacters. These conditions are given uniformly in terms of
complete matchings in bipartite graphs.

Résumé. La théorie standard des supercaractères des matrices triangulaires supérieures unipotentes finies Un(q)

donne lieu à une merveilleuse combinatoire basée sur les partitions d’ensembles. Comme avec la théorie des représen-
tations du groupe symétrique, Les plongements Um(q) ⊆ Un(q) pour m ≤ n mènent aux règles de branchement.
Diaconis et Isaacs ont montré que la restriction d’un supercaractère de Un(q) est une combinaison linéaire des super-
caractères de Um(q) avec des coefficients entiers non négatifs (en fait, elle est polynomiale en q). Dans une première
étape vers la compréhension de la combinatoire des coefficients dans les règles de branchement des supercaractères
de Un(q), ce texte caractérise les coefficients non nuls dans la restriction d’un supercaractère et dans le produit des
tenseurs de deux supercaractères. Ces conditions sont données uniformément en termes des couplages complets dans
des graphes bipartis.

Keywords: supercharacters, set-partitions, matching, bipartite graphs, unipotent upper-triangular matrices

1 Introduction
The representation theory of the finite groups of unipotent upper-triangular matrices Un(Fq) has tradi-
tionally been a hard problem, where even enumerating the irreducible representations is a well-known
wild problem. In fact, it is not even known if the number of irreducible representations is polynomial in
q (the Higman conjecture [12] suggests the affirmative). However, André [1, 2, 3, 4] and later Yan [18]
demonstrated if one decomposes the regular representation into “nearly irreducible” pieces (called super-
representations) rather than the usual irreducible pieces, one obtains a theory that is far more tractable with

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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beautiful combinatorial underpinnings. Later, work of Arias-Castro, Diaconis and Stanley [7] demon-
strated that this theory could even be used in place of the usual representation theory in an application to
random walks, and for more general supercharacter theories, Otto [15] has shown that they can be used to
bound nilpotence classes of nilpotent algebras.

While it has been a guiding principle that the supercharacter theory of Un(q) is analogous to the repre-
sentation theory of the symmetric group Sn, many Un-analogues of Sn results remain to be worked out.
Some of the known observations include

(a) The irreducible characters of Sn are indexed by partitions of n, and the supercharacters of Un(Fq)
are indexed by (a q-analogue of) set partitions of {1, 2, . . . , n} [1, 18, 7],

(b) For Sn, Young subgroups are a natural family of subgroups which give the corresponding char-
acter rings a Hopf structure through induction and restriction. Similarly, [16] defines an analogue
to Young subgroups for Un(q), noting that while in the Sn-case the particular embedding of the
subgroup typically does not matter, in the Un(q)-case it is critical [14, 17]. These subgroups are
indexed by set-partitions instead of integer partitions.

(c) As an algebra, the ring of symmetric functions model restriction/induction branching rules for the
characters of Sn considered simultaneously for all n ≥ 0. The corresponding ring for the su-
percharacters of Un(Fq) seems to be the ring of symmetric functions in non-commuting variables
[16].

This paper attempts to better understand the combinatorics of branching rule coefficients for the super-
characters of Un(Fq).

In the symmetric group case, the irreducible character χµ × χν appears in the decomposition of the
restricted character

Res
S|λ|
S|µ|×S|ν|(χ

λ)

only if µ, ν ⊂ λ. For Un(q) this paper gives both necessary and sufficient conditions for analogous result,
using the close relationship between tensor products and restrictions in this case. In particular, the main
results of this abstract are

Theorem 3.1. Given a set partition λ and subgroup UK ⊆ Un, there is a bipartite graph ΓK(λ) such
that the trivial character appears in the decomposition of ResUnUK (χλ) if and only if the graph has a
complete matching.

Theorem 4.1. Given set partitions λ, µ, and ν, there is a bipartite graph Γ(λ, µ, ν) such that the χν

appears in the decomposition of χλ ⊗ χµ if and only if the graph has a complete matching.

Theorem 4.3. Given set partitions λ, µ and subgroup UK ⊆ Un, there is a bipartite graph ΓK(λ, µ) such
that the χµ appears in the decomposition of ResUnUK (χλ) if and only if the graph has a complete
matching.

The bipartite graphs referenced in all three results have a uniform construction as described in Section
4.1, and are remarkably easy to construct given the initial data. However, the description of the bipartite
graph in Theorem 3.1 is particularly nice, so we describe it separately in Section 3.1. A fundamental part
of extending Theorem 3.1 to Theorem 4.1 and Theorem 4.3 is a result that rewrites tensor products as
restriction, as follows.
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Theorem 4.2 Given two supercharacters χλ and χµ of UK , there exists a supercharacter χν and groups
UK′ ⊆ UL with UK′ ∼= UK such that χλ ⊗ χµ (under the internal point-wise product) is the same
character of UK as q−rResULU ′K

(χν) is of UK′ , where r ∈ Z≥0.

While these results do not give a complete description of the coefficients, [8] showed that these coeffi-
cients are always positive integers (in fact, polynomial in q). Thus, a more explicit understanding of the
coefficients remains open.

The supercharacter theory studied in this paper is a particular example of a supercharacter theory that
has a more general construction on algebra groups [8]. Generalizations of this approach have also been
studied by André and Neto for maximal unipotents subgroups in other Lie types [5, 6]. This study of a
particular supercharacter theory is somewhat different from recent work by [11], which attempts to find
all the possible supercharacter theories for a given finite group.

Acknowledgements
Part of this work (in particular Theorem 3.1) was in Lewis’ undergraduate honors thesis at the University
of Colorado at Boulder. Thiem was supported in part by an NSF grant DMS-0854893.

2 Preliminaries
This section sets up the necessary combinatorics of set partitions, which differs from some of the more
standard formulations. From this point of view, the parts of the set partition are less important than the
relative sizes of the numbers in the same part. We then review the definition of a supercharacter theory,
and recall the specific supercharacter theory of interest for the finite groups of unipotent upper-triangular
matrices, as developed by André [1, 2, 3, 4] and Yan [18].

2.1 Set partition combinatorics
Fix a prime power q, and let Fq be the finite field with q elements with additive group F+

q and multiplicative
group F×q .

For a finite subset K ⊆ Z≥1, let

AK(q) = {i a_j | i, j ∈ K, i < j, a ∈ F×q },

and
A(q) =

⋃

K⊆Z≥1
|K|<∞

AK(q),

where A∅(q) = {∅}. We will refer to the non-emptyset elements of A(q) as arcs.
Let

M(q) =
⋃

K⊆Z≥1
|K|<∞

MK(q), where MK(q) = {finite multisets in AK(q)}.

For λ ∈MK(q) and j, k ∈ K, let

Rjk = {j a
_k ∈ λ}, mjk(λ) = |Rjk|, and wtjk(λ) =

∑

j
a
_k∈Rjk

a ∈ Fq, (1)
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where Rjk is a multiset. For example, if

λ = {1 a
_4, 1

b
_4, 1

c
_4, 3

d
_5} = • • • • •

1 2 3 4 5

a

b

c

d

, for a, b, c, d ∈ F×q ,

then

R14 = {1 a
_4, 1

b
_4, 1

c
_4}, m14(λ) = 3, wt14(λ) = a+ b+ c, and R23 = ∅.

Note we will use a diagrammatic representation of multisets λ ∈MK(q), by associating to each element
of K a node (usually arranged along a horizontal line), and each arc i a_j in λ becomes a labeled edge
connecting node i to node j.

A q-set partition of K is a multiset λ ∈MK(q) such that if i a_l, j
b
_k ∈ λ are two distinct arcs, then

i 6= j and k 6= l. Let

S(q) =
⋃

K⊆Z≥1
|K|<∞

SK(q), where SK(q) = {q-set partitions inMK(q)}.

Note that 2-set partitions of K are set partitions λ of K by the rule that i and j are in the same part if there
is a sequence of arcs i 1

_j1, j1
1
_j2, . . . , jm−1

1
_j ∈ λ. That is, the parts of the set partitions are the

connected components of the diagrammatic representation of the 2-set partition. For example,

• • • • • • • •
1 2 3 4 5 6 7 8

1

1
11 1

←→ {1, 4, 6, 8 | 2, 3, 5 | 7}.

In this sense, q-set partitions are a q-analogue of set partitions (although, strictly speaking, they are (q−1)-
analogues of set partitions).

Let λ ∈M(q). A conflict in λ over K is either

(CL) A pair of distinct arcs i a_l, j
b
_k ∈ λ such that i = j and k < l,

(CR) A pair of distinct arcs i a_l, j
b
_k ∈ λ such that i < j and k = l,

(CB) A pair of distinct arcs i a_l, j
b
_k ∈ λ such that i = j and k = l,

(CN) A nonempty multiset {i a_k ∈ λ | i = j or k = j} for some j /∈ K.

Example 1 The multiset

λ = • • • • • •
1 2 3 4 5 6

a

b

c

d

e

f
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has conflicts

• • •
1 2 4

a

b
, • • •

2 5 6

c

d

, • • • •
1 3 4 6

a
e

f
, • • •

2 4 6

d

e

over {1, 2, 3, 5, 6}, where the conflicts are of type (CL), (CL), (CN), and (CR).

Conflicts are instances in a multiset which violate the conditions of membership in the set SK(q).

Remark 1 There are a variety of q-analogues of set partition or Stirling numbers in the literature. This
particular q-analogue of set partitions is different from the one introduced [10] and only seems to appear
in connection with supercharacters. There is also a standard construction for q-Stirling numbers (see for
example [9]), where the Stirling number S(n, k; q) is defined by “q-counting” the number of elements of
Sn(2) with n − k arcs. If we let Sq(n, k) be the number of elements of Sn(q) with n − k elements, we
obtain a recursion

Sq(n, k) = Sq(n− 1, k − 1) + k(q − 1)Sq(n− 1, k),

which is different from the recursion for S(n, k; q) in [9].

2.2 Supercharacters of Un(q)

Supercharacters were first studied by André in relation to Un(q) as a way to find some more tractable way
to understand the representation theory of Un(q). Diaconis and Isaacs [8] then generalized the concept to
arbitrary finite groups, and we reproduce a version of this more general definition below.

A supercharacter theory of a finite group G is a pair (K,X ) where K is a partition of G such that

(a) Each K ∈ K is a union of conjugacy classes,

(b) The identity element of G is in its own part in K,

and X is a set of characters of G such that

(a) For each irreducible character ψ of G there is a unique χ ∈ X such that 〈χ, ψ〉 6= 0,

(b) The trivial character 11 ∈ X ,

(c) The characters of X are constant on the parts of K,

(d) |K| = |X |.
We will refer to the parts of K as superclasses and the characters of X as supercharacters. For more
information on the implications of these axioms see [8] (including some redundancies in the definition).

For n ∈ Z≥1, letMn(Fq) be the ring of n×nmatrices with entries in the finite field Fq with q elements.
Let

Un(q) = {u ∈Mn(Fq) | uji = 0, uii = 1, uij ∈ Fq, i < j}
be the group of unipotent upper-triangular matrices. For K ⊆ {1, 2, . . . , n}, let

UK(q) = {u ∈ Un(q) | uij = 0, i < j, unless i, j ∈ K}.
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Note that UK(q) ∼= U|K|(q).
For UK(q) there is a standard example of a supercharacter theory developed by André and Yan, where
K and X are indexed by q-set partitions of K. For the purpose of this paper it suffices to recall the
definition of the supercharacters. Fix a nontrivial group homomorphism,

ϑ : F+
q −→ C×.

For λ ∈ SK(q), there is a supercharacter χλ given by

χλ =
⊗

i
a
_l∈λ

χi
a
_l, (2)

where each χi
a
_l is an irreducible character of UK(q) whose value on the superclass indexed by µ ∈

SK(q) is

χi
a
_l(µ) =





0, if j b
_k ∈ µ with i = j < k < l or i < j < k = l,

q|{i<j<l|j∈K}|

q|{i<j<k<l|j
b
_k∈µ}|

ϑ(awtil(µ)), otherwise.

It can be quickly verified that the linear supercharacters of UK(q) correspond to λ ∈ SK(q) with i a_l ∈ λ
implies {i < j < l | j ∈ K} = ∅; the trivial character is χ∅.

The superclass {1} is indexed by ∅ ∈ SL(q). Thus, for λ ∈ML(q) with L ⊆ Z≥1, the degree of χλ is

χλ(1) =
∏

i
a
_l∈λ

q|{i<j<l|j∈L}|.

If K ⊆ L, then define

rLK(λ) = |{(j, i a_l) ∈ L× λ | i < j < l, j /∈ K}|. (3)

Note that if λ ∈ ML(q) ∩MK(q) then qr
L
K(λ) is the ratio of the degrees of χλ as a character of UL(q)

and χλ as a character of UK(q). It therefore is a constant that frequently comes up in the restriction of
supercharacters. In fact, by inspection, if λ ∈ML(q) ∩MK(q), then

Res
UL(q)
UK(q)(χ

λ) = qr
L
K(q)χλ. (4)

In general, supercharacters are orthogonal with respect to the usual inner product on class functions,
and for λ, µ ∈ SK(q),

〈χλ, χµ〉 = δλµq
|C(λ)|, where C(λ) = {(i a_k, j

b
_l) ∈ λ× λ | i < j < k < l}, (5)

is the set of crossings in λ.
The papers [16, 17, 18] describe local rules for computing restrictions and tensor products. In principle,

therefore, one can easily compute restrictions and tensor products in a recursive, algorithmic fashion (see
[16] for a detailed description of this algorithm, and [13] for an implementation of this algorithm in
Python). However, this algorithm does not give an obvious combinatorial interpretation of the resulting
coefficients.
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3 Coefficient of trivial character
This section investigates the coefficient of the trivial character 11 = χ∅ in the restriction from UL(q) to
a subgroup UK(q). In particular, Theorem 3.1 characterizes when the coefficient of 11 is nonzero in the
restriction of a supercharacter. Although the theorem seems somewhat specific, in later sections we will
use it to analyze the coefficients of arbitrary supercharacters in both restrictions and tensor products.

3.1 Main result
Given a set partition λ ∈ SL(q) and a subset K ⊆ L, let ΓK(λ) be the bipartite graph given by vertices

V• = {i_j ∈ λ | i, j ∈ K}
V◦ = {i_j ∈ λ | i, j /∈ K},

and an edge from j _ k ∈ V• to i _ l ∈ V◦ if i < j < k < l. Note that this graph has in general far
fewer vertices than λ has arcs. The following theorem is the main result of the paper, and is a model for
the remaining results in this paper.

Theorem 3.1 Let K ⊆ L ⊆ Z≥1 be finite sets, and let λ ∈ SL(q) be a q-set partition. Then

〈ResULUK (χλ), 11〉 6= 0,

if and only if the graph ΓK(λ) has a complete matching from V• to V◦.

Remark 2 The complete matching referred to in Theorem 3.1 is a one-sided matching. That is, every
element in V• must be matched to a corresponding element in V◦, but there could potentially be elements
of V◦ not matched to elements of V•. For example, if

Γ1 =

◦ ◦ ◦

• •

and Γ2 =

◦

• •
then Γ1 has a complete matching from V• to V◦ and Γ2 does not.

Example 2 If K = {1, 4, 5, 6, 7, 9} and

λ =
• • • • • •◦ ◦ ◦ ◦
1 2 3 4 5 6 7 8 9 10

a

b

c
d

e

f

then V• = {4 c
_7, 5

f
_6, 7

d
_9}, V◦ = {2 b

_10, 3
e
_8}, and

ΓK(λ) =

◦2
b
_10 ◦3

e
_8

•
4
c
_7

•
5
f
_6

•
7
d
_9
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Since this graph has no complete matchings from V• to V◦, by Theorem 3.1 〈ResULUK (χλ), 11〉 = 0.

4 Tensor products and general restriction coefficients
Theorem 3.1 in fact is sufficiently strong that analogous statements can be made for the coefficients of
arbitrary supercharacters in the decomposition of tensor products and restrictions. This section begins
by developing the appropriate generalization to the graph ΓK(λ). We then state Theorem 4.1 for ten-
sor products and Theorem 4.3 for restrictions. Along the way, Theorem 4.2 describes how characters
corresponding to multisets are the same as restrictions from certain set partitions (up to a scalar multiple).

4.1 A generalized bipartite graph
Given λ ∈M(q), perturb the arcs such that they stack on top of one-another in the following fashion.

(TL) If i a_j, i
b
_k ∈ λ with j < k, then the left endpoint of i b_k is above the left endpoint of i a_j,

•
i

•
j

•
k

a

b

7→
••
i

•
j

•
k

a

b

.

(TR) If i a_k, j
b
_k ∈ λ with i < j, then the right endpoint of i a_k is above the right endpoint of j b

_k,

•
i

•
j

•
k

b

a

7→
•
i

•
j

••
k

b

a

.

(TB) If |Rjk| > 1, then

Rjk =

•
j

•
k

...

a1

a2

al

7→





••

•

j
••

•

k

...

a1

a2

al

, if wtjk(λ) 6= 0,

••

•
••

j
••

•
••

k

...

a1

a2

al−2

alal−1

, if wtjk(λ) = 0.
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Example 3 For q = 3,

λ = • • • • •
1 2 3 4 5

1

2

2

2

1

1

7→ • • • • •• • • •• •

1 2 3 4 5

1

2

2 2

1

1

Define a labeling function ΛK : λ→ {(•, •), (◦, •), (•, ◦), (◦, ◦)}, given by

ΛK(j
b
_k) = (ΛLK(j

b
_k),ΛRK(j

b
_k)),

where

ΛLK(j
b
_k) =

{
◦ if j /∈ K or j b

_k starts below an arc starting at j,
•, otherwise.

ΛRK(j
b
_k) =

{
◦ if k /∈ K or j b

_k ends below an arc ending at k,
•, otherwise.

(6)

In the above example,

Λ{1,2,3,4,5}(λ) = ◦ ◦ ◦◦• •• •◦ ◦• •

1 2 3 4 5

1

2

2 2

1

1

and Λ{2,3,4,5}(λ) = ◦ ◦ ◦◦• • •◦ ◦ ◦• •

1 2 3 4 5

1

2

2 2

1

1

,

where we replace the endpoints of the arcs by their images under ΛK .
Construct a bipartite graph ΓK(λ) given by vertices

V• = {j a
_k ∈ λ | ΛK(j

a
_k) = (•, •)}

V◦ = {j a
_k ∈ λ | ΛK(j

a
_k) = (◦, ◦)},

and an edge from i
a
_l ∈ V◦ to j b

_k ∈ V• if i < j < k < l.
In our example,

Γ{1,2,3,4,5}(λ) =

3
2
_4 3

1
_5

2
2
_3 3

1
_5

◦ ◦

• •
and Γ{2,3,4,5}(λ) =

1
1
_4 3

2
_4 3

1
_5

2
2
_3 3

1
_5

◦ ◦ ◦

• •
.

The main theorem of this section follows, and its proof can be found in Section 4.2.

Theorem 4.1 Suppose λ, µ, ν ∈ SK(q) with K ⊆ Z≥1 a finite subset. Then

〈χλ ⊗ χµ, χν〉 6= 0

if and only if ΓK(λ ∪ µ ∪ ν̄) has a complete matching from V• to V◦.
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4.2 Straightening rules
Given λ ∈M(q), this section describes “straightening” rules that allow us to create a sequence

λ = λ(0), λ(1), · · · , λ(`),

where at each stage we remove a conflict of type (CL), (CR), or (CB) until we arrive at λ(`) ∈ S(q).
Furthermore, there is an underlying sequence of pairs (K(0), L(0)), (K(1), L(1)), . . . , (K(`), L(`)) of finite
subsets such that |K(i)| = |K| and λ(i) ∈ MK(i)∪L(i)(q). While the order in which one applies the
straightening rules does matter in terms of which set partition one obtains, for our purposes in this paper
(Theorem 4.2, below) the differences are irrelevant. The rules are as follows.

For a, b ∈ F×q , in moving from λ(m−1) to λ(m) we can

•
i

•
j

•
k

a

b

7−→
•
i
◦
i+1

•
j+1

•
k+1

a

1

(SL)

with

K(m) = ([1, i] ∩K(m−1)) ∪ ((Z≥i+1 ∩K(m−1)) + 1)

L(m) = ([1, i] ∩ L(m−1)) ∪ {i+ 1} ∪ ((Z≥i+1 ∩ L(m−1)) + 1);

•
i

•
j

•
k

a

b

7−→
•
i

•
j

◦
k
•
k+1

a

1

(SR)

with

K(m) = ([1, k − 1] ∩K(m−1)) ∪ ((Z≥k ∩K(m−1)) + 1),

L(m) = ([1, k − 1] ∩ L(m−1)) ∪ {k} ∪ ((Z≥k ∩ L(m−1)) + 1);

•
i

•
k

a

b

7−→





•
i
◦
i+1

◦
k+1

•
k+2

1 1

, if a+ b = 0,

•
i
◦
i+1

◦
k+1

•
k+2

a+b

1

, if a+ b 6= 0.

(SB)



776 Stephen Lewis and Nathaniel Thiem

with

K(m) = ([1, i] ∩K(m−1)) ∪ (([i+ 1, k − 1] ∩K(m−1)) + 1) ∪ ((Z≥k ∩K(m−1)) + 2)

L(m) = ([1, i] ∩ L(m−1)) ∪ {i+ 1}(([i+ 1, k − 1] ∩ L(m−1)) + 1) ∪ {k + 1} ∪ ((Z≥k ∩ L(m−1)) + 2).

In each case there are “new nodes” indicated by ◦ that push all the other node values to the right up
(note, we view the •-nodes as being the same though their number labels may change). In fact, K(m) is
the set of original nodes (up to being pushed around) and L(m) is the set of nodes that were at some point
◦-nodes (see example after Theorem 4.2).

The following lemma states that these rules (SL), (SR) and (SB) do not fundamentally change the
underlying character.

Lemma 4.1 Let λ ∈ MK(q) and apply (SL), (SR) or (SB) to obtain λ̃ = λ(1) ∈ MK(1)∪L(1)(q). Then
as a character of UK ∼= UK(1) ,

χλ = q−r
K(1)∪L(1)

K(1) (λ̃)Res
U
K(1)∪L(1)

U
K(1)

(χλ̃).

By iterating Lemma 4.1 to remove all the conflicts of a multiset, we see that up to shifting of indices
every tensor product is the same (up to a scalar multiple) as restriction from some supercharacter.

Theorem 4.2 Let λ ∈MK(q). Then there exists λ̃ ∈ SK′∪L′(q) with |K| = |K ′|, such that

χλ = q−r
K′∪L′
K′ (λ̃)Res

UK′∪L′
UK′

(χλ̃).

Remark 3 Note that if we assume there are no (CN) conflicts, or λ ∈ MK(q), then we may simplify the
definition of the labeling function ΛK as follows. If λ ∈ MK(q) and λ̃ ∈ SK(`)∪L(`)(q) is obtained by
applying (SL), (SR) and (SB), then

ΛK(j
b
_k) = (ΛLK(j

b
_k),ΛRK(j

b
_k)),

where

ΛLK(j
b
_k) =

{
◦ if j ∈ L(`),
•, otherwise.

ΛRK(j
b
_k) =

{
◦ if k ∈ L(`),
•, otherwise.

Theorem 4.2 also allows us to extend Theorem 3.1 to the coefficient of arbitrary supercharacters.

Theorem 4.3 Suppose λ ∈ SL(q) and µ ∈ SK(q) with K ⊆ L ⊆ Z≥1 finite sets. Then

〈ResULUK (χλ), χµ〉 6= 0

if and only if ΓK(λ ∪ µ̄) has a complete matching from V• to V◦.
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[4] André, C. Basic characters of the unitriangular group (for arbitrary primes), Proc. Amer. Math. Soc.
130 (2002), 1934–1954.
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1 Introduction and motivation
We consider a family of equivalence relations on permutations in Sn, in which two permutations are
considered to be equivalent if one can be converted into the other by replacing a short subsequence of
elements by the same elements permuted in a specific fashion, or (extending by transitivity) by a sequence
of such moves. These generalise the relations discovered by Knuth in his study of the Robinson-Schensted
correspondence, though our original motivations were unrelated. We begin the systematic study of such
equivalence relations, connecting them with integer sequences both familiar and (apparently) new.

As a simple first example, the permutation 123456 can be converted to 125436 by replacing the sub-
sequence 345 by 543. The same permutation 123456 can be also be converted into 163452. In each of
these examples, the subsequence removed is of pattern 123 (reducing the elements to form a permutation
whose elements are in the same relative order) and the subsequence replacing it is of pattern 321.

We could therefore say that 123456 and 125436 are equivalent under the replacement 123 → 321.
Since we want all our replacement rules to be bi-directional, we will actually say that these permutations
are equivalent under 123 ↔ 321, or, using set notation, under {123, 321}. Since 163452 and 123456 are
equivalent under the same replacement, by transitivity we also have that 163452 and 125436 are equivalent
under {123, 321}.

Interesting enumerative questions arise when the elements being replaced are allowed to be in general
position (Section 2), but also when the replacements are further constrained to affect only adjacent ele-
ments as in the very first example above (Section 3), or even when constrained to affect only blocks of
consecutive elements representing a run of consecutive values, again as in the first example (Section 4).

We may also wish to allow more than one type of (bi-directional) replacement, such as both 123↔ 321
and 123 ↔ 132. If the intersection of these sets is nonempty, the new relation corresponds simply to
a union of the two sets: {123, 132, 321} = {123, 321} ∪ {123, 132}. However, the Knuth relations
(described below) require two disjoint types of replacements.

Let π ∈ Sn, and let P = {B1, B2, . . . , Bt} be a (set) partition of Sk, where k ≤ n. Each block
Bl of P represents a list of k-length patterns which can replace one another. We call two permutations
P ◦-equivalent if one can be obtained from the other by a sequence of replacements, each replacing a
σi-pattern subsequence with the same elements in the pattern σj , where σi and σj lie in the same block
Bl of P . Then Eq◦(π, P ) will denote the set of permutations equivalent to π under P ◦-equivalence. Thus
163452 ∈ Eq◦

(
123456,

{
{123, 321}

})
.

Similarly, we will use P q to denote the equivalence relation and Eqq(π, P ) for the equivalence class of
π under replacement within P only of adjacent elements, e.g. 125436 ∈ Eqq

(
123456,

{
{123, 321}

})
.

And we will use Eq�(π, P ) for the case where both positions and values are constrained, e.g. 125436 ∈
Eq�

(
123456,

{
{123, 321}

})
. To refer to such classes generally we use the notation Eq?(π, P ). The set

of distinct equivalence classes into which Sn splits under an equivalenceP ? will be denoted Classes?(n, P ).
The present paper begins the study of these equivalence relations by considering three types of question:
(A) Compute the number of equivalence classes, #Classes?(n, P ), into which Sn is partitioned.
(B) Compute the size, #Eq?(ιn, P ), of the equivalence class containing the identity ιn = 123 · · ·n.
(C) (More generally) characterise the set Eq?(ιn, P ) of permutations equivalent to the identity.
Although the framework above allows for much greater generality, in this paper we will restrict our

attention to replacements by patterns of length k = 3, and usually to replacement patterns built up from
pairs in which one permutation is the identity, and the other is a transposition (i.e., fixes one of the
elements). Omitting some cases by symmetry, we have the following possible partitions of S3, where (as
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usual) we omit singleton blocks:

P1 =
{
{123, 132}

}
,

P2 =
{
{123, 213}

}
,

P4 =
{
{123, 321}

}
.

We will also consider applying two of these replacement operations simultaneously, and we will number
the appropriate partitions as

P3 =
{
{123, 132, 213}

}
,

P5 =
{
{123, 132, 321}

}
,

P6 =
{
{123, 213, 321}

}
,

following the convention Pi+j := Pi ∨ Pj , the join of these two partitions [EC1, ch.3]. Indeed we can
allow all three replacements: P7 =

{
{123, 132, 213, 321}

}
. (In fact, the cases P1 and P2 are equivalent

by symmetry, as are P5 and P6. We list P1 and P2 separately so as to be able to consider their join.)
Our motivation for focussing attention on pairs of this form is that we can then think of an operation,

not in terms of replacing one pattern by another, but simply in terms of swapping two elements within the
pattern, with the third serving as a witness enabling the swap.

By far the best-known example of constrained swapping in permutations is certainly the Knuth Rela-
tions [Knu70], which allow the swap of adjacent entries provided an intermediate value lies immediately
to the right or left. In the notation of this paper, they correspond to P q

K =
{
{213, 231}, {132, 312}

}
. Per-

mutations equivalent under this relation map to the same first coordinate (P -tableau) under the Robinson-
Schensted correspondence.

Mark Haiman introduced the notion of dual equivalence of permutations: π and τ are dual equivalent
if one can be obtained from the other by swaps of adjacent values from the above PK , i.e., if their inverses
are Knuth-equivalent, or if they map to the same second coordinate (Q-tableau) under the Robinson-
Schensted correspondence [Hai92]. For the enumerative problems in this paper, we get the same answers
for Knuth and dual equivalence.

In her dissertation [SA07] Sami Assaf constructed graphs (with some extra structure) whose vertices
are tableaux of a fixed shape (which may be viewed as permutations via their “reading words”), and whose
edges represent (elementary) dual equivalences between vertices. For this particular relation (equivalently
for the Knuth relations), she was able to characterise the local structure of these graphs, which she later
used to give a combinatorial formula for the Schur expansion of LLT polynomials and MacDonald Poly-
nomials. She also used these, along with crystal graphs, to give a combinatorial realization of Schur-Weyl
duality [SA08].

S. Fomin has a very clear elementary exposition of how Knuth and dual equivalence are related to the
Robinson-Schensted correspondence, Schützenberger’s jeu de taquin, and the Littlewood-Richardson rule
in [EC2, Ch. 7, App. 1]. For the problems considered above, the answers for P q

K are well known to be:
(A) the number of involutions in Sn; (B) 1; and (C) {id}. In fact one can compute #Eqq(π, PK) for
any permutation π by using the Frame-Robinson-Thrall hook-length formula to compute the number of
standard Young tableaux of the shape output by the R-S correspondence applied to π.

Given that the Knuth relations act on adjacent elements, and lead to some deep combinatorial results,
it is perhaps not surprising that the most interesting problems and proofs in this paper are to be found in
Section 3. A summary of our numbers and results is given in Figure 1.
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Fig. 1: Summary of Results

These tables give numerical values and names (when available) of the sequences associated with our two
main enumerative questions. All sequences begin with the value for n = 3. Results proven in this paper
have a grey background; for other cases we lack even conjectural formulae. Six-digit codes preceded by
“A” cite specific sequences in Sloane [OEIS].

Number of classes § 1 § 2 § 3
neither (”classical”) only indices adjacent indices and values adjacent

(1) 123↔ 132 [5, 14, 42, 132, 429]
[5, 16, 62, 284, 1507, 9104] [5, 20, 102, 626, 4458, 36144]

(2) 123↔ 213 Catalan

(4) 123↔ 321
[5, 10, 3, 1, 1, 1]

[5, 16, 60, 260, 1260, 67442] [5, 20, 102, 626, 4458, 36144]
trivial

(3) 123↔ 132↔ 213
[4, 8, 16, 32, 64, 128] [4, 10, 26, 76, 232, 764]

[4, 17, 89, 556, 4011, 32843]
powers of 2 involutions

(5) 123↔ 132↔ 321 [4, 2, 1, 1, 1, 1]
[4, 8, 14, 27, 68, 159, 496] [4, 16, 84, 536, 3912, 32256]

(6) 123↔ 213↔ 321 trivial

(7)
123↔ 132 [3, 2, 1, 1, 1, 1]

[3, 4, 5, 8, 11, 20, 29, 57] [3, 13, 71, 470, 3497]↔ 213↔ 321 trivial

Size of class with ιn
§ 1 § 2 § 3
neither (”classical”) only indices adjacent indices and values adjacent

(1) 123↔ 132 [2, 6, 24, 120, 720] [2, 4, 12, 36, 144, 576, 2880] [2, 3, 5, 8, 13, 21, 34, 55]
(2) 123↔ 213 (n-1)! product of two factorials Fibonacci numbers

(4) 123↔ 321
[2, 4, 24, 720] [2, 3, 6, 10, 20, 35, 70, 126] [2, 3, 4, 6, 9, 13, 19, 28]
trivial central binomial coefficients A000930

(3) 123↔ 132↔ 213
[3, 13, 71, 461] [3, 7, 35, 135, 945, 5193] [3, 4, 8, 12, 21, 33, 55, 88]
connected A003319 terms are always odd A052952

(5) 123↔ 132↔ 321 [3, 23, 120, 720] [3, 9, 54, 285, 2160, 15825] [3, 5, 9, 17, 31, 57, 105, 193]
(6) 123↔ 213↔ 321 trivial separate formulae for odd/even tribonacci numbers A000213

(7)
123↔ 132 [3, 23, 120, 720] [4, 21, 116, 713, 5030] [4, 6, 13, 23, 44, 80, 149, 273]
↔ 213↔ 321 trivial tribonacci A000073 −[n even]

If τ ∈ Eq?(π, P ) we will say that τ is reachable from π (under P ). If Eq?(ιn, P ) = Sn, then
every permutation in Sn is reachable from every other, and we will say that Sn is connected by P . If
Eq?(π, P ) = {π} we will say that π is isolated (under P ).

It is obvious that if Pi refines Pj as partitions of Sk (i.e., Pi ≤ Pj in the lattice of partitions of Sk), then
the partition of Sn induced by Pi refines the one induced by Pj , because a permutation reachable from π
under Pi is also reachable under Pj . This enables the following simple observations:

Proposition 1 If Pi refines Pj (as partitions of Sk), then for all π ∈ Sn with n ≥ k

Eq?(π, Pi) ⊆ Eq?(π, Pj)

#Eq?(π, Pi) ≤ #Eq?(π, Pj)

#Classes?(n, Pi) ≥ #Classes(n, Pj)
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2 General pattern equivalence
Many of the equivalence relations in this section are trivial, and follow immediately from the following
observation. The others lead to familar combinatorial numbers and objects.

Proposition 2 Let P be any partition of Sk for 2 ≤ k ≤ n − 1. If #Classes◦(n − 1, P ) = 1, then
#Classes◦(n, P ) = 1.

Proof: We will show that any π ∈ Sn can be reached from the identity, under the supposition that any
two permutations in Sn−1 are equivalent. If π(1) 6= n, simply apply the supposition to the elements
1 . . . n − 1 to obtain any permutation beginning with π(1). Then apply the supposition to the elements
now occupying positions 2 . . . n to complete the construction of π.

If π(1) = n, it is necessary to add an additional step at the beginning in order to detach 1 from the tail
of the permutation and move it into (say) position n − 1. But we know we can do this by applying the
supposition to the elements in positions 2 . . . n. And as long as n − 1 ≥ 2, position n − 1 is among the
positions 2 . . . n. 2

The following results follow.

Proposition 3 #Classes◦
(
n,
{
{123, 132, 321}

})
= 1 and #Classes◦

(
n,
{
{123, 132, 213, 321}

})
= 1

for n ≥ 5; and #Classes◦
(
n,
{
{123, 321}

})
= 1 for n ≥ 6.

Proof: It is easy to verify by hand, or by computer, that all permutations in S5 are reachable from 12345
by moves in P5 =

{
{123, 132, 321}

}
. (Indeed, all permutations in S4 are reachable from 1234 except

for 3412, which is isolated.) As S5 is connected, it follows (by induction) from the preceding proposition
that Sn is connected for all n ≥ 5. Since P7 ≥ P5, Proposition 1 tells us that Sn is connected under
P7 =

{
{123, 132, 213, 321}

}
whenever it is connected under P5. (In S4, the permutation 3412 remains

isolated.) Finally, we can check by computer that under P4 =
{
{123, 321}

}
S6 is connected; whence, Sn

is connected for n ≥ 6. 2

We remark that under P4, S4 splits into 10 equivalence classes, and S5 into three classes. The class
containing 12345 contains 24 elements. This suggests a possible bar bet. Hand your mark six cards
numbered 1 through 6 and invite him or her to lay them out in any sequence. By applying moves of the
form 123↔ 321 (“interchange two cards if and only if an intermediate (value) card intervenes”) you will
always be able to put the cards in order (although it may take some practice to become efficient at this!).
Now “go easy” on your mark by reducing the number of cards to 5. Even from a random sequence, the
mark has only one chance in five of being able to reach the identity.

Of course from Proposition 3 it immediately follows that:

Corollary 4 #Eq◦
(
ιn,
{
{123, 132, 321}

})
= n! for n ≥ 5, #Eq◦

(
ιn,
{
{123, 132, 213, 321}

})
= n!

for n ≥ 5, and #Eq◦
(
ιn,
{
{123, 321}

})
= n! for n ≥ 6.

Proposition 5 #Eq◦
(
ιn,
{
{123, 213}

})
= (n− 1)! for n ≥ 2.

Proof: Obviously the largest element n cannot be moved away from the end of the permutation. Equally
obviously the n, remaining at the far right, facilitates the free permutation of all other elements. 2

Proposition 6 For n ≥ 1, #Classes◦
(
n,
{
{123, 213}

})
= cn = 2n!

n!(n+1)! , the nth Catalan number.
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Proof: (Sketch) If i < j < k, and p(i) < p(j) < p(k), then p(k) facilitates the swapping of p(i) and p(j)
to arrive at a permutation with a strictly larger number of inversions.

Thus the “largest” (by number of inversions) elements in each equivalence class are exactly the 123-
avoiding permutations, of which there are cn [Bon06, ch. 14] or [Bon04, Sec. 4.2]. Likewise the “small-
est” elements are the 213-avoiding permutations. 2

The next two propositions study a class equivalent under symmetry (complementation) to Eq◦(ιn, P3).
The first references the indecomposable permutations [OEIS, A003319] or [Bon04, p. 145], and the sec-
ond the layered permutations introduced by W. Stromquist [Stro93], and studied carefully by A. Price in
his thesis [Pri97].

Proposition 7 Let ρn denote the permutation n, n − 1, . . . , 1. Then Eq◦
(
ρn,
{
{321, 312, 231}

})
is the

set of indecomposable permutations.

Proof: When viewed as a matrix, any permutation decomposes into irreducible blocks along the main
diagonal. The identity ιn decomposes into n singleton blocks, while ρn is indecomposable and is one
large block.

First note that if a transformation (a1, a2, a3) → (b1, b2, b3) applied within a block causes it to split
into more than one block, then b1 must be in the leftmost/lowest of the new blocks, and b3 in the right-
most/highest. Therefore b1 must be less than b3, which is exactly what doesn’t happen with any of our
possible transformations, because the first element is larger than the third in each of 321, 312 and 231.
Thus, in particular, if we start with an indecomposable permutation such as ρn, successive applications of
the permitted operations will always produce indecomposable permutations.

Next, we have to show that all indecomposable permutations are in fact reachable from ρn. Remem-
bering that our replacement operations are all reversible, we will instead show that we can always return
to ρn from an arbitrary indecomposable permutation.

Take n ≥ 3, and let τ = t1, t2, . . . , tn be an arbitrary indecomposable permutation other than ρn. We
will show that τ always contains at least one of 312 or 231.

If we are not in ρn then somewhere there is i < j such that ti < tj . It can’t be the case that ti > ti+1 >
. . . > tj−1 > tj , so somewhere there is a consecutive rise, say tk, tk+1. Now if any element to the right of
tk+1 is less than tk we have a 231, so assume there are none such. Similarly, assume there is no element
to the left of tk and greater than tk+1.

But there must be some x to the left of tk which is greater than some y to the right of tk+1, or otherwise
the permutation decomposes between tk and tk+1. These four elements x, tk, tk+1, y form a 3142, which
contains both a 312 (x, tk, y) and a 231 (x, tk+1, y).

Having now located a 312 or 231, we can then apply either 312 → 321 or 231 → 321, as appropriate.
Each of these operations simply switches a pair of elements, and (as we have seen in the proof of Proposi-
tion 6) strictly increases the number of inversions, progressing us toward ρn. This completes the proof that
all indecomposable permutations are reachable, and therefore the proof that the reachable permutations
are exactly the indecomposable permutations. 2

Proposition 8 #Classes◦
(
n,
{
{321, 312, 231}

})
= 2n−1 for n ≥ 1.

Proof: This follows fairly easily from comments made in the proof of the previous proposition. We found
that the equivalence class of the anti-identity consisted of the indecomposable permutations.
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Any permutation decomposes as a direct sum of irreducible blocks. We found that in our case, our
operations cannot cause a block to split. Therefore they also cannot cause blocks to join up, because then
the operation could be reversed, splitting the blocks. So the block composition is preserved.

By the arguments already given, we can work within any indecomposable block to restore it to an anti-
identity. Therefore each equivalence class consists of all the permutations with a given block structure
under direct sum of indecomposables.

In particular, each equivalence class contains exactly one permutation which is a direct sum of anti-
identities. These are exactly the layered permutations, and there are clearly 2n−1 of them, with a factor of
2 according to whether each consecutive pair of elements is or is not in the same layer. 2

Finally we apply the reversal involution on Sn to the above result to get our result for the partition P3.

Theorem 9 #Classes◦
(
n,
{
{123, 132, 213}

})
= 2n−1 for n ≥ 1.

3 Adjacent transformations
As mentioned in the introduction, this section contains our most interesting results and proofs. The first
rediscovers sequence A010551 from Sloane [OEIS].

Theorem 10 #Eqq
(
ιn,
{
{123, 213}

})
= bn/2c!dn/2e! for n ≥ 1.

Proof: The largest element, n, never comes unglued from the end, because there is nothing to enable it.
And therefore n− 1 must stay somewhere in the last three positions (as only n can enable its movement),
and n − 2 somewhere in the last five, and so on; such restrictions apply to bn/2c of the elements. This
limits the number of potentially reachable elements to bn/2c!dn/2e!: placing the elements from largest
to smallest, one has a choice of 1, 2, 3, . . . , bn/2c, dn/2e, . . . , 3, 2, 1 places to put each element.

Next we will show that all permutations conforming to these restrictions are indeed reachable. We will
do this in two stages. In Stage 1 we advance each of the large, constrained elements as far left as it can go
In Stage 2 we construct the target permutation from left to right, two elements at a time.

Stage 1: The elements bn/2c, . . . , n−1, n are to be positioned. First move bn/2c one step left, using a
move of type 123→ 213, in which bn/2c+ 1 plays the role of the facilitating “3”. In just the same way,
more the element bn/2c+1 to the left, continuing until the entire block bn/2c, . . . , n−1 has been shifted
one to the left. The element n − 1 has now reached its leftmost permitted position, and will remain in
place as we now move the block bn/2c, . . . , n− 2. This moves n− 2 as far left as it will go, and we now
move the next smaller block, etc. As promised, this places each constrained element as far left as possible.
These elements will now serve as a “skeleton” enabling the construction of the target permutation.

Stage 2: The key observation making this stage possible is that the small, unconstrained elements can be
freely moved about, leaving the large elements in the skeleton fixed. This is because, if {a, b} < X < Y ,
we can always execute the following sequence of moves: aXbY → abXY → baXY → bXaY . Also in
the case where n is odd, the leftmost element in the skeleton is in position 3, and the two small elements
in positions 1 and 2 can be interchanged if desired.

Now we examine the target permutation and move the required element(s) into the first position (if n is
even), or the first two positions (if n is odd). At this point, the elements occupying the next two positions
are reclassified as small, so that the skeleton terminates two positions further to the right, and we continue
by placing and ordering the next pair of elements. By continuing two elements at a time, we can build the
entire target permutation. 2
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Theorem 11 (a) #Eqq
(
ιn,
{
{123, 132, 321}

})
= 3

2 (k)(k+1)(2k−1)!, for n = 2k+1 odd and n ≥ 3.
(b)#Eqq

(
ιn,
{
{123, 132, 321}

})
= 3

2 (k)(k − 1
3 )(2k − 2)!− (2k − 3)!!, for n = 2k even and n ≥ 2.

(Here (2k − 3)!! = (2k − 3) . . . (3)(1), the product of odd natural numbers less than or equal to
(2k − 3).)

Proof: (Sketch) As in the previous proof, we begin by giving a necessary set of conditions for a permu-
tation to be reachable. We then show how to reach all such permutations, except for a small number of
permutations in the even case, which we explain separately.

Observe that the element 1 cannot occupy a position of even index, and the element 2 cannot occupy a
position of odd index to the left of 1. Call thisA, the class of admissible permutations. A simple counting
argument shows that this characterization produces the given formula for odd n, and also gives formula
for even n upon suppression of the double-factorial correction term. This discrepancy is because when
n = 2k is even there are a small number of exceptional permutations which must be excluded; we will
turn to these at the end of the proof.

Continuing on the assumption that n = 2k+1 is odd, it remains to show that all admissible permutations
are in fact reachable. We do this in two stages.

Stage 1: First we will show that all permutations beginning with a 1 are reachable from the identity.
We proceed in steps; after each, we will have a monotonically increasing initial segment, followed by a
completed target segment. Each step increases the length of the completed segment by 1 by selecting and
moving one element. If the selected element (b > 1) is an even number of positions (2k) away from the
place to which it is to be moved, perform k times the following pair of moves: bxy → yxb → xyb; if an
odd number of positions away, prepend abcxy → acbxy, then continue as before. This means that we can
travel between the identity and any permutation that begins with a 1.

Stage 2: It remains to show that the element 1 can always be moved to the front of any admissible
permutation. Actually, we only need to show that the element 1 can always be moved toward the front.

If the 1 is at the very end of the permutation, the 2 must be to its left and in a position of opposite parity.
Move the 2 rightward using moves 123 or 132→ 321 until it is adjacent to the 1; the 1 can then be moved.

If the 1 is not at the very end of the permutation, then consider the run of five elements centered on
the 1. (Note that the existence of this 5-factor depends on the assumption that n is odd.) There are 24
cases. Most can be handled locally, but those of the form 2–1– – require more care. Checking these
cases completes the proof for odd n. Now, for even n we have to consider which permutations have been
included in the given characterization A, but which are not in fact reachable.

Let n = 2k. Here is a description of a small class of exceptional permutations, X , which are not
reachable. Fill the positions in order n − 1, n, n − 3, n − 2, n − 5, n − 4 . . . 3, 4, 1, 2. When filling
positions of odd index, the smallest available element must be chosen; the subsequent selection of an
element to place to its right is then unconstrained. None of these (n − 1)!! permutations is reachable.
However, most of them are also not in A, because most have the 2 in position n − 3; the only ones we
have counted are the ones where the 2 is in position n, of which there are (n− 3)!!.

To see that none of the permutations in X is reachable, consider their 3-factors. These are all 213, 312,
or 231; therefore these permutations are isolated points, and not in the equivalence class of the identity.

Now we have to consider which permutations in A are not in fact reachable. The proof for odd n only
fails when the element 1 lies in the penultimate position n−1. We have already seen that the permutations
belonging to X ∩A are not reachable; we will show that all others are. Take any permutation π 6∈ X , but
with the minimal element 1 placed in position n− 1. Checking the conditions from right to left, suppose



786 Stephen Linton and James Propp and Tom Roby and Julian West

all odd positions from j to n − 1 are occupied by left-to-right minima, but suppose that the smallest
element situtated in positions 1 through j − 1 is not in position j − 2, as expected, and its value is x.

As before, all we need to do is show that we can move the element 1 to the left. This exploits two facts:
that x is the minimal element in a lefthand region, and the righthand region is alternating. First, take the
element x and shift it rightward, two positions at a time, until it arrives in position j− 2 or j− 1. In either
case, x now lies in a 321 which begins in an odd position. We check that we can propagate either of these
odd 321s rightward until they capture the smallest element, which can then be moved. This completes the
missing step in the proof for even n. 2

Theorem 12 #Eqq
(
ιn,
{
{123, 321}

})
=
(

n−1
b(n−1)/2c

)
.

Proof: (Sketch) The permutations in this class are direct sums of singletons and of blocks of odd size
greater than one, where within each block the even elements are on the diagonal, and the odd elements
form a plus-indecomposable [AAK03] 321-avoiding permutation. Let us call the set that we have just
described An. First we will show that An is closed under 123↔ 321; since the identity is in An this will
establish that the equivalence class of the identity is a subset ofAn. Then we will show that we can return
to the identity from any permutation in An, which will establish that the two sets are identical.

Let π be an arbitrary permutation belonging to An. Call the non-singleton blocks of π large; unless π
is the identity, it contains at least one large block. Note that large blocks begin and end with descents.

First show that any application of 123 → 321 to π produces an element of An. Consider the different
ways that a πi, πi+1, πi+2 of form 123 might occur within π. The cases to consider are (a) all three ele-
ments are in singleton blocks, (b) exactly two of the elements are in singleton blocks, (c) only the middle
element is in a singleton block, (d) all three elements are in a single large block, (e) two consecutive ele-
ments are in a large block, but the third is not (which cannot arise). In each of these cases the replacement
123→ 321 winds up gluing together all the blocks which it straddles.

Now consider applications of 321 → 123 in a permutation ρ ∈ An. Clearly, any 321 must lie within
a single block, as in any two blocks, all the elements in the block to the right are larger than all the
elements in the block to the left. Because the even elements within a block increase monotonically, the
321 is composed of odd, even, odd elements. It might, indeed, be the pattern resulting from a replacement
123 → 321 in any one of the cases (a) through (d) above; therefore by undoing it we might return to any
one of these four configurations. But no matter, as each one corresponds to a permutation in An.

Now we need to show that we can return to the identity from any permutation σ in An. Observe that
every large block of σ contains a 321 as a factor, because the first element of the block must lie below
the diagonal and the last element must lie above it; therefore two consecutive odd elements exist with the
first below and the second above the diagonal. Together with the even element (on the diagonal) which
separates them, this forms a 321. Unless π is itself the identity, it contains a large block, and therefore a
321. By replacing this with a 123, we move to a permutation ρ having strictly fewer inversions than σ.
But as An is closed under such replacements, we may iterate this process, until we arrive at the identity.

This establishes that the reachable permutations are as described; now to enumerate them. The number
of plus-indecomposable 321-avoiding permutations on m+ 1 elements is the Catalan number 1

m+1

(
2m
m

)
,

so this is the number of possible blocks of size 2m+ 1. We will need the following generating functions:

A = 1√
1−4x = 1 + 2x+ 6x2 + 20x3 + 70x4 + . . .

B =
1√

1−4x
−1

2x = 1 + 3x+ 10x2 + 35x3 + 126x4 + . . .
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C = 1−√1−4x
2x = 1 + x+ 2x2 + 5x3 + 14x4 + . . .

Now, a reachable permutation of even size 2k+ 2 is the direct sum of an indecomposable block of size
2i + 1 (i ≥ 0) and a reachable permutation of odd size 2(k − i) + 1. Likewise a reachable permutation
of odd size 2k + 1 is the direct sum of a block of size 2i + 1 and a reachable permutation of even size
2(k − i). The theorem then follows by checking that B = AC and A = (1 + xB)C. 2

Theorem 13 (a) #Classesq
(
n,
{
{123, 132, 213}

})
= invn, the number of involutions of order n.

(b) #Eqq
(
π,
{
{123, 132, 213}

})
is odd for all n and for each π ∈ Sn.

Proof: (Sketch) An involution is a partition of [n] into 1-cycles and 2-cycles. Write each involution as
a product of cycles, with the elements increasing within each 2-cycle, and with the cycles in decreasing
order of largest element. Then drop the parentheses.

The resulting set C of permutations covers all the classes, because each permutation π can be reduced
to an element of C as follows: if n is at the front of π, it must stay there. (This corresponds to having n
as a fixed point in the involution.) Otherwise, use 123 → 132 and 213 → 132 to push n leftward into
position 2, which is as far as it will go. The element which is thus pushed into position 1 is the minimal
element which was to the left of n to begin with. This is because this minimal element can never trade
places with n under the given operations, as 1 is left of 3 in all of 123, 132 and 213.

This shows that the number of classes is at most the same as the number of involutions. To show that
they are the same, it remains to show that each π can be reduced to a unique member of C. An equivalent
statement (a’) is that it is not possible to move from one member of C to another.

We will prove this by induction on n. At the same time we will prove statement (b) of the theorem.
Assume as an induction hypothesis that both statements have been demonstrated for n− 1 and n− 2.

If the largest element, n, is at the front of a permutation, then it cannot move from there, so the equiv-
alence classes split into two kinds: special equivalence classes, in which n is always at the front, and
ordinary equivalence classes, in which n is never at the front. The special equivalence classes for Sn
correspond upon deletion of the first elements to all the equivalence classes for Sn−1; therefore we can
assert by induction the truth of both (a’) and (b) as they apply to the special equivalence classes.

We turn to the ordinary equivalence classes. Consider a (directed) graph in which the vertices corre-
spond to the permutations in Sn, and there is a blue (directed) edge from π to ρ if ρ can be obtained from
π by applying 123→ 132, a red edge for each 213→ 132, and a green edge for each 123→ 213.

Now consider the forest of rooted trees which one obtains by taking only those red and blue edges
in which the element n plays the role of the “3”. The roots (i.e., sinks) of these trees are exactly the
permutations in which the n has advanced as far as possible, to position 2. Each node in this forest has
either zero or two children, because if it has a blue child (obtained by travelling backwards along a blue
edge) then it also has a red child, and vice versa. Because each node has either zero or two children,
each rooted tree has an odd number of nodes; indeed all of its level-sums are even except the zeroth level
sum, which corresponds to the root vertex, which we call the ground state. Now we will selectively glue
trees together into larger components. Namely, two trees with ground states g and h will be combined
if g(1) = h(1) and if, upon deleting the first two elements the shortened permutations, g′′ and h′′ are
equivalent, regarded (in the obvious way) as members of Sn−2.

We claim that these larger components are exactly the connected components of our directed graph.
Therefore, to complete the proof we show, by examining various cases, that there are no directed edges in
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the graph which escape from one component to another, in other words that all allowable moves carry us
between two permutations which have equivalent ground states. 2

This result is particularly interesting because the equivalence relation has the same number of classes
as Knuth equivalence, yet the two relations appear to be materially different. For example, for n = 3, the
equivalence classes for PK have sizes 1,1,2,2, whereas for P3 =

{
{123, 132, 213}

}
the sizes are 1,1,1,3.

4 Doubly adjacent transformations
For completeness, we include a brief treatment of the situation where both indices and values are simulta-
neously constrained to be adjacent. As the situation is highly constrained, it is perhaps not surprising that
the permutations reachable from the identity are in each case easy to classify and enumerate. Since all the
treatments are similar, we can wrap them up in one proposition.

As in the previous section, we have as yet no results related to the enumeration of equivalence classes.
This proposition uses the Iverson bracket; [P] is equal to 1 if the statement P is true, and 0 otherwise.

Proposition 14 #Eq�(ιn, P1) obeys the recurrence a(n) = a(n − 1) + a(n − 2) with a1 = a2 = 1.
(Fibonacci numbers F (n), [OEIS, A000045]).
#Eq�(ιn, P4) obeys the recurrence a(n) = a(n − 1) + a(n − 3) with a0 = 0, a1 = a2 = 1 ([OEIS,

A000930]).
#Eq�(ιn, P3) = F (n+ 1)− [n is even].
#Eq�(ιn, P5) obeys the recurrence a(n) = a(n−1)+a(n−2)+a(n−3) with a(0) = a(1) = a(2) = 1

(Tribonacci numbers, [OEIS, A000213]).
#Eq�(ιn, P7) = T (n+2)−[n is even], where T (n) is sequence A000073 from Sloane[OEIS], obeying

the recurrence a(n) = a(n− 1) + a(n− 2) + a(n− 3) with a(0) = a(1) = 0, a(2) = 1.

Proof: (Sketch) We begin by characterizing the various equivalence classes. In each case, these are
subsets of the layered permutations, and indeed consist of direct sums of anti-identities of dimensions
either 1, 2 or 3, as follows:
P1 (123↔ 132): direct sums of ρ1 and ρ2, not beginning with ρ2
P4 (123↔ 321): direct sums of ρ1 and ρ3
P3 (123↔ 132↔ 213): direct sums of ρ1 and ρ2, including at least one ρ1
P5 (123↔ 132↔ 321): direct sums of ρ1, ρ2 and ρ3, not beginning with ρ2
P7 (123↔ 132↔ 213↔ 321): direct sums of ρ1, ρ2, ρ3, at least one of odd dimension
In each case it is easy to see that the given class remains closed under application of the appropriate

operations. It is also easy in general to see how to reach a given target, especially if we cast the block
sizes in the language of regular expressions. In the following, the notation {xy} means a single block of
size either x or y. An asterisk following a number means zero or more copies of that number. An asterisk
following a string in [ ] means zero or more copies of that string.
P1: The block sizes are [12*]*. Build each 12* from right to left.
P4: The block sizes are {13}*. Build each block freely.
P3: Split each run of 2s freely to get [12*][2*12*]*[2*1]. Build each block from the edges to the 1.
P5: The block sizes are [{13}2*]*. First use 123 → 132 to build all the runs of 2 from right to left.

Then use 123→ 321 to place 3s.
P7: Build the 2s first, as in the case of P3, and then place the 3s.
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One now verifies all the necessary base cases, as trivially a1 = 1, a2 = 1, and a3 = the size of the
non-singleton block of Pj .

As for the recurrences, for n > 3:
P1: an = an−1 + an−2, by appending respectively a ρ1 or a ρ2
P2: an = an−1 + an−3, by appending respectively a ρ1 or a ρ3
P5: an = an−1 + an−2 + an−3, by appending ρ1, ρ2 or ρ3
P3: Count all direct sums of ρ1 and ρ2 (obviously Fibonacci) and then subtract 1 from the even terms

to remove the special case 2*.
P7: Count all direct sums of ρ1, ρ2, ρ3 to get A000073, and subtract 1 from the even terms because 2*

is disallowed. Alternatively, verify the recurrence an = an−2+Un, where Un is A000213, by noting that
a permutation in Eq�(ιn, P7) is either a ρ2 prepended to a permutation in Eq�(ιn−2, P7), or else belongs
to Eq�(ιn−2, P5). 2
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Abstract. We show the q-analog of a well-known result of Farahat and Higman: in the center of the Iwahori-Hecke
algebra Hn,q , if (aνλµ(n, q))ν is the set of structure constants involved in the product of two Geck-Rouquier conjugacy
classes Γλ,n and Γµ,n, then each coefficient aνλµ(n, q) depend on n and q in a polynomial way. Our proof relies on
the construction of a projective limit of the Hecke algebras; this projective limit is inspired by the Ivanov-Kerov
algebra of partial permutations.

Résumé. Nous démontrons le q-analogue d’un résultat bien connu de Farahat et Higman : dans le centre de l’algèbre
d’Iwahori-Hecke Hn,q , si (aνλµ(n, q))ν est l’ensemble des constantes de structure mises en jeu dans le produit de
deux classes de conjugaison de Geck-Rouquier Γλ,n et Γµ,n, alors chaque coefficient aνλµ(n, q) dépend de façon
polynomiale de n et de q. Notre preuve repose sur la construction d’une limite projective des algèbres d’Hecke ; cette
limite projective est inspirée de l’algèbre d’Ivanov-Kerov des permutations partielles.

Keywords: Iwahori-Hecke algebras, Geck-Rouquier conjugacy classes, symmetric functions.

In this paper, we answer a question asked in [FW09] that concerns the products of Geck-Rouquier
conjugacy classes in the Hecke algebras Hn,q . If λ = (λ1, λ2, . . . , λr) is a partition with |λ|+ `(λ) ≤ n,
we consider the completed partition

λ→ n = (λ1 + 1, λ2 + 1, . . . , λr + 1, 1n−|λ|−`(λ)),

and we denote by Cλ,n = Cλ→n the corresponding conjugacy class, that is to say, the sum of all permuta-
tions with cycle type λ→ n in the center of the symmetric group algebra CSn. Notice that in particular,
Cλ,n = 0 if |λ| + `(λ) > n. It is known since [FH59] that the products of completed conjugacy classes
write as

Cλ,n ∗ Cµ,n =
∑

|ν|≤|λ|+|µ|
aνλµ(n)Cν,n,

where the structure constants aνλµ(n) depend on n in a polynomial way. In [GR97], some deformations
Γλ of the conjugacy classes Cλ are constructed. These central elements form a basis of the center Zn,q of
the Iwahori-Hecke algebra Hn,q , and they are characterized by the two following properties, see [Fra99]:
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1. The element Γλ is central and specializes to Cλ for q = 1.
2. The difference Γλ − Cλ involves no permutation of minimal length in its conjugacy class.

As before, Γλ,n = Γλ→n if |λ|+ `(λ) ≤ n, and 0 otherwise. Our main result is the following:

Theorem 1 In the center of the Hecke algebra Hn,q , the products of completed Geck-Rouquier conjugacy
classes write as

Γλ,n ∗ Γµ,n =
∑

|ν|≤|λ|+|µ|
aνλµ(n, q) Γν,n,

and the structure constants aνλµ(n, q) are in Q[n, q, q−1].

The first part of Theorem 1 — that is to say, that elements Γν,n involved in the product satisfy the
inequality |ν| ≤ |λ| + |µ| — was already in [FW09, Theorem 1.1], and the polynomial dependance of
the coefficients aνλµ(n, q) was Conjecture 3.1; our paper is devoted to a proof of this conjecture. We shall
combine two main arguments:

• We construct a projective limit D∞,q of the Hecke algebras, which is essentially a q-version of
the algebra of Ivanov and Kerov, see [IK99]. We perform generic computations inside various
subalgebras of D∞,q , and we project then these calculations on the algebras Hn,q and their centers.

• The centers of the Hecke algebras admit numerous bases, and these bases are related one to another
in the same way as the bases of the symmetric function algebra Λ. This allows to separate the
dependance on q and the dependance on n of the coefficients aνλµ(n, q).

Before we start, let us fix some notations. If n is a non-negative integer, Pn is the set of partitions of
n, Cn is the set of compositions of n, and Sn is the set of permutations of the interval [[1, n]]. The type
of a permutation σ ∈ Sn is the partition λ = t(σ) obtained by ordering the sizes of the orbits of σ; for
instance, t(24513) = (3, 2). The code of a composition c ∈ Cn is the complementary in [[1, n]] of the set
of descents of c; for instance, the code of (3, 2, 3) is {1, 2, 4, 6, 7}. Finally, we denote by Zn = Z(CSn)
the center of the algebra CSn; the conjugacy classes Cλ form a linear basis of Zn when λ runs over Pn.

1 Partial permutations and the Ivanov-Kerov algebra
Since our argument is essentially inspired by the construction of [IK99], let us recall it briefly. A

partial permutation of order n is a pair (σ, S) where S is a subset of [[1, n]], and σ is a permutation in
S(S). Alternatively, one may see a partial permutation as a permutation σ in Sn together with a subset
containing the non-trivial orbits of σ. The product of two partial permutations is

(σ, S) (τ, T ) = (στ, S ∪ T ),

and this operation yield a semigroup whose complex algebra is denoted by Bn. There is a natural pro-
jection prn : Bn → CSn that consists in forgetting the support of a partial permutation, and also natural
compatible maps

φN,n : (σ, S) ∈ BN 7→
{

(σ, S) ∈ Bn if S ⊂ [[1, n]] ,

0 otherwise,
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whence a projective limit B∞ = lim←−Bn with respect to this system (φN,n)N≥n and in the category
of filtered algebras. Now, one can lift the conjugacy classes Cλ to the algebras of partial permutations.
Indeed, the symmetric group Sn acts on Bn by

σ · (τ, S) = (στσ−1, σ(S)),

and a linear basis of the invariant subalgebra An = (Bn)Sn is labelled by the partitions λ of size less
than or equal to n:

An =
⊕

|λ|≤n
CAλ,n, where Aλ,n =

∑

|S|=|λ|
σ∈S(S), t(σ)=λ

(σ, S).

Since the actions Sn y Bn are compatible with the morphisms φN,n, the inverse limit A∞ = (B∞)S∞

of the invariant subalgebras has a basis (Aλ)λ indexed by all partitions λ ∈ P =
⊔
n∈N Pn, and such

that φ∞,n(Aλ) = Aλ,n (with by convention Aλ,n = 0 if |λ| > n). As a consequence, if (aνλµ)λ,µ,ν is the
family of structure constants of the Ivanov-Kerov algebra(i) A∞ in the basis (Aλ)λ∈P, then

∀n, Aλ,n ∗ Aµ,n =
∑

ν

aνλµAν,n,

with Aλ,n = 0 if |λ| ≥ n. Moreover, it is not difficult to see that aνλµ 6= 0 implies |ν| ≤ |λ| + |µ|, and
also |ν| − `(ν) ≤ |λ| − `(λ) + |µ| − `(µ), cf. [IK99, §10], for the study of the filtrations of A∞. Now,
prn(An) = Zn, and more precisely,

prn(Aλ,n) =

(
n− |λ|+m1(λ)

m1(λ)

)
Cλ−1,n.

where λ− 1 = (λ1− 1, . . . , λs− 1) if λ = (λ1, . . . , λs ≥ 2, 1, . . . , 1). The result of Farahat and Higman
follows immediately, and we shall try to mimic this construction in the context of Iwahori-Hecke algebras.

2 Composed permutations and their Hecke algebra
We recall that the Iwahori-Hecke algebra of type A and order n is the quantized version of the sym-

metric group algebra defined over C(q) by

Hn,q =

〈
S1, . . . , Sn−1

∣∣∣∣
braid relations: ∀i, SiSi+1Si=Si+1SiSi+1

commutation relations: ∀|j−i|>1, SiSj=SjSi

quadratic relations: ∀i, (Si)
2=(q−1)Si+q

〉
.

When q = 1, we recover the symmetric group algebra CSn. If ω ∈ Sn, let us denote by Tω the product
Si1Si2 · · ·Sir , where ω = si1si2 · · · sir is any reduced expression of ω in elementary transpositions
si = (i, i + 1). Then, it is well known that the elements Tω do not depend on the choice of reduced
expressions, and that they form a C(q)-linear basis of Hn,q , see [Mat99].

(i) It can be shown that A∞ is isomorphic to the algebra of shifted symmetric polynomials, see Theorem 9.1 in [IK99].
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In order to construct a projective limit of the algebras Hn,q , it is very tempting to mimic the construction
of Ivanov and Kerov, and therefore to build an Hecke algebra of partial permutations. Unfortunately, this
is not possible; let us explain why by considering for instance the transposition σ = 1432 in S4. The
possible supports for σ are {2, 4}, {1, 2, 4}, {2, 3, 4} and {1, 2, 3, 4}. However,

σ = s2s3s2,

and the support of s2 (respectively, of s3) contains at least {2, 3} (resp., {3, 4}). So, if we take account
of the Coxeter structure of S4 — and it should obviously be the case in the context of Hecke algebras
— then the only valid supports for σ are the connected ones, namely, {2, 3, 4} and {1, 2, 3, 4}. This
problem leads to consider composed permutations instead of partial permutations. If c is a composition
of n, let us denote by π(c) the corresponding set partition of [[1, n]], i.e., the set partition whose parts are
the intervals [[1, c1]] , [[c1 + 1, c1 + c2]], etc. A composed permutation of order n is a pair (σ, c) with
σ ∈ Sn and c composition in Cn such that π(c) is coarser than the set partition of orbits of σ. For
instance, (32154867, (5, 3)) is a composed permutation of order 8; we shall also write this 32154|867.
The product of two composed permutations is then defined by

(σ, c) (τ, d) = (στ, c ∨ d),

where c∨ d is the finest composition of n such that π(c∨ d) ≥ π(c)∨ π(d) in the lattice of set partitions.
For instance,

321|54|867 × 12|435|687 = 42153|768.

One obtains so a semigroup of composed permutations; its complex semigroup algebra will be denoted
by(ii) Dn, and the dimension of Dn is the number of composed permutations of order n.

Now, let us describe an Hecke version Dn,q of the algebra Dn. As for Hn,q , one introduces generators
(Si)1≤i≤n−1 corresponding to the elementary transpositions si, but one has also to introduce generators
(Ii)1≤i≤n−1 that allow to join the parts of the composition of a composed permutation. Hence, the
Iwahori-Hecke algebra of composed permutations is defined (over the ground field C(q)) by Dn,q =
〈S1, . . . , Sn−1, I1, . . . , In−1〉 and the following relations:

∀i, SiSi+1Si = Si+1SiSi+1

∀|j − i| > 1, SiSj = SjSi

∀i, (Si)
2 = (q − 1)Si + q Ii

∀i, j, SiIj = IjSi

∀i, j, IiIj = IjIi

∀i, SiIi = Si

∀i, (Ii)
2 = Ii

The generators Si correspond to the composed permutations 1|2| . . . |i − 1|i + 1, i|i + 2| . . . |n, and the
generators Ii correspond to the composed permutations 1|2| . . . |i− 1|i, i+ 1|i+ 2| . . . |n.
(ii) If one considers pairs (σ, π) where π is any set partition of [[1, n]] coarser than orb(σ) (and not necessarily a set partition

associated to a composition), then one obtains an algebra of split permutations whose subalgebra of invariants is related to the
connected Hurwitz numbers Hn,g(λ).
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Proposition 2 The algebra Dn,q specializes to the algebra of composed permutations Dn when q = 1;
to the Iwahori-Hecke algebra Hn,q when I1 = I2 = · · · = In−1 = 1; and to the algebra Dm,q of lower
order m < n when Im = Im+1 = · · · = In−1 = 0 and Sm = Sm+1 = · · · = Sn−1 = 0.

In the following, we shall denote by prn the specialization Dn,q → Hn,q; it generalizes the map
Dn → CSn of the first section. The first part of Proposition 2 is actually the only one that is non
trivial, and it will be a consequence of Theorem 3. If ω is a permutation with reduced expression ω =
si1si2 · · · sir , we denote as before by Tω the product Si1Si2 . . . Sir in Dn,q . On the other hand, if c is a
composition of [[1, n]], we denote by Ic the product of the generators Ij with j in the code of c (so for
instance, I(3,2,3) = I1I2I4I6I7 in D8,q). These elements are central idempotents, and Ic correspond to
the composed permutation (id, c). Finally, if (σ, c) is a composed permutation, Tσ,c is the product TσIc.

Theorem 3 In Dn,q , the products Tσ do not depend on the choice of reduced expressions, and the products
Tσ,c form a linear basis of Dn,q when (σ, c) runs over composed permutations of order n. There is an
isomorphism of C(q)-algebras between

Dn,q and
⊕

c∈Cn

Hc,q,

where Hc,q is the Young subalgebra Hc1,q ⊗Hc2,q ⊗ · · · ⊗Hcr,q of Hn,q .

Proof: If σ ∈ Sn, the Matsumoto theorem ensures that it is always possible to go from a reduced expres-
sion si1si2 · · · sir to another reduced expression sj1sj2 · · · sjr by braid moves sisi+1si ↔ si+1sisi+1

and commutations sisj ↔ sjsi when |j − i| > 1. Since the corresponding products of Si in Dn,q are
preserved by these substitutions, a product Tσ in Dn,q does not depend on the choice of a reduced expres-
sion. Now, let us consider an arbitrary product Π of generators Si and Ij (in any order). As the elements
Ij are central idempotents, it is always possible to reduce the product to

Π = Si1Si2 · · ·Sip Ic

with c composition of n — here, si1si2 · · · sip is a priori not a reduced expression. Moreover, since
Si Ii = Si, we can suppose that the code of c contains {i1, . . . , ip}. Now, suppose that σ = si1si2 · · · sip is
not a reduced expression. Then, by using braid moves and commutations, we can transform the expression
in one with two consecutive letters that are identical, that is to say that if jk = jk+1,

σ = sj1 · · · sjksjk+1
· · · sjp = sj1 · · · sjk−1

sjk+2
· · · sjp .

We apply the same moves to the Si in Dn,q and we obtain Π = Sj1 · · ·SjkSjk+1
· · ·Sjp Ic; notice that the

code of c still contains {j1, . . . , jp} = {i1, . . . , ip}. By using the quadratic relation in Dn,q , we conclude
that if jk = jk+1,

Π = (q − 1)Sj1 · · ·Sjk−1
SjkSjk+2

· · ·Sjp Ic + q Sj1 · · ·Sjk−1
IjkSjk+2

· · ·Sjp Ic
= (q − 1)Sj1 · · ·Sjk−1

SjkSjk+2
· · ·Sjp Ic + q Sj1 · · ·Sjk−1

Sjk+2
· · ·Sjp Ic

because IjkIc = Ic. Consequently, by induction on p, any product Π is a Z[q]-linear combination of
products Tτ,c (and with the same composition c for all the terms of the linear combination). So, the
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reduced products Tσ,c span linearly Dn,q when (σ, c) runs over composed permutations of order n. If c is
in Cn, we define a morphism of C(q)-algebras from Dn,q to Hc,q by

ψc(Si) =

{
Si if i is in the code of c,
0 otherwise,

; ψc(Ii) =

{
1 if i is in the code of c,
0 otherwise.

The elements ψc(Si) and ψc(Ii) sastify in Hc,q the relations of the generators Si and Ii in Dn,q . So,
there is indeed such a morphism of algebras ψc : Dn,q → Hc,q , and one has in fact ψc(Tσ,b) = Tσ if
π(b) ≤ π(c), and 0 otherwise. Let us consider the direct sum of algebras HCn,q =

⊕
c∈Cn

Hc,q , and the
direct sum of morphisms ψ =

⊕
c∈Cn

ψc. We denote the basis vectors [0, 0, . . . , (Tσ ∈ Hc,q), . . . , 0] of
HCn,q by Tσ∈Hc,q ; in particular,

ψ(Tσ,c) =
∑

d≥c
Tσ∈Hd,q

for any composed permutation (σ, c). As a consequence, the map ψ is surjective, because

ψ


∑

d≥c
µ(c, d)Tσ,c


 = Tσ∈Hc,q

where µ(c, d) = µ(π(c), π(d)) = (−1)`(c)−`(d) is the Möbius function of the hypercube lattice of compo-
sitions. If σ is a permutation, we denote by orb(σ) the set partition whose parts are the orbits of σ. Since
the families (Tσ,c)orb(σ)≤π(c) and (Tσ∈Hc,q

)orb(σ)≤π(c) have the same cardinality dim Dn, we conclude
that (Tσ,c)orb(σ)≤π(c) is a C(q)-linear basis of Dn,q and that ψ is an isomorphism of C(q)-algebras. 2

Notice that the second part of Theorem 3 is the q-analog of Corollary 3.2 in [IK99]. To conclude this
part, we have to build the inverse limit D∞,q = lim←−Dn,q , but this is easy thanks to the specializations
evoked in the third part of Proposition 2. Hence, if φN,n : DN,q → Dn,q is the map that sends the
generators Ii≥n and Si≥n to zero and that preserves the other generators, then (φN,n)N≥n is a system
of compatible maps, and these maps behave well with respect to the filtration deg Tσ,c = |code(c)|.
Consequently, there is a projective limit D∞,q whose elements are the infinite linear combinations of
Tσ,c, with σ finite permutation in S∞ and c infinite composition compatible with σ and with almost all
its parts of size 1.

It is not true that two elements x and y in D∞,q are equal if and only if their projections prn(φ∞,n(x))
and prn(φ∞,n(y)) are equal for all n: for instance,

T [21|34|5|6| · · · ] = S1I1I3 and T [2134|5|6| · · · ] = S1I1I2I3

have the same projections in all the Hecke algebras (namely, S1 if n ≥ 4 and 0 otherwise), but they are
not equal. However, the result is true if we consider only the subalgebras D ′n,q ⊂ Dn,q spanned by the
Tσ,c with c = (k, 1, . . . , 1) — then, σ may be considered as a partial permutation of [[1, k]].

Proposition 4 For any n, the vector space D ′n,q spanned by the Tσ,c with c = (k, 1n−k) is a subalgebra
of Dn,q . In the inverse limit D ′∞,q ⊂ D∞,q , the projections pr∞,n = prn ◦ φ∞,n separate the vectors:

∀x, y ∈ D ′∞,q,
(
∀n, pr∞,n(x) = pr∞,n(y)

)
⇐⇒

(
x = y

)
.
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Proof: The supremum of two compositions (k, 1n−k) and (l, 1n−l) is (m, 1n−m) with m = max(k, l);
consequently, D ′n,q is indeed a subalgebra of Dn,q . Any element x of the projective limit D ′∞,q writes
uniquely as

x =
∞∑

k=0

∑

σ∈Sk

aσ,k(x)Tσ,(k,1∞).

Suppose that x and y have the same projections, and let us fix a permutation σ. There is a minimal integer
k such that σ ∈ Sk, and aσ,k(x) is the coefficient of Tσ in pr∞,k(x); consequently, aσ,k(x) = aσ,k(y).
Now, aσ,k(x) + aσ,k+1(x) is the coefficient of Tσ in pr∞,k+1(x), so one has also aσ,k(x) + aσ,k+1(x) =
aσ,k(y) + aσ,k+1(y), and aσ,k+1(x) = aσ,k+1(y). By using the same argument and by induction on l,
we conclude that aσ,k+l(x) = aσ,k+l(y) for every l, and therefore x = y. We have then proved that the
projections separate the vectors in D ′∞,q . 2

3 Bases of the center of the Hecke algebra
In the following, Zn,q is the center of Hn,q . We have already given a characterization of the Geck-

Rouquier central elements Γλ, and they form a linear basis of Zn,q when λ runs over Pn. Let us write
down explicitly this basis when n = 3:

Γ3 = T231 + T312 + (q − 1)q−1 T321 ; Γ2,1 = T213 + T132 + q−1 T321 ; Γ1,1,1 = T123

The first significative example of Geck-Rouquier element is actually when n = 4. Thus, if one considers

Γ3,1 = T1342 + T1423 + T2314 + T3124 + q−1 (T2431 + T4132 + T3214 + T4213)

+ (q − 1)q−1 (T1432 + T3214) + (q − 1)q−2 (T3421 + T4312 + 2T4231) + (q − 1)2q−3 T4321,

the terms with coefficient 1 are the four minimal 3-cycles in S4; the terms whose coefficients specialize
to 1 when q = 1 are the eight 3-cycles in S4; and the other terms are not minimal in their conjugacy
classes, and their coefficients vanish when q = 1.

It is really unclear how one can lift these elements to the Hecke algebras of composed permutations;
fortunately, the center Zn,q admits other linear bases that are easier to pull back from Hn,q to Dn,q .
In [Las06], seven different bases for Zn,q are studied(iii), and it is shown that up to diagonal matrices
that depend on q in a polynomial way, the transition matrices between these bases are the same as the
transition matrices between the usual bases of the algebra of symmetric functions. We shall only need the
norm basis Nλ, whose properties are recalled in Proposition 5. If c is a composition of n and Sc is the
corresponding Young subgroup of Sn, it is well-known that each coset in Sn/Sc or Sc\Sn has a unique
representative ω of minimal length which is called the distinguished representative — this fact is even
true for parabolic double cosets. In what follows, we rather work with right cosets, and the distinguished
representatives of Sc\Sn are precisely the permutation words whose recoils are contained in the set of
descents of c. So for instance, if c = (2, 3), then

S(2,3)\S5 = {12345, 13245, 13425, 13452, 31245, 31425, 31452, 34125, 34152, 34512} = 12 tt 345.

(iii) One can also consult [Jon90] and [Fra99].
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Proposition 5 [Las06, Theorem 7] If c is a composition of n, let us denote by Nc the element
∑

ω∈Sc\Sn

q−`(ω) Tω−1 Tω

in the Hecke algebra Hn,q . Then, Nc does not depend on the order of the parts of c, and the Nλ form a
linear basis of Zn,q when λ runs over Pn — in particular, the norms Nc are central elements. Moreover,

(Γλ)λ∈Pn
= D ·M2E · (Nµ)µ∈Pn

,

where M2E is the transition matrice between monomial functions mλ and elementary functions eµ, and
D is the diagonal matrix with coefficients (q/(q − 1))

n−`(λ).

So for instance, Γ3 = q2 (q− 1)−2 (3N3 − 3N2,1 +N1,1,1), because m3 = 3 e3 − 3 e2,1 + e1,1,1. Let
us write down explicitly the norm basis when n = 3:

N3 = T123 ; N2,1 = 3T123 + (q − 1)q−1 (T213 + T132) + (q − 1)q−2 T321

N1,1,1 = 6T123 + 3(q − 1)q−1 (T213 + T132) + (q − 1)2q−2 (T231 + T312) + (q3 − 1)q−3 T321

We shall see hereafter that these norms have natural preimages by the projections prn and pr∞,n.

4 Generic norms and the Hecke-Ivanov-Kerov algebra
Let us fix some notations. If c is a composition of size |c| less than n, then c ↑ n is the composition

(c1, . . . , cr, n− |c|), Jc = I1I2 · · · I|c|−1, and

Mc,n =
∑

ω∈Sc↑n\Sn

q−`(ω) Tω−1 Tω Jc,

the products Tω being considered as elements of Dn,q . So, Mc,n is an element of Dn,q , and we set
Mc,n = 0 if |c| > n.

Proposition 6 For any N,n and any composition c, φN,n(Mc,N ) = Mc,n, and prn(Mc,n) = Nc↑n if
|c| ≤ n, and 0 otherwise. On the other hand, Mc,n is always in D ′n,q .

Proof: Because of the description of distinguished representatives of right cosets by positions of recoils,
if |c| ≤ n, then the sum Mc,n is over permutation words ω with recoils in the set of descents of c (notice
that we include |c| in the set of descents of c). Let us denote by Rc,n this set of words, and suppose that
|c| ≤ n − 1. If ω ∈ Rc,n is such that ω(n) 6= n, then Tω involves Sn−1, so the image by φn,n−1 of the
corresponding term in Mc,n is zero. On the other hand, if ω(n) = n, then any reduced decomposition
of Tω does not involve Sn−1, so the corresponding term in Mc,n is preserved by φn,n−1. Consequently,
φn,n−1(Mc,n) is a sum with the same terms as Mc,n, but with ω running over Rc,n−1; so, we have proved
that φn,n−1(Mc,n) = Mc,n−1 when |c| ≤ n − 1. The other cases are much easier: thus, if |c| = n, then
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Mc,n−1 = 0, and φn,n−1(Mc,n) is also zero because φn,n−1(Jc) = 0. And if |c| > n, then Mc,n and
Mc,n−1 are both equal to zero, and again φn,n−1(Mc,n) = Mc,n−1. Since

φN,n = φn+1,n ◦ φn+2,n+1 ◦ · · · ◦ φN,N−1,

we have proved the first part of the proposition, and the second part is really obvious.

Now, let us show that Mc,n is in D ′n,q . Notice that the result is trivial if |c| > n, and also if |c| = n,
because we have then Jc = I(n), and therefore d = (n) for any composed permutation (σ, d) involved in
Mc,|c|. Suppose then that |c| ≤ n − 1. Because of the description of Sd\S|d| as a shuffle product, any
distinguished representative ω of Sc↑n\Sn is the shuffle of a distinguished representative ωc of Sc\S|c|
with the word |c| + 1, |c| + 2, . . . , n. For instance, 5613724 is the distinguished representative of a right
S(2,2,3)-coset, and it is a shuffle of 567 with the distinguished representative 1324 of a right S(2,2)-coset.
Let us denote by si1 · · · sir a reduced expression of ωc, and by j|c|+1, . . . , jn the positions of |c|+1, . . . , n
in ω. Then, it is not difficult to see that

si1 · · · sir × (s|c|s|c|−1 · · · sj|c|+1
) (s|c|+1s|c| · · · sj|c|+2

) · · · (sn−1sn−2 · · · sjn)

is a reduced expression for ω; for instance, s2 is the reduced expression of 1324, and

s2 × (s4s3s2s1) (s5s4s3s2) (s6s5)

is a reduced expression of 5613724. From this, we deduce that Tω Jc = Tω,(k,1n−k), where k is the
highest integer in [[|c|+ 1, n]] such that jk < k — we take k = |c| if ω = ωc. Then, the multiplication
by Tω−1 cannot fatten the composition anymore, so Tω−1Tω Jc is a linear combination of Tτ,(k,1n−k), and
we have proved that Mn,c is indeed in D ′n,q . 2

From the previous proof, it is now clear that if we consider the infinite sumMc =
∑

q−`(ω) Tω−1 Tω Jc
over permutation words ω ∈ S∞ with their recoils in the set of descents of c, then Mc is the unique
element of D∞,q such that φ∞,n(Mc) = Mc,n for any positive integer n, and also the unique element of
D ′∞,q such that pr∞,n(Mc) = Nc↑n for any positive integer n (with by convention Nc↑n = 0 if |c| > n).
In particular, Mc does not depend on the order of the parts of c, because this is true for the Nc↑n and the
projections separate the vectors in D ′∞,q . Consequently, we shall consider only elements Mλ labelled by
partitions λ of arbitrary size, and call them generic norms. For instance:

M(2),3 = T12|3 + 2T123 + (1− q−1) (T132 + T213) + (q−1 − q−2)T321

In what follows, if i < n, we denote by (Si)
−1 the element of Dn,q equal to:

(Si)
−1 = q−1 Si +

(
q−1 − 1

)
Ii

The product Si (Si)
−1 = (Si)

−1Si equals Ii in Dn,q , and by the specialization prn : Dn,q → Hn,q , one
recovers Si (Si)

−1 = 1 in the Hecke algebra Hn,q .

Theorem 7 TheMλ span linearly the subalgebra C∞,q ⊂ D ′∞,q that consists in elements x ∈ D ′∞,q such
that Ii x = Si x (Si)

−1 for every i. In particular, any product Mλ ∗ Mµ is a linear combination of Mν ,
and moreover, the terms Mν involved in the product satisfy the inequality |ν| ≤ |λ|+ |µ|.
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Proof: If Ii x = Si x (Si)
−1 and Ii y = Si y (Si)

−1, then

Ii xy = Ii x Ii y = Si x (Si)
−1Si y (Si)

−1 = Si x Ii y (Si)
−1 = Si xy (Si)

−1,

so the elements that “commute” with Si in D∞,q form a subalgebra. As an intersection, C∞,q is also
a subalgebra of D∞,q; let us see why it is spanned by the generic norms. If D ′∞,q,i is the subspace of
D∞,q spanned by the Tσ,c with c = (k, 1∞) ∨ (1i−1, 2, 1∞), then the projections separate the vectors in
this subspace — this is the same proof as in Proposition 4. For λ ∈ P, IiMλ and SiMλ (Si)

−1 belong
to D ′∞,q,i, and they have the same projections in Hn,q , because pr∞,n(Mλ) is a norm and in particular
a central element. Consequently, IiMλ = SiMλ (Si)

−1, and the Mλ are indeed in C∞,q . Now, if we
consider an element x ∈ C∞,q , then for i < n, prn(x) = Si prn(x) (Si)

−1, so prn(x) is in Zn,q and is a
linear combination of norms:

∀n ∈ N, prn(x) =
∑

λ∈Pn

aλ(x)Nλ

Since the same holds for any difference x −∑ bλMλ, we can construct by induction on n an infinite
linear combination S∞ of Mλ that has the same projections as x:

pr1(x) =
∑

|λ|=1

bλNλ ⇒ pr1

(
x−

∑

|λ|=1

bλMλ

)
= 0, S1 =

∑

|λ|=1

bλMλ

pr2 (x− S1) =
∑

|λ|=2

bλNλ ⇒ pr1,2

(
x−

∑

|λ|≤2
bλMλ

)
= 0, S2 =

∑

|λ|≤2
bλMλ

...

prn+1 (x− Sn) =
∑

|λ|=n+1

bλNλ ⇒ Sn+1 = Sn +
∑

|λ|=n+1

bλMλ =
∑

|λ|≤n+1

bλMλ

Then, S∞ =
∑
λ∈P bλMλ is in D ′∞,q and has the same projections as x, so S∞ = x. In particular, since

C∞,q is a subalgebra, a product Mλ ∗ Mµ is in C∞,q and is an a priori infinite linear combination of Mν :

∀λ, µ, Mλ ∗ Mµ =
∑

gνλµMν

Since the norms Nλ are defined over Z[q, q−1], by projection on the Hecke algebras Hn,q , one sees that
the gνλµ are also in Z[q, q−1] — in fact, they are symmetric polynomials in q and q−1. It remains to be
shown that the previous sum is in fact over partitions |ν| with |ν| ≤ |λ|+ |µ|; we shall see why this is true
in the last paragraph(iv). 2

For example, M1 ∗ M1 = M1 +(q+1+q−1)M1,1− (q+2+q−1)M2, and from this generic identity
one deduces the expression of any product (N(1)↑n)2, e.g.,

N 2
1,1 = (q+ 2 + q−1) (N1,1−N2) ; N 2

3,1 = N3,1 + (q+ 1 + q−1)N2,1,1− (q+ 2 + q−1)N2,2.

Let us denote by A∞,q the subspace of C∞,q whose elements are finite linear combinations of generic
norms; this is in fact a subalgebra, which we call the Hecke-Ivanov-Kerov algebra since it plays the
same role for Iwahori-Hecke algebras as A∞ for symmetric group algebras.

(iv) Unfortunately, we did not succeed in proving this result with adequate filtrations on D∞,q or D ′∞,q .
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5 Completion of partitions and symmetric functions
The proof of Theorem 1 and of the last part of Theorem 7 relies now on a rather elementary property

of the transition matrices M2E and E2M . By convention, we set eλ↑n = 0 if |λ| > n, and mλ→n = 0 if
|λ|+ `(λ) > n. Then:

Proposition 8 There exists polynomials Pλµ(n) ∈ Q[n] and Qλµ(n) ∈ Q[n] such that

∀λ, n, mλ→n =
∑

µ′≤d λ

Pλµ(n) eµ↑n and eλ↑n =
∑

µ≤d λ′

Qλµ(n) mµ→n,

where µ ≤d λ is the domination relation on partitions.

This fact follows from the study of the Kotska matrix elements Kλ,µ→n, see [Mac95, §1.6, in particular
the example 4. (c)]. It can also be shown directly by expanding eλ↑n on a sufficient number of variables
and collecting the monomials; this simpler proof explains the appearance of binomial coefficients

(
n
k

)
.

For instance,

m2,1→n = e2,1↑n − 3 e3↑n − (n− 3) e1,1↑n + (2n− 8) e2↑n + (2n− 5) e1↑n − n(n− 4) e↑n,

e2,1↑n =
n(n− 1)(n− 2)

2
m→n +

(n− 2)(3n− 7)

2
m1→n + (3n− 10)m1,1→n + 3m1,1,1→n

+ (n− 3)m2→n +m2,1→n.

In the following, Nλ,n = Nλ↑n if |λ| ≤ n, and 0 otherwise. Because of the existence of the projective
limits Mλ, we know that Nλ,n ∗ Nµ,n =

∑
ν g

ν
λµNν,n, where the sum is not restricted. But on the other

hand, by using Proposition 5 and the second identity in Proposition 8, one sees that

Nλ,n ∗ Nµ,n =
∑

|ρ|≤|λ|, |σ|≤|µ|
hρσλµ(n) Γρ,n ∗ Γσ,n, with the hρσλµ(n) ∈ Q[n, q, q−1].

Because of the result of Francis and Wang, the latter sum may be written as
∑
|τ |≤|λ|+|µ| i

τ
λµ(n) Γτ,n, and

by using the first identity of Proposition 8, one has finally

Nλ,n ∗ Nµ,n =
∑

|ν|≤|λ|+|µ|
jνλµ(n)Nν,n, with the jνλµ(n) ∈ Q[n, q, q−1].

From this, it can be shown that the first sum
∑
ν g

ν
λµNν,n is in fact restricted on partitions |ν| such that

|ν| ≤ |λ|+ |µ|, and because the projections separate the vectors of D ′∞,q , this implies that Mλ ∗ Mµ =∑
|ν|≤|λ|+|µ| g

ν
λµMν , so the last part of Theorem 7 is proved. Finally, by reversing the argument, one sees

that the aνλµ(n, q) are in Q[n](q):

Γλ,n ∗ Γµ,n = (q/(q − 1))|λ|+|µ|
∑

ρ,σ

Pλρ(n)Pµσ(n) Nρ,n ∗ Nσ,n

= (q/(q − 1))|λ|+|µ|
∑

ρ,σ,τ

Pλρ(n)Pµσ(n) gτρσ Nτ,n

=
∑

ρ,σ,τ,ν

(q/(q − 1))|λ|+|µ|−|ν| Pλρ(n)Pµσ(n) gτρσ(q)Qτν(n) Γν,n =
∑

ν

aνλµ(n, q) Γν,n
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with aνλµ(n, q) = (q/(q − 1))|λ|+|µ|−|ν| (P⊗2(n) g(q)Q(n))νλµ in tensor notation. And since the Γλ are
known to be defined over Z[q, q−1], the coefficients aνλµ(n, q) ∈ Q[n](q) are in fact(v) in Q[n, q, q−1].
Using this technique, one can for instance show that

(Γ(1),n)2 =
n(n− 1)

2
q Γ(0),n + (n− 1) (q − 1) Γ(1),n + (q + q−1) Γ(1,1),n + (q + 1 + q−1) Γ(2),n,

and this is because m1→n = e1↑n−n e↑n and e1↑n = nm→n +m1→n. Let us conclude by two remarks.
First, the reader may have noticed that we did not construct generic conjugacy classes Fλ ∈ A∞,q such
that pr∞,n(Fλ) = Γλ,n; since the Geck-Rouquier elements themselves are difficult to describe, we had
little hope to obtain simple generic versions of these Γλ. Secondly, the Ivanov-Kerov projective limits of
other group algebras — e.g., the algebras of the finite reductive Lie groups GL(n,Fq), U(n,Fq2), etc. —
have not yet been studied. It seems to be an interesting open question.
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Abstract. The purpose of this paper is to present an algorithm which generates linear extensions for a generalized
Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D.
Peterson’s hook formula for the number of reduced decompositions of a given minuscule elements.

Résumé. Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young dia-
gramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve
de la hook formule d’un D. Peterson pour le nombre de décompositions réduites d’un éléments minuscules donné.

Keywords: Generalized Young diagrams, Algorithm, linear extension, Kac-Moody Lie algebra

1 Introduction
In [3], C. Greene, A. Nijenhuis, and H. S. Wilf constructed an algorithm which generates standard tableaux
for a given Young diagram with uniform probability. This provides a proof of the hook formula [2] for
the number of the standard tableaux of a Young diagram, which is originally due to J. S. Frame, G. de
B. Robinson, and R. M. Thrall.

As a generalization of the result of [3], the second author constructed an algorithm, in his master’s
thesis [9], which generates standard tableau of a given generalized Young diagram. Here, a “generalized
Young diagram” is one in the sense of D. Peterson and R. A. Proctor. Similary, this result provides a proof
of the hook formula for the number of the standard tableaux of a generalized Young diagram. The purpose
of this paper is to present the following theorem:

Theorem 1.1 Let λ be a finite pre-dominant integral weight over a simply-laced Kac-Moody Lie algebra.
Let L be a linear extension of the diagram D(λ) of λ. Then the algorithm A for D(λ) generates L with
the probability:

ProbD(λ)(L) =

∏
β∈D(λ) ht (β)

(#D(λ))!
.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Here, λ is a certain integral weight (see section 5), D(λ) a certain set of positive real roots determined by
λ (section 5), linear extension is a certain sequence of elements of D(λ) (section 2 and 5). ProbD(λ)(L)
the probability we get L by the algorithm A for a diagram D(λ) (section 2), and ht (β) denotes the height
of β.

2 An algorithm for a graph (Γ;→)

Let Γ = (Γ;→) be a finite simple directed acyclic graph, where→ denotes the adjacency relation of Γ.

Definition 2.1 Put d := #Γ. A bijection L : {1, · · · , d} −→ Γ is said to be a linear extension of (Γ;→)
if:

L(k)→ L(l) implies k > l, k, l ∈ {1, · · · , d}.

The set of linear extensions of (Γ;→) is denoted by L (Γ;→).

For a given v ∈ Γ, we define a set HΓ (v)
+ by:

HΓ (v)
+

:=
{
v′ ∈ Γ v → v′

}
.

For a given Γ, we call the following algorithm the algorithm A for Γ:

GNW1. Set i := 0 and set Γ0 := Γ.

GNW2. (Now Γi has d− i nodes.) Set j := 1 and pick a node v1 ∈ Γi with the probability 1/(d− i).

GNW3. If #HΓi
(vj)

+ 6= 0, pick a node vj+1 ∈ HΓi
(vj)

+ with the probability 1/#HΓi
(vj)

+. If not, go
to GNW5.

GNW4. Set j := j + 1 and return to GNW3.

GNW5. (Now #HΓi (vj)
+

= 0.) Set L(i+ 1) := vj and set Γi+1 := Γi \vj (the graph deleted vj from Γi).

GNW6. Set i := i+ 1. If i < d, return to GNW2; if i = d, terminate.

Then, by the definition of the algorithm A for Γ, the map L : i 7→ L(i) generated above is a linear
extension of Γ. We denote by ProbΓ(L) the probability we get L ∈ L (Γ) by the algorithm A.

3 Case of Young diagrams
When we draw a Young diagram, we use nodes instead of cells like FIGURE 3.1(left) below:

Definition 3.1 We equip the set Y := N× N with the partial order:

(i, j) ≤ (i′, j′)⇐⇒ i ≥ i′ and j ≥ j′.

A finite order filter Y of Y is called a Young diagram.
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Fig. 3.1: a Young diagram and Hooks of u and v

Definition 3.2 Let Y be a Young diagram. Let v = (i, j) ∈ Y . We define the subset HY (v) of Y by:

Arm(v) :=
{

(i′, j′) ∈ Y i = i′ and j < j′
}
.

Leg(v) :=
{

(i′, j′) ∈ Y i < i′ and j = j′
}
.

HY (v) := {v} tArm(v) t Leg(v).

HY (v)
+

:= Arm(v) t Leg(v).

The set HY (v) is called the hook of v ∈ Y (see FIGURE 3.1(right)).

For v, v′ ∈ Y , we define a relation v → v′ by v′ ∈ HY (v)
+. Then (Y ;→) is a finite simple directed

acyclic graph.
Then we have the following theorem:

Theorem 3.3 (C. Greene, A. Nijenhuis, and H. S. Wilf [3]) Let (Y ;→) be a graph defined above for a
Young diagram Y . Let L ∈ L (Y ;→). Then the algorithm A for (Y ;→) generates L with the probability

Prob(Y ;≤)(L) =

∏
v∈Y #HY (v)

#Y !
. (3.1)

Since the right hand side of (3.1) is independent from the choice of L ∈ L (Y ;→), we have:

Corollary 3.4 Let (Y ;→) be a graph for a Young diagram Y . Then we have:

#L (Y ;→) =
#Y !∏

v∈Y #HY (v)
.

This gives a proof of hook length formula [2] for the number of standard tableaux for a Young diagram.

4 Case of shifted Young diagrams
Definition 4.1 We equip the S :=

{
(i, j) ∈ N× N i ≤ j

}
with the partial order:

(i, j) ≤ (i′, j′)⇐⇒ i ≥ i′ and j ≥ j′.

A finite order filter S of S is called a shifted Young diagram.
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Definition 4.2 Let S be a shifted Young diagram. Let v = (i, j) ∈ S. We define the subset HS (v) of S
by:

ArmS(v) :=
{

(i′, j′) ∈ S i = i′ and j < j′
}
.

LegS(v) :=
{

(i′, j′) ∈ S i < i′ and j = j′
}
.

TailS(v) :=
{

(i′, j′) ∈ S j + 1 = i′ and j < j′
}
.

HS (v) := {v} tArmS(v) t LegS(v) t TailS(v).

HS (v)
+

:= ArmS(v) t LegS(v) t TailS(v).

The set HS (v) is called the hook of v ∈ S (see FIGURE 4.1).

h h h h h h h hh h h h h h hh h h hh h hh
hu h h h h h h h hh h h h h h hh h h hh h hh

hv h h h h h h h hh h h h h h hh h h hh h hh

hw

Fig. 4.1: Hooks of u, v , and w.

For v, v′ ∈ Y , we define a relation v → v′ by v′ ∈ HY (v)
+. Then (Y ;→) is a finite simple directed

acyclic graph.
Then we have the following theorem:

Theorem 4.3 (B. E. Sagan [11]) Let (S;→) be a graph defined above for a shifted Young diagram S.
Let L ∈ L (S;→). Then the algorithm A for (S;→) generates L with the probability

Prob(Y ;≤)(L) =

∏
v∈S #HS (v)

#S!
. (4.1)

Since the right hand side of (4.1) is independent from the choice of L ∈ L (S;→), we have:

Corollary 4.4 Let (S;→) be a graph for a shifted Young diagram S. Then we have:

#L (S;→) =
#S!∏

v∈S #HS (v)
.

This gives a proof of hook length formula [12] for the number of standard tableaux for a shifted Young
diagram.

5 General case
In this section, we fix a simply-laced Kac-Moody Lie algebra g with a simple root system Π =

{
αi ∈ I

}
.

For all undefined terminology in this section, we refer the reader to [4] [5].
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Definition 5.1 An integral weight λ is said to be pre-dominant if:

〈λ, β∨〉 ≥ −1 for each β∨ ∈ Φ∨+,

where Φ∨+ denotes the set of positive real coroots. The set of pre-dominant integral weights is denoted by
P≥−1. For λ ∈ P≥−1, we define the set D(λ) by:

D(λ) :=
{
β ∈ Φ+ 〈λ, β∨〉 = −1

}
.

The set D(λ) is called the diagram of λ. If #D(λ) <∞, then λ is called finite.

5.1 Hooks
Definition 5.2 Let λ ∈ P≥−1 and β ∈ D(λ). We define the set Hλ (β) by:

Hλ (β) := D(λ) ∩ Φ (sβ) ,

Hλ (β)
+

:= Hλ (β) \ {β}.

where Φ (sβ) denotes the inversion set of the reflection corresponding to β:

Φ (sβ) =
{
γ ∈ Φ+ sβ(γ) < 0

}
.

Proposition 5.3 (see [6],[8]) Let λ ∈ P≥−1 be finite and β∨ ∈ D(λ). Then we have:

1. #Hλ (β) = ht (β).

2. If γ ∈ Hλ (β), then γ ≤ β.

By proposition 5.3 (2), defining β → γ by γ ∈ Hλ (β)
+, the graph (D(λ);→) is acyclic.

5.2 Main Theorem and Corollaries
Theorem 5.4 (see [8][9]) Let λ ∈ P≥−1 be finite. Let L ∈ L (D(λ);→). Then the algorithm A for
(D(λ);→) generates L with the probability

Prob(D(λ);→)(L) =

∏
β∈D(λ) ht (β)

#D(λ)!
. (5.1)

Remark 5.5 The original statement of theorem 5.4 was proved by the second author [9]. The proof in
[9] was done by case-by case argument. On the other hand, the proof in [8] is given by an application of
the very special case of the colored hook formula [6].

Since the right hand side of (5.1) is independent from the choice of L ∈ L (D(λ);→), we have:

Corollary 5.6 Let λ ∈ P≥−1 be finite. Then we have:

#L (D(λ);→) =
#D(λ)∏

β∈D(λ) ht (β)
.
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Corollary 5.6 gives a proof of Peterson’s hook formula for the number of reduced decompositions of
minuscule [1][6] element, in simply-laced case. Another proof of Peterson’s hook formula is given in [6].

Remark 5.7 The finite pre-dominant integral weights λ are identified with the minuscule elements w [6].
And, we have D(λ) = Φ (w) [6]. Furthermore, the linear extensions of D(λ) are identified with the
reduced decompositions of w [6] by the following one-to-one correspondence:

Red(w) 3 (si1 , si2 , · · · , sid)←→ L ∈ L (D(λ)) , L(k) = si1 · · · sik−1
(αik) ∈ D(λ) (k = 1, · · · d),

where Red(w) denotes the set of reduced decompositions ofw, d = `(w) the length ofw. Hence, corollary
5.6 is equivalent with the Peterson’s hook formula:

#Red(w) =
`(w)!∏

β∈Φ(w) ht (β)
.

Remark 5.8 A Young diagram is realized as a diagram for some pre-dominant integral weight over a
root system of type A. Similarly, a shifted Young diagram is realized as a diagram for some pre-dominant
integral weight over a root system of type D.

There are 15 classes of generalized Young diagrams (over simply-laced Kac-Moody Lie algebras). We
note that many of them are realized over root systems of indefinite types (see [10]).

Remark 5.9 The first author has also succeeded in proving Theorem 1.1 in the case of a root system of
type B by a certain similar algorithm [7].
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Abstract. We present examples of flag homology spheres whose γ-vectors satisfy the Kruskal-Katona inequalities.
This includes several families of well-studied simplicial complexes, including Coxeter complexes and the simplicial
complexes dual to the associahedron and to the cyclohedron. In these cases, we construct explicit flag simplicial
complexes whose f -vectors are the γ-vectors in question, and so a result of Frohmader shows that the γ-vectors
satisfy not only the Kruskal-Katona inequalities but also the stronger Frankl-Füredi-Kalai inequalities. In another
direction, we show that if a flag (d − 1)-sphere has at most 2d + 3 vertices its γ-vector satisfies the Frankl-Füredi-
Kalai inequalities. We conjecture that if ∆ is a flag homology sphere then γ(∆) satisfies the Kruskal-Katona, and
further, the Frankl-Füredi-Kalai inequalities. This conjecture is a significant refinement of Gal’s conjecture, which
asserts that such γ-vectors are nonnegative.

Résumé. Nous présentons des exemples de sphères d’homologie flag dont γ-vecteurs satisfaire les inégalités de
Kruskal-Katona. Cela comprend plusieurs familles de bien étudiés simplicial complexes, y compris les complexes de
Coxeter et les complexes simpliciaux dual de l’associahedron et à la cyclohedron. Dans ces cas, nous construisons ex-
plicite flag simplicial complexes dont f -vecteurs sont les γ-vecteurs en question, et ainsi de suite de Frohmader mon-
tre que le γ-vecteurs de satisfaire non seulement les inégalités de Kruskal-Katona mais aussi la plus fortes inégalités
Frankl-Füredi-Kalai. Dans une autre direction, nous montrons que, si un flag (d−1)-sphère a au plus 2d+3 ses som-
mets γ-vecteur satisfait aux inégalités de Frankl-Füredi-Kalai. Nous conjecture que, si ∆ est une sphère d’homologie
flag alors γ(∆) satisfait aux inégalités de Kruskal-Katona, en outre, les de Frankl-Füredi-Kalai. Cette conjecture est
un raffinement significative de la conjecture de Gal, qui affirme que ces γ-vecteurs sont nonnégatifs.

Keywords: simplicial complex, Coxeter complex, associahedron, Gal’s conjecture, γ-vector

1 Introduction
In [Ga] Gal gave counterexamples to the real-root conjecture for flag spheres and conjectured a weaker
statement which still implies the Charney-Davis conjecture. The conjecture is phrased in terms of the
so-called γ-vector.

Conjecture 1.1 (Gal) [Ga, Conjecture 2.1.7] If ∆ is a flag homology sphere then γ(∆) is nonnegative.

†Partially supported by NSF Award DMS-0757828
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This conjecture is known to hold for the order complex of a Gorenstein∗ poset [Kar], all Coxeter
complexes (see [Ste], and references therein), and for the (dual simplicial complexes of the) “chordal
nestohedra” of [PoRWi]—a class containing the associahedron, permutahedron, and other well-studied
polytopes.

If ∆ has a nonnegative γ-vector, one may ask what these nonnegative integers count. In certain cases
(the type A Coxeter complex, say), the γ-vector has a very explicit combinatorial description. We will
exploit such descriptions to show that not only are these numbers nonnegative, but they satisfy certain
non-trivial inequalities known as the Kruskal-Katona inequalities. Put another way, such a γ-vector is the
f -vector of a simplicial complex. Our main result is the following.

Theorem 1.2 The γ-vector of ∆ satisfies the Kruskal-Katona inequalities for each of the following classes
of flag spheres:

(a) ∆ is a Coxeter complex.

(b) ∆ is the simplicial complex dual to an associahedron.

(c) ∆ is the simplicial complex dual to a cyclohedron (type B associahedron).

Note that the type A Coxeter complex is dual to the permutahedron, and for types B and D there is a
similarly defined polytope—the “Coxeterhedron” of Reiner and Ziegler [RZ].

We prove Theorem 1.2 by constructing, for each such ∆, a simplicial complex whose faces correspond
to the combinatorial objects enumerated by γ(∆).

In a different direction, we are also able to show that if ∆ is a flag sphere with few vertices relative to
its dimension, then its γ-vector satisfies the Kruskal-Katona inequalities.

Theorem 1.3 Let ∆ be a (d−1)-dimensional flag homology sphere with at most 2d+3 vertices, i.e., with
γ1(∆) ≤ 3. Then γ(∆) satisfies the Kruskal-Katona inequalities. Moreover, all possible γ-polynomials
with γ1 ≤ 3 that satisfy the Kruskal-Katona inequalities, except for 1 + 3t + 3t2, occur as γ(∆; t) for
some flag sphere ∆.

The proof of Theorem 1.3 can be found in [NPe]. It characterizes the structure of such flag spheres.
Computer evidence suggests that Theorems 1.2 and 1.3 may be enlarged significantly. We make the

following strengthening of Gal’s conjecture.

Conjecture 1.4 If ∆ is a flag homology sphere then γ(∆) satisfies the Kruskal-Katona inequalities.

This conjecture is true, but not sharp, for flag homology 3- (or 4-) spheres. Indeed, Gal showed that
0 ≤ γ2(∆) ≤ γ1(∆)2/4 must hold for flag homology 3- (or 4-) spheres [Ga], which implies the Kruskal-
Katona inequality γ2(∆) ≤

(
γ1(∆)

2

)
. Our stronger Conjecture 5.3 is sharp for flag homology spheres of

dimension at most 4.
In Section 2 we review some key definitions. Section 3 collects some known results describing the com-

binatorial objects enumerated by the γ-vectors of Theorem 1.2. Section 4 constructs simplicial complexes
based on these combinatorial objects and proves Theorem 1.2. Finally, Section 5 describes a strengthening
of Theorem 1.2 by showing that under the same hypotheses the stronger Frankl-Füredi-Kalai inequalities
hold for the γ-vector. A stronger companion to Conjecture 1.4 is also presented, namely Conjecture 5.3.

This paper is an abridged version of [NPe]. Full definitions and proofs can be found there.
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2 Terminology
We assume the reader has a basic familiarity with abstract simplicial complexes.

We say that ∆ is flag if all the minimal subsets of V which are not in ∆ have size 2; equivalently F ∈ ∆
if and only if all the edges of F (two element subsets) are in ∆.

The f -polynomial of a (d − 1)-dimensional simplicial complex ∆ is the generating function for the
dimensions of the faces of the complex:

f(∆; t) :=
∑

F∈∆

tdimF+1 =
∑

0≤i≤d
fi(∆)ti.

The f -vector
f(∆) := (f0, f1, . . . , fd)

is the sequence of coefficients of the f -polynomial.
The h-polynomial of ∆ is a transformation of the f -polynomial:

h(∆; t) := (1− t)df(∆; t/(1− t)) =
∑

0≤i≤d
hi(∆)ti,

and the h-vector is the corresponding sequence of coefficients,

h(∆) := (h0, h1, . . . , hd).

Though they contain the same information, often the h-polynomial is easier to work with than the f -
polynomial. For instance, if ∆ is a homology sphere, then the Dehn-Sommerville relations guarantee that
the h-vector is symmetric, i.e., hi = hd−i for all 0 ≤ i ≤ d.

When referring to the f - or h-polynomial of a simple polytope, we mean the f - or h-polynomial of the
boundary complex of its dual. So, for instance, we refer to the h-vector of the type A Coxeter complex
and the permutahedron interchangeably.

Whenever a polynomial of degree d has symmetric integer coefficients, it has an integer expansion in
the basis {ti(1 + t)d−2i : 0 ≤ i ≤ d/2}. Specifically, if ∆ is a (d − 1)-dimensional homology sphere
then there exist integers γi(∆) such that

h(∆; t) =
∑

0≤i≤d/2
γi(∆)ti(1 + t)d−2i.

We refer to the sequence γ(∆) := (γ0, γ1, . . .) as the γ-vector of ∆, and the corresponding generating
function γ(∆; t) =

∑
γit

i is the γ-polynomial. Our goal is to show that under the hypotheses of Theorems
1.2 and 1.3 the γ-vector for ∆ is seen to be the f -vector for some other simplicial complex.

A result of Schützenberger, Kruskal and Katona (all independently), characterizes the f -vectors of
simplicial complexes. (See [Sta, Ch. II.2].) By convention we call the conditions characterizing these
f -vectors the Kruskal-Katona inequalities.

We will use the Kruskal-Katona inequalities directly for Theorem 1.3 and for checking the Coxeter
complexes of exceptional type in part (a) of Theorem 1.2. (See Table 1.) For the remainder of Theorem
1.2 we construct explicit simplicial complexes with the desired f -vectors.
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W γ(W )

E6 (1, 1266, 7104, 3104)
E7 (1, 17628, 221808, 282176)
E8 (1, 881744, 23045856, 63613184, 17111296)
F4 (1, 232, 208)
G2 (1, 8)
H3 (1, 56)
H4 (1, 2632, 3856)
I2(m) (1, 2m− 4)

Tab. 1: The γ-vectors for finite Coxeter complexes of exceptional type.

3 Combinatorial descriptions of γ-nonnegativity
Here we provide combinatorial descriptions (mostly already known) for the γ-vectors of the complexes
described in Theorem 1.2.

3.1 Type A Coxeter complex

We begin by describing the combinatorial objects enumerated by the γ-vector of the type An−1 Coxeter
complex, or equivalently, the permutahedron. (For the reader looking for more background on the Coxeter
complex itself, we refer to [H, Section 1.15]; for the permutahedron see [Z, Example 0.10].)

Recall that a descent of a permutation w = w1w2 · · ·wn ∈ Sn is a position i ∈ [n − 1] such that
wi > wi+1. A peak (resp. valley) is a position i ∈ [2, n − 1] such that wi−1 < wi > wi+1 (resp.
wi−1 > wi < wi+1). We let des(w) denote the number of descents of w, and we let peak(w) denote the
number of peaks. It is well known that the h-polynomial of the type An−1 Coxeter complex is expressed
as:

h(An−1; t) =
∑

w∈Sn

tdes(w).

Foata and Schützenberger were the first to demonstrate the γ-nonnegativity of this polynomial (better
known as the Eulerian polynomial), showing h(An−1; t) =

∑
γit

i(1 + t)n−1−2i, where γi = the number
of equivalence classes of permutations of n with i+ 1 peaks [FoSch]. (Two permutations are in the same
equivalence class if they have the same sequence of values at their peaks and valleys.) See also Shapiro,
Woan, and Getu [ShWoGe] and, in a broader context, Brändén [B] and Stembridge [Ste].

Following Postnikov, Reiner, and Williams [PoRWi], we choose the following set of representatives for
these classes:

Ŝn = {w ∈ Sn : wn−1 < wn, and if wi−1 > wi then wi < wi+1}.

In other words, Ŝn is the set of permutations w with no double descents and no final descent, or those for
which des(w) = peak(0w0)− 1. We now phrase the γ-nonnegativity of the type An−1 Coxeter complex
in this language.
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Theorem 3.1 (Foata-Schützenberger) [FoSch, Théorème 5.6] The h-polynomial of the type An−1 Cox-
eter complex can be expressed as follows:

h(An−1; t) =
∑

w∈Ŝn

tdes(w)(1 + t)n−1−2des(w).

We now can state precisely that the type An−1 Coxeter complex (permutahedron) has γ(An−1) =
(γ0, γ1, . . . , γbn−1

2 c), where

γi(An−1) = |{w ∈ Ŝn : des(w) = i}|.

The permutahedron is an example of a chordal nestohedron. Following [PoRWi], a chordal nestohedron
PB is characterized by its building set, B. Each building set B on [n] has associated to it a set of B-
permutations, Sn(B) ⊂ Sn, and we similarly define Ŝn(B) = Sn(B) ∩ Ŝn. See [PoRWi] for details.
The following is a main result of Postnikov, Reiner, and Williams [PoRWi].

Theorem 3.2 (Postnikov, Reiner, Williams) [PoRWi, Theorem 11.6] If B is a connected chordal build-
ing set on [n], then

h(PB; t) =
∑

w∈Ŝn(B)

tdes(w)(1 + t)n−1−2des(w).

Thus, for a chordal nestohedron, γi(PB) = |{w ∈ Ŝn(B) : des(w) = i}|.

3.2 Type B Coxeter complex
We now turn our attention to the typeBn Coxeter complex. The framework of [PoRWi] no longer applies,
so we must discuss a new, if similar, combinatorial model.

In type Bn, the γ-vector is given by γi = 4i times the number of permutations w of Sn such that
peak(0w) = i. See Petersen [Pe] and Stembridge [Ste]. We define the set of decorated permutations
Decn as follows. A decorated permutation w ∈ Decn is a permutation w ∈ Sn with bars following the
peak positions (with w0 = 0). Moreover these bars come in four colors: {| = |0, |1, |2, |3}. Thus for each
w ∈ Sn we have 4peak(0w) decorated permutations in Decn. For example, Dec9 includes elements such
as

4|238|176519, 4|3238|276519, 25|137|169|284.

(Note that Ŝn ⊂ Decn.) Let peak(w) = peak(0w) denote the number of bars in w. In this context we
have the following result.

Theorem 3.3 (Petersen) [Pe, Proposition 4.15] The h-polynomial of the type Bn Coxeter complex can
be expressed as follows:

h(Bn; t) =
∑

w∈Decn
tpeak(w)(1 + t)n−2peak(w).

Thus,
γi(Bn) = |{w ∈ Decn : peak(w) = i}|.
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3.3 Type D Coxeter complex
We now describe how to view the elements enumerated by the γ-vector of the type D Coxeter complex in
terms of a subset of decorated permutations. Define a subset DecDn ⊂ Decn as follows:

DecDn = {w = w1 · · · |c1wi1 · · ·|c2 · · · ∈ Decn such that w1 < w2 < w3, or,
both max{w1, w2, w3} 6= w3 and c1 ∈ {0, 1}}.

In other words, we remove from Decn all elements whose underlying permutations have w2 < w1 < w3,
then for what remains we dictate that bars in the first or second positions can only come in one of two
colors. Stembridge [Ste] gives an expression for the h-polynomial of the typeDn Coxeter complex, which
we now phrase in the following manner.

Theorem 3.4 (Stembridge) [Ste, Corollary A.5]. The h-polynomial of the type Dn Coxeter complex can
be expressed as follows:

h(Dn; t) =
∑

w∈DecDn

tpeak(w)(1 + t)n−2peak(w).

Thus,
γi(Dn) = |{w ∈ DecDn : peak(w) = i}|.

3.4 The associahedron
The associahedron Assocn is an example of a chordal nestohedron, so Theorem 3.2 applies. Following
[PoRWi, Section 10.2], the B-permutations of Assocn are precisely the 312-avoiding permutations. Let
Sn(312) denote the set of all w ∈ Sn such that there is no triple i < j < k with wj < wk < wi. Then
we have:

h(Assocn; t) =
∑

w∈Ŝn(312)

tdes(w)(1 + t)n−1−2des(w),

where Ŝn(312) = Sn(312) ∩ Ŝn. Hence,

γi(Assocn) = |{w ∈ Ŝn(312) : des(w) = i}|.

3.5 The cyclohedron
The cyclohedron Cycn, or type B associahedron, is a nestohedron, though not a chordal nestohedron and
hence Theorem 3.2 does not apply. Its γ-vector can be explicitly computed from its h-vector as described
in [PoRWi, Proposition 11.15]. We have γi(Cycn) =

(
n

i,i,n−2i

)
. Define

Pn = {(L,R) ⊆ [n]× [n] : |L| = |R|, L ∩R = ∅}.
It is helpful to think of elements of Pn as follows. For σ = (L,R) with |L| = |R| = k, write σ as a
k × 2 array with the elements of L written in increasing order in the first column, the elements of R in
increasing order in the second column. That is, if L = {l1 < · · · < lk} and R = {r1 < · · · < rk}, we
write

σ =




l1 r1

...
...

lk rk


 .
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For σ ∈ Pn, let ρ(σ) = |L| = |R|. Then we can write

h(Cycn; t) =
∑

σ∈Pn

tρ(σ)(1 + t)n−2ρ(σ).

Thus,
γi(Cycn) = |{σ ∈ Pn : ρ(σ) = i}|.

4 The Γ-complexes
We will now describe simplicial complexes whose f -vectors are the γ-vectors described in Section 3.

4.1 Coxeter complexes
Notice that if

w = w1|c1 · · · |ci−1wi|ciwi+1|ci+1 · · · |cl−1wl,

is a decorated permutation, then each word wi = wi,1 . . . wi,k has some j such that:

wi,1 > wi,2 > · · · > wi,j > wi,j+1 < wi,j+2 < · · · < wi,k.

We saywi is a down-up word. We call ẁi = wi,1 · · ·wi,j the decreasing part ofwi and ẃi = wi,j+1 · · ·wi,k
the increasing part of wi. Note that the decreasing part may be empty, whereas the increasing part is
nonempty if i 6= l. Also, the rightmost block of w may be strictly decreasing (in which case wl = ẁl)
and the leftmost block is always increasing, even if it is a singleton.

Define the vertex set
VDecn := {v ∈ Decn : peak(v) = 1}.

The adjacency of two such vertices is defined as follows. Let

u = ú1|cù2ú2

and
v = v́1|dv̀2v́2

be two vertices with |ú1| < |v́1|. We define u and v to be adjacent if and only if there is an element
w ∈ Decn such that

w = ú1|cù2á|dv̀2v́2,

where á is the letters of ú2 ∩ v́1 written in increasing order. Such an element w exists if, as sets:

• ú1 ∪ ù2 ⊂ v́1 (⇔ v̀2 ∪ v́2 ⊂ ú2),

• min ú2 ∩ v́1 < min ù2, and

• max ú2 ∩ v́1 > max v̀2. (Note that ú2 ∩ v́1 is nonempty by the first condition.)

Definition 4.1 Let Γ(Decn) be the collection of all subsets F of VDecn such that every two distinct
vertices in F are adjacent.
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Note that by definition Γ(Decn) is a flag complex. It remains to show that the faces of Γ(Decn)
correspond to decorated permutations.

Let φ : Decn → Γ(Decn) be the map defined as follows. If

w = w1|c1 · · · |ci−1wi|ciwi+1|ci+1 · · · |cl−1wl,

then
φ(w) = {w1|c1ẁ2b́1, . . . , ái|ciẁi+1b́i, . . . , ál−1|cl−1ẁlb́l−1},

where ái is the set of letters to the left of ẁi+1 in w written in increasing order and b́i is the set of letters
to the right of ẁi+1 in w written in increasing order.

Proposition 4.2 The map φ is a bijection between faces of Γ(Decn) and decorated permutations inDecn.

The proof of Proposition 4.2 is not difficult; it can be found in [NPe].
We now make explicit how to realize Decn as the face poset of Γ(Decn). We say w covers u if and

only if u can be obtained from w by removing a bar |ci and reordering the word wiwi+1 = ẁiẃiwi+1

as a down-up word ẁia where a is the word formed by writing the letters of ẃiwi+1 in increasing order.
Then (Decn,≤) is a poset graded by number of bars and we have the following result.

Proposition 4.3 The map φ is an isomorphism of graded posets from (Decn,≤) to (Γ(Decn),⊆).

We now claim that the γ-objects for the type An−1 and type Dn Coxeter complexes form flag subcom-
plexes of Γ(Decn). Let S ∈ {Ŝn, Dec

D
n }. To show Γ(S) is a subcomplex, by Proposition 4.3 it suffices

to show that (S,≤) is a lower ideal in (Decn,≤). To show that Γ(S) is flag, we show that it is the flag
complex generated by the elements of S with exactly one bar. Both facts are straightforward to verify for
either choice of S.

Proposition 4.4 For S ∈ {Ŝn, Dec
D
n } the image Γ(S) := φ(S) is a flag subcomplex of Γ(Decn).

In light of the results of Sections 3.1, 3.2, and 3.3, and because the dimension of faces corresponds to
the number of bars, we have the following result, which, along with Table 1 implies part (a) of Theorem
1.2.

Corollary 4.5 We have:

1. γ(An−1) = f(Γ(Ŝn)),

2. γ(Bn) = f(Γ(Decn), and

3. γ(Dn) = f(Γ(DecDn ).

In particular, the γ-vectors of the type An−1, Bn, and Dn Coxeter complexes satisfy the Kruskal-Katona
inequalities.

Remark 4.6 In view of Theorem 3.2, we can observe that if B is a connected chordal building set such
that (Ŝn(B),≤) is a lower ideal in (Decn,≤), then a result such as Corollary 4.5 applies. That is, we
would have γ(PB) = f(φ(Ŝn(B))). In particular, we would like to apply such an approach to the γ-
vector of the associahedron. However, Ŝn(312) is not generally a lower ideal in Decn. For example,
with n = 5, we have w = 3|14|25 > 3|1245 = u. While w is 312-avoiding, u is clearly not.
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4.2 The associahedron
First we give a useful characterization of the set Ŝn(312).

Observation 4.7 If w ∈ Ŝn(312), it has the form

w = á1 j1i1 á2 j2i2 · · · ák jkik ák+1, (1)

where:

• j1 < · · · < jk,

• js > is for all s, and

• ás is the word formed by the letters of {r ∈ [n]\{i1, j1, . . . , ik, jk} : js−1 < r < js} (with j0 = 0,
jk+1 = n+ 1) written in increasing order.

In particular, since w has no double descents and no final descent, we see that ák+1 is always nonempty
and wn = n. We refer to (is, js) as a descent pair of w.

Given distinct integers a, b, c, d with a < b and c < d, we say the pairs (a, b) and (c, d) are crossing if
either of the following statements are true:

• a < c < b < d or

• c < a < d < b.

Otherwise, we say the pairs are noncrossing. For example, (1, 5) and (4, 7) are crossing, whereas both the
pairs (1, 5) and (2, 4) and the pairs (1, 5) and (6, 7) are noncrossing.

Define the vertex set
VŜn(312) := {(a, b) : 1 ≤ a < b ≤ n− 1}.

Definition 4.8 Let Γ(Ŝn(312)) be the collection of subsets F of VŜn(312) such that every two distinct
vertices in F are noncrossing.

By definition Γ(Ŝn(312)) is a flag simplicial complex, and so the task remains to show that the faces
of the complex correspond to the elements of Ŝn(312).

Define a map π : Ŝn(312)→ Γ(Ŝn(312)) as follows:

π(w) = {(wi+1, wi) : wi > wi+1}.

Suppose w is as in (1). We claim that the descent pairs (is, js) and (it, jt) (with js < jt, say) are
noncrossing. Indeed, if is < it < js < jt, then the subword jsisit forms the pattern 312. Therefore (and
because wn = n) we see the map π(w) = {(i1, j1), . . . , (ik, jk)} is well-defined. Using Observation 4.7,
the following is straightforward to prove.

Proposition 4.9 The map π is a bijection between faces of Γ(Ŝn(312)) and Ŝn(312).

By construction, we have |π(w)| = des(w), and therefore the results of Section 3.4 imply the following
result, proving part (b) of Theorem 1.2.
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Corollary 4.10 We have:

γ(Assocn) = f(Γ(Ŝn(312))).

In particular, the γ-vector of the associahedron satisfies the Kruskal-Katona inequalities.

Remark 4.11 It is well known that the h-vector of the associahedron has a combinatorial interpretation
given by noncrossing partitions. Simion and Ullmann [SiU] give a particular decomposition of the lattice
of noncrossing partitions that can be used to describe γ(Assocn) in (essentially) the same way.

4.3 The cyclohedron

For the cyclohedron, let

VPn := {(l, r) ∈ [n]× [n] : l 6= r}.

Two vertices (l1, r1) and (l2, r2) are adjacent if and only if:

• l1, l2, r1, r2 are distinct and

• l1 < l2 if and only if r1 < r2.

Define Γ(Pn) to be the flag complex whose faces F are all subsets of VPn such that every two distinct
vertices in F are adjacent.

We let ψ : Pn → Γ(Pn) be defined as follows. If

σ =




l1 r1

...
...

lk rk




is an element of Pn, then ψ(σ) is simply the set of rows of σ:

ψ(σ) = {(l1, r1), . . . , (lk, rk)}.

Clearly this map is invertible, for we can list a set of pairwise adjacent vertices in increasing order (by li
or by ri) to obtain an element of Pn. We have the following.

Proposition 4.12 The map ψ is a bijection between faces of Γ(Pn) and the elements of Pn.

We are now able to complete the proof of Theorem 1.2, as the following implies part (c).

Corollary 4.13 We have

γ(Cycn) = f(Γ(Pn)).

In particular, the γ-vector of the cyclohedron satisfies the Kruskal-Katona inequalities.



On γ-vectors satisfying the Kruskal-Katona inequalities 819

5 Stronger inequalities
A (d − 1)-dimensional simplicial complex ∆ on a vertex set V is balanced if there is a coloring of its
vertices c : V → [d] such that for every face F ∈ ∆ the restriction map c : F → [d] is injective. That is,
every face has distinctly colored vertices.

Frohmader [Fro] proved that the f -vectors of flag complexes form a (proper) subset of the f -vectors
of balanced complexes. (This was conjectured earlier by Eckhoff and Kalai, independently.) Further, a
characterization of the f -vectors of balanced complexes is known [FraFüKal], yielding stronger upper
bounds on fi+1 in terms of fi than the Kruskal-Katona inequalities, namely the Frankl-Füredi-Kalai
inequalities. For example, a balanced 1-dimensional complex is a bipartite graph, hence satisfies f2 ≤
f2

1 /4, while the complete graph has f2 =
(
f1
2

)
. See [FraFüKal] for the general description of the Frankl-

Füredi-Kalai inequalities.
Because the Γ-complexes of Section 4 are flag complexes, Frohmader’s result shows that the γ-vectors

of Theorem 1.2 satisfy the Frankl-Füredi-Kalai inequalities. The same is easily verified for the γ-vectors
given by Theorem 1.3 and in Table 1 for the exceptional Coxeter complexes. We obtain the following
strengthening of Theorem 1.2.

Theorem 5.1 The γ-vector of ∆ satisfies the Frankl-Füredi-Kalai inequalities for each of the following
classes of flag spheres:

(a) ∆ is a Coxeter complex.

(b) ∆ is the simplicial complex dual to an associahedron.

(c) ∆ is the simplicial complex dual to a cyclohedron.

(d) ∆ has γ1(∆) ≤ 3.

Remark 5.2 The complexes Γ(S) where S ∈ {Decn, Ŝn, Dec
D
n } are balanced. The color of a vertex v

with a peak at position i is d i2e.
Similarly this suggests the following strengthening of Conjecture 1.4.

Conjecture 5.3 If ∆ is a flag homology sphere then γ(∆) satisfies the Frankl-Füredi-Kalai inequalities.

As mentioned in the Introduction, this conjecture is true for flag homology spheres of dimension at
most 4. We do not have a counterexample to the following possible strengthening of this conjecture.

Problem 5.4 If ∆ is a flag homology sphere, then γ(∆) is the f -vector of a flag complex.
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Abstract. We consider the real and complex noncentral Wishart distributions. The moments of these distributions are
shown to be expressed as weighted generating functions of graphs associated with the Wishart distributions. We give
some bijections between sets of graphs related to moments of the real Wishart distribution and the complex noncentral
Wishart distribution. By means of the bijections, we see that calculating these moments of a certain class the real
Wishart distribution boils down to calculations for the case of complex Wishart distributions.

Résumé. Nous considérons les lois Wishart non-centrale réel et complexe. Les moments sont décrits comme fonctions
génératrices de graphes associées avex les lois Wishart. Nous donnons bijections entre ensembles de graphes relatifs
aux moments des lois Wishart non-centrale réel et complexe. Au moyen de la bijections, nous voyons que le calcul
des moments d’une certaine classe la loi Wishart réel deviennent le calcul de moments de loi Wishart complexes.

Keywords: generating funtion; Hafnian; matching; moments formula; Wishart distribution.

1 Introduction
First we recall the Wishart distributions which originate from the paper by Wishart [18]. Let X1 =
(xi1)1≤i≤p, X2 = (xi2)1≤i≤p, . . . , Xν = (xiν)1≤i≤p be p-dimensional random column vectors dis-
tributed independently according to the normal (Gauss) distributionNp(µ1,Σ), . . . , Np(µν ,Σ) with mean
vectors µ1 = (µi1)1≤i≤p, . . . , µν = (µiν)1≤i≤p (respectively) and a common covariance matrix Σ =
(σij). The distribution of a p × p symmetric random matrix W = (wij)1≤i,j≤p defined by wij =∑ν
t=1 xitxjt is the real noncentral Wishart distribution Wp(ν,Σ,∆), where ∆ = (δij)1≤ij≤p is the mean

square matrix defined by δij =
∑ν
t=1 µitµjt. The Wishart distribution for ∆ = 0 is said to be central and

is denoted by Wp(ν,Σ).
The matrix Ω = Σ−1∆ is called the noncentrality matrix. It is usually used instead of ∆ to param-

eterize the Wishart distribution. However, in this paper, we use (ν,Σ,∆) for simplicity in describing
formulas. The complex Wishart distribution CWp(ν,Σ,∆) is defined as the distribution of some p × p
Hermitian random matrix constructed from random vectors distributed independently according to the
complex normal (complex Gauss) distributions.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The moment generating function of the real Wishart distribution is given by

E[etr(ΘW )] = det(I − 2ΘΣ)−
ν
2 e−

1
2 tr(I−2ΘΣ)−1Θ∆,

where Θ is a p × p symmetric parameter matrix [13]. Similarly, the moment generating function of the
complex Wishart distribution is given as follows:

E[etr(ΘW )] = det(I −ΘΣ)−νe− tr(I−ΘΣ)−1Θ∆,

where Θ is a p × p Hermitian parameter matrix. See also [2] for the central case. Our first objective
is to describe the moments E[wi1,i2wi3,i4 · · ·wi2n−1,i2n ] of the Wishart distributions of general degrees
in explicit forms. Since the Wishart distribution is one of the most important distributions, it has been
studied by many researchers not only in the field of mathematical statistics but also in other fields (e.g.,
[1, 11]). Its moments have been well studied, and methods to calculate the moments in the central cases
have been developed by Lu and Richards [10]; Graczyk, Letac, and Massam [3, 4]; Vere-Jones [16]; and
many other authors. In particular, Graczyk, Letac and Massam [3, 4] developed a formula for the moments
using the representation theory of symmetric group. More recently, Letac and Massam [9] introduced a
method to calculate the moments of the noncentral Wishart distributions. In this paper, we introduce
another formula for the moments of Wishart distribution; in our formula, the moments are described as
special values of the weighted generating function of matchings of graphs. Calculation of the moments
boils down to enumeration of graphs via our formulas. As an application of our formulas, we construct
some correspondences between some sets of graphs, which implies several identities of moments.

The organization of this paper is as follows. In Section 2, we introduce some notations for the graphs.
In Section 3, we define the generating functions of matchings and give the main formulas, which are an
extension of Takemura [15] dealing with the central case. In Section 4.1, we give some correspondences
between directed and undirected graphs, which implies equations between the moments of the complex
Wishart distribution and the moments of the real Wishart distribution for some special parameter. In
Sections 4.2 and 4.3, we consider the Wishart distribution with some degenerated parameters. We see that
the calculation of its moments is reduced to enumerating graphs satisfying some conditions.

A part of this paper is taken from our previous paper [8]. Please see the paper for the omitted proofs.

2 Notation of graphs
In this paper, we consider both undirected and directed graphs. For l ∈ Z, we define l̇ and l̈ by l̇ = 2l− 1
and l̈ = 2l. Let us fix n ∈ Z>0. We also fix sets V and V ′ as follows: V = [n] = { 1, . . . , n },
V̇ = ˙[n] =

{
1̇, . . . , ṅ

}
, V̈ = ¨[n] =

{
1̈, . . . , n̈

}
, and V ′ = V̇ q V̈ = ˙[n] q ¨[n] = [2n]. We use V and

V ′ as the sets of vertices of directed and undirected graphs, respectively.
First we consider undirected graphs. For v 6= w, the undirected edge between v and w is denoted by

{v, w} = {w, v}. We do not consider undirected self loops, i.e., {v, v}. For sets W ′ and U ′ of vertices,
we define sets K ′U ′ and K ′W ′,U ′ of undirected edges by K ′W ′,U ′ = { {w, u} | w ∈W ′, u ∈ U ′, w 6= u },
K ′U ′ = K ′U ′,U ′ = { {v, u} | v 6= u ∈ V ′ }. We call a pair G′ = (V ′, E′) of a finite set V ′ and a subset
E′ ⊂ K ′V ′ an undirected graph. For an undirected graph G′ = (V ′, E′), we define vertex(E′) by
vertex(E′) = { v ∈ V ′ | {v, u} ∈ E′ for some u ∈ V ′ }. Let (V ′,K ′) be an undirected graph. We call
a subset E′ ⊂ K ′ a matching in (V ′,K ′) if no two edges in E′ share a common vertex. We define
M′(V ′,K ′) to be the set of matchings in (V ′,K ′) andM′(V ′) to be the setM′(V ′,K ′V ′) of matchings
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in the complete graph (V ′,K ′V ′). A matching E′ in (V ′,K ′) is said to be perfect if vertex(E′) = V ′. We
define P ′(V ′,K ′) to be the set of perfect matchings in (V ′,K ′) and P ′(V ′) by P ′(V ′) = P ′(V ′,K ′V ′).

Next we consider directed graphs. A directed edge from v to w is denoted by (v, u). For v 6= u,
(v, u) 6= (u, v). In the case of directed graphs, we also consider a directed self loop (v, v). For a
directed edge e = (v, u), we respectively call v and u a starting and end points of e. For sets W and
U of vertices, we define sets KU and KW,U of directed edges by KW,U = { (v, u) | v ∈W,u ∈ U },
KU = KU,U = { (v, u) | v, u ∈ U }. We call a pair G = (V,E) of a finite set V and a subset E ⊂ KV a
directed graph. For a directed graph G = (V,E), we define start(E) and end(E) by

start(E) = { v ∈ V | (v, u) ∈ E for some u ∈ V } ,
end(E) = { u ∈ V | (v, u) ∈ E for some v ∈ V } .

For a directed graph (V,K), we call a subset E ⊂ K a matching in (V,K) if v 6= v′ and u 6= u′ for any
two distinct directed edges (v, u) and (v′, u′) ∈ E. We define M(V,K) to be the set of matchings in
(V,K) andM(V ) byM(V ) =M(V,KV ). A matchingE in (V,E) is said to be perfect if start(E) = V
and end(E) = V . We define P(V,K) to be the set of perfect matchings in (V,K) and P(V ) by
P(V ) = P(V,KV ).

Remark 2.1 We can identify a directed graph (V,E) with a bipartite graph (V̇ , V̈ , { {v̇, ü} | (v, u) ∈ E }).
i.e., a graph whose edges connect a vertex in V̇ to a vertex in V̈ . Via this identification, an element
in M(V,K) is identified with a matching in the bipartite graph. In this sense, we call an element in
M(V,K) a matching in (V,K).

3 Weighted generating functions and moments
First we consider undirected graphs to describe the moments of real Wishart distributions. For an undi-
rected graph (V ′, E′) and variables x = (xi,j), we define the weight monomial xE

′
by xE

′
=
∏

{v,u}∈E′ xv,u.

If xv,u = xu,v for v, u ∈ V ′, then the weight monomial xE
′

is well-defined. We define E′0 to be{ {1̇, 1̈}, . . . ,{ṅ, n̈} } ⊂ K ′
V̇ ,V̈

. For E′ ∈M′(V ′), we define Ě′ and len(E′) by

Ě′ =
{
{v, u} ∈ K ′V ′\vertex(E′)

∣∣∣ There exists a chain between v and u in E′ ∪ E′0.
}
⊂ K ′V ′

len(E′) = (the number of connected components in (V ′, E′ ∪ E′0))−
∣∣Ě′
∣∣ .

Remark 3.1 ForE′ ∈M′(V ′), Ě′ can be defined as a subset ofK ′V ′ satisfying the following conditions:

• Ě′ ∈M′(V ′),

• Ě′ ∩ E′ = ∅,

• Ě′ ∪ E′ ∈ P ′(E′),

• The number of connected components in (V ′, E′∪E′0) equals the number of connected components
in (V ′, Ě′ ∪ E′ ∪ E′0).
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Remark 3.2 For E′ ∈M′(V ′), let us consider the undirected graph (V ′, E′ q E′0) with multiple edges.
The connected components of (V ′, E′ q E′0) are chains and cycles without chords. The number of cycles
in (V ′, E′ q E′0) equals len(E′). The vertices V ′ \ vertex(E′) which do not appear in E′ are terminals
of chains in (V ′, E′ q E′0). The set of pairs of terminals of chains in (V ′, E′ q E′0) equals Ě′.

Definition 3.3 For a set K ′ ⊂ K ′V ′ of undirected edges, we define polynomials Φ′K′ and Ψ′K′ by

Φ′K′(t,x,y) =
∑

E′∈M′(V ′,K′)
tlen(E′)xE

′
yĚ
′
, Ψ′K′(t,x) =

∑

E′∈P′(V ′,K′)
tlen(E′)xE

′
.

We also respectively define Φ′(t,x,y) and Ψ′(t,x) to be Φ′K′
V ′

(t,x,y) and Ψ′K′
V ′

(t,x).

Remark 3.4 By definition, Ψ′K′(t,x) = Φ′K′(t,x, 0) for each K ′ ⊂ K ′V ′ .
We have the following formula that describes the moments of the real noncentral Wishart distribution

as the special values of the weighted generating function.

Theorem 3.5 Let W = (wi,j) ∼ Wp(ν,Σ,∆), namely, let W be a random matrix distributed according
to the real noncentral Wishart distribution Wp(ν,Σ,∆). Then

E[w1,2w3,4 · · ·w2n−1,2n] = E[w1̇,1̈w2̇,2̈ · · ·wṅ,n̈] = Φ′(t,x,y)
∣∣∣
t=ν, xu,v=σu,v, yu,v=δu,v

= Φ′(ν,Σ,∆).

Corollary 3.6 For W ∼Wp(ν,Σ,∆)

E[wi1,i2wi3,i4 · · ·wi2n−1,i2n ] = E[wi1̇,i1̈wi2̇,i2̈ · · ·wiṅ,in̈ ] = Φ′(t,x,y)
∣∣∣
t=ν, xu,v=σiu,iv , yu,v=δiu,iv

.

In the case where ∆ = 0, Wp(ν,Σ, 0) is called the real central Wishart distribution and is denoted by
Wp(ν,Σ). It follows from Remark 3.4 that the moments of the central real Wishart distribution are written
as special values of Ψ′.

Corollary 3.7 For W = (wi,j) ∼Wp(ν,Σ)

E[w1,2w3,4 · · ·w2n−1,2n] = E[w1̇,1̈w2̇,2̈ · · ·wṅ,n̈] = Ψ′(t,x)
∣∣∣
t=ν, xu,v=σu,v

= Ψ′(ν,Σ).

Corollary 3.8 For W = (wi,j) ∼Wp(ν,Σ)

E[wi1,i2wi3,i4 · · ·wi2n−1,i2n ] = E[wi1̇,i1̈wi2̇,i2̈ · · ·wiṅ,in̈ ] = Ψ′(t,x)
∣∣∣
t=ν, xu,v=σiu,iv

.

Next we consider directed graphs to describe the moments of complex Wishart distributions. For a di-
rected graph (V,E) and variables x = (xi,j), we define the weight monomial xE by xE =

∏
(v,u)∈E xv,u.

LetE ∈M(V ). The pair (V,E) is a directed graph whose connected components are directed chains and
directed cycles without chords. We define len(E) to be the number of cycles (and self loops) in (V,E).
The vertices V \ start(E) are the endpoints of the chains in (V,E), while the vertices V \ end(E) are the
start points of the chains in (V,E). We define Ě by

Ě =
{
(v, u) ∈ KV \start(E),V \end(E)

∣∣ There exists a chain from u to v in E.
}
⊂ KV .
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Remark 3.9 For E ∈M(V ), Ě can be defined as a subset of KV satisfying the following conditions:

• Ě ∈M(V ),

• Ě ∩ E = ∅,

• Ě ∪ E ∈ P(E),

• The number of connected components in (V,E) equals the number of connected components in
(V, Ě ∪ E).

Remark 3.10 For E ∈M(V ), we can also define len(E) by

len(E) = (the number of connected components in (V,E))−
∣∣Ě
∣∣ .

Remark 3.11 We can identify E ∈ P(V ) with the element σE of the symmetric group Sn such that
σE(i) = j for each (i, j) ∈ E. For each E, len(E) is the number of cycles of σE .

Definition 3.12 For a set K ⊂ KV of directed edges, we define polynomials ΦK and ΨK by

ΦK(t,x,y) =
∑

E∈M(V,K)

tlen(E)xEyĚ , ΨK(t,x) =
∑

E∈P(V,K)

tlen(E)xE .

We also respectively define Φ(t,x,y) and Ψ(t,x) to be ΦKV (t,x,y) and ΨKV (t,x).

Remark 3.13 By definition, ΨK(t,x) = ΦK(t,x, 0) for each K ⊂ KV .

We describe the moments of complex Wishart distributions as special values of the generating functions.

Theorem 3.14 Let W = (wi,j) be a random matrix distributed according to the complex noncentral
Wishart distribution CWp(ν,Σ,∆). Then

E[w1,2w3,4 · · ·w2n−1,2n] = E[w1̇,1̈w2̇,2̈ · · ·wṅ,n̈] = Φ(t,x,y)
∣∣∣
t=ν, xu,v=σu̇,v̈, yu,v=δu̇,v̈

.

Corollary 3.15 For W = (wi,j) ∼ CWp(ν,Σ,∆)

E[wi1,i2wi3,i4 · · ·wi2n−1,i2n ] = E[wi1̇,i1̈wi2̇,i2̈ · · ·wiṅ,in̈ ] = Φ(t,x,y)
∣∣∣
t=ν, xu,v=σiu̇,iv̈ , yu,v=δiu̇,iv̈

.

By substituting 0 for ∆ in the theorem, we have the following formula for the central complex case.

Corollary 3.16 For W = (wi,j) ∼ CWp(ν,Σ)

E[w1,2w3,4 · · ·w2n−1,2n] = E[w1̇,1̈w2̇,2̈ · · ·wṅ,n̈] = Ψ(t,x)
∣∣∣
t=ν, xuv=σu̇,v̈

.

Corollary 3.17 For W = (wi,j) ∼ CWp(ν,Σ)

E[wi1,i2wi3,i4 · · ·wi2n−1,i2n ] = E[wi1̇,i1̈wi2̇,i2̈ · · ·wiṅ,in̈ ] = Ψ(t,x)
∣∣∣
t=ν, xu,v=σiu̇,iv̈

.
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Remark 3.18 For a square matrix A = (aij), the α-determinant (or α-permanent) is defined by

detα(A) =
∑

σ∈Sn
αn−len(σ)a1,σ(1)a2,σ(2) · · · an,σ(n).

This polynomial is an α-analogue of both the determinant and the permanent. Equivalently, the α-
determinant is nothing but the ordinary determinant and permanent for α = −1 and 1, respectively.
(See also [16, 17].) Through the identification in Remark 3.10, we have αnΨ(α−1, A) = detα(A).
Moreover, by Corollary 3.16, the moments of the complex central Wishart distribution are expressed by
α-determinants.

In [12], Matsumoto introduced the α-Pfaffian, which is defined by

pfα(A) =
∑

E′∈P′(V ′)
(−α)n−len(E′) sgn(E′)AE

′

for a skew-symmetric matrix A, where sgn(E′)AE
′

is defined to be sgn(x)ax1̇,x1̈
· · · axṅ,xn̈ for x ∈ S2n

such that E′ = { {x1̇, x1̈}, . . . ,{xṅ, xn̈} }. Since A is skew symmetric, sgn(E′)AE
′

is independent from
choices of x ∈ S2n. The α-Pfaffian is an analogue of the Pfaffian. Equivalently, in the case when α = −1,
α-Pfaffian pf−1(A) is nothing but the ordinary Pfaffian pf(A), i.e.,

∑
sgn(x)ax1̇x1̈

· · · axṅxn̈ .
Let us define the polynomial hfα(A) by

hfα(B) =
∑

E′∈P′(V ′)
αn−len(E′)BE

′

for a symmetric matrix B. The polynomial hfα(B) is an α-analogue of the Hafnian. Equivalently,
hfα(B) is the ordinary Hafnian hf(B), i.e.,

∑
bx1̇x1̈

· · · bxṅxn̈ , for α = 1. By definition, hfα(B) =
αnΨ′(α−1, B). In this sense, the moments of the real central Wishart distributions are expressed by
α-Hafnians.

4 Application
4.1 Relation between real and complex cases

There exist bijections between directed graphs and undirected graphs which preserve the weight mono-
mials in some special cases. These bijections induce equations between weighted generating functions
of matchings. From the equations, we can obtain some formulas for the moments of complex and real
Wishart distributions with special parameters.

4.1.1 Prototypical case
As in Remark 2.1, there exists a correspondence between directed graphs and bipartite graphs.

Lemma 4.1 The mapM(V,KV ) 3 (u, v) 7→ {u̇, v̈} ∈ M′(V ′,K ′
V̇ ,V̈

) is a bijection. The map induces
the bijection P(V,KV ) 3 (u, v) 7→ {u̇, v̈} ∈ P ′(V ′,K ′

V̇ ,V̈
).
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These bijections imply ΦKV (t,x,y) = Φ′K′
V̇ ,V̈

(t,x,y) and ΨKV (t,x) = Ψ′K′
V̇ ,V̈

(t,x). If Σ′ = (σ′uv)

and ∆′ = (δ′uv) satisfy σ′u,v = 0 and δ′u,v = 0 for {u, v} ∈ K ′
V̇
∪K ′

V̈
, then

Φ′(t,x,y)
∣∣∣
t=ν, xu,v=σ′u,v, yu,v=δ′u,v

= Φ′K′
V̇ ,V̈

(t,x,y)
∣∣∣
t=ν, xu,v=σ′u,v, yu,v=δ′u,v

.

If Σ = (σuv) and ∆ = (δuv) satisfy σu̇,v̈ = σ′u,v and δu̇,v̈ = δ′u,v for u, v ∈ V , then the equation implies

Φ(t,x,y)
∣∣∣
t=ν, xu,v=σu̇,v̈, yu,v=δu̇,v̈

= Φ′(t,x,y)
∣∣∣
t=ν, xu,v=σu,v, yu,v=δu,v

.

Hence we have the following:

Propsition 4.2 Let Σ′ = (σ′u,v), ∆′ = (δ′u,v), Σ = (σu,v) and ∆ = (δu,v) satisfy σ′u,v = 0, δ′u,v = 0 for
{u, v} ∈ K ′

V̇
∪K ′

V̈
, and σu̇,v̈ = σ′u̇,v̈ , δu̇,v̈ = δ′u̇,v̈ for u, v ∈ V . For W = (wu,v) ∼ CWp(ν,Σ,∆) and

W ′ = (w′u,v) ∼Wp(ν,Σ
′,∆′), E[w1̇,1̈ · · ·wṅ,n̈] = E[w′

1̇,1̈
· · ·w′ṅ,n̈].

4.1.2 Central case
Next we consider the central Wishart distribution. In this case, we may consider only perfect matchings.
We define P̃ ′(V ′) and P̃(V ) by

P̃ ′(V ′) =
{

(E′, ω′)
∣∣∣ E′∈P′(V ′),
ω′ : { cycles in (V ′, E q E0) }→{±1 }

}
, P̃(V ) =

{
(E,ω)

∣∣∣ E∈P(V ),
ω : E→{±1 }

}
.

Lemma 4.3 There exists a bijection between P̃ ′(V ′) and P̃(V ).

We shall give a bijection ψ between P̃ ′(V ′) and P̃(V ) in Section 4.1.4. The bijection preserves the
weight monomials, equivalently, tlen(E)xE = tlen(E′)(x′)E

′
for elements E′ ∈ P ′(V ) corresponding to

E ∈ P(V ), in the case when x = (xu,v) and x′ = (x′u,v) satisfy x′u′,v′ = xu,v for any u, v ∈ V and any
{u′, v′} ∈ K{ u̇v̈ },{ u̇v̈ }. Hence Proposition 4.4 follows from the following equations:

2nΨ(t,x) = 2n
∑

E∈P(V )

tlen(E)xE =
∑

E∈P̃(V )

tlen(E)xE ,

Ψ′(2t,x) = 2n
∑

E′∈P′(V ′)
(2t)len(E′)xE

′
=

∑

E′∈P̃(V ′)

tlen(E′)xE
′
.

Propsition 4.4 Let Σ = (σu,v) and Σ′ = (σ′u,v) satisfy σ′u′,v′ = σu,v for any u, v ∈ V and any
{u′, v′} ∈ K{ u̇v̈ },{ u̇v̈ }. Then

2nΨ(t,x)
∣∣∣
t=ν, xu,v=σu̇,v̈

= Ψ′(2t,x)
∣∣∣
t=ν, xu,v=σ′u,v

.

Corollary 4.5 Let Σ = (σu,v) and Σ′ = (σ′u,v) satisfy σ′u′,v′ = σu,v for any u, v ∈ V and any {u′, v′} ∈
K{ u̇v̈ },{ u̇v̈ }. For W = (wu,v) ∼ CWp(ν,Σ) and W ′ = (w′u,v) ∼ Wp(ν,Σ

′), E[w1̇,1̈ · · ·wṅ,n̈] =
E[w′

1̇,1̈
· · ·w′ṅ,n̈].
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4.1.3 Noncentral case
Next we consider the noncentral Wishart distribution. In this case, we consider all matchings in complete
graphs. We define M̃(V ) and M̃′(V ′) by

M̃′(V ′) =
{

(E′, ω′)
∣∣∣ E′∈M′(V ′),
ω′ : { cycles in (V ′, E′ ∪ E′0) }→{±1 }

}
, M̃(V ) =

{
(E,ω)

∣∣∣ E∈M(V ),
ω : E→{±1 }

}
.

Lemma 4.6 There exists a bijection between M̃(V ) and M̃′(V ′).

We shall give a bijection between P̃ ′(V ′) and P̃(V ) in Section 4.1.4. The bijection preserves the weight
monomial in a special case. Hence Proposition 4.7 follows from the following equations:

Φ′(2t,x,y) =
∑

E′∈M′(V ′)
(2t)len(E′)xE

′
yĚ
′

=
∑

(E′,ω′)∈M̃′(V ′)

tlen(E′)xE
′
yĚ
′
,

Φ(t, 2x,y) =
∑

E∈M(V )

tlen(E)(2x)EyĚ =
∑

(E,ω)∈M̃(V )

tlen(E)xEyĚ ,

where 2x = (2xu,v)

Propsition 4.7 Let Σ = (σu,v), ∆ = (δu,v), Σ′ = (σ′u,v) and ∆′ = (δ′u,v) satisfy σ′u′,v′ = σu,v
δ′u′,v′ = δu,v for any u, v ∈ V and any {u′, v′} ∈ K{ u̇v̈ },{ u̇v̈ }. Then

Ψ(t, 2x,y)
∣∣∣
t=ν, xu,v=σu̇,v̈, yu,v=δu̇,v̈

= Ψ′(2t,x,y)
∣∣∣
t=ν, xu,v=σu,v, yu,v=δu,v

.

Corollary 4.8 Let Σ = (σu,v), ∆ = (δu,v), Σ′ = (σ′u,v) and ∆′ = (δ′u,v) satisfy σ′u′,v′ = σu,v δ
′
u′,v′ =

δu,v for any u, v ∈ V and any {u′, v′} ∈ K{ u̇v̈ },{ u̇v̈ }. For W = (wu,v) ∼ CWp(ν, 2Σ,∆) and
W ′ = (w′u,v) ∼Wp(2ν,Σ

′,∆′), E[w1̇,1̈ · · ·wṅ,n̈] = E[w′
1̇,1̈
· · ·w′ṅ,n̈].

4.1.4 Construction of Bijections
Here we construct bijections to prove Lemmas 4.3 and 4.6. First we construct a bijection ψ from P̃(V ) to
P̃ ′(V ′). To define the bijection, we define the following map. For (E,ω) ∈ P̃(V ), let hE,ω and h′E,ω be
maps from V to V ′ defined by

hE,ω(v) =

{
v̇ if ω((u, v)) = 1 for some (u, v) ∈ E,
v̈ otherwise,

h′E,ω(v) =

{
v̈ if ω((u, v)) = 1 for some (u, v) ∈ E,
v̇ otherwise.

Remark 4.9 For (E,ω) ∈ P̃(V ) and v ∈ V , {hE,ω(v), h′E,ω(v)} ∈ E′0.

First we constructE′ ∈ P ′(V ′) for each (E,ω) ∈ P̃(V ). For each (E,ω) ∈ P̃(V ), we define a surjection
ψE,ω : E → K ′V ′ , and then we define E′ to be the image ψE,ω(E). Let (v1, v2), (v2, v3),. . . , (vk−1, vk),
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(vk, v1) be a cycle in E such that v1 = min { v1, . . . , vk }. For each directed edge in the cycle, we define
ψE,ω by

ψE,ω((v1, v2)) = {v̇1, hE,ω(v2)},
ψE,ω((vi, vi+1)) = {h′E,ω(vi+1), hE,ω(vi+1)} (for i = 2, . . . , k − 1),

ψE,ω((vk, v1)) = {h′E,ω(vk), v̈1}.

Then the image of the cycle forms a cycle C ′ in the undirected graph E′qE′0. For the cycle C ′, we define
ω′(C ′) to be ω((vk, v1)).

Remark 4.10 It is easy to construct the inverse map of ψ, which implies that ψ is bijective.

Remark 4.11 This correspondence ψ is equivalent to the one in [4], which is described in more algebraic
terms. Let S2m be the 2m-th symmetric group, and let Bm = Sm o Z/2Z the hyperoctehedral group, i.e.,
the subgroup of the permutations π ∈ S2m such that |π(ṅ) − π(n̈)| = 1 for all n = 1, . . . ,m. For
gBm ∈ S2m/Bm, we can define EgBm by EgBm = { {g(ṅ), g(n̈)} | n = 1, . . .m } ∈ P(V ), and we
can identify elements gBm ∈ S2m/Bm with perfect matchings in (V,KV ). Through this identification,
the correspondence in Section 4 of [4] is equivalent to ours.

Next we construct a bijection ϕ from M̃(V ) to M̃′(V ′). For each (E,ω) ∈ M̃(V ), we shall define
(E′, ω′) ∈ M̃(V ). For each cycle in E, we construct undirected edges and ω′ in the same manner as ψ.
To define the undirected edges corresponding to chains, we define tE,ω and t′E,ω by

tE,ω(v) =

{
v̇ if ω((u, v)) = 1 for some (v, u) ∈ E,
v̈ otherwise,

t′E,ω(v) =

{
v̈ if ω((u, v)) = 1 for some (v, u) ∈ E,
v̇ otherwise.

Let (v1, v2), (v2, v3),. . . ,(vk−1, vk) be a maximal chain in E. If v1 < vk, then we define ϕE,ω by

ϕE,ω((v1, v2)) = {v̇1, hE,ω(v2)},
ϕE,ω((vi, vi+1)) = {h′E,ω(vi), hE,ω(vi+1)} (for i = 2, . . . , k − 1).

If v1 > vk, then we define ϕE,ω by

ϕE,ω((vk−1, vk)) = {tE,ω(kk−1), v̈k}
ϕE,ω((vi−1, vi)) = {tE,ω(vi−1), t′E,ω(vi)} (for i = k − 1, . . . , 2).

Then the image of the maximal chains forms a maximal chain in the undirected graph E′ q E′0.

Remark 4.12 It is easy to construct the inverse map of ϕ, which implies ϕ is bijective.

4.2 Noncentral chi-square distribution
In this section, we consider the Wishart distributions for a special parameter, which is linked with the
noncentral chi-square distributions.
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Propsition 4.13 Let σu,v = σ, δu,v = δ. For W = (wu,v) ∼ CWp(ν,Σ,∆),

E[w1̇,1̈w2̇,2̈ · · ·wṅ,n̈] =
n∑

m=0

∑

l

glmnν
lσmδn−m,

where glmn is the number of E ⊂ KV such that len(E) = l, |E| = m and
∣∣Ě
∣∣ = n−m.

Corollary 4.14 For the noncentral complex chi-square distribution χ2
ν(δ) with ν degrees of freedom and

the noncentrality parameter δ, its n-th moment E(wn) is given as follows:

E[wn] =

n∑

m=0

∑

l

glmnν
lδn−m.

In the case where we add a new directed edge whose staring point is a fixed vertex, we have just one
choice of end-points that increase the number of cycles. Hence we obtain Lemma 4.15.

Lemma 4.15 Let 0 ≤ m ≤ n. Then the generating function Gmn(t) of glmn with respect to the number
l of cycles satisfies

Gmn(t) =
∑

l≥0

glmnt
l =

(
n

m

) m∏

i=1

(t+ n− i).

We also obtain the following corollary, which is well-known expression for the noncentral chi-square
distribution (e.g. [5])

Corollary 4.16 For the n-th moment E(wn) of the noncentral chi-square distribution χ2
ν(δ) with ν de-

grees of freedom and the noncentrality parameter δ,

E[wn] =
n∑

m=0

∑

l

glmnν
lδn−m =

n∑

m=0

Gmn(ν)δn−m =
n∑

m=0

(
n

m

)
δn−m

m∏

i=1

(ν + n− i).

Remark 4.17 The numbers sn(m, l) defined by the following generating function are called the noncen-
tral Stirling numbers of the first kind:

∑

l

sn(m, l)tl =
m∏

i=1

(t+ n− i).

If m = n, then sn(m, l) is the Stirling number of the first kind. Lemma 4.15 implies that glmn =(
n
m

)
sn(m, l). Equivalently, we can explicitly describe the moments of the noncentral chi-square distribu-

tion χ2
ν(δ) with the noncentral Stirling numbers. Koutras pointed out that moments of some noncentral

distributions are described with the noncentral Stirling numbers of the first kind [7].

Next consider the real case.

Propsition 4.18 Let σu,v = σ, δu,v = δ. For W = (wu,v) ∼Wp(ν,Σ,∆),

E[w1̇,1̈w2̇,2̈ · · ·wṅ,n̈] =
n∑

m=0

∑

l

g′lmnν
lσmδn−m,

where g′lmn is the number of E′ ⊂ K ′V ′ such that len(E′) = l, |E′| = m and
∣∣Ě′
∣∣ = n−m.
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Corollary 4.19 For the noncentral chi-square distribution χ2
ν(δ) with ν degrees of freedom and the non-

centrality parameter δ, its n-th moment E(wn) is given as:

E[wn] =
n∑

m=0

∑

l

g′lmnν
lδn−m,

where g′lmn is the number of E′ ⊂ K ′V ′ such that len(E′) = l, |E′| = m and
∣∣Ě′
∣∣ = n−m.

Proposition 4.7 and Lemma 4.15 imply Lemma 4.20.

Lemma 4.20 Let 0 ≤ m ≤ n, n ≤ 0. Then the generating function G′mn(t) of g′lmn with respect to the
number l of cycles satisfies

G′mn(t) =
∑

l≥0

g′lmnt
l =

(
n

m

) m∏

i=1

(t+ 2(n− i)).

Corollary 4.21 For the n-th moment E(wn) of the noncentral chi-square distribution χ2
ν(δ) with ν de-

grees of freedom and the noncentrality parameter δ,

E[wn] =
n∑

m=0

∑

l

g′lmnν
lδn−m =

n∑

m=0

G′mn(ν)δn−m =
n∑

m=0

(
n

m

)
δn−m

m∏

i=1

(ν + 2(n− i)).

4.3 Bivariate chi-square distribution
We can explicitly describe the moments of Wishart distributions by enumerating the matchings satisfying
some conditions. For example, in Proposition 4.23, we obtain the description of the moments of the
bivariate real chi-square distribution, which was introduced by Kibble [6]. The formulas imply formulas
for the complex distribution by Proposition 4.7. See [8] for details and other applications.

Propsition 4.22 Let Σ = (σuv) and ∆ = (δuv) satisfy

σu,v =

{
1 (u, v ≤ 2b or 2b+ 1 ≤ u, v),
ρ (otherwise),

δu,v = 0.

For a random matrix W = (wu,v) ∼Wb+c(ν,Σ,∆),

E[w1̇,1̈ · · ·wḃ,b̈ · w ˙(b+1), ¨(b+1)
· · ·w ˙(b+c), ¨(b+c)

]

=

min(b,c)∑

a=0

ρ2a 2ab!c!

(b− a)!(c− a)!a!

a∏

i=1

(ν + a(a− i))
b−a∏

i=1

(ν + a(b− i))
c−a∏

i=1

(ν + a(c− i)).

Propsition 4.23 Let Σ =

(
1 ρ
ρ 1

)
, and W = (wu,v) ∼W2(ν,Σ). For b, c ∈ Z≥0,

E[wb1,1w
c
2,2] =

min(b,c)∑

a=0

ρ2a 2ab!c!

(b− a)!(c− a)!a!

a∏

i=1

(ν + 2(a− i))
b−a∏

i=1

(ν + 2(b− i))
c−a∏

i=1

(ν + 2(c− i)).

Remark 4.24 In [14], Nadarajah and Kotz derived another expression for E[wb1,1w
c
2,2] with the Jacobi

polynomials.
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Bruhat order, rationally smooth Schubert
varieties, and hyperplane arrangements

Suho Oh1†and Hwanchul Yoo
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139

Abstract. We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element
of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for
regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only
if the Schubert variety is rationally smooth.

Résumé. Nous relions des variétés de Schubert dans le variété flag généralisée avec des arrangements des hyperplans.
Pour un élément dún groupe de Weyl, nous construisons un certain arrangement graphique des hyperplans. Nous
montrons que la fonction génératrice pour les régions de cet arrangement coincide avec le polynome de Poincaré de
la variété de Schubert correspondante si et seulement si la variété de Schubert est rationnellement lisse.

Keywords: Bruhat order, Schubert Variety, Rational Smoothness, Palidromic, Hyperplanes, Coxeter arrangement

1 Introduction
For an element of a Weyl group w ∈ W , let Pw(q) :=

∑
u≤w q

`(u), where the sum is over all elements
u ∈ W below w in the (strong) Bruhat order. Geometrically, the polynomial Pw(q) is the Poincaré
polynomial of the Schubert variety Xw = BwB/B in the flag manifold G/B.

The inversion hyperplane arrangement Aw is defined as the collection of hyperplanes corresponding
to all inversions of w. Let Rw(q) :=

∑
r q

d(r0,r) be the generating function that counts regions r of the
arrangement Aw according to the distance d(r0, r) from the fixed initial region r0.

The main result of the paper is the claim that Pw(q) = Rw(q) if and only if the Schubert variety Xw is
rationally smooth. We have previously given an elementary combinatorial proof for Type A case of this
problem in Oh et al. (2008).

According to the criterion of Peterson and Carrell (1994), the Schubert variety Xw is rationally smooth
if and only if the Poincaré polynomial Pw(q) is palindromic, that is Pw(q) = q`(w) Pw(q−1). If w is
not rationally smooth then the polynomial Pw(q) is not palindromic, but the polynomial Rw(q) is always
palindromic. So Pw(q) 6= Rw(q) in this case. Hence it is enough to show that Pw(q) = Rw(q) when w is
rationally smooth. Our proof is purely combinatorial, combining basics of Weyl groups with a result from
Billey and Postnikov (2005).

†S.O. was supported in part by Samsung Scholarship.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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2 Rational smoothness of Schubert varieties and Inversion hy-
perplane arrangement

In this section we will explain how rational smoothness can be expressed by conditions on the lower
Bruhat interval. We will also define the Inversion hyperplane arrangement. In this paper, unless stated
otherwise, we refer to the strong Bruhat order.

Let G be a semisimple simply-connected complex Lie group, B a Borel subgroup and h the corre-
sponding Cartan subalgebra. Let W be the corresponding Weyl group, ∆ ⊂ h∗ be the set of roots and
Π ⊂ ∆ be the set of simple roots. The choice of simple roots determines the set of positive roots. We will
write α > 0 for α ∈ ∆ being a positive root. Following the conventions of Björner and Brenti (2005),
let S be the set of simple reflections and T := {wsw−1 : s ∈ S,w ∈ W} be the set of reflections. Set
Π = {α1, · · · , αn}, S = {s1, · · · , sn} and index them properly so that si and αi corresponds to the same
node of the Dynkin diagram for 1 ≤ i ≤ n. Then there is a bijection between T and ∆ by matching
wsiw

−1 with w(αi). Then wsiw−1 is exactly the reflection that reflects by the hyperplane corresponding
to the root w(αi).

We have the following definitions as in Björner and Brenti (2005):

TL(w) := {t ∈ T : `(tw) < `(w)},

TR(w) := {t ∈ T : `(wt) < `(w)},
DL(w) := TL(w) ∩ S,
DR(w) := TR(w) ∩ S.

They are called the left(right) associated reflections of w and left(right) descent set of w. In this paper, we
concentrate on lower Bruhat intervals in W , [id, w] := {u ∈ Sn | u ≤ w}. They are related to Schubert
varieties Xw = BwB/B inside the generalized flag manifold G/B. The Poincaré polynomial of the
Schubert variety Xw is the rank generating function for the interval [id, w], e.g., see Billey et al. (2000):

Pw(q) =
∑

u≤w
q`(u).

For convenience, we will say that Pw(q) is the Poincaré polynomial of w. And we will say that w is
rationally smooth if Xw is rationally smooth. Due to Carrell and Peterson, one can check whether the
rational locus of a Schubert variety is smooth or not by studying Pw(q). Let us denote a polynomial
f(q) = a0 + a1 q + · · ·+ ad q

d as palindromic if f(q) = qdf(q−1), i.e., ai = ad−i for i = 0, . . . , d.

Theorem 1 (Carrell-Peterson Carrell (1994), see also (Billey et al., 2000, Sect. 6.2)) For any element of
a Weyl group w ∈W , the Schubert variety Xw is rationally smooth if and only if the Poincaré polynomial
Pw(q) is palindromic.

For each w ∈ W , we will be comparing this polynomial Pw(q) with another polynomial, that comes
from an associated hyperplane arrangement. To assign a hyperplane arrangement to each w ∈W , we first
need the definition of the inversion set of w. The inversion set ∆w of w is defined as the following:

∆w := {α|α ∈ ∆, α > 0, w(α) < 0}.
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For type A case, this gives the usual definition of an inversion set for permutations. Let us define
the arrangement Aw as the collection of hyperplanes α(x) = 0 for all roots α ∈ ∆w. Let r0 be the
fundamental chamber of Aw, the chamber that contains the points satisfying α(x) > 0 for all α ∈ ∆w.
Then we can define a polynomial from this Aw:

Rw(q) :=
∑

r

qd(r0,r),

where the sum is over all chambers of the arrangement Aw and d(r0, r) is the number of hyperplanes
separating r0 and r. Our goal in this paper is to show thatRw(q) = Pw(q) wheneverPw(q) is palindromic.

Remark 2 We have Pw(q) = Pw−1(q) and Rw(q) = Rw−1(q) by definition. Whenever we use this fact,
we will call this the duality of Pw(q) and Rw(q).

Given an arrangementAw and its subarrangementA′, let c be a chamber ofA′. Then a chamber graph
of c with respect to Aw is defined as a directed graph G = (V,E) where

• The vertex set V consists of vertices representing each chambers of Aw contained in c,

• we have an edge directed from vertex representing chamber c1 to a vertex representing chamber c2
if c1 and c2 are adjacent and d(r0, c1) + 1 = d(r0, c2).

We will say that Aw is uniform with respect to A′ if for all chambers of A′, chamber graphs with respect
to Aw are isomorphic. One can easily see that if Au is a subarrangement of Aw and Aw is uniform with
respect to Au, then Rw(q) is divided by Ru(q).

3 Parabolic Decomposition
In this section, we introduce a theorem of Billey and Postnikov (2005) regarding parabolic decomposition
that will serve as a key tool in our proof. Let’s first recall the definition of the parabolic decomposition.
Given a Weyl groupW , fix a subset J of simple roots. DenoteWJ to be the parabolic subgroup generated
by simple reflections of J . Let W J be the set of minimal length coset representatives of WJ\W . Then it
is a well-known fact that everyw ∈W has a unique parabolic decompositionw = uv where u ∈WJ , v ∈
W J and `(w) = `(u) + `(v).

Lemma 3 (van den Hombergh (1974)) For any w ∈ W and subset J of simple roots, WJ has a unique
maximal element below w.

We will denote the maximal element of WJ below w as m(w, J).

Theorem 4 (Billey and Postnikov (2005)) Let J be any subset of simple roots. Assume w ∈ W has
parabolic decomposition w = uv with u ∈WJ and v ∈W J and furthermore, u = m(w, J). Then

Pw(t) = Pu(t)PW
J

v (t)

where PW
J

v =
∑
z∈WJ ,z≤v t

`(z) is the Poincaré polynomial for v in the quotient.

This decomposition is very useful in the sense that it allows us to factor the Poincaré polynomials. We
will say that J = Π \ {α} is leaf-removed if α corresponds to a leaf in the Dynkin diagram of Π.

The following theorem of Billey and Postnikov (2005) tells us that we only need to look at maximal
leaf-removed parabolic subgroups for our purpose.
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Theorem 5 (Billey and Postnikov (2005)) Let w ∈ W be a rationally smooth element. Then there exists
a maximal proper subset J = Π \ {α} of simple roots, such that

1. we have a decomposition of w or w−1 as in Theorem 4,

2. α corresponds to a leaf in the Dynkin diagram of W .

We will call the parabolic decompositions that satisfies the conditions of the above theorem as BP-
decompositions. For Weyl groups of type A,B and D, there is a stronger result by Billey:

Lemma 6 (Billey (1998)) Let W be a Weyl group of type A,B or D. Let w ∈ W be a rationally smooth
element. If w is not the longest element of W , then there exists a BP-decomposition of w or w−1 with
respect to J such that P J(v) is of the form ql + ql−1 + · · ·+ q + 1, where l is the length of v.

If v satisfies the conditions of the above lemma, we will say that v is a chain element of W J . Using
the fact that Dynkin diagrams of type A or D are simply-laced, it is easy to deduce the following result
from the above lemma.

Corollary 7 Let W be a Weyl group of type A or D. If w ∈ W is rationally smooth then there exists a
BP-decomposition of w or w−1 with respect to J = Π \ {α} such that v is the longest element of W I∩J

I

for some I ⊂ Π containing α.

Using computers, we have found a nice property of palindromic intervals in maximal parabolic quotient
groups of type E.

Proposition 8 Let W be a Weyl group of type A,D and E and let J = Π \ {α}, where α corresponds to
a leaf in the Dynkin diagram. Then, v has palindromic lower interval in W J if and only if there exists a
subset I of Π containing α such that v is the longest element in W I∩J

I .

Let’s look at an example. Choose D6 to be our choice of Weyl group and label the simple roots
Π = {α1, · · · , α6} so that the labels match the corresponding nodes in the Dynkin diagram 1. If we set
J = Π \ {α1}, then the list of v ∈W J such that the lower interval in W J being palindromic is:

id, s1, s1s2, s1s2s3, s1s2s3s4, s1s2s3s4s5, s1s2s3s4s6, s1s2s3s4s5s6s4s3s2s1.

Each of them are the longest elements of W I∩J
I , where I is the set of simple reflections appearing in v.

One can see that the set of nodes I is connected inside the Dynkin diagram of D6.

1 2 3

4

5

6

Fig. 1: Dynkin diagram of D6

Now we will study how Rw(q) behaves with respect to the BP-decomposition . Using the notations of
Proposition 8, our first step is to prove that every reflection formed by simple reflections in I ∩ J is in
TR(u). We need the following lemma to prove it:
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Lemma 9 Let w ∈ W be a rationally smooth element and w = uv be a BP-decomposition. Then every
simple reflection in J appearing in the reduced word of v is a right descent of u.

Proof: Multiplying t ∈ TL(w) to w corresponds to deleting one simple reflection in a certain reduced
word of w. If we delete every simple reflection appearing in v but one in J , then the resulting element is
in WJ and is below w. Hence by maximality of u, it is below u. 2

Actually, we can state much more about u in terms of simple reflections of J appearing in v.

Lemma 10 Let w = uv be a BP-decomposition with respect to J . Let I be the subset of Π that appears
in the reduced word of v. Then every reflection formed by simple reflections in I ∩ J is a right inversion
reflection of u. In fact, there is a minimal length decomposition u = u′uI∩J where uI∩J is the longest
element of WI∩J .

Proof: Take the parabolic decomposition of u under the right quotient by WI∩J . Say, u = u′uI∩J .
Then u′ is the minimal length representative of u in W/WI∩J . For any simple reflection s ∈ I ∩ J , the
minimal length representative of us in W/WI∩J is still u′, hence the parabolic decomposition of us is
us = u′(uI∩Js). Since s is a right descent of u by Lemma 9, s is a right descent of uI∩J . Therefore uI∩J
is the longest element in WI∩J . The rest follows from this. 2

The above lemma tells us that for each rationally smooth w ∈ W , we can decompose w or w−1 to
u′uI∩Jv where uv is the BP-decomposition with respect to J , u = u′uI∩J and uI∩J is the longest
element of WI∩J . Recall that we denote by ∆w the inversion set of w ∈ W . For I ⊂ Π, we will denote
∆I the set of roots of WI . We have a decomposition

∆w = ∆u′ t u′∆uI∩Ju
′−1 t u∆vu

−1.

One can see that ∆uI∩J = ∆I∩J and ∆v ⊆ ∆I \ ∆I∩J . And this tells us that u′∆uI∩Ju
′−1

=
u∆I∩Ju−1. By duality, let’s assume we have decomposed some rationally smooth w as above. Let
A1,A0,A2 denote the hyperplane arrangement coming from u−1∆u′u,∆I∩J ,∆v . We can study A :=
A1 t A0 t A2 instead of looking at Aw.

Lemma 11 Let c be some chamber insideA1tA0. Let c′ be the chamber ofA0 that contains c. Then the
chamber graph of c with respect to A is isomorphic to the chamber graph of c′ with respect to A0 t A2.

Proof: Let c1 and c2 be two different chambers of A contained in c. They are separated by a hyperplane
in A2. Let c′1(c′2) be the chamber of A0 t A2 that contains c1(c2). c′1 and c′2 are different chambers
since they are separated by the hyperplane that separates c1 and c2. If c1 and c2 are adjacent, then c′1
and c′2 are adjacent. If c′1 and c′2 are adjacent but c1 and c2 are not, that means there is a hyperplane of
A1 that separates c1 and c2. But that contradicts the fact that c1 and c2 are both contained in the same
chamber ofA1tA0. So c1 and c2 are adjacent if and only if c′1 and c′2 are. From the fact that the distance
from the fundamental chamber is equal to the number of hyperplanes that separate the chamber from the
fundamental chamber, we see that the direction of the corresponding edges in the chamber graphs are the
same.

Hence it is enough to show that the number of chambers of A in c equals number of chambers of
A0 t A2 in c′. And this follows from showing that any chamber of A0 t A2 shares a common interior
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point with a chamber of A0 t A1 as long as they are contained in the same chamber of A0. To show
this, we may include additional hyperplanes to A1 and A2. So let A2 be the hyperplane arrangement of
∆I \ ∆I∩J and A1 hyperplane arrangement of ∆ \ ∆I . Now A is just the Coxeter arrangement of W ,
and each chamber of A is indexed by w ∈W .

We have a parabolic decomposition of W by WI∩JW I∩J
I W I . Fixing a chamber c of A0 corresponds

to fixing an element of WI∩J . In c, fixing a chamber x(y) of A0 t A2(A0 t A1) corresponds to fixing
an element of W I∩J

I (W I ). So given any such chamber x and y, we can find a chamber of A contained in
them. This concludes the argument.

2

Corollary 12 In the above decomposition, if Aw′ is uniform with respect to Au and v is the longest
element of W J

I , then Ru(q) = Pu(q) implies Rw(q) = Pw(q).

Proof: If v is the longest element of W J
I , then w′ := uI∩Jv is the longest element of WI . Then it is

obvious that Aw′ is uniform with respect to Au. Now it follows from above lemma that Rw(q)/Ru(q) =

RuI∩Jv(q)/RuI∩J (q). Since we also know that the right hand side equals PW
J

v (q), Ru(q) = Pu(q)
implies Rw(q) = Pw(q). 2

In the next section, we will use the above lemma and corollary to prove the main theorem for type
A,B,D and E.

4 The main Proof
In this section, we prove the main theorem. Type G case is trivial and omitted, type F case is done with
a computer and is omitted in this extended abstract. For type A,D and E, the proof is very easy using
Proposition 8 and Corollary 12.

Proposition 13 Let W be a Weyl group of type A,D or E. Let w be a rationally smooth element. Then
Rw(q) = Pw(q).

Proof: Decompose w or w−1 as in the remark preceding Lemma 11. By applying Proposition 8, we see
that v is the longest element of W J

I . Now we can apply Corollary 12. So we can replace w with some
rationally smooth u that is contained in some Weyl group of type A,D or E with strictly smaller rank. Now
the result follows from an obvious induction argument. 2

For type B, we will use Lemma 6 and Lemma 11. Let’s denote Π = {α0 = x1, α1 = x2−x1, · · · , αn =
xn+1 − xn}. We will be studying WΠ\{α0} and WΠ\{αn}. In both of them, if in the reduced word of v
there is an adjacent commuting letters, then v is not a chain element. So when J = Π \ {α0}, the chain
elements are

id, s0, s0s1, s0s1s2, · · · , s0s1 . . . sn, s0s1s0.

And when J = Π \ {αn}, the chain elements are

id, sn, snsn−1, · · · , snsn−1 . . . s1s0, snsn−1 . . . s1s0s1, · · · , snsn−1 . . . s1s0s1 . . . sn−1sn.

Proposition 14 Let W be a Weyl group of type B. Let w be a rationally smooth element. Then Rw(q) =
Pw(q).
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Proof: By Lemma 6, we may assume w or w−1 decomposes to uv where u ∈ WJ , v ∈ W J , J is leaf-
removed and v is a chain-element. Let’s first show that when u is the longest element of WJ , then Aw is
uniform with respect to Au and Rw(q) = Pw(q). Instead of looking at hyperplane arrangement coming
from ∆w = ∆utu∆vu

−1, we can look at the hyperplane arrangement coming from u−1∆wu = ∆ut∆v .
So Au consists of hyperplanes coming from ∆u and Av consists of hyperplanes coming from ∆v .

When J = Π \ {α0}, we have ∆v ⊂ {x1, · · · , xn} and |∆v| = `(v). Choosing a chamber in Au
is equivalent to giving a total ordering on {x1, · · · , xn}. Choosing a chamber in Av is equivalent to
assigning signs to roots of ∆v . Given any total ordering on {x1, · · · , xn}, there is a unique way to assign
t number of +’s and |v| − t number of −’s to ∆v so that it is compatible with the total order on ∆v . This
tells us thatAw is uniform with respect toAu and Rw(q) = Ru(q)(1 + q+ · · ·+ q|v|) = Ru(q)PW

J

v (q).
When J = Π \ {αn}, the proof is pretty much similar and is omitted.

Now let’s return to the general case. Using Lemma 11 and above argument, we can replace w with
some rationally smooth u that is contained in some Weyl group of type A or B with strictly smaller rank.
Then the result follows from an obvious induction argument.

2

5 Further remarks
As in Oh et al. (2008), our proof of the main theorem is based on a recurrence relation. It would be
interesting to give a proof based on a bijection between elements of [id, w] and regions of Aw.

The statement of our main theorem can be extended to Coxeter groups. Although we don’t have Schu-
bert varieties for Coxeter groups, the Poincaré polynomial Pw(q) can still be defined as the rank generating
function of the interval [id, w].

Conjecture 15 Let W be any Coxeter group. Then [id, w] is palindromic if and only if Pw(q) = Rw(q).

Our proof for the Weyl group case relied heavily on Theorem 5 and Proposition 8. Described a bit
roughly, the former helps us to find the recurrence for Pw(q) and the latter helps us to find the recurrence
for Rw(q). So the key would be to extending these two statements. For Proposition 8, it is easy to see that
one direction holds for all Weyl groups. We give a slightly weakened statement that seems to hold for all
Weyl groups.

Conjecture 16 Let W be a Weyl group and let J be a maximal proper subset of the simple roots. Then,
v has palindromic lower interval in W J if and only if the interval is isomorphic to a maximal parabolic
quotient of some Weyl group.

Let’s look at an example for the above conjecture. Choose F4 to be our choice of Weyl group and
label the simple roots Π = {α1, · · · , α4} so that the labels match the corresponding nodes in the Dynkin
diagram 2. If we set J = Π \ {α4}, then the list of v ∈ W J such that the lower interval in W J being
palindromic is:

id, s4, s4s3, s4s3s2, s4s3s2s1, s4s3s2s3, s4s3s2s3s4, s4s3s2s3s1s2s3s4s3s2s3s1s2s3s4.

Those that do not correspond to longest elements of W I∩J
I for some I ⊂ Π are s4s3s2, s4s3s2s3 and

s4s3s2s1. But in these cases, hasse diagram of [id, v] in W J is a chain. So we can say that [id, v] in W J

is isomorphic to a maximal parabolic quotient of a Weyl group of type A in these cases.
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1 2 3 4

Fig. 2: Dynkin diagram of F4

One nice property that Rw(q) has is that it is always palindromic regarthless of the rational smoothness
of w. And this is a property that intersection homology Poncaré polynomial IPw(q) also has.

So it would be interesting to compare these two polynomials.
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A. Björner and F. Brenti. Combinatorics of Coxeter Groups. Springer, 2005.

J. B. Carrell. The bruhat graph of a coxeter group, a conjecture of deodhar, and rational smoothness of
schubert varieties. Proceedings of Symposia in Pure Math, 56:53–61, 1994.

S. Oh, A. Postnikov, and H. Yoo. Bruhat order, smooth schubert varieties, and hyperplane arrangement.
J.Combin.Theory Ser.A, 115:1156–1166, 2008.

A. van den Hombergh. About the automorphisms of the bruhat-ordering in a coxeter group. Indag. math,
36:125–131, 1974.



FPSAC 2010, San Francisco, USA DMTCS proc. AN, 2010, 841–850

Bijective enumeration of permutations starting
with a longest increasing subsequence

Greta Panova1

1Harvard University

Abstract. We prove a formula for the number of permutations in Sn such that their first n− k entries are increasing
and their longest increasing subsequence has length n− k. This formula first appeared as a consequence of character
polynomial calculations in recent work of Adriano Garsia and Alain Goupil. We give two ‘elementary’ bijective
proofs of this result and of its q-analogue, one proof using the RSK correspondence and one only permutations.

Résumé. Nous prouvons une formule pour le nombre des permutations dans Sn dont les prémiers n − k entrées
sont croissantes et dont la plus longue sous-súite croissante est de longeur n− k. Cette formule est d’abord apparue
en conséquence de calculs sur les polynômes caractères des travaux récents de Adriano Garsia et Alain Goupil.
Nous donnons deux preuves bijectifs ‘élementaires’ de cet résultat et de son q-analogue, une preuve employant le
corréspondance RSK et une autre n’employant que les permutations.

Keywords: permutations, longest increasing subsequence, q-analogue, major index, RSK

1 Introduction
In [2], Adriano Garsia and Alain Goupil derived as a consequence of character polynomial calculations a
simple formula for the enumeration of certain permutations. In his talk at the MIT Combinatorics Seminar
[1], Garsia offered a $100 award for an ‘elementary’ proof of this formula. We give such a proof of this
formula and its q-analogue.

Let Πn,k = {w ∈ Sn|w1 < w2 < · · · < wn−k, is(w) = n − k}, the set of all permutations w in Sn,
such that their first n − k entries form an increasing sequence and the longest increasing sequence of w
has length n− k; where we denote by is(w) the maximal length of an increasing subsequence of w.

The formula in question is the following theorem originally proven by A. Garsia and A.Goupil [2].

Theorem 1 If n ≥ 2k, the number of permutations in Πn,k is given by

#Πn,k =

k∑

r=0

(−1)k−r
(
k

r

)
n!

(n− r)! .

This formula has a q−analogue, also due to Garsia and Goupil.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Theorem 2 For permutations in Πn,k, if n ≥ 2k, we have that

∑

w∈Πn,k

qmaj(w−1) =
k∑

r=0

(−1)k−r
(
k

r

)
[n]q · · · [n− r + 1]q,

where maj(σ) =
∑
i|σi>σi+1

i denotes the major index of a permutation and [n]q = 1−qn
1−q .

In this paper we will exhibit several bijections which will prove the above theorems. We will first define
certain sets of permutations and pairs of tableaux which come in these bijections. We will then construct
a relatively simple bijection showing a recurrence relation for the numbers #Πn,k. Using ideas from
this bijection we will then construct a bijection proving Theorems 1 and 2 directly. We will also show a
bijective proof which uses only permutations.

2 A few simpler sets and definitions.
Let rsk denote the RSK correspondence between permutations and pairs of tableaux [4], i.e. rsk(w) =
(P,Q), where w ∈ Sn and P and Q are standard Young tableaux (SYT) on [n] and of the same shape,
with P the insertion tableau and Q the recording tableau of w.

Let Cn,s = {w ∈ Sn|w1 < w2 < · · · < wn−s} be the set of all permutations on [n] with their first
n − s entries forming an increasing sequence. A permutation in Cn,s is bijectively determined by the
choice of the first n− s elements from [n] in

(
n
s

)
ways and the arrangement of the remaining s in s! ways,

so

#Cn,s =

(
n

s

)
s! =

n!

(n− s)! .

Let Crsk
n,s = rsk(Cn,s). Its elements are precisely the pairs of same-shape SYTs (P,Q) such that the

first row of Q starts with 1, 2, . . . , n− s: the first n− s elements are increasing and so will be inserted in
this order in the first row, thereby recording their positions 1, 2, . . . , n− s in Q in the first row also.

Let also Πrsk
n,s = rsk(Πn,s). Its elements are pairs of SYTs (P,Q), such that, as with Crsk

n,s, the first row
of Q starts with 1, 2, . . . , n − s. By a theorem of Schensted, the length of the first row in P and Q is the
length of the longest increasing subsequence of w, which is n−s in the case of Πn,s, so the first row of Q
is exactly 1, 2, . . . , n − s. That is, Πrsk

n,s is the set of pairs of same-shape SYTs (P,Q), such that the first
row of Q has length n− s and elements 1, 2, . . . , n− s.

Finally, let Dn,k,s be the set of pairs of same-shape tableaux (P,Q), where P is an SYT on [n] and Q
is a tableau filled with [n], with first row 1, 2, . . . , n − k, a1, . . . , as, b1, . . . where a1 > a2 > · · · > as,
b1 < b2 < · · · and the remaining elements of Q are increasing in rows and down columns. Thus Q
without its first row is an SYT. Notice that when s = 0 we just have Dn,k,0 = Crsk

n,k.
The three sets of pairs we defined are determined by their Q tableaux as shown below.

1 · · · n− s · · ·
· · ·

...

1 · · · n− s
· · ·

...

1 · · · n− k a1 · · · as · · ·
· · ·

...

Q, for (P,Q) ∈ Crsk
n,s Q, for (P,Q) ∈ Πrsk

n,s Q, for (P,Q) ∈ Dn,k,s
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3 A bijection.
We will exhibit a simple bijection, which will give us a recurrence relation for the numbers #Πn,k equiv-
alent to Theorem 1.

We should remark that while the recurrence can be inverted to give the inclusion-exclusion form of
Theorem 1, the bijection itself does not succumb to direct inversion. However, the ideas of this bijection
will lead us to discover the necessary construction for Theorem 1.

Proposition 1 The number of permutations in Πn,k satisfies the following recurrence:

k∑

s=0

(
k

s

)
#Πn,s =

(
n

k

)
k!

Proof:
Let Crsk

n,k,s with s ≤ k be the set of pairs of same-shape tableaux (P,Q), such that the length of their
first rows is n− k + s and the first row of Q starts with 1, 2, . . . , n− k; clearly Crsk

n,k,s ⊂ Crsk
n,k. We have

that

k⋃

s=0

Crsk
n,k,s = Crsk

n,k, (1)

as Crsk
n,k consists of the pairs (P,Q) with Q’s first row starting with 1, . . . , n − k and if n − k + s is this

first row’s length then (P,Q) ∈ Crsk
n,k,s.

There is a bijection Crsk
n,k,s ↔ Πrsk

n,k−s ×
(

[n−k+1,...,n]
s

)
given as follows. If (P,Q) ∈ Crsk

n,k,s and the
first row of Q is 1, 2, . . . , n− k, b1, . . . , bs, let

f : [n− k + 1, . . . , n] \ {b1, . . . , bs} → [n− k + s+ 1, . . . , n]

be the order-preserving map. Let then Q′ be the tableau obtained from Q by replacing every entry b
not in the first row with f(b) and the first row with 1, 2, . . . , n − k, n − k + 1, . . . , n − k + s. Then
Q′ is an SYT, since f is order-preserving and so the rows and columns are still increasing, first row
included as its elements are smaller than any element below it. Then the bijection in question is (P,Q)↔
(P,Q′, b1, . . . , bs). Conversely, if b1, . . . , bs ∈ [n − k + 1, . . . , n] (in increasing order) and (P,Q′) ∈
Πrsk
n,k−s, then replace all entries b below the first row of Q′ with f−1(b) and the the first row of Q′ with

1, 2, . . . , n − k, b1, . . . , bs. We end up with a tableau Q, which is an SYT because: the entries below the
first row preserve their order under f ; and, since they are at most k ≤ n − k, they are all below the first
n− k entries of the first row of Q (which are 1, 2, . . . , n− k, and thus smaller).

So we have that #Crsk
n,k,s =

(
k
s

)
#Πrsk

n,k−s and substituting this into (1) gives us the statement of the
lemma. 2

4 Proofs of the theorems.
We will prove Theorems 1 and 2 by exhibiting an inclusion-exclusion relation between the sets Πrsk

n,k and
Dn,k,s for s = 0, 1, . . . , k.
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Proof of Theorem 1:
First of all, if n ≥ 2k we have a bijectionDn,k,s ↔ Crsk

n,k−s×
(

[n−k+1,...,n]
s

)
, where the correspondence

is (P,Q)↔ (P,Q′)× {a1, . . . , as} given as follows.
Consider the order-preserving bijection

f : [n− k + 1, . . . , n] \ {a1, . . . , as} → [n− k + s+ 1, . . . , n].

Then Q′ is obtained from Q by replacing a1, . . . , as in the first row with n − k + 1, . . . , n − k + s and
every other element b inQ, b > n−k and 6= ai, with f(b). The first n−k elements in the first row remain
1, 2, . . . , n − k. Since f is order-preserving, Q′ without its first row remains an SYT (the inequalities
within rows and columns are preserved). Since also n−k ≥ k, we have that the second row ofQ (andQ′)
has length less than or equal to k and hence n− k, so since the elements above the second row are among
1, 2, . . . , n−k they are smaller than any element in the second row (which are all from [n−k+1, . . . , n]).
Also, the remaining first row ofQ′ is increasing since it starts with 1, 2, . . . , n−k, n−k+1, . . . , n−k+s
and its remaining elements are in [n− k+ s+ 1, . . . , n] and are increasing because f is order-preserving.
Hence Q′ is an SYT with first row starting with 1, . . . , n− k + s, so (P,Q′) ∈ Crsk

n,k−s.
Conversely, if (P,Q′) ∈ Crsk

n,k−s and {a1, . . . , as} ∈ [n − k + 1, . . . , n] with a1 > a2 · · · > as, then
we obtain Q from Q′ by replacing n− k + 1, . . . , n = k + s with a1, . . . , as and the remaining elements
b > n− k with f−1(b), again preserving their order, and so (P,Q) ∈ Dn,k,s.

Hence, in particular,

#Dn,k,s =

(
k

s

)
#Crsk

n,k−s =

(
k

s

)
#Cn,k−s =

(
k

s

)
n!

(n− k + s)!
. (2)

We have that Πrsk
n,k ⊂ Crsk

n,k since Πn,k ⊂ Cn,k. Then Crsk
n,k \Πrsk

n,k is the set of pairs of SYTs (P,Q) for
which the first row of Q is 1, 2, . . . , n− k, a1, . . . for at least one a1. So En,k,1 = Crsk

n,k \ Πrsk
n,k is then a

subset ofDn,k,1. The remaining elements inDn,k,1, that isEn,k,2 = Dn,k,1\En,k,1, would be exactly the
ones for which Q is not an SYT, which can happen only when the first row of Q is 1, 2, . . . , n− k, a1 >
a2, . . . . These are now a subset of Dn,k,2 and by the same argument, we haven’t included the pairs for
which the first row of Q is 1, 2, . . . , n − k, a1 > a2 > a3, . . . , which are now in Dn,k,3. Continuing
in this way, if En,k,l+1 = Dn,k,l \ En,k,l, we have that En,k,l is the set of (P,Q) ∈ Dn,k,l, such that
the first row of Q is 1, 2, , . . . , n − k, a1 > · · · > al < · · · . Then En,k,l+1 is the subset of Dn,k,l, for
which the element after al is smaller than al and so En,k,l+1 ⊂ Dn,k,l+1. Finally, En,k,k = Dn,k,k and
En,k,k+1 = ∅. We then have

Πrsk
n,k = Crsk

n,k \ (Dn,k,1 \ (Dn,k,2 \ · · · \ (Dn,k,k−1 \Dn,k,k))) , (3)

or in terms of number of elements, applying (2), we get

#Πn,k = #Πrsk
n,k =

n!

(n− k)!
−
(
k

1

)
n!

(n− k + 1)!
+

(
k

2

)
n!

(n− k + 2)!
+ . . .

=
k∑

i=0

(−1)i
(
k

i

)
n!

(n− k + i)!
,

which is what we needed to prove. 2

Theorem 2 will follow directly from (3) after we prove the following lemma.
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Lemma 1 We have that
∑

w∈Cn,s

qmaj(w−1) = [n]q . . . [n− s+ 1]q,

where maj(σ) =
∑
i:σi>σi+1

i denotes the major index of σ.

Proof:
Let P be the poset on [n] consisting of a chain 1, . . . , n−s and the single points n−s+1, . . . , n. Then

σ ∈ Cn,s if and only if σ−1 ∈ L(P ), i.e. σ : P → [n] is a linear extension of P . We have that
∑

w∈Cn,s

qmaj(w−1) =
∑

w∈L(P )

qmaj(w);

denote this expression by WP (q). By theorem 4.5.8 from [3] on P -partitions, we have that

WP (q) = GP (q)(1− q) . . . (1− qn), (4)

where GP (q) =
∑
m≥0 a(m)qm with a(m) denoting the number of P -partitions of m. That is, a(m)

is the number of order-reversing maps τ : P → N, such that
∑
i∈P τ(i) = m. In our particular case,

these correspond to sequences τ(1), τ(2), . . ., whose sum is m and whose first n − s elements are non-
increasing. These correspond to partitions of at most n−s parts and a sequence of s nonnegative integers,
which add up to m. The partitions with at most n− s parts are in bijection with the partitions with largest
part n − s (by transposing their Ferrers diagrams). The generating function for the latter is given by a
well-known formula of Euler and is equal to

1

(1− q)(1− q2) · · · (1− qn−s) .

The generating function for the number of sequences of s nonnegative integers with a given sum is trivially
1/(1− q)s and so we have that

GP (q) =
1

(1− q)(1− q2) · · · (1− qn−s)
1

(1− q)s .

After substitution in (4) we obtain the statement of the lemma. 2

Proof of Theorem 2.:
The descent set of a tableau T is the set of all i, such that i+1 is in a lower row than i in T , denote it by

D(T ). By the properties of RSK (see e.g. [4], lemma 7.23.1) we have that the descent set of a permutation,
D(w) = {i : wi > wi+1} is the same as the descent set of its recording tableau, or by the symmetry of
RSK, D(w−1) is the same as the descent set of the insertion tableau P . Write maj(T ) =

∑
i∈D(T ) i.

Hence we have that
∑

w∈Πn,k

qmaj(w−1) =
∑

w∈Πn,k,rsk(w)=(P,Q)

qmaj(P ) =
∑

(P,Q)∈Πrsk
n,k

qmaj(P ) (5)
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From the proof of Theorem 1 we have the equality (3) on sets of pairs (P,Q),

Πrsk
n,k = Crsk

n,k \ (Dn,k,1 \ (Dn,k,2 \ · · · \ (Dn,k,k−1 \Dn,k,k))) ,

or alternatively, Πrsk
n,k = Crsk

n,k \ En,k,1 and En,k,l = Dn,k,l \ En,k,l+1. Hence the statistic qmaj(P ) on
these sets will also respect the equalities between them; i.e. we have

∑

(P,Q)∈Πrsk
n,k

qmaj(P ) =
∑

(P,Q)∈Crsk
n,k\En,k,1

qmaj(P )

=
∑

(P,Q)∈Crsk
n,k

qmaj(P ) −
∑

(P,Q)∈En,k,1

qmaj(P )

=
∑

(P,Q)∈Crsk
n,k

qmaj(P ) −
∑

(P,Q)∈Dn,k,1

qmaj(P ) +
∑

(P,Q)∈En,k,2

qmaj(P ) = · · ·

=
∑

(P,Q)∈Crsk
n,k

qmaj(P ) −
∑

(P,Q)∈Dn,k,1

qmaj(P ) + · · ·+ (−1)k
∑

(P,Q)∈Dn,k,k

qmaj(P ).

(6)

Again, by the RSK correspondence, maj(P ) = maj(w−1) and Lemma 1 we have that
∑

(P,Q)∈Crsk
n,k

qmaj(P ) =
∑

w∈Cn,k

qmaj(w−1) = [n]q · · · [n− k + 1]q. (7)

In order to evaluate
∑

(P,Q)∈Dn,k,s
qmaj(P ) we note that pairs (P,Q) ∈ Dn,k,s are in correspondence

with triples (P,Q′,a = {a1, . . . , as}), where P remains the same and (P,Q′) ∈ Crsk
n,k−s. Hence

∑

(P,Q)∈Dn,k,s

qmaj(P ) =
∑

(P,Q′,a)

qmaj(P )

=
∑

a∈([n−k+1,...,n]
s )

∑

(P,Q′)∈Crsk
n,k−s

qmaj(P )

=

(
k

s

)
[n]q · · · [n− k + s+ 1]q. (8)

Substituting the equations for (7) and (8) into (6) and comparing with (5) we obtain the statement of the
theorem. 2

We can apply the same argument for the preservation of the insertion tableaux and their descent sets to
the bijection Tn,k,s ↔ Πrsk

n,k−s ×
(

[n−k+1,...,n]
s

)
in Proposition 1. We see that the insertion tableaux P in

this bijection, (P,Q) ↔ (P,Q′, b1, . . . , bs) remains the same and so do the corresponding descent sets
and major indices

∑

(P,Q)∈Tn,k,s

qmaj(P ) =

(
k

s

) ∑

(P,Q′)∈Πrsk
n,k−s

qmaj(P ) =

(
k

s

) ∑

w∈Πn,k−s

qmaj(w−1).
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Hence we have the following corollary to the bijection in Proposition 1 and Lemma 1.

Proposition 2 We have that

k∑

s=0

(
k

s

) ∑

w∈Πn,k−s

qmaj(w−1) = [n]q · · · [n− k + 1]q. (9)

5 Permutations only.
Since the original question was posed only in terms of permutations, we will now give proofs of the main
theorems without passing on to the pairs of tableaux. The constructions we will introduce is inspired
from application of the inverse RSK to the pairs of tableaux considered in our proofs so far. However,
since the pairs (P,Q) of tableaux in the sets Dn,k,s are not pairs of Standard Young Tableaux we cannot
apply directly the inverse RSK to the bijection in the proof of Theorem 1. This requires us to find new
constructions and sets of permutations.

We will say that an increasing subsequence of length m of a permutation π satisfies the LLI-m (Least
Lexicographic Indices) property if it is the first appearance of an increasing subsequence of length m (i.e.
if a is the index of its last element, then π̄ = π1, . . . , πa−1 has is(π̄) < m) and the indices of its elements
are smallest lexicographically among all such increasing subsequences. For example, in π = 2513467,
234 is LLI-3. Let n ≥ 2s and let Cn,s,a with a ∈ [n − s + 1, . . . , n] be the set of permutations in Cn,s,
for which there is an increasing subsequence of length n − s + 1 and whose LLI-(n − s + 1) sequence
has its last element at position a.

We define a map Φ : Cn,s \Πrsk
n,s → Cn,s−1× [n− s+ 1, . . . , n] for n ≥ 2s as follows. A permutation

π ∈ Cn,s \Πrsk
n,s has a LLI-(n−s+ 1) subsequence σ which would necessarily start with π1 since n ≥ 2s

and π ∈ Cn,s. Let σ = π1, . . . , πl, πil+1
, . . . , πin−s+1 for some l ≥ 0; if a = in−s+1 then π ∈ Cn,s,a. Let

w be obtained from π by setting wij = πij+1
for l + 1 ≤ j ≤ n − s, and then inserting πil+1

right after
πl, all other elements preserve their (relative) positions. For example, if π = 12684357 ∈ C8,4 \ Πrsk

8,4,
then 12457 is LLI-5, a = 8 and w = 12468537. Set Φ(π) = (w, a).

Lemma 2 The map Φ is well-defined and injective. We have that

Cn,s−1 × a \ Φ(Cn,s,a) =
⋃

n−s+2≤b≤a
Cn,s−1,b.

Proof: Let again π ∈ Cn,s,a and Φ(π) = (w, a). It is clear by the LLI condition that we must have
πil+1

< πl+1 as otherwise
π1, . . . , πl+1, πil+1

, . . . , πin−s

would be increasing of length n − s + 1 and will have lexicographically smaller indices. Then the first
n− s+ 1 elements of w will be increasing and w ∈ Cn,s−1.

To show injectivity and describe the coimage we will describe the inverse map Ψ : Φ(Cn,s,a)→ Cn,s,a.
Let (w, a) ∈ Φ(Cn,s,a) with (w, a) = Φ(π) for some π ∈ Cn,s,a and let w̄ = w1 · · ·wa.

Notice that w̄ cannot have an increasing subsequence {yi} of length n− s+ 2. To show this, let {xi}
be the subsequence of w which was the LLI-(n−s+1) sequence of π. If there were a sequence {yi}, this
could have happened only involving the forward shifts of xi and some of the x′s and y′s should coincide
(in the beginning at least). By the pigeonhole principle there must be two pairs of indices p1 < q1
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and p2 < q2 (q1 and q2 might be auxiliary, i.e. off the end of w̄), such that in w̄ we have xp1 = yp2
and xq1 = yq2 and between them there are strictly more elements of y and no more coincidences, i.e.
q2 − p2 > q1 − p1. Then xp1−1 < xp1 < yp2+1 and in π (after shifting {xi} back) we will have the
subsequence x1, . . . , xp1−1, yp2+1, . . . , yq2−1, xq1 = yq2 , . . . , xn−s+1, which will be increasing and of
length p1 − 1 + q2 − p2 + n − s + 1 − q1 ≥ n − s + 1. By the LLI property we must have that yp2+1

appears after xp1 , but then x1, . . . , xp1−1, xp1 , yp2+1, . . . , yq2−1, xq1 = yq2 , . . . , xn−s will be increasing
of length at least n−s+1 appearing before {xi} in π. This violates the other LLI condition of no n−s+1
increasing subsequences before xn−s+1.

Now let σ = w1, . . . , wr, wir+1
, . . . , win−s+1

with ir+1 > n − s + 1 be the (n − s + 1)-increasing
subsequence of w̄ with largest lexicographic index sequence. Let w′ be obtained from w by assigning
w′ij = wij−1

for r + 1 ≤ j ≤ n− s+ 1, where ir = r, w′a1 = win−s+1
and then deleting the entry wr at

position r.

We claim that the LLI-(n − s + 1) sequence of w′ is exactly σ. Suppose the contrary and let {yi} be
the LLI-(n − s + 1) subsequence of w′. Since n ≥ 2s we have y1 = w1 = σ1, . . . , yij = wij = σj for
all 1 ≤ j ≤ l for some l ≥ r. If there are no more coincidences between y and σ afterwards, then the
sequence w1 = y1, . . . , wil = yl, yl+1, . . . , yn−s+1 is increasing of length n − s + 1 in w̄ (in the same
order) and of lexicographically larger index than σ, since the index of yl+1 is after the index of yl in w′

equal to the index of σl+1 in w.

Hence there must be at least one more coincidence, let yp = σq be the last such coincidence. Again,
in w̄ the sequence σ1, . . . , σq, yp+1, . . . , yn−s+1 appears in this order and is increasing with the index of
yp+1 larger than the one of σq+1 inw, so its length must be at most n−s, i.e. q+(n−s+1)−p ≤ n−s, so
q ≤ p− 1. We see then that there are more y′s between yl and yp = σq than there are σ′s there, so we can
apply an argument similar to the one in the previous paragraph. Namely, there are indices p1, q1, p2, q2,
such that yp1 = σq1 , yp2 = σq2 with no other coincidences between them and q2 − q1 < p2 − p1.
Then the sequence σ1, . . . , σq1 , yp1+1, . . . , yp2−1, σq2+1, . . . is increasing in this order in w, has length
q1+p2−1−p1+n−s+1−q2 = (n−s+1)+(p2−p1)−(q2−q1)−1 ≥ n−s+1 and the index of yp1+1

in w is larger than the index of σq1+1 (which is the index of yp1 in w′). We thus reach a contradiction,
showing that we have found the inverse map of Φ is given by Ψ(w, a) = w′ and, in particular, that Φ is
injective.

We have also shown that the image of Φ consists exactly of these permutations, which do not have an
increasing subsequence of length n − s + 2 within their first a elements. Therefore the coimage of Φ is
the set of permutations in Cn,s−1 with n− s+ 2 increasing subsequence within its first a elements, so the
ones in Cn,s−1,b for n− s+ 2 ≤ b ≤ a. 2

We can now proceed to the proof of Theorem 1. We have that Cn,k \ Πrsk
n,k is exactly the set of permu-

tations in Cn,k with some increasing subsequence of length n− k + 1, hence

Cn,k \Πrsk
n,k =

⋃

n−k+1≤a1≤n
Cn,k,a1 .
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On the other hand, applying the lemma we have that
⋃

n−k+1≤a1≤n
Cn,k,a1 '

⋃

n−k+1≤a1≤n
Φ(Cn,k,a1) (10)

=
⋃

n−k+1≤a1≤n


Cn,k−1 × a1 \

⋃

n−k+2≤a2≤a1
Cn,k−1,a2




= Cn,k−1 ×
(

[k]

1

)
\


 ⋃

n−k+2≤a2≤a1≤n
Cn,k−1,a2 × a1




' Cn,k−1 ×
(

[k]

1

)
\


Cn,k−1 ×

(
[k]

2

)
\


 ⋃

n−k+3≤a3≤a2≤a1≤n
Cn,k−2,a3 × (a2, a1)






= · · · = Cn,k−1 ×
(

[k]

1

)
\
(
Cn,k−2

(
[k]

2

)
\ · · · \

(
Cn,k−r ×

(
[k]

r

)
\ . . .

)
. . .

)
,

where' denotes the equivalence under Φ and
(

[k]
r

)
represent the r−tuples (ar, . . . , a1) where n−k+r ≤

ar ≤ ar−1 ≤ · · · ≤ a1 ≤ n. Since #Cn,k−r ×
(

[k]
r

)
=
(
n
k−r
)
(k − r)!

(
k
r

)
, Theorem 1 follows.

As for the q−analogue, Theorem 2, it follows immediately from the set equalities (10) and Lemma 1
once we realize that the map Φ does not change the major index of the inverse permutation, as shown in
the following small lemma.

Lemma 3 LetD(w) = {i+1 before i in w}. ThenD(w) = D(Φ(w)) and thus maj(w−1) =
∑
i∈D(w) i

remains the same after applying Φ.

Proof: To see this, notice that i and i + 1 could hypothetically change their relative order after applying
Φ only if exactly one of them is in the LLI-(n − s + 1) sequence of w, denote this sequence by σ =
w1, . . . , win−s+1

.
Let wp = i and wq = i+ 1. We need to check only the cases when p = ir and ir−1 < q < ir or q = ir

and ir−1 < p < ir, since otherwise i and i+1 preserve their relative order after shifting σ one step forward
by applying Φ. In either case, we see that the sequence w1, . . . , wir−1 , wp (or wq), wir+1 , . . . , win−s+1

is increasing of length n − s + 1 in w and has lexicographically smaller indices than σ, violating the
LLI property. Thus these cases are not possible and the relative order of i and i + 1 is preserved, so
D(w) = D(Φ(w)). 2

We now have that the equalities and equivalences in (10) are equalities on the setsD(w) and so preserve
the maj(w−1) statistic, leading directly to Theorem 2.
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Cyclic sieving for longest reduced words in
the hyperoctahedral group
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Abstract. We show that the set R(w0) of reduced expressions for the longest element in the hyperoctahedral group
exhibits the cyclic sieving phenomenon. More specifically, R(w0) possesses a natural cyclic action given by moving
the first letter of a word to the end, and we show that the orbit structure of this action is encoded by the generating
function for the major index on R(w0).

Résumé. Nous montrons que l’ensemble R(w0) des expressions réduites pour l’élément le plus long du groupe
hyperoctaédral présente le phénomène cyclique de tamisage. Plus précisément, R(w0) possède une action naturelle
cyclique donnée par le déplacement de la première lettre d’un mot vers la fin, et nous montrons que la structure
d’orbite de cette action est codée par la fonction génératrice pour l’indice majeur sur R(w0).

Resumen. En este artı́culo demostramos que el conjunto R(w0) de expresiones reducidas del elemento mas largo del
grupo hiperoctaedro presenta el fenómeno de tamizado cı́clico. Para ser mas precisos,R(w0) posee una acción cı́clica
natural dada por el movimiento de la primera letra de una palabra al final, y nosotros mostramos que la estructura de
las orbitas de esta acción está codificada por la función generatriz del indice mayor en R(w0).

Keywords: Cyclic sieving, hyperoctahedral group, standard Young tableau, shifted staircase, reduced word

1 Introduction and main result
Suppose we are given a finite set X , a finite cyclic group C = 〈ω〉 acting on X , and a polynomial
X(q) ∈ Z[q] with integer coefficients. Following Reiner, Stanton, and White [RSW], we say that the
triple (X,C,X(q)) exhibits the cyclic sieving phenomenon (CSP) if for every integer d ≥ 0, we have that
|Xωd | = X(ζd) where ζ ∈ C is a root of unity of multiplicitive order |C| andXωd is the fixed point set of
the action of the power ωd. In particular, since the identity element fixes everything in any group action,
we have that |X| = X(1) whenever (X,C,X(q)) exhibits the CSP.

If the triple (X,C,X(q)) exhibits the CSP and ζ is a primitive |C|th root of unity, we can determine
the cardinalities of the fixed point sets X1 = X , Xω , Xω2

, . . . , Xω|C|−1

via the polynomial evalua-
tions X(1), X(ζ), X(ζ2), . . . , X(ζ |C|−1). These fixed point set sizes determine the cycle structure of the
canonical image of ω in the group of permutations of X , SX . Therefore, to find the cycle structure of the

†Partially supported by NSF grant DMS-0555880

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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image of any bijection ω : X → X , it is enough to determine the order of the action of ω on X and find a
polynomial X(q) such that (X, 〈c〉, X(q)) exhibits the CSP.

The cyclic sieving phenomenon has been demonstrated in a variety of contexts. The paper of Reiner,
Stanton, and White [RSW] itself includes examples involving noncrossing partitions, triangulations of
polygons, and cosets of parabolic subgroups of Coxeter groups. An example of the CSP with standard
Young tableaux is due to Rhoades [Rh] and will discussed further in Section 4. Now we turn to the CSP
of interest to this note.

Let w0 = w
(Bn)
0 denote the longest element in the type Bn Coxeter group. Given generating set

S = {s1, . . . , sn} for Bn, (s1 being the “special” reflection), we will write a reduced expression for w0

as a word in the subscripts. For example, w(B3)
0 can be written as

s1s2s1s3s2s3s1s2s3;

we will abbreviate this product by 121323123. It turns out that if we cyclically permute these letters, we
always get another reduced expression forw0. Said another way, siw0si = w0 for i = 1, . . . , n. The same
is not true for longest elements of other classical types. In type A, we have siw

(An)
0 sn+1−i = w

(An)
0 , and

for type D,

w
(Dn)
0 =

{
siw

(Dn)
0 si if n even or i > 2,

siw
(Dn)
0 s3−i if n odd and i = 1, 2.

Let R(w0) denote the set of reduced expressions for w0 in type Bn and let c : R(w0)→ R(w0) denote
the action of placing the first letter of a word at the end. Then the orbit in R(w

(B3)
0 ) of the word above is:

{121323123→ 213231231→ 132312312→ 323123121→ 231231213

→ 312312132→ 123121323→ 231213231→ 312132312}.

As the length of w0 is n2, we clearly have cn
2

= 1, and the size of any orbit divides n2. For an example
of a smaller orbit, notice that the word 213213213 has cyclic order 3.

For any word w = w1 . . . wl, (e.g., a reduced expression for w0), a descent of w is defined to be a
position i in which wi > wi+1.The major index of w, maj(w), is defined as the sum of the descent
positions. For example, the word w = 121323123 has descents in positions 2, 4, and 6, so its major index
is maj(w) = 2 + 4 + 6 = 12. Let fn(q) denote the generating function for this statistic on words in
R(w0):

fn(q) =
∑

w∈R(w0)

qmaj(w).

The following is our main result.

Theorem 1 The triple (R(w0), 〈c〉, X(q)) exhibits the cyclic sieving phenomenon, where

X(q) = q−n(n2)fn(q).
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For example, let us consider the case n = 3. We have

X(q) = q−9
∑

w∈R(w
(B3)
0 )

qmaj(w)

= 1 + q2 + 2q3 + 2q4 + 2q5 + 4q6 + 3q7 + 4q8 + 4q9

+4q10 + 3q11 + 4q12 + 2q13 + 2q14 + 2q15 + q16 + q18.

Let ζ = e
2πi
9 . Then we compute:

X(1) = 42 X(ζ3) = 6 X(ζ6) = 6
X(ζ) = 0 X(ζ4) = 0 X(ζ7) = 0
X(ζ2) = 0 X(ζ5) = 0 X(ζ8) = 0

Thus, the 42 reduced expressions for w(B3)
0 split into two orbits of size three (the orbits of 123123123 and

132132132) and four orbits of size nine.
We prove Theorem 1 by relating it to another instance of the CSP, namely Rhoades’ recent (and deep)

result [Rh, Thm 3.9] for the set SY T (nm) of rectangular standard Young tableaux with respect to the
action of promotion (defined in Section 2). To make the connection, we rely on a pair of remarkable
bijections due to Haiman [H1, H2]. The composition of Haiman’s bijections maps to R(w0) from the set
of square tableaux, SY T (nn). In this note our main goal is to show that Haiman’s bijections carry the
orbit structure of promotion on SY T (nn) to the orbit structure of c on R(w0).

We conclude this section by remarking that this approach was first outlined by Rhoades [Rh, Thm 8.1].
One purpose of this article is to fill some nontrivial gaps in his argument. A second is to justify the new
observation that the polynomial X(q) can be expressed as the generating function for the major index on
R(w0).

2 Promotion on standard Young tableaux
For λ a partition, let SY T (λ) denote the set of standard Young tableaux of shape λ. If λ is a strict
partition, i.e., with no equal parts, then let SY T ′(λ) denote the set of standard Young tableaux of shifted
shape λ. We now describe the action of jeu de taquin promotion, first defined by Schützenberger [Sch].

We will consider promotion as a permutation of tableaux of a fixed shape (resp. shifted shape), p :
SY T (λ) → SY T (λ) (resp. p : SY T ′(λ) → SY T ′(λ)). Given a tableau T with λ ` n, we form p(T )
with the following algorithm. (We denote the entry in row a, column b of a tableau T , by Ta,b.)

1. Remove the entry 1 in the upper left corner and decrease every other entry by 1. The empty box is
initialized in position (a, b) = (1, 1).

2. Perform jeu de taquin:

(a) If there is no box to the right of the empty box and no box below the empty box, then go to 3).

(b) If there is a box to the right or below the empty box, then swap the empty box with the box
containing the smaller entry, i.e., p(T )a,b := min{Ta,b+1, Ta+1,b}. Set (a, b) := (a′, b′),
where (a′, b′) are the coordinates of box swapped, and go to 2a).
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3. Fill the empty box with n.

Here is an example:

T =
1 2 4 8
3 6 7
5

7→
1 3 6 7
2 5 8
4

= p(T ).

As a permutation, promotion naturally splits SY T (λ) into disjoint orbits. For a general shape λ there
seems to be no obvious pattern to the sizes of the orbits. However, for certain shapes, notably Haiman’s
“generalized staircases” more can be said [H2] (see also Edelman and Greene [EG, Cor. 7.23]). In
particular, rectangles fall into this category, with the following result.

Theorem 2 ([H2], Theorem 4.4) If λ ` N = bn is a rectangle, then pN (T ) = T for all T ∈ SY T (λ).

Thus for n× n square shapes λ, pn
2

= 1 and the size of every orbit divides n2. With n = 3, here is an
orbit of size 3:

1 2 5
3 6 8
4 7 9

→
1 4 7
2 5 8
3 6 9

→
1 3 6
2 4 7
5 8 9

→ · · · . (1)

There are 42 standard Young tableaux of shape (3, 3, 3), and there are 42 reduced expressions in the
set R(w

(B3)
0 ). Stanley first conjectured that R(w

(B3)
0 ) and SY T (nn) are equinumerous, and Proctor

suggested that rather than SY T (nn), a more direct correspondence might be given with SY T ′(2n −
1, 2n − 3, . . . , 1), that is, with shifted standard tableaux of “doubled staircase” shape. (That the squares
and doubled staircases are equinumerous follows easily from hook length formulas.)

Haiman answers Proctor’s conjecture in such a way that the structure of promotion on doubled staircases
corresponds precisely to cyclic permutation of words in R(w0) [H2, Theorem 5.12]. Moreover, in [H1,
Proposition 8.11], he gives a bijection between standard Young tableaux of square shape and those of
doubled staircase shape that (as we will show) commutes with promotion.

As an example, his bijection carries the orbit in 1 to this shifted orbit:

1 2 4 5 8
3 6 9

7
→

1 2 3 4 7
5 6 8

9
→

1 2 3 6 9
4 5 7

8
→ · · · .

Both of these orbits of tableaux correspond to the orbit of the reduced word 132132132.

3 Haiman’s bijections
We first describe the bijection between reduced expressions and shifted standard tableaux of doubled
staircase shape. This bijection is described in Section 5 of [H2].

Let T in SY T ′(2n − 1, 2n − 3, . . . , 1). Notice the largest entry in T , (i.e., n2), occupies one of the
outer corners. Let r(T ) denote the row containing this largest entry, numbering the rows from the bottom
up. The promotion sequence of T is defined to be Φ(T ) = r1 · · · rn2 , where ri = r(pi(T )). Using the
example above of

T =
1 2 4 5 8

3 6 9
7

,
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we see r(T ) = 2, r(p(T )) = 1, r(p2(T )) = 3, and since p3(T ) = T , we have

Φ(T ) = 132132132.

Haiman’s result is the following.

Theorem 3 ([H2], Theorem 5.12) The map T 7→ Φ(T ) is a bijection SY T ′(2n − 1, 2n − 3, . . . , 1) →
R(w0).

By construction, one can see that applying promotion to T will cyclically shift the letters in Φ(T ).
Therefore, we have

Φ(p(T )) = c(Φ(T )),

i.e., Φ is an orbit-preserving bijection

(SY T ′(2n− 1, 2n− 3, . . . , 1), p)←→ (R(w0), c).

Next, we will describe the bijection

H : SY T (nn)→ SY T ′(2n− 1, 2n− 3, . . . , 1)

between squares and doubled staircases. Though not obvious from the definition below, we will demon-
strate that H commutes with promotion.

We assume the reader is familiar with the Robinson-Schensted-Knuth insertion algorithm (RSK). (See
[Sta, Section 7.11], for example.) This is a map between words w and pairs of tableaux (P,Q) =
(P (w), Q(w)). We say P is the insertion tableau and Q is the recording tableau.

There is a similar correspondence between wordsw and pairs of shifted tableaux (P ′, Q′) = (P ′(w), Q′(w))
called shifted mixed insertion due to Haiman [H1]. (See also Sagan [Sa] and Worley [W].) Serrano de-
fined a semistandard generalization of shifted mixed insertion in [Ser]. Throughout this paper we refer
to semistandard shifted mixed insertion simply as mixed insertion. Details can be found in [Ser, Section
1.1].

Theorem 4 ([Ser] Theorem 2.26) Let w be a word. If we view Q(w) as a skew shifted standard Young
tableau and apply jeu de taquin to obtain a standard shifted Young tableau, the result is Q′(w) (indepen-
dent of any choices in applying jeu de taquin).

For example, if w = 332132121, then

(P,Q) =

(
1 1 1
2 2 2
3 3 3

,
1 2 5
3 6 8
4 7 9

)
,

(P ′, Q′) =

(
1 1 1 2′ 3′

2 2 3′

3
,

1 2 4 5 8
3 6 9

7

)
.

Performing jeu de taquin we see:

1 2 5
3 6 8
4 7 9

→
1 2 5

3 4 6 8
7 9

→
1 2 5 8
3 4 6

7 9
→

1 2 4 5 8
3 6 9

7
.
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Haiman’s bijection is precisely H(Q) = Q′. That is, given a standard square tableau Q, we embed it in
a shifted shape and apply jeu de taquin to create a standard shifted tableau. That this is indeed a bijection
follows from Theorem 4, but is originally found in [H1, Proposition 8.11].

Remark 5 Haiman’s bijection H applies more generally between rectangles and “shifted trapezoids”,
i.e., for m ≤ n, we have H : SY T (nm)→ SY T ′(n+m− 1, n+m− 3, . . . , n−m+ 1). All the results
presented here extend to this generality, with similar proofs. We restict to squares and doubled staircases
for clarity of exposition.

We will now fix the tableaux P and P ′ to ensure that the insertion word w has particularly nice proper-
ties. We will use the following lemma.

Lemma 6 ([Ser], Proposition 1.8) Fix a word w. Let P = P (w) be the RSK insertion tableau and let
P ′ = P ′(w) be the mixed insertion tableau. Then the set of words that mixed insert into P ′ is contained
in the set of words that RSK insert into P .

Now we apply Lemma 6 to the word

w = n · · ·n︸ ︷︷ ︸
n

· · · 2 · · · 2︸ ︷︷ ︸
n

1 · · · 1︸ ︷︷ ︸
n

.

If we use RSK insertion, we find P is an n× n square tableau with all 1s in row first row, all 2s in the
second row, and so on. With such a choice of P it is not difficult to show that any other word u inserting
to P has the property that in any initial subword u1 · · ·ui, there are at least as many letters (j + 1) as
letters j. Such words are sometimes called (reverse) lattice words or (reverse) Yamanouchi words. Notice
also that any such u has n copies of each letter i, i = 1, . . . , n. We call the words inserting to this choice
of P square words.

On the other hand, if we use mixed insertion on w, we find P ′ as follows (with n = 4):

1 1 1 1 2′ 3′ 4′

2 2 2 3′ 4′

3 3 4′

4

.

In general, on the “shifted half” of the tableau we see all 1s in the first row, all 2s in the second row, and
so on. In the “straight half” we see only prime numbers, with 2′ on the first diagonal, 3′ on the second
diagonal, and so on. Lemma 6 tells us that every u that mixed inserts to P ′ is a square word. But since the
sets of recording tableaux for P and for P ′ are equinumerous, we see that the set of words mixed inserting
to P ′ is precisely the set of all square words.

Remark 7 Yamanouchi words give a bijection with square standard Young tableaux that circumvents
insertion completely. In reading the word from left to right, if wi = j, we put letter i in the leftmost
unoccupied position of row n+ 1− j. (See [Sta, Proposition 7.10.3(d)].)

We will soon characterize promotion in terms of operators on insertion words. First, some lemmas.
For a tableau T (shifted or not) let ∆T denote the result of all but step (3) of promotion. That is, we

delete the smallest entry and perform jeu de taquin, but we do not fill in the empty box. The following
lemma says that, in both the shifted and unshifted cases, this can be expressed very simply in terms of our
insertion word. The first part of the lemma is a direct application of the theory of jeu de taquin (see, e.g.,
[Sta, A1.2]); the second part is [Ser, Lemma 3.9].
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Lemma 8 For a word w = w1w2 · · ·wl, let ŵ = w2 · · ·wl. Then we have

Q(ŵ) = ∆Q(w),

and
Q′(ŵ) = ∆Q′(w).

The operator ej acting on words w = w1 · · ·wl is defined in the following way. Consider the subword
of w formed only by the letters j and j + 1. Consider every j + 1 as an opening bracket and every j as a
closing bracket, and pair them up accordingly. The remaining word is of the form jr(j+1)s. The operator
ej leaves all of w invariant, except for this subword, which it changes to jr−1(j+1)s+1 (assuming r > 0,
otherwise ej is not defined on w). This operator is widely used in the theory of crystal graphs.

As an example, we calculate e2(w) for the word w = 3121221332. The subword formed from the
letters 3 and 2 is

3 · 2 · 22 · 332,

which corresponds to the bracket sequence ()))((). Removing paired brackets, one obtains ))(, corre-
sponding to the subword

· · · · 22 · 3 · ·.

We change the last 2 to a 3 and keep the rest of the word unchanged, obtaining e2(w) = 3121231332.
The following lemma shows that this operator leaves the recording tableau unchanged. The unshifted

case is found in work of Lascoux, Leclerc, and Thibon [LLT, Theorem 5.5.1]; the shifted case follows
from the unshifted case, and the fact that the mixed recording tableau of a word is uniquely determined
by its RSK recording tableau (Theorem 4).

Lemma 9 Recording tableaux are invariant under the operators ei. That is,

Q(ei(w)) = Q(w),

and
Q′(ei(w)) = Q′(w).

Let e = e1 · · · en−1 denote the composite operator given by applying first en−1, then en−2 and so on.
It is clear that if w = w1 · · ·wn2 is a square word, then e(ŵ)1 is again a square word.

Theorem 10 Let w = w1 · · ·wn2 be a square word. Then,

p(Q(w)) = Q(e(ŵ)1),

and
p(Q′(w)) = Q′(e(ŵ)1).

In other words, Haiman’s bijection commutes with promotion:

p(H(Q)) = H(p(Q)).
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Proof: By Lemma 8, we see thatQ(ŵ) is only one box away from p(Q(w)). Further, repeated application
of Lemma 9 shows that

Q(ŵ) = Q(en−1(ŵ)) = Q(en−2(en−1(ŵ))) = · · · = Q(e(ŵ)).

The same lemmas apply show Q′(e(ŵ)) is one box away from p(Q′(w)).
All that remains is to check that the box added by inserting 1 into P (e(ŵ)) (resp. P ′(e(ŵ))) is in the

correct position. But this follows from the observation that e(ŵ)1 is a square word, and square words
insert (resp. mixed insert) to squares (resp. doubled staircases). 2

4 Rhoades’ result
Rhoades [Rh] proved an instance of the CSP related to the action of promotion on rectangular tableaux.
His result is quite deep, employing Kahzdan-Lusztig cellular representation theory in its proof.

Recall that for any partition λ ` n, we have that the standard tableaux of shape λ are enumerated by
the Frame-Robinson-Thrall hook length formula:

fλ = |SY T (λ)| = n!∏
(i,j)∈λ hij

,

where the product is over the boxes (i, j) in λ and hij is the hook length at the box (i, j), i.e., the number
of boxes directly east or south of the box (i, j) in λ, counting itself exactly once. To obtain the polynomial
used for cyclic sieving, we replace the hook length formula with a natural q-analogue. First, recall that
for any n ∈ N, [n]q := 1 + q + · · ·+ qn−1 and [n]q! := [n]q[n− 1]q · · · [1]q .

Theorem 11 ([Rh], Theorem 3.9) Let λ ` N be a rectangular shape and let X = SY T (λ). Let C :=
Z/NZ act on X via promotion. Then, the triple (X,C,X(q)) exhibits the cyclic sieving phenomenon,
where

X(q) =
[N ]q!

Π(i,j)∈λ[hij ]q

is the q-analogue of the hook length formula.

Now thanks to Theorem 10 we know that H preserves orbits of promotion, and as a consequence we
see the CSP for doubled staircases.

Corollary 12 Let X = SY T ′(2n − 1, 2n − 3, . . . , 1), and let C := Z/n2Z act on X via promotion.
Then the triple (X,C,X(q)) exhibits the cyclic sieving phenomenon, where

X(q) =
[n2]q!

[n]nq
∏n−1
i=1 ([i]q · [2n− i]q)i

is the q-analogue of the hook length formula for an n× n square Young diagram.

Because of Theorem 3 the set R(w0) also exhibits the CSP.

Corollary 13 ([Rh], Theorem 8.1) Let X = R(w0) and let X(q) as in Corollary 12. Let C := Z/n2Z
act onX by cyclic rotation of words. Then the triple (X,C,X(q)) exhibits the cyclic sieving phenomenon.
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Corollary 13 is the CSP for R(w0) as stated by Rhoades. This is nearly our main result (Theorem 1),
but for the definition of X(q).

In spirit, if (X,C,X(q)) exhibits the CSP, the polynomial X(q) should be some q-enumerator for the
set X . That is, it should be expressible as

X(q) =
∑

x∈X
qs(x),

where s is an intrinsically defined statistic for the elements of X . Indeed, nearly all known instances of
the cyclic sieving phenomenon have this property. For example, it is known ([Sta, Cor 7.21.5]) that the
q-analogue of the hook-length formula can be expressed as follows:

fλ(q) = q−κ(λ)
∑

T∈SY T (λ)

qmaj(T ), (2)

where κ(λ1, . . . , λl) =
∑

1≤i≤l(i − 1)λi and for a tableau T , maj(T ) is the sum of all i such that i
appears in a row above i+ 1. Thus X(q) in Theorem 11 can be described in terms of a statistic on Young
tableaux.

With this point of view, Corollaries 12 and 13 are aesthetically unsatisfying. Section 5 is given to
showing that X(q) can be defined as the generating function for the major index on words in R(w0). It
would be interesting to find a combinatorial description for X(q) in terms of a statistic on SY T ′(2n −
1, 2n− 3, . . . , 1) as well, though we have no such description at present.

5 Combinatorial description of X(q)
As stated in the introduction, we will show that

X(q) = q−n(n2)
∑

w∈R(w0)

qmaj(w).

If we specialize equation (2) to square shapes, we see that κ(nn) = n
(
n
2

)
and

X(q) = q−n(n2)
∑

T∈SY T (nn)

qmaj(T ).

Thus it suffices to exhibit a bijection between square tableaux and words in R(w0) that preserves major
index. In fact, the composition Ψ := ΦH has a stronger feature.

Define the cyclic descent set of a word w = w1 · · ·wl to be the set

D(w) = {i : wi > wi+1} (mod l)

That is, we have descents in the usual way, but also a descent in position 0 if wl > w1. Then maj(w) =∑
i∈D(w) i. For example with w = 132132132, D(w) = {0, 2, 3, 5, 6, 8} and maj(w) = 0 + 2 + 3 + 5 +

6 + 8 = 24.
Similarly, we follow [Rh] in defining the cyclic descent set of a square (in general, rectangular) Young

tableau. For T in SY T (nn), define D(T ) to be the set of all i such that i appears in a row above i + 1,
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along with 0 if n2 − 1 is above n2 in p(T ). Major index is maj(T ) =
∑
i∈D(T ) i. We will see that Ψ

preserves cyclic descent sets, and hence, major index. Using our earlier example of w = 132132132, one
can check that

T = Ψ−1(w) =
1 2 5
3 6 8
4 7 9

has D(T ) = D(w), and so maj(T ) = maj(w).

Lemma 14 Let T ∈ SY T (nn), and let w = Ψ(T ) in R(w0). Then D(T ) = D(w).

Proof: First, we observe that both types of descent sets shift cyclically under their respective actions:

D(p(T )) = {i− 1 (mod n2) : i ∈ D(T )},

and
D(c(w)) = {i− 1 (mod n2) : i ∈ D(w)}.

For words under cyclic rotation, this is obvious. For tableaux under promotion, this is a lemma of Rhoades
[Rh, Lemma 3.3].

Because of this cyclic shifting, we see that i ∈ D(T ) if and only if 0 ∈ D(pi(T )). Thus, it suffices to
show that 0 ∈ D(T ) if and only if 0 ∈ D(w). (Actually, it is easier to determine if n2 − 1 is a descent.)

Let S = Φ−1(w) be the shifted doubled staircase tableau corresponding to w. We have n2−1 ∈ D(w)
if and only if n2 is in a higher row in p−1(S) than in S. But since n2 occupies the same place in p−1(S)
as n2 − 1 occupies in S, this is to say n2 − 1 is above n2 in S. On the other hand, n2 − 1 ∈ D(T ) if and
only if n2 − 1 is above n2 in T . It is straightforward to check that since S is obtained from T by jeu de
taquin into the upper corner, the relative heights of n2 and n2−1 (i.e., whether n2 is below or not) are the
same in S as in T . This completes the proof. 2

This lemma yields the desired result for X(q).

Theorem 15 The q-analogue of the hook length formula for an n × n square Young diagram is, up to a
shift, the major index generating function for reduced expressions of the longest element in the hyperoc-
tahedral group:

∑

w∈R(w0)

qmaj(w) = qn(n2) · [n2]q!

[n]nq
∏n−1
i=1 ([i]q · [2n− i]q)i

.

Theorem 15, along with Corollary 13, completes the proof of our main result, Theorem 1. Because
this result can be stated purely in terms of the set R(w0) and a natural statistic on this set, it would be
interesting to obtain a self-contained proof, i.e., one that does not appeal to Haiman’s or Rhoades’ work.
Why must a result about cyclic rotation of words rely on promotion of Young tableaux?
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The cluster and dual canonical bases of
Z[x11, . . . , x33] are equal

Brendon Rhoades1

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139

Abstract. The polynomial ring Z[x11, . . . , x33] has a basis called the dual canonical basis whose quantization facil-
itates the study of representations of the quantum group Uq(sl3(C)). On the other hand, Z[x11, . . . , x33] inherits a
basis from the cluster monomial basis of a geometric model of the type D4 cluster algebra. We prove that these two
bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky. This also provides
an explicit factorization of the dual canonical basis elements of Z[x11, . . . , x33] into irreducible polynomials.

Résumé. L’anneau de polynômes Z[x11, . . . , x33] a une base appelée base duale canonique, et dont une quantification
facilite l’étude des représentations du groupe quantique Uq(sl3(C)). D’autre part, Z[x11, . . . , x33] admet une base
issue de la base des monômes d’amas de l’algèbre amassée géométrique de type D4. Nous montrons que ces deux
bases sont égales. Ceci prolonge les travaux de Skandera et démontre une conjecture de Fomin et Zelevinsky. Ceci
fournit également une factorisation explicite en polynômes irréductibles des éléments de la base duale canonique de
Z[x11, . . . , x33].

Keywords: cluster algebra, dual canonical basis

1 Introduction
For n ≥ 0, letAn denote the polynomial ring Z[x11, . . . , xnn] in the n2 commuting variables (xij)1≤i,j≤n.
The algebra An has an obvious Z-basis of monomials in the variables xij , which we call the natural ba-
sis. In addition to the natural basis, the ringAn has many other interesting bases such as a bitableau basis
defined by Mead and popularized by Désarménien, Kung, and Rota [2] having applications in invariant
theory and the dual canonical basis of Lusztig [8] and Kashiwara [5] whose quantization facilitates the
study of representations of the quantum group Uq(sln(C)). Given two bases of An, it is natural to com-
pare them by examining the corresponding transition matrix. For example, in [9] it is shown that these
latter two bases are related via a transition matrix which may be taken to be unitriangular (i.e., upper
triangular with 1’s on the main diagonal) with respect to an appropriate ordering of basis elements.

Cluster algebras are a certain class of commutative rings introduced by Fomin and Zelevinsky [3] to
study total positivity and dual canonical bases. Any cluster algebra comes equipped with a distinguished
set of generators called cluster variables which are grouped into finite overlapping subsets called clusters,
all of which have the same cardinality. The cluster algebras with a finite number of clusters have a classi-
fication similar to the Cartan-Killing classification of finite-dimensional simple complex Lie algebras [4].
In this classification, it turns out that the cluster algebra of type D4 is a localization of the ringA3 (see for

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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example [10]) and the ring A3 inherits a Z-basis consisting of cluster monomials. We call this basis the
cluster basis. Fomin and Zelevinsky conjectured that the cluster basis and the dual canonical basis of A3

are equal, and Skandera showed that any two of the natural, cluster, and dual canonical bases of A3 are
related via a unitriangular transition matrix when basis elements are ordered appropriately [10]. In this
paper we strengthen Skandera’s result and prove Fomin and Zelevinsky’s conjecture with the following
result (definitions will be postponed until Section 2).

Theorem 1.1 The dual canonical and cluster basis of A3 are equal.

Since each of the cluster and frozen variables of A3 are irreducible polynomials, this result can be
viewed as giving a complete factorization of the dual canonical basis elements of A3 into irreducibles.
Because the natural GL3(C) action on C⊗ZA3 is multiplicative, this could aid in constructing represent-
ing matrices for this action with respect to the dual canonical basis.

Theorem 1.1 will turn out to be the classical q = 1 specialization of a result (Theorem 3.6) comparing
two bases of a noncommutative quantization A(q)

3 of the polynomial ring A3. In Section 2 we define
the cluster basis of the classical ring A3. In Section 3 we introduce the quantum polynomial ring A(q)

n

together with its dual canonical basis and a quantum analogue of the cluster basis of A3. In Section 4 we
comment on possible extensions of the results in this extended abstract.

2 The Cluster Basis of Z[x11, . . . , x33]

We shall not find it necessary to use a great deal of the general theory of cluster algebras to define and study
the cluster basis of A3. Rather, we simply will define a collection of 16 polynomials in A3 to be cluster
variables and associate to each of them a certain decorated octogon, define an additional 5 polynomials to
be frozen variables, define (extended) clusters in terms of noncrossing conditions on decorated octogons,
and define cluster monomials to be products of elements of an extended cluster.

For any two subsets I, J ⊆ 3 of equal size, define the (I, J)−minor ∆I,J(x) of x = (xi,j)1≤i,j≤3 to
be the determinant of the submatrix of x with row set I and column set J . Define additionally two more
polynomials, the 132- and 213-Kazhdan-Lusztig immanants of x, by

Imm132(x) = x11x23x32 − x12x23x31 − x13x21x32 + x13x22x31

and
Imm213(x) = x12x21x33 − x12x23x31 − x13x21x32 + x13x22x31.

The cluster variables are the 16 elements of A3 shown in Figure 2.1 [10, p. 3], with the associated
decorated octogons. Every octogon is decorated with either a pair of parallel nonintersecting nondiameters
or a diameter colored one of two colors, red or blue.

A centrally symmetric modified triangulation of the octogon is a maximal collection of the above oc-
togon decorations without crossings, where we adopt the convention that identical diameters of different
colors do not cross and distinct diameters of the same color do not cross. Every centrally symmetric
modified triangulation of the octogon consists of four decorations, and a cluster is the associated four
element set of polynomials corresponding to the decorations in such a triangulation. There are 50 cen-
trally symmetric modified triangulations of the octogon, and hence 50 clusters. Four examples of centrally
symmetric modified triangulations are shown in Figure 2.2. The corresponding clusters are, from left to
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(x)

x11 x12

x21 x22 x23

x32

Imm213

Imm132

∆23,13∆23,23

∆13,23 ∆13,13 ∆13,12

∆12,1212,13x33

∆

(x) (x)

(x) (x) (x)

(x)(x)

(x)

Fig. 2.1: Cluster variables in Z[x11, . . . , x33]

Fig. 2.2: Four centrally symmetric modified triangulations corresponding to clusters
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right, {x21, x23,∆23,13(x),∆23,23(x)}, {x23, x33,∆12,13(x), Imm132(x)}, {x12, x21, x22,∆23,23(x)},
and {x11, x12, x21,∆12,12(x)}.

We define additionally a set F consisting of the five polynomials

F := {x13,∆12,23(x),∆123,123(x) = det(x),∆23,12(x), x31}.

Elements in F are called frozen variables and the union of F with any cluster is an extended cluster. A
cluster monomial is a product of the form za11 · · · za99 , where {z1, . . . , z9} is an extended cluster and the
ai are nonnegative integers. Observe that the same cluster monomial can arise from different extended
clusters. The cluster basis of A3 is the set of all possible cluster monomials.

Skandera [10] develops a bijection φ between the cluster basis and the set Mat3(N) as follows. For
any cluster or frozen variable z, let φ(z) be the lexicographically greatest matrix A = (aij) for which the
monomial

∏
x
aij
ij appears with nonzero coefficient in the expansion of z in the natural basis. Given an

arbitrary cluster monomial za11 · · · za99 , extend the definition of φ via

φ(za11 · · · za99 ) := a1φ(z1) + · · ·+ a9φ(z9).

The fact that φ is a bijection [10] implies that the set of cluster monomials is related to the natural basis
of A3 via a unitriangular, integer transition matrix, and thus is actually a Z-basis for A3 (the fact that
the cluster monomials form a basis for A3 is also a consequence of more theory of finite type cluster
algebras).

Example 2.1 Consider the cluster corresponding to the leftmost centrally symmetric modified triangula-
tion in Figure 2.2, i.e. {x21, x23,∆23,13(x),∆23,23(x)}. An example of a cluster monomial drawn from
the corresponding extended cluster is

z := x721x
0
23∆23,13(x)2∆23,23(x)1x013∆12,23(x)2∆123,123(x)0∆23,12(x)0x731.

We have that

φ(z) = 7




0 0 0
1 0 0
0 0 0


+ 0




0 0 0
0 0 1
0 0 0


+ 2




0 0 0
1 0 0
0 0 1


+ · · · =




0 2 0
9 1 2
7 0 3


 .

3 The Quantum Polynomial Ring
For n ≥ 0, define the quantum polynomial ring A(q)

n to be the unital associative (noncommutative)
Z[q±1/2]-algebra generated by the n2 variables x = (xij)1≤i,j≤n and subject to the relations

xikxil = qxilxik (1)
xikxjk = qxjkxik (2)
xilxjk = xjkxil (3)

xikxjl = xjlxik + (q − q−1)xilxjk, (4)

where i < k and k < l. It follows from these relations that the specialization ofA(q)
n to q = 1 recovers the

classical polynomial ring An. The center of A(q)
n is generated by the quantum determinant detq(x) :=
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∑
w∈Sn

(−q)`(w)x1,w(1) · · ·xn,w(n). Factoring the extension C⊗ZA(q)
n by the ideal (detq(x)− 1) yields

the quantum coordinate ring Oq(SLn(C)) of the special linear group. Given two ring elements f, g ∈
A(q)
n , we say that f is a q-shift of g if there is a number a so that f = qag.
The natural basis ofAn lifts to a Z[q±1/2]-basis of the quantum polynomial ringA(q)

n given by {XA :=
xa1111 · · ·xann

nn |A = (aij) ∈ Matn(N)}, where the terms in the product are in lexicographical order (see,
for example, [12]). We call this basis the quantum natural basis (QNB). We will find it convenient to
work with a Z[q±1/2]-basis for A(q)

n whose elements are q-shifts of QNB elements. Following [12], for
any matrix A = (aij) ∈ Matn(N), define the number e(A) := − 1

2

∑
i

∑
j<k(aijaik + ajiaki) and the

quantum polynomial X(A) := qe(A)XA ∈ A(q)
n . The set {X(A) |A ∈ Matn(N)} is also a Z[q±1/2]-

basis of A(q)
n , called the modified quantum natrual basis (MQNB).

As with the classical polynomial ringAn, the quantum ringA(q)
n admits a natural N-grading by degree.

Finer than this grading is an Nn × Nn-grading, where the (r1, . . . , rn) × (c1, . . . , cn)-graded piece is
the Z[q±1/2]-linear span of all MQNB elements X(A) for matrices A ∈ Matn(N) with row vector
row(A) = (r1, . . . , rn) and column vector col(A) = (c1, . . . , cn). It is routine to check from (1)-(4)
that this grading is well-defined.

The ring A(q)
n is equipped with an involutive bar antiautomorphism defined by the Z-linear extension

of q1/2 = q−1/2 and xij = xij . It follows readily from relations (1)-(4) that · is well-defined. Observe
that the bar involution specializes to the identity map at q = 1. The dual canonical basis (DCB) of A(q)

n

arises naturally when attempting to find bases of A(q)
n consisting of bar invariant polynomials.

Define a partial order ≤Br on Matn(N) called Bruhat order by letting ≤Br be the transitive closure of
A ≺Br B if B can be obtained from A = (aij)1≤i,j≤n by a 2× 2 submatrix transformation of the form

(
aik ail
ajk ajl

)
7→
(
aik − 1 ail + 1
ajk + 1 ajl − 1

)
,

for i < j and k < l with aik, aji > 0. Observe that the restriction of ≤Br to the set of permutation
matrices is isomorphic to the ordinary (strong) Bruhat order on the symmetric group Sn. Observe also
that matrix transposition and antitransposition are automorphisms of the poset (Matn(N),≤Br).

Theorem 3.1 There exists a unique Z[q±1/2]-basis

{b(A) |A ∈ Matn(N)}

of A(q)
n where b(A) is homogeneous with respect to the Nn × Nn-grading of A(q)

n with degree row(A)×
col(A) and the b(A) satisfy
(1) (Bar invariance) ¯b(A) = b(A) for all A ∈ Matn(N), and
(2) (Triangularity) For all A ∈ Matn(N), the basis element b(A) expands in the MQNB as

b(A) = X(A) +
∑

B>BrA

βA,B(q1/2)X(B),

where the βA,B are polynomials in q1/2Z[q1/2].
This basis is called the dual canonical basis.
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Proof: If one replaces Bruhat order with the dual of lexicographical order on Matn(N), this result is [12,
Theorem 3.2]. However, as noted in the first paragraph of the proof of [12, Corollary 3.4], one has that
the coefficient βA,B(q1/2) in the expansion

b(A) = X(A) +
∑

B<lexA

βA,B(q1/2)X(B),

is nonzero only if A >Br B. 2

While the DCB is important in the study of the representation theory of the quantum groupUq(sln(C))[5]
[8] , the lack of an elementary formula for the expansion of the b(A) in the MQNB can make computations
involving the DCB difficult. Setting q = 1 in the DCB elements yields a basis of the classical polynomial
ring An, also called the dual canonical basis.

Due to the triangularity condition (2) of Theorem 3.1, we will frequently need to analyze expansions of
quantum ring elements in the (M)QNB. To find these expansions, we use relations (1)-(4) to put arbitrary
ring elements in lexicographical order. While the somewhat exotic relation (4) can make for complicated
expansions, if we are only interested in the Bruhat leading term the situation improves. Given any product
m ∈ A(q)

n of the generators xij and a ground ring element β(q) ∈ Z[q±1/2], define the content C(β(q)m)
of β(q)m to be the n× n matrix whose (i, j)-entry is equal to the number of occurances of xij in m.

Lemma 3.2 (Leading Lemma) Let f = m+m1+· · ·+mr ∈ A(q)
n be an element ofA(q)

n such that themk

are monomials and C(m) <Br C(mk) for all k. Write m = β(q)xi1j1 · · ·xirjr , where β(q) ∈ Z[q±1/2].
The expansion of f in the QNB has unique termXC(m) with C(m) Bruhat minimal among the contents

of the terms in the QNB expansion of f and the coefficient of XC(m) in this expansion is

q−yβ(q),

where y is given by

y = |{(k < `) | ik = i`, jk > j`}|+ |{(k < `) | jk = j`, ik > i`}|.

Proof: Observe that the application of relations (1)-(3) to the ring element f do not change the contents
of the monomial constituents of f . Moreover, the application of relation (4) to any monomial m0 in A(q)

n

yields a sum m′0 +m′′0 , where m′0 has the same content and coefficient as m0 and m′′0 has content which
is greater in Bruhat order than the content of m0. The value of y follows from the exponents of q which
appear in the quasicommutativity relations (1)-(3). 2

In the classical setting q = 1, Skandera [11] discovered an explicit formula for dual canonical basis
elements of An which involves certain polynomials called immanants. Given a permutation w ∈ Sm and
an m×m matrix y = (yij)1≤i,j≤m with entries drawn from the set {xij | 1 ≤ i, j ≤ n}, define the w-KL
immanant of y to be

Immw(y) :=
∑

v∈Sm

Qv,w(1)y1,v(1) · · · ym,v(m).

Here Qv,w(q) is the inverse Kazhdan-Lusztig polynomial corresponding to the permutations v and w (see
[6] or [1]). It can be shown that the KL immanant Imm1(y) corresponding to the identity permutation
1 ∈ Sm is equal to the determinant det(y).
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Any (weak) composition α |= m with n parts induces a function [m] → [n], also denoted α, which
maps the interval (α1 + · · · + αi−1, α1 + · · ·αi] onto i for all i. We also have the associated parabolic
subgroup Sα ∼= Sα1 ×· · ·×Sαn of Sm which stabilizes all of the above intervals. Given a pair α, β |= m
of compositions of m both having n parts, we define the generalized submatrix xα,β of x to be the m×m
matrix satisfying (xα,β)ij := xα(i),β(j) for all 1 ≤ i, j ≤ m. Let Λm(α, β) denote the set of Bruhat
maximal permutations in the set of double cosets Sα\Sm/Sβ . Skandera’s work [11, Section 2] implies
that the dual canonical basis of An is equal to the set

⋃

m≥0

⋃

α,β

{Immw(xα,β) |w ∈ Λm(α, β)}. (5)

The lack of an elementary description of the inverse KL polynomials is the most difficult part in using
Skandera’s formula to write down DCB elements.

Returning to the quantum setting, for two subsets I, J ⊆ [n] with |I| = |J |, the quantum minor
∆

(q)
I,J(x) ∈ A(q)

n is the quantum determinant of the submatrix of x with row set I and column set J .

Restricting to the case n = 3, we define the quantum 132- and 213-KL immanants, denoted Imm
(q)
132(x)

and Imm
(q)
213(x), to be the elements of A(q)

3 given by

Imm
(q)
132(x) = x11x23x32 − qx12x23x31 − qx13x21x32 + q2x13x22x31

and
Imm

(q)
213(x) = x12x21x33 − qx12x23x31 − qx13x21x32 + q2x13x22x31.

Define quantum cluster and quantum frozen variables to be the polynomials obtained by replacing
every minor in the classical quantum or frozen variable definition by its corresponding quantum minor and
the classical polynomials Imm132(x) and Imm213(x) by their quantum counterparts. Define a quantum
(extended) cluster to be the set of quantum (frozen and) cluster variables corresponding to polynomials in
a classical (extended) cluster.

To define the quantum cluster monomials, fix a total order {z′1 < z′2 < · · · < z′21} on the union
of the quantum cluster and frozen variables. A quantum cluster monomial is any product of the form
za11 · · · za99 ∈ A(q)

3 , where {z1 < · · · < z9} is an ordered quantum extended cluster and the ai are
nonnegative integers. Skandera’s map φ yields a bijection (also denoted φ) between the set of quantum
cluster monomials and Mat3(N). This bijection, combined with the Leading Lemma, implies that the
transition matrix between the set of quantum cluster monomials and the QNB is triangular with units on
the diagonal with respect to any order of basis elements which is obtained from a linear extension of
Bruhat order. Therefore, the set of all quantum cluster monomials is a Z[q±1/2]-basis for A(q)

3 , called the
quantum cluster basis (QCB). Observe also that every QCB element is homogeneous with respect to the
N3 × N3-grading of the ring A(q)

3 .
It is natural to ask how much the QCB depends on the initial choice of total order {z′1 < z′2 < · · · <

z′21} on the union of the quantum cluster and frozen variables. While it is the case that different choices
of the total order {z′1 < z′2 < · · · < z′21} can lead to different quantum cluster monomials, we will show
in Observation 3.5 that these ring elements differ only up to a q-shift (which may depend not only on the
order chosen, but also on the quantum cluster monomial in question). Thus, the QCB is independent of
this choice of order ‘up to q-shift’.



The cluster and dual canonical bases are equal 869

Our computational work with the ring A(q)
n will be economized by means of a collection of algebra

maps. Define maps τ and α on the generators of A(q)
n by the formulas τ(xij) = xji and α(xij) =

x(n−j+1)(n−i+1). It is routine to check from the relations (1)-(4) that τ extends to an involutive Z[q±1/2]-
algebra automorphism τ : A(q)

n → A(q)
n and that α extends to an involutive Z[q±1/2]-algebra antiauto-

morphism α : A(q)
n → A(q)

n . The maps τ and α will be called the transposition and antitransposition
maps, respectively, because they act on the matrix x = (xij) of generators by transposition and antitrans-
position. In addition, for any two subsets I, J ⊆ [n], we can form the subalgebra A(q)

n (I, J) of A(q)
n

generated by {xij | i ∈ I, j ∈ J}. Writing I = {i1 < · · · < ir} and J = {j1 < · · · < js}, we have
a Z[q±1/2]-algebra isomorphism cI,J : A(q)

n (I, J) → A(q)
n ([r], [s]) given by cI,J : xia,jb 7→ xa,b. The

map cI,J will be called the compression map corresponding to I and J because it acts on the matrix x of
generators by compression into the northwest corner. The set of quantum cluster and frozen variables is
closed under taking images under τ , α, and the compression maps.

Observation 3.3 Let z be a quantum cluster or frozen variable. Then, α(z) and τ(z) are quantum cluster
or frozen variables with φ(α(z)) = φ(z)T

′
and φ(τ(z)) = φ(z)T , where ·T denotes matrix transposition

and ·T ′
denotes matrix antitransposition. Moreover, if the row support of φ(z) is contained in I ⊆ [3]

and the column support of φ(z) is contained in J ⊆ [3], then the image of z under the compression map
cI,J corresponding to I and J is a quantum cluster or frozen variable whose image under φ is obtained
by compressing the nonzero rows and columns of φ(z) to the northwest.

The proof of this observation is a direct computation. For example, the quantum cluster variable z =

∆
(q)
23,13(x) satisfies φ(z) =




0 0 0
1 0 0
0 0 1


, which has row support {2, 3} and column support {1, 3}. The

image of z under the compression map c23,13 is y = ∆
(q)
12,12(x), which satisfies φ(y) =




1 0 0
0 1 0
0 0 0


.

The 7 equivalence classes of quantum cluster variables under the maps τ and α are shown in Figure 3.1.
The actions of τ , α, and the compression maps remain well-defined on the level of quantum clusters. The
transposition, antitransposition, and compression maps act on MQNB elements in a simple way.

Observation 3.4 Let A ∈ Matn(N). We have the following formulae involving the MQNB, retaining
notation from Observation 3.3:
(1) τ(X(A)) = X(AT )
(2) α(X(A)) = X(AT

′
).

Moreover, if the row support of A is contained in I and the column support of A is contained in J for
subsets I, J ⊆ [n], then
(3) cI,J(X(A)) = X(CI,J(A)),
where CI,J(A) is obtained by compressing the entries in A with row indicies in I and column indicies in
J to the northwest.

Proof: (3) is trivial. To verify (1) and (2), one applies the maps τ and α to X(A) and uses the defining
relations (3.1)-(3.3) to get the desired result. 2

It is natural to ask to what extent the choice of total order {z′1 < · · · < z′21} on the union of the quantum
cluster and frozen variables affects the quantum cluster monomials. The effects of this choice turn out to
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τ
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α α α α

τ

τ

α α α

Fig. 3.1: Equivalence classes of cluster variables under α and τ
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be quite benign. More precisely, we observe that different choices of total orders only affect the QCB by
q-shifts. Two ring elements f, g ∈ A(q)

n are said to quasicommute if fg = qagf for some a.

Observation 3.5 Let z, z′ be a pair of polynomials which appear in the same quantum extended cluster.
Then, z and z′ quasicommute and moreover zz′ = qaz′z for some a ∈ Z.

The proof of the above observation is a straightforward, albeit tedious calculation using the relations
(1)-(4). It follows from Lemma 5.1 of [12] that any quantum frozen variable quasicommutes with any
quantum frozen or cluster variable, so it is enough to show that cluster variables appearing in the same
(nonextended) cluster pairwise quasicommute. By use of the transposition map τ , the antitransposition
map α, and the compression maps, we need only check this observation on 7 pairs of quantum cluster
variables. The resulting identities are as follows.

∆
(q)
12,12(x)∆

(q)
13,23(x) = q∆

(q)
13,23(x)∆

(q)
12,12(x) Imm

(q)
132(x)∆

(q)
13,12(x) = ∆

(q)
13,12(x)Imm

(q)
132(x)

∆
(q)
12,12(x)Imm

(q)
132(x) = q2Imm

(q)
132(x)∆

(q)
12,12(x) ∆

(q)
13,12(x)∆

(q)
12,13(x) = ∆

(q)
12,13(x)∆

(q)
13,12(x)

∆
(q)
13,12(x)∆

(q)
13,23(x) = q∆

(q)
13,23(x)∆

(q)
13,12(x) x11x12 = qx12x11

x12x21 = x21x12

Theorem 1.1 follows from specializing the following result at q = 1.

Theorem 3.6 Every DCB element of A(q)
3 is a q-shift of a unique QCB element of A(q)

3 .

Proof: (Sketch) Fixed a quantum cluster monomial za11 · · · za99 arising from an ordered quantum extended
cluster {z1 < · · · < z9}. We show that za11 · · · za99 has a q-shift which satisfies the bar invariance condition
(1) of Theorem 3.1 and that this same q-shift also satisfies the triangularity condition (2) of Theorem 3.1.

To check that a q-shift of za11 · · · za99 is invariant under the bar involution, one first shows by direct
computation that every quantum frozen and cluster variable is invariant under the bar involution. Using
the transposition map τ , the antitransposition map α, and the compression maps cI,J reduces our com-
putations here to checking that the four elements x11,∆

(q)
12,12(x), Imm

(q)
132(x),∆

(q)
123,123(x) ∈ A(q)

3 are bar
invariant. Therefore, zi = zi for 1 ≤ i ≤ 9. By Observation 3.5, we have that for all 1 ≤ i < j ≤ 9, there
exists bij ∈ Z so that zizj = qbijzjzi. Therefore, we have

za11 · · · za99 = za99 · · · za11
= qcza11 · · · za99 ,

where the exponent c is given by

c = −
∑

1≤i<j≤9
aiajbij .

It follows that the ring element q−c/2za11 · · · za99 is invariant under the bar involution. We now must check
that q−c/2za11 · · · za99 also satisfies the triangularity condition of Theorem 3.1. This verification is omitted
from this extended abstract. 2
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Example 3.1 Consider the quantum analogue

z := x721∆
(q)
23,13(x)2∆

(q)
23,23(x)1∆

(q)
12,23(x)2x731

of the cluster monomial of Example 2.1. By Theorem 3.6, the ring element z is a q-shift of a DCB element.
Computing the q = 1 specialization of this DCB element using Skandera’s characterization of the DCB
of A3 would involve computing inverse Kazhdan-Lusztig polynomials corresponding to pairs of elements
in the symmetric group on 24 letters.

4 Future Directions
In this paper, by means of a series of computations, we have proven that the dual canonical basis and
the cluster monomial basis of the classical polynomial ring A3 are equal by showing that they have
quantizations which differ by a q-shift. In doing so, we discovered how DCB elements for A3 and A(q)

3

decompose into irreducibles and found an easy way to write down any DCB element of these rings - up to
a q-shift, just choose a decorated octogon and write down some monomial in the elements of the related
extended (quantum) cluster. It is natural to ask how much of this can be extended to rings An and A(q)

n

for n > 3. It turns out that there are obstructions to finding such results from both the theory of cluster
monomial bases and dual canonical bases.

For n > 3 there is a known cluster algebra structure on a subalgebra ofAn which gives rise to a linearly
independent set of cluster monomials. Unfortunately, these cluster monomials do not span An for n > 3.
Moreover, for n > 3 this cluster algebra is of infinite type, i.e., it has infinitely many clusters. Since these
clusters are not given at the outset but rather are determined by a ‘mutation’ procedure starting with some
initial cluster and ‘mutation matrix’ (see [3]), this would seem to make the cluster monomials in these
algebras difficult to work with.

Leaving aside the present lack of a cluster algebra structure onAn, one can still ask how dual canonical
basis elements of An and its quantization A(q)

n factor. By Theorem 3.6 and the fact that quantum cluster
monomials are arbitrary products of the ring elements in some quantum extended cluster, we have the
following result in A(q)

3 .

Corollary 4.1 Let b be any element in the dual canonical basis ofA(q)
3 . Then, a q-shift of bk is in the dual

canonical basis of A(q)
3 for any k ≥ 0.

For n large, Leclerc [7] has shown that there exist elements b of the DCB of A(q)
n such that b2 is

not a q-shift of a DCB element of A(q)
n (so-called imaginary vectors). In light of the construction of

cluster monomials, Leclerc’s result is troubling if one wants to find a cluster-style interpretation of the
factorization of all of the DCB elements of A(q)

n for n > 3.
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Crossings and nestings in set partitions
of classical types
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Abstract. In this extended abstract, we investigate bijections on various classes of set partitions of classical types that
preserve openers and closers. On the one hand we present bijections for types B and C that interchange crossings
and nestings, which generalize a construction by Kasraoui and Zeng for type A. On the other hand we generalize a
bijection to type B and C that interchanges the cardinality of a maximal crossing with the cardinality of a maximal
nesting, as given by Chen, Deng, Du, Stanley and Yan for type A.

For type D, we were only able to construct a bijection between non-crossing and non-nesting set partitions. For all
classical types we show that the set of openers and the set of closers determine a non-crossing or non-nesting set
partition essentially uniquely.

Résumé. Dans ce résumé, nous étudions des bijections entre diverses classes de partitions d’ensemble de types clas-
siques qui préservent les “openers” et les “closers”. D’un part, nous présentons des bijections pour les types B et C
qui échangent croisées et emboı̂tées, qui généralisent une construction de Kasraoui et Zeng pour le type A. D’autre
part, nous généralisons une bijection pour le type B et C qui échange la cardinalité d’un croisement maximal avec la
cardinalité d’un emboı̂tement maximal comme il a été fait par Chen, Deng, Du, Stanley et Yan pour le type A.

Pour le type D, nous avons seulement construit une bijection entre les partitions non croisées et non emboı̂tées. Pour
tout les types classiques, nous montrons que l’ensemble des “openers” et l’ensemble des “closers” déterminent une
partition non croisées ou non emboı̂tées essentiellement de façon unique.

Keywords: non-crossing partitions, non-nesting partitions, k-crossing partitions, k-nesting partitions, bijective com-
binatorics

Introduction
The lattice of non-crossing set partitions was first considered by Germain Kreweras in [18]. It was later
reinterpreted by Paul Edelman, Rodica Simion and Daniel Ullman as a well-behaved sub-lattice of the
intersection lattice for the Coxeter arrangement of type A, see e.g. [6, 7, 22]. Natural combinatorial
interpretations of non-crossing partitions for the classical reflection groups were then given by Christos
A. Athanasiadis and Vic Reiner in [3, 20].

On the other hand, non-nesting partitions were simultaneously introduced for all crystallographic reflec-
tion groups by Alex Postnikov as anti-chains in the associated root poset, see [20, Remark 2]; for further
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7 91 2 3 4 5 6 8 1 2 3 4 5 6 7 8 9
(a) (b)

Fig. 1: A non-crossing (a) and a non-nesting (b) set partition of [9].

information on reflection groups as well as for a definition of Coxeter arrangements and root posets see
e.g. [14]

Within the last years, several bijections between non-crossing and non-nesting partitions have been con-
structed. In particular, type (block-size) preserving bijections were given by Christos A. Athanasiadis [2]
for type A and by Alex Fink and Benjamin I. Giraldo [9] for the other classical reflection groups. Re-
cently, Ricardo Mamede and Alessandro Conflitti [5, 19] constructed bijections for types A, B and D
which turn out to be subsumed by the bijections we present here.

In the case of set partitions of type A, also the number of crossings and nestings was considered:
Anisse Kasraoui and Jiang Zeng constructed a bijection which interchanges crossings and nestings in [16].
Finally, in a rather different direction, William Y.C. Chen, Eva Y.P. Deng, Rosena R.X. Du, Richard P.
Stanley [4] have shown that the number of set partitions where a maximal crossing has cardinality k and
a maximal nesting has cardinality ` is the same as the number of set partitions where a maximal crossing
has cardinality ` and a maximal nesting has cardinality k.

In this extended abstract, we present bijections on various classes of set partitions of classical types that
preserve openers and closers. In particular, the bijection by Anisse Kasraoui and Jiang Zeng as well as the
bijection by William Y.C. Chen, Eva Y.P. Deng, Rosena R.X. Du, Richard P. Stanley enjoy this property.
We give generalizations of these bijections for the other classical reflection groups, whenever possible.
Furthermore we show that the bijection is in fact (essentially) unique for the class of non-crossing and
non-nesting set partitions.

1 Set partitions for classical types
A set partition of [n] := {1, 2, 3, . . . , n} is a collection B of pairwise disjoint, non-empty subsets of [n],
called blocks, whose union is [n]. We visualize B by placing the numbers 1, 2, . . . , n in this order on a
line and then joining consecutive elements of each block by an arc, see Figure 1 for examples.

The openers op(B) are the non-maximal elements of the blocks in B, whereas the closers cl(B) are its
non-minimal elements. For example, the set partitions in Figure 1 both have op(B) = {1, 2, 3, 5, 7} and
cl(B) = {4, 5, 6, 7, 9}.

A pair (O, C) ⊆ [n]× [n] is an opener-closer configuration, if |O| = |C| and

|O ∩ [k]| ≥ |C ∩ [k + 1]| for k ∈ {0, 1, . . . , n− 1},

or, equivalently, (O, C) =
(
op(B), cl(B)

)
for some set partition B of n.

A set partition of type Bn or Cn is a set partition B of [±n] := {1, 2, . . . , n,−1,−2, . . . ,−n}, such
that

B ∈ B ⇔ −B ∈ B (1)
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and such that there exists at most one block B0 ∈ B (called the zero block) for which B0 = −B0.
A set partition B of type Dn is a set partition of type Bn (or Cn) where the zero block, if present, must

not consist of a single pair {i,−i}.

2 Crossings and nestings in set partitions of type A
In this extended abstract, we refine the following well known correspondences between non-crossing and
non-nesting set partitions. For ordinary set partitions, a crossing consists of a pair of arcs (i, j) and (i′, j′)
such that i < i′ < j < j′,

1 . . . i < i′ < j < j′ . . . n.

On the other hand, a nesting consists of a pair of arcs (i, j) and (i′, j′) such that i < i′ < j′ < j,

1 . . . i < i′ < j′ < j . . . n.

A set partition of [n] is called non-crossing (resp. non-nesting) if the number of crossings (resp. the
number of nestings) equals 0.

It has been known for a long time that the numbers of non-crossing and non-nesting set-partitions of
[n] coincide. More recently, Anisse Kasraoui and Jiang Zeng have shown in [16] that much more is true:

Theorem 2.1 There is an explicit bijection on set partitions of [n], preserving the set of openers and the
set of closers, and interchanging the number of crossings and the number of nestings.

The construction in [16] also proves the following corollary:

Corollary 2.2 For any opener-closer configuration (O, C) ⊆ [n]× [n], there exists a unique non-crossing
set partition B of [n] and a unique non-nesting set partition B′ of [n] such that

op(B) = op(B′) = O and cl(B) = cl(B′) = C.

Apart from the number of crossings or nestings, another natural statistic to consider is the cardinality
of a ‘maximal crossing’ and of a ‘maximal nesting’: a maximal crossing of a set partition is a set of
largest cardinality of mutually crossing arcs, whereas a maximal nesting is a set of largest cardinality of
mutually nesting arcs. For example, in Figure 1(a), the arcs {(1, 7), (2, 5), (3, 4)} form a maximal nesting
of cardinality 3. In Figure 1(b) the arcs {(1, 4), (2, 5), (3, 6)} form a maximal crossing.

The following symmetry property was shown by William Y.C. Chen, Eva Y.P. Deng, Rosena R.X. Du,
Richard P. Stanley and Catherine H. Yan [4]:

Theorem 2.3 There is an explicit bijection on set partitions, preserving the set of openers and the set of
closers, and interchanging the cardinalities of a maximal crossing and a maximal nesting.

Since a ‘maximal crossing’ of a non-crossing partition and a ‘maximal nesting’ of a non-nesting parti-
tion both have cardinality 1, Corollary 2.2 implies that this bijection coincides with the bijection by Anisse
Kasraoui and Jiang Zeng for non-crossing and non-nesting partitions. In particular, we obtain the curi-
ous fact that in this case, the bijection maps non-crossing partitions with k nestings and maximal nesting
having cardinality ` to non-nesting partitions with k crossings and maximal crossing having cardinality `.
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1 2 3 4 5 −5 −4 −3 −2 −1 1 2 3 4 5 −1 −2 −3 −4 −5
(a) (b)

Fig. 2: The nesting (a) and the crossing (b) diagram of a set partition of type C5.

We have to stress however, that in general it is not possible to interchange the number of crossings and
the cardinality of a maximal crossing with the number of nestings and the cardinality of a maximal nesting
simultaneously.

Example 2.4 For n = 8, there is a set partition with one crossing, six nestings and the cardinalities of a
maximal crossing and a maximal nesting equal both one, namely {{1, 7}, {2, 8}, {3, 4, 5, 6}}. However,
there is no set partition with six crossings, one nesting and cardinalities of a maximal crossing and a
maximal nesting equal to one. To check, the four set partitions with six crossings and one nesting are

{{1, 4, 6}, {2, 5, 8}, {3, 7}}, {{1, 4, 7}, {3, 5, 8}, {2, 6}},
{{1, 4, 8}, {2, 5, 7}, {3, 6}}, {{1, 5, 8}, {2, 4, 7}, {3, 6}}.

3 Crossings and nestings in set partitions of type C
Type independent definitions for non-crossing and non-nesting set partitions have been available for a
while now, see for example [1, 2, 3, 20]. However, it turns out that the notions of crossing and nesting is
more tricky, and we do not have a type independent definition. In this section we generalize the results of
the previous section to type C.

We want to associate two pictures to each set partition, namely the ‘crossing’ and the ‘nesting diagram’.
To this end, we define two orderings on the set [±n]: the nesting order for type Cn is

1 < 2 < · · · < n < −n < · · · < −2 < −1,

whereas the crossing order is

1 < 2 < · · · < n < −1 < −2 < · · · < −n.

The nesting diagram of a set partition B of type Cn is obtained by placing the numbers in [±n] in
nesting order on a line and then joining consecutive elements of each block of B by an arc, see Figure 2(a)
for an example.

The crossing diagram of a set partition B of typeCn is obtained from the nesting diagram by reversing
the order of the negative numbers. More precisely, we place the numbers in [±n] in crossing order on a
line and then join consecutive elements in the nesting order of each block of B by an arc, see Figure 2(b)
for an example. We stress that the same elements are joined by arcs in both diagrams. Observe furthermore
that the symmetry property (1) implies that if (i, j) is an arc, then its negative (−j,−i) is also an arc.

A crossing is a pair of arcs that crosses in the crossing diagram, and a nesting is a pair of arcs that
nests in the nesting diagram.
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The openers op(B) are the positive non-maximal elements of the blocks in B, the closers cl(B) the
positive non-minimal elements. Thus, openers and closers are the start and end points of the arcs in the
positive part of the nesting (or crossing) diagram. For example, the set partition displayed in Figure 2 has
openers {1, 2, 3, 4, 5} and closers {2, 4}. For convenience, we call the negatives of the elements in op(B)
negative closers and the negatives of the elements in cl(B) negative openers.

In type Cn, (O, C) ⊆ [n]× [n] is an opener-closer configuration, if

|O ∩ [k]| ≥ |C ∩ [k + 1]| for k ∈ {0, 1, . . . , n− 1}.

Note that we do not require that |O| = |C|.
Theorem 3.1 There is an explicit bijection on set partitions of type Cn, preserving the set of openers and
the set of closers, and interchanging the number of crossings and the number of nestings.

Furthermore, we will also see the following analog of Corollary 2.2:

Corollary 3.2 For any opener-closer configuration (O, C) ⊆ [n]× [n], there exists a unique non-crossing
set partition B and a unique non-nesting set partition B′, both of type Cn, such that

op(B) = op(B′) = O and cl(B) = cl(B′) = C.

Theorem 3.3 There is an explicit bijection on set partitions of type Cn, preserving the set of openers and
the set of closers, and interchanging the cardinalities of a maximal crossing and a maximal nesting.

The bijection in Theorem 3.1 is constructed in an analogous way as the bijection in Theorem 2.1
whereas the rough idea of our bijection in the Theorem 3.3 is as follows: we render a type Cn set partition
in the language of 0-1-fillings of a certain polyomino. We will do this in such a way that maximal nestings
correspond to north-east chains of ones of maximal length.

Interpreting this filling as a growth diagram in the sense of Sergey Fomin and Tom Roby [10, 11, 12, 21]
enables us to define a transformation on the filling that maps – technicalities aside – the length of the
longest north-east chain to the length of the longest south-east chain. This filling can then again be inter-
preted as a Cn set partition, where south-east chains of maximal length correspond to maximal crossings.
Many variants of the transformation involved are described in Christian Krattenthaler’s article [17], we
employ yet another (slight) variation.

We remark that the bijection in Theorem 3.3 is not an involution and that it does not, as discussed above,
exchange the number of crossings and the number of nestings.

Remark 1 Using the same methods as in the proof the above theorem, one can also deduce a conjecture
due to Daniel Soll and Volkmar Welker [23, Conjecture 13]. Namely, we consider generalized triangu-
lations of the 2n-gon that are invariant under rotation of 180◦, and such that at most k diagonals are
allowed to cross mutually. Daniel Soll and Volkmar Welker then conjectured that the number of such
triangulations that are maximal, i.e., where one cannot add any diagonal without introducing a k + 1
crossing, coincides with the number of fans of k Dyck paths that are symmetric with respect to a vertical
axis.

The corresponding theorem for type A was discovered and proved by Jakob Jonsson [15]. A (nearly)
bijective proof very similar to ours was given by Christian Krattenthaler in [17]. A simple bijection for
the case of 2-triangulations was recently given by Sergi Elizalde in [8].
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1 2 3 4 5 0 −5 −4 −3 −2 −1 1 2 3 4 5 −1 −2 −3 −4 −5
(a) (b)

Fig. 3: The nesting (a) and the crossing (b) diagram of a set partition of type B5.

4 Crossings and nestings in set partitions of type B
The definition of non-crossing set partitions of type Bn coincides with the definition in type Cn, and
the crossing diagram is also the same. However, the combinatorial model for non-nesting set partitions
changes slightly: we define the nesting order for type Bn as

1 < 2 < · · · < n < 0 < −n < · · · < −2 < −1.

The nesting diagram of a set partition B is then obtained by placing the numbers in [±n]∪{0} in nesting
order on a line and joining consecutive elements of each block of B by an arc, where the zero block is
augmented by the number 0, if present. See Figure 3(a) for an example. The definition of openers op(B)
and closers cl(B) is the same as in type C, the number 0 is neither an opener nor a closer.

These changes are actually dictated by the general, type independent definitions for non-crossing and
non-nesting set partitions. Moreover, it turns out that we need to ignore certain crossings and nestings that
appear in the diagrams: a crossing is a pair of arcs that crosses in the crossing diagram, except if both
arcs connect a positive and a negative element and at least one of them connects a positive element with
an element smaller in absolute value. Pictorially,

1 . . . i < i′ . . . n −1 . . . −j < −j′ . . . −n
is not a crossing, if j < i or j′ < i′.

Similarly, a nesting is a pair of arcs that nests in the nesting diagram, except if both arcs connect a
positive element or 0 with a negative element or 0, and at least one of them connects a positive element
with an element smaller in absolute value.

Example 4.1 The set partition in Figure 3(b) has three crossings: (3,−3) crosses (2, 4), (4,−5), and
(−4,−2). It does not cross (5,−4) by definition.

The set partition in Figure 3(a) has three nestings: (2,−5) nests (3, 4) and (4, 0), and (5,−2) nests
(−4,−3). However, (5,−2) does not nest (0,−4) by definition.

With this definition, we have a theorem that is only slightly weaker than in type C:

Theorem 4.2 There is an explicit bijection on set partitions of type Bn, preserving the set of openers and
the set of closers, and mapping the number of nestings to the number of crossings.

Again, we obtain an analog of Corollary 2.2:
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1 2 3 4 5 −1 −2 −3 −4 −5 1 2 3 4 5 −1 −2 −3 −4 −5

Fig. 4: Two non-crossing set partition of type D5. Both are obtained from each other by interchanging 5 and −5.

Corollary 4.3 For any opener-closer configuration (O, C) ⊆ [n]× [n], there exists a unique non-crossing
set partition B and a unique non-nesting set partition B′, both of type Bn, such that

op(B) = op(B′) = O and cl(B) = cl(B′) = C.

Using Theorem 3.3 and Theorem 4.2, one can deduce the following theorem:

Theorem 4.4 There is an explicit bijection on set partitions of type Bn, preserving the set of openers and
the set of closers, and interchanging the cardinalities of a maximal crossing and a maximal nesting.

5 Non-crossing and non-nesting set partitions in type D
In type D we do not have any good notion of crossing or nesting, we can only speak properly about
non-crossing and non-nesting set partitions.

A combinatorial model for non-crossing set partition of typeDn was given by Christos A. Athanasiadis
and Vic Reiner in [3]. For our purposes it is better to use a different description of the same model: let B
be a set partition of type Dn and let {(i1,−j1), . . . , (ik,−jk)} for positive i`, j` < n be the ordered set
of arcs in B starting in {1, . . . , n− 1} and ending in its negative. B is called non-crossing if

(i) (i,−i) is an arc in B implies i = n,

and if it is non-crossing in the sense of type Cn with the following exceptions:

(ii) arcs in B containing n must cross all arcs (i`,−j`) for ` > k/2,

(iii) arcs in B containing −n must cross all arcs (i`,−j`) for ` ≤ k/2,

(iv) two arcs in B containing n and −n may cross.

Here, (i) is equivalent to say that if B contains a zero block B0 then n ∈ B0 and observe that (i) together
with the non-crossing property of {(i1,−j1), . . . , (ik,−jk)} imply that k/2 ∈ N, see Figure 4 for an
example.

Note that all conditions hold for a set partition B if and only if they hold for the set partition obtained
from B by interchanging n and −n.

A set partition of type Dn is called non-nesting if it is non-nesting in the sense of [2]. This translates
to our notation as follows: let B be a set partition of type Dn. Then B is called non-nesting if

(i) (i,−i) is an arc in B implies i = n,

and if it is non-nesting in the sense of type Cn with the following exceptions:

(ii) arcs (i,−n) and (j, n) for positive i < j < n in B are allowed to nest, as do
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1 2 3 4 5 −5 −4 −3 −2 −1 1 2 3 4 5 −5 −4 −3 −2 −1

Fig. 5: Two non-nesting set partition of type D5. Both are obtained from each other by interchanging 5 and −5.

(iii) arcs (i,−j) and (n,−n) for positive k < i, j < n in B where (k, n) is another arc in B (which
exists by the definition of set partitions in type Dn).

Again, (i) means that if B0 ∈ B is a zero block then n ∈ B0. (ii) and (iii) come from the fact that the
positive roots ei + en and ej − en for i ≤ j are comparable in the root poset of type Cn but are not
comparable in the root poset of type Dn. As for non-crossing set partitions in type Dn, all conditions
hold if and only if they hold for the set partition obtained by interchanging n and −n. See Figure 5 for an
example. The definition of openers op(B), closers cl(B) and opener-closer configuration is as in type
C.

Proposition 5.1 Let (O, C) ⊆ [n] be an opener-closer configuration. Then there exists a non-crossing set
partition B of type Dn with op(B) = O and cl(B) = C if and only if

|O| − |C| is even or n ∈ O, C. (2)

Moreover, there exist exactly two non-crossing set partitions of type Dn having this opener-closer config-
uration if both conditions hold, otherwise, it is unique.

As in types A,B and C, the analogue proposition holds also for non-nesting set partitions of type Dn:

Proposition 5.2 Let (O, C) ⊆ [n] be an opener-closer configuration. Then there exists a non-nesting set
partition B of type Dn with op(B) = O and cl(B) = C if and only if

|O| − |C| is even or n ∈ O, C. (3)

Furthermore, there exist exactly two non-nesting set partitions of type Dn having this opener-closer con-
figuration if both conditions hold, otherwise, it is unique.
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Abstract. Let G be a simple graph with n vertices. The coloring complex ∆(G) was defined by Steingrı́msson, and
the homology of ∆(G) was shown to be nonzero only in dimension n − 3 by Jonsson. Hanlon recently showed
that the Eulerian idempotents provide a decomposition of the homology group Hn−3(∆(G)) where the dimension
of the jth component in the decomposition, H(j)

n−3(∆(G)), equals the absolute value of the coefficient of λj in the
chromatic polynomial of G, χG(λ). Let H be a hypergraph with n vertices. In this paper, we define the coloring
complex of a hypergraph, ∆(H), and show that the coefficient of λj in χH(λ) gives the Euler Characteristic of the
jth Hodge subcomplex of the Hodge decomposition of ∆(H). We also examine conditions on a hypergraph, H , for
which its Hodge subcomplexes are Cohen-Macaulay, and thus where the absolute value of the coefficient of λj in
χH(λ) equals the dimension of the jth Hodge piece of the Hodge decomposition of ∆(H).

Résumé. Soit G un graphe simple à n sommets. Le complexe de coloriage ∆(G) a été défini par Steingrı́msson et
Jonsson a prouvé que l’homologie de ∆(G) est non nulle seulement en dimension n−3. Hanlon a récemment prouvé
que les idempotents eulériens fournissent une décomposition du groupe d’homologie Hn−3(∆(G)) où la dimension
de la je composante dans la décomposition de Hn−3(j)(∆(G)) est égale à la valeur absolue du coefficient de λj

dans le polynôme chromatique de G, χG(λ). Soit H un hypergraphe à n sommets. Dans ce texte, nous définissons
le complexe de coloration d’un hypergraphe ∆(H) et nous prouvons que le coefficient de λj dans χH(λ) donne la
caractéristique d’Euler du je sous-complexe de Hodge dans la décomposition de Hodge de ∆(H). Nous examinons
également des conditions sur un hypergraphe H pour lesquelles les sous-complexes de Hodge sont Cohen-Macaulay.
Ainsi la valeur absolue du coefficient de λj de χH(λ) est égale à la dimension du je sous-complexe de Hodge dans
la décomposition de Hodge de ∆(H).

Keywords: coloring complex, hypergraph, chromatic polynomial

1 Preliminaries
Definition 1.1 A hypergraph, H , is an ordered pair, (V,E), where V is a set of vertices and E is a set of
subsets of the vertices of V . A hypergraph is said to be uniform of rank r if all of its hyperedges have size
r.

Throughout this paper, H will denote a hypergraph whose vertex set V is {1, ..., n}.
Definition 1.2 The chromatic polynomial of H , denoted χH(λ), is the number of ways to color the ver-
tices of the hyperedges of H with at most λ colors, so that the vertices of each edge are colored with at
least two colors.
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Example 1.3 Let H be the hypergraph on 5 vertices with hyperedges {1, 2, 3} and {3, 4, 5}. It follows
that χH(λ) = λ5 − (λ3 + λ3) + λ = λ5 − 2λ3 + λ.

The following theorem is a generalization of a well-known result for the chromatic polynomial of a
graph and will be used in the proof of Theorem 4.1. The same counting argument that is used to prove the
deletion-contraction formula for the chromatic polynomial of a graph can be used to prove the following
theorem.

Theorem 1.4 Deletion-Contraction Property [11] Let e be a hyperedge of H . Let H − e denote the
hypergraph obtained from H by deleting the edge e, and let H/e denote the hypergraph obtained from H
by identifying the vertices in e. Then

χH(λ) = χH−e(λ)− χH/e(λ).

Example 1.5 Let H be as in Example 1.3, and let e = {1, 2, 3}. Then H − e is the hypergraph on 5
vertices with hyperedge {3, 4, 5}, and H/e is the hypergraph on 3 vertices with edge {123, 4, 5}. Then
χH−e(λ) = λ2(λ3 − λ) and χH/e = λ3 − λ. Thus, by Theorem 1.4

χH(λ) = λ5 − 2λ3 + λ.

2 The Coloring Complex
We begin by defining Steingrı́msson’s [10] coloring complex following the presentation in Jonsson [8].

Let (B1, ..., Br+2) be an ordered partition of {1, ..., n}where at least one of theBi contains a hyperedge
of H , and let ∆r be the set of ordered partitions (B1, ..., Br+2).

Definition 2.1 The coloring complex of H is the sequence:

...→ Cr
δr→ Cr−1

δr−1→ ...
δ1→ C0

δ0→ C−1
δ−1→ 0

where Cr is the vector space over a field of characteristic zero with basis ∆r and

∂r((B1, ..., Br+2)) :=

r+1∑

i=1

(−1)i(B1, ..., Bi
⋃
Bi+1, ..., Br+2).

Notice that ∂r−1 ◦ ∂r = 0. Then:

Definition 2.2 The rth homology group of ∆(H), Hr(∆(H)) := ker(∂r)/im(∂r+1).

It is worth noting that Hultman [7] defined a complex that includes both Steingrı́msson’s coloring
complex and the coloring complex of a hypergraph as a special case.

For the proof of our main result, Theorem 4.1, we will need the following Lemma. Lemma 2.3 is the
hypergraph version of Lemma 1.3 in Jonsson [8]. We follow the notation in Hanlon [3].

Lemma 2.3 Let E be the hypergraph with the single hyperedge e and the same vertices as H , and let
Cr(∆(H),∆(E)) be the vector space spanned by ordered partitions in ∆r(H) with no block containing
e. Then

Cr(∆(H),∆(E)) ∼= Cr(∆(H − e))/(Cr(∆(H − e)) ∩ Cr(∆(E)))

and
Cr(∆(H − e)) ∩ Cr(∆(E)) ∼= Cr(∆(H/e)).
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Note that C∗(∆(H))/C∗(∆(E)) is the same as C∗(∆(H),∆(E)) in the relative homology sense, and
we will use this fact later in some of our proofs.

3 Eulerian Idempotents
Recently, Hanlon [3] showed that there is a Hodge decomposition of Hn−3(∆(G)) for a graph G; we will
discuss this result and its generalization to the hypergraph case. In order to describe this decomposition,
we must first define and describe the Eulerian idempotents. The Eulerian idempotents have many interest-
ing properties and have proved useful in many different algebraic and combinatorial problems. For more
information on Eulerian idempotents see [2], [9], [4], and [5].

Define a descent of a permutation π ∈ Sn to be a couple of consecutive numbers (i, i + 1) such that
π(i) > π(i+ 1). It follows from Loday’s [9] definition that the Eulerian idempotents e(j)

r can be defined
by the identity:

Definition 3.1 The Eulerian idempotents are defined by

n∑

j=1

tje(j)
n =

∑

π∈Sn

(
n+ t− des(π)− 1

n

)
sgn(π)π,

where des(π) is the number of descents of π.

There are several important properties of the Eulerian idempotents which are due to Gerstenhaber and
Schack [2]. In their paper, they show that the Eulerian idempotents are mutually orthogonal idempotents
and that their sum is the unit element in C[Sn]. So then for any Sn-module, M , we have that

M =
⊕

j

e(j)
n M .

Notice that we can define an action of Sr+2 on ∆r. Namely, if σ ∈ Sr+2, then σ · (B1, ..., Br+2) =
(Bσ−1(1), ..., Bσ−1(r+2)). This action then makes Cr into an Sr+2-module.

Hanlon [3] notes (or this result can be derived from the work of Gerstenhaber and Schack [2]) in Lemma
2.1 of his paper that for any graph G and for each r, j,

∂r ◦ e(j)
r+2 = e

(j)
r+1 ◦ ∂r.

This implies then that, for each j, C(j)
r = e

(j)
r+2Cr is a subcomplex of (C∗(∆(G)), ∂∗). We may then

consider the homology of the subcomplex, and it will be denoted by H(j)
∗ (∆(G)). So then we have

Hr(∆(G)) =
⊕

j

H(j)
r (∆(G)).

The above decomposition is called the Hodge decomposition of H∗(∆(G)).
Hanlon [3] showed that there is a Hodge decomposition of the top homology group of ∆(G), i.e.

Hn−3(∆(G)) =
n−1⊕

j=1

H
(j)
n−3(∆(G)). Further, he showed that the dimension of the jth Hodge piece is

equal to the absolute value of the coefficient of λj in the chromatic polynomial of G.
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In the case where H is a hypergraph, the Hodge decomposition of ∆(H) can be defined by following
the same process as above. However, in general, the homology of ∆(H) is not concentrated in one
dimension, and thus Hanlon’s result does not in general hold for an arbitrary hypergraph. In this paper,
we will provide a generalization of Hanlon’s result and study instances where the absolute value of the
coefficient of λj in the chromatic polynomial of H is equal to the dimension of H(j)

∗ (∆(H)).

4 The Relationship Between the Chromatic Polynomial of H and
∆(H)

In this section, we will provide a generalization of Hanlon’s result to hypergraphs. In our study, we will
need the following definition:

Let X(j) denote the Euler Characteristic of the jth Hodge piece of ∆(H). In particular,

X(j) =
n−r−1∑

i=−1

(−1)i dim(C
(j)
i (∆(H))

=
n−r−1∑

i=−1

(−1)i dim(H
(j)
i (∆(H))

Theorem 4.1 Let H be a hypergraph on n vertices. Then

X(j)(∆(H)) = −[λj ](χH(−λ)− (−λ)n).

where [λj ]χH(−λ) denotes the coefficient of λj in χH(−λ).

Hultman [7] notes that a hypergraph H on n vertices, without inclusions among edges, may be associ-
ated with a subspace arrangement embeddable in the braid arrangement An. Following his construction
and Theorem 5.7 of his paper, he notes that this then gives an interpretation of the chromatic polynomial
of such hypergraphs in terms of Hilbert polynomials. Thus, for such hypergraphs, Theorem 4.1 above
gives a relationship between the Euler Characteristics of the Hodge pieces of ∆(H) and coefficients in
Hilbert polynomials.

5 Star Hypergraphs
The previous theorem leads to the following

Question 1 For which hypergraphs H is it the case that, for each j, there exists at most one r for which
dim(H

(j)
r (∆(H)) is nonzero and therefore

dim(H(j)
r (∆(H)) = (−1)r+1[λj ](χH(−λ)− (−λ)n)?

Recall the following definition:

Definition 5.1 A simplicial complex ∆ is Cohen-Macaulay over a ring R if Hi(link∆(σ);R) = 0 for all
σ ∈ ∆ and i < dim(link∆(σ)).
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Notice that if ∆(H) is Cohen-Macaulay, then the above statement is true. In this section, we will show
that if H is a star hypergraph, then ∆(H) is Cohen-Macaulay and thus satisfies the condition in Question
1.

Definition 5.2 LetH be a uniform hypergraph of rank k with no singleton vertices. H is a star hypergraph
if all of its hyperedges intersect in a common set of size k − 1.

Before we show that ∆(H) is Cohen-Macaulay, we need the following definitions.

Definition 5.3 A simplicial complex is pure if all of its maximal faces have the same dimension.

The definition of a constructible complex is due to Hochster [6].

Definition 5.4 1. Simplices, including the empty set, are constructible.

2. If ∆1 and ∆2 are n-dimensional constructible complexes and ∆1 ∩∆2 is an (n− 1)-dimensional
constructible complex, then ∆1 ∪∆2 is constructible.

As noted in Björner [1], constructible complexes are Cohen-Macaulay. We will show that for H , a star
hypergraph, ∆(H) is constructible and thus Cohen-Macaulay.

Theorem 5.5 If H is a star hypergraph, then ∆(H) is constructible, and hence,

dim(H
(j)
n−k−1(∆(H))) = (−1)n−k[λj ](χH(−λ)− (−λ)n).

= (−1)n−k[λj ](−λ(−λ− 1)n−(k−1) − (−λ)n−(k−1))

Corollary 5.6 If H is a star hypergraph, then the dimension of Hn−k−1(∆(H)) equals the absolute
value of the sum of the coefficients of χH(λ) minus one.

6 Cohen-Macaulay Hodge Subcomplexes of ∆(H)
Under certain conditions, while ∆(H) may not be Cohen-Macaulay, the Hodge subcomplexes of ∆(H)
are Cohen-Macaulay and thus provide an alternative answer to Question 1. In this section, we will study
these conditions. We begin by examining a class of hypergraphs which are Cohen-Macaulay when n ≤ 5.

Theorem 6.1 Let H be a uniform hypergraph of rank k 6= 2 having n vertices, n ≤ 5. If each hyperedge
of H intersects at least one other hyperedge of H in a set of size k − 1, then ∆(H) is Cohen-Macaulay
and hence,

dim(H
(j)
n−k−1(∆(H))) = (−1)n−k[λj ](χH(−λ)− (−λ)n).

We now present some results concerning the homology of hypergraphs built from H by including an
additional edge, beginning with two lemmas concerning their homology. For any hypergraph H , and any
hyperedge e of H , it can be seen directly from the definitions that there exists a short exact sequence

0→ Cr(∆(E))→ Cr(∆(H))→ Cr(∆(H))/Cr(∆(E))→ 0

where ∆(E) denotes the edge complex of e and C∗(∆(H),∆(E)) in degree r is understood to repre-
sent the vector space spanned by ordered partitions inCr(∆(H)) with no block containing e; the boundary
maps on C∗(∆(H),∆(E)) are induced by the boundary maps on C∗(∆(H)). We can show
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Lemma 6.2 LetH be a uniform hypergraph of rank k and e be a hyperedge ofH . Then, for r < n−k−1,
Hr(∆(H)) ∼= Hr(∆(H),∆(E)) and Hn−k−1(∆(H)) ∼= Hn−k−1(∆(E))⊕Hn−k−1(∆(H),∆(E)).

Lemma 6.3 Consider a uniform, rank k hypergraph H on n vertices such that H − e is constructible for
some hyperedge e in the edge set of H . Then, for r < n− k − 1, Hr(∆(H)) ∼= Hr−1(∆(H/e)).

From this lemma we can deduce:

Corollary 6.4 Let H be a uniform, rank k hypergraph on n vertices such that, for some hyperedge e,
H − e is a star hypergraph and the largest size of any intersection of e with another edge of H is 1.
Then the homology of ∆(H) is nonzero in dimensions n − k − 1 and n − 2k + 1. The dimension of
Hn−k−1(∆(H)) equals the sum of the absolute values of the coefficients of χH−e(λ), and the dimension
of Hn−2k+1(∆(H)) equals the sum of the absolute values of the coefficients of χH/e(λ) minus one.

It is more difficult to analyze the case where H is a uniform, rank k hypergraph on n vertices such that,
for some hyperedge e, H − e is a star hypergraph and the largest size of any intersection of e with another
edge of H is greater than one. It would be interesting, however, to know whether there is a nice formula
for the dimensions of Hr(∆(H)) in this case.

We now have the following theorem from which we can deduce an answer to Question 1.

Theorem 6.5 Let H be a uniform hypergraph of rank k 6= 2 having n vertices, n ≤ 5, then all Hodge
subcomplexes of ∆(H) are Cohen-Macaulay.

Notice that this result is no longer true when n = 6:

Example 6.6 Let H be the hypergraph with 6 vertices and edges {1234} , {1256}, and {3456}. It is
straightforward to see that the dimensions of the Hodge pieces of the homology of ∆(H) are:

dim(H
(1)
1 (∆(H))) = 0 dim(H

(1)
0 (∆(H))) = 2 dim(H

(1)
−1 (∆(H))) = 0

dim(H
(2)
1 (∆(H))) = 3 dim(H

(2)
0 (∆(H))) = 3

dim(H
(3)
1 (∆(H))) = 3

These results lead to the following open questions:

Question 2 Is there a general condition for uniform hypergraphs with n ≥ 6 vertices so that the Hodge
subcomplexes of ∆(H) are Cohen-Macaulay?

Question 3 Let H be a uniform hypergraph of rank k. Is there a general formula for the dimensions of
the homology groups of ∆(H)?

7 The Chromatic Polynomial of ∆(H) and the Hodge Decompo-
sition of H∗(∆(H))

When each of the Hodge subcomplexes of ∆(H) have exactly one nonzero Hodge piece, there are some
interesting relationships between the signs of the coefficients of the chromatic polynomial of ∆(H) and
the Hodge decompositions of the homology groups of ∆(H). We present these results below.

Theorem 7.1 Suppose the jth Hodge subcomplex of ∆(H) has at most one nonzero Hodge piece for all
j. If both
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1. the coefficient of λj has the same sign as the coefficient of λj−1 and

2. the homology of the jth Hodge subcomplex is nonzero in the decomposition of Hk(∆(H))

then the (j−1)st Hodge subcomplex is nonzero in the decomposition of Hl(∆(H)), where l is the largest
integer, with the opposite parity as k, that is less than k and greater than −1, and for which Hl(∆(H)) is
nonzero.

Consider the following example:

Example 7.2 Let H be the hypergraph of 5 vertices with edges {1, 2, 3}, {2, 4, 5}, and {3, 4, 5}. It can
be verified that χH(λ) = λ5 − 3λ3 + λ2 + λ, and the dimensions of the Hodge pieces of the homology of
∆(H) are:

dim(H
(1)
1 (∆(H))) = 0 dim(H

(1)
0 (∆(H))) = 1 dim(H

(1)
−1 (∆(H))) = 0

dim(H
(2)
1 (∆(H))) = 1 dim(H

(2)
0 (∆(H))) = 0

dim(H
(3)
1 (∆(H))) = 3

In this case, the coefficient of λ2 and λ have the same parity, and dim(H
(2)
1 (∆(H))) = 1. Notice

that 0 is the only integer less than 1 and greater than −1 which is even. Thus, according to the theorem,
dim(H

(1)
0 (∆(H)) = 1.

Similarly, one can show that:

Theorem 7.3 Suppose the jth Hodge subcomplex of ∆(H) has at most one nonzero Hodge piece for all
j. If both

1. the coefficient of λj has the opposite sign as the coefficient of λl where l is the largest integer less
than j such that l has the same parity as j (and all coefficients of λi are zero for l < i < j) and

2. if the homology of the jth Hodge subcomplex is nonzero in the decomposition of Hk(∆(H))

then the lth Hodge subcomplex is nonzero in the decomposition of Hm(∆(H)), where m is the largest
integer, with the opposite parity as l, that is less than k and greater than −1, and for which Hm(∆(H))
is nonzero.

Example 7.4 Let H be the hypergraph of 5 vertices with edges {1, 2, 3} and {3, 4, 5}. As determined
earlier in the paper, χH(λ) = λ5 − 2λ3 + λ, and the dimensions of the Hodge pieces of the homology of
∆(H) are:

dim(H
(1)
1 (∆(H))) = 0 dim(H

(1)
0 (∆(H))) = 1 dim(H

(1)
−1 (∆(H))) = 0

dim(H
(2)
1 (∆(H))) = 0 dim(H

(2)
0 (∆(H))) = 0

dim(H
(3)
1 (∆(H))) = 2
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Schubert complexes and degeneracy loci
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Abstract. The classical Thom–Porteous formula expresses the homology class of the degeneracy locus of a generic
map between two vector bundles as an alternating sum of Schur polynomials. A proof of this formula was given by
Pragacz by expressing this alternating sum as the Euler characteristic of a Schur complex, which gives an explanation
for the signs. Fulton later generalized this formula to the situation of flags of vector bundles by using alternating sums
of Schubert polynomials. Building on the Schubert functors of Kraśkiewicz and Pragacz, we introduce Schubert
complexes and show that Fulton’s alternating sum can be realized as the Euler characteristic of this complex, thereby
providing a conceptual proof for why an alternating sum appears.

Résumé. La formule classique de Thom–Porteous exprime la classe d’homologie du locus de la dégénérescence
d’une fonction générique entre deux fibrés vectoriels comme une somme alternée des polynômes de Schur. Un
preuve de cette formule a été donnée par Pragacz en exprimant ce alternant somme comme la caractéristique d’Euler
d’un complexe de Schur, ce qui donne une explication pour les signes. Fulton puis généralisée cette formule à la
situation des drapeaux de fibrés vectoriels à l’aide alternant des sommes de polynômes de Schubert. S’appuyant sur
le Schubert foncteurs de Kraśkiewicz et Pragacz, nous introduisons les complexes de Schubert et montrent que la
somme alternée de Fulton peuvent être réalisées en tant que Euler caractéristique de ce complexe, fournissant ainsi
une preuve conceptuelle pour lesquelles une somme alternée apparaı̂t.

Keywords: Schubert polynomials, Schubert complexes, degeneracy loci, balanced labelings, Thom–Porteous for-
mula

1 Introduction
Let X be a smooth variety, and let ϕ : E → F be a map of vector bundles over X , with ranks e and f
respectively. Given a number k ≤ min(e, f), let Dk(ϕ) be the degeneracy locus of points x where the
rank of ϕ restricted to the fiber of x is at most k. Then codimDk(ϕ) ≤ (e− k)(f − k), and in the case of
equality, the Thom–Porteous formula gives an expression for the homology class of Dk(ϕ) in the Chow
groups of X in terms of the Chern classes of E and F using super Schur polynomials. Also in the case of
equality, the Schur complex associated with the rectangular partition (f − k)× (e− k) [ABW] of ϕ is a
linear locally free resolution for a coherent sheaf whose support is Dk(ϕ). Interpreted appropriately, the
Euler characteristic of this complex recovers the Thom–Porteous formula. Hence the complex provides a
“linear approximation” of the syzygies of Dk(ϕ).

The situation was generalized by Fulton as follows. We provide the additional data of a flag of subbun-
dles E• for E and a flag of quotient bundles F• for F , and we can define degeneracy loci for an array of

†Steven Sam was supported by an NSF graduate fellowship and an NDSEG fellowship during the preparation of this work.
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numbers which specifies the ranks of maps Ep → Fq . In particular, the rank functions which give rise to
irreducible degeneracy loci are indexed by permutations in a natural way. Under the right codimension as-
sumptions, one can express its homology class as a substitution of a double Schubert polynomial with the
Chern classes of the quotients Ei/Ei−1 and the kernels ker(Fj → Fj−1). The motivation for this work
was to complete the analogy of this situation with the previous one by constructing “Schubert complexes”
which would be acyclic whenever the degeneracy loci has the right codimension.

Building on the constructions for Schubert functors by Kraśkiewicz and Pragacz of [KP], we construct
these complexes over an arbitrary (commutative) ring R from the data of two free R-modules M0, M1,
with given flags of submodules, respectively, quotient modules, and a map ∂ : M0 → M1. We show that
they are generically acyclic (in the sense of [BE]) and that in general they are acyclic when a certain ideal
defined in terms of minors of ∂ has the right depth, i.e., they are “depth-sensitive.” This allows us to
extend the construction to an arbitrary variety (or more generally, an arbitrary scheme). We will stick to
the language of varieties, however the results can be generalized as necessary. Again, the complexes are
linear and provide a “linear approximation” to the syzygies of Fulton’s degeneracy loci. We remark here
that as a special case of Fulton’s degeneracy loci, one gets Schubert varieties inside of arbitrary partial
flag varieties.

Our main result is that in the situation of Fulton’s theorem, the complex is acyclic and the Euler charac-
teristic provides the formula in the same sense as above. A majority of the hard work goes into proving that
our constructed complexes are acyclic under the appropriate depth assumption. Our proof uses techniques
from commutative algebra, algebraic geometry, and combinatorics, and will appear in the full version of
this paper. In the present article, we offer a short sketch of the proof.

Using the work of Fomin, Greene, Reiner, and Shimozono [FGRS], we can also construct explicit
bases for the terms of the Schubert complex in the case that M0 and M1 are free. This basis naturally
extends their notion of “balanced labelings” and their generating function gives an alternative expression
for double Schubert polynomials. Furthermore, the complex naturally affords a representation of the
Lie superalgebra of upper triangular matrices (with respect to the given flags) in Hom(M0,M1), and its
supercharacter is the double Schubert polynomial.

The article is structured as follows. In Section 2 we recall some facts about double Schubert polyno-
mials and balanced labelings. We introduce balanced super labelings and explain their relationship with
the double Schubert polynomials. In Section 3 we extend the construction for Schubert functors to the
Z/2-graded setting and describe a basis for them naturally indexed by the balanced super labelings. In
Section 4 we construct the Schubert complex from this Z/2-graded Schubert functor. We mention the rel-
evant facts and sketch the idea of a proof that these complexes are generically acyclic, and that in general
the acyclicity of the complex is controlled by depth of a Schubert determinantal ideal. We also give some
examples of Schubert complexes. Finally, in Section 5, we relate the acyclicity of the Schubert complexes
to a degeneracy locus formula of Fulton.

2 Double Schubert polynomials.
2.1 Preliminaries.
Let Σn be the permutation group on the set {1, . . . , n}. Let si denote the transposition which switches i
and i+ 1. Then Σn is generated by {s1, . . . , sn−1}, and for w ∈ Σn, we define the length of w to be the
least number of `(w) such thatw = si1 · · · si`(w)

. Such a minimal expression is a reduced decomposition
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for w. We can also write `(w) = #{i < j | w(i) > w(j)}. There is a unique word w0 with maximal
length, which is the permutation defined by w0(i) = n+ 1− i.

We will use two partial orders on Σn. The weak Bruhat order, denoted by u ≤W w, holds if some
reduced decomposition of u is the suffix of some reduced decomposition of w. We denote the strong
Bruhat order by u ≤ w, which holds if some reduced decomposition of w contains a subword that is a
reduced decomposition of u. It follows from the definition that u ≤ w if and only if u−1 ≤ w−1. For
a permutation w, let rw(p, q) = {i ≤ p | w(i) ≤ q} be its rank function. Then u ≤ w if and only if
ru(p, q) ≥ rw(p, q) for all p and q (the inequality on rank functions is reversed).

Given a polynomial (with arbitrary coefficient ring) in the variables {xi}i≥1, let ∂i be the divided
difference operator

(∂iP )(x1, x2, . . . ) =
P (. . . , xi−1, xi, xi+1, . . . )− P (. . . , xi−1, xi+1, xi, . . . )

xi − xi+1
. (2.1)

The operators ∂i satisfy the braid relations: ∂i∂j = ∂j∂i when |i− j| > 1 and ∂i∂i+1∂i = ∂i+1∂i∂i+1.
For the long word w0 ∈ Σn, set Sw0

(x, y) =
∏
i+j≤n(xi − yj). In general, if `(wsi) = `(w)− 1, we

set Swsi(x, y) = ∂iSw(x, y), where we interpret Sw(x, y) as a polynomial in the variables {xi}i≥1 with
coefficients in the ring Z[y1, y2, . . . ]. These polynomials are the double Schubert polynomials, and are
well-defined thanks to the braid relations. They also enjoy the following stability property: if we embed
Σn into Σn+1 by identifying permutations of Σn with permutations of Σn+1 which fix n + 1, then the
polynomial Sw(x, y) is the same whether we regard w as an element of Σn or Σn+1.

Define the single Schubert polynomials by Sw(x) = Sw(x, 0). We will use the identity [Man,
Proposition 2.4.7]

Sw(x, y) =
∑

u≤Ww
Su(x)Suw−1(−y). (2.2)

2.2 Balanced super labelings.
For the rest of this article, we fix a totally ordered alphabet · · · < 3′ < 2′ < 1′ < 1 < 2 < 3 < · · · .

For a permutation w, define its diagram D(w) = {(i, w(j)) | i < j, w(i) > w(j)}. Let T be a
labeling of D(w). The hook of a box b ∈ D(w) is the set of boxes in the same column below it, and the
set of boxes in the same row to the right of it (including itself). A hook is balanced (with respect to T ) if it
satisfies the following property: when the entries are rearranged so that they are weakly increasing going
from the top right end to the bottom left end, the label in the corner stays the same. A labeling is balanced
if all of the hooks are balanced. Call a labeling T of D(w) with entries in our alphabet a balanced super
labeling (BSL) if it is balanced, column-strict (no repetitions in any column) with respect to the unmarked
alphabet, row-strict with respect to the marked alphabet, and satisfies j′ ≤ T (i, j) ≤ i for all i and j (this
last condition will be referred to as the flag conditions).

Given a BSL T of D(w), let fT (i), respectively fT (i′), be the number of occurrences of i, respectively
i′. Define a monomial

m(T ) = x
fT (1)
1 · · ·xfT (n−1)

n−1 (−y1)fT (1′) · · · (−yn−1)fT ((n−1)′). (2.3)

Using [FGRS, Lemma 4.7, Theorem 4.8], we can prove the following.
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Theorem 2.4 For every permutation w,

Sw(x, y) =
∑

T

m(T ),

where the sum is over all BSL T of D(w).

Remark 2.5 Given a labeling T of D(w), let T ∗ denote the labeling of D(w−1) obtained by transposing
T and performing the swap i ↔ i′. The operation T 7→ T ∗ gives a concrete realization of the symmetry
Sw(−y,−x) = Sw−1(x, y) [Man, Corollary 2.4.2].

Example 2.6 We list the BSL for the permutation w = 321.

1 1
2

1 1

1′
1 2′

2
1′ 2′

1
1 1′

2
1′ 1

1′
1′ 2′

2
1′ 2′

1′

In this case, S321(x, y) = (x1 − y1)(x1 − y2)(x2 − y1).

3 Double Schubert functors.
3.1 Super linear algebra preliminaries.
Let V = V0 ⊕ V1 be a free super module over a commutative ring R with V0 = 〈e1, . . . , en〉 and
V1 = 〈e′1, . . . , e′m〉, and let gl(m|n) = gl(V ) be the Lie superalgebra of endomorphisms of V . Let
b(m|n) ⊂ gl(m|n) be the standard Borel subalgebra of upper triangular matrices with respect to the
ordered basis 〈e′m, . . . , e′1, e1, . . . , en〉. In the case m = n, we will write b(n) = b(n|n), and if it
is clear from context, we will drop the n and simply write b. Also, let b(n)0 = gl(V )0 ∩ b(n) be
the even degree elements in b(n), and again, we will usually denote this by simply b0. We also write
h(n) ⊂ b(n) for the Cartan subalgebra of diagonal matrices (this is a Lie algebra concentrated in degree
0). Let ε′n, . . . , ε

′
1, ε1, . . . , εn be the dual basis vectors to the standard basis of h(n). For notation, write

(an, . . . , a1|b1, . . . , bn) for
∑n
i=1(aiε

′
i+biεi). The even and odd roots of b(n) are Φ0 = {ε′j−ε′i, εi−εj |

1 ≤ i < j ≤ n} and Φ1 = {ε′i − εj | 1 ≤ i, j ≤ n}, respectively. The even and odd simple roots are
∆0 = {ε′i+1 − ε′i, εi − εi+1 | i = 1, . . . , n− 1} and ∆1 = {ε′1 − ε1}.

Given a highest weight representation W of b(n), we have a weight decomposition W =
⊕

λWλ as a
representation of h(n). Let Λ be the highest weight of W . Then every weight λ appearing in the weight
decomposition can be written in the form Λ −∑nαα where α ranges over the simple roots of b(n) and
nα ∈ Z≥0. For such a λ, set ω(λ) = (−1)

∑
nα degα. Then we define the character and supercharacter

of W as

chW =
∑

λ

(dimWλ)eλ, schW =
∑

λ

ω(λ)(dimWλ)eλ. (3.1)

We recall the Z/2-graded analogues of the symmetric and exterior powers. Let F = F0 ⊕ F1 be a free
R-supermodule. Let D denote the divided power functor. Then

∧i
F and DiF are Z-graded modules

with terms given by

(

i∧
F )d =

i−d∧
F0 ⊗ SymdF1, (DiF )d = Di−dF0 ⊗

d∧
F1. (3.2)
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We can define a coassociative Z-graded comultiplication ∆: Di+jF → DiF ⊗ DjF as follows. On
degree d, pick 0 ≤ a ≤ i and 0 ≤ b ≤ j such that a+ b = d. Then we have the composition ∆a,b

(Di+jF )d = Di+j−a−bF0 ⊗
a+b∧

F1

∆⊗∆−−−→ Di−aF0 ⊗Dj−bF0 ⊗
a∧
F1 ⊗

b∧
F1

∼= Di−aF0 ⊗
a∧
F1 ⊗Dj−bF0 ⊗

b∧
F1 = (DiF )a ⊗ (DjF )b,

(3.3)

where ∆ is the usual symmetrization map, and we define ∆ on the degree d part to be
∑
a+b=d ∆a,b.

Similarly, we can define an associative Z-graded multiplication m :
∧i

F ⊗ ∧j F → ∧i+j
F as fol-

lows. For degrees a and b, we have

(

i∧
F )a ⊗ (

j∧
F )b =

i−a∧
F0 ⊗ SymaF1 ⊗

j−b∧
F0 ⊗ SymbF1

∼=
i−a∧

F0 ⊗
j−b∧

F0 ⊗ SymaF1 ⊗ SymbF1

m⊗m−−−−→
i+j−a−b∧

F0 ⊗ Syma+bF1 = (

i+j∧
F )a+b,

(3.4)

where m is the usual exterior multiplication.

3.2 Constructions.
Define a flag of Z/2-graded submodules

V • : V −n ⊂ · · · ⊂ V −1 ⊂ V 1 ⊂ · · · ⊂ V n (3.5)

such that V −1 consists of all of the odd elements of V n. We will say that the flag is split if each term and
each quotient is a free module. Fix a permutation w ∈ Σn. Let rk = rk(w), respectively cj = cj(w),
be the number of boxes in the kth row, respectively jth column, of D(w). Define χk,j to be 1 if (k, j) ∈
D(w) and 0 otherwise. Consider the map

n−1⊗

k=1

DrkV k
⊗∆−−→

n−1⊗

k=1

n−1⊗

j=1

Dχk,jV k ∼=
n−1⊗

j=1

n−1⊗

k=1

Dχk,jV k

⊗m−−→
n−1⊗

j=1

cj∧
V w

−1(j) ⊗π−−→
n−1⊗

j=1

cj∧
(V w

−1(j)/V −j−1),

(3.6)

where ⊗∆ denotes the product of symmetrization operations, ⊗m denotes the product of exterior multi-
plications, and ⊗π denotes the product of projection maps. Then its image Sw(V •) is the Z/2-graded
Schubert functor, or double Schubert functor. By convention, the empty tensor product is R, so that if
w is the identity permutation, then Sw(V •) = R with the trivial action of b(n).
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This definition is clearly functorial: given an even map of flags f : V • → W •, i.e., f(V k) ⊂ W k for
−n ≤ k ≤ n, we have an induced map f : Sw(V •)→ Sw(W •).

We will focus on the case when V −i = 〈e′n, e′n−1, · · · , e′i〉 and V i = V −1 + 〈e1, e2, . . . , ei〉, so that
Sw = Sw(V •) is a b(n)-module.

Remark 3.7 One could dually define the double Schubert functor as the image of (dual) exterior powers
mapping to symmetric powers. The dual exterior powers are as in our definition, except that divided
powers replace symmetric powers. However, we have chosen this definition to be consistent with [KP].
This will be especially convenient in Section 4.1.

Here is a combinatorial description of the map (3.6). The elements of
⊗n−1

k=1 DrkV k can be thought of
as labelings of D = D(w) such that in row k, only the labels n′, (n− 1)′, . . . , 1′, 1, . . . , k are used, such
that there is at most one use of i′ in a given row, and such that the entries in each row are ordered in the
usual way (i.e., n′ < (n − 1)′ < · · · < 1′ < 1 < · · · < k). Let ΣD be the permutation group of D. We
say that σ ∈ ΣD is row-preserving if each box and its image under σ are in the same row. Denote the
set of row-preserving permutations as Row(D). Let T be a labeling of D that is row-strict with respect
to the marked letters. Let Row(D)T be the subgroup of Row(D) that leaves T fixed, and let Row(D)T

be the set of cosets Row(D)/Row(D)T . Given σ ∈ Row(D)T , and considering the boxes as ordered
from left to right, let α(T, σ)k be the number of inversions of σ among the marked letters in the kth
row, and define α(T, σ) =

∑n−1
k=1 α(T, σ)k. Note that this number is independent of the representative

chosen since T is row strict with respect to the marked letters. Then the comultiplication sends T to∑
σ∈Row(D)T (−1)α(T,σ)σT where σT is the result of permuting the labels of T according to σ.
For the multiplication map, we can interpret the columns as being alternating in the unmarked letters

and symmetric in the marked letters. We write m(T ) for the image of T under this equivalence relation.
Therefore, the map (3.6) can be defined as

T 7→
∑

σ∈Row(D)T

(−1)α(T,α)m(σT ). (3.8)

3.3 A basis and a filtration.
Theorem 3.9 Assume that the flag V • is split. The images of the BSLs under (3.6) form a basis over R
for Sw. By convention, the empty diagram has exactly one labeling.

Corollary 3.10 Identify xi = −eεi and yi = −eε′i for 1 ≤ i ≤ n. Then

ch Sw = Sw(−x, y), sch Sw = Sw(x, y).

Corollary 3.11 Choose an ordering of the set of permutations below w in the weak Bruhat order: 1 =
v1 ≺ v2 ≺ · · · ≺ vN = w such that vi ≺ vi+1 implies that `(vi) ≤ `(vi+1). Then there exists a
b-equivariant filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = Sw

such that
Fi/Fi−1

∼= S ′vi ⊗S ′′
wv−1

i

as b0-modules.
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Our proof does not establish how one can write the image of an arbitrary labeling as a linear combination
of the images of the BSLs. Such a straightening algorithm is preferred, but we have not been successful
in finding one, so we leave this task as an open problem.

Problem 3.12 Find an algorithm for writing the image of an arbitrary labeling of D(w) as a linear
combination of the images of the BSLs of D(w).

4 Schubert complexes.
Now we can use the above machinery to define Schubert complexes. We start with the data of two flags
F •0 : 0 = F 0

0 ⊂ F 1
0 ⊂ · · · ⊂ Fn0 = F0 and F •1 : 0 = F−n−1

1 ⊂ F−n1 ⊂ F−n+1
1 ⊂ · · · ⊂ F−1

1 = F1, and
a map ∂ : F0 → F1 between them. Given the flag for F0, we pick an ordered basis {e1, . . . , en} for it such
that ei ∈ F i0 \F i−1

0 . Similarly, we pick an ordered basis {e′1, . . . , e′n} for F1 such that e′i ∈ F−i1 \F−i−1
1 .

Given these bases, we can represent ∂ as a matrix. This matrix representation will be relevant for the
definition of certain ideals later.

Equivalently, we can give F •1 as a quotient flag F1 = Gn � Gn−1 � · · · � G1 � G0 = 0, so that
the correspondence is given by F−i1 = ker(Gn � Gi−1). Note that F−i1 /F−i−1

1 = ker(Gi � Gi−1).
We assume that each quotient has rank 1. Then we form a flagged supermodule F with even part F0 and
odd part F1. The formation of symmetric and exterior products commutes with the differential ∂, so we
can form the Schubert complex Sw(F ) for a permutation w ∈ Σn.

Proposition 4.1 The ith term of Sw(F ) has a natural filtration whose associated graded is
⊕

v≤Ww
`(v)=i

Sv(F0)⊗Swv−1(F1).

Proof: This is a consequence of Corollary 3.11. 2

4.1 The Kraśkiewicz–Pragacz filtration.
In order to prove properties of Sw, we will construct a filtration of subcomplexes, which is based on the
filtration of the single Schubert functors introduced by Kraśkiewicz and Pragacz [KP].

Let w ∈ Σn be a nonidentity permutation. Consider the set of pairs (α, β) such that α < β and
w(α) > w(β). Choose (α, β) to be maximal with respect to the lexicographic ordering. Let k1 <
· · · < kk be the numbers such that kt < α and w(kt) < w(β), and such that kt < i < α implies
that w(i) /∈ {w(kt), w(kt) + 1, . . . , w(β)}. Then we have the following identity of double Schubert
polynomials

Sw = Sv · (xα − yw(β)) +
k∑

t=1

Sψt , (4.2)

where v = wtα,β and ψt = wtα,βtkt,α. Here ti,j denotes the transposition which switches i and j. See,
for example, [Man, Exercise 2.7.3]. The formula in (4.2) will be called a maximal transition for w.
Define the index of a permutation u to be the number

∑
(k − 1)#{j > k | u(k) > u(j)}. Note that the

index of ψt is smaller than the index of w.
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Theorem 4.3 Let V • be a split flag as in (3.5). Given a permutation w ∈ Σn, let (4.2) be the maximal
transition for w. Then there exists a functorial b-equivariant filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ F ′ ⊂ F = Sw(V •)

such that F/F ′ ∼= Sv(V
•) ⊗ V α/V α−1, F ′/Fk ∼= Sv(V

•) ⊗ V −w(β)/V −w(β)+1, and Ft/Ft−1
∼=

Sψt(V
•) for t = 1, . . . , k.

Corollary 4.4 Let ∂ : F0 → F1 be a map. With the notation as in Theorem 4.3, there is a functorial
b-equivariant filtration of complexes

0 = C0 ⊂ C1 ⊂ · · · ⊂ Ck ⊂ C ′ ⊂ C = Sw(∂)

such that C/C ′ ∼= Sv(∂)[−1] ⊗ Fα0 /Fα−1
0 , C ′/Ck ∼= Sv(∂) ⊗ F−w(β)

1 /F
−w(β)+1
1 , and Ct/Ct−1

∼=
Sψt(∂) for t = 1, . . . , k.

Proof: The filtration of Theorem 4.3 respects the differentials since everything is defined in terms of mul-
tilinear operations. The grading shift of C/C ′ follows from the fact that the F0 terms have homological
degree 1. 2

4.2 Generic acyclicity of Schubert complexes.
Given a matrix ∂ and a permutationw, let Iw(∂) be the ideal generated by the (rw(p, q)+1)×(rw(p, q)+1)
minors of the upper left p × q submatrix of ∂. It is clear that Iv ⊆ Iw if and only if v ≤ w. In the case
that ∂ is a generic matrix of variables over some coefficient ring R, let X(w) be the variety defined by
Iw(∂) ⊂ R[∂i,j ]. We refer to the ideals Iw(∂) as Schubert determinantal ideals, and the varieties X(w)
as matrix Schubert varieties. These ideals are prime and have codimension `(w) [MS, Chapter 15].

Our main result is the following.

Theorem 4.5 Let A = K[∂i,j ] be a polynomial ring over a field K, and let ∂ : F0 → F1 be a generic
map of variables between two free A-modules.

(a) The Schubert complex Sw(∂) is acyclic, and resolves a Cohen–Macaulay module M of codimension
`(w) supported in Iw−1(∂) ⊆ A.

(b) The restriction of M to X(w−1) is a line bundle outside of a certain codimension 2 subset.

(c) The Schubert complex defined over the integers is acyclic.

Proof: (Sketch). From Corollary 4.4, we get a short exact sequence

0→ H1(C)→ H0(Sv(∂))⊗ Fα0 /Fα−1
0

δ−→ H0(C ′)→ H0(C)→ 0, (4.6)

so we have to show that δ is injective, and that the support of H0(C) = M is P = Iw−1(∂).
The short exact sequence

0→ Ck → C ′ → Sv(∂)⊗ 〈e′w(β)〉 → 0
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induces the sequence

0→ H0(Ck)→ H0(C ′)→ H0(Sv(∂))⊗ 〈e′w(β)〉 → 0.

By induction on the filtration in Corollary 4.4, the support of H0(Ck) is in the union of the X(ψ−1
t ), and

hence does not contain X(w−1). So localizing at P , we get an isomorphism

H0(C ′)P ∼= H0(Sv(∂))P ⊗ 〈e′w(β)〉.

So we can restrict this isomorphism to X(w−1). Localizing (4.6) at P and then restricting X(w−1), we
get a surjection

H0(Sv(∂))P ⊗ 〈e′w(β)〉 → H0(C)P → 0.

By induction, the first term has length 1 over the generic point of X(w−1), so the length of H0(C)P is
either 0 or 1.

The idea for using this partial information is to carry our situation to the complete flag variety and to use
its K-theory to show that length(H0(C)P )− length(H1(C)P ) = 1. Some more analysis of the K-theory
gives us the other statements which allow us to complete the induction step. 2

Corollary 4.7 Let X be an equidimensional Cohen–Macaulay variety, and let ∂ : E → F be a map of
vector bundles on X . Let E1 ⊂ · · · ⊂ En = E and F−n ⊂ · · · ⊂ F−1 = F be split flags of subbundles.
Let w ∈ Σn be a permutation, and define the degeneracy locus

Dw(∂) = {x ∈ X | rank(∂x : Ep(x)→ F/F−q−1(x)) ≤ rw(p, q)},

where the ideal sheaf of Dw(∂) is locally generated by the minors given by the rank conditions. Suppose
that Dw(∂) has codimension `(w).

(a) The Schubert complex Sw(∂) is acyclic, and the support of its cokernel L is Dw(∂).

(b) The degeneracy locus Dw(∂) is Cohen–Macaulay.

(c) The restriction of L to Dw(∂) is a line bundle outside of a certain codimension 2 subset.

4.3 Examples.
Here is a combinatorial description of the differentials in the Schubert complex for a flagged isomorphism.
We will work with just the tensor product complex

⊗n−1
k=1 Drk(w)(F ). Then the basis elements of its terms

are row-strict labelings. The differential sends such a labeling to the signed sum of all possible ways to
change a single unmarked letter to the corresponding marked letter. If T ′ is obtained from T by marking
a letter in the ith row, then the sign on T ′ is (−1)n, where n is the number of unmarked letters of T in the
first i− 1 rows.

Example 4.8 Consider the permutation w = 1423. Then D(w) = {(2, 2), (2, 3)}, and we denote the
generic map by e1 7→ ae′1 + be′2 + ce′3 and e2 7→ de′1 + ee′2 + fe′3 (the images of e3 and e4 are irrelevant,
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and it is also irrelevant to map to e′4) instead of a flagged isomorphism. The cokernel M is Cohen–
Macaulay of codimension 2 over A = K[a, b, c, d, e, f ]:

0→ A3




e b 0
0 e b
d a 0
0 d a
0 f c
f c 0




−−−−−−−−−→ A6




d a −e −b 0 0
0 0 −f −c a d
−f −c 0 0 b e




−−−−−−−−−−−−−−−−−−−−−−−→ A3 →M → 0

Example 4.9 Consider the permutation w = 2413. Then D(w) = {(1, 1), (2, 1), (2, 3)}, and denote
the generic matrix by e1 7→ ae′1 + be′2 + ce′3 and e2 7→ de′1 + ee′2 + fe′3 (the images of e3 and e4 are
irrelevant, and it is also irrelevant to map to e′4). The cokernel M is Cohen–Macaulay of codimension 3
over A = K[a, b, c, d, e, f ]:

0→ A2




−d −a
−e −b
−f −c
0 −d
a 0
0 a




−−−−−−−−−→ A6




0 0 0 a 0 d
e −d 0 b 0 e
f 0 −d c 0 f
a 0 0 0 d a
0 a 0 0 e b
0 0 a 0 f c




−−−−−−−−−−−−−−−−−−−−→ A6


−b a 0 −e d 0
−c 0 a −f 0 d




−−−−−−−−−−−−−−−−−−−−→ A2 →M → 0

5 Degeneracy loci.
5.1 A formula of Fulton.
Suppose we are given a map ∂ : E → F of vector bundles of rank n on a variety X , together with a flag
of subbundles E1 ⊂ E2 ⊂ · · · ⊂ En = E and a flag of quotient bundles F = Fn � Fn−1 � · · ·� F1

such that rankEi = rankFi = i. We assume that the quotient flags Ei/Ei+1 are locally free. For a
permutation w, define

Dw(∂) = {x ∈ X | rank(∂x : Ep(x)→ Fq(x)) ≤ rw(p, q)}.

Then codimDw(∂) ≤ `(w). Define Chern classes xi = −c1(Ei/Ei−1) and yi = −c1(ker(Fi � Fi−1)).

Theorem 5.1 (Fulton) Suppose that X is an equidimensional Cohen–Macaulay variety and Dw(∂) has
codimension `(w). Then the identity

[Dw(∂)] = Sw(x, y) ∩ [X]

holds in the Chow group Adim(Dw(∂))(X).

See [F1, §8] for a more general statement which does not enforce a codimension requirement onDw(∂)
or assume that X is Cohen–Macaulay.

We will only deal with the case when X is smooth. The general case can be reduced to this case
using a “universal construction” (see [F2, Chapter 14]). So suppose that X is smooth. Let A∗(X) =
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⊕

k≥0 Ak(X) be the direct sum of its Chow groups, and Gr K(X) be the associated graded of the topo-
logical filtration of its Grothendieck group (see [F2, Example 15.1.5]). Let ϕ : A∗(X)→ Gr K(X) be the
functorial morphism of graded rings which for a subvariety V ⊆ X sends [V ] to [OV ]. If F is a coherent
sheaf whose support has dimension at most k, then we have ϕ(Zk(F)) = [F ] where

Zk(F) =
∑

dimV=k

mV (F)[V ],

and mV (F) is the length of the stalk of F at the generic point of V . In order to state the connection be-
tween the Schubert complex and Fulton’s formula, we will need the following lemma which was observed
in [Pra, Appendix 6].

Lemma 5.2 Let D be an irreducible closed subvariety of a smooth variety X . Let C• be a finite complex
of vector bundles on X and let P ∈ AcodimD(X). If

suppC• = X \ {x ∈ X | (C•)|x is an exact complex}

is contained in D, and ϕ(P ∩ [X]) = [C•], then c[D] = P ∩ [X] for some c ∈ Q.

We will use Lemma 5.2 with D = Dw(∂), C• = Sw(∂), and P = Sw(x, y) using the notation from
the beginning of this section. We know that suppC• ⊆ D and that the codimension ofD is `(w) = degP
by Corollary 4.7. So we need to check that ϕ(P ∩ [X]) = [C•].

For a line bundle L corresponding to an irreducible divisor D, we have c1(L) ∩ [X] = [D], and hence

ϕ(c1(L) ∩ [X]) = 1− [L∨]

by the short exact sequence
0→ L (−D)→ OX → OD → 0.

So the same formula holds for allL by linearity, and ϕ(xi) = 1−[Ei/Ei−1] while ϕ(yj) = 1−[ker(Fj �
Fj−1)]. Let a and b be a new set of variables. We have Sw(a, b) =

∑
u≤WwSu(a)Suw−1(−b). Doing

the transformation ai 7→ xi−1 and bj 7→ yj−1, we getϕ(Sw(a, b)) =
∑
u≤Ww(−1)`(u)Su(E)Suw−1(F ).

By Proposition 4.1, this sum is [Sw(∂)] (the change from uw−1 to wu−1 is a consequence of the
fact that F1 in Proposition 4.1 contains only odd elements). So it is enough to show that the substi-
tution ai 7→ ai + 1, bj 7→ bj + 1 leaves the expression Sw(a, b) invariant. This is clearly true for
Sw0(x, y) =

∏
i+j≤n(xi − yj), and holds for an arbitrary permutation because the divided difference

operators (see (2.1)) applied to a substitution invariant function yield a substitution invariant function.
So it remains to show that the constant given by Lemma 5.2 is 1. This follows from Corollary 4.7(c).

5.2 Some remarks.
First we point out that the above can be applied to partial flags, but we have kept to complete flags for
simplicity of notation.

A permutation w ∈ Σn is Grassmannian if it has at most one descent, i.e., there exists r such that
w(1) < w(2) < · · · < w(r) > w(r + 1) < · · · < w(n). Suppose that w is bigrassmannian, which
means that w and w−1 are Grassmannian permutations. This is equivalent to saying that D(w) is a
rectangle. In this case, the double Schubert polynomial Sw(x, y) is a super Schur polynomial for the
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partition D(w). The degeneracy locus Dw(∂) can then be described by a single rank condition between
the map ∂E → F , so the degeneracy locus formula of Fulton specializes to the Thom–Porteous formula
mentioned in the introduction. So in principle, the action of b on Sw(∂) should extend to an action
of a general linear superalgebra, but it is not clear why this should be true without appealing to Schur
polynomials.

We have seen that the modules which are the cokernels of generic Schubert complexes have linear
minimal free resolutions. These modules can then be thought of as a sort of “linear approximation” to the
ideal which defines the matrix Schubert varieties, which in general have rich and complicated minimal
free resolutions.
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Abstract. In 2004, Condon and coauthors gave a hierarchical classification of exact RNA structure prediction algo-
rithms according to the generality of structure classes that they handle. We complete this classification by adding two
recent prediction algorithms. More importantly, we precisely quantify the hierarchy by giving closed or asymptotic
formulas for the theoretical number of structures of given size n in all the classes but one. This allows to assess the
tradeoff between the expressiveness and the computational complexity of RNA structure prediction algorithms.

Résumé. En 2004, Condon et ses coauteurs ont défini une classification des algorithmes exacts de prédiction de struc-
ture d’ARN, selon le degré de généralité des classes de structures qu’ils sont capables de prédire. Nous complétons
cette classification en y ajoutant deux algorithmes récents. Chose plus importante, nous quantifions la hiérarchie des
algorithmes, en donnant des formules closes ou asymptotiques pour le nombre théorique de structures de taille donnée
n dans chacune des classes, sauf une. Ceci fournit un moyen d’évaluer, pour chaque algorithme, le compromis entre
son degré de généralité et sa complexité.

Keywords: bioinformatics, RNA structures, pseudoknots, enumeration, bijective combinatorics

1 Introduction
In bioinformatics, the RNA structure prediction problem consists, given a RNA sequence, in finding a
conformation that the molecule is likely to take in the cell. In [3], Condon and coauthors classified RNA
structure prediction algorithms according to the inclusion relations between their classes of structures.
The class of structures of a given algorithm is the set of structures that can be, in theory, returned by
the algorithm. Condon et al. focused only on exact algorithms, that is algorithms that guarantee to
give an optimal solution to the structure prediction problem, stated as an optimisation problem. They
considered the class of pseudoknot-free structures [13, 25] (PKF) , and the following classes for pseudo-
knotted structures: Lyngsø and Pedersen (L&P) [11], Dirks and Pierce (D&P) [4], Akutsu and Uemura
(A&U) [1, 20], and Rivas and Eddy (R&E) [16]. They notably proved the following inclusion relations:
PKF ⊂ L&P ⊂ D&P ⊂ A&U ⊂ R&E. Since then, two other exact prediction algorithms have
been developed, involving new classes: Reeder and Giegerich (R&G) [15] and Cao and Chen (C&C) [2]
algorithms.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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In this paper, we aim to quantify the tradeoff between the computational complexity and the expres-
siveness of all these algorithms. For this purpose, we compare them from the double point of view of their
computational complexity and the cardinality of their class of structures, for a given size n. And we give
closed or asymptotic formulas for the theoretical number of structures of given size n except for the class
R&E. More precisely, we establish that, except for the L&P class whose asymptotic formula is simpler,
the number of structures of size n is, asymptotically, α

2
√
π n3/2ω

n , where α and ω are two constants which
depend of the class. Additionally, we place the two new classes, R&G and C&C, in Condon et al’s hi-
erarchy. The following table summarizes our results. We indicate by “*” the classes that had not been
enumerated before. The class “All” denotes the whole set of pseudoknotted structures. The row “Compl”
gives the complexity of each algorithm.

Class asympt. α ω Compl. Remark
PKF α

2
√
π n3/2ω

n 2 4 O(n3) Catalan numbers

L&P * 1
2ω

n - 4 O(n5) Closed formula
C&C * α

2
√
π n3/2ω

n 1,6651 5,857 O(n6)

R&G * α
2
√
π n3/2ω

n 0,1651 6,576 O(n4)

D&P * α
2
√
π n3/2ω

n 0,7535 7,315 O(n5)

A&U * α
2
√
π n3/2ω

n 0,6575 7,547 O(n5)

R&E open - - O(n6)

All
√

2 · 2n ·
(
n
e

)n
- - NPC Involutions with no fixed points

A number of works have been done on combinatorial enumeration of RNA structures without pseudo-
knots, see e.g. [24, 21, 7, 12, 10] or, more recently, with pseudoknots, as in [22, 17, 8, 9] for instance.
Our purpose is different, as our classes of structures are not defined per se, but correspond to given exact
prediction algorithms.

The paper is organised as follows. In Section 2, we give some notation and definitions. In Section 3,
we present a bijection between the L&P class and a class of planar maps, leading to a closed formula for
the L&P class. In Section 4, we establish that each of the classes D&P, A&U, R&G, C&C, and L&P
can be encoded by a context-free language. For each of them, we derive an equation for the generating
function, leading to an asymptotic formula for the number of structures of size n. In Section 5, we
conclude by giving some remarks on the expressiveness of the structure prediction algorithms compared
to their complexity.

2 Definitions and notation.
A RNA secondary structure (possibly with pseudoknots) is given by a sequence of integers (1, 2, . . . , n)
and a list of pairs (i, j), called basepairs or arcs, where i < j and each number in {1, 2, . . . , n} appears
exactly in one pair. Such a structure can be represented as in Figure 1, where each basepair (i, j) is
represented by an edge between i and j. In real RNA structures there are unpaired bases, but we do not
consider them.

Definition 1 (Crossing arcs) Let (i, j) and (k, l) two arcs such that i < k. We say that (i, j) and (k, l)
are crossing if i < k < j < l.
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Definition 2 (Crossing graph) The crossing graph of an RNA structure is a graph G defined as follows:
the vertices of G are the arcs of the structure, and two vertices of G are connected by an edge if and only
if their two corresponding arcs are crossing.

Definition 3 (Pseudoknot) A pseudoknot is a set of arcs that is not a singleton and that corresponds to
a maximal connected component in the crossing graph.

Definition 4 (Simple pseudoknot [1]) A pseudoknot P is simple if there exist two numbers j1 and j2,
with j1 < j2, such that: (i) each arc (i, j) in P satisfies either i < j1 < j ≤ j2 or j1 ≤ i < j2 < j, (ii)
and if two arcs (i, j) and (i′, j′) satisfy i < i′ < j1 or j1 ≤ i < i′, then j > j′.

The first property ensures that, for each arc of P , one of its ends exactly is between j1 and j2. And the
arcs are divided in two sets: those having their other end smaller than j1, and those having their other end
greater than j2. We call these two sets, respectively, the left part and the right part of the pseudoknot.
The second property of the definition ensures that two arcs in the same set cannot intersect each other.
Figure 1 shows a simple pseudoknot.

part

Central part

Left

part

Right

Fig. 1: A pseudoknot given by the sequence (1, 2, . . . , 12) and the arcs (1, 9), (2, 7), (3, 5), (4, 12), (6, 11), (8, 10).
This pseudoknot is simple, with j1 = 4 and j2 = 9.

Definition 5 (H-type Pseudoknot) A H-type pseudoknot is a simple pseudoknot having the following
additional property: each arc in one of the two above sets crosses all the arcs of the other set.

3 A bijection between the L&P structures and a class of planar maps.
The Lyngsø-Pedersen (L&P) class is the simplest class of pseudoknotted structures. According to [11]
and [3], a structure is in the L&P class if and only if it contains either no pseudoknot or a unique H-type
pseudoknot, and this pseudoknot is not embedded under any arc. Between any two consecutive ends of the
arcs of the pseudoknots, there can be a nested structure. Theorem 1, and its straightforward Corollary 1,
give the closed formula and the asymptotic formula for the number of such structures, respectively.

Theorem 1 The number of L&P structures with n arcs is:

LP (n) =
1

2
· 4n −

(
2n+ 1

n

)
+

(
2n− 1

n− 1

)
+

1

n+ 1

(
2n

n

)
.
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Corollary 1

LP (n) ∼ 1

2
· 4n.

Proof of Theorem 1:
The proof is bijective: we establish a bijection between the set of L&P structures of any size n and the

set of rooted isthmusless planar maps with n edges and one or two vertices. The first two terms of the
formula count the number of such maps with two vertices [18, 23], while the last term, a Catalan number,
counts the number of such maps with one vertex [19]. Hence the theorem.

A planar map is a proper embedding of a connected planar graph. It is said isthmusless if the deletion
of any edge does not split the graph. A rooted planar map is a planar map where a vertex and an edge
adjacent to it are distinguished. Any planar map with n edges can be represented by two permutations
σ and τ on {+1,−1,+2,−2, . . . ,+(n − 1),−(n − 1),+n,−n}, in the following way: The edges of
the map are numbered from 1 to n. Then, for any edge i, one labels its extremities with +i and −i,
respectively. By convention, the root edge is labelled with +1 and −1, in such a way that −1 labels the
extremity adjacent to the root vertex. Now, the two permutations are as follows:

- the permutation σ is an involution without fixed points that represents the edges of the map. Each
cycle of σ is of size two and contains both ends of one edge: σ = (+1,−1), (+2,−2), . . . , (+n,−n).

- the permutation τ has as many cycles as vertices in the map. Each cycle is given by the sequence of
labellings around the corresponding vertex, clockwise.

Let us consider a L&P structure S with n edges, and let us label the left extremities of its arcs with
+1,+2, . . . ,+n from left to right, and give to each right foot the label −i if the corresponding left foot
has label +i. Let w = [w1, w2, . . . w2n] be the sequence of labels of S, from left to right. From any w we
can now construct two permutations σ and τ that represent an isthmussless rooted planar map with one or
two vertices. Regarding σ, we just set σ = (+1,−1) . . . (+n,−n).

Let us first consider the simple case where there is no crossing in the structure. It is known for a long
time that such nested structures are counted by Catalan numbers. This can be established, for example by
a folkloric bijection with planar maps having one vertex, by setting σ as above, and τ = (w).

Now suppose that there is a pseudoknot in the structure, and let us present a bijection between the set
of such structures and the set of rooted ithmusless planar maps with two vertices. Start from w. Since τ
must have two cycles, we have to split w in two parts that will be the two cycles. Let us define the left
set (resp. the right set) of arcs of the pseudoknot, respectively, as the set of arcs whose left (resp. right)
extremities are in the left (resp. right) part of the pseudoknot, where left and right parts are defined as in
Section 2. There are two cases:

Case 1. There is only one arc in the right set. In this case, let ` be the position of the first right extremity
of an arc in the left set. We cut w between positions ` − 1 and `. Each part corresponds to a cycle of τ :
τ = (w1, . . . , w`−1)(w`, . . . , w2n). See Figure 2 for an illustration.

Case 2. There are at least two arcs in the right set. We cut w just before the first right extremity of an
arc in the right set. See Figure 3.

Let us show that, in both cases, the resulting map is planar and isthmusless. At first, remark that if the
map is not planar or has an isthmus, necessarily it comes from arcs that are involved in the pseudoknot.
Indeed, by construction, non crossing arcs in the structure give non crossing loops in the map. So, with-
out loss of generality, we can consider only structures where all the arcs are involved in the pseudoknot.
Consider such a structure with n arcs. In the case 1, we have w = [+1,+2, . . . ,+(n − 1),+n,−(n −
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Fig. 2: Top, a L&P structure corresponding to case 1. Bottom, the corresponding planar map. Arcs not involved in
the pseudoknot are drawn in dotted lines.

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

1 −12 3 −34 5 −56 7 −7−28 −8−69 −9−410 −10

1

−1 2
3

−3
4

5
−5

6
7−7

−2

8

8

−8

−6

9
−9

−4

10

−10

Fig. 3: Top, a L&P structure corresponding to case 2. Bottom, the corresponding planar map. Arcs not involved in
the pseudoknot are drawn in dotted lines.

1),−(n − 2), . . . ,−1,−n], hence τ = (+1,+2, . . . ,+n)(−(n − 1),−(n − 2), . . . ,−1,−n). Clearly,
this gives a planar map, since the two cycles of τ are in opposite order. And there is no isthmus be-
cause all edges go from one vertex to the other. In the case 2, we have w = [+1,+2, . . . ,+(` −
1),+`,+(`+1), . . . ,+n,−(`−1), . . . ,−2,−1,−n,−(n−1), . . . ,−`], hence τ = (+1,+2, . . . ,+(`−
1),+`,+(` + 1), . . . ,+n,−(` − 1), . . . ,−2,−1)(−n,−(n − 1), . . . ,−`). Again, this gives a planar
map: edges 1, 2, . . . , ` − 1 are nested loops, and edges `, . . . , n go from one vertex to the other, without
any crossing. And there is no isthmus because the number of edges going from one vertex to the other,
n− `+ 1, is greater or equal to 2.

Now let us present the converse transformation. Consider an isthmusless rooted planar map with two
vertices, given by σ = (+1,−1), (+2,−2), . . . , (+n,−n) and τ having two cycles. We aim to construct
the sequence w that represents the corresponding pseudoknotted structure. Let us consider the cycle of τ
which contains 1, and write it in such a way that it begins with 1. Let us call u this sequence of labels.
This gives the first part of the sequence w. We are now searching for the second part of w, that is the
sequence v such that uv = w. For that purpose, consider the set of isolated labels, that is the labels in u
that have not their opposite label in u. We have the two following cases:

Case 1. There is no pair (+i,−i) in u such that the isolated labels are located between +i and −i. Let
+j the penultimate isolated label in u. Write the second cycle of τ in such a way that it begins with −j.
This gives v, and there is exactly one edge in the second part of the pseudoknot.
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Case 2. There is a pair of labels (+i,−i) in u such that all isolated labels are located between +i and
−i. Let +j the last isolated label in u. Write the second cycle of τ in such a way that it begins with −j.
This gives v. In this case, there are at least two edges in the second part of the pseudoknot. 2

4 Asymptotic enumeration of pseudoknotted structures.
4.1 A context-free encoding for simple and H-type pseudoknots
As will be seen farther, all the classes that are involved in exact prediction algorithms but one involve
either H-type pseudoknots or simple pseudoknots. The only exception is the R&E class. Here we define
a transformation that allow to encode any class of pseudoknotted structures where all pseudoknots are
simple by a context-free language.

Let us first recall some definitions. Let L be a language on a given alphabet A, and w = w1w2 . . . wn a
word of L, where the wi’s are the letters of w. A word v is a subword of w if v = wi1wi2 . . . wik , where
1 ≤ i1 < i2 < . . . < ik ≤ n. The projection of w onto an alphabet A′ ∈ A is the subword w′ obtained
by erasing in w all letters that do not belong to A′. The projection of L onto A′ is the set of projections of
the words of L onto A′. Finally, let us recall that the Dyck language on any two-letter alphabet {d, d̄} is
the language of balanced parentheses strings, where d and d̄ stand, respectively, for opening and closing
parentheses. Now we can state twe two following straightforward lemmas:

Lemma 1 Any class of pseudoknotted structures where all pseudoknots are simple can be encoded by the
words of a language L on the alphabet {d, d̄, x, x̄, y, ȳ} where (i) d and d̄ encode, respectively, the left
and right ends of arcs that are not involved in pseudoknots; (ii) x and x̄ encode, respectively, the left and
right ends of arcs that are involved in the left parts of pseudoknots; (iii) y and ȳ encode, respectively, the
left and right ends of arcs that are involved in the right parts of pseudoknots. Additionally, the projection
of the language to the alphabet {d, d̄} (resp. {x, x̄}, {y, ȳ}) is a sublanguage of the Dyck language on
the same alphabet.

Lemma 2 Let S be a pseudoknotted structure, and w be the word on {d, d̄, x, x̄, y, ȳ} that encodes S.
Then every simple pseudoknot in S is encoded by a subword v ofw, such that v = xn ym1 x̄n1 ym2 x̄n2 . . .
ymk x̄nk ȳm , where n1 + n2 + . . .+ nk = n and m1 +m2 + . . .+mk = m.

Remark that a H-type pseudoknots is a simple pseudoknot where k = 1. Thus every H-type pseudoknot
in S is encoded by a subword v = xn ym x̄n ȳm. Finally, the following Proposition gives a way to encode
any pseudoknotted structure where all pseudoknots are simple by a subset of the Dyck language with three
kinds of pairs of parentheses, that is on the alphabet {d, d̄, x, x̄, y, ȳ}.
Proposition 1 Let S be a pseudoknotted structure, and w be the word on {d, d̄, x, x̄, y, ȳ} that encodes
S. Then w can be encoded by a word on the alphabet {d, d̄, x, x̄, y, ȳ} ∪ {p, p̄} where every subword
v = xn ym1 x̄n1 ym2 x̄n2 . . . ymk x̄nk ȳm , corresponding to a H-type pseudoknot is replaced with v′ =
pxn−1 ym1 ȳm1 x̄n1 ym2 ȳm2 x̄n2 . . . ymk ȳmk x̄nk−1p̄.

In particular , every subword v = xn ym x̄n ȳm corresponding to a simple pseudoknot is replaced with
v′ = pxn−1 ym ȳm x̄n−1p̄.

Proof (sketch): The proof is straightforward, as there is an immediate one-to-one correspondance be-
tween the two kinds of words below. The transformation is illustrated in Figure 4(a) and Figure 4(b),
respectively, for simple pseudoknots and for the particular case of H-type pseudoknots. 2
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(a) Simple pseudoknot (b) H-type pseudoknot

Fig. 4: Top: two pseudoknots. Bottom: their encodings by Proposition 1.

4.2 Asymptotic results.
For each of the D&P, A&U, R&G, and C&C classes, we give an asymptotic equivalent for the number of
structures of size n. In each case, the proof is in three steps: (i) We design an unambiguous context-free
grammar which generates the language that encodes the considered structures, according to Proposition 1.
(ii) From the grammar, we deduce an algebraic equation satisfied by the ordinary generating function
(o.g.f.) of the language. (iii) From this equation, we compute an asymptotic formula for the number of
structures of size n. For any class X&Y , we write X&Y (n) for its number of structures having n arcs.

4.2.1 The Akutsu-Uemura class (A&U).
Following [1, 3], the A&U structures are composed of non crossing edges and of any number of simple
pseudoknots (Fig. 1). As these pseudoknot can embed other substructures which can be pseudoknotted in
turn, they are said to be recursive [1].

Theorem 2
A&U(n) =

α1

2
√
π
ω1

nn−3/2(1 +O(1/n)),

where α1 = 0.6575407644..., ω1 = 7.547308334..., are algebraic constants.

Proof: Let LA&U be the language that encodes the A&U class, according to Proposition 1. The following
unambiguous context-free grammar generates LA&U :

S → dSd̄S|P ; P → pSXp̄S|ε ; X → xSXx̄SY |yY SȳS ; Y → ySY ȳS|ε
The two rules in the first line allow to generate non crossing arcs and to put pseudoknots anywhere.

The other rules generate words that correspond to the code for a simple pseudoknot.
Given the grammar, we obtain the set of recursive equations for the o.g.f. of the various sets defined in

the 1-to-1 encoding. Letting the formal symbol z denote an arc, we thus have through a straightforward
translation:

S(z) = zS2(z)+P (z) ; P (z) = zS2(z)X(z)+1 ; X(z) = zS2(z)Y (z)(X(z)+1) ; Y (z) = zS2(z)Y (z)+1
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By iterated bottom-up substitutions, we ultimately get that the o.g.f. S(z) is solution of the algebraic
equation

F (z, S) = z2S4 − 2zS3 + zS2 + S − 1 = 0, (1)

from which we can derive the number of structures of size n.
For this proof we present in some details the main steps of the computations that have to be performed

in order to get the asymptotics for an o.g.f. given by the algebraic implicit equation F (z, S) = 0 satisfied
by the o.g.f. S(z).

Since ∂F/∂z|z=0,S=1 = 1 is defined and ∂F/∂S|z=0,S=1 = 1 is non vanishing, z = 0 is not a singular
point for S; by the implicit function theorem, S(z) exists as a regular function in a circular neighborhood
of z = 0 until ∂F/∂S vanishes. The radius of convergence ρ1 of the o.g.f. S(z) is thus a solution of the
system {F (z, S) = 0, ∂F/∂S(z, S) = 0}. At such a point the local holomorphic solution z = ζ(S) is no
longer invertible, which implies that this point is a singular point for the o.g.f. S(z). The Darboux method
allows to get accurate information and precise asymptotics for the Taylor expansion of S(z).

Let (z = ρ1, S = σ1) be the point of the Riemann surface of the solution located on the fold issued
from (z = 0, S = 1), which is closest to (z = 0, S = 1) and for which ∂F/∂S = 0. This point is usually
unique and located on the positive real axis, since the o.g.f. is indeed a function of z with all coefficients
being positive. At this point, the local expansion of z with respect to S writes:

z = ρ1 +
1

2

d2z

dS2
(S − σ1)2 +

1

3!

d3z

dS3
(S − σ1)3 + . . . , (2)

since the first derivative, dzdS = −∂F/∂S∂F/∂z vanishes at (z = ρ1, S = σ1) and the second derivative d2z
dS2 =

−∂
2F/∂S2

∂F/∂z does not.
Hence taking the square root of the previous equation we get the Taylor expansion at (z = ρ1, S = σ1):

√
1− z/ρ1 = β1(S − σ1) + β2(S − σ1)2 + . . . , (3)

with β1 = −
√

1
2
∂2F/∂S2

∂F/∂z , which can now be inverted locally giving:

S = σ1 −
√

2ρ1∂F/∂z|z=ρ1,S=σ1

∂2F/∂S2|z=ρ1,S=σ1

√
1− z/ρ1 +O(1− z/ρ1). (4)

The expansion can be calculated at any order, so that we obtain for the coefficients A&U(n) an infinite
asymptotic development whose dominant term is given by the first square root in the previous expansion,
since it is well-known that [zn]−

√
1− z/ρ = 1

2
√
π
ρ−nn−3/2(1 +O(1/n)):

[zn]S(z) =

√
2ρ1∂F/∂z|z=ρ1,S=σ1

∂2F/∂S2|z=ρ1,S=σ1

1

2
√
π
ρ−n1 n−3/2(1 +O(1/n)). (5)

We thus get the general form of the solution, as stated in the theorem, with α1 =
√

2ρ1∂F/∂z|z=ρ1,S=σ1

∂2F/∂S2|z=ρ1,S=σ1

and ω1 = 1/ρ1. In order to get the values for the constants in the expansions and for the radius of
convergence, we used Maple. From Equation 1, we compute the partial derivatives ∂F/∂z = 2zS4 −
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2S3+S2 and ∂F/∂S = 4∗z2∗S3−6∗z∗S2+2∗z∗S+1. The system is too complex to be solved formally;
so we lower the degree in S by considering the combinationR = 4F−S∂F/∂S = −2zS3+2zS2+3S−4
which has to vanish at the points where F and ∂F/∂S do. Since R is of degree 1 in z, it is easy to
get an expression for z that we substitute into ∂F/∂S, obtaining that 8S3 − 31S2 + 42S − 20 should
equivalently be zero. Hence we obtain 3 possible algebraic roots, one being real σ1 and the other two
conjugate complex numbers. Only σ1 = 1.403556586... and the associated real value of z for which
F (z, S) = 0 — ρ1 = 0.1324975681... — are of interest. A direct approximate solution using the floating
point solver of Maple confirms this situation and a more involved study or the Riemann surface also yields
ρ1 = 0.1324975681... to be the radius of convergence of the series. Further computations provide all the
constants encountered in the proof and stated in the theorem. 2

4.2.2 The Dirks and Pierce class (D&P).
Structures of D&P class are characterized by the presence of non crossing edges and any number of H-type
pseudoknots [4, 3].

Theorem 3
D&P (n) =

α2

2
√
π
ω2

nn−3/2(1 +O(1/n)),

where α2 = 0.7534777262..., ω2 = 7.3148684640..., are algebraic constants.

Proof (sketch): The following unambiguous grammar generates the language that encodes the D&P
structures, according to Proposition 1:

S → dSd̄S|P ; P → pXSp̄S|ε ; X → xSXx̄S|ySY ȳS ; Y → ySY ȳS|ε

ù From this grammar, we get the following algebraic equation:

F (z, S) = z3S6 − z2S5 + 2zS3 − zS2 − S + 1 = 0 (6)

which is very similar to the equation satisfied by the o.g.f. for the A&U family. We solve it in the same
way, and find out the dominant singularity in z = ρ2 = 0.1367078581..., S = σ2 = 1.439796009..., with
the same local behaviour, implying similar asymptotics for the coefficients. The only problem encountered
in finding this dominant singularity comes from the fact that there exists another singularity closer to the
origin in z = µ = 0.08794976637..., S = τ = 7.169944393..., but which is not on the same fold of the
Riemann surface and which therefore does not have to be taken into consideration. 2

4.2.3 The Reeder ang Giegerich class (R&G).
It corresponds to the structures of Reeder and Giegerich’s algorithm [15]. It has a O(n4) complexity.

Theorem 4
R&G(n) =

α3

2
√
π
ω3

nn−3/2(1 +O(1/n)),

where α3 = 1.165192913..., ω3 = 6.576040092..., are algebraic constants.
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Proof: In [15], the following grammar is given (we removed the unpaired bases):

S → SS|dSd̄|xkSylSx̄kSȳl|ε.

This grammar is not context-free. However, we remark that the pseudoknot defined here is a particular
case of a H-Type pseudoknot. So by applying Proposition 1 again, we define the following context free
grammar :

S → dSd̄S|P ; P → pXp̄S|ε ; X → xXx̄|SyY ȳS ; Y → yY ȳ|S

Computations as above lead to the result. 2

Additionally, the following theorem places this new class into Condon et al.’s classification.

Theorem 5 R&G ⊂ D&P , L&P ∩R&G 6= ∅ and R&G 6⊂ L&P

Proof (sketch): The grammar wich describes the pseudoknots in R&G is less general than the grammar
for H-type pseudoknots. So R&G ⊂ D&P and L&P ∩ R&G 6= ∅. As R&G structures can contain
several pseudoknots, we have L&P ∩R&G 6= L&P . 2

4.2.4 The Cao and Chen class (C&C).
It corresponds to the structures of Cao and Chen’s algorithm [2], whose complexity is O(n6).

Theorem 6
C&C(n) =

α4

2
√
π
ω4

nn−3/2(1 +O(1/n)),

where α4 = 1.665071176..., ω4 = 5.856765093..., are algebraic constants.

Proof (sketch): The following non context-free grammar generates the C&C structures:

S → SS|dSd̄|xkSylx̄kSȳl|ε.

It can be translated into a context-free grammar which is a restriction of the R&G grammar:

S → dSd̄S|P ; P → pXp̄S|ε ; X → xXx̄|SyY ȳS ; Y → yY ȳ|ε

Computations as above lead to the result. 2

Additionally, we easily state that

Theorem 7 C&C ⊂ D&P , L&P ∩ C&C 6= 0, C&C 6⊂ L&P and C&C ⊂ R&G

4.2.5 The Lyngsø and Pedersen class (L&P).
We already gave a closed formula and an asymptotic equivalent for this class in Section 3. It can be shown
that its generating series can also be found in a very simple way by designing a context-free grammar.
This will not be developed in this extended abstract.
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5 Conclusion
We proved that most classes of pseudoknotted structures that can be predicted by exact algorithms (all
but R&E for which the problem remains open) can be encoded by context-free languages. We extended
Condon et al.’s hierarchy by adding two more classes, and we computed closed or asymptotic formulas
for the cardinality of all classes but one.

These results, summarized in Table 1, allow us to quantify the relationship between the complexity of
an algorithm and the generality of the class that it can handle. Notably, from a strict quantitative point of
view, the growth of complexity by a factor n2 between the PKF and L&P classes seems not to be justified
compared to the very small increase in cardinality. The situation is even worse for the C&C class, whose
related algorithm has a stronger complexity than the R&G one, while C&C ⊂ R&G and the ratio of their
cardinalitues is exponential. On the other hand, the linear increasing between PKF andR&G complexities
seems very reasonable compared to the exponential increasing of the cardinalities.

Besides, the fact that most of the classes are encoded by context-free languages gives an easy way to
perform uniform or controlled non uniform random generation of pseudoknotted RNA structures, with
standard methods and tools (see e.g. [6, 5, 14]).

Acknowledgements. This research was supported in part by the ANR project BRASERO ANR-06-
BLAN-0045, and by the Digiteo project “RNAomics”.

References
[1] T. Akutsu. Dynamic programming algorithms for RNA secondary structure prediction with pseudo-

knots. Discrete Applied Mathematics, 104:45–62, 2000.

[2] S. Cao and S-J Chen. Predicting structured and stabilities for h-type pseudoknots with interhelix
loop. RNA, 15:696–706, 2009.

[3] A. Condon, B. Davy, B. Rastegari, S. Zhao, and F. Tarrant. Classifying RNA pseuknotted structures.
Theorical computer science, 320:35–50, 2004.

[4] N.A. Dirks, R.M. Pierce. A partition function algorithm for nucleic acid secondary structure includ-
ing pseudoknots. J Comput Chem, 24:1664–1677, 2003.

[5] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann samplers for the random gener-
ation of combinatorial structures. Combinatorics, Probability, and Computing, 13(4–5):577–625,
2004. Special issue on Analysis of Algorithms.

[6] Ph. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random generation of labelled
combinatorial structures. Theoretical Computer Science, 132:1–35, 1994.

[7] I. L. Hofacker, P. Schuster, and P. F. Stadler. Combinatorics of RNA secondary structures. Discr.
Appl. Math, 89, 1996.

[8] F. W. D. Huang and M. Reidys. Statistics of canonical RNA pseudoknot structures. Journal of
Theoretical Biology, 253(3):570–578, 2008.



Counting RNA pseudoknotted structures (extended abstract) 915

[9] E. Y. Jin and C. M. Reidys. RNA pseudoknot structures with arc-length ≥ 3 and stack-length ≥ σ.
Discrete Appl. Math., 158(1):25–36, 2010.

[10] W.A. Lorenz, Y. Ponty, and P. Clote. Asymptotics of RNA shapes. Journal of Computational
Biology, 15(1):31–63, Jan–Feb 2008.

[11] R. B. Lyngsø and Pedersen C. N. RNA pseudoknot prediction in energy based models. Journal of
computational biology, 7:409–428, 2000.

[12] M. E. Nebel. Combinatorial properties of RNA secondary structures. Journal of Computational
Biology, 9(3):541–574, 2003.

[13] R. Nussinov, G. Pieczenik, J. R. Griggs, and Kleitman D. J. Algorithms for loop matching. SIAM J.
Appl. Math., 35:68–82, 1978.

[14] Y. Ponty, M. Termier, and A. Denise. GenRGenS: Software for generating random genomic se-
quences and structures. Bioinformatics, 22(12):1534–1535, 2006.

[15] J. Reeder and R. Giegerich. Design, implementation and evaluation of a practical pseudoknot folding
algorithm based on thermodynamics. BMC Bioinformatics, 5:104, 2004.

[16] E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA structure prediction including
pseudoknots. Journal of molecular biology, 285:2053–2068, 1999.

[17] E. A. Rødland. Pseudoknots in RNA secondary structures: representation, enumeration, and preva-
lence. Journal of Computational Biology, 13(6):1197–1213, 2006.

[18] N. J. A. Sloane and Simon Plouffe. The Encyclopedia of Integer Sequences. Academic Press, 1995.

[19] W.T. Tutte. A census of planar maps. Canadian Journal of Mathematics, 15:249–271, 1963.

[20] Y. Uemura, A. Hasegawa, S. Kobayashi, and T. Yokomori. Tree adjoining grammars for RNA
structures prediction. Theorical computer science, 210:277–303, 1999.

[21] M. Vauchaussade de Chaumont and X.G. Viennot. Enumeration of RNA’s secondary structures by
complexity. In V. Capasso, E. Grosso, and S.L. Paven-Fontana, editors, Mathematics in Medecine
and Biology, volume 57 of Lecture Notes in Biomathematics, pages 360–365, 1985.

[22] G. Vernizzi, H. Orland, and A. Zee. Enumeration of RNA structures by matrix models. Phys. Rev.
Lett., 94:168103, 2005.

[23] T. R. S. Walsh and A. B. Lehman. Counting rooted maps by genus. iii: Nonseparable maps. J.
Combinatorial Theory Ser. B, 18:222–259, 1975.

[24] M. S. Waterman. Secondary structure of single-stranded nucleic acids. Advances in Mathematics
Supplementary Studies, 1(1):167–212, 1978.

[25] M. Zucker and P. Stiegler. Optimal computer folding of large RNA sequences using thermodynamics
and auxiliary information. Nucleic Acid Research, 9:133–148, 1981.



FPSAC 2010, San Francisco, USA DMTCS proc. AN, 2010, 916–923

Boolean complexes and boolean numbers

Bridget Eileen Tenner
Department of Mathematical Sciences, DePaul University, Chicago, Illinois

Abstract. The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having
boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the
group. In a Coxeter system of rank n, we show that the boolean complex is homotopy equivalent to a wedge of (n−1)-
dimensional spheres. The number of these spheres is the boolean number, which can be computed inductively from
the unlabeled Coxeter system, thus defining a graph invariant. For certain families of graphs, the boolean numbers
have intriguing combinatorial properties. This work involves joint efforts with Claesson, Kitaev, and Ragnarsson.

Résumé. L’ordre de Bruhat munit tout groupe de Coxeter d’une structure de poset. L’idéal composé des éléments de
ce poset engendrant des idéaux principaux ordonnés booléens, forme un poset simplicial. Ce poset simplicial définit
le complexe booléen pour le groupe. Dans un système de Coxeter de rang n, nous montrons que le complexe booléen
est homotopiquement équivalent à un bouquet de sphères de dimension (n − 1). Le nombre de ces sphères est le
nombre booléen, qui peut être calculé inductivement à partir du système de Coxeter non-étiquetté; définissant ainsi un
invariant de graphe. Pour certaines familles de graphes, les nombres booléens satisfont des propriétés combinatoires
intriguantes. Ce travail est une collaboration entre Claesson, Kitaev, et Ragnarsson.

Keywords: Coxeter system, Bruhat order, boolean, boolean number, cell complex, homotopy

1 Boolean complexes
The boolean complex of a finitely generated Coxeter system (W,S) was introduced by the author and
Ragnarsson in [RT], and the first sections here describe this work. The boolean Complex arises from
the (strong) Bruhat order on W . This ordering gives a poset structure to W , and the boolean ideal
B(W,S) ⊆W is the subposet comprised of those elements ofW whose principal order ideals are boolean.
Such elements are boolean elements. This order ideal B(W,S) is necessarily a simplicial poset.

Definition 1.1 Let (W,S) be a Coxeter system. The boolean complex of (W,S) is the regular cell com-
plex ∆(W,S) whose face poset is the simplicial poset B(W,S).

The existence of the complex ∆(W,S) follows from a result of Björner about simplicial posets, and in
fact about CW-posets (see [Bjö]).

The following lemma is immediate from the definition of the Bruhat order, and gives a useful charac-
terization of boolean elements.

Lemma 1.2 Let (W,S) be a Coxeter system. An element of W is boolean if and only if it has no repeated
letters in its reduced expressions.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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It follows from Lemma 1.2 that the boolean complex is pure, and each maximal face has dimension
|S| − 1.

The relevance of boolean elements arises from their properties related to R-polynomials, Kazhdan-
Lusztig polynomials, and g-polynomials (see [Bre]).

The fact that the boolean elements are exactly those which are the products of distinct elements of the
generating set S means that these elements are described by the commutativity of elements of S. This
commutativity information is encoded in the unlabeled Coxeter graph of (W,S), and thus the boolean
objects described above can be reformulated in terms of graphs. This graph-theoretic description is given
in the following paragraphs, and also appears in work of Jonsson and Welker [JW].

Let G be a finite simple graph, and let S be the vertex set of G. Set W(S) to be the set of words on S
with no repeated letters, ordered by the subword order relation. Elements of W(S) are thus of the form
s1s2 · · · s`, where s1, s2, . . . , s` ∈ S are distinct elements. We generate an equivalence relation by the
requirement that

s1 · · · si−1sisi+1si+2 · · · s` ∼ s1 · · · si−1si+1sisi+2 · · · s`
if {si, si+1} is not an edge in G.

The equivalence relation generated by this ∼ defines a set of equivalence classes on W(S), which we
call B(G). The preimages of an element σ ∈ B(G) are word representatives. Note that the set of letters
occurring in each word representative of σ is the same. A poset structure on B(G) arises from the subword
order: σ ≤ τ in B(G) if some word representative of σ is a subword of a word representative of τ .

A special case worthy of its own mention is the complete graph Kn. For this graph, the ideal B(Kn)
describes the complex of injective words. This complex has been studied by Farmer [Far], Björner and
Wachs [BW], and Reiner and Webb [RW]. The complete graph is treated here in Corollary 4.5.

Example 1.3 For the complete graphK2, the poset B(K2) and the boolean complex ∆(K2) are depicted
in Figure 1.

(a) a b (b)

∅

a b

ab ba

(c)
ba

ab

a b

Fig. 1: (a) The graph K2. (b) The poset B(K2). (c) The boolean complex ∆(K2), whose geometric realization
|∆(K2)| is homotopy equivalent to S1.

The unlabeled Coxeter graphs of the Coxeter groups A2, B2/C2, G2 and I2(m) are all the same as
K2. Thus Example 1.3 demonstrates that the geometric realization of each of these boolean complexes
is homotopy equivalent to S1. More generally, as shown in joint work with Ragnarsson in [RT], and
discussed in Section 3, the boolean complex of any finite simple graph, and hence of any Coxeter system,
has a similar property: its geometric realization is homotopy equivalent to a wedge of top dimensional
spheres, and we give a recursive formula for calculating the number of these spheres.
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2 Motivation and definitions
This analysis of boolean complexes and their topological and enumerative properties is motivated by the
field of Coxeter systems and the relevance of their boolean elements.

Throughout this work, we assume that all Coxeter systems are finitely generated.
The Bruhat order makes a Coxeter groupW into a ranked poset, with rank determined by the number of

letters in a reduced expression of an element. We use the convention that the minimal element in the poset
B(W,S) has rank −1, because this element corresponds to the empty face in the geometric realization of
that poset. This reinforces the fact that the face data of the complex is described by the non-negative ranks
in the poset. More precisely, an element of rank k ≥ 0 represents a k-dimensional cell.

Although one can view the cells in B(W,S) as simplices, because the minimal subcomplex containing
each cell is isomorphic to a simplex of the same dimension, it must be noted that the boolean complex
itself is not a simplicial complex. This is because the cells in the complex are not uniquely determined by
the vertices they contain. One case of this is depicted in Example 1.3, where two 1-cells have the same
vertices.

A geometric realization |∆(W,S)| of the boolean complex ∆(W,S) is obtained in the standard way:
we take one geometric simplex of dimension k for each cell of dimension k, and glue them together
according to the data encoded in the face poset. The homotopy type of this geometric realization is what
we mean when we say the homotopy type of a boolean complex.

Theorem 3.4 states the main result in this area, which is that |∆(W,S)| has the homotopy type of a
wedge of spheres of dimension |S| − 1. Moreover, the number of spheres in the wedge can be computed
by a recursive formula, also given in the theorem. This recursion is given in terms of graph operations,
and uses the alternative construction of the boolean complex, in terms of the unlabeled Coxeter graph of
(W,S). The motivation for the construction of B(G) is the following obvious fact: if G is the unlabeled
Coxeter graph of the Coxeter system (W,S), then B(G) ∼= B(W,S).

Definition 2.1 The boolean complex of a finite simple graph G is the regular cell complex ∆(G) associ-
ated to B(G).

The main result about boolean complexes for Coxeter systems can be restated as follows: for any finite
simple graph G with vertex set S, the geometric realization |∆(G)| is homotopy equivalent to a wedge of
(|S| − 1)-dimensional spheres. It is this version of the result which we shall state, and, as promised, the
recursive formula for the number of spheres is given in terms of basic graph operations on G.

Before discussing the main results, we foreshadow one of them for the Coxeter group An. The Euler
characteristic χ of a regular cell complex ∆, and likewise the Euler characteristic of its geometric real-
ization |∆|, is the alternating sum of the number of faces of each non-negative rank in ∆. Given that we
consider the rank of the minimal element in a Coxeter group to be −1, this can be computed by an alter-
nating sum of the number of elements in each non-negative rank in the corresponding simplicial poset.
In particular, an enumeration from [Ten] enables the calculation of the Euler characteristic of the boolean
complex for the Coxeter group An.

Corollary 2.2 For all n ≥ 1,

χ(∆(An)) = (−1)n−1f(n− 1) + 1,

where {f(n)} are the Fibonacci numbers.
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It is convenient to use the notation b ·Sr for a wedge sum of b spheres of dimension r. Since the wedge
sum is the coproduct in the category of pointed spaces, 0 · Sr then denotes a single point. Corollary 2.2
foreshadows the fact that |∆(An)| is homotopy equivalent to the wedge sum f(n− 1) · Sn−1. Although
the statistic discussed in this work is equal to the absolute value of the reduced Euler characteristic, Corol-
lary 2.2 references the unreduced Euler characteristic because it is valuable to point out the relationship
between {χ(∆(An))} and sequences A008346 and A119282 in [Slo]: sequence A008346 is equal to
{|χ(∆(An))|}, while sequence A119282 is equal to {−χ(∆(An))}.

3 Computing the homotopy type
We now state the main result about the homotopy type of the boolean complex. As mentioned previously,
this is stated in terms of the graph formulation (thus it is a statement about ∆(G)) because of a recursive
formula involving graph operations.

Definition 3.1 For a finite graph G, let |G| denote the number of vertices in G.

Definition 3.2 LetG be a finite simple graph and e an edge inG. Define three operations onG as follows.

• Deletion: G− e is the graph obtained by deleting the edge e.

• Simple contraction: G/e is the graph obtained by contracting the edge e and then removing all
loops and redundant edges.

• Extraction: G− [e] is the graph obtained by removing the edge e and its incident vertices.

Definition 3.3 For n ≥ 1, let δn be the graph consisting of n disconnected vertices.

The symbol ' will denote homotopy equivalence in the following theorem and subsequent discussion.

Theorem 3.4 ([RT]) For every nonempty, finite simple graph G, there is an integer β(G) so that

|∆(G)| ' β(G) · S|G|−1.

Moreover, the values β(G) can be computed using the recursive formula

β(G) = β(G− e) + β(G/e) + β(G− [e]), (1)

if e is an edge in G such that G− [e] is nonempty, with initial conditions

β(K2) = 1 and β(δn) = 0.

The integer β(G) is the boolean number of the graph G.
Because B(G) ∼= B(W,S) when G is the unlabeled Coxeter graph of the Coxeter system (W,S),

Theorem 3.4 implies that the geometric realization of the boolean complex of a Coxeter system (W,S) is
homotopy equivalent to a wedge of spheres of dimension |S| − 1. The number of spheres occurring in the
wedge can be calculated recursively using equation (1). In fact, this calculation can be aided by the next
result, which states that the boolean number is multiplicative with respect to connected components of a
graph.
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Proposition 3.5 ([RT]) If G = H1 tH2 for graphs H1 and H2, then

∆(G) = ∆(H1) ∗∆(H2),

where ∗ denotes simplicial join. Thus

|∆(G)| ' β(H1)β(H2) · S|H1|+|H2|−1.

In particular, β(G) = β(H1)β(H2).

4 Homotopy type in special cases
For some classes of graphs, we can obtain more specific data regarding the boolean number β. A selection
of these results are given below.

If the graph G has any leaves, then the recursive equation (1) can be simplified by Proposition 3.5.

Corollary 4.1 If G has a vertex of degree one, then the computation of β(G) is simplified according to
the identities in Figure 2.

β





 = β





+ β







β





 = β







Fig. 2: Simplification for recursively calculating β(G) when the graph G has a leaf.

Combining the results of Corollary 4.1 and Theorem 3.4 allows for the efficient calculation of the
boolean number of trees. Moreover, it shows that if T is a tree with more than one vertex, then β(T ) > 0.
The recursive formula for calculating β shows that adding edges does not decrease the boolean number,
which leads to the following conclusion.

Corollary 4.2 ([RT]) A finite simple graph G has an isolated vertex if and only if β(G) = 0.

In other words, the boolean complex of a Coxeter group is contractible if and only if the center of the
group contains a generator of the group.

Definition 4.3 For n ≥ 1, let Sn be the star graph on n vertices.

Corollary 4.4 For n ≥ 1, β(Sn) = 1. That is, ∆(Sn) ' Sn−1.

Recursively computing the boolean numbers of complete graphs is similarly easy, and gives a recur-
rence indicating the following corollary.

Corollary 4.5 For n ≥ 1, β(Kn) is equal to the number of derangements of [n].
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Corollary 4.5 recovers a result of Reiner and Webb, which was proved in the context of the complex of
injective words, using character theory [RW].

Equation (1) indicates that the function β is monotonically increasing with respect to edge addition.
More precisely, if H ⊆ G is obtained by deleting some edges from the graph G, then β(H) ≤ β(G). One
could ask when this inequality is strict, and when there is equality.

Corollary 4.6 ([RT]) Fix a finite simple graph G. Obtain H ⊂ G by removing an edge of G. Then
β(H) = β(G) if and only if G has an isolated vertex, in which case β(G) = β(H) = 0. Otherwise
β(H) < β(G).

As suggested earlier, the boolean number for the Coxeter group An is the Fibonacci numberf(n − 1).
Given Corollaries 4.1, 4.4, and 4.6, we see that among all trees on n vertices, the smallest boolean number
is obtained by the star Sn, and the largest boolean number is obtained by the path An.

5 Boolean numbers: enumerative directions
Given a finite simple graph G, the boolean number β(G) is a graph invariant. There are a variety of
enumerative aspects of this object that one can explore, several of which are mentioned here.

Corollary 4.6 gives some perspective to the image of the function β. If we analyze the function β, we
quickly find that it is neither surjective nor injective, in the following senses. Let Gn be the set of finite
simple graphs having n vertices. The set {β(G) : G ∈ Gn} is not necessarily a contiguous interval of
values (necessarily beginning at 0), and it may be that β(G) = β(H) for distinct graphs G,H ∈ Gn.

Example 5.1 No graph in G4 has boolean number 4, although the boolean number of a 4-cycle is 5.

Example 5.2 The two graphs in Figure 3 each have boolean number 3, and thus are each homotopy
equivalent to S4 ∨ S4 ∨ S4.

Fig. 3: Two elements of G5, each having boolean number 3.

As suggested already, there are several families of graphs whose boolean numbers give well-known
sequences. Three such families already mentioned are

• graphs with disjoint vertices (boolean numbers are always 0),

• paths (boolean numbers are the Fibonacci numbers), and

• complete graphs (boolean numbers are the derangement numbers).

Other interesting connections to integer sequences have arisen in joint work with Claesson, Kitaev, and
Ragnarsson [CKRT]. These results are related to Ferrers graphs, particularly for rectangular and staircase
shapes, and are described below.

As described in [CN], Ferrers shapes, or Young shapes or partitions, arise in a variety of contexts
including Schubert varieties, symmetric functions, hypergeometric series, permutation statistics, quantum
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mechanical operators, and inverse rook problems. One can relate a bipartite graph known as a Ferrers
graph to any Ferrers shape, as introduced in [EvW].

Definition 5.3 Let λ = (λ1, . . . , λr) be a partition, where λ1 ≥ · · · ≥ λr ≥ 0. The associated bipartite
Ferrers graph has vertices {x1, . . . , xr} t {y1, . . . , yλ1

}, and edges
{
{xi, yj} : λi ≥ j

}
.

In particular, vertex xi has degree λi. A Ferrers graph and its associated Ferrers shape are depicted in
Figure 4.

y1 y2 y3 y4

x1 x2 x3

Fig. 4: The Ferrers graph and shape for the partition λ = (4, 4, 2).

The Ferrers graph of an m-by-n rectangular shape is the complete bipartite graph Km,n. Computation
of the boolean number of such a graph invokes the Stirling numbers of the second kind.

Corollary 5.4 ([CKRT]) For m,n ≥ 1,

β(Km,n) =
m∑

k=1

(−1)m−kk!

{
m+ 1
k + 1

}
kn.

Even more directly, the boolean numbers of the Ferrers graph of staircase shapes are exactly the median
Genocchi numbers, which are sequence A005439 of [Slo]. As shown in [ES], the median Genocchi
number gn is equal to the number of permutations of 2n letters having alternating excedances.

Definition 5.5 For n ≥ 1, the staircase shape of height n is the Ferrers shape

Σn = (n, n− 1, . . . , 2, 1).

Let Fn denote the Ferrers graph for the Ferrers shape Σn.

Corollary 5.6 ([CKRT]) For n ≥ 1, β(Fn) = gn.
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Abstract. We prove new connections between permutation patterns and singularities of Schubert varieties, by giving
a new characterization of factorial and Gorenstein varieties in terms of so called bivincular patterns. These are
generalizations of classical patterns where conditions are placed on the location of an occurrence in a permutation, as
well as on the values in the occurrence. This clarifies what happens when the requirement of smoothness is weakened
to factoriality and further to Gorensteinness, extending work of Bousquet-Mélou and Butler (2007), and Woo and
Yong (2006). We also prove results that translate some known patterns in the literature into bivincular patterns.

Résumé. Nous démontrons de nouveaux liens entre les motifs de permutation et les singularités des variétés de
Schubert, par la méthode de donner une nouvelle caractérisation des variétés factorielles et de Gorenstein par rapport
à les motifs bivinculaires. Ces motifs sont généralisations des motifs classiques où des conditions se posent sur la
position d’une occurrence dans une permutation, aussi bien que sur les valeurs qui se présentent dans l’occurrence.
Ceci éclaircit les phénomènes où la condition de nonsingularité s’affaiblit á factorialité et même à Gorensteinité, et
augmente les travaux de Bousquet-Mélou et Butler (2007), et de Woo et Yong (2006). Nous démontrons également
des résultats qui traduisent quelques motifs connus en la littérature en motifs bivinculaires.

Keywords: Patterns, Permutations, Schubert varieties, Singularities

1 Introduction
We prove new connections between permutation patterns and singularities of Schubert varieties Xπ in
the complete flag variety Flags(Cn), by giving a new characterization of factorial and Gorenstein va-
rieties in terms of which bivincular patterns the permutation π avoids. Bivincular patterns, defined by
Bousquet-Mélou et al. (2010), are generalizations of classical patterns where conditions are placed on the
location of an occurrence in a permutation, as well as on the values in the occurrence. This clarifies what
happens when the requirement of smoothness is weakened to factoriality and further to Gorensteinness,
extending work of Bousquet-Mélou and Butler (2007), and Woo and Yong (2006). We also prove results
that translate some known patterns in the literature into bivincular patterns. In particular we will give a
characterization of the Baxter permutations.

In section 2 we recall the definitions of classical, vincular (also called generalized patterns, Babson-
Steingrı́msson patterns or dashed patterns), bivincular and barred patterns. We will also recall Bruhat
embeddings of patterns, as defined by Woo and Yong (2006).
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In section 3 we will show how these different types of patterns and their avoidances are related to each
other. We will then use patterns that come up in the connections between permutations and Schubert
varieties as motivation. In particular, recall the theorem of Ryan (1987), Wolper (1989) and Lakshmibai
and Sandhya (1990) that the Schubert variety Xπ is non-singular (or smooth) if and only if π avoids the
patterns 1324 and 2143. Saying that the variety Xπ is non-singular means that every local ring is regular.
A weakening of this condition is the requirement that every local ring only be a unique factorization
domain; a variety satisfying this is a factorial variety.

Bousquet-Mélou and Butler (2007) proved a conjecture stated by Yong and Woo (Bousquet-Mélou
et al., 2005, Personal communication) that factorial Schubert varieties are those that correspond to per-
mutations avoiding 1324 and bar-avoiding 21354. In the terminology of Woo and Yong (2006) the bar-
avoidance of the latter pattern corresponds to avoiding 2143 with Bruhat condition (1 ↔ 4), or equiva-
lently, interval avoiding [2413, 2143] in the terminology of Woo and Yong (2008). However, as remarked
by Steingrı́msson (2007), bar-avoiding 21354 is equivalent to avoiding the vincular pattern 2143 . If we
summarize this in terms of vincular patterns a striking thing becomes apparent; see the lines corresponding
to smoothness and factoriality in Table 1, and Theorem 3.1.

Xπ is The permutation π avoids the patterns
smooth 2143 and 1324
factorial 2143 and 1324

Gorenstein
1
3
2
1
3
5
4
2
5
4 , 12

2
4
3
1
4
5
5
3 ; and satisfies a condition on

descents involving two infinite families of bivincular patterns

Tab. 1: Connections between singularity properties and bivincular patterns. See Theorem 3.1 for the second line and
see Theorem 3.13 for the third line.

We see that requiring 1 and 4 to be adjacent in the first pattern (and thus turning it into a vincular
pattern) corresponds to weakening smoothness to factoriality.

A further weakening is to only require that the local rings of Xπ be Gorenstein local rings, in which
case we say that Xπ is a Gorenstein variety. Woo and Yong (2006) showed that Xπ is Gorenstein if and
only if it avoids two patterns with two Bruhat restrictions each, as well as satisfying a certain condition
on descents. We will translate their results into avoidance of bivincular patterns; see Theorem 3.13 in
subsection 3.2 and the line corresponding to Gorensteinness in Table 1. Essentially the two bivincular
patterns that are shown there are certain upgrades of the pattern 2143 while the avoidance of the pattern
1324 is weakened to avoidance of two infinite families of bivincular patterns.

In section 3 we will also prove a proposition that leads to a characterization of the Baxter permutations
in terms of vincular patterns, see Example 3.5.

2 Three Types of Pattern Avoidance
Here we recall definitions of different types of patterns. We will use one-line notation for all permutations,
e.g., write π = 312 for the permutation in S3 that satisfies π(1) = 3, π(2) = 1 and π(3) = 2.

The three types correspond to:

• Bivincular patterns, subsuming vincular patterns and classical patterns.
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• Barred patterns.

• Bruhat restricted patterns.

2.1 Bivincular Patterns
We denote the symmetric group on n letters by Sn, whose elements are permutations. We write permu-
tations as words π = a1a2 · · · an, where the letters are distinct and come from the set {1, 2, . . . , n}. A
pattern p is also a permutation, but we are interested in when a pattern is contained in a permutation π as
described below.

An occurrence (or embedding) of a pattern p in a permutation π is classically defined as a subsequence
in π, of the same length as p, whose letters are in the same relative order (with respect to size) as those in
p. For example, the pattern 123 corresponds to a increasing subsequence of three letters in a permutation.
If we use the notation 1π to denote the first, 2π for the second and 3π for the third letter in an occurrence,
then we are simply requiring that 1π < 2π < 3π . If a permutation has no occurrence of a pattern p we say
that π avoids p.

Example 2.1 The permutation 32415 contains two occurrences of the pattern 123 corresponding to the
sub-words 345 and 245. It avoids the pattern 132.

In a vincular pattern (also called a generalized pattern, Babson-Steingrı́msson pattern or dashed pat-
tern), two adjacent letters may or may not be underlined. If they are underlined it means that the corre-
sponding letters in the permutation π must be adjacent.

Example 2.2 The permutation 32415 contains one occurrence of the pattern 123 corresponding to the
sub-word 245. It avoids the pattern 123. The permutation π = 324615 has one occurrence of the pattern
2143, namely the sub-word 3265, but no occurrence of 2143 , since 2 and 6 are not adjacent in π.

These types of patterns have been studied sporadically for a very long time but were not defined in full
generality until Babson and Steingrı́msson (2000).

This notion was generalized further in Bousquet-Mélou et al. (2010): In a bivincular pattern we are
also allowed to put restrictions on the values that occur in an embedding of a pattern. We use two-line
notation to describe these patterns. If there is a line over the letters i, i+1 in the top row, it means that the
corresponding letters in an occurrence must be adjacent in values. This is best described by an example:

Example 2.3 An occurrence of the pattern 1
1
2
2
3
3 in a permutation π is an increasing subsequence of three

letters, such that the second one is larger than the first by exactly 1, or more simply 2π = 1π + 1. The
permutation 32415 contains one occurrence of this bivincular pattern corresponding to the sub-word 345.

This is also an occurrence of 1
1
2
2
3
3 . The permutation avoids the bivincular pattern 1

1
2
2
3
3 .

We will also use the notation of Bousquet-Mélou et al. (2010) to write bivincular patterns: A bivincular
pattern consists of a triple (p,X, Y ) where p is a permutation in Sk and X,Y are subsets of J0, kK. An
occurrence of this bivincular pattern in a permutation π = π1 · · ·πn in Sn is a subsequence πi1 · · ·πik
such that the letters in the subsequence are in the same relative order as the letters of p and

• for all x in X , ix+1 = ix + 1; and

• for all y in Y , jy+1 = jy + 1, where {πi1 , . . . , πik} = {j1, . . . , jk} and j1 < j2 < · · · < jk.
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By convention we put i0 = 0 = j0 and ik+1 = n+ 1 = jk+1.

Example 2.4 We can translate all of the patterns we have discussed above into this notation:

123 = (123,∅,∅), 132 = (132,∅,∅), 123 = (123, {1},∅),

123 = (123, {2},∅), 2143 = (2143,∅,∅), 2143 = (2143, {2},∅),

1
1
2
2
3
3 = (123,∅, {1}), 1

1
2
2
3
3 = (123,∅, {1, 2}), 1

1
2
2
3
3 = (123, {2}, {1, 2}).

We have not considered the case when 0 or k are elements of X or Y , as we will not need those cases.
We just remark that if 0 ∈ X then an occurrence of (p,X, Y ) must start at the beginning of a permutation
π, in other words, πi1 = π1. The other cases are similar.

The bivincular patterns behave well with respect to the operations reverse, complement and inverse:
Given a bivincular pattern (p,X, Y ) we define

(p,X, Y )r = (pr, k −X,Y ), (p,X, Y )c = (pc, X, k − Y ), (p,X, Y )i = (pi, Y,X),

where pr is the usual reverse of the permutation of p, pc is the usual complement of the permutation of p,
and pi is the usual inverse of the permutation of p. Here k −M = {k −m |m ∈M}.

We get a very simple but useful lemma:

Lemma 2.5 Let a denote one of the operations above (or their compositions). Then a permutation π
avoids the bivincular pattern p if and only if the permutation πa avoids the bivincular pattern pa. 2

2.2 Barred Patterns
We will only consider a single pattern of this type, but the general definition is easily inferred from this
special case. We say that a permutation π avoids the barred pattern 21354 if π avoids the pattern 2143
(corresponding to the unbarred elements) except where that pattern is a part of the pattern 21354. This
notation for barred patterns was introduced by West (1990). It turns out that avoiding this barred pattern
is equivalent to avoiding 2143 , see section 3.

Example 2.6 The permutation π = 425761 avoids the barred pattern 21354 since the unique occurrence
of 2143, as the sub-word 4276, is contained in the sub-word 42576 which is an occurrence of 21354.

2.3 Bruhat Restricted Patterns
Here we recall the definition of Bruhat restricted patterns from Woo and Yong (2006). First we need the
Bruhat order on permutations in Sn, defined as follows: Given integers i < j in J1, nK and a permutation
π ∈ Sn we define w(i ↔ j) as the permutation that we get from π by swapping π(i) and π(j). For
example 24153(1 ↔ 4) = 54123. We then say that π(i ↔ j) covers π if π(i) < π(j) and for every k
with i < k < j we have either π(k) < π(i) or π(k) > π(j). We then define the Bruhat order as the
transitive closure of the above covering relation. This definition should be compared to the construction
of the graph Gπ in subsection 3.1. We see that in our example above that 24153(1 ↔ 4) does not cover
24153 since we have π(2) = 4. Now, given a pattern p with a set of transpositions T = {(i` ↔ j`)}
we say that a permutation π contains (p, T ), or that π contains the Bruhat restricted pattern p, if T is
understood from the context, if there is an embedding of p in π such that if any of the transpositions in T
are carried out on the embedding the resulting permutation covers π.
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We should note that Bruhat restricted patterns were further generalized to intervals of patterns in Woo
and Yong (2008). We will not consider this generalization here.

In the next section we will show how these three types of patterns are related to one another.

3 Connections between the Three Types
3.1 Factorial Schubert Varieties and Forest-like Permutations
Bousquet-Mélou and Butler (2007) defined and studied forest-like permutations. Here we recall their
definition: Given a permutation π in Sn, construct a graph Gπ on the vertex set {1, 2, . . . , n} by joining i
and j if

1. i < j and π(i) < π(j); and

2. there is no k such that i < k < j and π(i) < π(k) < π(j).

The permutation π is forest-like if the graph Gπ is a forest. In light of the definition of Bruhat covering
above we see that the vertices i and j are connected in the graph of Gπ if and only if π(i↔ j) covers π.

They then show that a permutation is forest-like if and only if it avoids the classical pattern 1324 and
the barred pattern pbar = 21354. This barred pattern can be described in terms of Bruhat restricted
embeddings and in terms of bivincular patterns, as we now show.

avoiding
21354

avoiding
2143

avoiding
2143, (1↔4)

avoiding
2143, (2↔3)

avoiding
1
2
2
1
3
4
4
3

(3) (1)

(4) (2)

Fig. 1: The barred pattern 21354 gives a connection between two bivincular patterns. The labels on the edges
correspond to the enumerated list below.

1. Bousquet-Mélou and Butler (2007) remark that forest-like permutations π correspond to factorial
Schubert varieties Xπ and avoiding the barred pattern is equivalent to avoiding pBr = 2143 with
Bruhat restriction (1↔ 4). This last part is easily verified.

2. Avoiding pBr = 2143 with Bruhat restriction (1 ↔ 4) is equivalent to avoiding the bivincular

pattern pbi =
1
2
2
1
3
4
4
3 , as we will now show:

Assume π contains the bivincular pattern pbi, so we can find an embedding of it in π such that
3π = 2π + 1. This embedding clearly satisfies the Bruhat restriction.
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Now assume that π has an embedding of pBr. If 3π = 2π+1 we are done. Otherwise 2π+1 is either
to the right of 3π or to the left of 2π (because of the Bruhat restriction). In the first case change 3π
to 2π +1 and we are done. In the second case replace 2π with 2π +1, thus reducing the distance in
values to 3π , then repeat.

This will be generalized in Proposition 3.8.

3. The barred pattern pbar = 21354 has another connection to bivincular patterns: avoiding it is equiv-
alent to avoiding the bivincular pattern qbiv = 2143 , as remarked in the survey by Steingrı́msson
(2007).

4. We can translate this into Bruhat restricted embeddings as well: Avoiding the bivincular pattern
qbi = 2143 is equivalent to avoiding qBr = 2143 with Bruhat restriction (2↔ 3):

Assume π has an embedding of qBr. If 1π and 4π are adjacent then we are done. Otherwise look
at the letter to right of 1π . If this letter is larger than 4w we can replace 4w by it and we are done.
Otherwise this letter must be less than 4w, which implies by the Bruhat restriction, that it must also
be less than 1w. In this case we replace 1w by this letter, and repeat.

Now assume π has an embedding of the bivincular pattern qbi. If 1π and 4π are adjacent we are
done. Otherwise look at the letter to the right of 1π . This letter is either smaller than 1π or larger
than 4π . In the first case, replace 1π with this letter; in the second case, replace 4π with this letter.
Then repeat if necessary.

This will be generalized in Proposition 3.8.

This gives us:

Theorem 3.1 Let π ∈ Sn. The Schubert variety Xπ is factorial if and only if π avoids the patterns 2143
and 1324. 2

From the equivalence of the patterns in Figure 1 we also get that a permutation π avoids the bivincular
pattern

2143 = (2143, {2},∅)

if and only if it avoids
1
2
2
1
3
4
4
3 = (2143,∅, {2}).

We will prove this without going through the barred pattern, and then generalize the proof, but first of all
we should note that these bivincular patterns are inverses of one another, and that will simplify the proof.

Assume π contains 1
2
2
1
3
4
4
3 . If 1π and 4π are adjacent in π we are done. Otherwise consider the element

immediately to the right of 1π . If this element is less than 2π then replace 1π by it and we will have
reduced the distance between 1π and 4π . If this element is larger than 2π it must also be larger than
3π , since 3π = 2π + 1, so replace 4π by it. This will (immediately, or after several steps) produce an
occurrence of 2143 .

Now assume π contains 2143 . Then πi contains the inverse pattern

(2143)i =
1
2
2
1
3
4
4
3 .
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Then by the above, πi contains 2143 , so π = (πi)i contains (2143)i = 1
2
2
1
3
4
4
3 .

This generalizes to:

Proposition 3.2 Let p be the pattern

· · · 1k · · · = (· · · 1k · · · , {j},∅)

in Sk, where j = pi(1) is the index of 1 in p, so j + 1 is the index of k in p. A permutation π in Sn that
avoids the pattern p must also avoid the bivincular pattern

1· 2·
·
·
·
1
·
k
·
·
·
·k· = (· · · 1k · · · ,∅, {2, 3, . . . , k − 2}).

Proof: Assume a permutation π contains the latter pattern in the proposition. If 1π and kπ are adjacent
in π we are done. Otherwise consider the element immediately to the right of 1π . If this element is larger
than (k − 1)π we replace kπ by it and are done. Otherwise this element must me less than (k − 1)π and
therefore less than 2π , so we can replace 1π by it, and repeat. 2

By applying the reverse to everything in sight in Proposition 3.2 we get:

Corollary 3.3 Let p be the pattern

· · ·k1 · · · = (· · · k1 · · · , {j},∅)

in Sk, where j = pi(k) is the index of k in p, so j + 1 is the index of 1 in p. A permutation π in Sn that
avoids the pattern p must also avoid the bivincular pattern

1· 2·
·
·
·
k
·
1
·
·
·
·k· = (· · · k1 · · · ,∅, {2, 3, . . . , k − 2}).

By repeatedly applying the operations of inverse, reverse and complement we can generate six other
corollaries. We will not need them here so we will not write them down.

Example 3.4 Let’s look at some simple applications:

1. Consider the bivincular pattern p1 = 3142 . Proposition 3.2 shows a permutation π that avoids

p1 must also avoid 1
3
2
1
3
4
4
2 . In fact, the converse can be shown to be true, by taking inverses and

applying the proposition. We will say more about the pattern p1 in Example 3.5.

2. Consider the bivincular pattern p2 = 31524 . The proposition shows that a permutation π that

avoids p2 must also avoid 1
3
2
1
3
5
4
2
5
4 . We will say more about the pattern p2 in subsection 3.2.

Example 3.5 The Baxter permutations were originally defined and studied in relation to the “commuting
function conjecture” of Dyer, see Baxter (1964), and were enumerated in Chung et al. (1978). Gire (1993)
showed that these permutations can also be described as those avoiding the barred patterns 41352 and
25135. It was then pointed out by Ouchterlony (2005) that this is equivalent to avoiding the vincular
patterns 3142 and 2413 .
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Similarly to what we did above we can show that the Baxter permutations can also be characterized

as those avoiding the bivincular patterns 1
3
2
1
3
4
4
2 and 1

2
2
4
3
1
4
3 , and this is essentially a translation of the

description in Chung et al. (1978) into bivincular patterns.

Finally, here is an example that shows the converse of Proposition 3.2 is not true.

Example 3.6 The permutation π = 423165 avoids the pattern 1
2
2
3
3
1
4
5
5
4 but contains the pattern 23154 ,

as the sub-word 23165.

3.2 Gorenstein Schubert Varieties in terms of Bivincular Patterns
Woo and Yong (2006) classify those permutations π that correspond to Gorenstein Schubert varieties
Xw. They do this using embeddings of patterns with Bruhat restrictions, which we have described above,
and with a certain condition on the associated Grassmannian permutations of w, which we will describe
presently:

First, a descent in a permutation π is an integer d such that π(d) > π(d+ 1). A Grassmannian permu-
tation is a permutation with a unique descent. Given any permutation π we can associate a Grassmannian
permutation to each of its descents, as follows: Given a particular descent d of π we construct the sub-
word γd(π) by concatenating the right-to-left minima of the segment strictly to the left of d + 1 with the
left-to-right maxima of the segment strictly to the right of d. More intuitively we start with the descent
π(d)π(d + 1) and enlarge it to the left by adding increasing elements without creating another descent
and similarly enlarge it to the right by adding decreasing elements without creating another descent. We
then denote the flattening (or standardization) of γd(π) by γ̃d(π), which is the unique permutation whose
letters are in the same relative order as γd(π).

Example 3.7 Consider the permutation π = 11|6|12|94153728|10 where we have used the symbol | to
separate two digit numbers from other numbers. For the descent at d = 4 we get γ4(π) = 694578|10 and
γ̃4(π) = 3612457.

Now, given a Grassmannian permutation π in Sn with its unique descent at d we construct its associated
partition λ(π) as the partition inside a bounding box d× (n− d), with d rows and n− d columns, whose
lower border is the lattice path that starts at the lower left corner of the bounding box and whose i-th
step, for i ∈ J1, nK, is vertical if i is weakly to the left of the position d, and horizontal otherwise. We
are interested in the inner corner distance of this partition, i.e., for every inner corner we add its distance
from the left side and the distance from the top of the bounding box. If all these inner corner distances are
the same then the inner corners all lie on the same anti-diagonal.

In Theorem 1 of Woo and Yong (2006) they show that a permutation π ∈ Sn corresponds to a Goren-
stein Schubert variety Xπ if and only if

1. for each descent d of π, λ(γ̃d(π)) has all of its inner corners on the same anti-diagonal; and

2. the permutation π avoids both 31524 and 24153 with Bruhat restrictions {(1 ↔ 5), (2 ↔ 3)} and
{(1↔ 5), (3↔ 4)}, respectively.

Let’s take a closer look at condition 2: Proposition 3.8 below shows that avoiding 31524 with Bruhat
restrictions {(1↔ 5), (2↔ 3)} is equivalent to avoiding the bivincular pattern

1
3
2
1
3
5
4
2
5
4 = (31524, {2}, {3}).
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Similarly, avoiding 24153 with Bruhat restrictions {(1 ↔ 5), (3 ↔ 4)} is equivalent to avoiding the
bivincular pattern

1
2
2
4
3
1
4
5
5
3 = (24153, {3}, {2}).

Proposition 3.8 1. Let p be the pattern
· · · 1k · · ·

in Sk. Let j = pi(1) be the index of 1 in p, so j + 1 is the index of k in p. A permutation π in Sn
avoids p with Bruhat restriction (j ↔ j + 1) if and only if π avoids the vincular pattern

· · · 1k · · · = (· · · 1k · · · , {j},∅).

2. Let ` ∈ J1, k − 1K and p be the pattern

` · · · (`+ 1)

in Sk. A permutation π in Sn avoids p with Bruhat restriction (1 ↔ k) if and only if π avoids the
bivincular pattern

1
`
·
·
·
· `· `·

+
· 1·
·
·
·
`
·
+
k
1 = (` · · · (`+ 1),∅, {`}).

Proof: We consider each case separately.

1. Assume π contains the vincular pattern mentioned. Then it clearly also contains an embedding
satisfying the Bruhat restriction.

Conversely assume π contains an embedding satisfying the Bruhat restriction. If 1π and kπ are
adjacent then we are done. Otherwise look at the element immediately to the right of 1π . This
element must be either larger than kπ , in which case we can replace kπ by it and are done, or
smaller, in which case we replace 1π by it, and repeat.

2. Assume π contains the bivincular pattern mentioned. Then it clearly also contains an embedding
satisfying the Bruhat restriction.

Conversely assume π contains an embedding satisfying the Bruhat restriction. If (`+1)π = `π +1
then we are done. Otherwise consider the element `π + 1. It must either be to the right of (`+ 1)π
or to the left of `π . In the first case we can replace (` + 1)π by `π + 1 and be done. In the second
case replace `π with `π + 1 and repeat. 2

As a consequence we get:

Corollary 3.9 A permutation π in Sn avoids

· · · 1k · · · , (j ↔ j + 1),

where j is the index of 1, if and only if the inverse π−1 avoids

j · · · (j + 1), (1↔ k).
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Note that we could have proved the statement of the corollary with out going through bivincular patterns
and then used that to prove part 2 of Proposition 3.8, as part 2 is the inverse statement of the statement in
part 1.

Translating condition 1 of Theorem 1 of Woo and Yong (2006) is a bit more work. The failure of this
condition is easily seen to be equivalent to some partition λ of an associated Grassmannian permutation
γ̃d(π) having an outer corner that is either “too wide” or “too deep”. Precisely, given a Grassmannian
permutation π and an outer corner of λ(π), we say that it is too wide if the distance upward from it to the
next inner corner is smaller than the distance to the left from it to the next inner corner. Conversely we
say that an outer corner is too deep if the distance upward from it to the next inner corner is larger than
the distance to the left from it to the next inner corner. We say that an outer corner is unbalanced if it is
either too wide or too deep. We say that an outer corner is balanced if it is not unbalanced.

If a permutation has an associated Grassmannian permutation with an outer corner that is too wide we
say that the permutation itself is too wide and similarly for too deep. If the permutation is either too wide
or too deep we say that it is unbalanced, otherwise it is balanced. It is time to see some examples.

Example 3.10

1. Consider the permutation π = 14235 with a unique descent at d = 2. It corresponds to the partition
(2) ⊆ 2× 3 and has just one outer corner. This outer corner is too wide.

2. Consider the permutation π = 13425 with a unique descent at d = 3. It corresponds to the partition
(1, 1) ⊆ 3× 2 and has just one outer corner. This outer corner is too deep.

3. Consider the permutation π = 134892567|10 with a unique descent at d = 5. It corresponds to the
partition (4, 4, 1, 1) ⊆ 5 × 5 and has two outer corners. The first outer corner is too deep and the
second is too wide.

4. Consider the permutation π = 13672458 with a unique descent at d = 4. It corresponds to the
partition (3, 3, 1) ⊆ 4× 4 and has two outer corners that are both balanced.

These properties of Grassmannian permutations can be detected with bivincular patterns, as we now
show.

Lemma 3.11 Let π be a Grassmannian permutation.

1. The permutation π is too wide if and only if it contains at least one of the bivincular patterns from
the infinite family

F =

(
1
1
2
4
3
2
4
3
5
5 ,

1
1
2
5
3
6
4
2
5
3
6
4
7
7 ,

1
1
2
6
3
7
4
8
5
2
6
3
7
4
8
5
9
9 , . . .

)
.

The general member of this family is of the form

1
1
2
`
·
+
·
1
·
·
·
·
·
2
·
·
·
·
·
`
k
k ,

where ` = (k − 3)/2.
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2. The permutation π is too deep if and only if it contains at least one of the bivincular patterns from
the infinite family

G =

(
1
1
2
3
3
4
4
2
5
5 ,

1
1
2
4
3
5
4
6
5
2
6
3
7
7 ,

1
1
2
5
3
6
4
7
5
8
6
2
7
3
8
4
9
9 , . . .

)
.

The general member of this family is of the form

1
1
2
`
·
+
·
1
·
·
·
·
·
2
·
·
·
·
·
`
k
k ,

where ` = (k − 1)/2.

Proof: We only consider part 1, as part 2 is proved analogously. Assume that π is a Grassmannian
permutation that is too wide, so it has an outer corner that is too wide. Let ` be the distance from this
outer corner to the next inner corner above. Then the distance from this outer corner to the next inner
corner to the left is at least ` + 1. This allows us to construct an increasing sequence t of length ` in π,
starting at a distance at least two to the right of the descent. We can also choose t so that every element in
it is adjacent both in location and values. Similarly we can construct an increasing sequence s of length `
in π, located strictly to the left of the descent. We can also choose s so that every element in it is adjacent
both in location and values. This produces the required member of the family F .

Conversely, assume π contains a particular member of the family F . Then π clearly has at least one
outer corner that is too wide. 2

It should be noticed that these two infinite families are obtained from one another by reverse comple-
ment.

We have now shown that

Proposition 3.12 A permutation π is balanced if and only if every associated Grassmannian permutation
avoids every bivincular pattern in the two infinite families F and G in Lemma 3.11. 2

This gives us:

Theorem 3.13 Let π ∈ Sn. The Schubert variety Xπ is Gorenstein if and only if

1. π is balanced; and

2. the permutation π avoids the bivincular patterns

1
3
2
1
3
5
4
2
5
4 and 1

2
2
4
3
1
4
5
5
3 .

2

I should note that with the descriptions of factorial and Gorenstein Schubert varieties given above it is
easy to verify that smoothness implies factoriality implies Gorensteinness.
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