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Abstract. This paper is about two arrangements of hyperplanes. The first — the Shi arrangement — was introduced
by Jian-Yi Shi to describe the Kazhdan-Lusztig cells in the affine Weyl group of type A. The second — the Ish
arrangement — was recently defined by the first author who used the two arrangements together to give a new
interpretation of the q, t-Catalan numbers of Garsia and Haiman. In the present paper we will define a mysterious
“combinatorial symmetry” between the two arrangements and show that this symmetry preserves a great deal of
information. For example, the Shi and Ish arrangements share the same characteristic polynomial, the same numbers
of regions, bounded regions, dominant regions, regions with c “ceilings” and d “degrees of freedom”, etc. Moreover,
all of these results hold in the greater generality of “deleted” Shi and Ish arrangements corresponding to an arbitrary
subgraph of the complete graph. Our proofs are based on nice combinatorial labellings of Shi and Ish regions and a
new set partition-valued statistic on these regions.

Résumé. Cet article traite de deux arrangements d’hyperplans. Le premier — arrangement Shi — a été introduit
par Jian-Yi Shi pour décrire les cellules de Kazhdan-Lusztig du groupe de Weyl affine de type A. Le deuxième
— arrangement Ish — a été récemment défini par le premier auteur pour donner une nouvelle interprétation des
nombres q, t-Catalan de Garsia et Haiman. Ici nous définissons une mystérieuse “symétrie combinatoire” entre les
deux arrangements et nous montrons que cette symétrie conserve un grand nombre d’informations. Par exemple, les
arrangements Shi et Ish ont le même polynôme caractéristique, le même nombre de régions, de régions bornées, de
régions dominantes, de régions avec c “plafonds” et d “degrés de liberté”, etc. En outre, ces résultats se généralisent
aux arrangements Shi et Ish “deleted” correspondant à un sous-graphe arbitraire du graphe complet. Nos preuves
reposent sur des étiquetages combinatoires des régions Shi et Ish, et sur une nouvelle statistique associée.

Keywords: hyperplane arrangement, nonnesting partition, product formula

1 Introduction
A hyperplane arrangement is a finite collection of affine hyperplanes in Euclidean space. Some of the
nicest arrangements come from the reflecting hyperplanes of Coxeter groups. In particular, the Coxeter
arrangement of type A (also known as the braid arrangement) is the arrangement in Rn defined by

Cox(n) := {xi − xj = 0 : 1 ≤ i < j ≤ n}. (1)

Here {x1, . . . , xn} are the standard coordinate functions on Rn.
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Fig. 1: The arrangements Shi(3) (left) and Ish(3) (right)

Postnikov and Stanley (9) introduced the idea of a deformation of the Coxeter arrangement — this is an
affine arrangement each of whose hyperplanes is parallel to some hyperplane of the Coxeter arrangement.
In the present paper we will study two specific deformations of the Coxeter arrangement and we will
observe a deep similarity between them. The first is the Shi arrangement which was one of Postnikov and
Stanley’s motivating examples:

Shi(n) := Cox(n) ∪ {xi − xj = 1 : 1 ≤ i < j ≤ n}. (2)

This arrangement was defined by Jian-Yi Shi (11, Chapter 7) to study of the Kazhdan-Lusztig cellular
structure of the affine Weyl group of type A. The second is the Ish arrangement, recently defined by the
first author (1):

Ish(n) := Cox(n) ∪ {x1 − xj = i : 1 ≤ i < j ≤ n}. (3)

He used the Shi and Ish arrangements to give a new description of the q, t-Catalan numbers of Garsia
and Haiman in terms of the affine Weyl group of type A. Figure 1 displays the arrangements Shi(3)
and Ish(3). (Note that the normals to the hyperplanes of either Shi(n) or Ish(n) span the hyperplane
x1 + x2 + · · ·+ xn = 0. Hence we will always draw their restrictions to this space.)

The heart of this paper is the following correspondence between Shi and Ish hyperplanes. The corre-
spondence is natural to state but we find it geometrically mysterious. We will call this a “combinatorial
symmetry”:

xi − xj = 1←→ x1 − xj = i for 1 ≤ i < j ≤ n (4)

This symmetry allows us to define deleted versions of the Shi and Ish arrangements. Let
(
[n]
2

)
denote the

set of pairs ij satisfying 1 ≤ i < j ≤ n and consider a simple loopless graph G ⊆
(
[n]
2

)
. The deleted Shi

and Ish arrangements are defined as follows:

Shi(G) := Cox(n) ∪ {xi − xj = 1 : ij ∈ G}, (5)
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Fig. 2: The arrangements Shi(G) (left) and Ish(G) (right) corresponding to the “chain” G = {12, 23} ⊆
`
[3]
2

´
Ish(G) := Cox(n) ∪ {x1 − xj = i : ij ∈ G}. (6)

The arrangement Shi(G) was first considered by Athanasiadis (3). Note that Shi(G) (resp. Ish(G))
interpolates between the Coxeter arrangement and the Shi (resp. Ish) arrangement. That is, if ∅ ∈

(
[n]
2

)
is the “empty” graph and Kn =

(
[n]
2

)
is the “complete” graph, we have that Shi(∅) = Ish(∅) = Cox(n),

Shi(Kn) = Shi(n), and Ish(Kn) = Ish(n). Figure 2 displays the arrangements Shi(G) and Ish(G)
corresponding to the “chain” G = {12, 23} ⊆

(
[3]
2

)
.

To state our Main Theorem right away, we need a few definitions. Let A be a hyperplane arrangement
in Rn. The intersection poset L(A) ofA is the collection of all nonempty intersections of the hyperplanes
inA partially ordered by reverse inclusion. The poset L(A) has the structure of a graded meet-semilattice
(13) with unique minimal element given by the ‘empty intersection’ Rn. Let µ : L(A)×L(A)→ Z be the
Möbius function of L(A) (see (12)). The characteristic polynomial χA(p) ∈ Z[p] of A is the polynomial

χA(p) :=
∑

X∈L(A)

µ(Rn, X)pdim(X). (7)

The characteristic polynomial of A determines the Hilbert series of the Orlik-Solomon algebra of A and
the Hilbert series of the cohomology ring of the complement of the complexification AC := {C ⊗R H :
H ∈ A} of A in Cn (where cohomology is computed with coefficients in C) (8).

IfA is a hyperplane arrangement in Rn, the connected components of the complement Rn r
⋃

H∈AH
are called the regions of A. If R is a region of A, the recession cone of R is

Rec(R) := {v ∈ Rn : R+ v ⊆ R}. (8)

Since R is convex, Rec(R) is closed under nonnegative linear combinations. The dimension of the cone
Rec(R) is called the number of degrees of freedom of the region R. The region R is bounded if and only
if it has zero degrees of freedom.
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LetR be a region of the arrangementA in Rn. The hyperplanes inA decompose the topological closure
R̄ into faces of various dimensions. A hyperplane H ∈ A is called a wall of R if H is the affine span of a
codimension-one face of R. A wall H of R is called a ceiling of R if H is not a linear hyperplane and if
H does not separate R from the origin.

Main Theorem. Let G ⊆
(
[n]
2

)
be a graph on n vertices and let c and d be nonnegative integers. The

hyperplane arrangements Shi(G) and Ish(G) have the following objects in common:

• the characteristic polynomial;

• the number of regions with c ceilings and d degrees of freedom;

• the number of dominant regions with c ceilings.

Proof. These are Theorems 3.1, 5.2, and 5.3, respectively.

For example, here are the joint distributions of ceilings (c) and degrees of freedom (d) for the arrange-
ments in Figures 1 and 2, respectively.

d

c

1 2 3
0 6
1 3 6
2 1

d

c

1 2 3
0 6
1 2 4
2 1

We find it mysterious that the correspondence xi − xj = 1 ↔ x1 − xj = i preserves so much
information. However, it does not preserve everything. It can be shown using Figure 1 that Shi(G) and
Ish(G) do not have the same intersection poset in general. It can also be shown that Shi(G) and Ish(G) do
not have the same Tutte polynomial in general and that the Orlik-Solomon algebras of these arrangements
are not in general graded-isomorphic (although by our Main Theorem these algebras do have the same
Hilbert series). The authors are interested in a more compact statement of the Main Theorem as well as a
more conceptual understanding of what is preserved and what is not preserved by the Shi/Ish duality.

The remainder of the paper is structured as follows. In Section 2 we review and introduce some no-
tation related to set partitions. In Section 3 we prove that the arrangements Shi(G) and Ish(G) have the
same characteristic polynomial and give an explicit expression for this polynomial. This expression is an
alternating sum involving G-analogs of the Stirling numbers; it appears to be new even for the deleted
Shi arrangements. In Section 4 we introduce a nice combinatorial labeling of the regions of Shi(G) and
Ish(G) and explain how this labeling can be used to read off the number of ceilings and number of de-
grees of freedom of a region. In Section 5 we introduce a new set partition-valued statistic called “ceiling
partition” on the regions of Shi(G) and Ish(G) and show that the ceiling partition refines the ‘number
of ceilings’ statistic. We use the ceiling partitions to prove refined versions of Parts 2 and 3 of the Main
Theorem.

2 Background on Set Partitions
If π is a set partition of [n], the arc diagram of π is the graph on the vertex set [n] whose edges
are exactly the pairs ij with i < j such that i and j are blockmates in π and there does not ex-
ist k with i < k < j such that i, j, and k are blockmates in π. Figure 3 shows the arc diagram
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Fig. 3: A partition of [8] with type (1, 0, 1, 1, 0, 0, 0, 0)

of the partition {{1, 2, 5, 6}, {3, 7, 8}, {4}} of [8]. The type of a partition π of [n] is the sequence
(r1, . . . , rn) ∈ Nn, where ri is the number of blocks of π of size i. The type of the partition of [8]
in Figure 3 is (1, 0, 1, 1, 0, 0, 0, 0).

For 1 ≤ k ≤ n, recall that the Stirling number (of the second kind) Stir(n, k) counts the number of
partitions of [n] with exactly k blocks. In order to study the deleted Shi and Ish arrangements we will find
it convenient to introduce a ‘G-analog’ of the Stirling numbers. For a graphG ⊆

(
[n]
2

)
, call a partition π of

[n] G-deleted if every edge in the arc diagram of π is also an edge in G. Denote by Stir(G, k) the number
of G-deleted partitions of [n] with exactly k blocks. For example, if G = Kn is the complete graph we
have that Stir(Kn, k) = Stir(n, k) and if G = ∅ is the graph with no edges we have Stir(∅, k) = δk,n.

A partition π of [n] is called nonnesting if there do not exist numbers a < b < c < d such that both
ad and bc are arcs in the arc diagram of π. The partition in Figure 3 is not nonnesting because the arcs 37
and 56 nest. The partition {{1, 3}, {2, 4}} of [4] is nonnesting.

For 1 ≤ d ≤ n, a partition π of [n] is said to have d connected components if d − 1 is the maximal
length of a sequence 1 < i1 < i2 < . . . < id−1 ≤ n such that π refines the set partition

{{1, 2, . . . , i1}, {i1 + 1, i1 + 2, . . . , i2}, . . . , {id−1, id−1 + 1, . . . , n}}. (9)

(Some authors refer to connected components as “blocks” - we reserve this term for the elements of a set
partition.)

3 Characteristic Polynomials
Our first result is that the characteristic polynomials of Shi(G) and Ish(G) are equal for any graph
G ⊆

(
[n]
2

)
. We give an explicit formula for this common characteristic polynomial as an alternating

sum involving the G-deleted Stirling numbers Stir(G, k).

Theorem 3.1. Let G ⊆
(
[n]
2

)
be a graph on n vertices. The characteristic polynomials of the deleted Shi

and Ish arrangement are given by:

χShi(G)(p) = χIsh(G)(p) = p

n−1∑
k=0

(−1)kStir(G,n− k)(p− k − 1)(p− k − 2) · · · (p− n+ 1). (10)

Proof. (Sketch.) Since the hyperplanes in Shi(G) and Ish(G) have defining equations over Z, we can
apply the finite fields method of Crapo and Rota (5) to compute these characteristic polynomials. Given
a sufficiently large prime p, this amounts to showing that the number of points in the complements in Fn

p

of the reductions of Shi(G) and Ish(G) modulo p are both counted by the alternating sum in Equation 10
(here Fp denotes the field with p elements). We use the Principle of Inclusion-Exclusion (12, Chapter 2)
to perform this enumeration.
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Headley (6) showed that the characteristic polynomial of the ‘full’ Shi arrangement Shi(n) is given by
χShi(n)(p) = p(p − n)n−1. Athanasiadis (4) later showed that when the graph G avoids certain induced
subgraphs, the arrangement Shi(G) is (inductively) free and the characteristic polynomial χShi(G)(p)
factors as a product p

∏n
i=1(p − ci), where the numbers ci ∈ N can be read off from the graph G. The

authors are not aware of an expression for the characteristic polynomial of Shi(G) for general graphs G
in previous literature.

Corollary 3.2. Let G ⊂
(
[n]
2

)
be a graph on n vertices. The arrangements Shi(G) and Ish(G) have the

same number of regions.

Proof. Combine Theorem 3.1 and Zaslavsky’s Theorem (14).

No bijective proof of Corollary 3.2 is known.

4 Labelling the Regions
In this section we will describe how to label the regions of the Shi and Ish arrangements Shi(G) and
Ish(G). These labels will be called Shi ceiling diagrams and Ish ceiling diagrams and will be designed to
keep track of the ceilings and degrees of freedom of these regions. (Something like “Shi floor diagrams”
appeared earlier in the work of Athanasiadis and Linusson (2).)

4.1 Shi ceiling diagrams
We denote by C the dominant cone in the Coxeter arrangement Cox(n) defined by the coordinate inequal-
ities x1 > x2 > . . . > xn. The action of the symmetric group S(n) on Rn by coordinate permutation
induces a simply transitive action of S(n) on the regions of Cox(n), so that every region of Cox(n) can
be uniquely written as wC for some w ∈ S(n).

Let G ⊆
(
[n]
2

)
be a fixed graph on n vertices. For w ∈ S(n), we define a poset Φ+(G,w) (i) as follows.

As a set, Φ+(G,w) consists of the following affine hyperplanes in Shi(G):

Φ+(G,w) := {xw(i) − xw(j) = 1 : i < j, w(i) < w(j), w(i)w(j) ∈ G}. (11)

On can see that the hyperplanes in Φ+(G,w) are precisely the hyperplanes in Shi(G) which intersect the
cone wC. The partial order on Φ+(G) is defined by

(xw(i′) − xw(j′) = 1) � (xw(i) − xw(j) = 1) (12)

if
w(i) ≤ w(i′) < w(j′) ≤ w(j). (13)

Given w ∈ S(n), we will label the regions of Shi(G) contained in wC with order ideals in the poset
Φ+(G,w).

Theorem 4.1. There is a bijection between regions of Shi(G) which are contained in the cone wC and
order ideals (down-closed sets) in the poset Φ+(G,w). This bijection is given by sending a region R
contained in wC to the set of hyperplanes in Φ+(G,w) which do not separate R from the origin. The
maximal elements of this ideal are the ceilings of R.

(i) The notation Φ+(G, w) is due to the fact that when G = Kn is the complete graph and w ∈ S(n) is the identity permutation,
the poset Φ+(G, w) is isomorphic to the type An−1 positive root poset.
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Fig. 4: An order ideal (left) and a Shi ceiling diagram (right)

Proof. Omitted.

For example, let n = 8, G = K8, and w = 51286347. The poset Φ+(G,w) is shown on the left of
Figure 4, with partial order increasing up and to the left. The elements of this poset which contain circles
form an order ideal in this poset. The hollow circles are the maximal elements of this order ideal. The
ceilings of the corresponding region of Shi(8) are x5 − x8 = 1, x1 − x6 = 1, and x3 − x7 = 1.

Given a regionR of Shi(G), define the Shi ceiling diagram ofR as follows. Letw ∈ S(n) be the unique
permutation such that R ⊆ wC. Write the one-line notation w(1)w(2) . . . w(n) of w on a line. For every
maximal element xw(i)−xw(j) = 1 of the order ideal in Φ+(G,w) corresponding toR as in Theorem 4.1,
draw an arc connecting w(i) and w(j). Theorem 4.1 guarantees that the partition π of [n] generated by
i ∼ j if w(i) and w(j) are connected by an arc is nonnesting. The pair (w, π) is the Shi ceiling diagram of
[n]. The Shi ceiling diagram of the region of Shi(8) from the previous paragraph is shown on the right of
Figure 4. The corresponding pair (w, π) is (51286347, {{1, 4}, {2, 5}, {3}, {6, 8}, {7}}). Figure 5 shows
the arrangement Shi(3) with its regions labeled by their Shi ceiling diagrams.

Shi ceiling diagrams label the regions of Shi(G). They also can be used to read of the degrees of
freedom of a region.

Lemma 4.2. The set of Shi ceiling diagrams of the regions of Shi(G) is exactly the set of pairs (w, π)
where w ∈ S(n) and π is a nonnesting partition of [n] satisfying:

• if i < j is an arc in the arc diagram of π, then w(i) < w(j),

• if i < j is an arc in the arc diagram of π, then w(i)w(j) ∈ G.

Moreover, if (w, π) is a pair of a permutation w ∈ S(n) and a nonnesting partition π of [n] satisfying the
two conditions above, then there exists a unique region R of Shi(G) with Shi ceiling diagram (w, π). The
number of ceilings of R is the number of arcs in the arc diagram of π. The number of degrees of freedom
of R is the number of connected components of π.

Proof. Omitted.

For example, the region of Shi(8) whose Shi ceiling diagram is shown in Figure 4 has two degrees of
freedom.
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Fig. 5: The regions of Shi(3) and their Shi ceiling diagrams.

4.2 Ish ceiling diagrams
In order to compare the Shi and Ish arrangements, we will introduce an Ish-analog of the Shi ceiling
diagrams. Fix a graph G ⊆

(
[n]
2

)
.

Given a permutation w ∈ S(n), we define a poset Ψ+(G,w) as follows. As a set, Ψ+(G,w) is the
following collection of affine hyperplanes in Ish(G):

Ψ+(G,w) := {x1 − xj = i : i < j ∈ G,w−1(i) < w−1(j)}. (14)

It can be shown that Ψ+(G,w) is exactly the set of hyperplanes in Ish(G) which intersect the region wC
of Cox(n). The partial order on Ψ+(G,w) is generated by

(x1 − xj = i) ≺ (x1 − xj′ = i′) (15)

if j < j′ or i < i′. In analogy with the case of the Shi arrangement, regions of Ish(G) which are contained
in the cone wC are in a natural bijection with order filters in Ψ+(G,w).

Theorem 4.3. There is a bijection between regions of Ish(G) which are contained in the cone wC and
order filters (up-closed sets) in the poset Ψ+(G,w). This bijection is given by sending a region R to the
set of hyperplanes in Ψ+(G,w) which do not separate R from the origin. The minimal elements of the
ideal corresponding to R are the ceilings of R.

Proof. Omitted.

It is convenient to express Theorem 4.3 with a picture. Givenw ∈ S(n), we draww(1), w(2), . . . , w(n)
on a line. For each j to the right of 1, we draw j − 1 boxes above the symbol j. If we identify the ith
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Fig. 6: An order filter (left) and an Ish ceiling diagram (right)

box above j with the hyperplane x1− xj = i and erase the boxes which correspond to hyperplanes not in
Ish(G), we obtain the poset Ψ+(G,w); the partial order increases up and to the left. Given a region R of
Ish(G) contained in wC, we can draw its order filter in Ψ+(G,w) using this pictorial representation.

For example, let n = 8, G = K8, and w = 51286347. Figure 6 shows the poset Ψ+(G,w), with partial
order increasing up and to the left. The boxes in this poset which contain circles form an order filter; the
minimal elements in this order filter are the hollow circles. The ceilings of the corresponding region R
are x1 − x8 = 1, x1 − x4 = 3, and x1 − x7 = 5.

The pictorial representation of order filters in the posets Ψ+(G,w) can be used to define Ish-analogs
of Shi ceiling diagrams. Given a region R of Ish(G), the Ish ceiling diagram of R is the pair (w, ε)
defined as follows. We let w ∈ S(n) be the unique permutation such that R is contained in the region
wC of Cox(n). We draw the poset Ψ+(G,w) and the order filter corresponding to R as in the previous
paragraph. We let ε = ε1 . . . εn be the sequence of nonnegative integers defined by setting εj = 0 if there
is no minimal element of the order filter of R above w(j) in this representation and by setting εj = i if
there is a minimal element in the order filter of R above w(j) and this minimal element is x1−xw(j) = i.
We (w, ε) visually by drawing w(1), . . . , w(n) on a line and placing εi circles above w(i) for all i.

The right of Figure 6 shows the Ish ceiling diagram corresponding to the order ideal on the left of Figure
6. The corresponding pair (w, ε) is (51286347, 00010035). Figure 7 shows the regions of Ish(3) labeled
with their Ish ceiling diagrams.

The Ish ceiling diagrams label the regions of Ish(G) and can be used to read off the degrees of freedom
of a region.

Lemma 4.4. The set of Ish ceiling diagrams of the regions of Ish(G) is exactly the set of pairs (w, ε)
where w ∈ S(n) and ε = ε1 . . . εn is a sequence of nonnegative integers satisfying:

• εi < w(i) for all i,

• if εi > 0, then w−1(1) < i,

• if εi > 0, then εi < w(i) ∈ G, and

• if i < j and εi, εj > 0, then εi < εj .
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Fig. 7: The arrangement Ish(3) labeled with Ish ceiling diagrams

Given a pair (w, ε) satisfying the four properties listed above, there exists a unique region R of Ish(G)
with Ish ceiling diagram (w, ε). The number of ceilings of R is the number of positive entries of ε. The
number of degrees of freedom of R is n + w−1(1) − j, where j = max{i : εi > 0} if ε is not the zero
sequence and j = w−1(1) if ε is the zero sequence.

Proof. Omitted.

For example, the region R of Ish(8) whose Ish ceiling diagram is shown in Figure 6 has 8 + 2− 8 = 2
degrees of freedom.

5 Counting the regions
In this section we use Shi and Ish ceiling diagrams to obtain our equidistribution results regarding the
regions of Shi(G) and Ish(G). To do this, we will introduce a new set partition-valued statistic on the
regions of Shi(G) and Ish(G) called “ceiling partition”. Two regions with the same ceiling partition will
also have the same number of ceilings. We will prove that the bistatistic (ceiling partition, degrees of
freedom) has the same joint distribution on the regions of Shi(G) and Ish(G) and compute this joint dis-
tribution explicitly. This will imply that the joint distribution of (number of ceilings, degrees of freedom)
is the same on the regions of Shi(G) and Ish(G). We will also give an explicit bijection between the
dominant regions of Shi(G) and Ish(G) which preserves ceiling partitions (thus preserving number of
ceilings).

Definition 5.1. 1. Let R be a region of Shi(G). The ceiling partition of R is the set partition τ of [n]
generated by i ∼ j if xi − xj = 1 is a hyperplane in Shi(G) and a ceiling of R.
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2. Let R be a region of Ish(G). The ceiling partition of R is the set partition τ of [n] generated by i ∼ j
if x1 − xj = i is a hyperplane in Ish(G) and a ceiling of R.

The type of a region R of Shi(G) or Ish(G) is a G-deleted partition of [n]. We remark that the ceiling
partition of a region of Shi(G) or Ish(G) is neither noncrossing nor nonnesting in general.

Lemma 5.1. Let G ⊆
(
[n]
2

)
be a graph on n vertices, let R be a region of Shi(G) or of Ish(G), and let τ

be the ceiling partition of R. If τ has k blocks, then R has n− k ceilings.

Proof. Omitted.

Theorem 5.2. Let G ⊆
(
[n]
2

)
be a graph on n vertices and let τ be a G-deleted partition of [n]. If

τ is not nonnesting, there are no dominant regions of Shi(G) or of Ish(G) with ceiling partition τ . If
τ is nonnesting, there exists a unique dominant region of Shi(G) with ceiling partition τ and a unique
dominant region of Ish(G) with ceiling partition τ .

Proof. This is essentially a picture proof. For the identity permutation w = 1 we observe that the posets
Φ+(G,1) and Ψ+(G,1) look exactly the same, except that one is reflected in a line of slope 1. For
example, here are the posets corresponding to the graph G =

(
[8]
2

)
− {14, 34, 48, 58}; Shi on the left, Ish

on the right:

This reflection is an order-reversing bijection between Φ+(G,1) and Ψ+(G,1). Hence it induces a bi-
jection between ideals in Φ+(G,1) with c maximal elements (dominant Shi(G)-regions with c ceilings)
and filters in Ψ+(G,1) with c minimal elements (dominant Ish(G)-regions with c ceilings). This bijec-
tion preserves ceiling partitions.

The bijection given in Theorem 5.2 does not extend to regions outside the dominant cone because the
posets Φ+(G,w) and Ψ+(G,w) look very different in general for permutations w other than 1. This
bijection does not preserve degrees of freedom - indeed, it cannot as a glance at Figure 1 shows that for
n = 3 and G = K3 the arrangement Shi(3) has two dominant regions with one degree of freedom while
the arrangement Ish(3) has three dominant regions with one degree of freedom.

Theorem 5.3. Let G ⊆
(
[n]
2

)
be a graph on n vertices, let 1 ≤ d ≤ n, and let τ be a G-deleted partition

of [n] with k blocks.
1. The number of regions of Shi(G) or of Ish(G) with ceiling partition τ is

n!
(n− k + 1)!

. (16)
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2. The number of regions of Shi(G) or of Ish(G) with ceiling partition τ and with d degrees of freedom
is

d(n− d− 1)!(k − 1)!
(n− k − 1)!(k − d)!

. (17)

Proof. (Sketch.) Use Lemmas 4.2 and 4.4 to count Shi and Ish ceiling diagrams which label regions with
the desired properties. In the case of the Ish arrangement, both parts are routine counting arguments.
In the case of the Shi arrangement, Part 1 requires a product formula due to Kreweras (7) which counts
nonnesting partitions of [n] with fixed type and Part 2 requires a product formula due to the second
author (10) which counts nonnesting partitions of [n] with fixed type and a fixed number of connected
components.
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