Bumping algorithm for set-valued shifted tableaux

IKEDA, Takeshi^{1†}and NARUSE, Hiroshi² and NUMATA, Yasuhide³⁴

¹Department of Applied Mathematics, Okayama University of Science, Ridai-cho, Kita-ku, Okayama, Japan

³Department of Mathematical Informatics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan

⁴Japan Science and Technology (JST) CREST

Abstract. We present an insertion algorithm of Robinson–Schensted type that applies to set-valued shifted Young tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a K-theoretic analogue of the Schur Q-functions.

Résumé Nous présentons un algorithme d'insertion de Robinson–Schensted qui s'applique aux tableaux décalés à valeurs sur des ensembles. Notre algorithme est une généralisation de l'algorithme de Buch pour les tableaux à valeurs sur des ensembles et de l'algorithme de Worley et Sagan pour les tableaux décalés. Comme application, nous obtenons une formule de Pieri pour un analogue en K-théorie des Q-functions de Schur.

Keywords: set-valued shifted tableaux, insertion, Robinson-Schensted, Pieri rule, K-theory, Schur Q-functions

1 Introduction

This article is an extended abstract of the paper [INN] of the same title. Most details of the proofs are omitted.

In [IN], we introduced a non-homogeneous (K-theoretic) analogue of Schur Q-functions. These functions are labeled by strict partitions (or shifted Young diagrams), as are the original Q-functions. For a strict partition λ , the corresponding K-theoretic Schur Q-function $GQ_{\lambda}(x)$ can be expressed as a weighted generating function of *shifted set-valued semistandard tableaux* of shape λ , which are the central concern of this article.

The main result of the paper is a Robinson–Schensted type insertion algorithm for the shifted set-valued tableaux (Thm 3.4). Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch [Bu] and non set-valued shifted tableaux by Worley [Wo] and Sagan [Sa]. As an immediate consequence of our algorithm, we have a Pieri rule for $GQ_{\lambda}(x)$ (Cor. 3.5).

The original purpose for introducing functions $GQ_{\lambda}(x)$ was to apply them to Schubert calculus. In [IN] we introduced function $GQ_{\lambda}(x|b)$ (resp. $GP_{\lambda}(x|b)$) with the *equivariant* parameter $b = (b_1, b_2, ...)$,

²Graduate School of Education, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan

[†]Supported by KAKENHI (20540053).

^{1365-8050 © 2011} Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

which represents the structure sheaf of the Schubert variety indexed by λ in the K-ring of T-equivariant coherent sheaves on Langangian (resp. orthogonal) Grassmannian, where T is the maximal torus acting on the Grassmannians. Thus our Pieri rule gives an explicit description of K-theoretic Schubert structure constant for an arbitrary Schubert class times a special (one row type) Schubert class in the K-ring of Lagrangian Grassmannian.

Recently, a K-theoretic Littlewood-Richardson rule in terms of the *jeu de taquin* for odd orthogonal Grassmannians of maximal isotropic subspaces has been obtained by Clifford, Thomas and Yong [CTY]. Their method starts from a Pieri rule for the K-theory by Buch and Ravikumar [BR], which applies to cominuscule Grassmannians. Our approach differs from them substantially. We proceeded independently a different approach of tableaux insertion to result in the same formula as [BR], i.e. the counting of KLG-tableaux. But our method is only applicable to the case of Lagrangian Grassmannians, although there is a set valued tableaux description for $GP_{\lambda}(x)$.

Organization of the paper is as follows. In Section 2, we give the definition of shifted set-valued tableaux, and K-theoretic Schur Q-functions $GQ_{\lambda}(x)$. In Section 3, we present our main result, an existence of a Robinson–Schensted type bijection for set-valued shifted tableaux. As a corollary, we have a Pieri rule for $GQ_{\lambda}(x)$. Precise description of the bijection is given by a bumping algorithm which is given in Section 4. In Section 5, we discuss a variant of the bijection, which is analogous to the results by Sagan and Worley. In Section 6, we give an outline of the proof of the main theorem.

2 Shifted Young diagrams, set-valued tableaux

2.1 Shifted Young diagrams

Let Δ denote the set $\{(i, j) \in \mathbb{Z}^2 \mid 1 \leq i \leq j\}$. Any element $\alpha = (i, j)$ is called a *box*. If i = j, then (i, j) is called a *diagonal box*. A *shifted Young diagram* is any finite subset λ of Δ such that for each $\alpha = (i, j) \in \lambda$, any box $\beta = (i', j') \in \Delta$ satisfying $i' \leq i$ and $j' \leq j$ belongs to λ .

We define S to be the set of shifted Young diagrams. For $\lambda \in S$, we define $|\lambda|$ to be the number of boxes in λ . For $\lambda, \mu \in S$ such that $\lambda \subset \mu$, we define the skew shifted Young diagram μ/λ to be the set-theoretic difference $\mu - \lambda$.

Let $\alpha = (i, j), \beta = (i', j') \in \Delta$. We say that α is weakly below (resp. weakly right of) β if $i \ge i'$ (resp. $j \ge j'$). We say that α is strictly below (resp. strictly right of) β if i > i' (resp. j > j'). We say that α is directly below (resp. directly right of) β if i = i' + 1 and j = j' (resp. i = i' and j = j' + 1).

We call a skew shifted diagram θ a *horizontal strip* (resp. *vertical strip*) if θ has no pair of boxes in the same column (resp. row). We call θ a *broken border strip* if θ contains no 2×2 square block.

2.2 Tableaux

Define a totally ordered set \mathcal{B} to be disjoint union of sets $\mathcal{A} = \{1, 2, ...\}$ and $\mathcal{A}' = \{1', 2', ...\}$ with the following order:

$$1' < 1 < 2' < 2 < \cdots$$
.

We define binary relations \leq_r and \leq_c on \mathcal{B} by

$$x \leq_r y \iff x = y \in \mathcal{A} \text{ or } x < y,$$
 $x \leq_c y \iff x = y \in \mathcal{A}' \text{ or } x < y$

Note that $x \not\leq_r y$ (resp. $x \not\leq_c y$) is equivalent to $y \leq_c x$ (resp. $y \leq_r x$) for any $x, y \in \mathcal{B}$.

Let \mathcal{X} denote the set of non-empty finite subsets of \mathcal{B} . We extend the relations \leq_r, \leq_c on \mathcal{X} by $A \leq_r B \iff \max A \leq_r \min B$ and $A \leq_c B \iff \max A \leq_c \min B$ for $A, B \in \mathcal{X}$.

Definition 2.1 (Shifted set-valued semistandard tableaux) Let λ be a shifted Young diagram. A setvalued semistandard tableau of shape λ is a map T from the set of boxes in λ to \mathcal{X} satisfying the following "semistandaredness":

- 1. $T(\alpha) \leq_r T(\beta)$ if $\beta \in \lambda$ is directly right of $\alpha \in \lambda$.
- 2. $T(\alpha) \leq_c T(\beta)$ if $\beta \in \lambda$ is directly below $\alpha \in \lambda$.

Example 2.2 An example of a set-valued tableau is given by the following:

$$T = \frac{\begin{array}{c|c} 1' & 12' & 23 & 34' \\ 2' & 4' & 6 \\ \hline & 6 \\ \hline \end{array}}{}.$$

We denote by $\mathcal{T}(\lambda)$ the set of all set-valued tableaux of shape λ .

2.3 *K*-theoretic *Q*-Schur functions

Let $x = (x_1, x_2, ...)$ be a sequence of variables. Let $\lambda \in \mathbb{S}$ and $T \in \mathcal{T}(\lambda)$. We define the corresponding monomial $x^T = \prod_{i=1}^{\infty} x_i^{e_i(T)}$ where $e_i(T)$ denotes the total number of i and i' appearing in T. The *weight* of $T \in \mathcal{T}(\lambda)$ is defined to be $\beta^{|T|-|\lambda|}x^T$, where β is a formal parameter and |T| is the total number of letters in T. The *K*-theoretic *Q*-Schur function $GQ_{\lambda}(x)$ is defined as the following formal sum of the weights of the elements in $\mathcal{T}(\lambda)$:

$$GQ_{\lambda}(x) = \sum_{T \in \mathcal{T}(\lambda)} \beta^{|T| - |\lambda|} x^{T}.$$

When $\beta = 0$ this becomes the Schur Q-function $Q_{\lambda}(x)$, and when $\beta = -1$ this represents K-theory Schubert class corresponding to λ for Lagrangian Grassmannians. See [IN] for other expressions of $GQ_{\lambda}(x)$ and geometric background.

3 Statements of main results

3.1 Admissible strips

Let $\theta = \lambda/\mu$ be a broken border strip. We consider a decomposition $\theta = C \sqcup C'$, with C, C' skew diagrams, i.e. there is a diagram ν satisfying $\mu \subset \nu \subset \lambda$ and $C = \lambda/\nu$ and $C' = \nu/\mu$. Such a decomposition of θ is called *admissible* of if the following conditions are satisfied:

- 1. in each of the diagrams C and C', there is no pair of boxes in the same row or column.
- 2. there is no diagonal box in C'.

A non-empty broken border strip θ is called a 1-*admissible strip* if there exists an admissible decomposition of θ . For a 1-admissible strip θ , we denote by $C(\theta)$ the set of all admissible decompositions of θ . Later we define the notion of *m*-admissible decomposition of a broken border strip.

Example 3.1 The following is an example of a 1-admissible strip and its 1-admissible decomposition,

where the boxes with entry 1's form C and 1''s form C'.

The next result shows the role of 1-admissible strip. The detailed construction of the map is given in Section 4. We define the weight of a 1-admissible strip θ to be $\beta^{|\theta|-1}$.

Proposition 3.2 *There is a weight preserving bijection:*

$$\phi: \mathcal{T}(\lambda) \times \mathcal{X} \longrightarrow \bigsqcup_{\mu} \mathcal{T}(\mu) \times \mathcal{C}(\mu/\lambda)$$

where $\mu \in \mathbb{S}$ runs for those μ such that μ/λ is a 1-admissible strip.

3.2 Composable admissible strips

Let $\lambda, \mu, \nu \in \mathbb{S}$ be such that $\mu \subset \nu \subset \lambda$. Suppose $\theta_1 = \nu/\mu, \theta_2 = \lambda/\nu$ are 1-admissible strips. Let $(C'_i, C_i) \in \mathcal{C}(\theta_i)$ (i = 1, 2). We say that (C'_1, C_1) precedes (C'_2, C_2) and denote $(C'_1, C_1) \triangleleft (C'_2, C_2)$, if the following conditions are satisfied:

- 1. $C'_1 \cup C'_2$ is a vertical strip.
- 2. $C_1 \cup C_2$ is a horizontal strip.
- 3. Each box in C'_2 is strictly below any box in C'_1 .
- 4. Each box in C_2 is strictly right of any box in C_1 .
- 5. If $C_1 \neq \emptyset$, then $C'_2 = \emptyset$.

3.3 Main results

Let $\theta = \mu/\lambda$ be a broken border strip, and m be a positive integer. Suppose there is a nested sequence of shifted diagrams

$$\lambda = \nu^{(0)} \subset \nu^{(1)} \subset \nu^{(2)} \subset \dots \subset \nu^{(m)} = \mu \tag{1}$$

such that $\theta^{(i)} := \nu^{(i)}/\nu^{(i-1)}$ $(1 \le i \le m)$ are 1-admissible strips. If, moreover, there is a sequence of 1-admissible decompositions $(C'_i, C_i) \in \mathcal{C}(\theta^{(i)})$ $(1 \le i \le m)$ such that

$$(C'_i, C_i) \triangleleft (C'_{i+1}, C_{i+1}), \quad (1 \le i \le m-1).$$
 (2)

then we say θ is an *m*-admissible strip. For an *m*-admissible strip θ , let $C_m(\theta)$ denote the set of pairs $(\{\nu^{(i)}\}_{i=1}^m, \{(C'_i, C_i)\}_{i=1}^m)$ satisfying the above conditions, which we call *m*-admissible decompositions of θ . Note $C_1(\theta) = C(\theta)$ since condition (2) is vacant for m = 1.

Example 3.3 The following is a 4-admissible strip

where the boxes with entry *i* are C_i , and *i'* are C'_i .

We denote by (m) the shifted diagram consisting of one row with m boxes. We simply denote $\mathcal{T}(m)$ for $\mathcal{T}((m))$. Recall that we define the weight of $T \in \mathcal{T}(\lambda)$ as $\beta^{|T|-|\lambda|}x^T$. Define the weight of $U \in \mathcal{C}_m(\theta)$ to be $\beta^{|\theta|-m}$.

Theorem 3.4 By algorithm 4.4, we have a weight preserving bijection:

$$\phi_m: \mathcal{T}(\lambda) \times \mathcal{T}(m) \longrightarrow \bigsqcup_{\mu} \mathcal{T}(\mu) \times \mathcal{C}_m(\mu/\lambda), \tag{3}$$

where μ runs for shifted diagrams μ such that $\mu \supset \lambda$ and μ/λ are *m*-admissible strips.

As an immediate consequence, we have the following.

Corollary 3.5 (Pieri rule) We have

$$GQ_{\lambda}(x) \cdot GQ_{m}(x) = \sum_{\mu \supset \lambda} \beta^{|\mu| - |\lambda| - m} \# \mathcal{C}_{m}(\mu/\lambda) \times GQ_{\mu}(x),$$

where μ runs for shifted diagrams μ such that $\mu \supset \lambda$ and μ/λ are *m*-admissible strips.

For example we have

$$GQ_{2,1} \cdot GQ_2 = 2GQ_{4,1} + 2GQ_{3,2} + 3\beta GQ_{4,2} + \beta GQ_{5,1} + \beta GQ_{3,2,1} + \beta^2 GQ_{5,2} + \beta^2 GQ_{4,2,1}.$$

In order to give the coefficient of $GQ_{4,2}$, we count the elements in $C_2(\mu/\lambda)$ with $\mu = (4,2), \lambda = (2,1)$:

N.B. The elements in $C_m(\mu/\lambda)$ are exactly the *KLG*-tableaux of shape μ/λ with content $\{1, 2, ..., m\}$ in [BR].

4 Bumping algorithm

The aim of this section is to describe the bijection of Prop 3.2.

The input of our algorithm is a pair (T, w) with $T \in \mathcal{T}(\lambda)$ for some $\lambda \in S$ and $w \in \mathcal{X}$. Basic output is a tableau T' of some shape $\mu \in S$ such that $\mu \supset \lambda$. The skew diagram $\theta = \mu/\lambda$, the set of "new boxes", turns out to be a 1-admissible strip. We also have some "recording data" on θ which gives an element of $\mathcal{C}(\theta)$.

4.1 Parts of "L" shape of a tableau

Let $\lambda \in S$. Let $\ell(\lambda)$ be the number of rows of λ . For $1 \le t \le \lambda_1$ we define a subset of λ by

$$L_t(\lambda) = \{(i,j) \in \lambda \mid i = t \text{ or } j = t\}.$$

For example, $L_1(\lambda)$ consists of the boxes in the first row. For $k \ge \ell(\lambda)$, $L_k(\lambda)$ is just the k-th column. In general, this is a subset of shape "L" including the diagonal box (t, t). Let $T \in \mathcal{T}(\lambda)$. By restriction we have a map $L_t(T) : L_t(\lambda) \to \mathcal{X}$, which we call the t-th part of T.

Our algorithm starts from inserting $w = w^{(0)} \in \mathcal{X}$ into $L_1 = L_1(T)$, the first row of T, resulting a row L'_1 with possibly a new box at the right end, and a set $w^{(1)} \in \mathcal{X}$ "bumped out" from the procedure. Then we modify the original tableau $T = T^{(0)}$ by replacing L_1 with L'_1 to obtain $T^{(1)}$. Next we insert $w^{(1)}$ into the second part of the modified tableau $T^{(2)}$. We repeat this procedure until no boxes are bumped out.

4.2 Insertion into a part of "L" shape (a rough idea)

We define a procedure to insert some sets $w \in \mathcal{X}$ into an L part X of a tableaux.

Here we present a rough idea of constructing the procedure. First, we look at the minimum letters of each boxes in order to decide the box into which a letter in w to be inserted, in the same manner as the classical bumping procedure (some letters go into empty box at the end). If we might simply insert these letters into X, some letters in w may violate the semistandardness, while some letters are not. So we eject some element in X before inserting w. Let \hat{w} be the set of letters in w which do not conflict any original letters in X, and let $\check{w} := w - \hat{w}$ be the complement. If $\check{w} \neq \emptyset$, let \check{u} be the set of elements in X that conflict some element in \check{w} . To ensure the semistandardness, we first eject the elements in \check{u} from the tableau. Furthermore, if a letter in \hat{w} is inserted into a non-empty box, we eject all the remaining (original) entries of the box. Thus any letter inserted into a non-empty box "does some work" (bumps out at least one letter). This feature is important for constructing the inverse algorithm.

There is a flaw in this idea. For example, we consider a tableau $T = \lfloor 1' \rfloor$ and $w = w^{(1)} = \{1'\}$. According to the naive algorithm above, the resulting tableau is $T^{(1)} = \lfloor 1' \rfloor$, and the ejected set is $w^{(2)} = \{1'\}$. Since the second part is empty, the final result is $\lfloor 1' \rfloor I'$, which is not semistandard. This is a reason why we need the "unmark" process introduced in the next section. In fact, we should care for the case of inserting elements into the diagonal boxes.

4.3 Insertion into a diagonal box

Let $X \in \mathcal{X}$, and u be a subset of X. We insert $w \in \mathcal{X}$ into X, where we consider X to be a diagonal box.

Algorithm 4.1 (Bumping for a diagonal box)

input $X, w, u \in \mathcal{X}$ satisfying $u \subset X$ and $\max w \leq_c \min X$.

output Y, v.

procedure

- 1. If $X \neq u$, then let $Y = (X u) \cup w$ and v = u; and return Y, v.
- 2. If $i' = \max(w) \in \mathcal{A}'$ and $i \in X$, $i' \notin X$, then let $Y = \{i\} \cup (w \{i'\})$ and v = X; and return Y, v.

- 3. If $i' = \max(w) \in \mathcal{A}'$ and $i' \in X$, $i \notin X$, then let Y = w and $v = \{i\} \cup (X \{i'\})$; and return Y, v.
- 4. If $i' = \max(w) \in \mathcal{A}'$ and $i, i' \in X$, then let $Y = \{i\} \cup w$ and $v = X \{i'\}$; and return Y, v.
- 5. Otherwise, let Y = w and v = X; and return Y, v.

For example, if $u = X = \boxed{34}$ and w = 13', then we apply (2) to obtain $Y = \boxed{13}$ rather than $\boxed{13'}$, and u = 34. Thus letter 3' is unprimed to be 3 in u. If $u = X = \boxed{3'4}$ and w = 13', then we apply (3) to obtain $Y = \boxed{13'}$ and u = 34, rather than u = 3'4. In this case, two 3' are involved, and one may think of this process as unpriming "bigger" 3'. Case (4) is a bit strange. If $u = X = \boxed{3'3}$ and w = 3', then we have $Y = \boxed{3'3}$ and u = 3. This case we are unpriming "bigger" 3' also, and let it remain in the box.

4.4 Insertion into a part of "L" shape (definition)

Let T be a tableau of shape λ , and t be a positive integer such that $t \leq \lambda_1$. Let $X = L_t(T)$ be the t-th part of T. If t = 1, then X is a row: $X = (X_{(1,1)} \leq_r X_{(1,2)} \leq_r \cdots \leq_r X_{(1,\lambda_1)})$. If $t > \ell(\lambda)$ then X is a column: $X = (X_{(1,t)} \leq_c \cdots \leq_c X_{(k,t)})$ for some k < t. We say that X is a *pure column* in this case (note that X does not contain diagonal box). If $1 < t \leq \ell(\lambda)$ then $X = L_t(T)$ is a sequence of elements in \mathcal{X} :

 $X = (X_{(1,t)} \leq_c \dots \leq_c X_{(t-1,t)} \leq_c X_{(t,t)} \leq_r X_{(t,t+1)} \leq_r \dots \leq_r X_{(t,t+\lambda_t-1)}).$

The following algorithm takes as an input a sequence of elements in $\mathcal X$ satisfying

 $X = (X_{-k} \leq_c \cdots \leq_c X_{-1} \leq_c X_0 \leq_r X_1 \leq_r \cdots \leq_r X_l),$

for some $k, l \ge 0$, and $w \in \mathcal{X}$. If k = 0, we consider X as a row. Output is a triple (Y, Y_+, v) , where Y is a sequence $Y = (Y_i)_{i=-k}^l$ satisfying the same condition as X, and $Y_+, v \in \mathcal{X} \cup \emptyset$. If $Y_+ \neq \emptyset$ we will make a new box with entry Y_+ at the right end of Y.

Algorithm 4.2 (Bumping rule for an L part)

input $X = (X_i)_{i=-k}^l$: tableau of L shape, i.e.

$$X = (X_{-k} \leq_c \cdots \leq_c X_{-1} \leq_c X_0 \leq_r X_1 \leq_r \cdots \leq_r X_l),$$

and $w \in \mathcal{X}$.

output Y tableau of L shape of the same length of X, and $Y_+, v \in \mathcal{X} \cup \emptyset$.

procedure

1. Define the subsets w_{-k}, \ldots, w_{l+1} of w by

$$w_{t} = \begin{cases} \{x \in w \mid x \leq_{r} \min X_{-k}\} & (t = -k) \\ \{x \in w \mid \min X_{t-1} \leq_{c} x \leq_{r} \min X_{i}\} & (t = -k, \dots, -1) \\ \{x \in w \mid \min X_{-1} \leq_{c} x \leq_{c} \min X_{0}\} & (t = 0) \\ \{x \in w \mid \min X_{t-1} \leq_{r} x \leq_{c} \min X_{t}\} & (t = 1, \dots, l) \\ \{x \in w \mid \min X_{l} \leq_{r} x\} & (t = l + 1) \end{cases}$$

2. Decompose w_t into the subsets \check{w}_t and \hat{w}_t defined by

$$\hat{w}_t = \begin{cases} w_t & (t = -k) \\ \{ x \in w_t \mid \max X_{t-1} \leq_c x \} & (t = -k+1, \dots, 0) , \\ \{ x \in w_t \mid \max X_{t-1} \leq_r x \} & (t = 1, \dots, l+1) \end{cases}$$

 $\check{w}_t = w_t - \hat{w}_t, \text{ for } t = -k, \dots, l+1,$

3. Define
$$\check{u}_t$$
, \hat{u}_k , and u_k $(t = -k, \ldots, l)$ by:

$$\begin{split} \check{u}_t &= \begin{cases} \emptyset & (\text{if } \check{w}_{t+1} = \emptyset) \\ \{ y \in X_t \mid y \not\leq_c \min \check{w}_{t+1} \} & (\text{if } t = -k, \dots, -1 \text{ and } \check{w}_{t+1} \neq \emptyset) , \\ \{ y \in X_t \mid y \not\leq_r \min \check{w}_{t+1} \} & (\text{if } t = 0, \dots, l \text{ and } \check{w}_{t+1} \neq \emptyset) \end{cases} \\ \hat{u}_t &= \begin{cases} \emptyset & (\text{if } \hat{w}_t = \emptyset) \\ X_t - \check{u}_t & (\text{if } \hat{w}_t \neq \emptyset) \end{cases} \\ u_t = \hat{u}_t \cup \check{u}_t \subset X_t. \end{split}$$

- 4. Define $Y_t = (X_t u_t) \cup w_t$ and $v_t = u_t$ for $t \neq 0$.
- 5. Let (Y_0, v_0) be the pair obtained from the triple (X_0, w_0, u_0) by Algorithm 4.1 if $l \ge 0$.
- 6. Let $Y = (Y_{-k}, ..., Y_l), Y_{+} = w_{l+1}$, and $v = \bigcup_{t=-k}^{l} v_t$; and return Y, Y_{+}, v .

Example 4.3 Let $X = (X_{-2}, X_{-1}; X_0; X_1, X_2, X_3)$ be

13 4' 5 56 8 9.

Let us insert $w = 25'6'79'9 \in \mathcal{X}$ into X. Since the minimums in X is

1 4' 5 5 8 9,

we have $(w_{-2}, ..., w_4) = (\emptyset, 2, 5', \emptyset, 6'7, 9', 9)$. Since the maximums of X is

3 4' 5 6 8 9	,
--------------	---

we have

t	-2	-1	0	1	2	3	4
\hat{w}_t	Ø	Ø	5'	Ø	7	9'	9
\check{w}_t	Ø	2	Ø	Ø	6'	Ø	Ø
\hat{u}_t	Ø	Ø	5	Ø	8	9	—
\check{u}_t	3	Ø	Ø	6	Ø	Ø	-

Finally we get

 $Y = 124'556'79', Y_{+} = \{9\}, u = \{3, 5, 6, 8, 9\}.$

We need to define the bumping algorithm applicable also when $X = L_t(T)$ is a pure column case, i.e. $t > \ell(\lambda)$. However, extension of the algorithm to the column case is straightforward, so we omit detailed description here.

534

4.5 Insertion of w into arbitrary tableau

We define a procedure to insert an element $w \in \mathcal{X}$ into an arbitrary tableau T. In the procedure, we insert w into the first L part of the tableaux. When some letters are bumped out, we insert them into the second L part of the tableau. Then, while some letters are bumped out, we try to insert them into the next L part of the tableux until no letters are bumped out.

Algorithm 4.4

input $T \in \mathcal{T}(\lambda)$ and $w \in \mathcal{X}$.

output U, S', S.

procedure

- 1. Let u = w, U = T, $S = \emptyset$ and $S' = \emptyset$.
- 2. While $u \neq \emptyset$, do the following:
 - (a) Let X be the t-th L part of U,
 - (b) Let (Y, Y_+, u) be the triple obtained from (X, u) by Algorithm 4.2.
 - (c) Let U be the tableaux obtained from U by replacing the t-th L part by Y.
 - (d) If $Y_+ \neq \emptyset$, then do the following:
 - i. Add a new box to the end of t-th L part of U, and insert Y_+ into the box.
 - ii. If X is a *pure column*, then add the new box to S, else add the new box to S'.
- 3. Return U, S' and S.

Example 4.5 Let T be the leftmost tableau below. We insert $w = \{1', 1, 2', 3\}$ into T as follows.

$1'1 12' 23' \rightarrow 1'$	1 1	12'23'	3	$] \rightarrow$	1′1	1	12'23'	3	\rightarrow	1′1	1	1	3
2'3 3	2'3	3				2'	3				2'	23	
u = 1'12'3	u =	12'				u =	123			<i>u</i> =	= 12'	23/3	3

\rightarrow	1'1	1	1	12'23'3	3	\rightarrow	1'1	1	1	12'23'3	3
		2'	23					2'	23		
	u = 3							u	$= \emptyset$		

For each step, the relevant part of modification is enclosed. Sets S' and S are as follows:

where the box with entry 1' (resp. 1) is S' (resp. S).

4.6 Definition of the map ϕ

In order to complete the description of the map ϕ , we need one more combinatorial idea. Let θ be a 1-admissible strip. We define an involution $\varrho : \mathcal{C}(\theta) \to \mathcal{C}(\theta)$. A box $\alpha \in \theta$ is said to be *isolated* if α is not a diagonal box and there is no other box than α in the row and column where α presents. For each isolated box, apply its entry the obvious involution $1 \mapsto 1', 1' \mapsto 1$, while the non-isolated boxes are untouched. The resulting decomposition of θ is obviously admissible. For example, we have

It is obvious that ρ is an involution.

Proposition 4.6 Let $\lambda \in \mathbb{S}$, $T \in \mathcal{T}(\lambda)$, and $w \in \mathcal{X} = \mathcal{T}(1)$. We have by Algorithm 4.4 a tableau $U = (T \leftrightarrow w) \in \mathcal{T}(\mu)$ for some $\mu \in \mathbb{S}$ such that $\mu \supset \lambda$ and a decomposition (S', S) of $\theta = \mu/\lambda$. We have $(S', S) \in \mathcal{C}(\theta)$, and therefore θ is a 1-admissible strip.

Let $T \in \mathcal{T}(\lambda)$ and $w \in \mathcal{X}$ as in the above proposition. We define $\phi(T, w)$ to be $(U, \varrho(S', S)) \in \mathcal{T}(\mu) \times \mathcal{C}(\mu/\lambda)$.

4.7 Proof of Prop. 3.2

To show that ϕ is a bijection, we construct its inverse map. See [INN] for details.

5 Robinson–Schensted type correspondence

5.1 Quasi-standard tableaux

We will define a notion of "recording" tableaux in our setting. The resulting object is an analogue of a standard tableau, which we will call a *quasi-standard* tableau.

For $T \in \mathcal{T}(\lambda)$ and $w \in \mathcal{X}$ we denote by $T \leftrightarrow w$ the tableau given in Prop. 3.2. Let $T \in \mathcal{T}(\lambda)$ and $(w_1, \ldots, w_m) \in \mathcal{X}^m$. By the consecutive insertions

$$T^{(i)} = (\cdots ((T \leftrightarrow w_1) \leftrightarrow w_2) \cdots \leftrightarrow w_i)$$

we have a tableaux $T^{(i)} \in \mathcal{T}(\nu^{(i)})$ for some shifted diagram $\nu^{(i)}$ and an element of $\mathcal{C}(\nu^{(i)}/\nu^{(i-1)})$ given by Proposition 3.2. Thus we have a nested sequence of shifted diagrams

$$\lambda = \nu^{(0)} \subset \nu^{(1)} \subset \nu^{(2)} \subset \dots \subset \nu^{(m)} = \mu, \tag{4}$$

and also 1-admissible decompositions (C'_i, C_i) of $\theta^{(i)} = \nu^{(i)} / \nu^{(i-1)}$. These objects are expressed as a tableau like

Bumping algorithm for set-valued shifted tableaux

where the boxes filled with *i* (resp. i') are C_i (resp. C'_i).

We call such a tableau a quasi-standard tableau of degree m. The precise definition is the following.

Definition 5.1 A map $U : \mu/\lambda \longrightarrow \mathcal{B}_m := \{1', 1, \dots, m', m\}$ is a quasi-standard tableau of degree m, if U is semistandard in the sense of Def. 2.1 and for any $1 \le i \le m$, $U^{-1}(\{i, i'\})$ is a 1-admissible strip with admissible decomposition given by $(U^{-1}(i'), U^{-1}(i))$.

Let $S_m(\mu/\lambda)$ denote the set of quasi-standard tableaux of degree m on μ/λ .

Remark. By the construction, $S_1(\mu/\lambda)$ is non-empty if and only if $\theta = \mu/\lambda$ is an 1-admissible strip. Then we have $S_1(\theta) = C(\theta) = C_1(\theta)$. For an *m*-admissible strip θ , the set $C_m(\theta)$ is a subset of $S_m(\theta)$.

5.2 Robinson–Schensted correspondence

The following result is an immediate consequence of Prop. 3.2.

Proposition 5.2 Let $T \in \mathcal{T}(\lambda)$ and $(w_1, \ldots, w_m) \in \mathcal{X}^m$. By consecutive insertions

$$T' = (\cdots ((T \leftrightarrow w_1) \leftrightarrow w_2) \cdots \leftarrow w_m)$$

we have a tableaux $T' \in \mathcal{T}(\mu)$ for some shifted diagram $\mu \supset \lambda$ and the recording tableau U. Then we have $U \in S_m(\mu/\lambda)$. By this correspondence we have a weight preserving bijection

$$\phi_m: \mathcal{T}(\lambda) \times \mathcal{X}^m \longrightarrow \bigsqcup_{\mu} \mathcal{T}(\mu) \times \mathcal{S}_m(\mu/\lambda), \tag{5}$$

where the sum runs for shifted diagrams μ such that $S_m(\mu/\lambda) \neq \emptyset$.

Then we have immediately the following:

Corollary 5.3 We have

$$GQ_{\lambda}(x) \cdot GQ_{1}(x)^{m} = \sum_{\mu} \beta^{|\mu/\lambda| - m} \# \mathcal{S}_{m}(\mu/\lambda) \times GQ_{\mu}(x),$$

where the sum runs for shifted diagrams μ such that $S_m(\mu/\lambda) \neq \emptyset$.

As a special case of $\lambda = \emptyset$, we have the following.

Corollary 5.4 (Robinson-Schensted correspondence) There is a weight preserving bijection

$$\mathcal{X}^m \longrightarrow \bigsqcup_{\lambda} \mathcal{T}(\lambda) \times \mathcal{S}_m(\lambda)$$

This bijection is a set-valued extension of the results in [Sa] and [Wo].

Example 5.5 Let $(w_1, w_2, w_3) = (2'3, 12'2, 134)$. By the correspondence in Cor. 5.3 we have pair of tableaux

as a result of bumping process:

$$\emptyset \stackrel{w_1}{\sim} \underbrace{23'}_{3'} \stackrel{w_2}{\sim} \underbrace{12 \ 2 \ 2}_{3'} \underset{w_3}{w_3} \underbrace{1 \ 1 \ 2 \ 2 \ 34}_{23'}.$$

6 Outline of proof of Thm 3.4

Now we have the bijection ϕ_m in Prop. 5.2. Since a tableau in $\mathcal{T}(m)$ is a sequence in \mathcal{X} such that

$$X_1 \leq_r \cdots \leq_r X_m,$$

we can think of $\mathcal{T}(m)$ as a subset of \mathcal{X}^m . Thus we only need to determine the image of $\mathcal{T}(\lambda) \times \mathcal{T}(m)$ under the map ϕ_m . The case m = 1 is obvious since $\mathcal{T}(1) = \mathcal{X}$. The case m = 2 is crucial.

Lemma 6.1 Let $T \in \mathcal{T}(\lambda)$ and $w = (w_1, w_2) \in \mathcal{X}^2$, and

$$\phi_2(T, w) = (T', (C'_1, C_1), (C'_2, C_2)).$$

Then the following are equivalent:

- 1. $w_1 \leq_r w_2$.
- 2. $(C'_1, C_1) \lhd (C'_2, C_2).$

It is easy to see that the lemma leads to a proof of Thm 3.4. We show this lemma by an argument using "bumping routes". Details are given in [INN].

References

- [Bu] A. S. Buch, A Littlewood-Richardson rule for *K*-theory of Grassmannians, Acta. Math. **189** (2002), 37-78.
- [BR] A. S. Buch, V. Ravikumar, Pieri rules for the *K*-theory of cominuscule Grassmannians, arXiv:1005.2605.
- [CTY] E. Clifford, H. Thomas, A. Yong, K-theoretic Schubert calculus for OG(n, 2n + 1) and jeu de taquin for shifted increasing tableaux, arXiv:1002.1664v2
- [IN] T. Ikeda, H. Naruse, K-theoretic analogue of Schur Q-functions and maximal isotropic Grassmannians, in preparation.
- [INN] T. Ikeda, H. Naruse, Y. Numata, Bumping algorithm for shifted set-valued tableaux, in preparation.
- [Sa] B. E. Sagan, Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley. J. Comb. Theory, Ser. A 45(1), 62-103, 1987.
- [Wo] D. Worley, A theory of shifted Young tableaux, Ph. D. Thesis, Massachusetts Institute of Technology, 1984.

538