Closed paths whose steps are roots of unity

Gilbert Labelle ${ }^{1}$ and Annie Lacasse ${ }^{2}$
${ }^{1}$ LaCIM et Dép. de Mathématiques, UQAM, Montréal, Québec, Canada
${ }^{2}$ LIRMM, Montpellier, France

Abstract

We give explicit formulas for the number $U_{n}(N)$ of closed polygonal paths of length N (starting from the origin) whose steps are $n^{\text {th }}$ roots of unity, as well as asymptotic expressions for these numbers when $N \rightarrow \infty$. We also prove that the sequences $\left(U_{n}(N)\right)_{N \geq 0}$ are P-recursive for each fixed $n \geq 1$ and leave open the problem of determining the values of N for which the dual sequences $\left(U_{n}(N)\right)_{n \geq 1}$ are P-recursive. Résumé. Nous donnons des formules explicites pour le nombre $U_{n}(N)$ de chemins polygonaux fermés de longueur N (débutant à l'origine) dont les pas sont des racines n-ièmes de l'unité, ainsi que des expressions asymptotiques pour ces nombres lorsque $N \rightarrow \infty$. Nous démontrons aussi que les suites $\left(U_{n}(N)\right)_{N \geq 0}$ sont P-récursives pour chaque $n \geq 1$ fixé et laissons ouvert le problème de déterminer les valeurs de N pour lesquelles les suites duales $\left(U_{n}(N)\right)_{n \geq 1}$ sont P-récursives.

Keywords: closed polygonal paths, roots of unity, P-recursive, asymptotics

1 Introduction

The subject of random walks is classical and appears in many areas of mathematics, physics and computer science (see, for example, http : //en.wikipedia.org/wiki/Random_walks). In this paper we combinatorially analyse a new type of closed random walks in the complex plane - a kind of restricted Brownian motion - whose steps are given by $n^{t h}$-roots of unity. For $n \geq 1$, let $\Omega_{n}=\left\{1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}\right\}$ be the set of all n-th roots of unity, where $\omega_{n}=\exp (2 \pi i / n) \in \mathbb{C}$. A polygonal path of length N, starting at the origin in the complex plane, whose steps are n-th roots of unity can be encoded by the sequence $w=\left[\omega_{n}^{k_{1}}, \ldots, \omega_{n}^{k_{N}}\right]$ of its successive steps, $\omega_{n}^{k_{j}} \in \Omega_{n}, j=1, \ldots, N$. For $\nu=0, \ldots, n-1$, let m_{ν} be the number of times that ω_{n}^{ν} appears in w. We call the sequence $\vec{m}=\left[m_{0}, \ldots, m_{n-1}\right]$ the type of w, and write $\vec{m}=\operatorname{type}(w)$. Of course, the path w is closed if and only if $\omega_{n}^{k_{1}}+\cdots+\omega_{n}^{k_{N}}=0$ if and only if

$$
\begin{equation*}
m_{0}+m_{1} \omega_{n}+m_{2} \omega_{n}^{2}+\cdots+m_{n-1} \omega_{n}^{n-1}=0 \tag{1.1}
\end{equation*}
$$

We call a sequence $\vec{m}=\left[m_{0}, m_{1}, \ldots, m_{n-1}\right] \in \mathbb{N}^{n}$ admissible if 1.1 is satisfied. Figure 1 shows a closed pentagon made of 18-th roots of unity encoded by $\left[\omega_{18}^{3}, \omega_{18}^{11}, \omega_{18}^{5}, \omega_{18}^{12}, \omega_{18}^{17}\right]$ and a closed 11-gon made of 14 -th roots of unity encoded by $\left[\omega_{14}^{12}, \omega_{14}, \omega_{14}^{4}, \omega_{14}^{5}, \omega_{14}^{7}, \omega_{14}^{5} \omega_{14}^{11}, \omega_{14}^{11}, \omega_{14}^{9}, \omega_{14}^{3}, \omega_{14}^{13}\right]$.

Clearly, the number of closed paths, of length N, with admissible type \vec{m} is given by the multinomial coefficient $N!/ m_{0}!m_{1}!\ldots m_{n-1}!$. This implies that the number $U_{n}(N)$ of closed polygonal paths of

Fig. 1: Pentagon and 11 -gon made of 18 -th and 14 -th roots of unity.
length N whose steps are n-th roots of unity is given by the formula

$$
\begin{equation*}
U_{n}(N)=\sum_{\substack{\vec{m}: \text { admissible } \\ m_{0}+\cdots+m_{n-1}=N}} \frac{N!}{m_{0}!m_{1}!\cdots m_{n-1}!} . \tag{1.2}
\end{equation*}
$$

In Section2, we characterize admissibility and express the numbers $U_{n}(N)$ as constant term extractions in suitable rational expressions. We also give a formula from which the computation of the numbers $U_{n}(N)$ can be reduced to the computation of the numbers $U_{q}\left(N^{\prime}\right)$, where $N^{\prime} \leq N$ and q is a suitable divisor of n. Section 3 is devoted to an analysis of recursive and asymptotic properties of the numbers $U_{n}(N)$. Finally, some tables are given.

2 Constant term and reduction formulas

To take advantage of formula 1.2 for $U_{n}(N)$ on a symbolic algebra system, we state first a simple characterization of admissibility for a sequence $\vec{m} \in \mathbb{N}^{n}$. This is done using the classical cyclotomic polynomials $\Phi_{n}(z)=\Pi(z-\omega)$, where ω runs through the primitive n-th roots of unity. Equivalently, this means that $\omega=\exp (2 k \pi i / n)$, where $1 \leq k \leq n$ and $\operatorname{GCD}(n, k)=1$. Since $z^{n}-1=\prod_{d \mid n} \Phi_{d}(z)$, Moebius inversion implies that $\Phi_{n}(z)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}$, where μ denotes the Moebius function. This shows that $\Phi_{n}(z)$ is a monic polynomial in $\mathbb{Z}[z]$ of degree $\varphi(n)$, the Euler function of n. The following very easy, but basic lemma characterizes admissibility.

Lemma 2.1 (criteria for admissibility). For $n \geq 1$, the sequence $\vec{m}=\left[m_{0}, \ldots, m_{n-1}\right] \in \mathbb{N}^{n}$ is admissible if and only if the cyclotomic polynomial $\Phi_{n}(z)$ divides the polynomial

$$
P_{\vec{m}}(z)=m_{0}+m_{1} z+\cdots+m_{n-1} z^{n-1} .
$$

Proof: Consider the euclidean division of $P_{\vec{m}}(z)$ by $\Phi_{n}(z)$ in the ring $\mathbb{Z}[z]$:

$$
\begin{equation*}
P_{\vec{m}}(z)=\Phi_{n}(z) Q_{\vec{m}}(z)+R_{\vec{m}}(z) \tag{2.1}
\end{equation*}
$$

where $\operatorname{deg} R_{\vec{m}}(z)<\operatorname{deg} \Phi_{n}(z)=\varphi(n)$. Since $\Phi_{n}\left(\omega_{n}\right)=0$ this shows that \vec{m} is admissible if and only if $P_{\vec{m}}\left(\omega_{n}\right)=0$ if and only if $R_{\vec{m}}\left(\omega_{n}\right)=0$. But $R_{\vec{m}}\left(\omega_{n}\right)=0$ if and only if $R_{\vec{m}}(z)=0$ identically since $\Phi_{n}(z)$ is known to be the minimal polynomial of any of its roots and $\operatorname{deg} R_{\vec{m}}<\operatorname{deg} \Phi_{n}$.

Euclidean division shows that the coefficients of $R_{\vec{m}}(z)$ are \mathbb{Z}-linear combinations $l_{k}\left(m_{0}, \ldots, m_{n-1}\right)$ of the m_{i} 's. Hence, \vec{m} is admissible if and only if $l_{k}\left(m_{0}, \ldots, m_{n-1}\right)=0$ for $k=0, \ldots, \varphi(n)-1$. Table 1. made using the rem command in Maple gives the values of the l_{k} 's for $n=1, \ldots, 20$. For example, for $n=6, \varphi(n)=2$ and using Table 1, formula (1.2) takes the form

$$
U_{6}(N)=\sum_{\substack{m_{0}+\cdots+m_{5}=N \\ m_{0}+m_{5}=m_{2}+m_{3} \\ m_{4}+m_{5}=m_{1}+m_{2}}} \frac{N!}{m_{0}!\cdots m_{5}!} .
$$

Note that, by the multinomial formula, this is equivalent to the following constant term formula

$$
U_{6}(N)=\mathrm{CT}\left(\left(t_{1}+t_{2}+\frac{t_{1}}{t_{2}}+\frac{t_{2}}{t_{1}}+t_{1}^{-1}+t_{2}^{-1}\right)^{N}\right)
$$

where $\operatorname{CT}\left(L\left(t_{1}, t_{2}, \ldots\right)\right)$ denotes the constant term of the full expansion of L as a Laurent series in t_{1}, t_{2}, \ldots. This is generalized as follows.
Theorem 2.2 There is a Laurent polynomial, $\Lambda_{n}\left(t_{1}, \ldots, t_{\varphi(n)}\right)$, such that $U_{n}(N)=\operatorname{CT}\left(\Lambda_{n}\left(t_{1}, \ldots, t_{\varphi(n)}\right)^{N}\right)$. Moreover, $\Lambda_{n}\left(t_{1}, \ldots, t_{\varphi(n)}\right)$ is computed as follows. Let $m_{0}+\cdots+m_{n-1} z^{n-1}=\Phi_{n}(z) Q(z)+R(z)$, where the remainder is $R(z)=\sum_{k=0}^{\varphi(n)-1} l_{k}\left(m_{0}, \ldots, m_{n-1}\right) z^{k}$, with $l_{k}\left(m_{0}, \ldots, m_{n-1}\right)=\sum_{i=0}^{n-1} c_{k, i} m_{i}$, $c_{k, i} \in \mathbb{Z}, k=0, \ldots, \varphi(n)-1$. Then,

$$
\begin{equation*}
\Lambda_{n}\left(t_{1}, \ldots, t_{\varphi(n)}\right)=\sum_{j=0}^{n-1} t_{1}^{c_{0, j}} t_{2}^{c_{1, j}} t_{3}^{c_{2, j}} \ldots t_{\varphi(n)}^{c_{\varphi(n)-1, j}} \tag{2.2}
\end{equation*}
$$

Proof: By the multinomial theorem,

$$
\begin{aligned}
& \left(\sum_{j=0}^{n-1} t_{1}^{c_{0, j}} \ldots t_{\varphi(n)}^{c_{\varphi(n)-1, j}}\right)^{N} \\
& =\sum_{m_{0}+\cdots+m_{n-1}=N} \frac{N!}{m_{0}!\cdots m_{n-1}!}\left(t_{1}^{c_{0,0}} \ldots t_{\varphi(n)}^{c_{\varphi(n)-1,0}}\right)^{m_{0}} \ldots\left(t_{1}^{c_{0, n-1}} \ldots t_{\varphi(n)-1, n-1}^{c_{\varphi(n)}}\right)^{m_{n-1}} \\
& =\sum_{m_{0}+\cdots+m_{n-1}=N} \frac{N!}{m_{0}!\cdots m_{n-1}!} t_{1}^{l_{0}\left(m_{0}, \ldots, m_{n-1}\right)} \ldots t_{\varphi(n)}^{l_{\varphi(n)-1}\left(m_{0}, \ldots, m_{n-1}\right)}
\end{aligned}
$$

The result follows since the constant term is given by taking the sum of the terms corresponding to the exponents $l_{k}=0$ for $k=0, \ldots, \varphi(n)-1$.

Table 2 gives the rational functions $\Lambda_{n}\left(t_{1}, \ldots, t_{\varphi(n)}\right)$ for $n=1, \ldots, 20$. Let $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ be the canonical decomposition of the integer n. By definition, the radical of n is the square-free integer $q=$ $\operatorname{rad}(n)=p_{1} \cdots p_{s}$ consisting of the product of the p_{i} 's. The computation of the cyclotomic polynomial $\Phi_{n}(z)$ is greatly simplified by making use of the well-known reduction formula

$$
\begin{equation*}
\Phi_{n}(z)=\Phi_{q}\left(z^{n / q}\right), \quad q=\operatorname{rad}(n) \tag{2.3}
\end{equation*}
$$

This implies that the computation of the exponential generating function of the sequence $\left(U_{n}(N)\right)_{N \geq 0}$ is reduced to that of $\left(U_{q}(N)\right)_{N \geq 0}$ as follows.

Proposition 2.3 (reduction formula for $\boldsymbol{U}_{\boldsymbol{n}}(\boldsymbol{N})$). Let $n \geq 1$ and $q=\operatorname{rad}(n)$. Then,

$$
\begin{equation*}
\sum_{N \geq 0} U_{n}(N) \frac{X^{N}}{N!}=\left(\sum_{N \geq 0} U_{q}(N) \frac{X^{N}}{N!}\right)^{n / q} \tag{2.4}
\end{equation*}
$$

Proof: Using the remainder function, we have by linearity,

$$
\begin{equation*}
R_{\vec{m}}(z)=\operatorname{rem}\left(P_{\vec{m}}(z), \Phi_{n}(z)\right)=\sum_{k=0}^{n-1} m_{k} \operatorname{rem}\left(z^{k}, \Phi_{n}(z)\right) \tag{2.5}
\end{equation*}
$$

Now, for $0 \leq \nu \leq q-1$, consider the euclidean division

$$
\begin{equation*}
z^{\nu}=\Phi_{q}(z) Q_{\nu}(z)+\rho_{\nu}(z) \tag{2.6}
\end{equation*}
$$

where $\rho_{\nu}(z)=\operatorname{rem}\left(z^{\nu}, \Phi_{q}(z)\right)$. The substitution $z \rightarrow z^{n / q}$ in 2.6 followed by a multiplication by z^{r} gives, using 2.3, $z^{\nu n / q+r}=\Phi_{q}\left(z^{n / q}\right) z^{r} Q_{\nu}\left(z^{n / q}\right)+z^{r} \rho_{\nu}\left(z^{n / q}\right)=\Phi_{n}(z) z^{r} Q_{\nu}\left(z^{n / q}\right)+z^{r} \rho_{\nu}\left(z^{n / q}\right)$. Let $k=\nu n / q+r$, where $0 \leq r<n / q$. Then,

$$
\operatorname{deg} z^{r} \rho_{\nu}\left(z^{n / q}\right)=r+\frac{n}{q} \operatorname{deg} \rho_{\nu}(z) \leq r+\frac{n}{q}(\varphi(q)-1)=r+\varphi(n)-\frac{n}{q}<\varphi(n)
$$

This implies that $\operatorname{rem}\left(z^{k}, \Phi_{n}(z)\right)=z^{r} \rho_{\nu}\left(z^{n / q}\right)$. Substituting this into 2.5 and collecting terms, we find that the $\varphi(n)$ conditions for admissibility, $\left[l_{k}\left(m_{0}, m_{1}, \ldots, m_{n-1}\right)=0\right]_{0 \leq k \leq \varphi(n)-1}$, split into n / q blocks of $\varphi(q)$ conditions, $\left[l_{i}\left(m_{j}, m_{\frac{n}{q}+j}, m_{2 \frac{n}{q}+j}, \ldots, m_{(q-1) \frac{n}{q}+j}\right)=0\right]_{0 \leq i \leq \varphi(q)-1}, \quad 0 \leq j \leq \frac{n}{q}-1$, from which (2.4) follows.

Table 3 gives the numerical values of $U_{n}(N)$ for $1 \leq n \leq 20$ and $0 \leq N \leq 20$.

3 Analysis of the sequences

Let us say that a path is normalized if its first step is the complex number 1 (i.e. the path starts horizontally along the positive real axis). Each normalized path $\left[1, \omega_{n}^{\nu_{2}}, \ldots, \omega_{n}^{\nu_{N}}\right]$ generates, by rotation, n distinct paths $\omega_{n}^{k}\left[1, \omega_{n}^{\nu_{2}}, \ldots, \omega_{n}^{\nu_{N}}\right]=\left[\omega_{n}^{k}, \omega_{n}^{k+\nu_{2}}, \ldots, \omega_{n}^{k+\nu_{N}}\right], k=0,1, \ldots, n-1$. This implies that n divides $U_{n}(N)$ for every $n \geq 1$ and $N \geq 1$. As Tables 1 and 2 indicate, the structure of the sequence $\left(U_{n}(N)\right)_{N \geq 0}$ heavily depend on the arithmetical nature of n. For example, let $n=p$ be a prime number. Then for such values of n, admissibility for a vector $\vec{m} \in \mathbb{N}^{p}$ means that $m_{0}=m_{1}=\cdots=m_{p-1}$ since, in this case, $\Phi_{p}(z)=1+z+\cdots+z^{p-1}$ and $R_{\vec{m}}(z)=\left(m_{0}-m_{p-1}\right)+\left(m_{1}-m_{p-1}\right) z+\cdots+\left(m_{p-2}-m_{p-1}\right) z^{p-2}$, (see Table 1, for example). Formula (1.2) then takes the form

$$
\begin{equation*}
U_{p}(N)=\frac{N!}{\left(\frac{N}{p}\right)!^{p}} \quad \text { if } p \mid N, 0 \text { otherwise } \tag{3.1}
\end{equation*}
$$

Note that when $p=2$, 3.1) corresponds to the classical central binomial coefficients enumerating onedimensional closed lattice paths of length N. When $p=3$, 3.1) corresponds to the De Bruijn numbers
(sequence A006480 in Sloane-Plouffe encyclopedia [Sloane(2010)]). For prime powers $n=p^{\alpha}$, we have by Proposition 2.3.

$$
\begin{equation*}
\sum_{N \geq 0} U_{p^{\alpha}}(N) \frac{X^{N}}{N!}=\left(\sum_{k \geq 0} \frac{X^{k p}}{k!^{p}}\right)^{p^{\alpha-1}} \tag{3.2}
\end{equation*}
$$

since, in this case $q=p$. Note that when $n=8=2^{3}$, then $U_{8}(N)$ is the number of 4-dimensional closed lattice paths in \mathbb{Z}^{4} of length N starting at the origin (see sequence A039699 in Sloane). The reader can check that, more generally, $U_{2^{\alpha}}(N)$ is the number of closed lattice paths in $\mathbb{Z}^{2^{\alpha-1}}$ of length N starting at the origin. Interestingly enough, for any other dimension $d \neq 2^{\alpha-1}$, such a connection betweens lattice paths in \mathbb{Z}^{d} and plane paths whose steps are roots of unity does not exist.

When n is not a prime power, the situation is more delicate. For example, if $n=6$, then, using the Maple package GFUN [Salvy and Zimmermann(1994)], it can be seen that $\left(U_{n}(N)\right)_{N \geq 0}$ satisfies the following linear recurrence with polynomial coefficients,

$$
\begin{equation*}
(N+3)^{2} U_{6}(N+3)=(N+2)(N+3) U_{6}(N+2)+24(N+2)^{2} U_{6}(N+1)+36(N+1)(N+2) U_{6}(N) \tag{3.3}
\end{equation*}
$$

with initial conditions $U_{6}(0)=1, U_{6}(1)=0, U_{6}(2)=6$. Such sequences are called polynomially recursive (P-recursive for short) and are characterized by the fact that their (ordinary or exponential) generating series are D-finite (i.e. satisfy a linear differential equation with polynomial coefficients). As a consequence, P-recursive sequences are closed under many operations including linear combinations, pointwise and Cauchy products [Stanley(1980)]. Moreover their asymptotic estimates, as $N \rightarrow \infty$, are well behaved. In our context, the general situation is summarized by Theorem 3.2 below. We need first the following technical lemma.
Lemma 3.1 Let $\vec{t}=\left(t_{1}, \ldots, t_{\varphi(n)}\right) \in \mathbb{C}^{\varphi(n)}$. Then the Laurent polynomial Λ_{n} satisfies

$$
\begin{equation*}
\max _{\substack{\left|t_{2}\right|=1 \\ 1 \leq \nu \leq \varphi(n)}}\left|\Lambda_{n}(\vec{t})\right|=n \tag{3.4}
\end{equation*}
$$

Moreover, if $n=p^{\alpha}$, a prime power, then the maximum value (3.4) is attained precisely at the p distinct points $\left(e^{2 \pi i \nu / p}, \ldots, e^{2 \pi i \nu / p}\right), \nu=0, \ldots, p-1$ and we have $\Lambda_{n}\left(e^{2 \pi i \nu / p}, \ldots, e^{2 \pi i \nu / p}\right)=n e^{2 \pi i \nu / p}$. If n is not a prime power, then the maximum value 3.4 is attained only at the point $(1, \ldots, 1)$ and we have $\Lambda_{n}(1, \ldots, 1)=n$.

Proof: By Theorem 2.2. Λ_{n} can be written as a sum of n terms,

$$
\begin{equation*}
\Lambda_{n}(\vec{t})=t_{1}+\cdots+t_{\varphi(n)}+\Gamma_{n}(\vec{t}) \tag{3.5}
\end{equation*}
$$

where Γ_{n} is a sum of $n-\varphi(n)$ unitary Laurent monomials in $t_{1}, \ldots, t_{\varphi(n)}$. Each of the n terms in Λ_{n} has modulus 1 when $\left|t_{\nu}\right|=1, \nu=1, \ldots, \varphi(n)$. Hence 3.4 follows from the triangular inequality and the fact that $\Lambda_{n}(1, \ldots, 1)=n$. Note that the maximum value in 3.4 is attained only at points $\overrightarrow{t^{*}}=\left(t_{1}^{*}, \ldots, t_{\varphi(n)}^{*}\right)$ for which the n monomials take a common value, $e^{i \theta}$, say. In particular, from 3.5 , we must have $t_{1}^{*}=t_{2}^{*}=\cdots=t_{\varphi(n)}^{*}=e^{i \theta^{*}}$. We consider two cases:
(i) if $n=p^{\alpha}$, then it can be checked that each term in Γ_{n} has total degree $-(p-1)$. This implies that $e^{i \theta^{*}}=e^{-i(p-1) \theta^{*}}$. That is, $e^{i \theta^{*}}$ is a p-th root of unity: $e^{2 \pi i \nu / p}, \nu=0, \ldots, p-1$;
(ii) if $n \neq p^{\alpha}$, the situation is more delicate. If we can show that at least one of the terms in Γ_{n} has total degree 0 , then the maximal value in (3.4) will be attained only at the point $(1, \ldots, 1)$, since this would imply that $e^{i \theta^{*}}=\left(e^{i \theta^{*}}\right)^{0}=1$. The existence of such a 0 -degree term is proved as follows. By 2.2, the general term $t_{1}^{c_{0, j}} t_{2}^{c_{1, j}} \cdots t_{\varphi(n)}^{c_{\varphi(n)-1, j}}$ has total degree $\sum_{k=0}^{\varphi(n)-1} c_{k, j}$. When $j=\varphi(n)$, this total degree is 0 . To see this, note that $\sum_{k=0}^{\varphi(n)-1} c_{k, j} z^{k}=\operatorname{rem}\left(z^{j}, \Phi_{n}(z)\right)$. Taking $j=\varphi(n)$, $z=1$, this gives $\sum_{k=0}^{\varphi(n)-1} c_{k, \varphi(n)}=\left.\operatorname{rem}\left(z^{\varphi(n)}, \Phi_{n}(z)\right)\right|_{z=1}=\left.\left(z^{\varphi(n)}-\Phi_{n}(z)\right)\right|_{z=1}=0$, since $\Phi_{n}(1)=1$ when $n \neq p^{\alpha}$.

Theorem 3.2 For any $n>1$, we have an asymptotic estimate of the form

$$
\begin{equation*}
U_{n}(N) \sim a_{n} \frac{n^{N}}{N^{\frac{1}{2} \varphi(n)}}\left(1+\frac{b_{1, n}}{N}+\frac{b_{2, n}}{N^{2}}+\ldots\right), \quad \text { as } N \rightarrow \infty \tag{3.6}
\end{equation*}
$$

where $a_{n}, b_{j, n}$ are independent of N. When $n=p^{\alpha}$ is a prime power, then N must be a multiple of p as it goes to infinity in (3.6). More explicitly, the leading coefficient a_{n} is given by

$$
a_{n}= \begin{cases}(n / 2 \pi)^{\frac{1}{2} \varphi(n)} / \sqrt{\prod_{p \mid n} p^{\varphi(n) /(p-1)}} & \text { if } n \text { is not a prime power }, \\ p \cdot(n / 2 \pi)^{\frac{1}{2} \varphi(n)} / \sqrt{\prod_{p \mid n} p^{\varphi(n) /(p-1)}} & \text { if } n=p^{\alpha} \text { is a prime power. }\end{cases}
$$

For each $n \geq 1$, the sequence $\left(U_{n}(N)\right)_{N \geq 0}$ is P-recursive but is not algebraic when $n>2$.
Proof: In order to establish the asymptotic estimate (3.6, first note that the constant term extraction $U_{n}(N)=\operatorname{CT}\left(\Lambda_{n}\left(t_{1}, \ldots, t_{\varphi(n)}\right)^{N}\right)$ can be expressed as the multiple integral

$$
\begin{equation*}
U_{n}(N)=\frac{1}{(2 \pi)^{\varphi(n)}} \int \cdots \int_{(-\pi, \pi]^{\varphi(n)}} \Lambda_{n}\left(e^{i u_{1}}, \ldots, e^{i u_{\varphi(n)}}\right)^{N} d u_{1} \cdots d u_{\varphi(n)} \tag{3.7}
\end{equation*}
$$

which is the average value of Λ_{n}^{N} over the $\varphi(n)$-dimensional torus $\left\{\left(t_{1}, \ldots, t_{\varphi(n)}\right) \in \mathbb{C}^{\varphi(n)}| | t_{\nu} \mid=1, \nu=\right.$ $1, \ldots, \varphi(n)\}$. Now by Theorem 2.2.

$$
\begin{equation*}
L_{n}(\vec{u}):=\Lambda_{n}\left(e^{i u_{1}}, \ldots, e^{i u_{\varphi(n)}}\right)=\sum_{j=0}^{n-1} e^{i \lambda_{j}(\vec{u})} \tag{3.8}
\end{equation*}
$$

where $\lambda_{j}(\vec{u})=\sum_{k=0}^{\varphi(n)-1} c_{k, j} u_{k+1}$ is a real-valued linear combination of $u_{1}, \ldots, u_{k}, 0 \leq j \leq \varphi(n)-1$. By the triangular inequality, $\left|L_{n}(\vec{u})\right| \leq n$ for every $\vec{u} \in(-\pi, \pi]^{\varphi(n)}$. To obtain the asymptotic estimate of 3.6 it suffices to approximate 3.7 by a gaussian distribution around each point $\overrightarrow{u^{*}}=\left(u_{1}^{*}, \ldots, u_{\varphi(n)}^{*}\right) \in$ $(-\pi, \pi]^{\varphi(n)}$ for which the maximum value $\left|L_{n}\left(\overrightarrow{u^{*}}\right)\right|=\left|n e^{i \theta^{*}}\right|=n$ is attained. This is Laplace's method [De Bruijn(1981)]. By Lemma 3.1.
(i) if $n \neq p^{\alpha}$, then $\overrightarrow{u^{*}}=\overrightarrow{0}$ is the only point in $(-\pi, \pi]^{\varphi(n)}$ for which $\left|L_{n}\left(\overrightarrow{u^{*}}\right)\right|=n$. In fact $\theta^{*}=0$;
(ii) if $n=p^{\alpha}$, then there are exactly p possible values of u^{*} for which $\left|L_{n}\left(\overrightarrow{u^{*}}\right)\right|=n$. In fact $\theta^{*}=$ $2 \nu \pi / p \bmod 2 \pi \in(-\pi, \pi], \nu=0, \ldots, p-1$.

We conclude by estimating (3.7) by a sum of moments of gaussian distributions in the following way:

$$
U_{n}(N) \sim \frac{n^{N}}{(2 \pi)^{\varphi(n)}} \sum_{L_{n}\left(u^{*}\right)=n e^{i \theta^{*}}} e^{i N \theta^{*}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} e^{-\frac{N}{2 n} Q^{*}\left(\vec{u}-\vec{u}^{*}\right)} H^{*}\left(\vec{u}-\overrightarrow{u^{*}}\right)^{N} d u_{1} \ldots d u_{\varphi(n)}
$$

where, for each $\overrightarrow{u^{*}}$ such that $L_{n}\left(\overrightarrow{u^{*}}\right)=n e^{i \theta^{*}}$,

$$
\begin{equation*}
\frac{1}{n} L_{n}(\vec{u})=e^{i \theta^{*}}\left(1-\frac{1}{2 n} Q^{*}\left(\vec{u}-\overrightarrow{u^{*}}\right)+O\left(\left\|\vec{u}-\overrightarrow{u^{*}}\right\|^{3}\right)\right)=e^{i \theta^{*}} e^{-\frac{1}{2 n} Q^{*}\left(\vec{u}-\vec{u}^{*}\right)} H^{*}\left(\vec{u}-\overrightarrow{u^{*}}\right) \tag{3.9}
\end{equation*}
$$

where $Q^{*}(\vec{v})$ is the positive definite quadratic form associated to the symmetric $\varphi(n) \times \varphi(n)$ matrix $K=C C^{T}$ in which $C=\left[c_{k, j}\right]_{0 \leq k \leq \varphi(n)-1,0 \leq j \leq n-1}$, where the $c_{k, j}$'s are defined by 2.2 and $H^{*}(\vec{v})=$ $1+O\left(\|\vec{v}\|^{3}\right)$. It turns out that $\operatorname{det}(K)=\prod_{p \mid n} p^{\varphi(n) /(p-1)}$, which is a consequence of the known fact that the absolute value of the discriminant of $\Phi_{n}(z)$ is equal to $n^{\varphi(n)} \prod_{p \mid n} p^{\varphi(n) /(p-1)}$, for $n>2$.

The P-recursivity of $\left(U_{n}(N)\right)_{N \geq 0}$ is established as follows. Fix $n \geq 1$ and let $k=\varphi(n)$. We shall show that the series

$$
\begin{equation*}
\sum_{N \geq 0} U_{n}(N) X^{N}=\mathrm{CT}_{t_{1}, \ldots, t_{k}} \frac{1}{1-X \Lambda_{n}\left(t_{1}, \ldots, t_{k}\right)} \tag{3.10}
\end{equation*}
$$

is D-finite in X where $\mathrm{CT}_{t_{1}, \ldots, t_{k}}$ means constant term extraction relative to the variables t_{1}, \ldots, t_{k}. First, fix integers $m_{1}>0, \ldots, m_{k}>0$ in such a way that $t_{1}^{m_{1}} \ldots t_{k}^{m_{k}} \Lambda_{n}\left(t_{1}, \ldots, t_{k}\right)$ is a polynomial in t_{1}, \ldots, t_{k}. The rational function

$$
\begin{equation*}
f\left(t_{1}, \ldots, t_{k}, X\right)=\frac{1}{1-t_{1}^{m_{1}} \ldots t_{k}^{m_{k}} X \Lambda_{n}\left(t_{1}, \ldots, t_{k}\right)}=\sum_{n_{1}, \ldots, n_{k}, N \geq 0} a\left(n_{1}, \ldots, n_{k}, N\right) t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} X^{N} \tag{3.11}
\end{equation*}
$$

is obviously D-finite in the variables t_{1}, \ldots, t_{k}, X. By Theorem 2.2, the numbers $U_{n}(N)$ can be expressed as the following coefficient extraction in $f\left(t_{1}, \ldots, t_{k}, X\right)$:

$$
U_{n}(N)=\left[t_{1}^{m_{1} N} \ldots t_{k}^{m_{k} N} X^{N}\right] f\left(t_{1}, \ldots, t_{k}, X\right)
$$

Hence, by 3.10,

$$
\begin{equation*}
\sum_{N \geq 0} U_{n}(N) X^{N}=\sum_{N \geq 0} a\left(m_{1} N, \ldots, m_{k} N, N\right) X^{N} \tag{3.12}
\end{equation*}
$$

Consider now the algebraic, hence D-finite, series

$$
g\left(t_{1}, \ldots, t_{k}, X\right)=\sum_{n_{1}, \ldots, n_{k}, N \geq 0} b\left(n_{1}, \ldots, n_{k}, N\right) t_{1}^{n_{1}} \ldots t_{k}^{n_{k}} X^{N}
$$

where $b\left(n_{1}, \ldots, n_{k}, N\right)=a\left(m_{1} n_{1}, \ldots, m_{k} n_{k}, N\right)$. Formula 3.12 shows that

$$
\sum_{N \geq 0} U_{n}(N) X^{N}=\sum_{N \geq 0} b(N, \ldots, N, N) X^{N}
$$

which is a (full) diagonal of $g\left(t_{1}, \ldots, t_{k}, X\right)$. We conclude using the fact that any diagonal of a D-finite series is also D-finite, a result due to Lipshitz [Lipshitz(1988)]. The non algebraicity of $\left(U_{n}(N)\right)_{N \geq 0}$,
for each $n>2$, follows from the fact that $\varphi(n)$ is even and the dominant term of the asymptotic formula contains $N^{- \text {positive integer }}$. This is incoherent with Puiseux expansion around an algebraic singularity.

A better control of the coefficients $b_{j, n}$ can be achieved by a smooth local change of variables, $\vec{u}=$ $\overrightarrow{u^{*}}+\vec{g}(\vec{w}), \vec{g}(\overrightarrow{0})=\overrightarrow{0}$ in $\sqrt[3.9]{ }$ such that $\frac{1}{n} L_{n}(\vec{u})=e^{i \theta^{*}} e^{-\frac{1}{2 n} Q^{*}(\vec{w})}$. This is always possible by Morse Lemma [Morse(1925)]. The first terms of the asymptotic estimates of Theorem 3.2 are given in Table 4 for $n=1, \ldots, 20$.

Corollary 3.3 If n is not a prime power, then $\exists N_{0}=N_{0}(n)$ such that $U_{n}(N)>0$ for $N \geq N_{0}$.
The sequences $\left(U_{n}(N)\right)_{N \geq 0}, n=1,2, \ldots$, can be considered in a dual way: for each fixed N, one can consider the sequence $\left(\bar{U}_{n}(N)\right)_{n \geq 1}$ by reading each column of Table 3. The first five of these dual sequences, $\left(U_{n}(0)\right)_{n \geq 1},\left(U_{n}(1)\right)_{n \geq 1}, \ldots,\left(U_{n}(4)\right)_{n \geq 1}$, are P-recursive. The fifth one, $\left(U_{n}(4)\right)_{n \geq 1}$, can be described as follows: $U_{n}(4)=3 n(n-1) \chi(2 \mid n)$, where $\chi(T(n))=1$ if $T(n)$ is true and 0 otherwise. This can be checked by noting that closed paths of length 4 whose steps are $n^{\text {th }}$ roots of unity are (possibly degenerated and non-convex) rhombuses. Following extensive computations we conjecture that $\left(U_{n}(5)\right)_{n \geq 1}$ is also P-recursive and is of the form $U_{n}(5)=24 n \chi(5 \mid n)+20 n(n-3) \chi(6 \mid n)$. We leave open the problem of determining the values of N for which $\left(U_{n}(N)\right)_{n \geq 1}$ is P-recursive.

Acknowledgements. The authors wish to thank B. Salvy for his assistance in the proof of the second part of Theorem 3.2. J. Tremblay for his $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ / Maple help, and a referee for his constructive suggestions.

References

[De Bruijn(1981)] N. G. De Bruijn. Asymptotic methods in analysis. New York Dover Publications, 1981. ISBN 0486642216.
[Lipshitz(1988)] L. Lipshitz. The diagonal of a D-finite power series is D-finite. Journal of Algebra, 113: 373-378, 1988.
[Morse(1925)] M. Morse. Relations between the critical points of a real function of n independent variables. Trans. Amer. Math. Soc., 27:345-396, 1925.
[Salvy and Zimmermann(1994)] B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software, 20(2):163-177, 1994.
[Sloane(2010)] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Enlarged edition, 2010. Published electronically at http://oeis.org/classic/index.html.
[Stanley(1980)] R. P. Stanley. Differentiably finite power series. Europ. J. Combinatorics, 1:175-188, 1980.

n	Linear combinations for admissibility
1	[m_{0}]
2	[$m_{0}-m_{1}$]
3	[$\left.m_{0}-m_{2}, m_{1}-m_{2}\right]$
4	$\left[m_{0}-m_{2}, m_{1}-m_{3}\right]$
5	$\left[m_{0}-m_{4}, m_{1}-m_{4}, m_{2}-m_{4}, m_{3}-m_{4}\right]$
6	$\left[m_{0}-m_{2}-m_{3}+m_{5}, m_{1}+m_{2}-m_{4}-m_{5}\right]$
7	$\left[m_{0}-m_{6}, m_{1}-m_{6}, m_{2}-m_{6}, m_{3}-m_{6}, m_{4}-m_{6}, m_{5}-m_{6}\right]$
8	$\left[m_{0}-m_{4}, m_{1}-m_{5}, m_{2}-m_{6}, m_{3}-m_{7}\right]$
9	$\left[m_{0}-m_{6}, m_{1}-m_{7}, m_{2}-m_{8}, m_{3}-m_{6}, m_{4}-m_{7}, m_{5}-m_{8}\right]$
10	$\left[m_{0}-m_{4}-m_{5}+m_{9}, m_{1}+m_{4}-m_{6}-m_{9}, m_{2}-m_{4}-m_{7}+m_{9}, m_{3}+m_{4}-m_{8}-m_{9}\right]$
11	$\begin{aligned} & {\left[m_{0}-m_{10}, m_{1}-m_{10}, m_{2}-m_{10}, m_{3}-m_{10}, m_{4}-m_{10}, m_{5}-m_{10}, m_{6}-m_{10}, m_{7}-m_{10}\right.} \\ & \left.m_{8}-m_{10}, m_{9}-m_{10}\right] \end{aligned}$
12	$\left[m_{0}-m_{4}-m_{6}+m_{10}, m_{1}-m_{5}-m_{7}+m_{11}, m_{2}+m_{4}-m_{8}-m_{10}, m_{3}+m_{5}-m_{9}-m_{11}\right]$
13	$\begin{aligned} & {\left[m_{0}-m_{12}, m_{1}-m_{12}, m_{2}-m_{12}, m_{3}-m_{12}, m_{4}-m_{12}, m_{5}-m_{12}, m_{6}-m_{12}, m_{7}-m_{12}\right.} \\ & \left.m_{8}-m_{12}, m_{9}-m_{12}, m_{10}-m_{12}, m_{11}-m_{12}\right] \end{aligned}$
14	$\begin{aligned} & {\left[m_{0}-m_{6}-m_{7}+m_{13}, m_{1}+m_{6}-m_{8}-m_{13}, m_{2}-m_{6}-m_{9}+m_{13}, m_{3}+m_{6}-m_{10}-m_{13}\right.} \\ & \left.m_{4}-m_{6}-m_{11}+m_{13}, m_{5}+m_{6}-m_{12}-m_{13}\right] \end{aligned}$
15	$\begin{aligned} & {\left[m_{0}-m_{8}-m_{9}-m_{10}+m_{13}+m_{14}, m_{1}+m_{8}-m_{11}-m_{13}, m_{2}+m_{9}-m_{12}-m_{14}\right.} \\ & m_{3}-m_{8}-m_{9}+m_{14}, m_{4}+m_{8}-m_{13}-m_{14}, m_{5}-m_{8}-m_{10}+m_{13} \\ & \left.m_{6}-m_{9}-m_{11}+m_{14}, m_{7}+m_{8}+m_{9}-m_{12}-m_{13}-m_{14}\right] \end{aligned}$
16	[$m_{0}-m_{8}, m_{1}-m_{9}, m_{2}-m_{10}, m_{3}-m_{11}, m_{4}-m_{12}, m_{5}-m_{13}, m_{6}-m_{14}, m_{7}-m_{15}$]
17	$\begin{aligned} & {\left[m_{0}-m_{16}, m_{1}-m_{16}, m_{2}-m_{16}, m_{3}-m_{16}, m_{4}-m_{16}, m_{5}-m_{16}, m_{6}-m_{16}, m_{7}-m_{16}\right.} \\ & \left.m_{8}-m_{16}, m_{9}-m_{16}, m_{10}-m_{16}, m_{11}-m_{16}, m_{12}-m_{16}, m_{13}-m_{16}, m_{14}-m_{16}, m_{15}-m_{16}\right] \end{aligned}$
18	$\begin{aligned} & {\left[m_{0}-m_{6}-m_{9}+m_{15}, m_{1}-m_{7}-m_{10}+m_{16}, m_{2}-m_{8}-m_{11}+m_{17}, m_{3}+m_{6}-m_{12}-m_{15}\right.} \\ & \left.m_{4}+m_{7}-m_{13}-m_{16}, m_{5}+m_{8}-m_{14}-m_{17}\right] \end{aligned}$
19	$\begin{aligned} & {\left[m_{0}-m_{18}, m_{1}-m_{18}, m_{2}-m_{18}, m_{3}-m_{18}, m_{4}-m_{18}, m_{5}-m_{18}, m_{6}-m_{18}, m_{7}-m_{18}, m_{8}-m_{18}\right.} \\ & m_{9}-m_{18}, m_{10}-m_{18}, m_{11}-m_{18}, m_{12}-m_{18}, m_{13}-m_{18}, m_{14}-m_{18}, m_{15}-m_{18}, m_{16}-m_{18} \\ & \left.m_{17}-m_{18}\right] \end{aligned}$
20	$\begin{aligned} & {\left[m_{0}-m_{8}-m_{10}+m_{18}, m_{1}-m_{9}-m_{11}+m_{19}, m_{2}+m_{8}-m_{12}-m_{18}, m_{3}+m_{9}-m_{13}-m_{19}\right.} \\ & \left.m_{4}-m_{8}-m_{14}+m_{18}, m_{5}-m_{9}-m_{15}+m_{19}, m_{6}+m_{8}-m_{16}-m_{18}, m_{7}+m_{9}-m_{17}-m_{19}\right] \end{aligned}$

Tab. 1: The linear combinations $\left(l_{k}(\vec{m})\right)_{0 \leq k \leq \varphi(n)-1}$ for admissibility, $n=1, \ldots, 20$.

n	$\Lambda_{n}\left(t_{1}, \ldots, t_{\varphi(n)}\right)$
1	t_{1}
2	$\left(t_{1}+t_{1}{ }^{-1}\right)$
3	$\left(t_{1}+t_{2}+\frac{1}{t_{1} t_{2}}\right)$
4	$\left(t_{1}+t_{2}+t_{1}{ }^{-1}+t_{2}{ }^{-1}\right)$
5	$\left(t_{1}+t_{2}+t_{3}+t_{4}+\frac{1}{t_{1} t_{2} t_{3} t_{4}}\right)$
6	$\left(t_{1}+t_{2}+\frac{t_{1}}{t_{2}}+\frac{t_{2}}{t_{1}}+t_{1}^{-1}+t_{2}^{-1}\right)$
7	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+\frac{1}{t_{1} t_{2} t_{3} t_{4} t_{5} t_{6}}\right)$
8	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{1}^{-1}+t_{2}^{-1}+t_{3}^{-1}+t_{4}^{-1}\right)$
9	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+\frac{1}{t_{1} t_{4}}+\frac{1}{t_{2} t_{5}}+\frac{1}{t_{3} t_{6}}\right)$
10	$\left(t_{1}+t_{2}+t_{3}+t_{4}+\frac{t_{1} t_{3}}{t_{2} t_{4}}+\frac{t_{2} t_{4}}{t_{1} t_{3}}+t_{1}^{-1}+t_{2}^{-1}+t_{3}^{-1}+t_{4}^{-1}\right)$
11	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+t_{7}+t_{8}+t_{9}+t_{10}+\frac{1}{t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{8} t_{9} t_{10}}\right)$
12	$\left(t_{1}+t_{2}+t_{3}+t_{4}+\frac{t_{1}}{t_{3}}+\frac{t_{3}}{t_{1}}+\frac{t_{2}}{t_{4}}+\frac{t_{4}}{t_{2}}+t_{1}^{-1}+t_{2}{ }^{-1}+t_{3}{ }^{-1}+t_{4}{ }^{-1}\right)$
13	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+t_{7}+t_{8}+t_{9}+t_{10}+t_{11}+t_{12}+\frac{1}{t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{8} t_{9} t_{10} t_{11} t_{12}}\right)$
14	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+\frac{t_{1} t_{3} t_{5}}{t_{2} t_{4} t_{6}}+\frac{t_{2} t_{4} t_{6}}{t_{1} t_{3} t_{5}}+t_{1}{ }^{-1}+t_{2}{ }^{-1}+t_{3}{ }^{-1}+t_{4}{ }^{-1}+t_{5}{ }^{-1}+t_{6}{ }^{-1}\right)$
15	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+t_{7}+t_{8}+\frac{t_{1} t_{4} t_{7}}{t_{3} t_{5} t_{8}}+\frac{t_{2} t_{5} t_{8}}{t_{1} t_{4} t_{6}}+\frac{t_{1} t_{6}}{t_{2} t_{5} t_{8}}+\frac{t_{3} t_{8}}{t_{1} t_{4} t_{7}}+\frac{1}{t_{1} t_{6}}+\frac{1}{t_{2} t_{7}}+\frac{1}{t_{3} t_{8}}\right)$
16	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+t_{7}+t_{8}+t_{1}^{-1}+t_{2}^{-1}+t_{3}^{-1}+t_{4}^{-1}+t_{5}^{-1}+t_{6}^{-1}+t_{7}^{-1}+t_{8}^{-1}\right)$
17	$\left(t_{1}+t_{2}+\cdots+t_{16}+\frac{1}{t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{8} t_{9} t_{10} t_{11} t_{12} t_{13} t_{14} t_{15} t_{16}}\right)$
18	$\left(t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+\frac{t_{1}}{t_{4}}+\frac{t_{4}}{t_{1}}+\frac{t_{2}}{t_{5}}+\frac{t_{5}}{t_{2}}+\frac{t_{3}}{t_{6}}+\frac{t_{6}}{t_{3}}+t_{1}{ }^{-1}+t_{2}{ }^{-1}+t_{3}{ }^{-1}+t_{4}{ }^{-1}+t_{5}{ }^{-1}+t_{6}{ }^{-1}\right)$
19	$\left(t_{1}+t_{2}+\cdots+t_{18}+\frac{1}{t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} t_{7} t_{8} t_{9} t_{10} t_{11} t_{12} t_{13} t_{14} t_{15} t_{16} t_{17} t_{18}}\right)$
20	$\left(t_{1}+t_{2}+\cdots+t_{8}+\frac{t_{1} t_{5}}{t_{3} t_{7}}+\frac{t_{3} t_{7}}{t_{1} t_{5}}+\frac{t_{2} t_{6}}{t_{4} t_{8}}+\frac{t_{4} t_{8}}{t_{2} t_{6}}+t_{1}{ }^{-1}+t_{2}{ }^{-1}+t_{3}{ }^{-1}+t_{4}{ }^{-1}+t_{5}{ }^{-1}+t_{6}{ }^{-1}+t_{7}{ }^{-1}+t_{8}^{-1}\right)$

Tab. 2: The Laurent polynomials Λ_{n} for $n=1, \cdots, 20$.

n	$U_{n}(N), N=0, \ldots, 20$
1	$1,0$
2	$1,0,2,0,6,0,20,0,70,0,252,0,924,0,3432,0,12870,0,48620,0,184756$
3	$1,0,0,6,0,0,90,0,0,1680,0,0,34650,0,0,756756,0,0,17153136,0,0$
4	$1,0,4,0,36,0,400,0,4900,0,63504,0,853776,0,11778624,0,165636900,0,2363904400,0,34134779536$
5	$1,0,0,0,0,120,0,0,0,0,113400,0,0,0,0,168168000,0,0,0,0,305540235000$
6	$1,0,6,12,90,360,2040,10080,54810,290640,1588356,8676360,47977776,266378112,1488801600$, $8355739392,47104393050,266482019232,1512589408044,8610448069080,49144928795820$
7	$1,0,0,0,0,0,0,5040,0,0,0,0,0,0,681080400,0,0,0,0,0,0$
8	$1,0,8,0,168,0,5120,0,190120,0,7939008,0,357713664,0,16993726464,0,839358285480,0$, $42714450658880,0,2225741588095168$
9	$1,0,0,18,0,0,2430,0,0,640080,0,0,215488350,0,0,84569753268,0,0,36905812607664,0,0$
10	$\begin{aligned} & 1,0,10,0,270,240,10900,25200,551950,2116800,32458860,169092000,2120787900,13427013600 \\ & 149506414200,1075081207200,11143223412750,87198375264000,865743970019500,7171730187336000, \\ & 69416724049550020 \end{aligned}$
11	$1,0,0,0,0,0,0,0,0,0,0,39916800,0,0,0,0,0,0,0,0,0$
12	$\begin{aligned} & 1,0,12,24,396,2160,23160,186480,1845900,17213280,171575712,1703560320,17365421304, \\ & 178323713568,1856554560432,19487791106784,206411964321420,2201711191213248,23642813637773616 \\ & 255355132936441824,2772650461148938656 \end{aligned}$
13	$1,0,0,0,0,0,0,0,0,0,0,0,0,6227020800,0,0,0,0,0,0,0$
14	$1,0,14,0,546,0,32900,10080,2570050,2540160,238935564,465696000,25142196156,76886409600$, $2900343069624,12211317518400,359067702643650,1915829643087360,47006105030584700$, 300455419743198720,6437718469449262996
15	$\begin{aligned} & 1,0,0,30,0,360,7650,0,302400,4544400,11226600,324324000,4310633250,24324300000,437404968000, \\ & 5634178329780,45972927000000,697866761592000,8962716395833200,88725951057744000, \\ & 1258898645656852200 \end{aligned}$
16	$1,0,16,0,720,0,50560,0,4649680,0,514031616,0,64941883776,0,9071319628800,0,1369263687414480$, $0,219705672931613440,0,37024402443528248320$
17	$1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,355687428096000,0,0,0$
18	$\begin{aligned} & 1,0,18,36,918,5400,82800,801360,10907190,132053040,1802041668,24199809480,340640607384, \\ & 4834708246368,70229958125184,1032223723667136,15391538570569590,231935110984687968, \\ & 3531542904056225916,54244559313713885688,839979883121036697468 \end{aligned}$
19	$1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,121645100408832000,0$
20	$\begin{aligned} & 1,0,20,0,1140,480,102800,151200,12310900,38707200,1812247920,9574488000,313983978000, \\ & 2391608419200,62051403928800,611744666332800,13627749414064500,160896284989440000, \\ & 3253345101771050000,43527416858084016000,829176006298475046640 \end{aligned}$

Tab. 3: The sequences $\left(U_{n}(N)\right)_{0 \leq N \leq 20}$ for $n=1, \ldots, 20$.

n	Asymptotic estimate of $U_{n}(N)$ as $N \rightarrow \infty$	Extra condition
1	0	NIL
2	$\frac{\sqrt{2}}{\sqrt{\pi}} \cdot \frac{2^{N}}{\sqrt{N}}\left(1-\frac{1}{4 N}+\frac{1}{32 N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 2)$
3	$\frac{3 \sqrt{3}}{2 \pi} \cdot \frac{3^{N}}{N}\left(1-\frac{2}{3 N}+\frac{2}{9 N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 3)$
4	$\frac{2}{\pi} \cdot \frac{4^{N}}{N}\left(1-\frac{1}{2 N}+\frac{1}{8 N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 2)$
5	$\frac{25 \sqrt{5}}{4 \pi^{2}} \cdot \frac{5^{N}}{N^{2}}\left(1-\frac{2}{N}+\frac{2}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 5)$
6	$\frac{\sqrt{3}}{2 \pi} \cdot \frac{6^{N}}{N}\left(1-\frac{1}{2 N}+\frac{1}{12 N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	NIL
7	$\frac{343 \sqrt{7}}{8 \pi^{3}} \cdot \frac{7^{N}}{N^{3}}\left(1-\frac{4}{N}+\frac{8}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 7)$
8	$\frac{8}{\pi^{2}} \cdot \frac{8^{N}}{N^{2}}\left(1-\frac{1}{N}+\frac{1}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 2)$
9	$\frac{243 \sqrt{3}}{8 \pi^{3}} \cdot \frac{9^{N}}{N^{3}}\left(1-\frac{3}{N}+\frac{4}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 3)$
10	$\frac{5 \sqrt{5}}{4 \pi^{2}} \cdot \frac{10^{N}}{N^{2}}\left(1-\frac{1}{N}+\frac{3}{4 N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	NIL
11	$\frac{161051 \sqrt{11}}{32 \pi^{5}} \cdot \frac{11^{N}}{N^{5}}\left(1-\frac{10}{N}+\frac{50}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 11)$
12	$\frac{3}{\pi^{2}} \cdot \frac{12^{N}}{N^{2}}\left(1-\frac{1}{N}+\frac{2}{3 N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	NIL
13	$\frac{4826809 \sqrt{13}}{64 \pi^{6}} \cdot \frac{13^{N}}{N^{6}}\left(1-\frac{14}{N}+\frac{98}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 13)$
14	$\frac{49 \sqrt{7}}{8 \pi^{3}} \cdot \frac{144^{N}}{N^{3}}\left(1-\frac{3}{2 N}+\frac{3}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	NIL
15	$\frac{1125}{16 \pi^{4}} \cdot \frac{15^{N}}{N^{4}}\left(1-\frac{4}{N}+\frac{25}{3 N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	NIL
16	$\frac{512}{\pi^{4}} \cdot \frac{16^{N}}{N^{4}}\left(1-\frac{2}{N}+\frac{9}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 2)$
17	$\frac{6975757441 \sqrt{17}}{256 \pi^{8}} \cdot \frac{17^{N}}{N^{8}}\left(1-\frac{24}{N}+\frac{288}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 17)$
18	$\frac{81 \sqrt{3}}{8 \pi^{3}} \cdot \frac{18^{N}}{N^{3}}\left(1-\frac{3}{2 N}+\frac{5}{2 N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	NIL
19	$\frac{322687697779 \sqrt{19}}{512 \pi^{9}} \cdot \frac{19^{N}}{N^{9}}\left(1-\frac{30}{N}+\frac{450}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	$N \equiv 0(\bmod 19)$
20	$\frac{125}{\pi^{4}} \cdot \frac{20^{N}}{N^{4}}\left(1-\frac{2}{N}+\frac{7}{N^{2}}+O\left(\frac{1}{N^{3}}\right)\right)$	NIL

Tab. 4: Asymptotic estimates of $U_{n}(N)$ as $N \rightarrow \infty$, for $n=1, \ldots, 20$.

