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A q-analog of Ljunggren’s binomial
congruence

Armin Straub1†

1Tulane University, New Orleans, LA, USA

Abstract. We prove a q-analog of a classical binomial congruence due to Ljunggren which states that 
ap

bp

!
≡

 
a

b

!

modulo p3 for primes p > 5. This congruence subsumes and builds on earlier congruences by Babbage, Wolsten-
holme and Glaisher for which we recall existing q-analogs. Our congruence generalizes an earlier result of Clark.

Résumé. Nous démontrons un q-analogue d’une congruence binomiale classique de Ljunggren qui stipule: 
ap

bp

!
≡

 
a

b

!

modulo p3 pour p premier tel que p > 5. Cette congruence s’inspire d’une précédente congruence prouvée par
Babbage, Wolstenholme et Glaisher pour laquelle nous présentons les q-analogues existantes. Notre congruence
généralise un précédent résultat de Clark.
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1 Introduction and notation
Recently, q-analogs of classical congruences have been studied by several authors including (Cla95),
(And99), (SP07), (Pan07), (CP08), (Dil08). Here, we consider the classical congruence(

ap

bp

)
≡
(

a

b

)
mod p3 (1)

which holds true for primes p > 5. This also appears as Problem 1.6 (d) in (Sta97). Congruence (1) was
proved in 1952 by Ljunggren, see (Gra97), and subsequently generalized by Jacobsthal, see Remark 6.
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Let [n]q := 1 + q + . . . qn−1, [n]q! := [n]q[n− 1]q · · · [1]q and(
n

k

)
q

:=
[n]q!

[k]q![n− k]q!

denote the usual q-analogs of numbers, factorials and binomial coefficients respectively. Observe that
[n]1 = n so that in the case q = 1 we recover the usual factorials and binomial coefficients as well.
Also, recall that the q-binomial coefficients are polynomials in q with nonnegative integer coefficients.
An introduction to these q-analogs can be found in (Sta97).

We establish the following q-analog of (1):

Theorem 1 For primes p > 5 and nonnegative integers a, b,(
ap

bp

)
q

≡
(

a

b

)
qp2
−
(

a

b + 1

)(
b + 1

2

)
p2 − 1

12
(qp − 1)2 mod [p]3q. (2)

The congruence (2) and similar ones to follow are to be understood over the ring of polynomials in q with
integer coefficients. We remark that p2 − 1 is divisible by 12 for all primes p > 5.

Observe that (2) is indeed a q-analog of (1): as q → 1 we recover (1).

Example 2 Choosing p = 13, a = 2, and b = 1, we have(
26
13

)
q

= 1 + q169 − 14(q13 − 1)2 + (1 + q + . . . + q12)3f(q)

where f(q) = 14− 41q + 41q2 − . . . + q132 is an irreducible polynomial with integer coefficients. Upon
setting q = 1, we obtain

(
26
13

)
≡ 2 modulo 133.

Since our treatment very much parallels the classical case, we give a brief history of the congruence (1)
in the next section before turning to the proof of Theorem 1.

2 A bit of history
A classical result of Wilson states that (n − 1)! + 1 is divisible by n if and only if n is a prime number.
“In attempting to discover some analogous expression which should be divisible by n2, whenever n is a
prime, but not divisible if n is a composite number”, (Bab19), Babbage is led to the congruence(

2p− 1
p− 1

)
≡ 1 mod p2 (3)

for primes p > 3. In 1862 Wolstenholme, (Wol62), discovered (3) to hold modulo p3, “for several cases,
in testing numerically a result of certain investigations, and after some trouble succeeded in proving it to
hold universally” for p > 5. To this end, he proves the fractional congruences

p−1∑
i=1

1
i
≡ 0 mod p2, (4)

p−1∑
i=1

1
i2
≡ 0 mod p (5)
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for primes p > 5. Using (4) and (5) he then extends Babbage’s congruence (3) to hold modulo p3:(
2p− 1
p− 1

)
≡ 1 mod p3 (6)

for all primes p > 5. Note that (6) can be rewritten as
(
2p
p

)
≡ 2 modulo p3. The further generalization of

(6) to (1), according to (Gra97), was found by Ljunggren in 1952. The case b = 1 of (1) was obtained by
Glaisher, (Gla00), in 1900.

In fact, Wolstenholme’s congruence (6) is central to the further generalization (1). This is just as true
when considering the q-analogs of these congruences as we will see here in Lemma 5.

A q-analog of the congruence of Babbage has been found by Clark (Cla95) who proved that(
ap

bp

)
q

≡
(

a

b

)
qp2

mod [p]2q. (7)

We generalize this congruence to obtain the q-analog (2) of Ljunggren’s congruence (1). A result similar
to (7) has also been given by Andrews in (And99).

Our proof of the q-analog proceeds very closely to the history just outlined. Besides the q-analog (7)
of Babbage’s congruence (3) we will employ q-analogs of Wolstenholme’s harmonic congruences (4) and
(5) which were recently supplied by Shi and Pan, (SP07):

Theorem 3 For primes p > 5,

p−1∑
i=1

1
[i]q
≡ −p− 1

2
(q − 1) +

p2 − 1
24

(q − 1)2[p]q mod [p]2q (8)

as well as
p−1∑
i=1

1
[i]2q
≡ − (p− 1)(p− 5)

12
(q − 1)2 mod [p]q. (9)

This generalizes an earlier result (And99) of Andrews.

3 A q-analog of Ljunggren’s congruence
In the classical case, the typical proof of Ljunggren’s congruence (1) starts with the Chu-Vandermonde
identity which has the following well-known q-analog:

Theorem 4 (
m + n

k

)
q

=
∑

j

(
m

j

)
q

(
n

k − j

)
q

qj(n−k+j).

We are now in a position to prove the q-analog of (1).

Proof of Theorem 1: As in (Cla95) we start with the identity(
ap

bp

)
q

=
∑

c1+...+ca=bp

(
p

c1

)
q

(
p

c2

)
q

· · ·
(

p

ca

)
q

q
p

P
16i6a(i−1)ci−

P
16i<j6a cicj

(10)
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which follows inductively from the q-analog of the Chu-Vandermonde identity given in Theorem 4. The
summands which are not divisible by [p]2q correspond to the ci taking only the values 0 and p. Since each
such summand is determined by the indices 1 6 j1 < j2 < . . . < jb 6 a for which ci = p, the total
contribution of these terms is∑

16j1<...<jb6a

qp2 Pb
k=1(jk−1)−p2(b

2) =
∑

06i16...6ib6a−b

qp2 Pb
k=1 ik =

(
a

b

)
qp2

.

This completes the proof of (7) given in (Cla95).
To obtain (2) we now consider those summands in (10) which are divisible by [p]2q but not divisible by

[p]3q . These correspond to all but two of the ci taking values 0 or p. More precisely, such a summand is
determined by indices 1 6 j1 < j2 < . . . < jb < jb+1 6 a, two subindices 1 6 k < ` 6 b + 1, and
1 6 d 6 p− 1 such that

ci =


d for i = jk,
p− d for i = j`,
p for i ∈ {j1, . . . , jb+1}\{jk, j`},
0 for i 6∈ {j1, . . . , jb+1}.

For each fixed choice of the ji and k, ` the contribution of the corresponding summands is

p−1∑
d=1

(
p

d

)
q

(
p

p− d

)
q

qp
P

16i6a(i−1)ci−
P

16i<j6a cicj

which, using that qp ≡ 1 modulo [p]q , reduces modulo [p]3q to

p−1∑
d=1

(
p

d

)
q

(
p

p− d

)
q

qd2
=
(

2p

p

)
q

− [2]qp2 .

We conclude that(
ap

bp

)
q

≡
(

a

b

)
qp2

+
(

a

b + 1

)(
b + 1

2

)((
2p

p

)
q

− [2]qp2

)
mod [p]3q. (11)

The general result therefore follows from the special case a = 2, b = 1 which is separately proved next.
2

4 A q-analog of Wolstenholme’s congruence
We have thus shown that, as in the classical case, the congruence (2) can be reduced, via (11), to the case
a = 2, b = 1. The next result therefore is a q-analog of Wolstenholme’s congruence (6).

Lemma 5 For primes p > 5,(
2p

p

)
q

≡ [2]qp2 − p2 − 1
12

(qp − 1)2 mod [p]3q.
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Proof: Using that [an]q = [a]qn [n]q and [n + m]q = [n]q + qn [m]q we compute

(
2p

p

)
q

=
[2p]q [2p− 1]q · · · [p + 1]q

[p]q [p− 1]q · · · [1]q
=

[2]qp

[p− 1]q!

p−1∏
k=1

(
[p]q + qp [p− k]q

)
which modulo [p]3q reduces to (note that [p− 1]q! is relatively prime to [p]3q)

[2]qp

q(p−1)p + q(p−2)p
∑

16i6p−1

[p]q
[i]q

+ q(p−3)p
∑

16i<j6p−1

[p]q [p]q
[i]q [j]q

 . (12)

Combining the results (8) and (9) of Shi and Pan, (SP07), given in Theorem 3, we deduce that for primes
p > 5, ∑

16i<j6p−1

1
[i]q [j]q

≡ (p− 1)(p− 2)
6

(q − 1)2 mod [p]q. (13)

Together with (8) this allows us to rewrite (12) modulo [p]3q as

[2]qp

(
q(p−1)p + q(p−2)p

(
−p− 1

2
(qp − 1) +

p2 − 1
24

(qp − 1)2
)

+

+q(p−3)p (p− 1)(p− 2)
6

(qp − 1)2
)

.

Using the binomial expansion

qmp = ((qp − 1) + 1)m =
∑

k

(
m

k

)
(qp − 1)k

to reduce the terms qmp as well as [2]qp = 1 + qp modulo the appropriate power of [p]q we obtain(
2p

p

)
q

≡ 2 + p(qp − 1) +
(p− 1)(5p− 1)

12
(qp − 1)2 mod [p]3q.

Since

[2]qp2 ≡ 2 + p(qp − 1) +
(p− 1)p

2
(qp − 1)2 mod [p]3q

the result follows. 2

Remark 6 Jacobsthal, see (Gra97), generalized the congruence (1) to hold modulo p3+r where r is the
p-adic valuation of

ab(a− b)
(

a

b

)
= 2a

(
a

b + 1

)(
b + 1

2

)
.

It would be interesting to see if this generalization has a nice analog in the q-world.
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