Projective invariants of vector configurations

Alex Fink, NC State \leftrightarrow MSRI
joint with Andrew Berget, UC Davis \rightarrow U Washington

FPSAC, 30 July 2012

Outline of the talk

- Vector configurations \& orbits thereof.
- Example: 4 vectors in \mathbb{C}^{2}.
- Matroids.
- Equations for $\overline{[v]}$.
- Algebraic invariants.

Vector configurations

A configuration is a list $v=\left(v_{1}, \ldots, v_{n}\right)$, where $v_{i} \in V \approx \mathbb{C}^{r}$.

The space of configurations is $V \times \cdots \times V \approx \mathbb{C}^{r \times n}$.

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 5
\end{array}\right] \quad\left[\begin{array}{lllllll}
1 & & & 1 & 1 & 1 & 0 \\
& 1 & & 1 & 1 & 0 & 1 \\
& & 1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Projective equivalence

The space of r-by- n matrices comes with an action of

$$
G L_{r} \times \underbrace{\prod_{\mathbb{C}^{x}}^{n}}_{=: T^{n}}
$$

($G L_{r}$ on the left, T^{n} on the right.)
Here are two projectively equivalent Pappus configurations:

Projective equivalence ctd.

The space of r-by- n matrices comes with an action of

$$
G L_{r} \times \underbrace{\prod^{n} \mathbb{C}^{\times}}_{=: T^{n}}
$$

($G L_{r}$ on the left, T^{n} on the right.)

Definition

The projective equivalence class of v is $[v] \subseteq \mathbb{C}^{r \times n}$:

$$
[v]:=\text { the orbit of } v \text { under } G L_{r} \times T^{n}
$$

This set is smooth and locally closed; its closure $\overline{[v]}$ is an irreducible affine variety.

Example. $v \in\left(\mathbb{C}^{2 \times 4}\right)^{0}$

Let $v=4$ non-parallel vectors in \mathbb{C}^{2}. There is a unique μ such that

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & \mu
\end{array}\right] \in[v] .
$$

This μ is the cross ratio of v :

$$
\frac{\operatorname{det}\left(v_{1} v_{4}\right) \operatorname{det}\left(v_{2} v_{3}\right)}{\operatorname{det}\left(v_{1} v_{3}\right) \operatorname{det}\left(v_{2} v_{4}\right)}=\mu .
$$

Example. $v \in\left(\mathbb{C}^{2 \times 4}\right)^{0}$

v is fixed with cross ratio μ

and we may as well choose this v :

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & \mu
\end{array}\right]
$$

are equivalent if

$$
\frac{\operatorname{det}\left(\mathbf{x}_{1} \mathbf{x}_{4}\right) \operatorname{det}\left(\mathbf{x}_{2} \mathbf{x}_{3}\right)}{\operatorname{det}\left(\mathbf{x}_{1} \mathbf{x}_{3}\right) \operatorname{det}\left(\mathbf{x}_{2} \mathbf{x}_{4}\right)}=\mu
$$

Example. $v \in\left(\mathbb{C}^{2 \times 4}\right)^{0}$

v is fixed with cross ratio μ

and we may as well choose this v :

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & \mu
\end{array}\right]
$$

are equivalent if

$$
\frac{\operatorname{det}\left(\mathbf{x}_{1} \mathbf{x}_{4}\right) \operatorname{det}\left(\mathbf{x}_{2} \mathbf{x}_{3}\right)}{\operatorname{det}\left(\mathbf{x}_{1} \mathbf{x}_{3}\right) \operatorname{det}\left(\mathbf{x}_{2} \mathbf{x}_{4}\right)}=\mu
$$

$$
\left(x_{1} y_{4}-x_{4} y_{1}\right)\left(x_{2} y_{3}-x_{3} y_{2}\right)-\mu\left(x_{1} y_{3}-x_{3} y_{1}\right)\left(x_{2} y_{4}-x_{4} y_{2}\right)=0
$$

Easy: this single polynomial cuts out $\overline{[v]}$.
(In fact $\overline{[v]}$ has the largest possible dimension.)

Matroids

On the Combinatorics of linear dependency, H. Whitney (1935).

$$
\left[\begin{array}{lllllll}
1 & & & 1 & 1 & 1 & 0 \\
& 1 & & 1 & 1 & 0 & 1 \\
& & 1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Record which maximal minors are non-zero, as below:

$$
M(v)=\{123,124,125,126, \ldots, 567\}=\text { : the matroid of } v
$$

Points of [v] share a matroid.

What is the ideal of polynomials in $\mathbb{C}\left[x_{11}, \ldots, x_{r n}\right]$ that vanish on $\overline{[v]}$?

- What are its generators?

The ideal of [v]

What is the ideal of polynomials in $\mathbb{C}\left[x_{11}, \ldots, x_{r n}\right]$ that vanish on $\overline{[v]}$?

- What are its generators?
- What is its Hilbert series?

The ring $\mathbb{C}\left[x_{11}, \ldots, x_{r n}\right]$ is graded by $\mathbf{N}^{r} \times \mathbf{N}^{n}$,

$$
\operatorname{deg} x_{i j}=\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \in \mathbf{N}^{r} \times \mathbf{N}^{n}
$$

and the prime ideal I_{v} of $\overline{[v]}$ is homogeneous.

Definition.

The multigraded Hilbert series $\operatorname{Hilb}(v)$ of $\overline{[v]}$ is the generating function for the dimensions of the $\mathbf{N}^{r} \times \mathbf{N}^{n}$-graded pieces of

$$
\mathbb{C}\left[x_{11}, \ldots, x_{r n}\right] / I_{v}
$$

It is a generating function in variables u_{1}, \ldots, u_{r} and t_{1}, \ldots, t_{n}.

Why the Hilbert series?

- $\operatorname{Hilb}(v)$ answers many questions of this form:

Take a subvariety $X \subseteq \mathbb{C}^{r \times n}$ and ask
How many configurations in X are proj. equiv. to v ?

For example: resume $(r, n)=(2,4)$.
How many configurations of the form

$$
\left[\begin{array}{cccc}
8+12 s & 6+9 s & 9+6 s & 11+14 s \\
-3 s & -3+s & -1-s & -5 s+13
\end{array}\right]
$$

are in [v]? Answer: 4. This only depends on the matroid (i.e. on the non-parallel condition.)

Why the Hilbert series?

- $\operatorname{Hilb}(v)$ answers many questions about counting $X \cap \overline{[v]}$.
- It yields info on the irred. decomp. of the S_{n}-representation spanned by

$$
\left\{v_{w(1)} \otimes v_{w(2)} \otimes \cdots \otimes v_{w(n)}: w \in S_{n}\right\}
$$

\Longrightarrow partitions into independent sets [Berget]

- It gives the Tutte polynomial of the matroid. [F-Speyer]
- What are the generators of the ideal of $\overline{[v]}$?
- What is its Hilbert series?

Can the answers be determined from $M(v)$?

- Murphy's law suggests "no".
- More convincingly, Mnev's universality thm suggests this too.
- The Grassmannian situation suggests "maybe"...

Gale duality

To get at the ideal of $\overline{[v]}$ we need Gale duality.
$v=\left[\begin{array}{lllllll}1 & & & 1 & 1 & 1 & 0 \\ & 1 & & 1 & 1 & 0 & 1 \\ & & 1 & 1 & 0 & 1 & 1\end{array}\right] \rightsquigarrow v^{\perp}=\left[\begin{array}{ccccccc}-1 & -1 & -1 & 1 & & & \\ -1 & -1 & 0 & & 1 & & \\ -1 & 0 & -1 & & & 1 & \\ 0 & -1 & -1 & & & & 1\end{array}\right]$
$v^{\perp}=$ any matrix whose row space forms a basis for $\operatorname{ker}(v)$.

Theorem (Berget-F, 2011)

$$
v=\left[\begin{array}{lllllll}
1 & & & 1 & 1 & 1 & 0 \\
& 1 & & 1 & 1 & 0 & 1 \\
& & 1 & 1 & 0 & 1 & 1
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{lllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{3} & x_{6} & x_{7} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} & z_{7}
\end{array}\right]
$$

Theorem (by example)

The common vanishing locus of the following polynomials is $\overline{[v]}$:

Theorem (Berget-F, 2011)

$$
v=\left[\begin{array}{lllllll}
1 & & & 1 & 1 & 1 & 0 \\
& 1 & & 1 & 1 & 0 & 1 \\
& & 1 & 1 & 0 & 1 & 1
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{lllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{3} & x_{6} & x_{7} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} \\
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6} & z_{7}
\end{array}\right]
$$

Theorem (by example)

The common vanishing locus of the following polynomials is $\overline{[v]}$:
Take the 7 -by- 7 minors of the 12 -by- 7 matrix
[Kapranov '91]

AND ...

AND ... for all subconfigurations $v_{S} \subseteq v$, e.g.,

$$
v_{123567}^{\perp}=\left[\begin{array}{llllll}
1 & & & 1 & 1 & 0 \\
& 1 & & 1 & 0 & 1 \\
& & 1 & 0 & 1 & 1
\end{array}\right]
$$

take the $|S|$-by- $|S|$ minors of

$$
v_{S} \otimes \mathbf{X}_{S}=\left[\begin{array}{ccccc}
-1\left(\begin{array}{l}
x_{1} \\
y_{1} \\
y_{1}
\end{array}\right) & -1\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) & \mathbf{0} & \left(\begin{array}{l}
x_{5} \\
y_{5} \\
z_{5}
\end{array}\right) & \\
-1\left(\begin{array}{l}
x_{1} \\
x_{1} \\
y_{1}
\end{array}\right) & \mathbf{0} & -1\left(\begin{array}{l}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right) & & \left(\begin{array}{l}
x_{6} \\
y_{6} \\
z_{6}
\end{array}\right) \\
\mathbf{0} & -1\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) & -1\left(\begin{array}{l}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right) & & \\
\left(\begin{array}{l}
x_{7} \\
y_{7} \\
z_{7}
\end{array}\right)
\end{array}\right]
$$

Comments on the theorem.

- Conjecture (Berget-F). The ideal these polynomials generate is prime.

Theorem (Berget-F, 2011). If $r=2$ or $n=r+2$ and v has a connected matroid then the conj is true. In this case, the ideals come out determinantal.

- If v is rank 2 configuration of 4 vectors, recover cross ratio.

$$
\operatorname{det}\left(\mathbf{x}_{1} \mathbf{x}_{4}\right) \operatorname{det}\left(\mathbf{x}_{2} \mathbf{x}_{3}\right)-\mu \operatorname{det}\left(\mathbf{x}_{1} \mathbf{x}_{3}\right) \operatorname{det}\left(\mathbf{x}_{2} \mathbf{x}_{4}\right)=0
$$

Comments on the theorem.

- Conjecture (Berget-F). The ideal these polynomials generate is prime.

Theorem (Berget-F, 2011). If $r=2$ or $n=r+2$ and v has a connected matroid then the conj is true. In this case, the ideals come out determinantal.

- If v is rank 2 configuration of 4 vectors, recover cross ratio.

$$
\operatorname{det}\left(\mathbf{x}_{1} \mathbf{x}_{4}\right) \operatorname{det}\left(\mathbf{x}_{2} \mathbf{x}_{3}\right)-\mu \operatorname{det}\left(\mathbf{x}_{1} \mathbf{x}_{3}\right) \operatorname{det}\left(\mathbf{x}_{2} \mathbf{x}_{4}\right)=0
$$

- Dependence on the matroid: the size of v_{S}^{\perp} reflects rank v_{S}.

Back to the Hilbert series

Details in progress:

The matroid of v determines $\operatorname{Hilb}(v)$, the multigraded Hilbert series of the quotient ring

$$
\mathbb{C}\left[x_{11}, \ldots, x_{r n}\right] / I_{v}
$$

Back to the Hilbert series

Details in progress:

The matroid of v determines $\operatorname{Hilb}(v)$, the multigraded Hilbert series of the quotient ring

$$
\mathbb{C}\left[x_{11}, \ldots, x_{r n}\right] / I_{v}
$$

Our approach: Compare the variety $\overline{[v]}$ with a torus orbit on the Grassmannian, where we have [F-Speyer].
With Weyman's geometric technique, the comparison is a cohomology computation on toric vector bundles.
$\Longrightarrow \overline{[v]}$ has rational singularities.

Known cases

- $r=2$. For the uniform matroid, by our last theorem:

$$
\begin{aligned}
\operatorname{Hilb}(v)=1-s_{(2,2)}(u) & e_{4}(t)+s_{(3,2)}(u) e_{5}(t) \\
& -\left(2 s_{(4,2)}(u)+s_{(3,3)}(u)\right) e_{5}(t)+\ldots
\end{aligned}
$$

- $r=2$. For the uniform matroid, by our last theorem:

$$
\begin{aligned}
\operatorname{Hilb}(v)=1-s_{(2,2)}(u) & e_{4}(t)+s_{(3,2)}(u) e_{5}(t) \\
& -\left(2 s_{(4,2)}(u)+s_{(3,3)}(u)\right) e_{5}(t)+\ldots
\end{aligned}
$$

Parallel extensions suffice for every rank 2 configuration. In equivariant cohomology:

$$
\text { class of } \overline{[v]}=\sum_{k=1}^{n / 2} \max \left\{0, \mu_{1}^{\prime}+\cdots+\mu_{k}^{\prime}-2 k\right\} s_{(n-k-1, k)}(u)
$$

where μ_{k}^{\prime} is the number of parallelism classes of $\geq k$ points.

Known cases ctd.

- $r=2$.
- The uniform matroid, at least in eqvt. cohomology.
- Certain coefficients in an arbitrary configuration:

$$
\begin{aligned}
\operatorname{Hilb}(v) \equiv 1- & \sum_{D \in \mathcal{D}(M)} s_{\left(|D|-\operatorname{rk}(D), 1^{\operatorname{rk}(D)}\right)}(u) \prod_{j \in D} t_{j} \\
& \bmod \left\langle s_{\lambda}(u): \lambda \text { not a hook }\right\rangle+\left\langle t_{1}^{2}, \ldots, t_{n}^{2}\right\rangle,
\end{aligned}
$$

where $\mathcal{D}(M)$ denotes the dependent sets of the matroid of v.

Thanks for listening!

