Multi-cluster complexes

 FPSAC 2012Cesar Ceballos ${ }^{1,2}$ Jean-Philippe Labbé ${ }^{1,2}$ Christian Stump ${ }^{3}$

Berlin Mathematical School 2

	1	Leibniz
10	2	Universität
100	4	Hannover

July $30^{\text {th }} 2012$

A few motivations

- Is there a polytopal realization of the multi-associahedron? (Still open)
- How do cluster complexes of finite types are related to subword complexes?
- Do multi-triangulations have a generalization to finite Coxeter groups?

Plan of the talk

Triangulations \& multi-triangulations

Subword complexes and cluster complexes

Multi-cluster complexes

Triangulations

Definition

Given a convex m-gon, the dual associahedron, Δ_{m} : the simplicial complex for which
vertices $\longleftrightarrow \quad$ diagonals of the convex m-gon
r-faces $\longleftrightarrow r$-subsets of non-crossing diagonals facets \longleftrightarrow triangulations of the convex m-gon

Triangulations

Definition

Given a convex m-gon, the dual associahedron, Δ_{m} : the simplicial complex for which
vertices $\longleftrightarrow \quad$ diagonals of the convex m-gon
r-faces $\longleftrightarrow r$-subsets of non-crossing diagonals facets \longleftrightarrow triangulations of the convex m-gon

Triangulations

Definition

Given a convex m-gon, the dual associahedron, Δ_{m} : the simplicial complex for which
vertices $\longleftrightarrow \quad$ diagonals of the convex m-gon
r-faces $\longleftrightarrow r$-subsets of non-crossing diagonals
facets \qquad triangulations of the convex m-gon

Multi-triangulations

Definition

($k+1$)-crossing : $k+1$ pairwise crossing diagonals

Multi-triangulations

Definition

($k+1$)-crossing : $k+1$ pairwise crossing diagonals

Example of a 3-crossing:

Multi-triangulations

Definition

($k+1$)-crossing : $k+1$ pairwise crossing diagonals
Example of a 3-crossing:

Definition
Multi-triangulation (or k-triangulation): Maximal set of diagonals not containing a $(k+1)$-crossing

Multi-triangulations - An example

A 2-triangulation of the heptagon:

Simplicial complex of multi-triangulations

Definition
k-relevant diagonal : at least k vertices of the m-gon on each side of the diagonal

Simplicial complex of multi-triangulations

2-relevant diagonals:

Definition

k-relevant diagonal : at least k vertices of the m-gon on each side of the diagonal

Simplicial complex of multi-triangulations

2-relevant diagonals:

Definition

k-relevant diagonal : at least k vertices of the m-gon on each side of the diagonal

Simplicial complex of multi-triangulations

2-relevant diagonals:

Definition

k-relevant diagonal : at least k vertices of the m-gon on each side of the diagonal

Definition

$\Delta_{m, k}$: the simplicial complex of $(k+1)$-crossing free sets of k-relevant diagonals:
faces $\longleftrightarrow(k+1)$-crossing free sets of k-relevant diagonals

Simplicial complex $\Delta_{m, k}$ - Examples

Let $m=6$ and $k=2$

When $m=2 k+2, \Delta_{m, k}$ is a k-simplex.

Simplicial complex $\Delta_{m, k}$ - Examples

Let $m=6$ and $k=2$

When $m=2 k+2, \Delta_{m, k}$ is a k-simplex.

Simplicial complex $\Delta_{m, k}$ - Examples

Let $m=7$ and $k=2$

Simplicial complex $\Delta_{m, k}$ - Examples

Let $m=7$ and $k=2$

When $m=2 k+3, \Delta_{m, k}$ is a $2 k$-dimensional cyclic polytope on $2 k+3$ vertices.

Some properties of $\Delta_{m, k}$

- pure, vertex-decomposable simplicial complex (Dress-Koolen-Moulton 2002, Jonsson 2003, Stump 2011)
- facets are in bijection with k-fans of Dyck paths and with plane partitions of height k (Stump-Serrano 2012)
- Its Stanley-Reisner ring is an initial ideal for Pfaffians (Jonsson-Welker 2007)

In this talk

triangulations

 Type A clusters

In this talk

triangulations \downarrow Type A clusters

gen. triangulations
Type W clusters

In this talk

In this talk

Plan of the talk

Triangulations \& multi-triangulations

Subword complexes and cluster complexes

Multi-cluster complexes

Subword complexes

(W, S) finite Coxeter system of rank n
$Q=\left(q_{1}, \ldots, q_{r}\right)$ a word in S
$\pi \in W$

Subword complexes

(W, S) finite Coxeter system of rank n
$Q=\left(q_{1}, \ldots, q_{r}\right)$ a word in S
$\pi \in W$
Definition (Knutson-Miller, 2004)
The subword complex $\Delta(Q, \pi)$ is the simplicial complex for which
faces \longleftrightarrow subwords P of Q such that $Q \backslash P$ contains a reduced expression of π

Subword complexes

(W, S) finite Coxeter system of rank n
$Q=\left(q_{1}, \ldots, q_{r}\right)$ a word in S
$\pi \in W$
Definition (Knutson-Miller, 2004)
The subword complex $\Delta(Q, \pi)$ is the simplicial complex for which
faces \longleftrightarrow subwords P of Q such that $Q \backslash P$ contains a reduced expression of π

Theorem (Knutson-Miller, 2004)
Subword complexes are topological spheres or balls.

Subword complex - Example 1

$$
\begin{aligned}
& \text { Let } W=A_{2}=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \text {, } \\
& Q=\begin{array}{c}
\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right. \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}
\end{array} \text { and } \pi=w_{\circ}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] .
\end{aligned}
$$

Subword complex - Example 1

$$
\begin{gathered}
\text { Let } W=A_{2}=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \text {, } \\
Q=\begin{array}{c}
\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right) \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}
\end{array} \text { and } \pi=w_{\circ}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] . \\
q_{3}
\end{gathered}
$$

$\Delta(Q, \pi)$ is isomorphic to

- q_{1}

Subword complex - Example 1

$$
\begin{aligned}
& \text { Let } W=A_{2}=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2),(23)\},
\end{array}\right.\right. \\
& Q=\left(\begin{array}{c}
,, s_{1}, s_{2}, s_{1} \\
q_{1}, q_{2},,
\end{array}, \quad \text { and } \pi=w_{\circ}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] .\right. \\
& q_{3} \circ \underbrace{q_{2}}_{q_{1}}
\end{aligned}
$$

Subword complex - Example 1

$$
\begin{aligned}
& \text { Let } \left.W=A_{2}=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \text {, } \\
& Q=\begin{array}{c}
s_{1},,, s_{2}, s_{1} \\
, q_{2}, q_{3},
\end{array} \text { and } \pi=w_{\circ}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] . \\
& \Delta(Q, \pi) \text { is isomorphic to }
\end{aligned}
$$

$$
\begin{aligned}
& q_{4} \circ \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \hline
\end{aligned}
$$

Subword complex - Example 1

$$
\begin{aligned}
& \text { Let } W=A_{2}=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \text {, } \\
& Q=\left(\begin{array}{c}
s_{1}, s_{2},, q_{3}, q_{4},
\end{array} \text { and } \pi=w_{\circ}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] .\right. \\
& \Delta(Q, \pi) \text { is isomorphic to }
\end{aligned}
$$

Subword complex - Example 1

$$
\begin{aligned}
& \text { Let } W=A_{2}=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \text {, } \\
& Q=\left(\begin{array}{c}
s_{1}, s_{2}, s_{1},,, \quad,
\end{array}\right) \text { and } \pi=w_{0}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] . \\
& \Delta(Q, \pi) \text { is isomorphic to }
\end{aligned}
$$

Subword complex - Example 1

$$
\begin{aligned}
& \text { Let } W=A_{2}=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \text {, } \\
& Q=\left(\begin{array}{c}
, s_{2}, s_{1}, s_{2}, \quad,
\end{array}\right) \text { and } \pi=w_{\circ}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] .
\end{aligned}
$$

Subword complex - Example 1

$$
\begin{aligned}
& \text { Let } W=A_{2}=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \text {, } \\
& Q=\begin{array}{c}
\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right) \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}
\end{array} \text { and } \pi=w_{\circ}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right] .
\end{aligned}
$$

Subword complex - Example 2

$$
\begin{aligned}
& \text { Let } W=A_{3}=\mathbb{S}_{4}, S=\left\{s_{1}, s_{2}, s_{3}\right\}=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{ll}
3 & 4
\end{array}\right)\right\}, \\
& Q=\begin{array}{c}
\left(\begin{array}{c}
s_{1}, s_{2}, s_{3}, s_{1}, s_{2}, s_{3}, s_{1}, s_{2}, s_{1} \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{9}
\end{array}\right.
\end{array} \text { and } \pi=w_{0}=\left[\begin{array}{lll}
4 & 3 & 2
\end{array}\right] .
\end{aligned}
$$

Subword complex - Example 2

Let $W=A_{3}=\mathbb{S}_{4}, S=\left\{s_{1}, s_{2}, s_{3}\right\}=\left\{(12),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}\text { (} 4\end{array}\right)\right\}$,

$$
Q=\begin{gathered}
\left(s_{1}, s_{2}, s_{3}, s_{1}, s_{2}, s_{3}, s_{1}, s_{2}, s_{1}\right) \\
q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}, q_{9}
\end{gathered} \text { and } \pi=w_{\circ}=\left[\begin{array}{lll}
4 & 3 & 2
\end{array}\right] .
$$

$\Delta(Q, \pi)$ is isomorphic to

Subword complex - Example 2

Finite cluster complexes - necessary objects

The group W acts on a vector space V of dimension n.

Finite cluster complexes - necessary objects

$$
\Phi \subset V
$$

The group W acts on a vector space V of dimension n.
Φ root system

Finite cluster complexes - necessary objects

$$
\Phi^{+} \subset \Phi \subset V
$$

The group W acts on a vector space V of dimension n.

Φ	root system
Φ^{+}	positive roots

Finite cluster complexes - necessary objects

$$
\Delta \subset \Phi^{+} \subset \Phi \subset V
$$

The group W acts on a vector space V of dimension n.

Φ	root system
Φ^{+}	positive roots
Δ	simple roots

Finite cluster complexes - necessary objects

$$
\Delta \subset \Phi^{+} \subset \Phi \subset V
$$

The group W acts on a vector space V of dimension n.

Φ	root system
Φ^{+}	positive roots
Δ	simple roots
$\Phi_{\geq-1}$	almost positive roots: $\Phi^{+} \cup-\Delta$

Finite cluster complexes - necessary objects

$$
\Delta \subset \Phi^{+} \subset \Phi \subset V
$$

The group W acts on a vector space V of dimension n.

$$
\begin{array}{ll}
\Phi & \text { root system } \\
\Phi^{+} & \text {positive roots } \\
\Delta & \text { simple roots } \\
\Phi_{\geq-1} & \text { almost positive roots: } \Phi^{+} \cup-\Delta
\end{array}
$$

For $s \in S$, the involution $\sigma_{s}: \Phi_{\geq-1} \longrightarrow \Phi_{\geq-1}$ is given by

$$
\sigma_{s}(\beta)= \begin{cases}\beta & \text { if }-\beta \in \Delta \backslash\left\{\alpha_{s}\right\} \\ s(\beta) & \text { otherwise }\end{cases}
$$

Finite cluster complexes - Compatibility relations

$$
\begin{array}{cl}
c & \text { Coxeter element (i.e. } \prod_{s \in S} s \text {) } \\
W_{\langle s\rangle} & \text { the maximal standard parabolic subgroup generated by } S \backslash\{s\}
\end{array}
$$

Finite cluster complexes - Compatibility relations

c Coxeter element (i.e. $\prod_{s \in S} s$)
$W_{\langle s\rangle}$ the maximal standard parabolic subgroup generated by $S \backslash\{s\}$

Definition (Fomin-Zelevinsky 2003, Reading 2007)

There exists a family $\|_{c}$ of c-compatibility relations on $\Phi_{\geq-1}$ satisfying the following two properties:
(i) for $s \in S$ and $\beta \in \Phi_{\geq-1}$,

$$
-\alpha_{s} \|_{c} \beta \Leftrightarrow \beta \in\left(\Phi_{\langle s\rangle}\right)_{\geq-1},
$$

(ii) for $\beta_{1}, \beta_{2} \in \Phi_{\geq-1}$ and s being initial in c,

$$
\beta_{1}\left\|_{c} \beta_{2} \Leftrightarrow \sigma_{s}\left(\beta_{1}\right)\right\|_{s c s} \sigma_{s}\left(\beta_{2}\right) .
$$

Finite cluster complexes - Compatibility relations

c Coxeter element (i.e. $\prod_{s \in S} s$)
$W_{\langle s\rangle}$ the maximal standard parabolic subgroup generated by $S \backslash\{s\}$

Definition (Fomin-Zelevinsky 2003, Reading 2007)

There exists a family $\|_{c}$ of c-compatibility relations on $\Phi_{\geq-1}$ satisfying the following two properties:
(i) for $s \in S$ and $\beta \in \Phi_{\geq-1}$,

$$
-\alpha_{s} \|_{c} \beta \Leftrightarrow \beta \in\left(\Phi_{\langle s\rangle}\right)_{\geq-1},
$$

(ii) for $\beta_{1}, \beta_{2} \in \Phi_{\geq-1}$ and s being initial in c,

$$
\beta_{1}\left\|_{c} \beta_{2} \Leftrightarrow \sigma_{s}\left(\beta_{1}\right)\right\|_{s c s} \sigma_{s}\left(\beta_{2}\right) .
$$

A maximal subset of pairwise c-compatible almost positive roots is called c-cluster.

Finite cluster complexes - Definition

Definition (Fomin-Zelevinsky 2003, Reading 2007)
The c-cluster complex is the simplicial complex for which

$$
\begin{gathered}
\text { faces } \longleftrightarrow \quad \begin{array}{l}
\text { subsets of mutually c-compatible } \\
\text { almost positive roots }
\end{array}
\end{gathered}
$$

Finite cluster complexes - Definition

Definition (Fomin-Zelevinsky 2003, Reading 2007)
The c-cluster complex is the simplicial complex for which

$$
\begin{aligned}
\text { faces } \longleftrightarrow \quad \begin{array}{l}
\text { subsets of mutually c-compatible } \\
\text { almost positive roots }
\end{array}
\end{aligned}
$$

- All c-cluster complexes for the various Coxeter elements are isomorphic (Reading, 2007)
- In crystallographic types, they are isomorphic to the cluster complex as defined by Fomin-Zelevinsky.

Finite cluster complexes - Example

For $W=A_{3}$ and $c=s_{1} s_{2} s_{3}$, the c-cluster complex is

Finite cluster complexes - Example

For $W=A_{3}$ and $c=s_{1} s_{2} s_{3}$, the c-cluster complex is

Aim
Obtain cluster complexes of finite types as subword complexes.

Cluster complexes as subword complexes

$\mathbf{w}_{\circ}(\mathbf{c})$: the lexicographically first (as a sequence of positions) subword of

$$
\mathbf{c}^{\infty}=\mathbf{c c c} \ldots
$$

which is a reduced word for w_{0}.

Cluster complexes as subword complexes

$\mathbf{w}_{\circ}(\mathbf{c})$: the lexicographically first (as a sequence of positions) subword of

$$
\mathbf{c}^{\infty}=\mathbf{c c c} \ldots
$$

which is a reduced word for w_{0}.
Theorem (CLS, 2011)
The subword complex $\Delta\left(\mathbf{c w}_{\circ}(\mathbf{c}), w_{\circ}\right)$ is isomorphic to the c-cluster complex of type W.

Cluster complexes as subword complexes

$\mathbf{w}_{\circ}(c)$: the lexicographically first (as a sequence of positions) subword of

$$
\mathbf{c}^{\infty}=\mathbf{c c c} \ldots
$$

which is a reduced word for w_{0}.

Theorem (CLS, 2011)

The subword complex $\Delta\left(\mathbf{c w}_{\circ}(\mathbf{c}), w_{\circ}\right)$ is isomorphic to the c-cluster complex of type W.

Corollary

A subset C of $\Phi_{\geq-1}$ is a c-cluster if and only if the complement of the corresponding subword in $\mathbf{c w} \circ(\mathbf{c})=\left(c_{1}, \ldots, c_{n}, w_{1}, \ldots, w_{N}\right)$ represents a reduced expression for w_{0}.

Cluster complexes as subword complexes

$\mathbf{w}_{\circ}(c)$: the lexicographically first (as a sequence of positions) subword of

$$
\mathbf{c}^{\infty}=\mathbf{c c c} \ldots
$$

which is a reduced word for w_{0}.

Theorem (CLS, 2011)

The subword complex $\Delta\left(\mathbf{c w}_{\circ}(\mathbf{c}), w_{\circ}\right)$ is isomorphic to the c-cluster complex of type W.

Corollary

A subset C of $\Phi_{\geq-1}$ is a c-cluster if and only if the complement of the corresponding subword in $\mathbf{c w} \circ(\mathbf{c})=\left(c_{1}, \ldots, c_{n}, w_{1}, \ldots, w_{N}\right)$ represents a reduced expression for w_{0}.

- A similar result for crystallographic types is due to Igusa \& Schiffler (2010)

Plan of the talk

Triangulations \& multi-triangulations

Subword complexes and cluster complexes

Multi-cluster complexes

Multi-cluster complex - Definition

Definition

The multi-cluster complex $\Delta_{c}^{k}(W)$ is the subword complex $\Delta\left(\mathbf{c}^{k} \mathbf{w}_{\circ}(\mathbf{c}), w_{\circ}\right)$ of type W.

Multi-cluster complex - Definition

Definition

The multi-cluster complex $\Delta_{c}^{k}(W)$ is the subword complex $\Delta\left(\mathbf{c}^{k} \mathbf{w}_{\circ}(\mathbf{c}), w_{\circ}\right)$ of type W.

- All multi-cluster complexes are spheres (Knutson-Miller).

Multi-cluster complex - Definition

Definition

The multi-cluster complex $\Delta_{c}^{k}(W)$ is the subword complex $\Delta\left(\mathbf{c}^{k} \mathbf{w}_{\circ}(\mathbf{c}), w_{\circ}\right)$ of type W.

- All multi-cluster complexes are spheres (Knutson-Miller).

Theorem (CLS, 2011)
All multi-cluster complexes $\Delta_{c}^{k}(W)$ for the various Coxeter elements are isomorphic.

Characterization of sorting words $\mathbf{w}_{0}(\mathbf{c})$

Question (Hohlweg-Lange-Thomas, 2011)
Is there a combinatorial description of $\mathbf{w}_{\circ}(\mathbf{c})$?

Characterization of sorting words $\mathbf{w}_{\circ}(\mathbf{c})$

Question (Hohlweg-Lange-Thomas, 2011)
Is there a combinatorial description of $\mathbf{w}_{\circ}(\mathbf{c})$?
Given a word \mathbf{w} in S, let $|\mathbf{w}|_{s}$ denote the number of occurrences of the letter s in \mathbf{w}.

Let $\psi: S \rightarrow S$ be the involution $\psi(s)=w_{\circ}^{-1} s w_{\circ}$.
Theorem (CLS, 2011)
Let $\mathbf{w}_{\circ}(\mathbf{c})$ be the c-sorting word of w_{\circ} and let s, t be neighbors in the Coxeter graph such that s comes before t in \mathbf{c}. Then

$$
\left|\mathbf{w}_{\circ}(\mathbf{c})\right|_{s}= \begin{cases}\left|\mathbf{w}_{\circ}(\mathbf{c})\right|_{t} & \text { if } \psi(s) \text { comes before } \psi(t) \text { in } c \\ \left|\mathbf{w}_{\circ}(\mathbf{c})\right|_{t}+1 & \text { if } \psi(s) \text { comes after } \psi(t) \text { in } c .\end{cases}
$$

Multi-cluster complexes of type A and B

Theorem (Pilaud-Pocchiola 2012, Stump 2011)

$$
\begin{aligned}
& \text { The multi-cluster } \\
& \text { complex } \Delta_{c}^{k}\left(A_{n}\right)
\end{aligned} \begin{gathered}
\text { simplicial complex } \\
\\
\\
\text { of } k \text {-triangulations of a } \\
\text { convex m-gon }
\end{gathered}
$$

where $m=n+2 k+1$.

Multi-cluster complexes of type A and B

Theorem (Pilaud-Pocchiola 2012, Stump 2011)

$$
\begin{gathered}
\text { The multi-cluster } \\
\text { complex } \Delta_{c}^{k}\left(A_{n}\right)
\end{gathered} \begin{gathered}
\text { simplicial complex } \\
\text { of } k \text {-triangulations of a } \\
\text { convex } m \text {-gon }
\end{gathered}
$$

where $m=n+2 k+1$.
Theorem (CLS, 2011)

> The multi-cluster complex $\Delta_{c}^{k}\left(B_{m-k}\right)$ $\begin{gathered}\text { simplicial complex of centrally } \\ \text { symmetric } k \text {-triangulations } \\ \text { of a regular convex } 2 m \text {-gon }\end{gathered}$

Multi-cluster complexes of type A and B

Theorem (Pilaud-Pocchiola 2012, Stump 2011)

$$
\begin{aligned}
& \text { The multi-cluster } \\
& \text { complex } \Delta_{c}^{k}\left(A_{n}\right)
\end{aligned} \begin{gathered}
\text { simplicial complex } \\
\text { of } k \text {-triangulations of a } \\
\text { convex m-gon }
\end{gathered}
$$

where $m=n+2 k+1$.
Theorem (CLS, 2011)

> The multi-cluster complex $\Delta_{c}^{k}\left(B_{m-k}\right) \cong \begin{gathered}\text { simplicial complex of centrally } \\ \text { symmetric } k \text {-triangulations } \\ \text { of a regular convex } 2 m \text {-gon }\end{gathered}$

Corollary
$\Delta_{m, k}^{\text {sym }}$ is a vertex-decomposable simplicial sphere.

Multi-cluster complex of type B - Example

Let $m=5$ and $k=2$ and $B_{3}: \quad \stackrel{4}{s_{1}} \quad \underset{s_{2}}{\sim} \quad s_{3}$

Example of centrally symmetric 2-triangulation of a 10-gon

Multi-cluster complex of type B - Example

$$
\begin{aligned}
& \text { Let } m=5 \text { and } k=2 \text { and } B_{3}: \quad s_{s_{1}}^{-4} s_{2} \\
& \text { If } c=s_{1} s_{2} s_{3} \text {, then } \mathbf{w}_{\circ}(\mathbf{c})=\left(s_{1} s_{2} s_{3}\right)^{3} \\
& \left(s_{1}, s_{2}, s_{3}\left|s_{1}, s_{2}, s_{3}\right| s_{1}, s_{2}, s_{3}, s_{1}, s_{2}, s_{3}, s_{1}, s_{2}, s_{3}\right)
\end{aligned}
$$

Example of centrally symmetric 2-triangulation of a 10-gon

Multi-cluster complex of type B - Example

Let $m=5$ and $k=2$ and B_{3} :

If $c=s_{1} s_{2} s_{3}$, then $\mathbf{w}_{\circ}(\mathbf{c})=\left(s_{1} s_{2} s_{3}\right)^{3}$
$\left(s_{1}, s_{2}, s_{3}\left|s_{1}, s_{2}, s_{3}\right| s_{1}, s_{2}, s_{3}, s_{1}, s_{2}, s_{3}, s_{1}, s_{2}, s_{3}\right)$ \downarrow Bijection

$$
[6,1],[6,2],[6,3][7,2],[7,3],[7,4][[8,3],[8,4],[8,5],[9,4],[9,5],[9,6],[10,5],[10,6],[10,7]
$$

$$
[1,6],[1,7],[1,8] \mid[2,7],[2,8],[2,9][[3,8],[3,9],[3,10],[4,9],[4,10],[4,1],[5,10],[5,1],[5,2]
$$

Example of centrally symmetric 2-triangulation of a 10-gon

Multi-cluster complex of type B - Example

Let $m=5$ and $k=2$ and B_{3} :

If $c=s_{1} s_{2} s_{3}$, then $\mathbf{w}_{\circ}(\mathbf{c})=\left(s_{1} s_{2} s_{3}\right)^{3}$
$\left(\quad, s_{2},\left|s_{1}, s_{2}, s_{3}\right|, s_{2}, \quad, s_{1}, s_{2}, s_{1}, \quad, s_{3}\right)$
\uparrow Bijection

| $[6,1]$, | ,$[6,3] \mid$ | , | $\mid[8,3]$, | ,$[8,5]$, | , | ,$[9,6]$, | ,$[10,6]$, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $[1,6]$, | ,$[1,8] \mid$ | , | $\mid[3,8]$, | ,$[3,10]$, | , | ,$[4,1]$, | ,$[5,1]$, |

Example of centrally symmetric 2-triangulation of a 10-gon

Multi-cluster complexes of type $I_{2}(m)$

Question
Is the multi-cluster complex the boundary of a polytope?

Multi-cluster complexes of type $I_{2}(m)$

Question
Is the multi-cluster complex the boundary of a polytope?
Theorem (CLS, 2011)

$$
\begin{array}{cc}
\text { The multi-cluster } & \text { boundary complex of a } \\
\text { complex } \Delta_{c}^{k}\left(I_{2}(m)\right) & \cong \\
2 k \text {-dimensional cyclic polytope } \\
\text { on } 2 k+m \text { vertices }
\end{array}
$$

- Using Gale evenness criterion. Obtained also independently by Armstrong.

Multi-cluster complexes of type $I_{2}(m)$

Question

Is the multi-cluster complex the boundary of a polytope?
Theorem (CLS, 2011)

$$
\begin{array}{cc}
\text { The multi-cluster } & \text { boundary complex of a } \\
\text { complex } \Delta_{c}^{k}\left(I_{2}(m)\right) & \cong \\
2 k \text {-dimensional cyclic polytope } \\
\text { on } 2 k+m \text { vertices }
\end{array}
$$

- Using Gale evenness criterion. Obtained also independently by Armstrong.

Corollary

The multi-associahedron of type $I_{2}(m)$ is the simple polytope given by the dual of a $2 k$-dimensional cyclic polytope on $2 k+m$ vertices.

Universality and polytopality of $\Delta_{c}^{k}(W)$

Question (Knutson-Miller, 2004)
Charaterize all simplicial spheres that can be realized as a subword complex.

Universality and polytopality of $\Delta_{c}^{k}(W)$

Question (Knutson-Miller, 2004)
Charaterize all simplicial spheres that can be realized as a subword complex.

Theorem (CLS, 2011)
A simplicial sphere is realized as
a subword complex
it is the link of a face of a multi-cluster complex $\Delta_{c}^{k}(W)$.

Universality and polytopality of $\Delta_{c}^{k}(W)$

Question (Knutson-Miller, 2004)
Charaterize all simplicial spheres that can be realized as a subword complex.

Theorem (CLS, 2011)
A simplicial sphere is realized as
a subword complex
it is the link
of a face of a multi-cluster complex $\Delta_{c}^{k}(W)$.

Corollary

The following two statements are equivalent.
(i) Every spherical subword complex is polytopal.
(ii) Every multi-cluster complex is polytopal.

Open problems and Conjectures

Open problem
Find multi-Catalan numbers counting the number of facets in the multi-cluster complex.

Open problems and Conjectures

Open problem
Find multi-Catalan numbers counting the number of facets in the multi-cluster complex.

Conjecture
Minimal non-faces of the multi-cluster complex $\Delta_{c}^{k}(W)$ have cardinality $k+1$.

Open problems and Conjectures

Open problem
Find multi-Catalan numbers counting the number of facets in the multi-cluster complex.

Conjecture
Minimal non-faces of the multi-cluster complex $\Delta_{c}^{k}(W)$ have cardinality $k+1$.

Conjecture (\Rightarrow Knutson-Miller'04, Jonsson'05, Soll-Welker'09) The multi-cluster complex is the boundary complex of a simplicial polytope.

Open problems and Conjectures

Open problem
Find multi-Catalan numbers counting the number of facets in the multi-cluster complex.

Conjecture

Minimal non-faces of the multi-cluster complex $\Delta_{c}^{k}(W)$ have cardinality $k+1$.

Conjecture (\Rightarrow Knutson-Miller'04, Jonsson'05, Soll-Welker'09) The multi-cluster complex is the boundary complex of a simplicial polytope.

- True for $k=1$: Hohlweg-Lange-Thomas (2011), Pilaud-Stump (2012);
- True for $I_{2}(m), k \geq 1$: cyclic polytope;
- True for $A_{3}, k=2$: Bokowski-Pilaud (2009).
（ Ceballos，L．\＆Stump，Subword complexes，cluster complexes， and generalized multi－associahedra，arXiv：1108．1776．

Merci！Thank you！Grazie！Danke！Gracias！ ありがとう！

JPL is founded by：
Berlin
Mathematical School

