Asymptotical behaviour of roots in infinite Coxeter groups

Vivien RIPOLL

LaCIM, Université du Québec à Montréal

FPSAC 2012, July 30th Nagoya University, Nagoya, Japan

Joint work with Christophe Hohlweg (UQÀM) and Jean-Philippe Labbé (FU Berlin)

(ロ) (同) (三) (三) (三) (○) (○)

• V: a real vector space, of finite dimension n

• B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for *V*;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha,\beta) = -\cos\left(rac{\pi}{m}
 ight)$ for some $m \in \mathbb{Z}_{\geq 2}$

(日) (日) (日) (日) (日) (日) (日)

• or $B(lpha,eta)\leq -1$.

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for *V*;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha, \beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$, • or $B(\alpha, \beta) \leq -1$.

(日) (日) (日) (日) (日) (日) (日)

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for *V*;
 - $\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$
 - $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha,\beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,

(日) (日) (日) (日) (日) (日) (日)

• or $B(\alpha, \beta) \leq -1$.

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

• $\forall \alpha \neq \beta \in \Delta$:

• either $B(\alpha,\beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,

・ロト・日本・日本・日本・日本

• or $B(\alpha,\beta) \leq -1$.

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

• $\forall \alpha \neq \beta \in \Delta$:

• either $B(\alpha, \beta) = -\cos\left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,

• or $B(\alpha, \beta) \leq -1$.

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

• $\forall \alpha \neq \beta \in \Delta$:

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- V: a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B):

- 1. Start with a simple system Δ :
 - Δ is a basis for V;

•
$$\forall \alpha \in \Delta, B(\alpha, \alpha) = 1;$$

- $\forall \alpha \neq \beta \in \Delta$:
 - either $B(\alpha,\beta) = -\cos\left(rac{\pi}{m}
 ight)$ for some $m \in \mathbb{Z}_{\geq 2}$,

(日) (日) (日) (日) (日) (日) (日)

• or $B(\alpha,\beta) \leq -1$.

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha: & m{V} &
ightarrow & m{V} \ & m{v} & \mapsto & m{v} - m{2B}(lpha,m{v}) \ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \ \alpha \in \Delta\}.$

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

 $\Phi:=W(\Delta)$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha &\colon &m{V}& o&m{V}\ &m{v}&\mapsto&m{v}-m{2B}(lpha,m{v})\ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

 $\Phi := W(\Delta)$.

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha &\colon &m{V}& o&m{V}\ &m{v}&\mapsto&m{v}-m{2B}(lpha,m{v})\ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

 $\Phi := W(\Delta)$.

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha &\colon &m{V}& o&m{V}\ &m{v}&\mapsto&m{v}-m{2B}(lpha,m{v})\ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

3. Construct the *B*-reflection group $W := \langle S \rangle$.

4. Act by W on Δ to construct the root system

 $\Phi := W(\Delta)$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha &\colon &m{V}& o&m{V}\ &m{v}&\mapsto&m{v}-m{2B}(lpha,m{v})\ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

- **3**. Construct the *B*-reflection group $W := \langle S \rangle$.
- **4**. Act by W on Δ to construct the root system

 $\Phi := W(\Delta)$.

(ロ) (同) (三) (三) (三) (○) (○)

2. For each $\alpha \in \Delta$, define the *B*-reflection s_{α} :

$$egin{array}{rcl} m{s}_lpha &\colon &m{V}& o&m{V}\ &m{v}&\mapsto&m{v}-m{2B}(lpha,m{v})\ lpha. \end{array}$$

Check: $s_{\alpha}(\alpha) = -\alpha$, and s_{α} fixes pointwise α^{\perp} . Notation: $S = \{s_{\alpha}, \alpha \in \Delta\}$.

- **3**. Construct the *B*-reflection group $W := \langle S \rangle$.
- **4**. Act by W on Δ to construct the root system

 $\Phi := W(\Delta) .$

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha}s_{\beta}$ is *m* if $B(\alpha,\beta) = -\cos(\pi/m)$, and ∞ if $B(\alpha,\beta) \leq -1$.
- Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha}s_{\beta}$ is *m* if $B(\alpha,\beta) = -\cos(\pi/m)$, and ∞ if $B(\alpha,\beta) \leq -1$.
- Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha}s_{\beta}$ is *m* if $B(\alpha,\beta) = -\cos(\pi/m)$, and ∞ if $B(\alpha,\beta) \leq -1$.
- Let $\Phi^+ := \Phi \cap \text{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha}s_{\beta}$ is *m* if $B(\alpha,\beta) = -\cos(\pi/m)$, and ∞ if $B(\alpha,\beta) \leq -1$.
- Let $\Phi^+ := \Phi \cap \text{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha}s_{\beta}$ is *m* if $B(\alpha,\beta) = -\cos(\pi/m)$, and ∞ if $B(\alpha,\beta) \leq -1$.
- Let $\Phi^+ := \Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi = \Phi^+ \sqcup (-\Phi^+)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Finite root systems are well studied : Φ is finite \Leftrightarrow *W* is finite (\Leftrightarrow *B* is positive definite).

What happens when Φ is infinite?

Simplest example in rank 2:

Matrix of *B* in the basis
$$(\alpha, \beta)$$
: $\begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix}$

Finite root systems are well studied : Φ is finite \Leftrightarrow *W* is finite (\Leftrightarrow *B* is positive definite).

What happens when Φ is infinite?

Simplest example in rank 2:

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Finite root systems are well studied : Φ is finite \Leftrightarrow *W* is finite (\Leftrightarrow *B* is positive definite).

What happens when Φ is infinite?

Simplest example in rank 2:

Matrix of *B* in the basis
$$(\alpha, \beta)$$
: $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\rho_n = (n+1)\alpha + n\beta$

Observations

- The **norms** of the roots tend to ∞ ;
- The **directions** of the roots tend to the direction of the isotropic cone *Q* of *B*:

$$\boldsymbol{Q}:=\{\boldsymbol{v}\in\boldsymbol{V},\;\boldsymbol{B}(\boldsymbol{v},\boldsymbol{v})=\boldsymbol{0}\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(in the example the equation is $v_{\alpha}^2 + v_{\beta}^2 - 2v_{\alpha}v_{\beta} = 0$, and $Q = \text{span}(\alpha + \beta)$.)

What if $B(\alpha, \beta) < -1$?

• Matrix of B: $\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\mathbf{e}_{\mathbf{x}} \underbrace{\mathbf{e}_{\alpha}}_{\mathbf{x}} \mathbf{e}_{\beta}$

What if $B(\alpha, \beta) < -1$? • Matrix of $B: \begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$ with $\kappa < -1$. We write $\begin{array}{c} \infty(\kappa) \\ \bullet \\ s_{\alpha} & \bullet \\ s_{\beta} \end{array}$

What if $B(\alpha, \beta) < -1$?

• Matrix of *B*:
$$\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$$
 with $\kappa < -1$. We write $\begin{array}{c} \bullet \\ \bullet \\ s_{\alpha} \\ s_{\beta} \end{array}$

What if $B(\alpha, \beta) < -1$?

• Matrix of *B*:
$$\begin{bmatrix} 1 & \kappa \\ \kappa & 1 \end{bmatrix}$$
 with $\kappa < -1$. We write $\begin{array}{c} \bullet \\ \bullet \\ s_{\alpha} \\ s_{\beta} \end{array}$

How to see examples of higher rank?

 $\rho'_n = n\alpha + (n+1)\beta$

 α

$$Q$$

$$\rho'_{4} \uparrow \qquad \rho_{4} \uparrow \qquad \rho_{4} \uparrow \qquad \rho_{4} \uparrow \qquad \rho_{3} = s_{\alpha}s_{\beta}(\alpha)$$

$$= 3\alpha + 2\beta$$

$$s_{\beta}(\alpha) = \rho'_{2} \uparrow \qquad \rho_{2} = s_{\alpha}(\beta)$$

$$= \beta + 2\alpha$$

$$\beta = \rho'_{1} \qquad \alpha = \rho_{1}$$

$$(a) B(\alpha, \beta) = -1$$

'Cut' the rays of Φ^+ by an affine hyperplane $= \{ v \in V \mid \sum v_{\alpha} = 1 \}$ $\alpha \in \Delta$

 $\overline{\rho_n} = (n+1)\alpha + n\beta$

How to see examples of higher rank?

Affine hyperplane $V_1 = \{v \in V \mid \sum_{\alpha \in \Delta} v_\alpha = 1\}$ Normalized isotropic cone: $\hat{Q} := Q \cap V_1$ Normalized roots $\hat{\rho} := \rho / \sum_{\alpha \in \Delta} \rho_\alpha$

 $\beta = \rho_1' \qquad \widehat{\rho_2} \qquad \dots \qquad \widehat{\rho_2} \qquad \alpha = \rho_1$ $\widehat{Q^-} \qquad V_1$

(a) $B(\alpha,\beta) = -1$

(b) $B(\alpha, \beta) = -1.01 < -1$

The displayed size of a normalized root (in red in this last picture) is decreasing as the depth of the root is increasing. $dp(\rho) = 1 + \min\{k \mid \rho = s_{\alpha_1} s_{\alpha_2} \dots s_{\alpha_k} (\alpha_{k+1}), \\ \alpha_1, \dots, \alpha_k, \alpha_{k+1} \in \Delta\}.$

The "limit roots" lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- 2) if the sequence of normalized root $\widehat{\rho}_n$ has a limit ℓ , then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)

 \rightsquigarrow **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right)$$
 ("limit roots").

The "limit roots" lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- 2) if the sequence of normalized root $\widehat{\rho_n}$ has a limit ℓ , then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)

 \rightsquigarrow **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right)$$
 ("limit roots")

(日) (日) (日) (日) (日) (日) (日)

The "limit roots" lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)

Let Φ be a root system for an (infinite) Coxeter group, and $(\rho_n)_{n \in \mathbb{N}}$ an injective sequence in Φ . Then:

- $||\rho_n||$ tends to ∞ (for any norm on V);
- 2) if the sequence of normalized root $\widehat{\rho_n}$ has a limit ℓ , then

 $\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta).$

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)

→ **Problem:** understand the set of possible limits, i.e., the accumulation points of $\widehat{\Phi}$:

$$E(\Phi) := \operatorname{Acc}\left(\widehat{\Phi}\right)$$
 ("limit roots").

(日) (日) (日) (日) (日) (日) (日)

How to construct some particular limit roots

Take two roots ρ_1, ρ_2 in $\Phi \rightsquigarrow$ get a rank 2 reflection subgroup of W, and a root subsystem Φ' . Note:

- $\widehat{\Phi}' \subset L(\widehat{\rho_1}, \widehat{\rho_2});$
- the isotropic cone for Φ' is $Q \cap \text{span}(\rho_1, \rho_2)$;
- \Rightarrow Limit roots for Φ' : $E(\Phi') = Q \cap L(\widehat{\rho_1}, \widehat{\rho_2})$ (0,1 or 2 points).

Definition

We define the set $E_2(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E(\Phi')$, for Φ' a root subsystem of rank 2 of Φ . Equivalently,

$$E_2(\Phi) := \bigcup_{
ho_1,
ho_2 \in \Phi} L(\widehat{
ho_1}, \widehat{
ho_2}) \cap Q.$$

Note: E_2 is countable.

Theorem (Hohlweg-Labbé-R.)

The set of dihedral limit roots E_2 is dense in E.

• *E* is closed, so $E = \overline{E_2}$;

• in general, E_2 is not equal to E. In fact sometimes $E = \widehat{Q}$!

・ロト・日本・日本・日本・日本・日本

Definition

We define the set $E_2(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E(\Phi')$, for Φ' a root subsystem of rank 2 of Φ . Equivalently,

$$E_2(\Phi) := \bigcup_{
ho_1,
ho_2 \in \Phi} L(\widehat{
ho_1}, \widehat{
ho_2}) \cap Q.$$

Note: E_2 is countable.

Theorem (Hohlweg-Labbé-R.)

The set of dihedral limit roots E_2 is dense in E.

• *E* is closed, so $E = \overline{E_2}$;

• in general, E_2 is not equal to E. In fact sometimes $E = \widehat{Q}$!

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ へ ⊙

Definition

We define the set $E_2(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E(\Phi')$, for Φ' a root subsystem of rank 2 of Φ . Equivalently,

$$E_2(\Phi) := \bigcup_{
ho_1,
ho_2 \in \Phi} L(\widehat{
ho_1}, \widehat{
ho_2}) \cap Q.$$

Note: *E*₂ is countable.

```
Theorem (Hohlweg-Labbé-R.)
```

The set of dihedral limit roots E_2 is dense in E.

- *E* is closed, so $E = \overline{E_2}$;
- in general, E_2 is not equal to E. In fact sometimes $E = \widehat{Q}$!

Definition

We define the set $E_2(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E(\Phi')$, for Φ' a root subsystem of rank 2 of Φ . Equivalently,

$$E_2(\Phi) := \bigcup_{
ho_1,
ho_2 \in \Phi} L(\widehat{
ho_1}, \widehat{
ho_2}) \cap Q.$$

Note: E_2 is countable.

```
Theorem (Hohlweg-Labbé-R.)
```

The set of dihedral limit roots E_2 is dense in E.

- *E* is closed, so $E = \overline{E_2}$;
- in general, E_2 is not equal to E. In fact sometimes $E = \hat{Q}$!

- How does *E* behave in regard to restriction to parabolic subgroups (*E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general!)
- Natural action of *W* on *E*, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study conv(*E*), which equals the closure of Dyer's "imaginary cone".

- How does *E* behave in regard to restriction to parabolic subgroups (*E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general!)
- Natural action of *W* on *E*, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study conv(*E*), which equals the closure of Dyer's "imaginary cone".

- How does *E* behave in regard to restriction to parabolic subgroups (*E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general!)
- Natural action of *W* on *E*, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study conv(*E*), which equals the closure of Dyer's "imaginary cone".

- How does *E* behave in regard to restriction to parabolic subgroups (*E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general!)
- Natural action of *W* on *E*, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study conv(*E*), which equals the closure of Dyer's "imaginary cone".

- How does *E* behave in regard to restriction to parabolic subgroups (*E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general!)
- Natural action of *W* on *E*, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study conv(*E*), which equals the closure of Dyer's "imaginary cone".

- How does *E* behave in regard to restriction to parabolic subgroups (*E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general!)
- Natural action of *W* on *E*, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.

- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study conv(E), which equals the closure of Dyer's "imaginary cone".

- How does *E* behave in regard to restriction to parabolic subgroups (*E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general!)
- Natural action of *W* on *E*, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study conv(*E*), which equals the closure of Dyer's "imaginary cone".

Thank you!

- How does *E* behave in regard to restriction to parabolic subgroups (*E*(Φ_I) ≠ *E*(Φ) ∩ *V_I* in general!)
- Natural action of *W* on *E*, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x} = E$?
- Study conv(*E*), which equals the closure of Dyer's "imaginary cone".

Thank you!

A fractal phenomenon? (conjectures/questions, work in progress with Ch. Hohlweg) If $\widehat{Q} \subseteq \operatorname{conv}(\Delta)$, then $E(\Phi) = \widehat{Q}$? In general : $E(\Phi) = \widehat{Q} \setminus$ all the images by the action of Wof the parts of \widehat{Q} outside the simplex, i.e.:

 $E(\Phi) = \widehat{Q} \cap \bigcap_{w \in W} w \cdot \operatorname{conv}(\Delta) \quad ?$

