Asymptotical behaviour of roots in infinite Coxeter groups

Vivien Ripoll
LaCIM, Université du Québec à Montréal

FPSAC 2012, July 30th Nagoya University, Nagoya, Japan

Joint work with Christophe Hohlweg (UQÀM) and Jean-Philippe Labbé (FU Berlin)

What is a root system? (in this talk)

- V: a real vector space, of finite dimension n
- B : a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ :

What is a root system? (in this talk)

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

What is a root system? (in this talk)

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:

What is a root system? (in this talk)

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;

What is a root system? (in this talk)

- V : a real vector space, of finite dimension n
- B: a symmetric bilinear form on V

Construction of a root system in (V, B) :

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:
- either $B(\alpha, \beta)=-\cos \left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
- or $B(\alpha, \beta) \leq-1$.

What is a root system? (in this talk)

- V : a real vector space, of finite dimension n
- B : a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:
- either $B(\alpha, \beta)=-\cos \left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
- or $B(\alpha, \beta) \leq-1$.

What is a root system? (in this talk)

- V : a real vector space, of finite dimension n
- B : a symmetric bilinear form on V

Construction of a root system in (V, B):

1. Start with a simple system Δ :

- Δ is a basis for V;
- $\forall \alpha \in \Delta, B(\alpha, \alpha)=1$;
- $\forall \alpha \neq \beta \in \Delta$:
- either $B(\alpha, \beta)=-\cos \left(\frac{\pi}{m}\right)$ for some $m \in \mathbb{Z}_{\geq 2}$,
- or $B(\alpha, \beta) \leq-1$.

What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s}_{\alpha}: & V & \rightarrow & V \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $s_{\alpha}(\alpha)=-\alpha$, and s_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $\boldsymbol{w s}_{\alpha} w^{-1}$ is the B-reflection associated to the root ρ.

What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
s_{\alpha}: & V & \rightarrow & V \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on \wedge to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} w^{-1}$ is the B-reflection associated to the root ρ.

What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s} \alpha_{\alpha}: & \boldsymbol{V} & \rightarrow & \boldsymbol{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} w^{-1}$ is the B-reflection associated to the root ρ.

What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s} \alpha_{\alpha}: & \boldsymbol{V} & \rightarrow & \boldsymbol{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system
$\Phi:=W(\Delta)$
Note: if $\rho=W(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} W^{-1}$ is the B-reflection associated to the root ρ.

What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s}_{\alpha}: & \boldsymbol{V} & \rightarrow & \boldsymbol{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=W(\alpha)$ (with $\alpha \in \Delta), w s_{\alpha} W^{-1}$ is the B-reflection associated to the root ρ.

What is a root system?

2. For each $\alpha \in \Delta$, define the B-reflection \boldsymbol{s}_{α} :

$$
\begin{array}{cccc}
\boldsymbol{s}_{\alpha}: & \boldsymbol{V} & \rightarrow & \boldsymbol{V} \\
& \boldsymbol{v} & \mapsto & v-2 B(\alpha, v) \alpha .
\end{array}
$$

Check: $\boldsymbol{s}_{\alpha}(\alpha)=-\alpha$, and \boldsymbol{s}_{α} fixes pointwise α^{\perp}.
Notation: $S=\left\{s_{\alpha}, \alpha \in \Delta\right\}$.
3. Construct the B-reflection group $W:=\langle S\rangle$.
4. Act by W on Δ to construct the root system

$$
\Phi:=W(\Delta) .
$$

Note: if $\rho=w(\alpha)$ (with $\alpha \in \Delta$), $w s_{\alpha} W^{-1}$ is the B-reflection associated to the root ρ.

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha} s_{\beta}$ is m if $B(\alpha, \beta)=-\cos (\pi / m)$, and ∞ if $B(\alpha, \beta) \leq-1$.
- Let $\Phi^{+}:=\Phi \cap \operatorname{cone}(\triangle)$. Then: $\phi=\phi^{+} \sqcup\left(-\phi^{+}\right)$.

> Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha} s_{\beta}$ is m if $B(\alpha, \beta)=-\cos (\pi / m)$, and ∞ if $B(\alpha, \beta) \leq-1$.
- Let $\Phi^{+}:=\Phi \cap \operatorname{cone}(\triangle)$. Then: $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$.

> Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha} \boldsymbol{s}_{\beta}$ is m if $B(\alpha, \beta)=-\cos (\pi / m)$, and ∞ if $B(\alpha, \beta) \leq-1$.
- Let $\Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$.

> Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha} \boldsymbol{s}_{\beta}$ is m if $B(\alpha, \beta)=-\cos (\pi / m)$, and ∞ if $B(\alpha, \beta) \leq-1$.
- Let $\Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$.

> Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Coxeter group and root system

Proposition (Krammer)

- (W, S) is a Coxeter system.
- The order of $s_{\alpha} \boldsymbol{s}_{\beta}$ is m if $B(\alpha, \beta)=-\cos (\pi / m)$, and ∞ if $B(\alpha, \beta) \leq-1$.
- Let $\Phi^{+}:=\Phi \cap \operatorname{cone}(\Delta)$. Then: $\Phi=\Phi^{+} \sqcup\left(-\Phi^{+}\right)$.

Note: Conversely, from any Coxeter system it is possible to construct a root system, using the classical geometric representation [Tits].

Infinite root systems

Finite root systems are well studied :
Φ is finite $\Leftrightarrow W$ is finite ($\Leftrightarrow B$ is positive definite).
What happens when Φ is infinite?
Simplest example in rank 2:

Infinite root systems

Finite root systems are well studied:
Φ is finite $\Leftrightarrow W$ is finite ($\Leftrightarrow B$ is positive definite).
What happens when Φ is infinite?
Simplest example in rank 2:

Infinite root systems

Finite root systems are well studied:
Φ is finite $\Leftrightarrow W$ is finite ($\Leftrightarrow B$ is positive definite).
What happens when Φ is infinite?
Simplest example in rank 2:
$\stackrel{\bullet}{\boldsymbol{s}_{\alpha}} \quad \boldsymbol{s}_{\beta} \quad$ Matrix of B in the basis $(\alpha, \beta):\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$.

What is a root system ?

$$
\begin{aligned}
& Q \\
& \rho_{n}^{\prime}=n \alpha+(n+1) \beta \\
& \rho_{n}=(n+1) \alpha+n \beta \\
& \text { (a) } B(\alpha, \beta)=-1 \\
& s_{\alpha}(v)=v-2 B(v, \alpha) \alpha .
\end{aligned}
$$

Observations

- The norms of the roots tend to ∞;
- The directions of the roots tend to the direction of the isotropic cone Q of B :

$$
Q:=\{v \in V, B(v, v)=0\} .
$$

(in the example the equation is $v_{\alpha}^{2}+v_{\beta}^{2}-2 v_{\alpha} v_{\beta}=0$, and $Q=\operatorname{span}(\alpha+\beta)$.)

What if $\boldsymbol{B}(\alpha, \beta)<-1$?

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$

- Then Q is the union of 2 lines.

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$
- Then Q is the union of 2 lines.

What if $B(\alpha, \beta)<-1$?

- Matrix of B : $\left[\begin{array}{cc}1 & \kappa \\ \kappa & 1\end{array}\right]$ with $\kappa<-1$. We write $\underset{s_{\alpha}}{\stackrel{\infty}{\bullet}} \stackrel{s_{\beta}}{\bullet}$
- Then Q is the union of 2 lines.

How to see examples of higher rank?
$\rho_{n}^{\prime}=n \alpha+(n+1) \beta$

(a) $B(\alpha, \beta)=-1$

How to see examples of higher rank?

Affine hyperplane

$$
V_{1}=\left\{v \in V \mid \sum_{\alpha \in \Delta} v_{\alpha}=1\right\}
$$

Normalized isotropic cone: $\widehat{Q}:=Q \cap V_{1}$
Normalized roots

$$
\widehat{\rho}:=\rho / \sum_{\alpha \in \Delta} \rho_{\alpha}
$$

(b) $B(\alpha, \beta)=-1.01<-1$

$$
\beta=\rho_{1}^{\prime} \quad \widehat{\rho_{2}^{\prime}} \ldots \widehat{\rho_{2}} \quad \alpha=\rho_{1}
$$

\widehat{Q}
(a) $B(\alpha, \beta)=-1$
(b) $B(\alpha, \beta)=-1.01<-1$

Other examples of infinite root systems in rank 3 and 4

(a) $B(\alpha, \beta)=-1$ dim (b) $B(\alpha, \beta)=-1.01<-1$

Other examples of infinite root systems in rank 3 and 4

Other examples of infinite root systems in rank 3 and 4

$\operatorname{dim} 4$

$\operatorname{conv}(\Delta)$

Other examples of infinite root systems in rank 3 and 4

The displayed size of a normalized root (in red in this last picture) is decreasing as the depth of the root is increasing.

$$
\begin{aligned}
\operatorname{dp}(\rho)=1+\min \{k \mid \rho= & s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{k}}\left(\alpha_{k+1}\right) \\
& \left.\alpha_{1}, \ldots, \alpha_{k}, \alpha_{k+1} \in \Delta\right\}
\end{aligned}
$$

The "limit roots" lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)
Let Φ be a root system for an (infinite) Coxeter group, and $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:
($\left\|\rho_{n}\right\|$ tends to ∞ (for any norm on V);
(2) if the sequence of normalized root $\widehat{\rho_{n}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)
\rightsquigarrow Problem: understand the set of possible limits, i.e., the accumulation points of ϕ :

$$
E(\phi):=\operatorname{Acc}(\widehat{\phi})
$$

("limit roots")

The "limit roots" lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)
Let Φ be a root system for an (infinite) Coxeter group, and $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:
(1) \| $\rho_{n} \|$ tends to ∞ (for any norm on V);
(2) if the sequence of normalized root $\widehat{\rho_{n}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)
\rightsquigarrow Problem: understand the set of possible limits, i.e., the
accumulation points of Φ :

$$
E(\phi):=\operatorname{Acc}(\hat{\phi})
$$

The "limit roots" lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)

Let Φ be a root system for an (infinite) Coxeter group, and
$\left(\rho_{n}\right)_{n \in \mathbb{N}}$ an injective sequence in Φ. Then:
($\left\|\rho_{n}\right\|$ tends to ∞ (for any norm on V);
(2) if the sequence of normalized root $\widehat{\rho_{n}}$ has a limit ℓ, then

$$
\ell \in \widehat{Q} \cap \operatorname{conv}(\Delta) .
$$

Known in other contexts:

- Root systems of Lie algebras (Kac, 1990)
- Imaginary cone for Coxeter groups (Dyer, 2011)
\rightsquigarrow Problem: understand the set of possible limits, i.e., the accumulation points of $\hat{\phi}$:

$$
E(\Phi):=\operatorname{Acc}(\hat{\Phi}) \quad \text { ("limit roots"). }
$$

How to construct some particular limit roots

Take two roots ρ_{1}, ρ_{2} in $\Phi \rightsquigarrow$ get a rank 2 reflection subgroup of W, and a root subsystem Φ^{\prime}. Note:

- $\widehat{\Phi^{\prime}} \subset L\left(\widehat{\rho_{1}}, \widehat{\rho_{2}}\right)$;
- the isotropic cone for Φ^{\prime} is $Q \cap \operatorname{span}\left(\rho_{1}, \rho_{2}\right)$;
- \Rightarrow Limit roots for $\Phi^{\prime}: E\left(\Phi^{\prime}\right)=Q \cap L\left(\widehat{\rho_{1}}, \widehat{\rho_{2}}\right)(0,1$ or 2 points $)$.

The dihedral limit roots

Definition

We define the set $E_{2}(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E\left(\Phi^{\prime}\right)$, for Φ^{\prime} a root subsystem of rank 2 of Φ. Equivalently,

$$
E_{2}(\Phi):=\bigcup_{\rho_{1}, \rho_{2} \in \Phi} L\left(\widehat{\rho_{1}}, \widehat{\rho_{2}}\right) \cap Q .
$$

Note: E_{2} is countable.
Theorem (Hohlweg-Labbé-R.)
The set of dihedral limit roots E_{2} is dense in E.

- E is closed, so $E=\overline{E_{2}}$;
- in general, E_{2} is not equal to E. In fact sometimes $E=\widehat{Q}$!

The dihedral limit roots

Definition

We define the set $E_{2}(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E\left(\Phi^{\prime}\right)$, for Φ^{\prime} a root subsystem of rank 2 of Φ. Equivalently,

$$
E_{2}(\Phi):=\bigcup_{\rho_{1}, \rho_{2} \in \Phi} L\left(\widehat{\rho_{1}}, \widehat{\rho_{2}}\right) \cap Q .
$$

Note: E_{2} is countable.
Theorem (Hohlweg-Labbé-R.)
The set of dihedral limit roots E_{2} is dense in E.

- E is closed, so $E=\overline{E_{2}}$;
- in general, E_{2} is not equal to E. In fact sometimes $E=\widehat{Q}$!

The dihedral limit roots

Definition

We define the set $E_{2}(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E\left(\Phi^{\prime}\right)$, for Φ^{\prime} a root subsystem of rank 2 of Φ. Equivalently,

$$
E_{2}(\Phi):=\bigcup_{\rho_{1}, \rho_{2} \in \Phi} L\left(\widehat{\rho_{1}}, \widehat{\rho_{2}}\right) \cap Q .
$$

Note: E_{2} is countable.
Theorem (Hohlweg-Labbé-R.)
The set of dihedral limit roots E_{2} is dense in E.

- E is closed, so $E=\overline{E_{2}}$;
- in general, E_{2} is not equal to E. In fact sometimes $E=\widehat{Q}$!

The dihedral limit roots

Definition

We define the set $E_{2}(\Phi)$ of dihedral limit roots for the root system Φ as the subset of $E(\Phi)$ formed by the union of the $E\left(\Phi^{\prime}\right)$, for Φ^{\prime} a root subsystem of rank 2 of Φ. Equivalently,

$$
E_{2}(\phi):=\bigcup_{\rho_{1}, \rho_{2} \in \Phi} L\left(\widehat{\rho_{1}}, \widehat{\rho_{2}}\right) \cap Q .
$$

Note: E_{2} is countable.
Theorem (Hohlweg-Labbé-R.)
The set of dihedral limit roots E_{2} is dense in E.

- E is closed, so $E=\overline{E_{2}}$;
- in general, E_{2} is not equal to E. In fact sometimes $E=\widehat{Q}$!

Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x}=E$?
- Study conv (E), which equals the closure of Dyer's "imaginary cone".

Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\bar{W} \cdot x=E$?
- Study conv (E), which equals the closure of Dyer's "imaginary cone".

Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x}=E$?
- Study conv (E), which equals the closure of Dyer's "imaginary cone".

Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x}=E$?
- Study conv (E), which equals the closure of Dyer's "imaginary cone".

Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x}=E$?
- Study conv (E), which equals the closure of Dyer's "imaginary cone".

Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x}=E$?
- Study conv (E), which equals the closure of Dyer's "imaginary cone".

Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x}=E$?
- Study conv (E), which equals the closure of Dyer's "imaginary cone".

Thank you!

Other properties, further questions

- How does E behave in regard to restriction to parabolic subgroups ($E\left(\Phi_{l}\right) \neq E(\Phi) \cap V_{l}$ in general!)
- Natural action of W on E, easy to describe geometrically... Faithfulness?
- Explain the fractal, self-similar shapes of the pictures! We can use the action to interpret this, but we only have conjectures.
- Take $x \in E$. Is it true that $\overline{W \cdot x}=E$?
- Study conv (E), which equals the closure of Dyer's "imaginary cone".

Thank you!

A fractal phenomenon?

(conjectures/questions, work in progress with Ch. Hohlweg)
(- If $\widehat{Q} \subseteq \operatorname{conv}(\Delta)$, then $E(\Phi)=\widehat{Q}$?
© In general : $E(\Phi)=\widehat{Q} \backslash$ all the images by the action of W of the parts of \widehat{Q} outside the simplex, i.e.:

$$
E(\Phi)=\widehat{Q} \cap \bigcap w \cdot \operatorname{conv}(\Delta) ?
$$

$$
w \in W
$$

