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What is a root system? (in this talk)

V : a real vector space, of finite dimension n
B: a symmetric bilinear form on V

Construction of a root system in (V ,B):

1. Start with a simple system ∆:
∆ is a basis for V ;
∀α ∈ ∆,B(α, α) = 1;
∀α 6= β ∈ ∆:

either B(α, β) = − cos
( π

m

)
for some m ∈ Z≥2,

or B(α, β) ≤ −1.
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What is a root system?

2. For each α ∈ ∆, define the B-reflection sα:

sα : V → V
v 7→ v − 2B(α, v) α.

Check: sα(α) = −α, and sα fixes pointwise α⊥.

Notation: S = {sα, α ∈ ∆}.

3. Construct the B-reflection group W := 〈S〉.

4. Act by W on ∆ to construct the root system

Φ := W (∆) .

Note: if ρ = w(α) (with α ∈ ∆), wsαw−1 is the B-reflection
associated to the root ρ.
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Coxeter group and root system

Proposition (Krammer)
(W ,S) is a Coxeter system.
The order of sαsβ is m if B(α, β) = − cos(π/m), and∞ if
B(α, β) ≤ −1.
Let Φ+ := Φ ∩ cone(∆). Then: Φ = Φ+ t (−Φ+).

Note: Conversely, from any Coxeter system it is possible to
construct a root system, using the classical geometric
representation [Tits].
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Infinite root systems

Finite root systems are well studied :
Φ is finite⇔W is finite (⇔ B is positive definite).

What happens when Φ is infinite?

Simplest example in rank 2:

sα sβ

∞
Matrix of B in the basis (α, β):

[
1 −1
−1 1

]
.
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What is a ? root system



Observations

The norms of the roots tend to∞;
The directions of the roots tend to the direction of the
isotropic cone Q of B:

Q := {v ∈ V , B(v , v) = 0}.

(in the example the equation is v2
α + v2

β − 2vαvβ = 0, and
Q = span(α + β).)



What if B(α, β) < −1?

Matrix of B:
[
1 κ
κ 1

]
with κ < −1. We write

sα sβ

∞(κ)

Then Q is the union of 2 lines.

Q

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

s t

∞(−1.01)
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How to see examples of higher rank?
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b b b b

dim 2

dim 3

dim 3

Other examples of infinite root systems in rank 3 and 4



b b b b

dim 2

dim 3 dim 3

dim 4

conv(�)

Other examples of infinite root systems in rank 3 and 4



b b b b

dim 2

dim 3 dim 3

dim 4

conv(�)

The displayed size of a 
normalized root (in red in this last 
picture) is decreasing as the 
depth of the root is increasing.

↵1, . . . ,↵k, ↵k+1 2 �}.
dp(⇢) = 1 + min{k | ⇢ = s↵1s↵2 . . . s↵k(↵k+1),

Other examples of infinite root systems in rank 3 and 4



The “limit roots” lie in the isotropic cone Q

Theorem (Hohlweg-Labbé-R.)
Let Φ be a root system for an (infinite) Coxeter group, and
(ρn)n∈N an injective sequence in Φ. Then:

1 ||ρn|| tends to∞ (for any norm on V);
2 if the sequence of normalized root ρ̂n has a limit `, then

` ∈ Q̂ ∩ conv(∆).

Known in other contexts:
Root systems of Lie algebras (Kac, 1990)
Imaginary cone for Coxeter groups (Dyer, 2011)

 Problem: understand the set of possible limits, i.e., the
accumulation points of Φ̂:

E(Φ) := Acc
(

Φ̂
)

(“limit roots”).
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How to construct some particular limit roots
Take two roots ρ1, ρ2 in Φ get a rank 2 reflection subgroup of
W , and a root subsystem Φ′. Note:

Φ̂′ ⊂ L(ρ̂1, ρ̂2);
the isotropic cone for Φ′ is Q ∩ span(ρ1, ρ2);
⇒ Limit roots for Φ′: E(Φ′) = Q ∩ L(ρ̂1, ρ̂2) (0,1 or 2 points).

αs αt

αu

ρ̂

s t5

u



The dihedral limit roots

Definition
We define the set E2(Φ) of dihedral limit roots for the root
system Φ as the subset of E(Φ) formed by the union of the
E(Φ′), for Φ′ a root subsystem of rank 2 of Φ. Equivalently,

E2(Φ) :=
⋃

ρ1,ρ2∈Φ

L(ρ̂1, ρ̂2) ∩Q.

Note: E2 is countable.

Theorem (Hohlweg-Labbé-R.)
The set of dihedral limit roots E2 is dense in E.

E is closed, so E = E2;
in general, E2 is not equal to E . In fact sometimes E = Q̂ !
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Other properties, further questions

How does E behave in regard to restriction to parabolic
subgroups ( E(ΦI) 6= E(Φ) ∩ VI in general!)

Natural action of W on E , easy to describe geometrically...
Faithfulness?

Explain the fractal, self-similar shapes of the pictures! We
can use the action to interpret this, but we only have
conjectures.

Take x ∈ E . Is it true that W · x = E?

Study conv(E), which equals the closure of Dyer’s
“imaginary cone”.

Thank you!
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A fractal phenomenon? 
(conjectures/questions, work in progress with Ch. Hohlweg)

L(↵, x)

x

s↵ · x

s↵ · y

y

 If                 , then               ?  
 In general :                 all the images by the 

action of    of the parts of     outside the simplex, i.e.:

bQ ✓ conv(�) E(�) = bQ
E(�) = bQ \

bQW

E(�) =

bQ \
\

w2W

w · conv(�) ?


