Graded tensor product multiplicities from quantum cluster algebras

Rinat Kedem

University of Illinois

FPSAC 2012, Nagoya

Outline

(1) Graded tensor products
(2) Cluster algebras and quantum cluster algebras
(3) Grading from quantization

Outline

(1) Graded tensor products
(2) Cluster algebras and quantum cluster algebras

(3) Grading from quantization

Outline

(1) Graded tensor products
(2) Cluster algebras and quantum cluster algebras
(3) Grading from quantization

The idea of grading

Tensor products of the 2-dimensional representation $V(\omega) \simeq \mathbb{C}^{2}$ of $\mathfrak{s l}_{2}$:

$$
V(\omega) \otimes V(\omega) \simeq V(0) \oplus V(2 \omega)
$$

The idea of grading

Tensor products of the 2-dimensional representation $V(\omega) \simeq \mathbb{C}^{2}$ of $\mathfrak{s l}_{2}$:

$$
V(\omega) \otimes V(\omega) \simeq V(0) \oplus V(2 \omega)
$$

\Downarrow Deform...

The idea of grading

Tensor products of the 2-dimensional representation $V(\omega) \simeq \mathbb{C}^{2}$ of $\mathfrak{s l}_{2}$:

$$
V(\omega) \otimes V(\omega) \simeq V(0) \oplus V(2 \omega)
$$

\Downarrow Deform...

The idea of grading

Tensor products of the 2-dimensional representation $V(\omega) \simeq \mathbb{C}^{2}$ of $\mathfrak{s l}_{2}$:

$$
V(\omega) \otimes V(\omega) \simeq V(0) \oplus V(2 \omega)
$$

\Downarrow Deform...

$$
\operatorname{ch}_{t}(V(\omega) \otimes V(\omega))=\operatorname{ch}(V(2 \omega)+t \operatorname{ch}(V(0))
$$

The idea of graded tensor products

- Grading on tensor products of \mathfrak{g} (simple Lie algebra) or $U_{q}(\mathfrak{g})$ (quantum algebra) modules.

The idea of graded tensor products

- Grading on tensor products of \mathfrak{g} (simple Lie algebra) or $U_{q}(\mathfrak{g})$ (quantum algebra) modules.

The idea of graded tensor products

- Grading on tensor products of \mathfrak{g} (simple Lie algebra) or $U_{q}(\mathfrak{g})$ (quantum algebra) modules.

$$
\operatorname{ch}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}\right)=\sum_{V: \text { irred }} M_{\left\{V_{i}\right\}, V} \operatorname{ch} V
$$

The idea of graded tensor products

- Grading on tensor products of \mathfrak{g} (simple Lie algebra) or $U_{q}(\mathfrak{g})$ (quantum algebra) modules.

$$
\begin{gathered}
\operatorname{ch}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}\right)=\sum_{V: \text { irred }} M_{\left\{V_{i}\right\}, V} \operatorname{ch} V \\
\Downarrow \downarrow \text { Introduce grading }
\end{gathered}
$$

The idea of graded tensor products

- Grading on tensor products of \mathfrak{g} (simple Lie algebra) or $U_{q}(\mathfrak{g})$ (quantum algebra) modules.

$$
\begin{gathered}
\operatorname{ch}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}\right)=\sum_{V: \text { irred }} M_{\left\{V_{i}\right\}, V} \operatorname{ch} V \\
\Downarrow \quad \text { Introduce grading } \\
\operatorname{ch}_{t}\left(V_{1} \star V_{2} \star \cdots \star V_{n}\right)=\sum_{V: \text { irred }} M_{\left\{V_{i}\right\}, V}(t) \operatorname{ch} V
\end{gathered}
$$

The idea of graded tensor products

- Grading on tensor products of \mathfrak{g} (simple Lie algebra) or $U_{q}(\mathfrak{g})$ (quantum algebra) modules.

$$
\begin{gathered}
\operatorname{ch}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}\right)=\sum_{V: \text { irred }} M_{\left\{V_{i}\right\}, V} \operatorname{ch} V \\
\Downarrow \quad \text { Introduce grading } \\
\operatorname{ch}_{t}\left(V_{1} \star V_{2} \star \cdots \star V_{n}\right)=\sum_{V: \text { irred }} M_{\left\{V_{i}\right\}, V}(t) \operatorname{ch} V
\end{gathered}
$$

- $M_{\left\{V_{i}\right\}, V}(t)$: "graded multiplicity" of the irreducible component V in the graded product.
- What is a good definition of the grading?

The idea of graded tensor products

- Grading on tensor products of \mathfrak{g} (simple Lie algebra) or $U_{q}(\mathfrak{g})$ (quantum algebra) modules.

$$
\begin{gathered}
\operatorname{ch}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}\right)=\sum_{V: \text { irred }} M_{\left\{V_{i}\right\}, V} \operatorname{ch} V \\
\Downarrow \quad \text { Introduce grading } \\
\operatorname{ch}_{t}\left(V_{1} \star V_{2} \star \cdots \star V_{n}\right)=\sum_{V: \text { irred }} M_{\left\{V_{i}\right\}, V}(t) \operatorname{ch} V
\end{gathered}
$$

- $M_{\left\{V_{i}\right\}, V}(t)$: "graded multiplicity" of the irreducible component V in the graded product.
- What is a good definition of the grading?

Algebraic source of grading

Finite-dimensional algebra \subset Infinite-dimensional algebra:
simple Lie algebra $\mathfrak{g} \subset \widehat{\mathfrak{g}}, \quad Y(\mathfrak{g})$ affine algebra, Yangian quantum algebra $U_{q}(\mathfrak{g}) \subset U_{q}(\widehat{\mathfrak{g}})$ quantum affine algebra

Algebraic source of grading

> Finite-dimensional algebra \subset Infinite-dimensional algebra: simple Lie algebra $\mathfrak{g} \subset \widehat{\mathfrak{g}}, \quad Y(\mathfrak{g})$ affine algebra, Yangian quantum algebra $U_{q}(\mathfrak{g}) \subset U_{q}(\widehat{\mathfrak{g}})$ quantum affine algebra

Algebraic source of grading

$$
\begin{aligned}
& \text { Finite-dimensional algebra } \subset \text { Infinite-dimensional algebra: } \\
& \text { simple Lie algebra } \mathfrak{g} \subset \\
& \mathfrak{g}, Y(\mathfrak{g}) \text { affine algebra, Yangian } \\
& \text { quantum algebra } U_{q}(\mathfrak{g}) \subset \\
& U_{q}(\widehat{\mathfrak{g}}) \text { quantum affine algebra }
\end{aligned}
$$

- The infinite-dimensional algebra is graded: induce a grading on modules W.
- Restrict the action to finite-dim subalgebra:

- Hilbert polynomial: \mathfrak{g} acts on the graded components $W[n]$ $M_{\mathrm{W}, \mathrm{V}}(t):=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{g}\left(W[\mathrm{~W}[\mathrm{n}], \mathrm{V}), \quad M_{\mathrm{T}, \mathrm{V}}(1)=M_{W}, V\right.$
- Graded characters:

Algebraic source of grading

$$
\begin{aligned}
\text { Finite-dimensional algebra } & \subset \text { Infinite-dimensional algebra: } \\
\text { simple Lie algebra } \mathfrak{g} & \subset \widehat{\mathfrak{g},} Y(\mathfrak{g}) \text { affine algebra, Yangian } \\
\text { quantum algebra } U_{q}(\mathfrak{g}) & \subset U_{q}(\widehat{\mathfrak{g}}) \text { quantum affine algebra }
\end{aligned}
$$

- The infinite-dimensional algebra is graded: induce a grading on modules W.
- Restrict the action to finite-dim subalgebra:

$$
M_{W, V}=\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}(W, V), \quad \begin{aligned}
& W: \text { finite-dim. } \widehat{\mathfrak{g}}-\bmod \\
& \\
& V: \text { irreducible } \mathfrak{g}-\bmod .
\end{aligned}
$$

- Hilbert polynomial: \mathfrak{g} acts on the graded components $W[n]$

- Graded characters:

Algebraic source of grading

$$
\begin{aligned}
& \text { Finite-dimensional algebra } \subset \text { Infinite-dimensional algebra: } \\
& \text { simple Lie algebra } \mathfrak{g} \subset \widehat{\mathfrak{g}}, Y(\mathfrak{g}) \text { affine algebra, Yangian } \\
& \text { quantum algebra } U_{q}(\mathfrak{g}) \subset \\
& U_{q}(\widehat{\mathfrak{g}}) \text { quantum affine algebra }
\end{aligned}
$$

- The infinite-dimensional algebra is graded: induce a grading on modules W.
- Restrict the action to finite-dim subalgebra:

$$
M_{W, V}=\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}(W, V), \quad \begin{aligned}
& W: \text { finite-dim. } \widehat{\mathfrak{g}}-\bmod \\
& \\
& V: \text { irreducible } \mathfrak{g}-\bmod .
\end{aligned}
$$

- Hilbert polynomial: \mathfrak{g} acts on the graded components $W[n]$

$$
M_{W, V}(t):=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}(W[n], V), \quad M_{W, V}(1)=M_{W, V}
$$

- Graded characters:

Algebraic source of grading

$$
\begin{aligned}
& \text { Finite-dimensional algebra } \subset \text { Infinite-dimensional algebra: } \\
& \text { simple Lie algebra } \mathfrak{g} \subset \\
& \mathfrak{g}, Y(\mathfrak{g}) \text { affine algebra, Yangian } \\
& \text { quantum algebra } U_{q}(\mathfrak{g}) \subset \\
& U_{q}(\widehat{\mathfrak{g}}) \text { quantum affine algebra }
\end{aligned}
$$

- The infinite-dimensional algebra is graded: induce a grading on modules W.
- Restrict the action to finite-dim subalgebra:

$$
M_{W, V}=\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}(W, V), \quad \begin{aligned}
& W: \text { finite-dim. } \widehat{\mathfrak{g}}-\bmod \\
& \\
& V: \text { irreducible } \mathfrak{g}-\bmod .
\end{aligned}
$$

- Hilbert polynomial: \mathfrak{g} acts on the graded components $W[n]$

$$
M_{W, V}(t):=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}(W[n], V), \quad M_{W, V}(1)=M_{W, V}
$$

- Graded characters:

$$
\operatorname{ch}_{t}(W)=\sum_{V: \text { irred }} M_{W, V}(t) \operatorname{ch}(V)
$$

Grading on tensor products

- Choose a set of finite-dimensional modules $\left\{V_{1}, \ldots, V_{n}\right\}$ of infinite-dim alg:

$$
W \simeq V_{1} \otimes \cdots \otimes V_{N}
$$

- Grading on W can be defined, for example:

Grading on tensor products

- Choose a set of finite-dimensional modules $\left\{V_{1}, \ldots, V_{n}\right\}$ of infinite-dim alg:

$$
W \simeq V_{1} \otimes \cdots \otimes V_{N}
$$

- Grading on W can be defined, for example:

[^0]
Grading on tensor products

- Choose a set of finite-dimensional modules $\left\{V_{1}, \ldots, V_{n}\right\}$ of infinite-dim alg:

$$
W \simeq V_{1} \otimes \cdots \otimes V_{N}
$$

- Grading on W can be defined, for example:
(1) Combinatorially From Bethe ansatz of generalized Heisenberg model (Yangian). [Kerov, Kirillov, Reshetikhin, '86; Kuniba, Nakanishi, Okado '93]; Physical interpretation from conformal field theory [K., McCoy '91].
(3) Using crystal bases of quantum affine algebras $[\mathrm{Okado}$, Schilling. Shimozono +$]$.
Natural grading of $g=$ central extension of $g \otimes \mathbb{C}\left[t, t^{-1}\right]$ by degree in t. [Feigin-Loktev
"fusion product", 99$]$.

[^1]
Grading on tensor products

- Choose a set of finite-dimensional modules $\left\{V_{1}, \ldots, V_{n}\right\}$ of infinite-dim alg:

$$
W \simeq V_{1} \otimes \cdots \otimes V_{N}
$$

- Grading on W can be defined, for example:
(1) Combinatorially From Bethe ansatz of generalized Heisenberg model (Yangian). [Kerov, Kirillov, Reshetikhin, '86; Kuniba, Nakanishi, Okado '93]; Physical interpretation from conformal field theory [K., McCoy '91].
(2) Using crystal bases of quantum affine algebras [Okado, Schilling, Shimozono +]. "fusion product", '99].

[^2]
Grading on tensor products

- Choose a set of finite-dimensional modules $\left\{V_{1}, \ldots, V_{n}\right\}$ of infinite-dim alg:

$$
W \simeq V_{1} \otimes \cdots \otimes V_{N}
$$

- Grading on W can be defined, for example:
(1) Combinatorially From Bethe ansatz of generalized Heisenberg model (Yangian). [Kerov, Kirillov, Reshetikhin, '86; Kuniba, Nakanishi, Okado '93]; Physical interpretation from conformal field theory [K., McCoy '91].
(2) Using crystal bases of quantum affine algebras [Okado, Schilling, Shimozono +].
(3) Natural grading of $\widehat{\mathfrak{g}}=$ central extension of $\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$ by degree in t. [Feigin-Loktev "fusion product", '99].

[^3]
Grading on tensor products

- Choose a set of finite-dimensional modules $\left\{V_{1}, \ldots, V_{n}\right\}$ of infinite-dim alg:

$$
W \simeq V_{1} \otimes \cdots \otimes V_{N}
$$

- Grading on W can be defined, for example:
(1) Combinatorially From Bethe ansatz of generalized Heisenberg model (Yangian). [Kerov, Kirillov, Reshetikhin, '86; Kuniba, Nakanishi, Okado '93]; Physical interpretation from conformal field theory [K., McCoy '91].
(2) Using crystal bases of quantum affine algebras [Okado, Schilling, Shimozono +].
(3) Natural grading of $\widehat{\mathfrak{g}}=$ central extension of $\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$ by degree in t. [Feigin-Loktev "fusion product", '99].

Theorem
If the modules V_{i} are of sufficiently simple (KR-type) the three ways of defining gradings on the tensor products give the same Hilbert polynomials.

Grading on tensor products

- Choose a set of finite-dimensional modules $\left\{V_{1}, \ldots, V_{n}\right\}$ of infinite-dim alg:

$$
W \simeq V_{1} \otimes \cdots \otimes V_{N}
$$

- Grading on W can be defined, for example:
(1) Combinatorially From Bethe ansatz of generalized Heisenberg model (Yangian). [Kerov, Kirillov, Reshetikhin, '86; Kuniba, Nakanishi, Okado '93]; Physical interpretation from conformal field theory [K., McCoy '91].
(2) Using crystal bases of quantum affine algebras [Okado, Schilling, Shimozono +].
(3) Natural grading of $\widehat{\mathfrak{g}}=$ central extension of $\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$ by degree in t. [Feigin-Loktev "fusion product", '99].

Theorem
If the modules V_{i} are of sufficiently simple (KR-type) the three ways of defining gradings on the tensor products give the same Hilbert polynomials.

Grading on tensor products

- Choose a set of finite-dimensional modules $\left\{V_{1}, \ldots, V_{n}\right\}$ of infinite-dim alg:

$$
W \simeq V_{1} \otimes \cdots \otimes V_{N}
$$

- Grading on W can be defined, for example:
(1) Combinatorially From Bethe ansatz of generalized Heisenberg model (Yangian). [Kerov, Kirillov, Reshetikhin, '86; Kuniba, Nakanishi, Okado '93]; Physical interpretation from conformal field theory [K., McCoy '91].
(2) Using crystal bases of quantum affine algebras [Okado, Schilling, Shimozono +].
(3) Natural grading of $\widehat{\mathfrak{g}}=$ central extension of $\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$ by degree in t. [Feigin-Loktev "fusion product", '99].

Theorem
If the modules V_{i} are of sufficiently simple (KR-type) the three ways of defining gradings on the tensor products give the same Hilbert polynomials.

- This talk: A fourth source of the same grading: Quantum cluster algebras. [Joint work with Di Francesco]

Feigin-Loktev fusion products

- FL defined a (commutative) graded tensor product on $\widehat{\mathfrak{g}}$-modules

$$
\mathcal{F}_{\left\{V_{i}\right\}}=V_{1} \star V_{2} \star \cdots \star V_{N}
$$

- The Hilbert polynomial $M_{\left\{V_{i}\right\}, \lambda}(t):=\sum_{n>0} t^{n} \operatorname{dim}^{\operatorname{Hom}_{\mathfrak{g}}}\left(\mathcal{F}_{\left\{V_{i}\right\}}[n], V(\lambda)\right)$ $V(\lambda)=$ Irreducible \mathfrak{g}-module.
- Example 1: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and V_{i} are symmetric power representations, $M_{\left\{V_{i}, \lambda\right.}(t)$ is a Kostka polynomial (transition function between Hall-Littlewood polynomials and Schur polynomials),
- Example 2: If $\mathfrak{g}=\mathfrak{s l} l_{n}$ and $V_{i}=V\left(m \omega_{j}\right)$ (Kirillov-Reshetikhin modules), $M_{\left\{V_{i}\right\}, \lambda}(t)$ is a generalized Kostka polynomial [Lascoux, Leclerc, Thibon]
- The Hilbert polynomials give Betti numbers of cohomology of Lagrangian quiver varieties (Nakajima, Lusztig, Kodera-Naoi...)
- Have an interpretation as parabolic Kazhdan-Lusztig polynomials..

Feigin-Loktev fusion products

- FL defined a (commutative) graded tensor product on $\widehat{\mathfrak{g}}$-modules

$$
\mathcal{F}_{\left\{V_{i}\right\}}=V_{1} \star V_{2} \star \cdots \star V_{N}
$$

- The Hilbert polynomial $M_{\left\{V_{i}\right\}, \lambda}(t):=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\mathcal{F}_{\left\{V_{i}\right\}}[n], V(\lambda)\right)$ $V(\lambda)=$ Irreducible \mathfrak{g}-module.
- E Kostka polynomial (transition function between Hall-Littlewood polynomials and Schur polynomials)
- Example 2: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and $V_{i}=V\left(m \omega_{j}\right)$ (Kirillov-Reshetikhin modules), $M_{\left\{V_{i} f_{\lambda}\right.}(t)$ is a generalized Kostka polynomial [Lascoux, Leclerc, Thibon]
- The Hilbert polynomials give Betti numbers of cohomology of Lagrangian quiver varieties (Nakajima, Lusztig, Kodera-Naoi...)
- Have an interpretation as parabolic Kazhdan-Lusztig polynomials..

Feigin-Loktev fusion products

- FL defined a (commutative) graded tensor product on $\widehat{\mathfrak{g}}$-modules

$$
\mathcal{F}_{\left\{V_{i}\right\}}=V_{1} \star V_{2} \star \cdots \star V_{N}
$$

- The Hilbert polynomial $M_{\left\{V_{i}\right\}, \lambda}(t):=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\mathcal{F}_{\left\{V_{i}\right\}}[n], V(\lambda)\right)$ $V(\lambda)=$ Irreducible \mathfrak{g}-module.
- Example 1: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and V_{i} are symmetric power representations, $M_{\left\{V_{i}\right\}, \lambda}(t)$ is a Kostka polynomial (transition function between Hall-Littlewood polynomials and Schur polynomials).
- Example 2: If $\mathfrak{g}=\mathfrak{s} \mathfrak{I}_{n}$ and $V_{i}=V\left(m \omega_{j}\right)$ (Kirillov-Reshetikhin modules), is a generalized Kostka polynomial [Lascoux, Leclerc, Thibon]
- The Hilbert polynomials give Betti numbers of cohomology of Lagrangian quiver varieties (Nakajima, Lusztig, Kodera-Naoi
- Have an interpretation as parabolic Kazhdan-Lusztig polynomials.

Feigin-Loktev fusion products

- FL defined a (commutative) graded tensor product on $\widehat{\mathfrak{g}}$-modules

$$
\mathcal{F}_{\left\{V_{i}\right\}}=V_{1} \star V_{2} \star \cdots \star V_{N}
$$

- The Hilbert polynomial $M_{\left\{V_{i}\right\}, \lambda}(t):=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\mathcal{F}_{\left\{V_{i}\right\}}[n], V(\lambda)\right)$ $V(\lambda)=$ Irreducible \mathfrak{g}-module.
- Example 1: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and V_{i} are symmetric power representations, $M_{\left\{V_{i}\right\}, \lambda}(t)$ is a Kostka polynomial (transition function between Hall-Littlewood polynomials and Schur polynomials).
- Example 2: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and $V_{i}=V\left(m \omega_{j}\right)$ (Kirillov-Reshetikhin modules), $M_{\left\{V_{i}\right\}, \lambda}(t)$ is a generalized Kostka polynomial [Lascoux, Leclerc, Thibon].
- The Hilbert polynomials give Betti numbers of cohomology of Lagrangian quiver varieties (Nakajima, Lusztig, Kodera-Naoi.
- Have an interpretation as parabolic Kazhdan-Lusztig polynomials.

Feigin-Loktev fusion products

- FL defined a (commutative) graded tensor product on $\widehat{\mathfrak{g}}$-modules

$$
\mathcal{F}_{\left\{V_{i}\right\}}=V_{1} \star V_{2} \star \cdots \star V_{N}
$$

- The Hilbert polynomial $M_{\left\{V_{i}\right\}, \lambda}(t):=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\mathcal{F}_{\left\{V_{i}\right\}}[n], V(\lambda)\right)$ $V(\lambda)=$ Irreducible \mathfrak{g}-module.
- Example 1: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and V_{i} are symmetric power representations, $M_{\left\{V_{i}\right\}, \lambda}(t)$ is a Kostka polynomial (transition function between Hall-Littlewood polynomials and Schur polynomials).
- Example 2: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and $V_{i}=V\left(m \omega_{j}\right)$ (Kirillov-Reshetikhin modules), $M_{\left\{V_{i}\right\}, \lambda}(t)$ is a generalized Kostka polynomial [Lascoux, Leclerc, Thibon].
- The Hilbert polynomials give Betti numbers of cohomology of Lagrangian quiver varieties (Nakajima, Lusztig, Kodera-Naoi...)
- Have an interpretation as parabolic Kazhdan-Lusztig polynomials.

Feigin-Loktev fusion products

- FL defined a (commutative) graded tensor product on $\widehat{\mathfrak{g}}$-modules

$$
\mathcal{F}_{\left\{V_{i}\right\}}=V_{1} \star V_{2} \star \cdots \star V_{N}
$$

- The Hilbert polynomial $M_{\left\{V_{i}\right\}, \lambda}(t):=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\mathcal{F}_{\left\{V_{i}\right\}}[n], V(\lambda)\right)$ $V(\lambda)=$ Irreducible \mathfrak{g}-module.
- Example 1: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and V_{i} are symmetric power representations, $M_{\left\{V_{i}\right\}, \lambda}(t)$ is a Kostka polynomial (transition function between Hall-Littlewood polynomials and Schur polynomials).
- Example 2: If $\mathfrak{g}=\mathfrak{s l}_{n}$ and $V_{i}=V\left(m \omega_{j}\right)$ (Kirillov-Reshetikhin modules), $M_{\left\{V_{i}\right\}, \lambda}(t)$ is a generalized Kostka polynomial [Lascoux, Leclerc, Thibon].
- The Hilbert polynomials give Betti numbers of cohomology of Lagrangian quiver varieties (Nakajima, Lusztig, Kodera-Naoi...)
- Have an interpretation as parabolic Kazhdan-Lusztig polynomials...

Example of Feigin-Loktev product for $\mathfrak{g}=\mathfrak{s l}_{2}$

$$
\mathfrak{s l}_{2}=\langle f, h, e\rangle, \quad \widetilde{\mathfrak{s l}}_{2}=\left\langle x[m]=x t^{m}\right\rangle_{x \in \mathfrak{s l}_{2}, m \in \mathbb{Z}}, \quad \mathfrak{s l}_{2} \simeq\langle x[0]\rangle \subset \widetilde{\mathfrak{s l}}_{2}
$$

Example of Feigin-Loktev product for $\mathfrak{g}=\mathfrak{s l}_{2}$

$$
\mathfrak{s l}_{2}=\langle f, h, e\rangle, \quad \widetilde{\mathfrak{s l}}_{2}=\left\langle x[m]=x t^{m}\right\rangle_{x \in \mathfrak{s l}_{2}, m \in \mathbb{Z}}, \quad \mathfrak{s l}_{2} \simeq\langle x[0]\rangle \subset \widetilde{\mathfrak{s l}}_{2}
$$

Define Action of $\widetilde{\mathfrak{s l}}_{2}$ on the tensor product of two representations

$$
x[m] v_{1} \otimes v_{2}=z_{1}^{m}\left(x v_{1}\right) \otimes v_{2}+z_{2}^{m} v_{1} \otimes\left(x v_{2}\right), \quad v_{1} \otimes v_{2} \in V_{1} \otimes V_{2}
$$

Example of Feigin-Loktev product for $\mathfrak{g}=\mathfrak{s l}_{2}$

$$
\mathfrak{s l}_{2}=\langle f, h, e\rangle, \quad \widetilde{\mathfrak{s l}}_{2}=\left\langle x[m]=x t^{m}\right\rangle_{x \in \mathfrak{s l}_{2}, m \in \mathbb{Z}}, \quad \mathfrak{s l}_{2} \simeq\langle x[0]\rangle \subset \widetilde{\mathfrak{s l}}_{2}
$$

Define Action of $\widetilde{\mathfrak{s l}}_{2}$ on the tensor product of two representations

$$
x[m] v_{1} \otimes v_{2}=z_{1}^{m}\left(x v_{1}\right) \otimes v_{2}+z_{2}^{m} v_{1} \otimes\left(x v_{2}\right), \quad v_{1} \otimes v_{2} \in V_{1} \otimes V_{2}
$$

Example: $V_{1}=V_{2}=V\left(\omega_{1}\right) \simeq \operatorname{Span}\{v, f v\}$ with $f^{2} v=0$:

Example of Feigin-Loktev product for $\mathfrak{g}=\mathfrak{s l}_{2}$

$$
\mathfrak{s l}_{2}=\langle f, h, e\rangle, \quad \widetilde{\mathfrak{s l}}_{2}=\left\langle x[m]=x t^{m}\right\rangle_{x \in \mathfrak{s l}_{2}, m \in \mathbb{Z}}, \quad \mathfrak{s l}_{2} \simeq\langle x[0]\rangle \subset \widetilde{\mathfrak{s l}}_{2}
$$

Define Action of $\widetilde{\mathfrak{s l}}_{2}$ on the tensor product of two representations

$$
x[m] v_{1} \otimes v_{2}=z_{1}^{m}\left(x v_{1}\right) \otimes v_{2}+z_{2}^{m} v_{1} \otimes\left(x v_{2}\right), \quad v_{1} \otimes v_{2} \in V_{1} \otimes V_{2}
$$

Filtration of $\mathcal{F}=U\left(f[i]_{i \geq 0}\right) v_{1} \otimes v_{2}$:

$$
\mathcal{F}[m]:=\operatorname{span}_{\mathbb{C}\left[z_{1}, z_{2}\right]}\left\{f\left[i_{1}\right] \cdots f\left[i_{k}\right] v_{1} \otimes v_{2}: \sum_{j} i_{j}=m\right\}
$$

Example of Feigin-Loktev product for $\mathfrak{g}=\mathfrak{s l}_{2}$

$$
\mathfrak{s l}_{2}=\langle f, h, e\rangle, \quad \widetilde{\mathfrak{s l}}_{2}=\left\langle x[m]=x t^{m}\right\rangle_{x \in \mathfrak{s l}_{2}, m \in \mathbb{Z}}, \quad \mathfrak{s l}_{2} \simeq\langle x[0]\rangle \subset \widetilde{\mathfrak{s l}}_{2}
$$

Define Action of $\widetilde{\mathfrak{s l}}_{2}$ on the tensor product of two representations

$$
x[m] v_{1} \otimes v_{2}=z_{1}^{m}\left(x v_{1}\right) \otimes v_{2}+z_{2}^{m} v_{1} \otimes\left(x v_{2}\right), \quad v_{1} \otimes v_{2} \in V_{1} \otimes V_{2}
$$

Filtration of $\mathcal{F}=U\left(f[i]_{i \geq 0}\right) v_{1} \otimes v_{2}$:

$$
\mathcal{F}[m]:=\operatorname{span}_{\mathbb{C}\left[z_{1}, z_{2}\right]}\left\{f\left[i_{1}\right] \cdots f\left[i_{k}\right] v_{1} \otimes v_{2}: \sum_{j} i_{j}=m\right\}
$$

Graded components: $\mathcal{F}_{m}:=\mathcal{F}[m] / \mathcal{F}[m-1]$.

Grading inherited from homogeneous degree in t.

Example of Feigin-Loktev product for $\mathfrak{g}=\mathfrak{s l}_{2}$

$$
\mathfrak{s l}_{2}=\langle f, h, e\rangle, \quad \widetilde{\mathfrak{s l}}_{2}=\left\langle x[m]=x t^{m}\right\rangle_{x \in \mathfrak{s l}_{2}, m \in \mathbb{Z}}, \quad \mathfrak{s l}_{2} \simeq\langle x[0]\rangle \subset \widetilde{\mathfrak{s l}}_{2}
$$

Define Action of $\widetilde{\mathfrak{s l}}_{2}$ on the tensor product of two representations

$$
x[m] v_{1} \otimes v_{2}=z_{1}^{m}\left(x v_{1}\right) \otimes v_{2}+z_{2}^{m} v_{1} \otimes\left(x v_{2}\right), \quad v_{1} \otimes v_{2} \in V_{1} \otimes V_{2}
$$

Filtration of $\mathcal{F}=U\left(f[i]_{i \geq 0}\right) v_{1} \otimes v_{2}$:

$$
\mathcal{F}[m]:=\operatorname{span}_{\mathbb{C}\left[z_{1}, z_{2}\right]}\left\{f\left[i_{1}\right] \cdots f\left[i_{k}\right] v_{1} \otimes v_{2}: \sum_{j} i_{j}=m\right\}
$$

Graded components: $\mathcal{F}_{m}:=\mathcal{F}[m] / \mathcal{F}[m-1]$.
Hilbert polynomial: $M_{\left\{V_{1}, V_{2}\right\}, \lambda}(t)=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\mathcal{F}_{m}, V(\lambda)\right)$.
Grading inherited from homogeneous degree in t.

Example of Feigin-Loktev product for $\mathfrak{g}=\mathfrak{s l}_{2}$

$$
\mathfrak{s l}_{2}=\langle f, h, e\rangle, \quad \widetilde{\mathfrak{s l}}_{2}=\left\langle x[m]=x t^{m}\right\rangle_{x \in \mathfrak{s l}_{2}, m \in \mathbb{Z}}, \quad \mathfrak{s l}_{2} \simeq\langle x[0]\rangle \subset \widetilde{\mathfrak{s l}}_{2}
$$

Define Action of $\widetilde{\mathfrak{s l}}_{2}$ on the tensor product of two representations

$$
x[m] v_{1} \otimes v_{2}=z_{1}^{m}\left(x v_{1}\right) \otimes v_{2}+z_{2}^{m} v_{1} \otimes\left(x v_{2}\right), \quad v_{1} \otimes v_{2} \in V_{1} \otimes V_{2}
$$

Filtration of $\mathcal{F}=U\left(f[i]_{i \geq 0}\right) v_{1} \otimes v_{2}$:

$$
\mathcal{F}[m]:=\operatorname{span}_{\mathbb{C}\left[z_{1}, z_{2}\right]}\left\{f\left[i_{1}\right] \cdots f\left[i_{k}\right] v_{1} \otimes v_{2}: \sum_{j} i_{j}=m\right\}
$$

Graded components: $\mathcal{F}_{m}:=\mathcal{F}[m] / \mathcal{F}[m-1]$.
Hilbert polynomial: $M_{\left\{V_{1}, V_{2}\right\}, \lambda}(t)=\sum_{n \geq 0} t^{n} \operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\mathcal{F}_{m}, V(\lambda)\right)$.

Grading inherited from homogeneous degree in t.

Example of graded product $V\left(\omega_{1}\right) \star V\left(\omega_{1}\right)$:

Example of graded product $V\left(\omega_{1}\right) \star V\left(\omega_{1}\right)$:

Example of graded product $V\left(\omega_{1}\right) \star V\left(\omega_{1}\right)$:

Example of graded product $V\left(\omega_{1}\right) \star V\left(\omega_{1}\right)$:

$$
\begin{gathered}
M_{V^{2}, 0}(t)=t \\
M_{V^{2}, 2 \omega_{1}}(t)=1
\end{gathered}
$$

Example of graded tensor product for $\mathfrak{s l}_{2}$

Triple tensor product $V_{1} \star V_{2} \star V_{3}$ with $V_{1}=V_{2}=V_{3}=V\left(\omega_{1}\right)$.

Example of graded tensor product for $\mathfrak{s l}_{2}$

Triple tensor product $V_{1} \star V_{2} \star V_{3}$ with $V_{1}=V_{2}=V_{3}=V\left(\omega_{1}\right)$.

$\mathfrak{s l}_{2}$ weight

Example of graded tensor product for $\mathfrak{s l}_{2}$

Triple tensor product $V_{1} \star V_{2} \star V_{3}$ with $V_{1}=V_{2}=V_{3}=V\left(\omega_{1}\right)$.

$\mathfrak{s l}_{2}$ weight

Example of graded tensor product for $\mathfrak{s l}_{2}$

Triple tensor product $V_{1} \star V_{2} \star V_{3}$ with $V_{1}=V_{2}=V_{3}=V\left(\omega_{1}\right)$.

$$
M_{V^{3}, \omega_{1}}(t)=t+t^{2} ; \quad M_{V^{3}, 3 \omega_{1}}(t)=1
$$

$\mathfrak{s l}_{2}$ weight

Explicit formula for graded multiplicities: $\widehat{\mathfrak{s l}}_{2}$

Choose a collection of irreducible $\mathfrak{s l}_{2}$-modules:

$$
\left\{V_{i}\right\}=\{\underbrace{V\left(\omega_{1}\right), \ldots, V\left(\omega_{1}\right)}_{n_{1} \text { times }}, \underbrace{V\left(2 \omega_{1}\right), \ldots, V\left(2 \omega_{1}\right)}_{n_{2} \text { times }}, \ldots, \underbrace{V\left(j \omega_{1}\right), \ldots, V\left(j \omega_{1}\right)}_{n_{j} \text { times }}, \ldots\}
$$

Theorem: There is a formula for the multiplicity of irreducible components:

"Fermionic formula"

Theorem: Hilbert polynomials of the FL product are Kostka polynomials

\square $=\min (i, j)$

Explicit formula for graded multiplicities: $\widehat{\mathfrak{s l}}_{2}$

Choose a collection of irreducible $\mathfrak{s l}_{2}$-modules:

$$
\left\{V_{i}\right\}=\{\underbrace{V\left(\omega_{1}\right), \ldots, V\left(\omega_{1}\right)}_{n_{1} \text { times }}, \underbrace{V\left(2 \omega_{1}\right), \ldots, V\left(2 \omega_{1}\right)}_{n_{2} \text { times }}, \ldots, \underbrace{V\left(j \omega_{1}\right), \ldots, V\left(j \omega_{1}\right)}_{n_{j} \text { times }}, \ldots\}
$$

Theorem: There is a formula for the multiplicity of irreducible components:

$$
\operatorname{dim} \operatorname{Hom}_{g}\left(V_{1} \otimes \cdots \otimes V_{n}, V(\lambda)\right)=M_{\left\{V_{i}\right\}, \lambda}=\sum_{m_{1}, m_{2}, \ldots \in \mathbb{Z}_{+}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}}
$$

"Fermionic formula"
Theorem: Hilbert polynomials of the FL product are Kostka polynomials

Explicit formula for graded multiplicities: $\widehat{\mathfrak{s l}}_{2}$

Choose a collection of irreducible $\mathfrak{s l}_{2}$-modules:

$$
\left\{V_{i}\right\}=\{\underbrace{V\left(\omega_{1}\right), \ldots, V\left(\omega_{1}\right)}_{n_{1} \text { times }}, \underbrace{V\left(2 \omega_{1}\right), \ldots, V\left(2 \omega_{1}\right)}_{n_{2} \text { times }}, \ldots, \underbrace{V\left(j \omega_{1}\right), \ldots, V\left(j \omega_{1}\right)}_{n_{j} \text { times }}, \ldots\}
$$

Theorem: There is a formula for the multiplicity of irreducible components:

$$
\operatorname{dim} \operatorname{Hom}_{g}\left(V_{1} \otimes \cdots \otimes V_{n}, V(\lambda)\right)=M_{\left\{V_{i}\right\}, \lambda}=\sum_{m_{1}, m_{2}, \ldots \in \mathbb{Z}_{+}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}}
$$

- Sum \sum is restricted: $\sum_{j} j\left(n_{j}-2 m_{j}\right) \omega_{1}=\lambda$
"Fermionic formula"
Theorem: Hilbert polynomials of the $F L$ product are Kostka polynomials

Explicit formula for graded multiplicities: $\widehat{\mathfrak{s l}}_{2}$

Choose a collection of irreducible $\mathfrak{s l}_{2}$-modules:

$$
\left\{V_{i}\right\}=\{\underbrace{V\left(\omega_{1}\right), \ldots, V\left(\omega_{1}\right)}_{n_{1} \text { times }}, \underbrace{V\left(2 \omega_{1}\right), \ldots, V\left(2 \omega_{1}\right)}_{n_{2} \text { times }}, \ldots, \underbrace{V\left(j \omega_{1}\right), \ldots, V\left(j \omega_{1}\right)}_{n_{j} \text { times }}, \ldots\}
$$

Theorem: There is a formula for the multiplicity of irreducible components:

$$
\operatorname{dim} \operatorname{Hom}_{g}\left(V_{1} \otimes \cdots \otimes V_{n}, V(\lambda)\right)=M_{\left\{V_{i}\right\}, \lambda}=\sum_{m_{1}, m_{2}, \ldots \in \mathbb{Z}_{+}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}}
$$

- Sum \sum is restricted: $\sum_{j} j\left(n_{j}-2 m_{j}\right) \omega_{1}=\lambda$
- Integers $p_{i}: p_{i}=\sum_{j} \min (i, j)\left(n_{j}-2 m_{j}\right) \geq 0$.

Theorem: Hilbert polynomials of the FL product are Kostka polynomials

Explicit formula for graded multiplicities: $\widehat{\mathfrak{s l}}_{2}$

Choose a collection of irreducible $\mathfrak{s l}_{2}$-modules:

$$
\left\{V_{i}\right\}=\{\underbrace{V\left(\omega_{1}\right), \ldots, V\left(\omega_{1}\right)}_{n_{1} \text { times }}, \underbrace{V\left(2 \omega_{1}\right), \ldots, V\left(2 \omega_{1}\right)}_{n_{2} \text { times }}, \ldots, \underbrace{V\left(j \omega_{1}\right), \ldots, V\left(j \omega_{1}\right)}_{n_{j} \text { times }}, \ldots\}
$$

Theorem: There is a formula for the multiplicity of irreducible components:

$$
\operatorname{dim} \operatorname{Hom}_{g}\left(V_{1} \otimes \cdots \otimes V_{n}, V(\lambda)\right)=M_{\left\{V_{i}\right\}, \lambda}=\sum_{m_{1}, m_{2}, \ldots \in \mathbb{Z}_{+}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}}
$$

- Sum \sum is restricted: $\sum_{j} j\left(n_{j}-2 m_{j}\right) \omega_{1}=\lambda$
- Integers $p_{i}: p_{i}=\sum_{j} \min (i, j)\left(n_{j}-2 m_{j}\right) \geq 0$.

Theorem: Hilbert polynomials of the FL product are Kostka polynomials

Explicit formula for graded multiplicities: $\widehat{\mathfrak{s l}}_{2}$

Choose a collection of irreducible $\mathfrak{s l}_{2}$-modules:

$$
\left\{V_{i}\right\}=\{\underbrace{V\left(\omega_{1}\right), \ldots, V\left(\omega_{1}\right)}_{n_{1} \text { times }}, \underbrace{V\left(2 \omega_{1}\right), \ldots, V\left(2 \omega_{1}\right)}_{n_{2} \text { times }}, \ldots, \underbrace{V\left(j \omega_{1}\right), \ldots, V\left(j \omega_{1}\right)}_{n_{j} \text { times }}, \ldots\}
$$

Theorem: There is a formula for the multiplicity of irreducible components:

$$
\operatorname{dim} \operatorname{Hom}_{g}\left(V_{1} \otimes \cdots \otimes V_{n}, V(\lambda)\right)=M_{\left\{V_{i}\right\}, \lambda}=\sum_{m_{1}, m_{2}, \ldots \in \mathbb{Z}_{+}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}}
$$

- Sum \sum is restricted: $\sum_{j} j\left(n_{j}-2 m_{j}\right) \omega_{1}=\lambda$
- Integers $p_{i}: p_{i}=\sum_{j} \min (i, j)\left(n_{j}-2 m_{j}\right) \geq 0$.
"Fermionic formula"
Theorem: Hilbert polynomials of the FL product are Kostka polynomials

Explicit formula for graded multiplicities: $\widehat{\mathfrak{s l}}_{2}$

Choose a collection of irreducible $\mathfrak{s l}_{2}$-modules:

$$
\left\{V_{i}\right\}=\{\underbrace{V\left(\omega_{1}\right), \ldots, V\left(\omega_{1}\right)}_{n_{1} \text { times }}, \underbrace{V\left(2 \omega_{1}\right), \ldots, V\left(2 \omega_{1}\right)}_{n_{2} \text { times }}, \ldots, \underbrace{V\left(j \omega_{1}\right), \ldots, V\left(j \omega_{1}\right)}_{n_{j} \text { times }}, \ldots\}
$$

Theorem: There is a formula for the multiplicity of irreducible components:

$$
\operatorname{dim} \operatorname{Hom}_{g}\left(V_{1} \otimes \cdots \otimes V_{n}, V(\lambda)\right)=M_{\left\{V_{i}\right\}, \lambda}=\sum_{m_{1}, m_{2}, \ldots \in \mathbb{Z}_{+}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}}
$$

- Sum \sum is restricted: $\sum_{j} j\left(n_{j}-2 m_{j}\right) \omega_{1}=\lambda$
- Integers $p_{i}: p_{i}=\sum_{j} \min (i, j)\left(n_{j}-2 m_{j}\right) \geq 0$.
"Fermionic formula"
Theorem: Hilbert polynomials of the FL product are Kostka polynomials

$$
M_{\left\{V_{i}\right\}, \lambda}(t)=\sum_{m_{i}} t^{\mathbf{m}^{t} A \mathbf{m}} \prod_{i}\left[\begin{array}{c}
p_{i}+m_{i} \\
m_{i}
\end{array}\right]_{t}, \quad[A]_{i, j}=\min (i, j)
$$

Explicit formula generalizes to other \mathfrak{g}

For \mathfrak{g} simply-laced with Cartan matrix C, choose $\left\{V_{i}\right\}$: Collection of KR-modules: $n_{a, j}$ modules with highest weight $j \omega_{a}$.

Theorem: The FL graded tensor product multiplicities are

The restrictions on the sum are:

Explicit formula generalizes to other \mathfrak{g}

For \mathfrak{g} simply-laced with Cartan matrix C, choose $\left\{V_{i}\right\}$: Collection of KR-modules: $n_{a, j}$ modules with highest weight $j \omega_{a}$.

Theorem: The FL graded tensor product multiplicities are

$$
M_{\mathbf{n}, \lambda}(t)=\sum_{\left\{m_{a, j}\right\}} t^{\frac{1}{2} \mathbf{m}^{t}(C \otimes A) \mathbf{m}} \prod_{a, j}\left[\begin{array}{c}
p_{a, j}+m_{a, j} \\
m_{a, j}
\end{array}\right]_{t}
$$

The restrictions on the sum are:

Explicit formula generalizes to other \mathfrak{g}

For \mathfrak{g} simply-laced with Cartan matrix C, choose $\left\{V_{i}\right\}$: Collection of KR-modules: $n_{a, j}$ modules with highest weight $j \omega_{a}$.

Theorem: The FL graded tensor product multiplicities are

$$
\begin{gathered}
M_{\mathbf{n}, \lambda}(t)=\sum_{\left\{m_{a, j}\right\}} t^{\frac{1}{2} \mathbf{m}^{t}(C \otimes A) \mathbf{m}} \prod_{a, j}\left[\begin{array}{c}
p_{a, j}+m_{a, j} \\
m_{a, j}
\end{array}\right]_{t} \\
\mathbf{p}=(I \otimes A) \mathbf{n}-(C \otimes A) \mathbf{m}, \quad A_{i j}=\min (i, j) \\
{\left[\begin{array}{c}
p+m \\
m
\end{array}\right]_{t}:=\frac{\left(t^{p+1} ; t\right)_{\infty}\left(t^{m+1} ; t\right)_{\infty}}{(t ; t)_{\infty}\left(t^{p+m+1} ; t\right)_{\infty}}, \quad(a, t)_{\infty}:=\prod_{j \geq 0}\left(1-a t^{j}\right) .}
\end{gathered}
$$

The restrictions on the sum are:

Explicit formula generalizes to other \mathfrak{g}

For \mathfrak{g} simply-laced with Cartan matrix C, choose $\left\{V_{i}\right\}$: Collection of KR-modules: $n_{a, j}$ modules with highest weight $j \omega_{a}$.

Theorem: The FL graded tensor product multiplicities are

$$
\begin{gathered}
M_{\mathbf{n}, \lambda}(t)=\sum_{\left\{m_{a, j}\right\}} t^{\frac{1}{2} \mathbf{m}^{t}(C \otimes A) \mathbf{m}} \prod_{a, j}\left[\begin{array}{c}
p_{a, j}+m_{a, j} \\
m_{a, j}
\end{array}\right]_{t} \\
\mathbf{p}=(I \otimes A) \mathbf{n}-(C \otimes A) \mathbf{m}, \quad A_{i j}=\min (i, j) \\
{\left[\begin{array}{c}
p+m \\
m
\end{array}\right]_{t}:=\frac{\left(t^{p+1} ; t\right)_{\infty}\left(t^{m+1} ; t\right)_{\infty}}{(t ; t)_{\infty}\left(t^{p+m+1} ; t\right)_{\infty}}, \quad(a, t)_{\infty}:=\prod_{j \geq 0}\left(1-a t^{j}\right) .}
\end{gathered}
$$

The restrictions on the sum are:
(a) positive integers $p_{i, j} \geq 0$
(b) weight $\sum_{a, j} j \omega_{a}\left(n_{a, j}-\sum_{b} C_{a b} m_{b, j}\right)=\lambda$

Summary: Theorem about the Feigin-Loktev graded product

Theorem (Ardonne-K. ‘06, Di Francesco-K. ‘08)
(1) For any set of Kirillov-Reshetikhin modules $\left\{V_{i}\right\}$ of any simple Lie algebra $\widehat{\mathfrak{g}}$,

$$
\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V_{1} \star \cdots \star V_{N}, V_{\lambda}\right)=\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V_{1} \otimes \cdots \otimes V_{N}, V_{\lambda}\right)
$$

(2) The graded fusion multiplicities are given by the generalizations of the sums over binomial product formulas. (Fermionic formulas)

Next: A cluster algebra source for the same grading.

Summary: Theorem about the Feigin-Loktev graded product

Theorem (Ardonne-K. ‘06, Di Francesco-K. ‘08)
(1) For any set of Kirillov-Reshetikhin modules $\left\{V_{i}\right\}$ of any simple Lie algebra $\widehat{\mathfrak{g}}$,

$$
\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V_{1} \star \cdots \star V_{N}, V_{\lambda}\right)=\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V_{1} \otimes \cdots \otimes V_{N}, V_{\lambda}\right)
$$

(2) The graded fusion multiplicities are given by the generalizations of the sums over binomial product formulas. (Fermionic formulas)

Next: A cluster algebra source for the same grading.

Cluster algebras and quantum cluster algebras

- A class of discrete dynamical evolutions with particularly "good" behavior. Introduced by S. Fomin and A. Zelevinsky around 2000 in the context of the factorization problem of totally positive matrices.
- Cluster algebras have applications to:
-Factorization of totally positive matrices
-Combinatorics of Lusztig's canonical bases
-Triangulated categories
-Geometry of Teichmüller spaces
-Donaldson Thomas motivic invariant theory
-Somos-type recursion relations
-(Quantum) dilogarithm identities
- Quantized version: Fock-Goncharov, Berenstein-Zelevinsky.

Cluster algebras and quantum cluster algebras

- A class of discrete dynamical evolutions with particularly "good" behavior. Introduced by S. Fomin and A. Zelevinsky around 2000 in the context of the factorization problem of totally positive matrices.
- Cluster algebras have applications to:
-Factorization of totally positive matrices
-Combinatorics of Lusztig's canonical bases
-Triangulated categories
-Geometry of Teichmüller spaces
-Donaldson Thomas motivic invariant theory
-Somos-type recursion relations
-(Quantum) dilogarithm identities
-...
- Quantized version: Fock-Goncharov, Berenstein-Zelevinsky.

Cluster algebras and quantum cluster algebras

- A class of discrete dynamical evolutions with particularly "good" behavior. Introduced by S. Fomin and A. Zelevinsky around 2000 in the context of the factorization problem of totally positive matrices.
- Cluster algebras have applications to:
-Factorization of totally positive matrices
-Combinatorics of Lusztig's canonical bases
-Triangulated categories
-Geometry of Teichmüller spaces
-Donaldson Thomas motivic invariant theory
-Somos-type recursion relations
-(Quantum) dilogarithm identities
-...
- Quantized version: Fock-Goncharov, Berenstein-Zelevinsky.

[^4]
Cluster algebras and quantum cluster algebras

- A class of discrete dynamical evolutions with particularly "good" behavior. Introduced by S. Fomin and A. Zelevinsky around 2000 in the context of the factorization problem of totally positive matrices.
- Cluster algebras have applications to:
-Factorization of totally positive matrices
-Combinatorics of Lusztig's canonical bases
-Triangulated categories
-Geometry of Teichmüller spaces
-Donaldson Thomas motivic invariant theory
-Somos-type recursion relations
-(Quantum) dilogarithm identities
-...
- Quantized version: Fock-Goncharov, Berenstein-Zelevinsky.

[^5]
Cluster algebras and quantum cluster algebras

- A class of discrete dynamical evolutions with particularly "good" behavior. Introduced by S. Fomin and A. Zelevinsky around 2000 in the context of the factorization problem of totally positive matrices.
- Cluster algebras have applications to:
-Factorization of totally positive matrices
-Combinatorics of Lusztig's canonical bases
-Triangulated categories
-Geometry of Teichmüller spaces
-Donaldson Thomas motivic invariant theory
-Somos-type recursion relations
-(Quantum) dilogarithm identities
-...
- Quantized version: Fock-Goncharov, Berenstein-Zelevinsky.

Here: Coefficient-free Cluster Algebras of geometric type with skew-symmetric exchange matrix.

Cluster algebras: quiver dynamics

Start with a quiver Γ with no one-cycles or two cycles:

Cluster algebras: quiver dynamics

Start with a quiver Γ with no one-cycles or two cycles:

Corresponds to a skew-symmetric matrix B rows and columns labeled by vertices
The (i, j) entry $=$ number of arrows from i to j.

Dynamics of quiver: For each vertex label v, mutation μ_{v} acts on the quiver: $\mu_{v}(\Gamma)=\Gamma^{\prime}$

Cluster algebras: quiver dynamics

Start with a quiver Γ with no one-cycles or two cycles:

1

Corresponds to a skew-symmetric matrix B rows and columns labeled by vertices
The (i, j) entry $=$ number of arrows from i to j.

$$
B=\left(\begin{array}{rrrr}
0 & -2 & 0 & 1 \\
2 & 0 & -2 & -1 \\
0 & 2 & 0 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right)
$$

Cluster algebras: quiver dynamics

Start with a quiver Γ with no one-cycles or two cycles:

Corresponds to a skew-symmetric matrix B rows and columns labeled by vertices
The (i, j) entry $=$ number of arrows from i to j.

$$
B=\left(\begin{array}{rrrr}
0 & -2 & 0 & 1 \\
2 & 0 & -2 & -1 \\
0 & 2 & 0 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right)
$$

Dynamics of quiver: For each vertex label v, mutation μ_{v} acts on the quiver: $\mu_{v}(\Gamma)=\Gamma^{\prime}$

Cluster algebras: quiver dynamics

Start with a quiver Γ with no one-cycles or two cycles:

Corresponds to a skew-symmetric matrix B rows and columns labeled by vertices
The (i, j) entry $=$ number of arrows from i to j.

$$
B=\left(\begin{array}{rrrr}
0 & -2 & 0 & 1 \\
2 & 0 & -2 & -1 \\
0 & 2 & 0 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right)
$$

Dynamics of quiver: For each vertex label v, mutation μ_{v} acts on the quiver: $\mu_{v}(\Gamma)=\Gamma^{\prime}$

-Reverse incident arrows on node k
-create a shortcut for path of length 2 through k -cancel 2-cycles.

Example of quiver mutations

Example of quiver mutations

Example of quiver mutations

Example of quiver mutations

Cluster variable mutation

- To each node v in Γ associate a variable x_{v}. Collection $\mathbf{x}=\left\{x_{v}: v \in \Gamma\right\}$.
- Mutation μ_{v} acts on x_{v} according to the number of incoming and outgoing arrows from vertex v :

Cluster variable mutation

- To each node v in Γ associate a variable x_{v}. Collection $\mathbf{x}=\left\{x_{v}: v \in \Gamma\right\}$.
- Mutation μ_{v} acts on x_{v} according to the number of incoming and outgoing arrows from vertex v :

$$
\mu_{v}\left(x_{v}\right)=\frac{\prod_{w: w \rightarrow v} x_{w}+\prod_{w: w \leftarrow v} x_{w}}{x_{v}}, \quad \mu_{v}\left(x_{w}\right)=x_{w} \text { otherwise. }
$$

Cluster variable mutation

- To each node v in Γ associate a variable x_{v}. Collection $\mathbf{x}=\left\{x_{v}: v \in \Gamma\right\}$.
- Mutation μ_{v} acts on x_{v} according to the number of incoming and outgoing arrows from vertex v :

$$
\mu_{v}\left(x_{v}\right)=\frac{\prod_{w, w \rightarrow v} x_{w}+\prod_{w w w-v} x_{w}}{x_{v}}, \quad \mu_{v}\left(x_{w}\right)=x_{w} \text { otherwise. }
$$

$$
\mu_{2}\left(x_{2}\right)=\frac{x_{3}^{2} x_{4}+x_{1}^{2}}{x_{2}}
$$

Cluster variable mutation

- To each node v in Γ associate a variable x_{v}. Collection $\mathbf{x}=\left\{x_{v}: v \in \Gamma\right\}$.
- Mutation μ_{v} acts on x_{v} according to the number of incoming and outgoing arrows from vertex v :

$$
\mu_{v}\left(x_{v}\right)=\frac{\prod_{w w \rightarrow v} x_{w}+\prod_{w w w-v} x_{w}}{x_{v}}, \quad \mu_{v}\left(x_{w}\right)=x_{w} \text { otherwise. }
$$

$$
\mu_{2}\left(x_{2}\right)=\frac{x_{3}^{2} x_{4}+x_{1}^{2}}{x_{2}}
$$

- Repeat application of mutations to cluster variables iteratively to get rational functions in $\left\{x_{v}\right\}$.

Evolution tree

- A quiver Γ with n nodes \Longrightarrow a complete n-tree \mathbb{T}_{n}. Labeled edges.

At each node - of the tree: data $\left(\mathbf{x}=\left\{x_{v}\right\}_{v \in \Gamma}, \Gamma\right) \bullet=(n$ cluster variables, quiver $)$.

- Initial data: (x, Γ) at a single node on the evolution tree. All other data are determined via the evolution.
- The mutation of variables along the tree \mathbb{T}_{n} is a discrete dynamical system on the cluster variables, with initial data given by (x, Γ) at one of the vertices.
- Cluster algebra: Commutative algebra generated by collection of cluster variables. The rank is n.

Evolution tree

- A quiver Γ with n nodes \Longrightarrow a complete n-tree \mathbb{T}_{n}. Labeled edges.

At each node - of the tree: data $\left(\mathbf{x}=\left\{x_{v}\right\}_{v \in \Gamma}, \Gamma\right) \bullet=(n$ cluster variables, quiver $)$.

Data on vertices connected by an edge related by a mutation μ

$$
(\mathbf{x}, \Gamma)_{t^{\prime}}=\mu(\mathbf{x}, \Gamma)_{t}=(\mu(\mathbf{x}), \mu(\Gamma))
$$

- Initial data: (x, Γ) at a single node on the evolution tree. All other data are determined via the evolution.
- The mutation of variables along the tree \mathbb{T}_{n} is a discrete dynamical system on the cluster variables, with initial data given by (x, Γ) at one of the vertices.
- Cluster algebra: Commutative algebra generated by collection of cluster variables. The rank is n.

Evolution tree

- A quiver Γ with n nodes \Longrightarrow a complete n-tree \mathbb{T}_{n}. Labeled edges.

At each node - of the tree: data $\left(\mathbf{x}=\left\{x_{v}\right\}_{v \in \Gamma}, \Gamma\right) \bullet=(n$ cluster variables, quiver $)$.

Data on vertices connected by an edge related by a mutation μ

$$
(\mathbf{x}, \Gamma)_{t^{\prime}}=\mu(\mathbf{x}, \Gamma)_{t}=(\mu(\mathbf{x}), \mu(\Gamma))
$$

- Initial data: (\mathbf{x}, Γ) at a single node on the evolution tree. All other data are determined via the evolution.
θ cluster variables, with initial data given by (\mathbf{x}, Γ) at one of the vertices.
- Cluster algebra: Commutative algebra generated by collection of cluster variables. The rank is n.

Evolution tree

- A quiver Γ with n nodes \Longrightarrow a complete n-tree \mathbb{T}_{n}. Labeled edges.

At each node - of the tree: data $\left(\mathbf{x}=\left\{x_{v}\right\}_{v \in \Gamma}, \Gamma\right) \bullet=(n$ cluster variables, quiver $)$.

Data on vertices connected by an edge related by a mutation μ

$$
(\mathbf{x}, \Gamma)_{t^{\prime}}=\mu(\mathbf{x}, \Gamma)_{t}=(\mu(\mathbf{x}), \mu(\Gamma))
$$

- Initial data: (\mathbf{x}, Γ) at a single node on the evolution tree. All other data are determined via the evolution.
- The mutation of variables along the tree \mathbb{T}_{n} is a discrete dynamical system on the cluster variables, with initial data given by (\mathbf{x}, Γ) at one of the vertices.
- Cluster algebra: Commutative algebra generated by collection of cluster variables. The rank is n.

Evolution tree

- A quiver Γ with n nodes \Longrightarrow a complete n-tree \mathbb{T}_{n}. Labeled edges.

At each node - of the tree: data $\left(\mathbf{x}=\left\{x_{v}\right\}_{v \in \Gamma}, \Gamma\right) \bullet=(n$ cluster variables, quiver $)$.

Data on vertices connected by an edge related by a mutation μ

$$
(\mathbf{x}, \Gamma)_{t^{\prime}}=\mu(\mathbf{x}, \Gamma)_{t}=(\mu(\mathbf{x}), \mu(\Gamma))
$$

- Initial data: (\mathbf{x}, Γ) at a single node on the evolution tree. All other data are determined via the evolution.
- The mutation of variables along the tree \mathbb{T}_{n} is a discrete dynamical system on the cluster variables, with initial data given by (\mathbf{x}, Γ) at one of the vertices.
- Cluster algebra: Commutative algebra generated by collection of cluster variables. The rank is n.

Example of a simple evolution: Rank 2

Choose $\Gamma=$

Initial data $\left(x_{0}, x_{1}\right)$

Example of a simple evolution: Rank 2

Choose $\Gamma=$

$$
\text { Initial data }\left(x_{0}, x_{1}\right)
$$

Evolution tree:

Example of a simple evolution: Rank 2

Choose $\Gamma=$

$$
\text { Initial data }\left(x_{0}, x_{1}\right)
$$

Evolution tree:

Example of a simple evolution: Rank 2

Initial data $\left(x_{0}, x_{1}\right)$

Evolution tree:

Example of a simple evolution: Rank 2

Choose $\Gamma=$
Initial data $\left(x_{0}, x_{1}\right)$

Evolution tree:

Example of a simple evolution: Rank 2

Choose $\Gamma=$
Initial data $\left(x_{0}, x_{1}\right)$

Evolution tree:

Example of a simple evolution: Rank 2

Choose $\Gamma=$
Initial data $\left(x_{0}, x_{1}\right)$

Evolution tree:

Laurent polynomials with coefficients in \mathbb{Z}_{+}in initial data.

Some facts about cluster algebras

- Finite cluster algebras classified by finite simple Lie algebra Dynkin diagrams. [Fomin-Zelevinsky].
- Quiver-finite cluster algebras classified by Felikson, Shapiro, Tumarkin.
- Laurent property Theorem: In terms of any choice of initial data, cluster variables are Laurent polynomials (not just rational functions!).
- Positivity conjecture: with coefficients in \mathbb{Z}_{+}. Proof in special cases

Some facts about cluster algebras

- Finite cluster algebras classified by finite simple Lie algebra Dynkin diagrams. [Fomin-Zelevinsky].
- Quiver-finite cluster algebras classified by Felikson, Shapiro, Tumarkin.
- Laurent property Theorem: In terms of any choice of initial data, cluster variables are Laurent polynomials (not just rational functions!)
- Positivity conjecture: with coefficients in \mathbb{Z}_{+}. Proof in special cases

Some facts about cluster algebras

- Finite cluster algebras classified by finite simple Lie algebra Dynkin diagrams. [Fomin-Zelevinsky].
- Quiver-finite cluster algebras classified by Felikson, Shapiro, Tumarkin.
- Laurent property Theorem: In terms of any choice of initial data, cluster variables are Laurent polynomials (not just rational functions!).
- Positivity conjecture: with coefficients in \mathbb{Z}_{+}. Proof in special cases.

Some facts about cluster algebras

- Finite cluster algebras classified by finite simple Lie algebra Dynkin diagrams. [Fomin-Zelevinsky].
- Quiver-finite cluster algebras classified by Felikson, Shapiro, Tumarkin.
- Laurent property Theorem: In terms of any choice of initial data, cluster variables are Laurent polynomials (not just rational functions!).
- Positivity conjecture: with coefficients in \mathbb{Z}_{+}. Proof in special cases.

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central)
- Cluster variables in neighboring nodes related by a quantum mutation

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with

- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central)
- Cluster variables in neighboring nodes related by a quantum mutation

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case)
- New matrix: $\Lambda \propto B^{-1}$ an integer matrix.
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central)
- Cluster variables in neighboring nodes related by a quantum mutation

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case).
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central)
- Cluster variables in neighboring nodes related by a quantum mutation

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case).
- New matrix: $\Lambda \propto B^{-1}$ an integer matrix.
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central)
- Cluster variables in neighboring nodes related by a quantum mutation

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case).
- New matrix: $\Lambda \propto B^{-1}$ an integer matrix.
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central).
- Cluster variables in neighboring nodes related by a quantum mutation

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case).
- New matrix: $\Lambda \propto B^{-1}$ an integer matrix.
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central).
- Cluster variables in neighboring nodes related by a quantum mutation

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case).
- New matrix: $\Lambda \propto B^{-1}$ an integer matrix.
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central).
- Cluster variables in neighboring nodes related by a quantum mutation

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case).
- New matrix: $\Lambda \propto B^{-1}$ an integer matrix.
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central).
- Cluster variables in neighboring nodes related by a quantum mutation

$$
\mu_{i}\left(X_{j}\right)=\left\{\begin{array}{lll}
\mathbf{X}^{\mathbf{b}_{i}^{+}}+\mathbf{X}^{\mathbf{b}_{i}^{-}}, & i=j & \mathbf{b}_{i}^{ \pm}=i \text { th column of }[\pm B]_{+}-\mathbb{I} . \\
X_{j}, & i \neq j . & \mathbf{X}^{\mathbf{a}}:=q^{\frac{1}{2} \sum_{i>j} \Lambda_{i, j} a_{i} a_{j}} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} .
\end{array}\right.
$$

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case).
- New matrix: $\Lambda \propto B^{-1}$ an integer matrix.
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central).
- Cluster variables in neighboring nodes related by a quantum mutation

$$
\mu_{i}\left(X_{j}\right)=\left\{\begin{array}{lll}
\mathbf{X}^{\mathbf{b}_{i}^{+}}+\mathbf{X}^{\mathbf{b}_{i}^{-}}, & i=j & \mathbf{b}_{i}^{ \pm}=i \text { th column of }[\pm B]_{+}-\mathbb{I} . \\
X_{j}, & i \neq j . & \mathbf{X}^{\mathbf{a}}:=q^{\frac{1}{2} \sum_{i>j} \Lambda_{i, j} a_{i} a_{j}} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} .
\end{array}\right.
$$

- Laurent property: Any cluster variable is a Laurent polynomial with coefficients in $\mathbb{Z}\left[q, q^{-1}\right]$ when expressed in terms of any of cluster seed variables. [Theorem].

Quantum cluster algebras

- Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein] [Fock and Goncharov] \Longrightarrow quantum deformation [Berenstein, Zelevinsky].
- A non-commutative algebra with
- Generators $\left\{X_{1}, \ldots, X_{n}\right\}$: variables associated to node of \mathbb{T}_{n};
- Data $\Gamma \sim$ skew symmetric matrix B (same as in commutative case).
- New matrix: $\Lambda \propto B^{-1}$ an integer matrix.
- Cluster variables at the same node satisfy $X_{i} X_{j}=q^{\Lambda_{i, j}} X_{j} X_{i}$ (q central).
- Cluster variables in neighboring nodes related by a quantum mutation

$$
\mu_{i}\left(X_{j}\right)=\left\{\begin{array}{lll}
\mathbf{X}^{\mathbf{b}_{i}^{+}}+\mathbf{X}^{\mathbf{b}_{i}^{-}}, & i=j & \mathbf{b}_{i}^{ \pm}=i \text { th column of }[\pm B]_{+}-\mathbb{I} . \\
X_{j}, & i \neq j . & \mathbf{X}^{\mathbf{a}}:=q^{\frac{1}{2} \sum_{i>j} \Lambda_{i, j} a_{i} a_{j}} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} .
\end{array}\right.
$$

- Laurent property: Any cluster variable is a Laurent polynomial with coefficients in $\mathbb{Z}\left[q, q^{-1}\right]$ when expressed in terms of any of cluster seed variables. [Theorem].
- Positivity conjecture: Coefficients expected to be in $\mathbb{Z}_{+}\left[q, q^{-1}\right]$.

Example of quantum evolution: Rank 2

Choose $\Gamma=$

Initial data $\left(X_{0}, X_{1}\right)$

Example of quantum evolution: Rank 2

Choose $\Gamma=$

Initial data $\left(X_{0}, X_{1}\right)$

Evolution tree:

Example of quantum evolution: Rank 2

Choose $\Gamma=$
Initial data $\left(X_{0}, X_{1}\right)$

Evolution tree:

Example of quantum evolution: Rank 2

Choose $\Gamma=$
Initial data $\left(X_{0}, X_{1}\right)$

Evolution tree:

Laurent polynomials with coefficients in $\mathbb{Z}_{+}\left[q, q^{-1}\right]$ in initial data

Next: Grading from Quantization

- There is a cluster algebra associated with the explicit formulas for tensor product multiplicities
- The graded tensor product multiplicities are associated with the quantization of this cluster algebra.

Next: Grading from Quantization

- There is a cluster algebra associated with the explicit formulas for tensor product multiplicities
- The graded tensor product multiplicities are associated with the quantization of this cluster algebra.

Tensor product multiplicities

The sum $N_{\mathbf{n}, \ell}(1)$ is the constant term of $Z_{\mathbf{n}, \ell}(y)$.
(Repeat for the other Lie algebras g.)

Tensor product multiplicities

$$
\begin{aligned}
& M_{\mathbf{n}, \ell}(1)=\sum_{\substack{m_{i} \geq 0 \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell \\
p_{i} \geq 0}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} \\
& \text { Multiplicity formula for } \mathfrak{s l}_{2} \text { tensors } \\
& p_{i}=\sum \min (i, j)\left(n_{j}-2 m_{j}\right) \\
& \Downarrow \\
& N_{\mathbf{n}, \ell}(1)=\sum_{\substack{\left\{m_{i}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} \quad \begin{array}{l}
\text { Relax restrictions on the sum: } \\
\text { This is not a manifestly non-negative } \\
\text { sum! }
\end{array}
\end{aligned}
$$

The sum $N_{\mathbf{n}, \ell}(1)$ is the constant term of $Z_{\mathbf{n}, \ell}(y)$.

> (Repeat for the other Lie algebras g.)

Tensor product multiplicities

$$
\begin{aligned}
& M_{\mathbf{n}, \ell}(1)=\sum_{\substack{m_{i} \geq 0 \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell \\
p_{i} \geq 0}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} \\
& \Downarrow \\
& \begin{aligned}
& N_{\mathbf{n}, \ell}(1) \sum_{\substack{\left\{m_{i}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} \quad \begin{array}{l}
\text { Relax restrictions on the sum: } \\
\text { This is not a manifestly non-negative } \\
\text { sum! }
\end{array} \\
& \Downarrow
\end{aligned} \\
& Z_{\mathbf{n}, \ell}(y)=\sum_{\left\{m_{i}\right\}} y^{p} \prod_{i \geq 1}\binom{p_{i}-p+m_{i}}{m_{i}} \quad \begin{array}{l}
\text { No restrictions on the sum. } \\
p \stackrel{\text { def }}{=} \sum i\left(n_{i}-2 m_{i}\right)-\ell
\end{array}
\end{aligned}
$$

The sum $N_{\mathbf{n}, \ell}(1)$ is the constant term of $Z_{\mathbf{n}, \ell}(y)$.
(Repeat for the other Lie algebras g.)

Tensor product multiplicities

$$
\left.\begin{array}{rll}
M_{\mathbf{n}, \ell}(1) & =\sum_{\substack{m_{i} \geq 0 \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell \\
p_{i} \geq 0}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} & \begin{array}{l}
\text { Multiplicity formula for } \mathfrak{s l}_{2} \text { tensors } \\
p_{i}=\sum \min (i, j)\left(n_{j}-2 m_{j}\right)
\end{array} \\
& \Downarrow & \sum_{\substack{\left\{m_{i}\right\} \\
N_{\mathbf{n}, \ell}(1)}} \prod_{\substack{2 \sum i m_{i}=\sum_{i} n_{i}-\ell}}\binom{p_{i}+m_{i}}{m_{i}}
\end{array} \begin{array}{l}
\text { Relax restrictions on the sum: } \\
\text { This is not a manifestly non-negative } \\
\text { sum! }
\end{array}\right] \begin{aligned}
& \Downarrow \\
& Z_{\mathbf{n}, \ell}(y) \\
& \\
& \\
&
\end{aligned}
$$

The sum $N_{\mathbf{n}, \ell}(1)$ is the constant term of $Z_{\mathbf{n}, \ell}(y)$.

$$
\text { (Repeat for the other Lie algebras } \mathfrak{g} .)
$$

Tensor product multiplicities

$$
\begin{aligned}
& M_{\mathbf{n}, \ell}(1)=\sum_{\substack{m_{i} \geq 0 \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell \\
p_{i} \geq 0}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} \\
& \Downarrow \\
& \begin{aligned}
& N_{\mathbf{n}, \ell}(1)=\sum_{\substack{\left\{m_{i}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} \quad \begin{array}{l}
\text { Relax restrictions on the sum: } \\
\text { This is not a manifestly non-negative } \\
\text { sum! }
\end{array} \\
& \Downarrow
\end{aligned} \\
& Z_{\mathbf{n}, \ell}(y)=\sum_{\left\{m_{i}\right\}} y^{p} \prod_{i \geq 1}\binom{p_{i}-p+m_{i}}{m_{i}} \quad \begin{array}{l}
\text { No restrictions on the sum. } \\
p \stackrel{\text { def }}{=} \sum i\left(n_{i}-2 m_{i}\right)-\ell
\end{array}
\end{aligned}
$$

The sum $N_{\mathbf{n}, \ell}(1)$ is the constant term of $Z_{\mathbf{n}, \ell}(y)$.
(Repeat for the other Lie algebras \mathfrak{g}.)

Theorem for generating functions

Theorem (Di Francesco, K.)
(1) The generating function factorizes:

$$
Z_{\mathbf{n}, \ell}(y)=\chi_{1} \prod_{i \geq 0} \chi_{i}^{n_{i}}\left(\frac{\chi_{k}}{\chi_{k+1}}\right)^{\ell+1}, \quad k \gg 0
$$

where χ_{i} are solutions of $\chi_{i+1}=\frac{\chi_{i}^{2}-1}{\chi_{i-1}}, \quad \chi_{0}=1, \chi_{1}=y$.
(2) The modified sum $N_{\mathrm{n}, \ell(1)}$ is equal to the multiplicity $M_{\mathrm{n}, \ell}(1)$ because the solutions of the recursion χ_{i} are polynomials in the initial data χ_{1}.

This recursion relation is known as the Q-system. (Solutions are Chebyshev polynomials of second type)

In general, the fact that solutions to Q-systems are polynomials follows from two facts:

- The equations are mutations in a cluster algebra.
- Laurentness implies polynomiality for these equations.

Theorem for generating functions

Theorem (Di Francesco, K.)
(1) The generating function factorizes:

$$
Z_{\mathbf{n}, \ell}(y)=\chi_{1} \prod_{i \geq 0} \chi_{i}^{n_{i}}\left(\frac{\chi_{k}}{\chi_{k+1}}\right)^{\ell+1}, \quad k \gg 0
$$

where χ_{i} are solutions of $\chi_{i+1}=\frac{\chi_{i}^{2}-1}{\chi_{i-1}}, \quad \chi_{0}=1, \chi_{1}=y$.
(2) The modified sum $N_{\mathbf{n}, \ell}$ (1) is equal to the multiplicity $M_{\mathbf{n}, \ell}(1)$ because the solutions of the recursion χ_{i} are polynomials in the initial data χ_{1}.

```
This recursion relation is known as the Q-system. (Solutions are Chebyshev polynomials
f second type)
In general, the fact that solutions to Q-systems are polynomials follows from two facts:
    - The equations are mutations in a cluster algebra
    - Laurentness implies polynomiality for these equations.
```


Theorem for generating functions

Theorem (Di Francesco, K.)
(1) The generating function factorizes:

$$
Z_{\mathbf{n}, \ell}(y)=\chi_{1} \prod_{i \geq 0} \chi_{i}^{n_{i}}\left(\frac{\chi_{k}}{\chi_{k+1}}\right)^{\ell+1}, \quad k \gg 0
$$

where χ_{i} are solutions of $\chi_{i+1}=\frac{\chi_{i}^{2}-1}{\chi_{i-1}}, \quad \chi_{0}=1, \chi_{1}=y$.
(2) The modified sum $N_{\mathbf{n}, \ell}(1)$ is equal to the multiplicity $M_{\mathbf{n}, \ell}(1)$ because the solutions of the recursion χ_{i} are polynomials in the initial data χ_{1}.

This recursion relation is known as the Q-system. (Solutions are Chebyshev polynomials of second type).

In general, the fact that solutions to Q-systems are polynomials follows from two facts:

- The equations are mutations in a cluster algebra.
- Laurentness implies polynomiality for these equations.

Theorem for generating functions

Theorem (Di Francesco, K.)
(1) The generating function factorizes:

$$
Z_{\mathbf{n}, \ell}(y)=\chi_{1} \prod_{i \geq 0} \chi_{i}^{n_{i}}\left(\frac{\chi_{k}}{\chi_{k+1}}\right)^{\ell+1}, \quad k \gg 0
$$

where χ_{i} are solutions of $\chi_{i+1}=\frac{\chi_{i}^{2}-1}{\chi_{i-1}}, \quad \chi_{0}=1, \chi_{1}=y$.
(2) The modified sum $N_{\mathbf{n}, \ell}(1)$ is equal to the multiplicity $M_{\mathbf{n}, \ell}(1)$ because the solutions of the recursion χ_{i} are polynomials in the initial data χ_{1}.

This recursion relation is known as the Q-system. (Solutions are Chebyshev polynomials of second type).

In general, the fact that solutions to Q-systems are polynomials follows from two facts:

- The equations are mutations in a cluster algebra.
- Laurentness implies polynomiality for these equations.

Cluster algebra for the Q-system

The Q-system for A_{1}

$$
\chi_{n+1} \chi_{n-1}=\chi_{n}^{2}-1
$$

For other simply-laced Lie algebras with Cartan matrix C :

Associated with the quiver $\Gamma \sim$ exchange matrix B :

Theorem (K.)
Each of the Q-system relations is a mutation of cluster variables in the mutation tree with initial data $\left(\left(Q_{\alpha, 0} ; Q_{\alpha, 1}\right)_{1 \leq \alpha \leq r}, B\right)$.

Application: Solutions are polynomials in the initial data $Q_{\alpha, 1}$ if $\mathrm{RHS}=0$ at $n=0$. (Follows from Laurent polynomiality)

Cluster algebra for the Q-system

The Q-system for A_{1}

$$
Q_{n+1} Q_{n-1}=Q_{n}^{2}+1
$$

A mutation in our rank 2 cluster algebra example! For other simply-laced Lie algebras with Cartan matrix C :

Associated with the quiver Γ ~exchange matrix B :

Theorem (K.)
Each of the Q-system relations is a mutation of cluster variables in the mutation tree with initial data $\left(\left(Q_{\alpha, 0} ; Q_{\alpha, 1}\right)_{1 \leq \alpha \leq r}, B\right)$.

Application: Solutions are polynomials in the initial data $Q_{\alpha, 1}$ if $\mathrm{RHS}=0$ at $n=0$. (Follows from Laurent polynomiality)

Cluster algebra for the Q-system

The Q-system for A_{1}

$$
Q_{n+1} Q_{n-1}=Q_{n}^{2}+1
$$

A mutation in our rank 2 cluster algebra example! For other simply-laced Lie algebras with Cartan matrix C :

$$
Q_{\alpha, n+1} Q_{\alpha, n-1}=Q_{\alpha, n}^{2}+\prod_{\beta \sim \alpha} Q_{\beta, n}
$$

Associated with the quiver Γ ~exchange matrix B :

Theorem (K.)
Each of the Q-system relations is a mutation of cluster variables in the mutation tree with initial data $\left(\left(Q_{\alpha, 0} ; Q_{\alpha, 1}\right)_{1 \leq \alpha \leq r}, B\right)$.

Application: Solutions are polynomials in the initial data $Q_{\alpha, 1}$ if RHS $=0$ at $n=0$. (Follows from Laurent polynomiality)

Cluster algebra for the Q-system

The Q-system for A_{1}

$$
Q_{n+1} Q_{n-1}=Q_{n}^{2}+1
$$

A mutation in our rank 2 cluster algebra example! For other simply-laced Lie algebras with Cartan matrix C :

$$
Q_{\alpha, n+1} Q_{\alpha, n-1}=Q_{\alpha, n}^{2}+\prod_{\beta \sim \alpha} Q_{\beta, n}
$$

Associated with the quiver $\Gamma \sim$ exchange matrix B :

$$
B=\left(\begin{array}{rr}
0 & -C \\
C & 0
\end{array}\right)
$$

Each of the Q-system relations is a mutation of cluster variables in the mutation tree with initial data $\left(\left(Q_{\alpha, 0} ; Q_{\alpha, 1}\right)_{1 \leq \alpha \leq r}, B\right)$.

Application: Solutions are polynomials in the initial data $Q_{\alpha, 1}$ if $\mathrm{RHS}=0$ at $n=0$. (Follows from Laurent polynomiality)

Cluster algebra for the Q-system

The Q-system for A_{1}

$$
Q_{n+1} Q_{n-1}=Q_{n}^{2}+1
$$

A mutation in our rank 2 cluster algebra example! For other simply-laced Lie algebras with Cartan matrix C :

$$
Q_{\alpha, n+1} Q_{\alpha, n-1}=Q_{\alpha, n}^{2}+\prod_{\beta \sim \alpha} Q_{\beta, n}
$$

Associated with the quiver $\Gamma \sim$ exchange matrix B :

$$
B=\left(\begin{array}{rr}
0 & -C \\
C & 0
\end{array}\right)
$$

Theorem (K.)
Each of the Q-system relations is a mutation of cluster variables in the mutation tree with initial data $\left(\left(Q_{\alpha, 0} ; Q_{\alpha, 1}\right)_{1 \leq \alpha \leq r}, B\right)$.

Cluster algebra for the Q-system

The Q-system for A_{1}

$$
Q_{n+1} Q_{n-1}=Q_{n}^{2}+1
$$

A mutation in our rank 2 cluster algebra example! For other simply-laced Lie algebras with Cartan matrix C :

$$
Q_{\alpha, n+1} Q_{\alpha, n-1}=Q_{\alpha, n}^{2}+\prod_{\beta \sim \alpha} Q_{\beta, n}
$$

Associated with the quiver $\Gamma \sim$ exchange matrix B :

$$
B=\left(\begin{array}{rr}
0 & -C \\
C & 0
\end{array}\right)
$$

Theorem (K.)
Each of the Q-system relations is a mutation of cluster variables in the mutation tree with initial data $\left(\left(Q_{\alpha, 0} ; Q_{\alpha, 1}\right)_{1 \leq \alpha \leq r}, B\right)$.

Application: Solutions are polynomials in the initial data $Q_{\alpha, 1}$ if $\mathrm{RHS}=0$ at $n=0$. (Follows from Laurent polynomiality)

Example of quiver mutations for $A_{6} Q$-system

Graded multiplicities from quantum cluster algebra

Quantum Q-system: The quantum deformation of the Q-system cluster algebra is

$$
q^{\lambda_{a, a}} Q_{a, j+1} Q_{a, j-1}=Q_{a, j}^{2}+\prod_{a \sim b} Q_{b, j}, \quad \lambda=\operatorname{Det} C C^{-1}
$$

Commutation relations: $Q_{a, j} Q_{b, j+1}=q^{\lambda_{a b}} Q_{b, j+1} Q_{a, j}$.
Theorem: The Polynomiality property for the quantum Q-system
Write the ordered expression $\chi_{a, j}=\sum a_{\mathbf{m}, \mathbf{n}} \prod \chi_{b, 1}^{m_{b}} \chi_{b, 0}^{n_{b}}$. Then
follows from Laurent polynomiality for quantum cluster algebras.
Warning: Apply only to norma'-ordered expressions!

Graded multiplicities from quantum cluster algebra

Quantum Q-system: The quantum deformation of the Q-system is

$$
q^{\lambda_{a, a}} \chi_{a, j+1} \chi_{a, j-1}=\chi_{a, j}^{2}-\prod_{a \sim b} \chi_{b, j}, \quad \lambda=\operatorname{Det} C C^{-1}
$$

Commutation relations: $\chi_{a, j} \chi_{b, j+1}=q^{\lambda_{a b}} \chi_{b, j+1} \chi_{a, j}$. "Quantum Groethendieck ring"

Theorem: The Polynomiality property for the quantum Q-system

follows from Laurent polynomiality for quantum cluster algebras.

Warning: Apply only to normal-ordered expressions!

Graded multiplicities from quantum cluster algebra

Quantum Q-system: The quantum deformation of the Q-system is

$$
q^{\lambda_{a, a}} \chi_{a, j+1} \chi_{a, j-1}=\chi_{a, j}^{2}-\prod_{a \sim b} \chi_{b, j}, \quad \lambda=\operatorname{Det} C C^{-1}
$$

Commutation relations: $\chi_{a, j} \chi_{b, j+1}=q^{\lambda_{a b}} \chi_{b, j+1} \chi_{a, j}$.
"Quantum Groethendieck ring"
Theorem: The Polynomiality property for the quantum Q-system
Write the ordered expression $\chi_{a, j}=\sum_{m_{b}, n_{b}} a_{\mathbf{m}, \mathbf{n}} \prod_{b} \chi_{b, 1}^{m_{b}} \chi_{b, 0}^{n_{b}}$. Then

$$
\chi_{a, j}\left(\chi_{b, 0}=1\right) \in \mathbb{Z}\left[q, q^{-1}\right]\left[\chi_{1,1}, \ldots, \chi_{r, 1}\right] \quad \text { a polynomial! }
$$

follows from Laurent polynomiality for quantum cluster algebras.
Warning: Apply only to normal-ordered expressions!

Graded tensor product multiplicities

Graded tensor product multiplicities

Recall: For the ungraded multiplicities:

$$
\begin{aligned}
M_{\mathbf{n}, \ell}(1) & =\sum_{\substack{\left\{m_{i}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell \\
p_{i} \geq 0}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} \quad \text { Multiplicity formula for } \mathfrak{s l}_{2} \text { ter } \\
& \Downarrow \\
N_{\mathbf{n}, \ell}(1) & =\sum_{\substack{\left\{m_{i}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell}} \prod_{i \geq 1}\binom{p_{i}+m_{i}}{m_{i}} \quad \text { Relax restrictions on the sum } \\
& \Downarrow \\
Z_{\mathbf{n}, \ell}(y) & =\sum_{\left\{m_{i}\right\}} y^{p} \prod_{i \geq 1}\binom{p_{i}-p+m_{i}}{m_{i}} \quad \begin{array}{l}
\text { No restrictions on the sum. } \\
p \stackrel{\text { def }}{=} \sum i\left(n_{i}-2 m_{i}\right)-\ell
\end{array}
\end{aligned}
$$

The sum $N_{\mathbf{n}, \ell}(1)$ is the constant term of $Z_{\mathbf{n}, \ell}(y)$.

Graded tensor product multiplicities

For the graded multiplicities:

$$
\begin{aligned}
M_{\mathbf{n}, \ell}(t) & =\sum_{\substack{\left\{m_{i j}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell \\
p_{i} \geq 0}} t^{\mathbf{m}^{t} A \mathbf{m}} \prod_{i \geq 1}\left[\begin{array}{c}
p_{i}+m_{i} \\
m_{i}
\end{array}\right]_{t}, \quad A_{i j}=\min (i, j) \\
& \Downarrow \\
N_{\mathbf{n}, \ell}(t) & =\sum_{\substack{\left\{m_{i j}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell}} t^{\mathbf{m}^{t} A \mathbf{m}} \prod_{i \geq 1}\left[\begin{array}{c}
p_{i}+m_{i} \\
m_{i}
\end{array}\right]_{t} \quad \text { Relax restrictions on the sur } \\
& \Downarrow \\
Z_{\mathbf{n}, \ell}(t ; X, Y) & =\sum_{m_{i} \geq 0} t^{\tilde{Q}(\mathbf{m}, \mathbf{n})} Y^{p} X^{p_{1}-p} \prod_{j \geq 1}\left[\begin{array}{c}
p_{j}-p+m_{j} \\
m_{j}
\end{array}\right]_{t}, \quad \begin{array}{l}
\quad \begin{array}{l}
\text { def } \\
X Y=t^{1 / 2} Y X
\end{array} \sum_{i}^{i\left(n_{i}-2 m_{i}\right)-\ell}
\end{array}
\end{aligned}
$$

Graded tensor product multiplicities

For the graded multiplicities:

$$
\begin{aligned}
M_{\mathbf{n}, \ell}(t) & =\sum_{\substack{\left\{m_{i j}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell \\
p_{i} \geq 0}} t^{\mathbf{m}^{t} A \mathbf{m}} \prod_{i \geq 1}\left[\begin{array}{c}
p_{i}+m_{i} \\
m_{i}
\end{array}\right]_{t}, \quad A_{i j}=\min (i, j) \\
& \Downarrow \\
N_{\mathbf{n}, \ell}(t) & =\sum_{\substack{\left\{m_{i j}\right\} \\
2 \sum i m_{i}=\sum_{i} n_{i}-\ell}} t^{\mathbf{m}^{t} A \mathbf{m}} \prod_{i \geq 1}\left[\begin{array}{c}
p_{i}+m_{i} \\
m_{i}
\end{array}\right]_{t} \quad \text { Relax restrictions on the sur } \\
& \Downarrow \\
Z_{\mathbf{n}, \ell}(t ; X, Y) & =\sum_{m_{i} \geq 0} t^{\tilde{Q}(\mathbf{m}, \mathbf{n})} Y^{p} X^{p_{1}-p} \prod_{j \geq 1}\left[\begin{array}{c}
p_{j}-p+m_{j} \\
m_{j}
\end{array}\right]_{t}, \quad \begin{array}{l}
p \stackrel{\text { def }}{=} \sum_{X Y=t^{1 / 2} Y X}^{i\left(n_{i}-2 m_{i}\right)-\ell}
\end{array}
\end{aligned}
$$

$Z_{\mathbf{n}, \ell}(t ; X, Y)$ is constructed so that the $p=0$ term gives $N_{\mathbf{n}, \ell}(t)$ when $X=1$.

Constant term formula

Theorem

- When χ_{j} satisfy the quantum Q-system with $q^{2}=t$ the generating function

$$
Z_{\mathbf{n}, \ell}\left(t ; \chi_{0}, \chi_{1}\right)=t^{f(\mathbf{n})} \chi_{1} \chi_{0}^{-1}\left(\vec{\prod} \chi_{j}^{n_{j}}\right)\left(\chi_{k} \chi_{k+1}^{-1}\right)^{\ell+1}=\sum a_{i, j}(t) \chi_{1}^{i} \chi_{0}^{j}
$$

gives $N_{\mathbf{n}, \ell}(t)=\sum_{j} a_{0, j}(t)$.

- The polynomiality property for the quantum Q-system cluster algebra implies

Constant term formula

Theorem

- When χ_{j} satisfy the quantum Q-system with $q^{2}=t$ the generating function

$$
Z_{\mathbf{n}, \ell}\left(t ; \chi_{0}, \chi_{1}\right)=t^{f(\mathbf{n})} \chi_{1} \chi_{0}^{-1}\left(\vec{\prod} \chi_{j}^{n_{j}}\right)\left(\chi_{k} \chi_{k+1}^{-1}\right)^{\ell+1}=\sum a_{i, j}(t) \chi_{1}^{i} \chi_{0}^{j}
$$

gives $N_{\mathbf{n}, \ell}(t)=\sum_{j} a_{0, j}(t)$.

- The polynomiality property for the quantum Q-system cluster algebra implies $M_{\mathbf{n}, \ell}(t)=N_{\mathbf{n}, \ell}(t)$.

Constant term formula

Theorem

- When χ_{j} satisfy the quantum Q-system with $q^{2}=t$ the generating function

$$
Z_{\mathbf{n}, \ell}\left(t ; \chi_{0}, \chi_{1}\right)=t^{f(\mathbf{n})} \chi_{1} \chi_{0}^{-1}\left(\vec{\prod} \chi_{j}^{n_{j}}\right)\left(\chi_{k} \chi_{k+1}^{-1}\right)^{\ell+1}=\sum a_{i, j}(t) \chi_{1}^{i} \chi_{0}^{j}
$$

gives $N_{\mathbf{n}, \ell}(t)=\sum_{j} a_{0, j}(t)$.

- The polynomiality property for the quantum Q-system cluster algebra implies $M_{\mathbf{n}, \ell}(t)=N_{\mathbf{n}, \ell}(t)$.

Constant term formula

Theorem

- When χ_{j} satisfy the quantum Q-system with $q^{2}=t$ the generating function

$$
Z_{\mathbf{n}, \ell}\left(t ; \chi_{0}, \chi_{1}\right)=t^{f(\mathbf{n})} \chi_{1} \chi_{0}^{-1}\left(\vec{\prod} \chi_{j}^{n_{j}}\right)\left(\chi_{k} \chi_{k+1}^{-1}\right)^{\ell+1}=\sum a_{i, j}(t) \chi_{1}^{i} \chi_{0}^{j}
$$

gives $N_{\mathbf{n}, \ell}(t)=\sum_{j} a_{0, j}(t)$.

- The polynomiality property for the quantum Q-system cluster algebra implies $M_{\mathbf{n}, \ell}(t)=N_{\mathbf{n}, \ell}(t)$.
- Remark: This is a good thing: M-sum is a subtraction-free expression for a multiplicity.
- Remark 2: We have a new, compatible source for our grading.

Constant term formula

Theorem

- When χ_{j} satisfy the quantum Q-system with $q^{2}=t$ the generating function

$$
Z_{\mathbf{n}, \ell}\left(t ; \chi_{0}, \chi_{1}\right)=t^{f(\mathbf{n})} \chi_{1} \chi_{0}^{-1}\left(\vec{\prod} \chi_{j}^{n_{j}}\right)\left(\chi_{k} \chi_{k+1}^{-1}\right)^{\ell+1}=\sum a_{i, j}(t) \chi_{1}^{i} \chi_{0}^{j}
$$

gives $N_{\mathbf{n}, \ell}(t)=\sum_{j} a_{0, j}(t)$.

- The polynomiality property for the quantum Q-system cluster algebra implies $M_{\mathbf{n}, \ell}(t)=N_{\mathbf{n}, \ell}(t)$.
- Remark: This is a good thing: M-sum is a subtraction-free expression for a multiplicity.
- Remark 2: We have a new, compatible source for our grading.

Summary

We have established the connections:

Fermionic multiplicity
formulas

Graded multiplicities
 Quantum
 Q-system

- The grading coming from quantization of cluster algebras is the same as the Bethe ansatz physical/combinatorial grading, crystal grading for the quantum algebra, and the Feigin-Loktev grading for the affine algebra.
- Remark: The same quantum Q-system is related to the problem of finding canonical bases. The sums $M_{W, V}(t)$ appear as Betti numbers in the cohomology of quiver

Abstract

varieties

Summary

We have established the connections:

Fermionic multiplicity
formulas

Abstract

varieties

Summary

We have established the connections:

Fermionic multiplicity
formulas
\qquad Q-systems

Cluster algebras

Graded multiplicities
Quantum
Q-system cluster algebras
-
ansatz physical/combinatorial grading, crystal grading for the quantum algebra, and the Feigin-Loktev grading for the affine algebra.

- Remark: The same quantum Q-system is related to the problem of finding canonical bases. The sums $M_{W, V}(t)$ appear as Betti numbers in the cohomology of quiver varieties

Summary

We have established the connections:

Fermionic multiplicity
formulas
\qquad Q-systems \qquad Cluster algebras

\downarrow

Graded multiplicities

Summary

We have established the connections:

| Fermionic multiplicity
 formulas | \longleftrightarrow-systems | \longrightarrow |
| :---: | :---: | :---: | | Cluster algebras |
| :---: |
| \downarrow |
| Graded multiplicities |\quad| Quantum |
| :---: |
| Q-system |\quad| Quantum |
| :---: |
| cluster algebras |

\square Thank you!

Summary

We have established the connections:

Fermionic multiplicity formulas	\longleftrightarrow	Q-systems
\downarrow		Cluster algebras
Graded multiplicities	\longleftarrow	Quantum Q-system
		Quantum cluster algebras

\square Thank you!

Summary

We have established the connections:

| Fermionic multiplicity
 formulas | \longleftrightarrow | Q-systems | \longrightarrow |
| :---: | :---: | :---: | :---: | | Cluster algebras |
| :---: |
| \downarrow |
| Graded multiplicities |$\longleftarrow \longleftarrow$| Quantum |
| :---: |
| Q-system |$\quad \longleftarrow$| Quantum |
| :---: |
| cluster algebras |

\square The grading coming from quantization of cluster algebras is the same as the Bethe ansatz physical/combinatorial grading, crystal grading for the quantum algebra, and the Feigin-Loktev grading for the affine algebra.

- Remark: The same quantum Q-system is related to the problem of finding canonical bases. The sums $M_{W, V}(t)$ appear as Betti numbers in the cohomology of quiver varieties

Summary

We have established the connections:

Fermionic multiplicity
formulas
\qquad Q-systems \qquad Cluster algebras

\qquad

Summary

We have established the connections:

Fermionic multiplicity
formulas
$\longleftrightarrow \quad Q$-systems \qquad Cluster algebras

Graded multiplicities

Quantum Q-system

Quantum cluster algebras

- The grading coming from quantization of cluster algebras is the same as the Bethe ansatz physical/combinatorial grading, crystal grading for the quantum algebra, and the Feigin-Loktev grading for the affine algebra.
- Remark: The same quantum Q-system is related to the problem of finding canonical bases. The sums $M_{W, V}(t)$ appear as Betti numbers in the cohomology of quiver varieties.
Thank you!

Summary

We have established the connections:

Fermionic multiplicity
formulas
$\longleftrightarrow \quad Q$-systems
\longrightarrow
Cluster algebras

Quantum Q-system

Quantum cluster algebras

- The grading coming from quantization of cluster algebras is the same as the Bethe ansatz physical/combinatorial grading, crystal grading for the quantum algebra, and the Feigin-Loktev grading for the affine algebra.
- Remark: The same quantum Q-system is related to the problem of finding canonical bases. The sums $M_{W, V}(t)$ appear as Betti numbers in the cohomology of quiver varieties.

Thank you!

[^0]: Theorem
 If the modules V_{i} are of sufficiently simple (KR-type) the three ways of defining gradings on the tensor products give the same Hilbert polynomials.

[^1]: Theorem
 If the modules V_{i} are of sufficiently simple (KR-type) the three ways of defining gradings on the tensor products give the same Hilbert polynomials.

[^2]: Theorem
 If the modules V_{i} are of sufficiently simple ($K R$-type) the three ways of defining gradings on the tensor products give the same Hilbert polynomials.

[^3]: Theorem
 If the modules V_{i} are of sufficiently simple (KR-type) the three ways of defining gradings on the tensor products give the same Hilbert polynomials.

[^4]: Here: Coefficient-free Cluster Algebras of geometric type with skew-symmetric exchange

[^5]: Here: Coefficient-free Cluster Algebras of geometric type with skew-symmetric exchange

