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The diagonal coinvariant spaces of the symmetric group

X :=




x1 x2 x3 . . . xn
y1 y2 y3 . . . yn
.. ..
z1 z2 z3 . . . zn








k

The symmetric group Sn acts on X by permuting the columns:

σ(X ) :=




xσ(1) xσ(2) . . . xσ(n)

yσ(1) yσ(2) . . . yσ(n)

.. ..
zσ(1) zσ(2) . . . zσ(n)


 .

J is the ideal generated by constant free polynomials such that
σ · f (X ) := f (σ(X )), ∀σ ∈ Sn.

The diagonal coinvariant space of the symmetric group:

DRk,n := C[X ]
/
J .
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The diagonal coinvariant spaces of the symmetric group

DRk,n := C[X ]
/
J .

The action of Sn is compatible with the (graded) quotient.

DRk,n
ε is the sign component (the alternants).
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’Higher’ diagonal coinvariant spaces

A polynomial f (X ) is alternant if
σ · f (X ) = (−1)sign(σ)f (X ).

A is the ideal generated by alternants.

The ’higher’ diagonal coinvariant spaces of the symmetric group:

DRm
k,n := εm−1 ⊗

(
Am−1

/
JAm−1

)
.

DRm
k,n

ε is the sign component.
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Coinvariant spaces (k = 1)

Theorem (Artin ∼1950’s)

dim(DRm
1,n

ε) = 1

Theorem (Artin ∼1950’s)

dim(DRm
1,n) = n!
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Bivariate diagonal coinvariant spaces (k = 2)

Theorem (Haiman 2002)

dim(DRm
2,n

ε) =
1

(m + 1)n + 1

(
(m + 1)n + 1

n

)
.

Theorem (Haiman 2002)

dim(DRm
2,n) = (mn + 1)n−1.
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Combinatorial interpretations of these numbers (k = 2)

Theorem (classic)

The number of m-Dyck paths of height n is

1

(m + 1)n + 1

(
(m + 1)n + 1

n

)
.

Theorem (classic)

The number of m-parking functions of height n is

(mn + 1)n−1.
5

1

3

4

2
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m-Dyck paths (m = 2)

(10,5)

(0,0)

slope 1
m

paths consisting of north and east steps.

starting at (0,0) and finishing at (mn, n).

never going below the line of equation my = x .
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m-parking functions (m = 2)

3

slope 1
m

2

4

1

5

m-Dyck paths.

n north steps are labelled with the values {1, 2, . . . n}.
labels increase along consecutive north steps.
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Trivariate diagonal coinvariant spaces (k = 3)

Conjecture (m=1: Haiman 1994; m > 1: F. Bergeron 2009)

dim(DRm
3,n

ε) =
m + 1

n(mn + 1)

(
(m + 1)2n + m

n − 1

)
.

Conjecture (m = 1: Haiman 1994; m > 1: Bergeron 2009)

dim(DRm
3,n) = (m + 1)n(mn + 1)n−2.

Combinatorial questions: what do these numbers count?
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Combinatorial interpretations of these numbers (k = 3)

Theorem (m = 1: Chapoton 2006; m > 1: MBM, Fusy,

LFPR 2011 ) (Conj. m > 1: Bergeron 2009)

The number of intervals in the m-Tamari lattice defined
on m-Dyck paths of height n is

m + 1

n(mn + 1)

(
(m + 1)2n + m

n − 1

)
.

Theorem (MBM, GC, LFPR 2011 ) ( Conj. Bergeron

2008-2009 )

The number of labelled intervals in the m-Tamari
lattice defined on m-Dyck paths of height n is

(m + 1)n(mn + 1)n−2.

3

1

5

4

2

Proof.

Ideas of the proofs will be given in the next section.
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The cover relation in the m-Tamari lattice (m=2)

≺ab b

a

S S
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Tamari lattice on Dyck paths of height 4 (m = 1)
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2-Tamari lattice on 2-Dyck paths of height 3
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The labelled intervals in the m-Tamari lattice (m = 2)

4

3

2

5

6

1

an interval in the m-Tamari lattice

the top path is an m-parking function
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A representation on labelled intervals in the m-Tamari
lattice

2

7

4

1

3

5

6

2

 (1,7,3)(2,5)(4,6) 

=

7

4

5

3

6

1

We denote this combinatorial representation by Tamm(n) .

Conjecture (F. Bergeron, LFPR 2010)

DRm
3,n
∼= ε⊗ Tamm(n).
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The character of the m-Tamari representation

Theorem (MBM, GC, LFPR 2012 ) (Conj. Bergeron, LFPR 2010)

In the representation Tamm(n), the number of labelled intervals in the
m-Tamari lattice fixed under a permutation of cycle type λ = (λ1, .., λ`) is
given by

(mn + 1)`−2
∏

1≤i≤`

(
(m + 1)λi

λi

)
.
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Parameters for m-Tamari intervals

t7x5y 3

t : height of the paths

x : contacts of the lower path

y : first rise of the top path

F (m)(t; x , y) :=
∑

n≥0

∑

α≤β
α,β∈Dyckm(n)

tn xcontacts(α) y rise(β)
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Parameters for labelled m-Tamari intervals

t7

7!x
5y 3

2

6

7

4

1

3

5

t : height of the paths

x : contacts of the lower path

y : first rise of the top path

G (m)(t; x , y) :=
∑

n≥0

∑

α≤β
α,β∈Dyckm(n)

∑

P∈Parkm(β)

tn

n!
xcontacts(α) y rise(β)
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Recurrence on unlabelled m-Tamari intervals (m = 1)

F (t; x , y)

= x + txy
F (t; x , y)− F (t; 1, y)

x − 1
F (t; x , 1).

With ∆(R(t; x)) := R(t;x)−R(t;1)
x−1 , this reads:

F (t; x , y) = x + txy(F (t; x , 1)∆) (F (t; x , y)).

For general m:

F (m)(t; x , y) = x + txy(F (m)(t; x , y)∆)m (F (m)(t; x , y)).
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Polynomial equations with a catalytic variable (y = 1)

F (t; x) = x + tx
F (t; x)− F (t; 1)

x − 1
F (t; x).

Divided difference: x is a catalytic variable (Zeilberger??).

Such equations are ubiquitous in map enumeration.

The solution is always an algebraic series (Brown-Tutte 1960’s,
Bousquet-Mélou-Jehanne 2006).

i.e. there exist a polynomial Q such that:

Q(F (t; x), t, x) = 0.
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Recurrence on labelled m-Tamari intervals (m = 1)

With ∆(R(t; x)) := R(t;x)−R(t;1)
x−1 , for general m:

G (m)(t; x , y) = x + tx

∫
(G (m)(t; x , 1)∆)m (G (m)(t; x , y))dy .
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Alternative forms of the functional equations

F (m)(t; x , y) = x + txy(F (m)(t; x , 1)∆)m (F (m)(t; x , y))

is equivalent to

F (m)(t; x , y)=
1

1− t x y(F (m)(t; x , 1)∆)m
(x).

G (m)(t; x , y) = x + tx

∫
(G (m)(t; x , 1)∆)m (G (m)(t; x , y))dy

is equivalent to

G (m)(t; x , y)=etxy (G (m)(t;x ,1)∆)m (x).
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Guessing a solution for F (m)(t; x , y) and G (m)(t; x , y)

∆(R(t; x)) :=
R(t; x)− R(t; 1)

x − 1

F (m)(t; x , y)=
1

1− t x y(F (m)(t; x , 1)∆)m
(x)

G (m)(t; x , y)=etxy (G (m)(t;x,1)∆)m (x)

t = z(1− z)m
2+2m t = ze−m(m+1)z

x =
1 + u

(1 + zu)m+1
x =

1 + u

emzu

F (m)(t; x , 1)=
1 + u

(1− z)m+2

(
1+u−(1 + zu)m+1

(1 + zu)m+1u

)
G (m)(t; x , 1)=

1 + u

e−(m+1)z

(
1 + u − emzu

e(m−1)zuu

)

algebraic ⇒ use Gfun (Maple)

????
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Proof of checking: le début . . .

12 M. BOUSQUET-MÉLOU, G. CHAPUY, AND L.-F. PRÉVILLE-RATELLE

Letting αi be the number of parts equal to i in the partition λ, and summing on the αi’s rather
than on λ, we can rewrite this sum as:

F (x, y) =
∑

α1,α2,...

∏

i

(
yαi

αi!

(pi

i

)αi
(
tx(F (x, 1)∆)(m)

)(iαi)
)

(x)

=
∏

i≥1

exp

(
y

pi

i

(
tx(F (x, 1)∆)(m)

)(i)
)

(x)

= exp

(
y
∑

i

pi

i

(
tx(F (x, 1)∆)(m)

)(i)
)

(x).

We have used the fact that the operator ∆ commutes with the multiplication by y and by pi.
This is the second functional equation satisfied by F (x, y) given in Proposition 5. The third one,
(12), follows by differentiating with respect to y.

4. Principle of the proof, and the case m = 1

4.1. Principle of the proof

Let us consider the functional equation (12), together with the initial condition F (t, p; x, 0) =
x. Perform the change of variables (7), and denote G(z, p; u, y) ≡ G(u, y) = F (t, p; x, y). Then
G(u, y) is a series in z with coefficients in K[u, y] (where K = Q(p1, p2, . . .)) satisfying

∂G

∂y
(u, y) =

∑

k≥1

pk

k

(
z(1 + u)e−m(K(u)+L)

(
uG(u, 1)

(1 + u)e−mK(u) − 1
∆u

)(m)
)(k)

G(u, y), (18)

with ∆uH(u) = H(u)−H(0)
u , and the initial condition

G(u, 0) = (1 + u)e−mK(u). (19)

Observe that this pair of equations defines G(u, y) ≡ G(z, p; u, y) uniquely as a formal power
series in z. Indeed, the coefficient of zn in G can be computed inductively from these equations:
one first determines the coefficient of zn in ∂G

∂y , which can be expressed, thanks to (18), in terms
of the coefficients of zi in G for i < n; then the coefficient of zn in G is obtained by integration
with respect to y, using the initial condition (19). Hence, if we exhibit a series G̃(z, p; u, y) that
satisfies both equations, then G̃(z, p; u, y) = G(z, p; u, y). We are going to construct such a series.

Let
G1(z, p; u) ≡ G1(u) = (1 + ū)eK(u)+L

(
(1 + u)e−mK(u) − 1

)
. (20)

Then G1(u) is a series in z with coefficients in K[u], which, as we will see, coincides with G(u, 1).
Consider now the following equation, obtained from (18) by replacing G(u, 1) by its conjectured
value G1(u):

∂G̃

∂y
(z, p; u, y) =

∑

k≥1

pk

k

(
z(1 + u)e−m(L+K(u))

(
uG1(u)

(1 + u)e−mK(u) − 1
∆u

)(m)
)(k)

G̃(z, p; u, y)

=
∑

k≥1

pk

k

(
z(1 + u)e−m(L+K(u))

(
(1 + u)eK(u)+L ∆u

)(m)
)(k)

G̃(z, p; u, y), (21)

with the initial condition
G̃(z, p; u, 0) = (1 + u)e−mK(u). (22)

Eq. (21) can be rewritten as

∂G̃

∂y
(z, p; u, y) =

∑

k≥1

pk

k

(
zvA(u)mΛ(m)

)(k)

G̃(z, p; u, y), (23)
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where
A(u) =

u

1 + u
e−K(u), (24)

Λ is the operator defined by

Λ(H)(u) =
H(u) − H(0)

A(u)
, (25)

and v = (1 + u)m+1u−m as before. Again, it is not hard to see that (23) and the initial con-
dition (22) define a unique series in z, denoted G̃(z, p; u, y) ≡ G̃(u, y). The coefficients of this
series lie in K[u, y]. The principle of our proof can be described as follows.

If we prove that G̃(u, 1) = G1(u), then the equation (21) satisfied by G̃ coincides
with the equation (18) that defines G, and thus G̃(u, y) = G(u, y). In particular,
G1(z, p; u) = G̃(z, p; u, 1) = G(z, p; u, 1) = F (t, p; x, 1), and Theorem 3 is proved.

Remark. Our proof relies on the fact that we have been able to guess the value of G(u, 1),
given by (20). This was a difficult task, which we discuss in greater details in Section 6.1.

4.2. The case m = 1

Take m = 1. In this subsection, we describe the three steps that, starting from (23), prove
that G̃(u, 1) = G1(u). In passing, we establish the expression (10) of F (t, p; x, 1) (equivalently, of
G̃(z, p; u, 1)) given in Theorem 4. The case of general m is difficult, and we hope that studying
in details the case m = 1 will make the ideas of the proof more transparent. Should this
specialization not suffice, we invite the reader to set further pi = i=0, in which case we are
simply counting labelled Tamari intervals (see also [6]).

4.2.1. A homogeneous differential equation and its solution. When m = 1, the equa-
tion (23) defining G̃(z; u, y) ≡ G̃(u, y) reads

∂G̃

∂y
(u, y) =

∑

k≥1

pk

k
zk
(
(1 + u)(1 + ū)Ω

)(k)

G̃(u, y), (26)

where ū = 1/u and the operator Ω is defined by ΩH(u) = H(u)−H(0), with the initial condition

G̃(u, 0) = (1 + u)e−K(u). (27)

These equations imply that G̃(−1, y) = 0. The following lemma provides us with a symmetry
property which is crucial in our approach.

Lemma 10. For k ≥ 0 one has:
(
(1 + u)(1 + ū)Ω

)(k)

G̃(u, y) = (1 + u)k(1 + ū)kG̃(u, y) − Pk(v),

where Pk ∈ K[y][[z]][v] and v = (1 + u)(1 + ū).

Proof. This is easily proved by induction on k. Alternatively, readers well acquainted with lattice
path enumeration may view this lemma as a form of André’s reflection principle.

Observe that the quantity Pk(v), being a function of v = (1 + u)(1 + ū), is left invariant by
the substitution u %→ ū. This symmetry is the keystone of our approach, as it enables us to
eliminate some a priori intractable terms in (26). Replacing u by ū in (26) gives

∂G̃

∂y
(ū, y) =

∑

k

pk

k
zk
(
(1 + u)(1 + ū)Ω

)(k)

G̃(ū, y),

so that, applying Lemma 10 and using v(u) = v(ū) we obtain:
∂

∂y

(
G̃(u, y) − G̃(ū, y)

)
=
∑

k≥1

pk

k
zk(1+u)k(1+ū)k

(
G̃(u, y) − G̃(ū, y)

)
= V (v)

(
G̃(u, y) − G̃(ū, y)

)
,
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where V (v) is given by (3). This is a homogeneous linear differential equation satisfied by
G̃(u, y) − G̃(ū, y). It is readily solved, and the initial condition (27) yields

G̃(u, y) − G̃(ū, y) = (1 + u)
(
e−K(u) − ūe−K(ū)

)
eyV (v). (28)

4.2.2. Reconstruction of G̃(u, y). Recall that G̃(u, y) ≡ G̃(z, p; u, y) is a series in z with
coefficients in K[u, y]. Hence, by extracting from the above equation the positive part in u (as
defined in Section 2.1), we obtain

G̃(u, y) − G̃(0, y) = [u>]
(
(1 + u)

(
e−K(u) − ūe−K(ū)

)
eyV (v)

)
.

For any Laurent polynomial P , we have

[u>] ((1 + u)P (u)) = (1 + u)[u>]P (u) + u[u0]P (u). (29)

Hence

G̃(u, y) − G̃(0, y) = (1 + u)[u>]
(
eyV (v)

(
e−K(u) − ūe−K(ū)

))

+ u[u0]
(
eyV (v)

(
e−K(u) − ūe−K(ū)

))
.

Setting u = −1 in this equation gives, since G̃(−1, y) = 0,

−G̃(0, y) = −[u0]
(
eyV (v)

(
e−K(u) − ūe−K(ū)

))
,

so that finally,

G̃(u, y) = (1 + u)[u>]
(
eyV (v)

(
e−K(u) − ūe−K(ū)

))

+(1 + u)[u0]
(
eyV (v)

(
e−K(u) − ūe−K(ū)

))

= (1 + u)[u≥]
(
eyV (v)

(
e−K(u) − ūe−K(ū)

))
. (30)

As explained in Section 4.1, G̃(u, y) = G(u, y) will be proved if we establish that G̃(u, 1) coincides
with the series G1(u) given by (20). This is the final step of our proof.

4.2.3. The case y = 1. Equation (30) completely describes the solution of (26). It remains to
check that G̃(u, 1) = G1(u), that is

G̃(u, 1) = (1 + ū)eK(u)+L
(
(1 + u)e−K(u) − 1

)
. (31)

Let us set y = 1 in (30). We find, using V (v) = K(ū) + L + K(u):

G̃(u, 1) = (1 + u)[u≥]
(
eL+K(ū) − ūeL+K(u)

)

= (1 + u)eL
(
1 − ūeK(u) + ū

)
,

which coincides with (31). Hence G̃(z, p; u, y) = G(z, p; u, y) = F (t, p; x, y) (with the change of
variables (7)), and Theorem 4 is proved, using (30).

5. Solution of the functional equation: the general case

We now adapt to the general case the solution described for m = 1 in Section 4.2. Recall from
Section 4.1 that we start from (23), and want to prove that G̃(u, 1) = G1(u). We first obtain
in Section 5.1 the counterpart of (28), that is, an explicit expression for a linear combination of
the series G̃(ui, y), where u0 = u, u1, . . . , um are the m + 1 roots of the equation v(u) = v(ui),
with v(u) = (1 + u)m+1ūm. In Section 5.2, we reconstruct from this expression the series
G̃(u, y), by taking iterated positive parts. This generalizes (30). The third part of the proof
differs from Section 4.2.3, because we are not able to derive from our expression of G̃(u, y) that
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G̃(u, 1) = G1(u). Instead, the arguments of Section 5.2 imply that the counterpart of (28) has
also a unique solution when y = 1, and we check that G1(u) is a solution.

5.1. A homogeneous differential equation and its solution

Let us return to the equation (23) satisfied by G̃(u, y). This equations involves the quantity

v ≡ v(u) = (1 + u)m+1ūm

In the case m = 1, this (Laurent) polynomial was (1 + u)(1 + ū), and took the same value for u
and ū. We are again interested in the series ui such that v(ui) = v(u).

Lemma 11. Denote v = (1 + u)m+1u−m, and consider the following polynomial equation in U :

(1 + U)m+1 = Umv.

This equation has no double root. We denote its m + 1 roots by u0 = u, u1, . . . , um.

Proof. A double root would also satisfy

(m + 1)(1 + U)m = mUm−1v,

and this is easily shown to be impossible.

Remark. One can express the ui’s as Puiseux series in u (see [29, Ch. 6]), but this will not be
needed here, and we will think of them as abstract elements of an algebraic extension of Q(u).
In fact, in this paper, the ui’s always occur in symmetric rational functions of the ui’s, which are
thus rational functions of v. At some point, we will have to prove that a symmetric polynomial
in the ui’s (and thus a polynomial in v) vanishes at v = 0, that is, at u = −1, and we will then
consider series expansions of the ui’s around u = −1.

The following proposition generalizes (28).

Proposition 12. Denote v = (1 + u)m+1u−m, and let the series ui be defined as above. Denote
Ai = A(ui), where A(u) is given by (24). Then

m∑

i=0

G̃(ui, y)∏
j #=i(Ai − Aj)

= veyV (v). (32)

By
∏

j #=i(Ai − Aj) we mean
∏

0≤j≤m,j #=i(Ai − Aj) but we prefer the shorter notation when the
bounds on j are clear. Observe that the Ai’s are distinct since the ui’s are distinct (the coefficient
of z0 in A(u) is u/(1+ u)). Note also that when m = 1, then u0 = u, u1 = ū, and (32) coincides
with (28). In order to prove the proposition, we need the following two lemmas.

Lemma 13. Let x0, x1, . . . , xm be m + 1 variables. Then
m∑

i=0

xi
m

∏
j #=i (xi − xj)

= 1 (33)

and
m∑

i=0

1/xi∏
j #=i (xi − xj)

= (−1)m
m∏

i=0

1

xi
. (34)

Moreover, for any polynomial Q of degree less than m,
m∑

i=0

Q(xi)∏
j #=i (xi − xj)

= 0. (35)
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Proof. By Lagrange interpolation, any polynomial R of degree at most m satisfies:

R(X) =

m∑

i=0

R(xi)
∏

j #=i

X − xj

xi − xj
.

Equations (34) and (35) follow by evaluating this equation at X = 0, respectively with R(X) = 1
and R(X) = XQ(X). Equation (33) is obtained by taking R(X) = Xm and extracting the
leading coefficient.

Our second lemma replaces Lemma 10 for general values of m.

Lemma 14. Let k ≥ 0, and let Λ be the operator defined by (25). Let H(z; u) ≡ H(u) be
a formal power series in z, having coefficients in L(u), with L = K(y). Assume that these
coefficients have no pole at u = 0. Then there exists a polynomial Pk(X, Y ) ∈ L[[z]][X, Y ] of
degree less than m in X, such that

(
zvA(u)mΛ(m)

)(k)

H(u) = (zv)kH(u) − Pk(A(u), v). (36)

Proof. We denote by L the subring of L(u)[[z]] formed by formal power series whose coefficients
have no pole at u = 0. By assumption, H(u) ∈ L. We use the notation O(uk) to denote an
element of L(u)[[z]] of the form ukJ(z; u) with J(z; u) ∈ L.

First, note that A(u) = ue−K(u)/(1 + u) belongs to L. Moreover,

A(u) = u + O(u2). (37)

We first prove that for all series I(u) ∈ L, there exists a sequence of formal power series (gI
j )j≥0 ∈

L[[z]]N such that for all $ ≥ 0,

I(u) =

#−1∑

j=0

gI
j A(u)j + O(u#). (38)

We prove (38) by induction on $ ≥ 0. The identity holds for $ = 0 since I(u) ∈ L. Assume it
holds for some $ ≥ 0: there exists series gI

0 , . . . , gI
#−1 in L[[z]] and J(u) ∈ L such that

I(u) =

#−1∑

j=0

gI
j A(u)j + u#J(u).

By (37) and by induction on r, we have ur = A(u)r + O(ur+1) for all r ≥ 0. Using this identity
with r = $, and rewriting J(u) = J(0) + O(u), we obtain u#J(u) = J(0)A(u)# + O(u#+1), so
that:

I(u) =

#∑

j=0

gI
j A(u)j + O(u#+1),

with gI
# := J(0) ∈ L[[z]]. Thus (38) holds for $ + 1.

We now prove that for all q ≥ 0, one has:

Λ(q)I(u) =
1

A(u)q


I(u) −

q−1∑

j=0

gI
j A(u)j


 , (39)

where the series gI
j are those that satisfy (38). Again, we proceed by induction on q ≥ 0. The

identity clearly holds for q = 0. Assume it holds for some q ≥ 0. In (39), replace I(u) by its
expression (38) obtained with $ = q+1, and let u tend to 0: this shows that gI

q is in fact Λ(q)I(0).
From the definition of Λ one then obtains

Λ(q+1)I(u) =
Λ(q)I(u) − gI

q

A(u)
=

1

A(u)q+1


I(u) −

q∑

j=0

gI
j A(u)j


 .

THE REPRESENTATION OF THE SYMMETRIC GROUP ON m-TAMARI INTERVALS 17

Thus (39) holds for q + 1.

We finally prove, by induction on k ≥ 0, that (36) holds and that the left-hand side of (36)
is an element of L. For k = 0, these results are clear, with P0 = 0. Assume they hold for some
k ≥ 0, for any H(u) ∈ L. Let H(u) ∈ L and let M(u) be the left-hand side of (36). By the
induction hypothesis, M(u) ∈ L, so that applying (39) with I(u) = M(u) and q = m gives:

zvA(u)mΛ(m)M(u) = zv


M(u) −

m−1∑

j=0

gM
j A(u)y


 . (40)

=
(
zvA(u)mΛ(m)

)(k+1)

H(u) by definition of M.

By the induction hypothesis (36), we have M(u) = (zv)kH(u) − Pk(A(u), v) with Pk(X, Y ) of
degree less than m in X , so that the above equation gives:

(
zvA(u)mΛ(m)

)(k+1)

H(u) = (zv)k+1H(u) − Pk+1(A(u), v),

with

Pk+1(X, Y ) := zY


Pk(X, Y ) +

m−1∑

j=0

gM
j Xj


 .

Note that Pk+1(X, Y ) has still degree less than m in X .
It remains to prove that

(
(zvA(u)mΛ(m)

)(k+1)
H(u) ∈ L. Applying (38) with I(u) = M(u)

and $ = m + 1, and substituting in (40), we obtain:

(
zvA(u)mΛ(m)

)(k+1)

H(u) = zv
(
gM

m A(u)m + O(um+1)
)

= zvum
(
gM

m + O(u)
)
,

since A(u)m = um+O(um+1). Since v = (1+u)m+1u−m, this shows that
(
zvA(u)mΛ(m)

)(k+1)
H(u)

belongs to L, which completes the proof.

Proof of Proposition 12. Thanks to Lemma 14, we can rewrite (23) as

∂G̃

∂y
(u, y) =

∑

k≥1

pk

k

(
(zv)kG̃(u, y) − Pk(A(u), v)

)
, (41)

where v ≡ v(u) = (1 + u)m+1ūm, and for all k ≥ 1, Pk(X, Y ) is a polynomial of degree less than
m in X with coefficients in K(y)[[z]].

As was done in Section 4.2.1, we are going to use the fact that v(ui) = v for all i ∈ !0, m"
to eliminate the (infinitely many) unknown polynomials Pk(A(u), v). For 0 ≤ i ≤ m, the
substitution u %→ ui in (41) gives:

∂G̃

∂y
(ui, y) =

∑

k≥1

pk

k

(
(zv)kG̃(ui, y) − Pk(Ai, v)

)
, (42)

with Ai = A(ui). Consider the linear combination

R(u, y) :=

m∑

i=0

G̃(ui, y)∏
j #=i (Ai − Aj)

. (43)
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Outline

1 Motivations and results: Toward a combinatorial description of diagonal
coinvariant spaces of the symmetric group

2 Proof: solving a differential-catalytic equation

3 Open combinatorial questions
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Open combinatorial questions

Simplify the checking (m > 1).

Prove the formulas without guessing.

Bijective proofs? Connections with certain maps? Why is F(t;x,y)
symmetric in x and y?

Combinatorial problems involving statistics on these objects (the
statistics correspond to the grading of these spaces).
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