The representation of the symmetric group on m-Tamari intervals

Mireille Bousquet-Mélou, LaBRI, Bordeaux

Guillaume Chapuy, LIAFA, Paris
Louis-François Préville-Ratelle, UQAM, Montréal

FPSAC 2012, Nagoya, Japan

Outline

(1) Motivations and results: Toward a combinatorial description of diagonal coinvariant spaces of the symmetric group
(2) Proof: solving a differential-catalytic equation
(3) Open combinatorial questions

The diagonal coinvariant spaces of the symmetric group

$$
X:=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{n} \\
\ldots & & & & \cdots \\
z_{1} & z_{2} & z_{3} & \ldots & z_{n}
\end{array}\right)
$$

The diagonal coinvariant spaces of the symmetric group

$$
\left.X:=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{n} \\
. . & & & & . . \\
z_{1} & z_{2} & z_{3} & \ldots & z_{n}
\end{array}\right)\right\} k
$$

The diagonal coinvariant spaces of the symmetric group

$$
\left.X:=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{n} \\
. . & & & & . . \\
z_{1} & z_{2} & z_{3} & \ldots & z_{n}
\end{array}\right)\right\} k
$$

The symmetric group \mathfrak{S}_{n} acts on X by permuting the columns:

$$
\sigma(X):=\left(\begin{array}{cccc}
x_{\sigma(1)} & x_{\sigma(2)} & \ldots & x_{\sigma(n)} \\
y_{\sigma(1)} & y_{\sigma(2)} & \ldots & y_{\sigma(n)} \\
. & & & . \\
z_{\sigma(1)} & z_{\sigma(2)} & \ldots & z_{\sigma(n)}
\end{array}\right) .
$$

The diagonal coinvariant spaces of the symmetric group

$$
\left.X:=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{n} \\
. . & & & & . . \\
z_{1} & z_{2} & z_{3} & \ldots & z_{n}
\end{array}\right)\right\} k
$$

The symmetric group \mathfrak{S}_{n} acts on X by permuting the columns:

$$
\sigma(X):=\left(\begin{array}{cccc}
x_{\sigma(1)} & x_{\sigma(2)} & \ldots & x_{\sigma(n)} \\
y_{\sigma(1)} & y_{\sigma(2)} & \ldots & y_{\sigma(n)} \\
. & & & . \\
z_{\sigma(1)} & z_{\sigma(2)} & \ldots & z_{\sigma(n)}
\end{array}\right) .
$$

\mathcal{J} is the ideal generated by constant free polynomials such that

$$
\sigma \cdot f(X):=f(\sigma(X)), \quad \forall \sigma \in \mathfrak{S}_{n}
$$

The diagonal coinvariant spaces of the symmetric group

$$
\left.X:=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{n} \\
. . & & & & . . \\
z_{1} & z_{2} & z_{3} & \ldots & z_{n}
\end{array}\right)\right\} k
$$

The symmetric group \mathfrak{S}_{n} acts on X by permuting the columns:

$$
\sigma(X):=\left(\begin{array}{cccc}
x_{\sigma(1)} & x_{\sigma(2)} & \ldots & x_{\sigma(n)} \\
y_{\sigma(1)} & y_{\sigma(2)} & \ldots & y_{\sigma(n)} \\
. & & & . \\
z_{\sigma(1)} & z_{\sigma(2)} & \ldots & z_{\sigma(n)}
\end{array}\right) .
$$

\mathcal{J} is the ideal generated by constant free polynomials such that

$$
\sigma \cdot f(X):=f(\sigma(X)), \quad \forall \sigma \in \mathfrak{S}_{n}
$$

The diagonal coinvariant space of the symmetric group:

$$
\mathcal{D} \mathcal{R}_{k, n}:=\mathbb{C}[X] / \mathcal{J}
$$

The diagonal coinvariant spaces of the symmetric group

$$
\mathcal{D} \mathcal{R}_{k, n}:=\mathbb{C}[X] / \mathcal{J} .
$$

The action of \mathfrak{S}_{n} is compatible with the (graded) quotient.

The diagonal coinvariant spaces of the symmetric group

$$
\mathcal{D} \mathcal{R}_{k, n}:=\mathbb{C}[X] / \mathcal{J} .
$$

The action of \mathfrak{S}_{n} is compatible with the (graded) quotient.
$\mathcal{D} \mathcal{R}_{k, n}{ }^{\varepsilon}$ is the sign component (the alternants).

'Higher' diagonal coinvariant spaces

A polynomial $f(X)$ is alternant if

$$
\sigma \cdot f(X)=(-1)^{\operatorname{sign}(\sigma)} f(X)
$$

\mathcal{A} is the ideal generated by alternants.

The 'higher' diagonal coinvariant spaces of the symmetric group:

$$
\mathcal{D} \mathcal{R}_{k, n}^{m}:=\varepsilon^{m-1} \otimes\left(\mathcal{A}^{m-1} / \mathcal{J} \mathcal{A}^{m-1}\right)
$$

$\mathcal{D} \mathcal{R}_{k, n}^{m}{ }^{\varepsilon}$ is the sign component.

Coinvariant spaces $(k=1)$

Theorem (Artin ~1950's)

$$
\operatorname{dim}\left(\mathcal{D} \mathcal{R}_{1, n}^{m}{ }^{\varepsilon}\right)=1
$$

Theorem (Artin ~1950's)

$$
\operatorname{dim}\left(\mathcal{D} \mathcal{R}_{1, n}^{m}\right)=n!
$$

Bivariate diagonal coinvariant spaces $(k=2)$

Theorem (Haiman 2002)

$$
\operatorname{dim}\left(\mathcal{D} \mathcal{R}_{2, n}^{m}{ }^{\varepsilon}\right)=\frac{1}{(m+1) n+1}\binom{(m+1) n+1}{n} .
$$

Theorem (Haiman 2002)

$$
\operatorname{dim}\left(\mathcal{D} \mathcal{R}_{2, n}^{m}\right)=(m n+1)^{n-1}
$$

Combinatorial interpretations of these numbers $(k=2)$

Theorem (classic)

The number of m-Dyck paths of height n is

$$
\frac{1}{(m+1) n+1}\binom{(m+1) n+1}{n} .
$$

Theorem (classic)

The number of m-parking functions of height n is

$$
(m n+1)^{n-1} .
$$

m-Dyck paths $(m=2)$

- paths consisting of north and east steps.
- starting at $(0,0)$ and finishing at ($m n, n$).
- never going below the line of equation $m y=x$.

m-parking functions $(m=2)$

- m-Dyck paths.
- n north steps are labelled with the values $\{1,2, \ldots n\}$.
- labels increase along consecutive north steps.

Trivariate diagonal coinvariant spaces $(k=3)$

Conjecture ($m=1$: Haiman 1994; $m>1$: F. Bergeron 2009)

$$
\operatorname{dim}\left(\mathcal{D} \mathcal{R}_{3, n}^{m} \varepsilon\right)=\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1}
$$

Conjecture ($m=1$: Haiman 1994; $m>1$: Bergeron 2009)

$$
\operatorname{dim}\left(\mathcal{D} \mathcal{R}_{3, n}^{m}\right)=(m+1)^{n}(m n+1)^{n-2}
$$

Trivariate diagonal coinvariant spaces $(k=3)$

Conjecture ($m=1$: Haiman 1994; $m>1$: F. Bergeron 2009)

$$
\operatorname{dim}\left(\mathcal{D} \mathcal{R}_{3, n}^{m} \varepsilon\right)=\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1}
$$

Conjecture ($m=1$: Haiman 1994; $m>1$: Bergeron 2009)

$$
\operatorname{dim}\left(\mathcal{D} \mathcal{R}_{3, n}^{m}\right)=(m+1)^{n}(m n+1)^{n-2}
$$

Combinatorial questions: what do these numbers count?

Combinatorial interpretations of these numbers $(k=3)$

Theorem ($m=1$: Chapoton 2006; $m>1$: MBM, Fusy, LFPR 2011) (Conj. $m>1$: Bergeron 2009)
The number of intervals in the m-Tamari lattice defined on m-Dyck paths of height n is

$$
\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1} .
$$

Theorem (MBM, GC, LFPR 2011) (Conj. Bergeron 2008-2009)
The number of labelled intervals in the m-Tamari lattice defined on m-Dyck paths of height n is

$$
(m+1)^{n}(m n+1)^{n-2} .
$$

Combinatorial interpretations of these numbers $(k=3)$

Theorem ($m=1$: Chapoton 2006; $m>1$: MBM, Fusy, LFPR 2011) (Conj. $m>1$: Bergeron 2009)
The number of intervals in the m-Tamari lattice defined on m-Dyck paths of height n is

$$
\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1}
$$

Theorem (MBM, GC, LFPR 2011) (Conj. Bergeron 2008-2009)
The number of labelled intervals in the m-Tamari lattice defined on m-Dyck paths of height n is

$$
(m+1)^{n}(m n+1)^{n-2}
$$

Proof.

Ideas of the proofs will be given in the next section.

The cover relation in the m-Tamari lattice $(m=2)$

Tamari lattice on Dyck paths of height $4(m=1)$

2-Tamari lattice on 2-Dyck paths of height 3

The labelled intervals in the m-Tamari lattice $(m=2)$

- an interval in the m-Tamari lattice
- the top path is an m-parking function

A representation on labelled intervals in the m-Tamari lattice
$(1,7,3)(2,5)(4,6)$

We denote this combinatorial representation by $\operatorname{Tam}_{m}(n)$.

A representation on labelled intervals in the m-Tamari lattice
$(1,7,3)(2,5)(4,6)$

We denote this combinatorial representation by $\operatorname{Tam}_{m}(n)$.

Conjecture (F. Bergeron, LFPR 2010)

$$
\mathcal{D} \mathcal{R}_{3, n}^{m} \cong \varepsilon \otimes \operatorname{Tam}_{m}(n)
$$

The character of the m-Tamari representation

Theorem (MBM, GC, LFPR 2012) (Conj. Bergeron, LFPR 2010)
In the representation $\operatorname{Tam}_{m}(n)$, the number of labelled intervals in the m-Tamari lattice fixed under a permutation of cycle type $\lambda=\left(\lambda_{1}, . ., \lambda_{\ell}\right)$ is given by

$$
(m n+1)^{\ell-2} \prod_{1 \leq i \leq \ell}\binom{(m+1) \lambda_{i}}{\lambda_{i}}
$$

Outline

(1) Motivations and results: Toward a combinatorial description of diagonal coinvariant spaces of the symmetric group
(2) Proof: solving a differential-catalytic equation

(3) Open combinatorial questions

Parameters for m-Tamari intervals

Parameters for labelled m-Tamari intervals

t : height of the paths
x : contacts of the lower path
y : first rise of the top path

$$
G^{(m)}(t ; x, y):=\sum_{n \geq 0} \sum_{\substack{\alpha \leq \beta \\ \alpha, \beta \in \operatorname{Dyck}_{m}(n)}} \sum_{P \in \operatorname{Park}_{m}(\beta)} \frac{t^{n}}{n!} x^{\operatorname{contacts}(\alpha)} y^{\text {rise }(\beta)}
$$

Recurrence on unlabelled m-Tamari intervals $(m=1)$

$$
\begin{aligned}
& F(t ; x, y) \\
= & x+t x y \frac{F(t ; x, y)-F(t ; 1, y)}{x-1} F(t ; x, 1) .
\end{aligned}
$$

Recurrence on unlabelled m-Tamari intervals $(m=1)$

With $\Delta(R(t ; x)):=\frac{R(t ; x)-R(t ; 1)}{x-1}$, this reads:

$$
F(t ; x, y)=x+t x y(F(t ; x, 1) \Delta)(F(t ; x, y))
$$

Recurrence on unlabelled m-Tamari intervals $(m=1)$

With $\Delta(R(t ; x)):=\frac{R(t ; x)-R(t ; 1)}{x-1}$, this reads:

$$
F(t ; x, y)=x+t x y(F(t ; x, 1) \Delta)(F(t ; x, y))
$$

For general m :

$$
F^{(m)}(t ; x, y)=x+t x y\left(F^{(m)}(t ; x, y) \Delta\right)^{m}\left(F^{(m)}(t ; x, y)\right) .
$$

Polynomial equations with a catalytic variable $(y=1)$

$$
F(t ; x)=x+t x \frac{F(t ; x)-F(t ; 1)}{x-1} F(t ; x) .
$$

Divided difference: x is a catalytic variable (Zeilberger??).

Such equations are ubiquitous in map enumeration.

The solution is always an algebraic series (Brown-Tutte 1960's, Bousquet-Mélou-Jehanne 2006).
i.e. there exist a polynomial Q such that:

$$
Q(F(t ; x), t, x)=0 .
$$

Recurrence on labelled m-Tamari intervals $(m=1)$

With $\Delta(R(t ; x)):=\frac{R(t ; x)-R(t ; 1)}{x-1}$, for general m :

$$
G^{(m)}(t ; x, y)=x+t x \int\left(G^{(m)}(t ; x, 1) \Delta\right)^{m}\left(G^{(m)}(t ; x, y)\right) d y
$$

Alternative forms of the functional equations

$$
F^{(m)}(t ; x, y)=x+t x y\left(F^{(m)}(t ; x, 1) \Delta\right)^{m}\left(F^{(m)}(t ; x, y)\right)
$$

is equivalent to

$$
F^{(m)}(t ; x, y)=\frac{1}{1-t \times y\left(F^{(m)}(t ; x, 1) \Delta\right)^{m}}(x)
$$

Alternative forms of the functional equations

$$
F^{(m)}(t ; x, y)=x+\operatorname{txy}\left(F^{(m)}(t ; x, 1) \Delta\right)^{m}\left(F^{(m)}(t ; x, y)\right)
$$

is equivalent to

$$
F^{(m)}(t ; x, y)=\frac{1}{1-t \times y\left(F^{(m)}(t ; x, 1) \Delta\right)^{m}}(x)
$$

$$
G^{(m)}(t ; x, y)=x+t x \int\left(G^{(m)}(t ; x, 1) \Delta\right)^{m}\left(G^{(m)}(t ; x, y)\right) d y
$$

is equivalent to

$$
G^{(m)}(t ; x, y)=e^{t x y\left(G^{(m)}(t ; x, 1) \Delta\right)^{m}}(x)
$$

Guessing a solution for $F^{(m)}(t ; x, y)$ and $G^{(m)}(t ; x, y)$

$$
\Delta(R(t ; x)):=\frac{R(t ; x)-R(t ; 1)}{x-1}
$$

$$
F^{(m)}(t ; x, y)=\frac{1}{1-t x y\left(F^{(m)}(t ; x, 1) \Delta\right)^{m}}(x)
$$

algebraic \Rightarrow use Gfun (Maple)

Guessing a solution for $F^{(m)}(t ; x, y)$ and $G^{(m)}(t ; x, y)$

$$
\Delta(R(t ; x)):=\frac{R(t ; x)-R(t ; 1)}{x-1}
$$

$$
\begin{aligned}
& F^{(m)}(t ; x, y)=\frac{1}{1-t \times y\left(F^{(m)}(t ; x, 1) \Delta\right)^{m}}(x) \\
& t=z(1-z)^{m^{2}+2 m} \\
& x=\frac{1+u}{(1+z u)^{m+1}} \\
& F^{(m)}(t ; x, 1)=\frac{1+u}{(1-z)^{m+2}}\left(\frac{1+u-(1+z u)^{m+1}}{(1+z u)^{m+1} u}\right)
\end{aligned}
$$

algebraic \Rightarrow use Gfun (Maple)

Guessing a solution for $F^{(m)}(t ; x, y)$ and $G^{(m)}(t ; x, y)$

$$
\Delta(R(t ; x)):=\frac{R(t ; x)-R(t ; 1)}{x-1}
$$

$$
\begin{aligned}
& F^{(m)}(t ; x, y)=\frac{1}{1-t x y\left(F^{(m)}(t ; x, 1) \Delta\right)^{m}}(x) \quad G^{(m)}(t ; x, y)=e^{t x y\left(G^{(m)}(t ; x, 1) \Delta\right)^{m}}(x) \\
& t=z(1-z)^{m^{2}+2 m}
\end{aligned}
$$

$$
x=\frac{1+u}{(1+z u)^{m+1}}
$$

$$
F^{(m)}(t ; x, 1)=\frac{1+u}{(1-z)^{m+2}}\left(\frac{1+u-(1+z u)^{m+1}}{(1+z u)^{m+1} u}\right)
$$

$$
\text { algebraic } \Rightarrow \text { use Gfun (Maple) }
$$

Guessing a solution for $F^{(m)}(t ; x, y)$ and $G^{(m)}(t ; x, y)$

$$
\Delta(R(t ; x)):=\frac{R(t ; x)-R(t ; 1)}{x-1}
$$

$$
\begin{array}{lr}
F^{(m)}(t ; x, y)=\frac{1}{1-t \times y\left(F^{(m)}(t ; x, 1) \Delta\right)^{m}}(x) & G^{(m)}(t ; x, y)=e^{t x y\left(G^{(m)}(t ; x, 1) \Delta\right)^{m}}(x) \\
t=z(1-z)^{m^{2}+2 m} & t=z e^{-m(m+1) z} \\
x=\frac{1+u}{(1+z u)^{m+1}} & x=\frac{1+u}{e^{m z u}} \\
F^{(m)}(t ; x, 1)=\frac{1+u}{(1-z)^{m+2}}\left(\frac{1+u-(1+z u)^{m+1}}{(1+z u)^{m+1} u}\right) & G^{(m)}(t ; x, 1)=\frac{1+u}{e^{-(m+1) z}}\left(\frac{1+u-e^{m z u}}{e^{(m-1) z u} u}\right)
\end{array}
$$

Proof of checking: le début . . .

Outline

(1) Motivations and results: Toward a combinatorial description of diagonal coinvariant spaces of the symmetric group
(2) Proof: solving a differential-catalytic equation
(3) Open combinatorial questions

Open combinatorial questions

- Simplify the checking $(m>1)$.
- Prove the formulas without guessing.
- Bijective proofs? Connections with certain maps? Why is $\mathrm{F}(\mathrm{t} ; \mathrm{x}, \mathrm{y})$ symmetric in x and y ?
- Combinatorial problems involving statistics on these objects (the statistics correspond to the grading of these spaces).

