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Definition
Let Tµ = t

∑
(i−1)µi q

∑
(i−1)µ′i . Then ∇ is an important linear

operator of the Macdonald polynomials:

∇H̃µ[X ; q, t] = TµH̃µ[X ; q, t].

Theorem (Haiman)

When applied to the elementary symmetric function en, ∇ gives
the Frobenius characteristic of the space of diagonal harmonics.

∇en =
∑
µ`n

(1− t)(1− q)TµH̃µΠµBµ
wµ

Conjecture (Shuffle Conjecture)

[Haglund, Haiman, Loehr, Remmel, Ulyanov.]

∇en =
∑

PF∈PFn

tarea(PF )qdinv(PF )Qides(PF )
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Dyck Paths

Definition
A dyck path:

1. has only north and east steps,

2. goes from the southwest to the northeast corner, and

3. doesn’t cross the main diagonal.



Parking Functions
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Definition
A parking function is a dyck path with:

1. integers 1 to n by the north steps and

2. columns strictly increasing.



Parking Function Statistics

Definition
The area of a parking function is the number of complete squares
between the dyck path and the main diagonal.

1
4
5

2
3

6

1
4
5

2
3

6

1
4
5

2
3

6

Figure: area(PF ) = 6



Parking Function Statistics

Definition
The area of a parking function is the number of complete squares
between the dyck path and the main diagonal.
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Figure: area(PF ) = 6



Parking Function Statistics

Primary Dinv
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Not

Definition
A primary diagonal inversion occurs between a small car and a big
car to its right in the same diagonal.



Parking Function Statistics

Secondary Dinv
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Not

Definition
A secondary diagonal inversion occurs between a small car and a
big car to its left in the next higher diagonal.



Parking Function Statistics

Definition
The dinv of a parking function is the number of primary and
secondary diagonal inversions it contains.

dinv(PF ) = 2
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Parking Function Statistics

Reading Word

Definition
The reading word is found by reading the integers along their
diagonals.
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Parking Function Statistics

Reading Word

Definition
The reading word is found by reading the integers along their
diagonals.
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Parking Function Statistics

Reading Word

Definition
The reading word is found by reading the integers along their
diagonals.
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Parking Function Statistics

Reading Word

Definition
The reading word is found by reading the integers along their
diagonals.
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Parking Function Statistics

I-descents

Definition
The i-descent set of a permutation P, is

ides(P) = {i : i occurs after i + 1 in P}.

Definition
Let ides(PF ) = ides(word(PF )).



Example
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ides(PF ) = ides([2, 5, 3, 4, 6, 1]) = {1, 4}

Conjecture (Shuffle Conjecture)

[Haglund, Haiman, Loehr, Remmel, Ulyanov.]

∇en =
∑

PF∈PFn

tarea(PF )qdinv(PF )Qides(PF )



Composition

Definition
The composition of a parking function determines where the dyck
path touches the main diagonal.
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Figure: comp(PF ) = (1, 3, 2, 2)



Definition
We are interested in the family of parking functions with a given
composition:

Fp = {PF : comp(PF ) = p}

In particular define the sum:

Fp =
∑

comp(PF )=p

tarea(PF )qdinv(PF )Qides(PF ).

Definition
For a two part composition, if comp(PF ) = {n − k, k}, let

top(PF ) = k .



Definition
Let Cp1 = Cp1Cp2 . . . Cpk 1. Then

Cp1 =

(
−1

q

)∑
pi−k

Hp[X ; 1/q].

Cp1 can be generated directly using a particular operator:
For any symmetric function F [X ]

Cpi F [X ] =

(
−1

q

)pi−1∑
k≥0

F

[
X +

1− q

q
z

] ∣∣∣∣
zk

hpi+k [X ].

Conjecture (Haglund, Morse, Zabrocki)

∇Cp1 = Fp =
∑

comp(PF )=p

tarea(PF )qdinv(PF )Qides(PF )
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Theorem (Haglund, Morse, Zabrocki)

1. en =
∑

p|=n Cp1.

I (Thus the Haglund-Morse-Zabrocki conjecture is a sharpening
of the shuffle conjecture.)

2. {Cµ1 : µ ` n} forms a basis for the symmetric functions Λn.
I (Since ∇ is a linear operator, this gives us that {∇Cµ1 : µ ` n}

forms a basis for Λn.)

3. When k < n − k,
q(CkCn−k + Cn−k−1Ck+1) = Cn−kCk + Ck+1Cn−k−1

I (This is exactly enough information to express any Cp1 in
terms of {Cµ1 : µ ` n}.)



The Haglund-Morse-Zabrocki Conjecture in Two
Parts

1. Is the HMZ conjecture true for p a partition?

2. If the HMZ conjecture is true for every partition p, then is it
true for any composition p?



The Partition Case



Theorem
Let V be a vector space with four bases:

G = 〈G1, . . . ,Gn〉 and H = 〈H1, . . . ,Hn〉

φ = 〈φ1, . . . , φn〉 and ψ = 〈ψ1, . . . , ψn〉.

Say that

Gj =
∑
i≤j

φiai ,j and Gj =
∑
i≥j

ψibi ,j ,

Hj =
∑
i≤j

φici ,j and Hj =
∑
i≥j

ψidi ,j ,

Then there exists constants cj , such that Gj = cjHj .

Is ∇Cp1 = Fp for p a partition?
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There is an upper triangularity for the two basis:

Theorem (Garsia)

∇Cp1 =
∑
λ≤p

sλ

[
X

q − 1

]
αλ,p(q, t)

Fp =
∑
λ≤p

sλ

[
X

q − 1

]
βλ,p(q, t)

If a lower triangularity exists, the two basis are identical:

Theorem (Garsia,H., Xin, Zabrocki)

〈∇Cp1, eahb〉 = 〈Fp, eahb〉



The Compositional Case



Theorem

q(CkCn−k + Cn−k−1Ck+1) = Cn−kCk + Ck+1Cn−k−1
Thus:

q(∇CpCkCn−kCp′1+∇CpCn−k−1Ck+1Cp′1) =

∇CpCn−kCkCp′1 +∇CpCk+1Cn−k−1Cp′1

Conjecture (H.)

For k < n − k , there exists a bijection f

f : F(k,n−k) ∪ F(n−k−1,k+1) ↔ F(n−k,k) ∪ F(k+1,n−k−1)

with the following properties:

1. f increases the dinv by exactly one

2. f preserves the area and the ides

3. f keeps the cars in their origional diagonal
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If f keeps cars in their origional diagonal:
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1. We can ignore the area.

2. We can just study the two part compositions.



Definition (diagonal word)

The diagonal word lists the cars by diagonal in increasing order.
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Definition (diagonal word)

The diagonal word lists the cars by diagonal in increasing order.
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Definition (diagonal word)

The diagonal word lists the cars by diagonal in increasing order.
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Definition (diagonal word)

The diagonal word lists the cars by diagonal in increasing order.
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If we split the diagonal word at it’s descents, we can reconstruct
the diagonal containing any car.
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2 5 3 4 1 6

2 5 3 4 1 62 5 3 4 1 6
2 2 1 1 0 0

Thus parking functions with the same diagonal word are exactly
those which have the same set of cars on every diagonal.
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Theorem (Haglund and Loehr)

∑
diag(PF )=τ

tarea(PF )qdinv(PF ) = tmaj(τ)
n∏

i=1

[w τ
i ]q

We’re interested in a different sum:

Definition

F τ (x , t, q) =
∑

diagword(PF )=τ

tarea(PF )qdinv(PF )x top(PF )Qides(PF )

Then we’d like to show that:

Conjecture (Commutativity)

For k < n − k , if τ = (τ1, . . . , τn) where τn−2 > τn−1 < τn

q
(

F τ (x , t, q)|xn−k+xk+1

)
= F τ (x , t, q)

∣∣
xk+xn−k−1



Example

τ = (3, 4, 1, 2)
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↓ ↓ ↓ ↓ ↓
t2x3Q2 t2qx3Q2,3 t2q2x2Q2,3 . . . t2q4xQ1,2,3

F (3,4,1,2)(x , q, t) =t2x3Q2 + t2qx3Q2,3 + t2q2x2Q2,3

+ t2qx2Q2 + t2q2xQ2 + t2q3xQ2,3

+ t2qx3Q1,2 + t2q2x3Q1,2,3 + t2q3x2Q1,2,3

+ t2q2x2Q1,2 + t2q3xQ1,2 + t2q4xQ1,2,3



Conjecture (Functional Equation)

For any diagonal word τ , there exists Aτ (q, t) such that

(1−q/x)F τ (x , q, t)+xn−1(1−qx)F τ (1/x , q, t) = (1+xn−1)Aτ (q, t).

Theorem
F τ (x , q, t) satisfies the functional equation if and only if it satisfies
the commutativity conjectures.

Thus if we can show that every F τ (x , q, t) satisfies the functional
equation, we can reduce the compositional case of the HMZ
conjecture to the partitional case!



Example

F (3,4,1,2)(x , q, t) = t2x(x2+xq +q2)(Q1,2,3q2+qQ2,3+qQ1,2+Q2)

Surprise! It factors.

Example

(1− q/x)F (3,4,1,2)(x , q, t; Xn) + xn−1(1− qx)F (3,4,1,2)(1/x , q, t; Xn)

= t2(Q1,2,3q2 + qQ2,3 + qQ1,2 + Q2)(
(1− q/x)x(x2 + xq + q2) + xn−1(1− qx)1/x(x−2 + x−1q + q2)

)
= (1 + xn−1)t2(1− q)(q2 + q + 1)(Q1,2,3q2 + qQ2,3 + qQ1,2 + Q2).



Theorem
For any diagonal word τ , there exists a polynomial r τ1 (x , q) and a
quasisymmetric polynomial r τ2 (q; Xn) such that

F τ (x , q, t; Xn) = tmaj(τ)r τ1 (x , q)r τ2 (q; Xn)

Definition
Let

Rτ (x , q) =
∑

diagword(PF )=τ

qdinv(PF )x top(PF )

Conjecture (Functional Equation)

For any diagonal word τ , there exists Aτ (q) such that

(1− q/x)Rτ (x , q) + xn−1(1− qx)Rτ (1/x , q) = (1 + xn−1)Aτ (q).



Example

R(4,3,1,2)(x , q) = x(q + 1)(q + x2) = R(1,4,2,3)(x , q)

In fact, for parking functions of length 5 there are 40 distinct
diagonal words, but only 14 distinct Rτ (x , q).

Definition (schedule)

A sequence W = (w1, . . . ,wn) is a schedule if:

I w1 = 1 and w2 = 2;

I w3 ∈ {1, 2}; and

I (Slow growth.) wi ≤ wi−1 + 1.



Definition

Bn,wP(Xn−1; q) :=

1

1− q
((xn − qw )P(x1, x2, . . . , xn−1; q)

+ (1− xn)P(x1, x2, . . . , xn−w−1, qxn−w , . . . , qxn−1; q))

Base Case

P(1,2)(X2; q) := qx1 + x2.

P(w1,...,wn)(Xn; q) := Bn,wnP(w1,...,wn−1)(Xn−1; q).

Definition

QW (x ; q) := PW (Xn, q)|x1=···=xn=x



Definition
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1

1− q
((xn − qw )P(x1, x2, . . . , xn−1; q)
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Theorem
For every τ there exists a schedule W such that

Rτ (x , q) = QW (x , q).

Moreover, the converse is also the case.

Example

R(3,1,2,4) = (1 + q)2x(q2 + qx + x2) = Q(1,2,2,3)

Theorem (Functional Equation)

If for every schedule W = (w1, . . . ,wn),

(1− q/x)QW (x ; q) + xn−1(1− qx)QW (1/x ; q) (1)

= (1 + xn−1)(1− q)
n∏

i=1

[wi ]q, (2)

then our desired bijections exist.



Theorem
Let W = (w1, . . . ,wn−1) and W ′ = (w1, . . . ,wn−2) satisfy the
functional equation. Then (w1, . . . ,wn−1, 1) also satisfies the
functional equation.

Definition
If a schedule W = (w1, . . . ,wn) can be shown to satisfy the
functional equation under the assumption that “smaller” schedules
satisfy the functional equation, say that the schedule inductively
satisfies the functional equation.

Then to reduce the compositional case of the HMZ conjecture to the
partition case, we can show that every schedule inductively satisfies
the functional equation.
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Definition
If a schedule W = (w1, . . . ,wn) can be shown to satisfy the
functional equation under the assumption that “smaller” schedules
satisfy the functional equation, say that the schedule inductively
satisfies the functional equation.

Then to reduce the compositional case of the HMZ conjecture to the
partition case, we can show that every schedule inductively satisfies
the functional equation.



Theorem (H.)

Schedules of the form (1, 2, 2, 3, . . . , s) satisfy the functional
equation.

Theorem (H.)

Schedules of the form (1, 2, 2, 3, . . . , s,ws+1, . . . ,wn) inductively
satisfy the functional equation when ws+1 < s.

Theorem
The remaining schedules (when ws+1 = s) of length less than 15
satisfy the functional equation.

Proof.
by E. Rodemich using exhaustive search (in Fortran!)



Generating the Polynomials Directly



P(1,2,2,3)

∣∣
x1x3x4

= q(1 + q)

1. Use bars of length (1, 2, 2, 3).

2.

3.

4.

5.



P(1,2,2,3)

∣∣
x1x3x4

= q(1 + q)

1. Use bars of length (1, 2, 2, 3).

2. Place the 1st, 3rd, and 4th pointing upward.

3.

4.

5.



P(1,2,2,3)

∣∣
x1x3x4

= q(1 + q)

1. Use bars of length (1, 2, 2, 3).

2. Place the 1st, 3rd, and 4th pointing upward.

3. Fill in a single square in each of the first two columns.

4. Look back wi and see how many are pointed the same
direction. Fill in that many squares.

5.



P(1,2,2,3)

∣∣
x1x3x4

= q(1 + q)

1. Use bars of length (1, 2, 2, 3).

2. Place the 1st, 3rd, and 4th pointing upward.

3. Fill in a single square in each of the first two columns.

4. Look back wi and see how many are pointed the same
direction. Fill in that many squares.

5. Count colored squares (from the bottom) to get powers of q.

1
q

1 1
q



P(1,2,2,3)

∣∣
x2

= q(q + q2)

1
1

q q2

q



P(1,2,2,3)(X4; q) = (qx1 + x2)(q2 + q3 + q2x3 + qx4 + x3x4 + qx3x4)
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