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Motivation:

e Stanley-Stembridge conjecture

e Semiorders ((3 + 1)- and (2 + 2)-free)

e Recentwork on (2 + 2)-free posets (Bousquet-Mélou,
Claesson, Dukes, Kitaev, and subsequent work)

e Other related work (Skandera; Atkinson, Sagan and
Vatter)
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Graded posets

e A poset P is weakly graded if there is a rank function
r: P — N such that if x covers y then r(z) — r(y) = 1.

e Strongly graded : also, all minimal vertices have rank 0
and all maximal vertices have the same rank.
(Equivalently, all maximal chains have same length.)

e Inthistalk, “graded” = “strongly graded”
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Graded posets

'Df‘té:i‘;;fggnd e A poset P is weakly graded if there is a rank function
r: P — N such that if x covers y then r(z) — r(y) = 1.

[0 Main result
[0 Proof idea

e Strongly graded : also, all minimal vertices have rank 0
Decomposing hosets and all maximal vertices have the same rank.

Conclusions (Equivalently, all maximal chains have same length.)

e Inthistalk, “graded” = “strongly graded”

Longstanding open question.  Enumerate (3 + 1)-free
posets.

Question whose solution I'll present. Enumerate graded
(3 + 1)-free posets.
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Main result

introduetion Main Theorem. We have

[0 Background

[0 Graded posets

—

Sre—— > “(#strongly graded 3 + 1-free posets on [n]) - 2" /n! =
n>0

Decomposing posets
Conclusions 633 1 X 2e” —+ (Gx — 2)@([13)
2e27 4 e + (2 — 2e* — 1)U(x)

where

V) =S (Z)2m<nm>-xn/n!.

n>0 0<m<n

(Something similar is true for weakly graded (3 + 1)-free
posets.)
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Proof idea

B W

Give a local condition for (3 4 1)-avoidance in graded
posets

Decompose graded (3 + 1)-free posets into simpler
objects

Count these simpler objects

Use generating function magic to count ways to
combine the simpler objects to get graded (3 + 1)-free
posets
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Avolidance iIs local

Proposition 1. If a graded poset P does not have three
consecutive ranks that induce a copy of 3 + 1 then P is
(3 + 1)-free.

Proof idea. If P contains 3 + 1, extend the 3 to a maximal
chain and choose a new 3:
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Avolidance iIs local

Proposition 1. If a graded poset P does not have three
consecutive ranks that induce a copy of 3 + 1 then P is
(3 + 1)-free.
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Avolidance iIs local

Proposition 1. If a graded poset P does not have three
consecutive ranks that induce a copy of 3 + 1 then P is
(3 + 1)-free.
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Proposition 2. A graded posetis (3 + 1)-free if and only if

e every vertex is covered by everything on the rank above
or covers everything on the rank below, and

e every vertex is comparable to all vertices two or more
ranks away.
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Decomposing into graphs

Proposition 2. A graded posetis (3 + 1)-free if and only if

e every vertex is covered by everything on the rank above or covers
everything on the rank below, and
e every vertex is comparable to all vertices two or more ranks away.

In a graded (3 + 1)-free poset, focus on
the vertices that don’t have all cover rela-
tions with neighboring ranks.
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Proposition 2. A graded posetis (3 + 1)-free if and only if

e every vertex is covered by everything on the rank above or covers

everything on the rank below, and
e every vertex is comparable to all vertices two or more ranks away.

In a graded (3 + 1)-free poset, focus on
the vertices that don’t have all cover rela-
tions with neighboring ranks.

A: not complete up

V. not complete down
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Decomposing into graphs

Proposition 2. A graded posetis (3 + 1)-free if and only if

e every vertex is covered by everything on the rank above or covers

everything on the rank below, and

e every vertex is comparable to all vertices two or more ranks away.

In a graded (3 + 1)-free poset, focus on
the vertices that don’t have all cover rela- '\

tions with neighboring ranks.

A: not complete up
V. not complete down
Group them in adjacent rows
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Counting

Proposition 2. A graded posetis (3 + 1)-free if and only if

e every vertex is covered by everything on the rank above or covers
everything on the rank below, and
e every vertex is comparable to all vertices two or more ranks away.

T

e Outside the circled regions Is easy

e Each piece is a bipartite graph with
no complete vertices

e Compatibility condition for isolated
vertices in consecutive pieces

e Counting the pieces with generat-
Ing functions is not hard (it involves
S im0 Sosmen (1) 270 27 /)

e Use transfer-matrix method to com-
plete the enumeration
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Déja vu

introduction Main Theorem. We have
Decomposing posets
(#strongly graded 3 + 1-free posets on [n]) - 2" /n! =
[J Loose ends n>0
2e* + (e — 2)V(x
L (¢ = 2)¥(a)

2e27 4 e + (2 — 2e* — 1)U(x)

where

V) =S (Z)2m<nm>-xn/n!.

n>0 0<m<n
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Introduction

Decomposing posets

Conclusions
[0 Déja vu
00 Loose ends

Loose ends

Lingering questions:

Other classes of posets for which this sort of local
approach works?
Is any of this useful for counting all (3 + 1)-free posets?

Thanks for listening!
J. Lewis and Y. Zhang, ar Xi v: 1106. 5480
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