Enumeration of graded $(3+1)$-avoiding posets

Joel Lewis (MIT \rightarrow University of Minnesota) joint with Yan Zhang (MIT)

July 31, 2012

Background

Introduction

* Background
* Graded posets
* Main result
* Proof idea

Decomposing posets
Conclusions

- All partially ordered sets (posets) in this talk are finite, labeled by $[n]=\{1,2, \ldots, n\}$
- A poset is $(3+1)$-free if has no four elements that induce a copy of $3+1$

Background

Introduction

* Graded posets
* Main result
* Proof idea

Decomposing posets
Conclusions

- All partially ordered sets (posets) in this talk are finite, labeled by $[n]=\{1,2, \ldots, n\}$
- A poset is $(3+1)$-free if has no four elements that induce a copy of $3+1$

Motivation:

- Stanley-Stembridge conjecture
- Semiorders ((3+1)- and (2+2)-free)
- Recent work on $(2+2)$-free posets (Bousquet-Mélou, Claesson, Dukes, Kitaev, and subsequent work)
- Other related work (Skandera; Atkinson, Sagan and Vatter)

Graded posets

Introduction

- Background
\star Graded posets
* Main result
* Proof idea

Decomposing posets
Conclusions

- A poset P is weakly graded if there is a rank function $r: P \rightarrow \mathbb{N}$ such that if x covers y then $r(x)-r(y)=1$.
- Strongly graded: also, all minimal vertices have rank 0 and all maximal vertices have the same rank. (Equivalently, all maximal chains have same length.)
- In this talk, "graded" = "strongly graded"

Graded posets

Introduction

* Background * Graded posets
* Main result
* Proof idea
- A poset P is weakly graded if there is a rank function $r: P \rightarrow \mathbb{N}$ such that if x covers y then $r(x)-r(y)=1$.
- Strongly graded: also, all minimal vertices have rank 0 and all maximal vertices have the same rank. (Equivalently, all maximal chains have same length.)
- In this talk, "graded" = "strongly graded"

Longstanding open question. Enumerate (3+1)-free posets.

Question whose solution I'll present. Enumerate graded $(3+1)$-free posets.

Main result

Introduction

* Background
* Graded posets
* Proof idea

Decomposing posets
Conclusions

Main Theorem. We have
$\sum_{n \geq 0}(\#$ strongly graded $3+1$-free posets on $[n]) \cdot x^{n} / n!=$

$$
e^{x}-1+\frac{2 e^{x}+\left(e^{x}-2\right) \Psi(x)}{2 e^{2 x}+e^{x}+\left(e^{2 x}-2 e^{x}-1\right) \Psi(x)}
$$

where

$$
\Psi(x)=\sum_{n \geq 0} \sum_{0 \leq m \leq n}\binom{n}{m} 2^{m(n-m)} \cdot x^{n} / n!
$$

(Something similar is true for weakly graded $(3+1)$-free posets.)

Proof idea

Introduction

* Background
* Graded posets
* Main result

\& Proof idea

Decomposing posets
Conclusions

1. Give a local condition for $(3+1)$-avoidance in graded posets
2. Decompose graded $(3+1)$-free posets into simpler objects
3. Count these simpler objects
4. Use generating function magic to count ways to combine the simpler objects to get graded (3+1)-free posets

Avoidance is local

Introduction
Decomposing posets
\star Avoidance is loca * Decomposing into graphs

* Counting

Conclusions

Proposition 1. If a graded poset P does not have three consecutive ranks that induce a copy of $3+1$ then P is $(3+1)$-free.

Avoidance is local

Introduction
Decomposing posets
\star Avoidance is local

* Decomposing into graphs
* Counting

Conclusions

Proposition 1. If a graded poset P does not have three consecutive ranks that induce a copy of $3+1$ then P is $(3+1)$-free.

Proof idea. If P contains $3+1$,

Avoidance is local

Introduction
Decomposing posets

* Decomposing into graphs
* Counting

Proposition 1. If a graded poset P does not have three consecutive ranks that induce a copy of $3+1$ then P is $(3+1)$-free.

Proof idea. If P contains $3+1$, extend the 3 to a maximal chain

Avoidance is local

Introduction
Decomposing posets
\star Avoidance is local

* Decomposing into graphs
* Counting

Proposition 1. If a graded poset P does not have three consecutive ranks that induce a copy of $3+1$ then P is $(3+1)$-free.

Proof idea. If P contains $3+1$, extend the 3 to a maximal chain and choose a new 3 :

Avoidance is local

Introduction
Decomposing posets
\star Avoidance is local

* Decomposing into graphs
* Counting

Conclusions

Proposition 1. If a graded poset P does not have three consecutive ranks that induce a copy of $3+1$ then P is $(3+1)$-free.

Obstacles:

Avoidance is local

Introduction
Decomposing posets

* Avoidance is local
* Decomposing into graphs
* Counting

Conclusions

Proposition 1. If a graded poset P does not have three consecutive ranks that induce a copy of $3+1$ then P is $(3+1)$-free.

Obstacles:

Proposition 2. A graded poset is $(3+1)$-free if and only if

- every vertex is covered by everything on the rank above or covers everything on the rank below, and
- every vertex is comparable to all vertices two or more ranks away.

Decomposing into graphs

Proposition 2. A graded poset is $(3+1)$-free if and only if

- every vertex is covered by everything on the rank above or covers everything on the rank below, and
- every vertex is comparable to all vertices two or more ranks away.

In a graded $(3+1)$-free poset, focus on the vertices that don't have all cover relations with neighboring ranks.

Decomposing into graphs

Proposition 2. A graded poset is $(3+1)$-free if and only if

- every vertex is covered by everything on the rank above or covers everything on the rank below, and
- every vertex is comparable to all vertices two or more ranks away.

In a graded $(3+1)$-free poset, focus on the vertices that don't have all cover relations with neighboring ranks.
A: not complete up

Decomposing into graphs

Proposition 2. A graded poset is $(3+1)$-free if and only if

- every vertex is covered by everything on the rank above or covers everything on the rank below, and
- every vertex is comparable to all vertices two or more ranks away.

In a graded $(3+1)$-free poset, focus on the vertices that don't have all cover relations with neighboring ranks.
©: not complete up
$\boldsymbol{\nabla}$: not complete down

Decomposing into graphs

Proposition 2. A graded poset is $(3+1)$-free if and only if

- every vertex is covered by everything on the rank above or covers everything on the rank below, and
- every vertex is comparable to all vertices two or more ranks away.

In a graded $(3+1)$-free poset, focus on the vertices that don't have all cover relations with neighboring ranks.
A: not complete up
$\boldsymbol{\nabla}$: not complete down
Group them in adjacent rows

Counting

Proposition 2. A graded poset is $(3+1)$-free if and only if

- every vertex is covered by everything on the rank above or covers everything on the rank below, and
- every vertex is comparable to all vertices two or more ranks away.

- Outside the circled regions is easy
- Each piece is a bipartite graph with no complete vertices
- Compatibility condition for isolated vertices in consecutive pieces
- Counting the pieces with generating functions is not hard (it involves $\left.\sum_{n \geq 0} \sum_{0 \leq m \leq n}\binom{n}{m} 2^{m(n-m)} \cdot x^{n} / n!\right)$
- Use transfer-matrix method to complete the enumeration

Déjà vu

Introduction
Decomposing posets
Conclusions

* Déjà vu
* Loose ends

Main Theorem. We have
$\sum_{n \geq 0}(\#$ strongly graded $3+1$-free posets on $[n]) \cdot x^{n} / n!=$

$$
e^{x}-1+\frac{2 e^{x}+\left(e^{x}-2\right) \Psi(x)}{2 e^{2 x}+e^{x}+\left(e^{2 x}-2 e^{x}-1\right) \Psi(x)}
$$

where

$$
\Psi(x)=\sum_{n \geq 0} \sum_{0 \leq m \leq n}\binom{n}{m} 2^{m(n-m)} \cdot x^{n} / n!
$$

Loose ends

Introduction
Decomposing posets

Conclusions

* Déjà vu
\& Loose ends

Lingering questions:

- Other classes of posets for which this sort of local approach works?
- Is any of this useful for counting all $(3+1)$-free posets?

Thanks for listening!
J. Lewis and Y. Zhang, arXiv:1106.5480

