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Three-coloured chessboards

0 1 2 0
1 2 1 2
2 1 2 1
0 2 1 0

Chessboard of size (n + 1)× (n + 1).
Paint squares with three colours
0, 1, 2 mod 3.

0 1 2 · · · n
1

2
...

... 2
1

n · · · 2 1 0

Adjacent squares have
distinct colour.
“Domain wall boundary
conditions” (DWBC).
Read entries mod 3.
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Example
When n = 3 there are seven chessboards.
0 = black, 1 = red, 2 = yellow.
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Other descriptions

0 1 0
1 −1 1
0 1 0

↑ ↑ ↑
→ • → • ← • ←
↑ ↓ ↑

→ • ← • → • ←
↓ ↑ ↓

→ • → • ← • ←
↓ ↓ ↓

Chessboard Alternating sign
matrix

Ice graph
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Bijection to alternating sign matrices
Represent colours (residue classes mod 3) by integers
so that neighbours differ by 1.

0 1 2 3
1 2 1 2
2 1 2 1
3 2 1 0

Contract each block [ a b
c d ] to (b + c − a− d)/2 ∈ {−1,0,1}.

0 1 0
1 −1 1
0 1 0

Gives bijection to n × n alternating sign matrices.
Non-zero entries in each row and column
alternate in sign and add up to 1.
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Bijection to ice graphs
(states of six-vertex model)

0

↑

1

↑

2

↑

0

→ • → • ← • ←

1

↑

2

↓

1

↑

2

→ • ← • → • ←

2

↓

1

↑

2

↓

1

→ • → • ← • ←

0

↓

2

↓

1

↓

0

Put arrows between
adjacent squares.
Larger entry to the right,
0 < 1 < 2 < 0.

Each vertex has two incoming
and two outgoing edges.
Domain wall boundary conditions.

Vertex = Oxygen, Incoming arrow = Hydrogen bond.
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Example
For n = 5, the number of chessboards with exactly k squares
of colour 0 and l squares of colour 2 are as follows.

k=8 9 10 11 12 13 14
l=8 1

9 4 6
10 7 8 15
11 8 12 36 20
12 7 12 36 40 15
13 4 18 36 40 24 6
14 1 6 15 20 15 6 1

1 6 15 20 15 6 1 =

(6
k

)
1 4 7 8 7 4 1 =

(4
k

)
+
( 4

k−2

) 1 4 6 4 1
+ 1 4 6 4 1
= 1 4 7 8 7 4 1
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Generating function (partition function)

Zn(t0, t1, t2)

=
∑

chessboards
of size (n+1)×(n+1)

t# squares coloured 0
0 t# squares coloured 1

1 t# squares coloured 2
2

Z5(t0, t1, t2) = t14
0 t14

1 t8
2 + 4t13

0 t14
1 t9

2 + · · · .

Partition function for three-colour model with DWBC.
Studied by Baxter (1970) for periodic boundary conditions.
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Three questions

How many states are there (for fixed n)?
What is Zn(1,1,1)?

How common are the various colors?
What is

∂Zn

∂tj
(1,1,1) =

∑
chessboards

#squares of colour j?

What is the joint distribution of the three colours?
What is Zn(t0, t1, t2)?
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Question 1: Enumeration

Alternating sign matrix theorem:

#chessboards =
1! 4! 7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!
.

Conjectured by Mills–Robbins–Rumsey (1983).
Proved by Zeilberger (1996).

Much simpler proof by Kuperberg (1996),
using six-vertex model.

We generalize Kuperberg’s work using
eight-vertex-solid-on-solid (8VSOS) model.
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8VSOS model (no details)

Introduced by Baxter 1973.

Generalizes both three-colour model and six-vertex model.
Same states, but more general weight function.

It gives a “nice” way to put 2n extra parameters
into three-colour model
(or 2 extra parameters into six-vertex model).

The Yang–Baxter equation implies non-trivial and useful
symmetries in these extra parameters.
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Trigonometric case
The 8VSOS model involves elliptic functions. Using the
trigonometric limit case, we can prove that, with ω = e2πi/3,

Zn

(
1

(1− λ)3 ,
1

(1− λω)3 ,
1

(1− λω2)3

)
=

(1− λω2)2(1− λωn+1)2(An(1 + ωnλ2) + (−1)nCnω
2nλ)

(1− λ3)n2+2n+3
,

where An are alternating sign matrix numbers and

Cn =
n∏

j=1

(3j − 1)(3j − 3)!

(n + j − 1)!

count cyclically symmetric plane partitions.
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Consequence

The case λ = 0 is the ASM Theorem: Zn(1,1,1) = An.

Applying ∂/∂λ

∣∣∣∣∣
λ=0

gives expressions for the first moments

∑
chessboards

#squares of colour j ,

which answers Question 2.
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Answer to Question 2:
How common are the colours?

Suppose n ≡ 0 mod 6 and consider the colour 0
(all other cases are similar).

Probability that random square from random chess-board
(chosen uniformly) has colour 0 is

1
3

+
2

9(n + 1)2

2 · 5 · · · (3n − 1)

1 · 4 · · · (3n − 2)
+

4
9(n + 1)2

=
1
3

+
2
9

Γ(1/3)

Γ(2/3)
n−5/3 +

4
9

n−2 + O(n−3), n→∞.
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Question 3: What is Zn in general?

Zn can be split as a sum of two parts.

Each part is a specialized affine Lie algebra character,
and a tau function of Painlevé VI.
Moreover, each part satisfies a Toda-type recursion.

Before giving some details,
we mention one more thing.
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Free energy
Supppose t0, t1, t2 are positive. Conjecture:

lim
n→∞

log Zn(t0, t1, t2)

n2 =
1
3

log(t0t1t2) + log

(
(ζ + 2)

3
4 (2ζ + 1)

3
4

2
2
3 ζ

1
12 (ζ + 1)

4
3

)
,

where ζ is determined by

(t0t1 + t0t2 + t1t2)3

(t0t1t2)2 =
2(ζ2 + 4ζ + 1)3

ζ(ζ + 1)4 , ζ ≥ 1.

Compare Baxter’s formula for periodic boundary conditions:

1
3

log(t0t1t2) + log

(
2

5
3 ζ

1
3 (ζ + 1)

4
3

(2ζ + 1)
3
2

)
.
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Symmetric polynomials
Let

Sn(x1, . . . , xn, y1, . . . , yn, z)

=

∏n
i,j=1 G(xi , yj)∏

1≤i<j≤n(xj − xi)(yj − yi)
det

1≤i,j≤n

(
F (xi , yj , z)

G(xi , yj)

)
,

F (x , y , z) = (ζ + 2)xyz − ζ(xy + yz + xz + x + y + z) + ζ(2ζ + 1),

G(x , y) = (ζ + 2)xy(x + y)− ζ(x2 + y2)− 2(ζ2 + 3ζ + 1)xy
+ ζ(2ζ + 1)(x + y).

This is a symmetric (!) polynomial in all 2n + 1 variables,
depending on parameter ζ.
It can be identified with a character of A(2)

4n−3 affine Lie algebra.
“Cauchy-type”: all minors have the same form. Very useful!
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Relation to three-colour model
Let

pn(ζ) = elementary factor

× Sn

(
2ζ + 1, . . . ,2ζ + 1︸ ︷︷ ︸

n+1

,
ζ

ζ + 2
, . . . ,

ζ

ζ + 2︸ ︷︷ ︸
n

)
.

This is a polynomial in ζ of degree n(n + 1)/2.

Result: Zn(t0, t1, t2) is a linear combination (with elementary
coefficients) of pn−1(ζ) and pn−1(1/ζ), where

(t0t1 + t0t2 + t1t2)3

(t0t1t2)2 =
2(ζ2 + 4ζ + 1)3

ζ(ζ + 1)4 .
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More precisely . . .
Suppose n ≡ 0 mod 6 and

(t0t1 + t0t2 + t1t2)3

(t0t1t2)2 =
2(ζ2 + 4ζ + 1)3

ζ(ζ + 1)4 .

Zn(t0, t1, t2) = (t0t1t2)
n(n+2)

3

(
2

ζ(ζ + 1)4

) n2
12

×

(
t0

pn−1(ζ)− ζ n2
2 +1pn−1(1/ζ)

1− ζ

− t0t1t2(ζ2 + 4ζ + 1)

t0t1 + t0t2 + t1t2
pn−1(ζ)− ζ n2

2 pn−1(1/ζ)

1− ζ2

)
Note that only asymmetry comes from t0.
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Table of pn

n pn(ζ)
−1 1
0 1
1 3ζ + 1
2 5ζ3 + 15ζ2 + 7ζ + 1
3 1

2(35ζ6 + 231ζ5 + 504ζ4 + 398ζ3 + 147ζ2 + 27ζ + 2)
4 1

2(63ζ10 + 798ζ9 + 4122ζ8 + 11052ζ7 + 16310ζ6

+13464ζ5 + 6636ζ4 + 2036ζ3 + 387ζ2 + 42ζ + 2)

Conjecture: The polynomials pn have positive coefficients.
Conjecture: The polynomials pn are unimodal.
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Plot of the 105 complex zeroes of p14.
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Painlevé VI
PVI is the nonlinear ODE
(Painlevé, Fuchs, Gambier 1900–1910)

d2y
dt2 =

1
2

(
1
y

+
1

y − 1
+

1
y − t

)(
dy
dt

)2

−
(

1
t

+
1

t − 1
+

1
y − t

)
dy
dt

+
y(y − 1)(y − t)

2t2(t − 1)2

(
α + β

t
y2 + γ

t − 1
(y − 1)2 + δ

t(t − 1)

(y − t)2

)
.

Most general second order ODE such that all movable
singularities are poles.

Special functions of the 21st Century?
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Bäcklund transformations

If y = y(t) solves PVI, then so does t/y ,
with parameters α↔ −β, γ ↔ 1

2 − δ.

Such Bäcklund transformations
y 7→ F (t , y , y ′) generate group
(extended affine Weyl group)
containing Z4.

Given a “seed” solution y = y0000,
acting with Z4 gives new solutions yk1k2k3k4.
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Picard’s seed solution

When α = β = γ = 0, δ = 1/2, PVI can be solved
in terms of elliptic functions (Picard, 1889).

Picard’s solutions include the algebraic solution

y4 − 4ty3 + 6ty2 − 4ty + t2 = 0,

which is parametrized by

y =
ζ(ζ + 2)

2ζ + 1
, t =

ζ(ζ + 2)3

(2ζ + 1)3 .

If we choose y0000 = y , what is yk1k2k3k4?
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Example

y1,2,−3,1 =
ζ(ζ + 2)(ζ3 + 3ζ2 + 3ζ + 5)(5ζ3 + 15ζ2 + 7ζ + 1)

(2ζ + 1)(ζ3 + 7ζ2 + 15ζ + 5)(5ζ3 + 3ζ2 + 3ζ + 1)

The non-trivial factors are called tau functions.

Note that
5ζ3 + 15ζ2 + 7ζ + 1 = p2(ζ).

Result: There is a 4-dim cone in Z4 where tau functions are
given by specializations of Sn.
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Tau functions in a cone
Let

S(k0,k1,k2,k3)
n (ζ) = Sn

(
2ζ + 1︸ ︷︷ ︸

k0

,
ζ

ζ + 2︸ ︷︷ ︸
k1

,
ζ(2ζ + 1)

ζ + 2︸ ︷︷ ︸
k2

, 1︸︷︷︸
k3

)
.

Then, if ki are non-negative integers with
k0 + k1 + k2 + k3 = 2n − 1,

yk0+k2−n+1,k1+1,n−k0−k1−1,n−k1−k2−1

= elementary factor · S(k0+1,k1,k2,k3+1)
n (ζ)S(k0,k1+1,k2+1,k3)

n (ζ)

S(k0+1,k1,k2+1,k3)
n (ζ)S(k0,k1+1,k2,k3+1)

n (ζ)
,

where as before

y = y(t), t =
ζ(ζ + 2)3

(2ζ + 1)3 .
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Consequence: Recursions
Tau functions satisfy bilinear recursions.
For instance, it follows that

pn+1(ζ)pn−1(ζ) = An(ζ)pn(ζ)2 + Bn(ζ)pn(ζ)p′n(ζ)

+ Cn(ζ)p′n(ζ)2 + Dn(ζ)pn(ζ)p′′n(ζ).

with explicit coefficients.

Conjectured by Bazhanov and Mangazeev 2010.

Gives fast way of computing Zn.

Possibly, it can be used to prove our conjectured expression
for the free energy.
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Questions

Symmetry classes of three-coloured chessboards.
For the six-vertex model, various classical Lie algebra
characters appear (Kuperberg, Okada,. . . ).
For the three-colour model, we expect various
affine Lie algebras.
Macroscopic boundary effects.
Arctic curves.
New phenomenon: Some tau functions for Painlevé VI
are specialized affine Lie algebra characters,
given by Cauchy-type determinant formulas.
Does this happen for other solutions
to Painlevé equations?
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Specializations of the symmetric polynomials Sn recently
appeared (implicitly) in three contexts:

I Partition function for three-colour model with DWBC
(R. 2011).

I Ground state eigenvalue for the Q-operator of eight-vertex
model (Bazhanov and Mangazeev 2005, 2006).

I Eigenvectors of XYZ Hamiltonian (Razumov and Stroganov
2010, Bazhanov and Mangazeev 2010, Zinn-Justin 2012).

Why do the same functions appear in three contexts?
Although the physical models are closely related,
this is far from clear.
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