From alternating sign matrices to Painlevé VI

Hjalmar Rosengren

Chalmers University of Technology and University of Gothenburg
Nagoya, July 31, 2012

Outline

(1) Three-coloured chessboards
(2) Combinatorial results
(3) Symmetric polynomials
4. Painlevé VI
(5) Future problems

Outline

(1) Three-coloured chessboards
(2) Combinatorial results
(3) Symmetric polynomials
(4) Painlevé VI
(5) Future problems

Three-coloured chessboards

0	1	2	0
1	2	1	2
2	1	2	1
0	2	1	0

Chessboard of size $(n+1) \times(n+1)$. Paint squares with three colours $0,1,2 \bmod 3$.

- Adjacent squares have distinct colour.

Three-coloured chessboards

0	1	2	0
1	2	1	2
2	1	2	1
0	2	1	0

Chessboard of size $(n+1) \times(n+1)$. Paint squares with three colours $0,1,2 \bmod 3$.

0	1	2	\cdots		n
1					
2					.
.					2
					1
n		\cdots	2	1	0

- Adjacent squares have distinct colour.
- "Domain wall boundary conditions" (DWBC). Read entries mod 3.

Example

When $n=3$ there are seven chessboards.
0 = black, 1 = red, 2 = yellow.

Other descriptions

Chessboard

Ice graph

Bijection to alternating sign matrices

Represent colours (residue classes mod 3) by integers so that neighbours differ by 1 .

0	1	2	3
1	2	1	2
2	1	2	1
3	2	1	0

Contract each block $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ to $(b+c-a-d) / 2 \in\{-1,0,1\}$.

Gives bijection to $n \times n$ alternating sign matrices.
Non-zero entries in each row and column
alternate in sign and add up to 1.

Bijection to alternating sign matrices

Represent colours (residue classes mod 3) by integers so that neighbours differ by 1 .

0	1	2	3
1	2	1	2
2	1	2	1
3	2	1	0

Contract each block $\left[\begin{array}{lll}a & b \\ c & d\end{array}\right]$ to $(b+c-a-d) / 2 \in\{-1,0,1\}$.

$$
\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}
$$

Gives bijection to $n \times n$ alternating sign matrices.
Non-zero entries in each row and column
alternate in sign and add up to 1 .

Bijection to alternating sign matrices

Represent colours (residue classes mod 3) by integers so that neighbours differ by 1 .

0	1	2	3
1	2	1	2
2	1	2	1
3	2	1	0

Contract each block $\left[\begin{array}{lll}a & b \\ c & d\end{array}\right]$ to $(b+c-a-d) / 2 \in\{-1,0,1\}$.

$$
\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}
$$

Gives bijection to $n \times n$ alternating sign matrices.
Non-zero entries in each row and column alternate in sign and add up to 1 .

Bijection to ice graphs (states of six-vertex model)

0	1	2	0	Put arrows between
1	2	1	2	adjacent squares. Larger entry to the right,
2	1	2	1	$0<1<2<0$.
0	2	1	0	

- Each vertex has two incoming and two outgoing edges.
- Domain wall boundary conditions.

Vertex = Oxygen, Incoming arrow = Hydroget hond b,

Bijection to ice graphs (states of six-vertex model)

| 0 | \uparrow | 1 | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- | | Put arrows between |
| :--- |
| 1 |

- Each vertex has two incoming and two outgoing edges.
- Domain wall boundary conditions.
\square

Bijection to ice graphs (states of six-vertex model)

- Each vertex has two incoming and two outgoing edges.
- Domain wall boundary conclitions.
\square

Bijection to ice graphs (states of six-vertex model)

- Each vertex has two incoming and two outgoing edges.
- Domain wall boundary conditions.
\square

Bijection to ice graphs (states of six-vertex model)

- Each vertex has two incoming and two outgoing edges.
- Domain wall boundary conditions.
\square

Bijection to ice graphs (states of six-vertex model)

- Each vertex has two incoming and two outgoing edges.
- Domain wall boundary conditions.

Vertex = Oxygen, Incoming arrow = Hydrogen bond.

Outline

(1) Three-coloured chessboards

(2) Combinatorial results
(3) Symmetric polynomials

4 Painlevé VI
(5) Future problems

Example

For $n=5$, the number of chessboards with exactly k squares of colour 0 and $/$ squares of colour 2 are as follows.

	$\mathrm{k}=8$	9	10	11	12	13	14
$\mathrm{I}=8$							1
9						4	6
10					7	8	15
11				8	12	36	20
12			7	12	36	40	15
13		4	18	36	40	24	6
14	1	6	15	20	15	6	1

Example

For $n=5$, the number of chessboards with exactly k squares of colour 0 and $/$ squares of colour 2 are as follows.

	$k=8$	9	10	11	12	13	14
$\mathrm{l}=8$							1
9						4	6
10					7	8	15
11				8	12	36	20
12			7	12	36	40	15
13		4	18	36	40	24	6
14	1	6	15	20	15	6	1

$1615201561=$

Example

For $n=5$, the number of chessboards with exactly k squares of colour 0 and $/$ squares of colour 2 are as follows.

	$\mathrm{k}=8$	9	10	11	12	13	14
$\mathrm{I}=8$							1
9						4	6
10					7	8	15
11				8	12	36	20
12			7	12	36	40	15
13		4	18	36	40	24	6
14	1	6	15	20	15	6	1

$\begin{array}{lllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}=\binom{6}{k}$

Example

For $n=5$, the number of chessboards with exactly k squares of colour 0 and $/$ squares of colour 2 are as follows.

	$k=8$	9	10	11	12	13	14
$\mathrm{I}=8$							1
9						4	6
10					7	8	15
11				8	12	36	20
12			7	12	36	40	15
13		4	18	36	40	24	6
14	1	6	15	20	15	6	1

$\begin{array}{llllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}=\binom{6}{k}$
$1478741=$

Example

For $n=5$, the number of chessboards with exactly k squares of colour 0 and $/$ squares of colour 2 are as follows.

	$k=8$	9	10	11	12	13	14
$\mathrm{I}=8$							1
9						4	6
10					7	8	15
11				8	12	36	20
12			7	12	36	40	15
13		4	18	36	40	24	6
14	1	6	15	20	15	6	1

$\begin{array}{llllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}=\binom{6}{k}$
$1478741=\binom{4}{k}+\binom{4}{k-2}$

Example

For $n=5$, the number of chessboards with exactly k squares of colour 0 and $/$ squares of colour 2 are as follows.

	$\mathrm{k}=8$	9	10	11	12	13	14
$\mathrm{I}=8$							1
9						4	6
10					7	8	15
11				8	12	36	20
12			7	12	36	40	15
13		4	18	36	40	24	6
14	1	6	15	20	15	6	1

Generating function (partition function)

$Z_{n}\left(t_{0}, t_{1}, t_{2}\right)$

$$
\begin{aligned}
& \text { Partition function for three-colour model with DWBC. } \\
& \text { Studied by Baxter (1970) for periodic boundary conditions. }
\end{aligned}
$$

Generating function (partition function)

$Z_{n}\left(t_{0}, t_{1}, t_{2}\right)$
$=\sum_{\substack{\text { chessboards } \\ \text { of size }(n+1) \times(n+1)}} t_{0}^{\# \text { squares coloured } 0} t_{1}^{\# \text { squares coloured } 1} t_{2}^{\# \text { squares coloured } 2}$

$$
Z_{5}\left(t_{0}, t_{1}, t_{2}\right)=t_{0}^{14} t_{1}^{14} t_{2}^{8}+4 t_{0}^{13} t_{1}^{14} t_{2}^{9}+\cdots
$$

Partition function for three-colour model with DWBC. Studied by Baxter (1970) for periodic boundary conditions.

Generating function (partition function)

$$
\begin{gathered}
=\sum_{\substack{\text { chessboards } \\
\text { of size }(n+1) \times(n+1)}}^{Z_{n}\left(t_{0}, t_{1}, t_{2}\right)} t_{0}^{\# \text { squares coloured } 0} t_{1}^{\# \text { squares coloured } 1} t_{2}^{\# \text { squares coloured } 2} \\
\quad Z_{5}\left(t_{0}, t_{1}, t_{2}\right)=t_{0}^{14} t_{1}^{14} t_{2}^{8}+4 t_{0}^{13} t_{1}^{14} t_{2}^{9}+\cdots
\end{gathered}
$$

Partition function for three-colour model with DWBC. Studied by Baxter (1970) for periodic boundary conditions.

Three questions

- How many states are there (for fixed n)? What is $Z_{n}(1,1,1)$?
- How common are the various colors?

What is

- What is the joint distribution of the three colours? What is $Z_{n}\left(t_{0}, t_{1}, t_{2}\right)$?

Three questions

- How many states are there (for fixed n)? What is $Z_{n}(1,1,1)$?
- How common are the various colors? What is

$$
\frac{\partial Z_{n}}{\partial t_{j}}(1,1,1)=\sum_{\text {chessboards }} \# \text { squares of colour } j \text { ? }
$$

- What is the joint distribution of the three colours? What is $Z_{n}\left(t_{0}, t_{1}, t_{2}\right)$?

Three questions

- How many states are there (for fixed n)? What is $Z_{n}(1,1,1)$?
- How common are the various colors? What is

$$
\frac{\partial Z_{n}}{\partial t_{j}}(1,1,1)=\sum_{\text {chessboards }} \# \text { squares of colour } j \text { ? }
$$

- What is the joint distribution of the three colours? What is $Z_{n}\left(t_{0}, t_{1}, t_{2}\right)$?

Question 1: Enumeration

Alternating sign matrix theorem:

$$
\text { \#chessboards }=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!} .
$$

Conjectured by Mills-Robbins-Rumsey (1983). Proved by Zeilberger (1996).

Much simpler proof by Kuperberg (1996), using six-vertex model.

We generalize Kuperberg's work using eight-vertex-solid-on-solid (8VSOS) model.

Question 1: Enumeration

Alternating sign matrix theorem:

$$
\text { \#chessboards }=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!} .
$$

Conjectured by Mills-Robbins-Rumsey (1983). Proved by Zeilberger (1996).

Much simpler proof by Kuperberg (1996), using six-vertex model.

We generalize Kuperberg's work using eight-vertex-solid-on-solid (8VSOS) model.

Question 1: Enumeration

Alternating sign matrix theorem:

$$
\text { \#chessboards }=\frac{1!4!7!\cdots(3 n-2)!}{n!(n+1)!(n+2)!\cdots(2 n-1)!} .
$$

Conjectured by Mills-Robbins-Rumsey (1983). Proved by Zeilberger (1996).

Much simpler proof by Kuperberg (1996), using six-vertex model.

We generalize Kuperberg's work using eight-vertex-solid-on-solid (8VSOS) model.

8VSOS model (no details)

Introduced by Baxter 1973.
Generalizes both three-colour model and six-vertex model. Same states, but more general weight function.

$$
\begin{aligned}
& \text { It gives a "nice" way to put } 2 n \text { extra parameters } \\
& \text { into three-colour model } \\
& \text { (or } 2 \text { extra parameters into six-vertex model). } \\
& \text { The Yang-Baxter equation implies non-trivial and useful } \\
& \text { symmetries in these extra parameters. }
\end{aligned}
$$

8VSOS model (no details)

Introduced by Baxter 1973.
Generalizes both three-colour model and six-vertex model. Same states, but more general weight function.

It gives a "nice" way to put $2 n$ extra parameters into three-colour model (or 2 extra parameters into six-vertex model).

The Yang-Baxter equation implies non-trivial and useful symmetries in these extra parameters.

8VSOS model (no details)

Introduced by Baxter 1973.
Generalizes both three-colour model and six-vertex model. Same states, but more general weight function.

It gives a "nice" way to put $2 n$ extra parameters into three-colour model (or 2 extra parameters into six-vertex model).

The Yang-Baxter equation implies non-trivial and useful symmetries in these extra parameters.

Trigonometric case

The 8VSOS model involves elliptic functions. Using the trigonometric limit case, we can prove that, with $\omega=e^{2 \pi i / 3}$,

$$
\begin{aligned}
& Z_{n}\left(\frac{1}{(1-\lambda)^{3}}, \frac{1}{(1-\lambda \omega)^{3}}, \frac{1}{\left(1-\lambda \omega^{2}\right)^{3}}\right) \\
& \quad=\frac{\left(1-\lambda \omega^{2}\right)^{2}\left(1-\lambda \omega^{n+1}\right)^{2}\left(A_{n}\left(1+\omega^{n} \lambda^{2}\right)+(-1)^{n} C_{n} \omega^{2 n} \lambda\right)}{\left(1-\lambda^{3}\right)^{n^{2}+2 n+3}},
\end{aligned}
$$

where A_{n} are alternating sign matrix numbers and

$$
C_{n}=\prod_{j=1}^{n} \frac{(3 j-1)(3 j-3)!}{(n+j-1)!}
$$

count cyclically symmetric plane partitions.

Consequence

The case $\lambda=0$ is the ASM Theorem: $Z_{n}(1,1,1)=A_{n}$.

Applying $\partial / \partial \lambda$
gives expressions for the first moments

which answers Question 2.

Consequence

The case $\lambda=0$ is the ASM Theorem: $Z_{n}(1,1,1)=A_{n}$.
Applying $\partial /\left.\partial \lambda\right|_{\lambda=0}$ gives expressions for the first moments $\sum_{\text {chessboards }} \#$ squares of colour j,
which answers Question 2.

Answer to Question 2: How common are the colours?

Suppose $n \equiv 0 \bmod 6$ and consider the colour 0 (all other cases are similar).

Probability that random square from random chess-board (chosen uniformly) has colour 0 is

Answer to Question 2: How common are the colours?

Suppose $n \equiv 0 \bmod 6$ and consider the colour 0 (all other cases are similar).

Probability that random square from random chess-board (chosen uniformly) has colour 0 is

$$
\frac{1}{3}+\frac{2}{9(n+1)^{2}} \frac{2 \cdot 5 \cdots(3 n-1)}{1 \cdot 4 \cdots(3 n-2)}+\frac{4}{9(n+1)^{2}}
$$

Answer to Question 2: How common are the colours?

Suppose $n \equiv 0 \bmod 6$ and consider the colour 0 (all other cases are similar).

Probability that random square from random chess-board (chosen uniformly) has colour 0 is

$$
\begin{aligned}
& \frac{1}{3}+\frac{2}{9(n+1)^{2}} \frac{2 \cdot 5 \cdots(3 n-1)}{1 \cdot 4 \cdots(3 n-2)}+\frac{4}{9(n+1)^{2}} \\
= & \frac{1}{3}+\frac{2 \Gamma(1 / 3)}{9} \frac{\Gamma(2 / 3)}{} n^{-5 / 3}+\frac{4}{9} n^{-2}+O\left(n^{-3}\right), \quad n \rightarrow \infty .
\end{aligned}
$$

Question 3: What is Z_{n} in general?

Z_{n} can be split as a sum of two parts.

Each part is a specialized affine Lie algebra character,
 and a tau function of Painlevé VI.
 Moreover, each part satisfies a Toda-type recursion.

Before giving some details,
we mention one more thing.

Question 3: What is Z_{n} in general?

Z_{n} can be split as a sum of two parts.
Each part is a specialized affine Lie algebra character, and a tau function of Painlevé VI.
Moreover, each part satisfies a Toda-type recursion.
Before giving some details,
we mention one more thing.

Question 3: What is Z_{n} in general?

Z_{n} can be split as a sum of two parts.
Each part is a specialized affine Lie algebra character, and a tau function of Painlevé VI.
Moreover, each part satisfies a Toda-type recursion.
Before giving some details, we mention one more thing.

Free energy

Supppose t_{0}, t_{1}, t_{2} are positive. Conjecture:

$$
\lim _{n \rightarrow \infty} \frac{\log Z_{n}\left(t_{0}, t_{1}, t_{2}\right)}{n^{2}}=\frac{1}{3} \log \left(t_{0} t_{1} t_{2}\right)+\log \left(\frac{(\zeta+2)^{\frac{3}{4}}(2 \zeta+1)^{\frac{3}{4}}}{2^{\frac{2}{3}} \zeta^{\frac{1}{12}}(\zeta+1)^{\frac{4}{3}}}\right),
$$

where ζ is determined by

$$
\frac{\left(t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}\right)^{3}}{\left(t_{0} t_{1} t_{2}\right)^{2}}=\frac{2\left(\zeta^{2}+4 \zeta+1\right)^{3}}{\zeta(\zeta+1)^{4}}, \quad \zeta \geq 1
$$

Compare Baxter's formula for periodic boundary conditions:

Free energy

Supppose t_{0}, t_{1}, t_{2} are positive. Conjecture:

$$
\lim _{n \rightarrow \infty} \frac{\log Z_{n}\left(t_{0}, t_{1}, t_{2}\right)}{n^{2}}=\frac{1}{3} \log \left(t_{0} t_{1} t_{2}\right)+\log \left(\frac{(\zeta+2)^{\frac{3}{4}}(2 \zeta+1)^{\frac{3}{4}}}{2^{\frac{2}{3}} \zeta^{\frac{1}{12}}(\zeta+1)^{\frac{4}{3}}}\right),
$$

where ζ is determined by

$$
\frac{\left(t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}\right)^{3}}{\left(t_{0} t_{1} t_{2}\right)^{2}}=\frac{2\left(\zeta^{2}+4 \zeta+1\right)^{3}}{\zeta(\zeta+1)^{4}}, \quad \zeta \geq 1
$$

Compare Baxter's formula for periodic boundary conditions:

$$
\frac{1}{3} \log \left(t_{0} t_{1} t_{2}\right)+\log \left(\frac{2^{\frac{5}{3}} \zeta^{\frac{1}{3}}(\zeta+1)^{\frac{4}{3}}}{(2 \zeta+1)^{\frac{3}{2}}}\right)
$$

Outline

(1) Three-coloured chessboards

(2) Combinatorial results

(3) Symmetric polynomials
(4) Painlevé VI
(5) Future problems

Symmetric polynomials
 Let

$$
S_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right)
$$

$$
=\frac{\prod_{i, j=1}^{n} G\left(x_{i}, y_{j}\right)}{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(y_{j}-y_{i}\right)} \operatorname{det}_{1 \leq i, j \leq n}\left(\frac{F\left(x_{i}, y_{j}, z\right)}{G\left(x_{i}, y_{j}\right)}\right),
$$

$F(x, y, z)=(\zeta+2) x y z-\zeta(x y+y z+x z+x+y+z)+\zeta(2 \zeta+1)$,
$G(x, y)=(\zeta+2) x y(x+y)-\zeta\left(x^{2}+y^{2}\right)-2\left(\zeta^{2}+3 \zeta+1\right) x y$

This is a symmetric (!) polynomial in all $2 n+1$ variables,
depending on parameter
It can be identified with a character of $A_{4 n-3}^{(2)}$ affine Lie algebra. "Cauchy-type": all minors have the same form. Very

Symmetric polynomials
 Let

$$
\begin{array}{r}
S_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right) \\
=\frac{\prod_{i, j=1}^{n} G\left(x_{i}, y_{j}\right)}{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(y_{j}-y_{i}\right)} \operatorname{det}_{1 \leq i, j \leq n}\left(\frac{F\left(x_{i}, y_{j}, z\right)}{G\left(x_{i}, y_{j}\right)}\right), \\
\begin{array}{r}
F(x, y, z)=(\zeta+2) x y z-\zeta(x y+y z+x z+x+y+z)+\zeta(2 \zeta+1), \\
G(x, y)=(\zeta+2) x y(x+y)-\zeta\left(x^{2}+y^{2}\right)-2\left(\zeta^{2}+3 \zeta+1\right) x y \\
+\zeta(2 \zeta+1)(x+y) .
\end{array}
\end{array}
$$

This is a symmetric (!) polynomial in all $2 n+1$ variables,
depending on parameter

Symmetric polynomials
 Let

$$
\begin{gathered}
S_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right) \\
=\frac{\prod_{i, j=1}^{n} G\left(x_{i}, y_{j}\right)}{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(y_{j}-y_{i}\right)} \operatorname{det}_{1 \leq i, j \leq n}\left(\frac{F\left(x_{i}, y_{j}, z\right)}{G\left(x_{i}, y_{j}\right)}\right), \\
\begin{array}{r}
F(x, y, z)=(\zeta+2) x y z-\zeta(x y+y z+x z+x+y+z)+\zeta(2 \zeta+1), \\
G(x, y)=(\zeta+2) x y(x+y)-\zeta\left(x^{2}+y^{2}\right)-2\left(\zeta^{2}+3 \zeta+1\right) x y \\
\\
+\zeta(2 \zeta+1)(x+y)
\end{array}
\end{gathered}
$$

This is a symmetric (!) polynomial in all $2 n+1$ variables, depending on parameter ζ.

Symmetric polynomials Let

$$
\begin{array}{r}
S_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right) \\
=\frac{\prod_{i, j=1}^{n} G\left(x_{i}, y_{j}\right)}{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(y_{j}-y_{i}\right)} \operatorname{det}_{1 \leq i, j \leq n}\left(\frac{F\left(x_{i}, y_{j}, z\right)}{G\left(x_{i}, y_{j}\right)}\right), \\
F(x, y, z)=(\zeta+2) x y z-\zeta(x y+y z+x z+x+y+z)+\zeta(2 \zeta+1), \\
G(x, y)=(\zeta+2) x y(x+y)-\zeta\left(x^{2}+y^{2}\right)-2\left(\zeta^{2}+3 \zeta+1\right) x y \\
+\zeta(2 \zeta+1)(x+y)
\end{array}
$$

This is a symmetric (!) polynomial in all $2 n+1$ variables, depending on parameter ζ.
It can be identified with a character of $A_{4 n-3}^{(2)}$ affine Lie algebra.

Symmetric polynomials Let

$$
\begin{gathered}
S_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right) \\
=\frac{\prod_{i, j=1}^{n} G\left(x_{i}, y_{j}\right)}{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)\left(y_{j}-y_{i}\right)} \operatorname{det}_{1 \leq i, j \leq n}\left(\frac{F\left(x_{i}, y_{j}, z\right)}{G\left(x_{i}, y_{j}\right)}\right), \\
\begin{array}{r}
F(x, y, z)=(\zeta+2) x y z-\zeta(x y+y z+x z+x+y+z)+\zeta(2 \zeta+1), \\
G(x, y)=(\zeta+2) x y(x+y)-\zeta\left(x^{2}+y^{2}\right)-2\left(\zeta^{2}+3 \zeta+1\right) x y \\
+\zeta(2 \zeta+1)(x+y) .
\end{array}
\end{gathered}
$$

This is a symmetric (!) polynomial in all $2 n+1$ variables, depending on parameter ζ.
It can be identified with a character of $A_{4 n-3}^{(2)}$ affine Lie algebra. "Cauchy-type": all minors have the same form. Very useful!

Relation to three-colour model

Let
$p_{n}(\zeta)=$ elementary factor

$$
\times S_{n}(\underbrace{2 \zeta+1, \ldots, 2 \zeta+1}_{n+1}, \underbrace{\frac{\zeta}{\zeta+2}, \ldots, \frac{\zeta}{\zeta+2}}_{n}) .
$$

This is a polynomial in ζ of degree $n(n+1) / 2$.
Result: $Z_{n}\left(t_{0}, t_{1}, t_{2}\right)$ is a linear combination (with elementary
coefficients) of $p_{n-1}(\zeta)$ and $p_{n-1}(1 / \zeta)$, where

Relation to three-colour model

Let
$p_{n}(\zeta)=$ elementary factor

$$
\times S_{n}(\underbrace{2 \zeta+1, \ldots, 2 \zeta+1}_{n+1}, \underbrace{\frac{\zeta}{\zeta+2}, \ldots, \frac{\zeta}{\zeta+2}}_{n}) .
$$

This is a polynomial in ζ of degree $n(n+1) / 2$.
Result: $Z_{n}\left(t_{0}, t_{1}, t_{2}\right)$ is a linear combination (with elementary coefficients) of $p_{n-1}(\zeta)$ and $p_{n-1}(1 / \zeta)$, where

$$
\frac{\left(t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}\right)^{3}}{\left(t_{0} t_{1} t_{2}\right)^{2}}=\frac{2\left(\zeta^{2}+4 \zeta+1\right)^{3}}{\zeta(\zeta+1)^{4}} .
$$

More precisely . . .
 Suppose $n \equiv 0 \bmod 6$ and

$$
\begin{aligned}
& \frac{\left(t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}\right)^{3}}{\left(t_{0} t_{1} t_{2}\right)^{2}}=\frac{2\left(\zeta^{2}+4 \zeta+1\right)^{3}}{\zeta(\zeta+1)^{4}} \\
& Z_{n}\left(t_{0}, t_{1}, t_{2}\right)=\left(t_{0} t_{1} t_{2}\right)^{\frac{n(n+2)}{3}}\left(\frac{2}{\zeta(\zeta+1)^{4}}\right)^{\frac{n^{2}}{12}} \\
& \times\left(t_{0} \frac{p_{n-1}(\zeta)-\zeta^{\frac{n^{2}}{2}+1} p_{n-1}(1 / \zeta)}{1-\zeta}\right. \\
&\left.-\frac{t_{0} t_{1} t_{2}\left(\zeta^{2}+4 \zeta+1\right)}{t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}} \frac{p_{n-1}(\zeta)-\zeta^{\frac{n^{2}}{2}} p_{n-1}(1 / \zeta)}{1-\zeta^{2}}\right)
\end{aligned}
$$

More precisely . . .
 Suppose $n \equiv 0 \bmod 6$ and

$$
\begin{aligned}
& \frac{\left(t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}\right)^{3}}{\left(t_{0} t_{1} t_{2}\right)^{2}}=\frac{2\left(\zeta^{2}+4 \zeta+1\right)^{3}}{\zeta(\zeta+1)^{4}} \\
Z_{n}\left(t_{0}, t_{1}, t_{2}\right)= & \left(t_{0} t_{1} t_{2}\right)^{\frac{n(n+2)}{3}}\left(\frac{2}{\zeta(\zeta+1)^{4}}\right)^{\frac{n^{2}}{12}} \\
& \times\left(t_{0} \frac{p_{n-1}(\zeta)-\zeta^{\frac{n^{2}}{2}+1} p_{n-1}(1 / \zeta)}{1-\zeta}\right. \\
& \left.\quad-\frac{t_{0} t_{1} t_{2}\left(\zeta^{2}+4 \zeta+1\right)}{t_{0} t_{1}+t_{0} t_{2}+t_{1} t_{2}} \frac{p_{n-1}(\zeta)-\zeta^{\frac{n^{2}}{2}} p_{n-1}(1 / \zeta)}{1-\zeta^{2}}\right)
\end{aligned}
$$

Note that only asymmetry comes from t_{0}.

$$
\begin{aligned}
& \text { Table of } p_{n} \\
& n \quad p_{n}(\zeta) \\
& \text {-1 } 1 \\
& \begin{array}{ll}
0 & 1 \\
1 & 3 \zeta+1
\end{array} \\
& 25 \zeta^{3}+15 \zeta^{2}+7 \zeta+1 \\
& 3 \quad \frac{1}{2}\left(35 \zeta^{6}+231 \zeta^{5}+504 \zeta^{4}+398 \zeta^{3}+147 \zeta^{2}+27 \zeta+2\right) \\
& 4 \quad \frac{1}{2}\left(63 \zeta^{10}+798 \zeta^{9}+4122 \zeta^{8}+11052 \zeta^{7}+16310 \zeta^{6}\right. \\
& \left.+13464 \zeta^{5}+6636 \zeta^{4}+2036 \zeta^{3}+387 \zeta^{2}+42 \zeta+2\right)
\end{aligned}
$$

> Conjecture: The polynomials p_{n} have positive coefficients. Conjecture: The polynomials p_{n} are unimodal.

Table of p_{n}

Conjecture: The polynomials p_{n} have positive coefficients. Conjecture: The polynomials p_{n} are unimodal.

Plot of the 105 complex zeroes of p_{14}.

Outline

(1) Three-coloured chessboards

(2) Combinatorial results

(3) Symmetric polynomials

4 Painlevé VI
(5) Future problems

Painlevé VI

PVI is the nonlinear ODE
(Painlevé, Fuchs, Gambier 1900-1910)

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}= & \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2} \\
& -\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t} \\
& +\frac{y(y-1)(y-t)}{2 t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right) .
\end{aligned}
$$

Most general second order ODE such that all movable singularities are poles.

Special functions of the 21st Century?

Painlevé VI

PVI is the nonlinear ODE (Painlevé, Fuchs, Gambier 1900-1910)

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}= & \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(\frac{d y}{d t}\right)^{2} \\
& -\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) \frac{d y}{d t} \\
& +\frac{y(y-1)(y-t)}{2 t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right) .
\end{aligned}
$$

Most general second order ODE such that all movable singularities are poles.

Special functions of the 21st Century?

Bäcklund transformations

If $y=y(t)$ solves PVI, then so does t / y, with parameters $\alpha \leftrightarrow-\beta, \gamma \leftrightarrow \frac{1}{2}-\delta$.

Such Bäcklund transformations
$y \mapsto F\left(t, y, y^{\prime}\right)$ generate group (extended affine Weyl group) containing \mathbb{Z}^{\wedge}

Given a "seed" solution $y=y_{0000}$, acting with \mathbb{Z}^{4} gives new solutions $y_{k_{1} k_{2} k_{3} k_{4} \text {. } \text {. } \text {. }{ }^{2} \text {. }}$

Bäcklund transformations

If $y=y(t)$ solves PVI, then so does t / y, with parameters $\alpha \leftrightarrow-\beta, \gamma \leftrightarrow \frac{1}{2}-\delta$.

Such Bäcklund transformations
$y \mapsto F\left(t, y, y^{\prime}\right)$ generate group (extended affine Weyl group) containing \mathbb{Z}^{4}.

Given a "seed" solution $y=y_{0000}$,
acting with \mathbb{Z}^{4} gives new solutions $y_{k_{1} k_{2} k_{3} k_{4}}$.

Bäcklund transformations

If $y=y(t)$ solves PVI, then so does t / y, with parameters $\alpha \leftrightarrow-\beta, \gamma \leftrightarrow \frac{1}{2}-\delta$.

Such Bäcklund transformations
$y \mapsto F\left(t, y, y^{\prime}\right)$ generate group (extended affine Weyl group) containing \mathbb{Z}^{4}.

Given a "seed" solution $y=y_{0000}$, acting with \mathbb{Z}^{4} gives new solutions $y_{k_{1} k_{2} k_{3} k_{4}}$.

Picard's seed solution

When $\alpha=\beta=\gamma=0, \delta=1 / 2$, PVI can be solved in terms of elliptic functions (Picard, 1889).

Picard's solutions include the algebraic solution

which is parametrized by

If we choose $y_{0000}=y$, what is $y_{k_{1} k_{2} k_{3} k_{4}}$?

Picard's seed solution

When $\alpha=\beta=\gamma=0, \delta=1 / 2$, PVI can be solved in terms of elliptic functions (Picard, 1889).

Picard's solutions include the algebraic solution

$$
y^{4}-4 t y^{3}+6 t y^{2}-4 t y+t^{2}=0
$$

which is parametrized by

$$
y=\frac{\zeta(\zeta+2)}{2 \zeta+1}, \quad t=\frac{\zeta(\zeta+2)^{3}}{(2 \zeta+1)^{3}}
$$

If we choose $y_{0000}=y$, what is $y_{k_{1} k_{2} k_{3} k_{4}}$?

Picard's seed solution

When $\alpha=\beta=\gamma=0, \delta=1 / 2$, PVI can be solved in terms of elliptic functions (Picard, 1889).

Picard's solutions include the algebraic solution

$$
y^{4}-4 t y^{3}+6 t y^{2}-4 t y+t^{2}=0
$$

which is parametrized by

$$
y=\frac{\zeta(\zeta+2)}{2 \zeta+1}, \quad t=\frac{\zeta(\zeta+2)^{3}}{(2 \zeta+1)^{3}}
$$

If we choose $y_{0000}=y$, what is $y_{k_{1} k_{2} k_{3} k_{4}}$?

Example

$$
y_{1,2,-3,1}=\frac{\zeta(\zeta+2)\left(\zeta^{3}+3 \zeta^{2}+3 \zeta+5\right)\left(5 \zeta^{3}+15 \zeta^{2}+7 \zeta+1\right)}{(2 \zeta+1)\left(\zeta^{3}+7 \zeta^{2}+15 \zeta+5\right)\left(5 \zeta^{3}+3 \zeta^{2}+3 \zeta+1\right)}
$$

The non-trivial factors are called tau functions.

Note that

Example

$$
y_{1,2,-3,1}=\frac{\zeta(\zeta+2)\left(\zeta^{3}+3 \zeta^{2}+3 \zeta+5\right)\left(5 \zeta^{3}+15 \zeta^{2}+7 \zeta+1\right)}{(2 \zeta+1)\left(\zeta^{3}+7 \zeta^{2}+15 \zeta+5\right)\left(5 \zeta^{3}+3 \zeta^{2}+3 \zeta+1\right)}
$$

The non-trivial factors are called tau functions.
Note that

$$
5 \zeta^{3}+15 \zeta^{2}+7 \zeta+1=p_{2}(\zeta)
$$

Result: There is a 4-dim cone in \mathbb{Z}^{4} where tau functions are given by specializations of S_{n}.

Example

$$
y_{1,2,-3,1}=\frac{\zeta(\zeta+2)\left(\zeta^{3}+3 \zeta^{2}+3 \zeta+5\right)\left(5 \zeta^{3}+15 \zeta^{2}+7 \zeta+1\right)}{(2 \zeta+1)\left(\zeta^{3}+7 \zeta^{2}+15 \zeta+5\right)\left(5 \zeta^{3}+3 \zeta^{2}+3 \zeta+1\right)}
$$

The non-trivial factors are called tau functions.
Note that

$$
5 \zeta^{3}+15 \zeta^{2}+7 \zeta+1=p_{2}(\zeta)
$$

Result: There is a 4-dim cone in \mathbb{Z}^{4} where tau functions are given by specializations of S_{n}.

Tau functions in a cone
 Let

$$
S_{n}^{\left(k_{0}, k_{1}, k_{2}, k_{3}\right)}(\zeta)=S_{n}(\underbrace{2 \zeta+1}_{k_{0}}, \underbrace{\frac{\zeta}{\zeta+2}}_{k_{1}}, \underbrace{\frac{\zeta(2 \zeta+1)}{\zeta+2}}_{k_{2}}, \underbrace{1}_{k_{3}}) .
$$

Then, if k_{i} are non-negative integers with

$k_{0}+k_{1}+k_{2}+k_{3}=2 n-1$,
$y k_{0}+k_{2}-n+1, k_{1}+1, n-k_{0}-k_{1}-1, n-k_{1}-k_{2}-1$
$=$ elementary factor

where as before

$$
y=y(t)
$$

Tau functions in a cone

Let

$$
S_{n}^{\left(k_{0}, k_{1}, k_{2}, k_{3}\right)}(\zeta)=S_{n}(\underbrace{2 \zeta+1}_{k_{0}}, \underbrace{\frac{\zeta}{\zeta+2}}_{k_{1}}, \underbrace{\frac{\zeta(2 \zeta+1)}{\zeta+2}}_{k_{2}}, \underbrace{1}_{k_{3}}) .
$$

Then, if k_{i} are non-negative integers with $k_{0}+k_{1}+k_{2}+k_{3}=2 n-1$,
$y_{k_{0}+k_{2}-n+1, k_{1}+1, n-k_{0}-k_{1}-1, n-k_{1}-k_{2}-1}$
$=$ elementary factor $\cdot \frac{S_{n}^{\left(k_{0}+1, k_{1}, k_{2}, k_{3}+1\right)}(\zeta) S_{n}^{\left(k_{0}, k_{1}+1, k_{2}+1, k_{3}\right)}(\zeta)}{S_{n}^{\left(k_{0}+1, k_{1}, k_{2}+1, k_{3}\right)}(\zeta) S_{n}^{\left(k_{0}, k_{1}+1, k_{2}, k_{3}+1\right)}(\zeta)}$,
where as before

$$
y=y(t), \quad t=\frac{\zeta(\zeta+2)^{3}}{(2 \zeta+1)^{3}}
$$

Consequence: Recursions

Tau functions satisfy bilinear recursions.
For instance, it follows that

$$
\begin{aligned}
p_{n+1}(\zeta) p_{n-1}(\zeta)=A_{n}(\zeta) p_{n}(\zeta)^{2} & +B_{n}(\zeta) p_{n}(\zeta) p_{n}^{\prime}(\zeta) \\
& +C_{n}(\zeta) p_{n}^{\prime}(\zeta)^{2}+D_{n}(\zeta) p_{n}(\zeta) p_{n}^{\prime \prime}(\zeta)
\end{aligned}
$$

with explicit coefficients.
Conjectured by Bazhanov and Mangazeev 2010.
Gives fast way of computing Z_{n}.
Possibly, it can be used to prove our conjectured expression for the free energy.

Consequence: Recursions

Tau functions satisfy bilinear recursions.
For instance, it follows that

$$
\begin{aligned}
p_{n+1}(\zeta) p_{n-1}(\zeta)=A_{n}(\zeta) p_{n}(\zeta)^{2} & +B_{n}(\zeta) p_{n}(\zeta) p_{n}^{\prime}(\zeta) \\
& +C_{n}(\zeta) p_{n}^{\prime}(\zeta)^{2}+D_{n}(\zeta) p_{n}(\zeta) p_{n}^{\prime \prime}(\zeta)
\end{aligned}
$$

with explicit coefficients.
Conjectured by Bazhanov and Mangazeev 2010.
Gives fast way of computing Z_{n}.
Possibly, it can be used to prove our conjectured expression for the free energy.

Consequence: Recursions

Tau functions satisfy bilinear recursions.
For instance, it follows that

$$
\begin{aligned}
p_{n+1}(\zeta) p_{n-1}(\zeta)=A_{n}(\zeta) p_{n}(\zeta)^{2} & +B_{n}(\zeta) p_{n}(\zeta) p_{n}^{\prime}(\zeta) \\
& +C_{n}(\zeta) p_{n}^{\prime}(\zeta)^{2}+D_{n}(\zeta) p_{n}(\zeta) p_{n}^{\prime \prime}(\zeta)
\end{aligned}
$$

with explicit coefficients.
Conjectured by Bazhanov and Mangazeev 2010.
Gives fast way of computing Z_{n}.
Possibly, it can be used to prove our conjectured expression for the free energy.

Outline

(1) Three-coloured chessboards

(2) Combinatorial results

3 Symmetric polynomials

(4) Painlevé VI
(5) Future problems

Questions

- Symmetry classes of three-coloured chessboards. For the six-vertex model, various classical Lie algebra characters appear (Kuperberg, Okada,...). For the three-colour model, we expect various affine Lie algebras.
- Macroscopic boundary effects. Arctic curves.
- New phenomenon: Some tau functions for Painlevé VI are specialized affine Lie algebra characters, given by Cauchy-type determinant formulas. Does this happen for other solutions
to Painlevé equations?

Questions

- Symmetry classes of three-coloured chessboards. For the six-vertex model, various classical Lie algebra characters appear (Kuperberg, Okada,...). For the three-colour model, we expect various affine Lie algebras.
- Macroscopic boundary effects. Arctic curves.

Questions

- Symmetry classes of three-coloured chessboards. For the six-vertex model, various classical Lie algebra characters appear (Kuperberg, Okada,...). For the three-colour model, we expect various affine Lie algebras.
- Macroscopic boundary effects. Arctic curves.
- New phenomenon: Some tau functions for Painlevé VI are specialized affine Lie algebra characters, given by Cauchy-type determinant formulas.
Does this happen for other solutions to Painlevé equations?
- Specializations of the symmetric polynomials S_{n} recently appeared (implicitly) in three contexts:
- Partition function for three-colour model with DWBC (R. 2011).
- Ground state eigenvalue for the Q-operator of eight-vertex model (Bazhanov and Mangazeev 2005, 2006).
- Eigenvectors of XYZ Hamiltonian (Razumov and Stroganov 2010, Bazhanov and Mangazeev 2010, Zinn-Justin 2012).

Why do the same functions appear in three contexts?
Although the physical models are closely related,
this is far from clear.

- Specializations of the symmetric polynomials S_{n} recently appeared (implicitly) in three contexts:
- Partition function for three-colour model with DWBC (R. 2011).
- Ground state eigenvalue for the Q-operator of eight-vertex model (Bazhanov and Mangazeev 2005, 2006).
- Eigenvectors of XYZ Hamiltonian (Razumov and Stroganov 2010, Bazhanov and Mangazeev 2010, Zinn-Justin 2012).
Why do the same functions appear in three contexts?
Although the physical models are closely related, this is far from clear.

