Promotion and Rowmotion

Jessica Striker and Nathan Williams

University of Minnesota

July 31, 2012

Rowmotion

1 *F* (Brouwer and Schrijver)

- F (Brouwer and Schrijver)
- f f (Deza and Fukuda, Fon-Der-Flaass and Cameron)

- **1** *F* (Brouwer and Schrijver)
- \mathbf{Z} f (Deza and Fukuda, Fon-Der-Flaass and Cameron)
- ψ (Stanley)

- **1** *F* (Brouwer and Schrijver)
- $\mathbf{2}$ f (Deza and Fukuda, Fon-Der-Flaass and Cameron)
- Ψ (Stanley)
- \mathfrak{X} (Panyushev)

- F (Brouwer and Schrijver)
- \mathbf{Z} f (Deza and Fukuda, Fon-Der-Flaass and Cameron)
- Ψ (Stanley)
- \mathfrak{X} (Panyushev)
- 5 Panyushev action (Bessis and Reiner)

- **1** *F* (Brouwer and Schrijver)
- $\mathbf{2}$ f (Deza and Fukuda, Fon-Der-Flaass and Cameron)
- Ψ (Stanley)
- \mathfrak{X} (Panyushev)
- 5 Panyushev action (Bessis and Reiner)
- 6 Panyushev complement (Armstrong, Stump, and Thomas)

- **1** *F* (Brouwer and Schrijver)
- $\mathbf{2}$ f (Deza and Fukuda, Fon-Der-Flaass and Cameron)
- Ψ (Stanley)
- \mathfrak{X} (Panyushev)
- 5 Panyushev action (Bessis and Reiner)
- 6 Panyushev complement (Armstrong, Stump, and Thomas)
- Fon-Der-Flaass action (Rush and Shi)

"What's in a name? That which we call **rowmotion**By any other name would smell as sweet."

The distributive lattice of order ideals J(P)

The set J(P)

Computing Rowmotion

An order ideal I

Computing Rowmotion

Find the **minimal** elements of *P* not in *I*

Computing Rowmotion

And use them to generate a new order ideal **Row(I)**

Rowmotion Computed

The orbits of J(P) under rowmotion.

Philosophy

Philosophy

Combinatorial objects with "well-behaved" cyclic actions should have models where the cyclic action becomes rotation.

The Toggle Group

Toggles t_p , with $p \in P$.

Toggles t_p add p when possible.

Toggles t_p add p when possible.

Toggles t_p remove p when possible.

Toggles t_p remove p when possible.

Toggles

Toggles t_p do nothing otherwise.

Toggles

Toggles t_p do nothing otherwise.

The Toggle Group

Definition (P. Cameron and D. Fon-der-Flaass)

The **toggle group** $\mathcal{T}(\mathcal{P})$ of a poset \mathcal{P} is the subgroup of the permutation group $\mathfrak{S}_{J(P)}$ generated by $\{t_p\}_{p\in\mathcal{P}}$.

More Philosophy

Philosophy

If we have combinatorial objects encoded as order ideals of some poset, we can model known actions using elements in the toggle group.

Fix a **linear extension** of *P*

Fix **this** linear extension of *P*

Strategy

Strategy

Find a "good" conjugate to rowmotion in the toggle group.

Promotion

Question

How many linear extensions are there of this shape?

Catalan Many!

Promotion is $\prod_i \rho_i$, where ρ_i swaps i and i+1 when possible.

1	2	3	4	7
5	6	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_1 swaps 1 and 2 when possible.

1	2	3	4	7
5	6	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_2 swaps 2 and 3 when possible.

1	2	3	4	7
5	6	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_3 swaps 3 and 4 when possible.

1	2	3	4	7
5	6	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_4 swaps 4 and 5 when possible.

1	2	3	4	7
5	6	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_4 swaps 4 and 5 **when possible**.

1	2	3	5	7
4	6	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_5 swaps 5 and 6 when possible.

1	2	3	5	7
4	6	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_5 swaps 5 and 6 when possible.

1	2	3	6	7
4	5	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_6 swaps 6 and 7 when possible.

1	2	3	6	7
4	5	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_7 swaps 7 and 8 when possible.

1	2	3	6	7
4	5	8	9	10

Promotion is $\prod_i \rho_i$, where ρ_7 swaps 7 and 8 when possible.

1	2	3	6	8
4	5	7	9	10

Promotion is $\prod_i \rho_i$, where ρ_8 swaps 8 and 9 when possible.

1	2	3	6	8
4	5	7	9	10

Promotion is $\prod_i \rho_i$, where ρ_9 swaps 9 and 10 when possible.

1	2	3	6	9
4	5	7	8	10

Promotion is $\prod_i \rho_i$.

1	2	3	6	9
4	5	7	8	10

Promotion Computed

The orbits of SYT of shape (5,5) under promotion.

2-Rowed Ferrers Diagrams

SYT define **paths** which trace out **order ideals**

1	2	3	4	7
5	6	8	9	10

1	2	3	4	7
5	6	8	9	10

1	2	3	4	7
5	6	8	9	10

1	2	3	4	7
5	6	8	9	10

1	2	3	4	7
5	6	8	9	10

1	2	3	5	7
4	6	8	9	10

	1	2	3	5	7
Ī	4	6	8	9	10

1	2	3	6	7
4	5	8	9	10

1	2	3	6	7
4	5	8	9	10

1		2	3	6	7
4	Ļ	5	8	9	10

	1	2	3	6	8
Ī	4	5	7	9	10

1	2	3	6	8
4	5	7	9	10

1	2	3	6	9
4	5	7	8	10

Some of our favorite objects are order ideals

Or: Some results

Philosophy

Philosophy

- Combinatorial objects with "well-behaved" cyclic actions should have models where the cyclic action becomes rotation.
- If we have combinatorial objects encoded as order ideals of some poset, we can model known actions using elements in the toggle group.

Plane Partitions (of height 2)

Plane Partitions (of height 2)

Plane Partitions (of height 2)

Some of our favorite order ideals are objects

Reverse Philosophy

Philosophy

"Well-behaved" elements in the toggle group should imply the existence of combinatorial models where the action of that element becomes rotation.

Types of Catalan Objects

Nonnesting	Noncrossing	Triangulations
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

An Element of the Toggle Group

Orbits under Pro, then Pro with no lowest row.

Triangulations!

Some of our favorite order ideals are objects: ASMs

ASMs are order ideals in this poset.

Nonnesting ASMs under Rowmotion

FPL: Gyration Rotates the Link Pattern

FPL: Gyration Rotates the Link Pattern

NC ASM (AKA FPL)!

...Acting on ASMs

Question

Question

Is there an undiscovered model for ASMs?

	Nonnesting	Noncrossing	Triangulations
Catalan		5 6 7 8 9	
ASM	A		?

Data

	ASMs under ψ		TSSCPPs under <i>Row</i>	
	Orbit Size	Number of Orbits	Orbit Size	Number of Orbits
n=1	1	1	1	1
n=2	2	1	2	1
n=3	7	1	7	1
	10	3	10	3
n=4	5	2	5	2
	2	1	2	1
			39	1
n=5			26	1
	13	33	13	28
n = 6			112	1
			96	2
			80	2
			64	5
			48	23
			32	30
			24	2
	16	456	16	≥27 % → ∢ ≣ → ∢ ≣ →

Thank You!