Arithmetic matroids and Tutte polynomials (joint work with Luca Moci)

Michele D'Adderio

Georg-August Universität Göttingen

Nagoya, August 2nd 2012

FPSAC 2012

Universität Göttingen

Michele D'Adderio

Matroid				
Definitio	on of Matroid			
We u A <i>ma</i>	se the word <i>list</i> for $troid \ \mathfrak{M} = \mathfrak{M}_X = 0$	<i>multiset</i> (repet (X, rk) is a list (itions allowed). of <i>vectors X</i> with	n a <i>rank</i>

- function $rk: \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:
 - If $A \subseteq X$, then $rk(A) \leq |A|$;
 - **2** if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;
 - **3** if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

- We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|.
- An independent sublist of maximal rank rk(X) is called a *basis*
- rk(X) is called the *rank* of the matroid

The independent sublists determine the matroid structure:

rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

- **1** if $A \subseteq X$, then $rk(A) \leq |A|$;
- **2** if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;
- 3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*

rk(X) is called the *rank* of the matroid

The independent sublists determine the matroid structure:

rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

If $A \subseteq X$, then $rk(A) \leq |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

I if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*

rk(X) is called the *rank* of the matroid

The independent sublists determine the matroid structure:

rk(A) = |maximal| independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*

rk(X) is called the *rank* of the matroid

The independent sublists determine the matroid structure:

rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \leq |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

If $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent $\Leftrightarrow rk(A) = |A|$.

An independent sublist of maximal rank rk(X) is called a *basis*.

rk(X) is called the *rank* of the matroid.

The independent sublists determine the matroid structure:

rk(A) = |maximal| independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is independent \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*.

rk(X) is called the *rank* of the matroid.

The independent sublists determine the matroid structure:

rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid. The independent sublists determine the matroid structure: rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|.

An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid. The independent sublists determine the matroid structure:

rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if
$$A \subseteq X$$
, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid. The independent sublists determine the matroid structure: rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid.

The independent sublists determine the matroid structure: rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if $A \subseteq X$, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid.

The independent sublists determine the matroid structure:

rk(A) = |maximal independent sublist of A|.

We use the word *list* for *multiset* (repetitions allowed).

A matroid $\mathfrak{M} = \mathfrak{M}_X = (X, rk)$ is a list of vectors X with a rank function $rk : \mathbb{P}(X) \to \mathbb{N} \cup \{0\}$ such that:

1 if
$$A \subseteq X$$
, then $rk(A) \le |A|$;

2 if $A, B \subseteq X$ and $A \subseteq B$, then $rk(A) \leq rk(B)$;

3 if $A, B \subseteq X$, then $rk(A \cup B) + rk(A \cap B) \leq rk(A) + rk(B)$.

In particular $rk(\emptyset) = 0$.

We say that a sublist A is *independent* \Leftrightarrow rk(A) = |A|. An independent sublist of maximal rank rk(X) is called a *basis*. rk(X) is called the *rank* of the matroid. The independent sublists determine the matroid structure:

rk(A) = |maximal independent sublist of A|.

Matroid			
Examp	les		

- X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G; rk(A) = |maximal subforest of A|;
 - independent = cycle-free (forests).

Matroid			
Example	es		

 X is a finite list of vectors of a vector space (e.g. ℝⁿ); *rk*(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G; *rk*(A) = |maximal subforest of A|; independent = cycle-free (forests).

Matroid			
Example	es		

 X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G; rk(A) = |maximal subforest of A|; independent = cycle-free (forests).

Michele D'Adderio

Matroid			
Examp	oles		

- X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
- X a finite list of edges of a graph G;
 rk(A) = |maximal subforest of A|;
 independent = cycle-free (forests).

Matroid			
Examp	oles		

- X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G:
- X a finite list of edges of a graph G; rk(A) = |maximal subforest of A|; independent = cycle-free (forests).

Matroid			
Examp	les		

- X is a finite list of vectors of a vector space (e.g. ℝⁿ); rk(A) = dim(span(A)); independent = linearly independent;
 X a finite list of edges of a graph G;
- rk(A) = |maximal subforest of A|; independent = cycle-free (forests).

Matroid			
Exampl	es		

- X is a finite list of vectors of a vector space (e.g. ℝⁿ);
 rk(A) = dim(span(A));
 independent = linearly independent;
- X a finite list of edges of a graph G;
 rk(A) = |maximal subforest of A|;
 independent = cycle-free (forests).

Matroid			
Dual N	Matroid		

The *dual* of the matroid $\mathfrak{M} = (X, rk)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M} .

We will denote it by $\mathfrak{M}^*.$ The rank function of \mathfrak{M}^* is given by

$$rk^*(A) := |A| - rk(X) + rk(X \setminus A).$$

Matroid			
Dual N	Vlatroid		

The *dual* of the matroid $\mathfrak{M} = (X, rk)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M} .

We will denote it by \mathfrak{M}^* . The rank function of \mathfrak{M}^* is given by

$$rk^*(A) := |A| - rk(X) + rk(X \setminus A).$$

Matroid			
Dual N	Matroid		

The *dual* of the matroid $\mathfrak{M} = (X, rk)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M} . We will denote it by \mathfrak{M}^* . The rank function of \mathfrak{M}^* is given by

 $rk^*(A) := |A| - rk(X) + rk(X \setminus A).$

Matroid			
Dual N	Matroid		

The *dual* of the matroid $\mathfrak{M} = (X, rk)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M} .

We will denote it by $\mathfrak{M}^*.$ The rank function of \mathfrak{M}^* is given by

$$rk^*(A) := |A| - rk(X) + rk(X \setminus A).$$

Matroid			
Dual N	Matroid		

The *dual* of the matroid $\mathfrak{M} = (X, rk)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M} .

We will denote it by \mathfrak{M}^* . The rank function of \mathfrak{M}^* is given by

$$rk^*(A) := |A| - rk(X) + rk(X \setminus A).$$

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X) - rk(A)} (y-1)^{|A| - rk(A)}.$$

From the definition it is clear that $T_X(1,1)$ is equal to the number of bases of the matroid.

The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of *internal* and *external activity*.

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X)-rk(A)} (y-1)^{|A|-rk(A)}.$$

From the definition it is clear that $T_X(1,1)$ is equal to the number of bases of the matroid.

The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of *internal* and *external activity*.

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X) - rk(A)} (y-1)^{|A| - rk(A)}.$$

From the definition it is clear that $T_X(1,1)$ is equal to the number of bases of the matroid.

The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of *internal* and *external activity*.

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X) - rk(A)} (y-1)^{|A| - rk(A)}.$$

From the definition it is clear that $T_X(1,1)$ is equal to the number of bases of the matroid.

The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of *internal* and *external activity*.

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X) - rk(A)} (y-1)^{|A| - rk(A)}.$$

From the definition it is clear that $T_X(1,1)$ is equal to the number of bases of the matroid.

The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of *internal* and *external activity*.

$$T_X(x,y) := \sum_{A \subseteq X} (x-1)^{rk(X) - rk(A)} (y-1)^{|A| - rk(A)}.$$

From the definition it is clear that $T_X(1,1)$ is equal to the number of bases of the matroid.

The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of *internal* and *external activity*.

Matroid			
Crano	's Theorem		

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \setminus B$ is *externally active* on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is *internally active* on B if v is externally active

on the complement $B^c := X \setminus B$ in the dual matroid.

The number e(B) of externally active vectors is called the *external* activity of *B*, while the number $i(B) = e^*(B^c)$ of internally active vectors is called the *internal activity* of *B*.

Theorem (Crapo)

$$T_X(x,y) = \sum_{\substack{B \subseteq X \\ B \text{ basis}}} x^{e^*(B^c)} y^{e(B)}.$$

Michele D'Adderio

Universität Göttingen

Matroid			
Crapo	's I heorem		

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \setminus B$ is *externally active* on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is *internally active* on B if v is externally active on the complement $B^c := X \setminus B$ in the dual matroid. The number e(B) of externally active vectors is called the *external activity* of B, while the number $i(B) = e^*(B^c)$ of internally active vectors is called the *internal activity* of B

Theorem (Crapo)

$$T_X(x,y) = \sum_{\substack{B \subseteq X \\ B \text{ basis}}} x^{e^*(B^c)} y^{e(B)}.$$

Michele D'Adderio

Universität Göttingen

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \setminus B$ is *externally active* on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is *internally active* on B if v is externally active on the complement $B^c := X \setminus B$ in the dual matroid. The number e(B) of externally active vectors is called the *external activity* of B, while the number $i(B) = e^*(B^c)$ of internally active vectors is called the *internal activity* of B.

Theorem (Crapo)

$$T_X(x,y) = \sum_{\substack{B \subseteq X \\ B \text{ basis}}} x^{e^*(B^c)} y^{e(B)}.$$

Michele D'Adderio

Universität Göttingen

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \setminus B$ is *externally active* on B if v is dependent on the list of elements of B following it.

We say that $v \in B$ is *internally active* on B if v is externally active on the complement $B^c := X \setminus B$ in the dual matroid.

The number e(B) of externally active vectors is called the *external* activity of *B*, while the number $i(B) = e^*(B^c)$ of internally active vectors is called the *internal activity* of *B*.

Theorem (Crapo)

$$T_X(x,y) = \sum_{\substack{B \subseteq X \\ B \text{ basis}}} x^{e^*(B^c)} y^{e(B)}.$$

Michele D'Adderio

Universität Göttingen

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \setminus B$ is *externally active* on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is *internally active* on B if v is externally active on the complement $B^c := X \setminus B$ in the dual matroid. The number e(B) of externally active vectors is called the *external activity* of B, while the number $i(B) = e^*(B^c)$ of internally active

vectors is called the *internal activity* of B.

Theorem (Crapo)

$$T_X(x,y) = \sum_{\substack{B \subseteq X \\ B \text{ basis}}} x^{e^*(B^c)} y^{e(B)}.$$

Michele D'Adderio

Universität Göttingen
We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \setminus B$ is *externally active* on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is *internally active* on B if v is externally active on the complement $B^c := X \setminus B$ in the dual matroid. The number e(B) of externally active vectors is called the *external activity* of B, while the number $i(B) = e^*(B^c)$ of internally active vectors is called the *internal activity* of B.

Theorem (Crapo)

$$T_X(x,y) = \sum_{\substack{B \subseteq X \\ B \text{ basis}}} x^{e^*(B^c)} y^{e(B)}.$$

Michele D'Adderio

Universität Göttingen

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \setminus B$ is *externally active* on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is *internally active* on B if v is externally active on the complement $B^c := X \setminus B$ in the dual matroid. The number e(B) of externally active vectors is called the *external activity* of B, while the number $i(B) = e^*(B^c)$ of internally active vectors is called the *internal activity* of B.

Theorem (Crapo)

$$T_X(x,y) = \sum_{\substack{B \subseteq X \\ B \text{ basis}}} x^{e^*(B^c)} y^{e(B)}.$$

Michele D'Adderio

Universität Göttingen

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \setminus B$ is *externally active* on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is *internally active* on B if v is externally active on the complement $B^c := X \setminus B$ in the dual matroid. The number e(B) of externally active vectors is called the *external activity* of B, while the number $i(B) = e^*(B^c)$ of internally active vectors is called the *internal activity* of B.

Theorem (Crapo)

$$T_X(x,y) = \sum_{\substack{B \subseteq X \\ B \text{ basis}}} x^{e^*(B^c)} y^{e(B)}.$$

Universität Göttingen

Michele D'Adderio

An arithmetic matroid is a pair (\mathfrak{M}_X, m) , where \mathfrak{M}_X is a matroid on a list of vectors X, and m is a multiplicity function, i.e. $m : \mathbb{P}(X) \to \mathbb{N} \setminus \{0\}$ has the following properties:

- if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup \{v\})$ divides m(A);
- if $A \subseteq X$ and $v \in X$ is independent on A, then m(A) divides $m(A \cup \{v\})$;
- if $A \subseteq B \subseteq X$ and B is a disjoint union $B = A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $rk(C) = rk(A) + |C \cap F|$, then $m(A) \cdot m(B) = m(A \cup F) \cdot m(A \cup T)$.

if
$$A \subseteq B \subseteq X$$
 and $rk(A) = rk(B)$, then
 $\mu_B(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(T) \ge 0;$
if $A \subseteq B \subseteq X$ and $rk^*(A) = rk^*(B)$, then
 $\mu_B^*(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(X \setminus T) \ge 0.$

An *arithmetic matroid* is a pair (\mathfrak{M}_X, m) , where \mathfrak{M}_X is a matroid on a list of vectors X, and m is a *multiplicity function*, i.e. $m : \mathbb{P}(X) \to \mathbb{N} \setminus \{0\}$ has the following properties:

- if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup \{v\})$ divides m(A);
- 2 if $A \subseteq X$ and $v \in X$ is independent on A, then m(A) divides $m(A \cup \{v\})$;
- if $A \subseteq B \subseteq X$ and B is a disjoint union $B = A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $rk(C) = rk(A) + |C \cap F|$, then $m(A) \cdot m(B) = m(A \cup F) \cdot m(A \cup T)$.

if
$$A \subseteq B \subseteq X$$
 and $rk(A) = rk(B)$, then
 $\mu_B(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(T) \ge 0;$
if $A \subseteq B \subseteq X$ and $rk^*(A) = rk^*(B)$, then
 $\mu_B^*(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(X \setminus T) \ge 0.$

An *arithmetic matroid* is a pair (\mathfrak{M}_X, m) , where \mathfrak{M}_X is a matroid on a list of vectors X, and m is a *multiplicity function*, i.e. $m : \mathbb{P}(X) \to \mathbb{N} \setminus \{0\}$ has the following properties:

- if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup \{v\})$ divides m(A);
- 2 if $A \subseteq X$ and $v \in X$ is independent on A, then m(A) divides $m(A \cup \{v\})$;
- **3** if $A \subseteq B \subseteq X$ and B is a disjoint union $B = A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $rk(C) = rk(A) + |C \cap F|$, then $m(A) \cdot m(B) = m(A \cup F) \cdot m(A \cup T)$.

4 if
$$A \subseteq B \subseteq X$$
 and $rk(A) = rk(B)$, then
 $\mu_B(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(T) \ge 0$;
5 if $A \subseteq B \subseteq X$ and $rk^*(A) = rk^*(B)$, then
 $\mu_B^*(A) := \sum_{A \subseteq T \subseteq B} (-1)^{|T| - |A|} m(X \setminus T) \ge 0$.

- If $A \subseteq B = X$, then we denote $\mu_X(A)$ simply by $\mu(A)$. Similarly for $\mu^*(A)$.
- Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.
- So any matroid is trivially an arithmetic matroid.
- In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
- But of course there are more interesting examples.

Universität Göttingen

Michele D'Adderio

If $A \subseteq B = X$, then we denote $\mu_X(A)$ simply by $\mu(A)$. Similarly for $\mu^*(A)$.

Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.

So any matroid is trivially an arithmetic matroid.

In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.

But of course there are more interesting examples.

Universität Göttingen

If $A \subseteq B = X$, then we denote $\mu_X(A)$ simply by $\mu(A)$. Similarly for $\mu^*(A)$.

Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.

So any matroid is trivially an arithmetic matroid.

In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.

But of course there are more interesting examples.

Universität Göttingen

If $A \subseteq B = X$, then we denote $\mu_X(A)$ simply by $\mu(A)$. Similarly for $\mu^*(A)$.

Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.

So any matroid is trivially an arithmetic matroid.

In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.

But of course there are more interesting examples.

Universität Gött<u>ingen</u>

If $A \subseteq B = X$, then we denote $\mu_X(A)$ simply by $\mu(A)$. Similarly for $\mu^*(A)$.

Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.

So any matroid is trivially an arithmetic matroid.

In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.

But of course there are more interesting examples.

Michele D'Adderio

Universität Göttingen

- If $A \subseteq B = X$, then we denote $\mu_X(A)$ simply by $\mu(A)$. Similarly for $\mu^*(A)$.
- Setting m(A) = 1 for all $A \subseteq X$ we get a *trivial* multiplicity function, which essentially does not add anything to the matroid structure.
- So any matroid is trivially an arithmetic matroid.
- In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
- But of course there are more interesting examples.

	Arithmetic Matroid		
The m	ain example		

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Arithmetic matroids of this form are called representable.

Michele D'Adderio

Universität Göttingen

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

Theorem (D.-Moci)

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Arithmetic matroids of this form are called *representable*.

Michele D'Adderio

Universität Göttingen

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Arithmetic matroids of this form are called representable.

Michele D'Adderio

Universität Göttingen

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

$$\begin{split} m(A) &:= |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such } \\ & \text{that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty. \end{split}$$

Theorem (D.-Moci) If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Arithmetic matroids of this form are called representable.

Michele D'Adderio

Universität Göttingen

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

Theorem (D.-Moci)

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Universität Göttingen

Arithmetic matroids of this form are called representable.

Michele D'Adderio

rk(A) := maximal rank of a free abelian subgroup of $\langle A \rangle$;

 $m(A) := |G_A : \langle A \rangle|, \text{ where } G_A \text{ is the maximal subgroup of } G \text{ such that } \langle A \rangle \leq G_A \text{ and } |G_A : \langle A \rangle| < \infty.$

Theorem (D.-Moci)

If we set $\mathfrak{M}_X := (X, rk)$, then (\mathfrak{M}_X, m) is an arithmetic matroid.

Universität Göttingen

Arithmetic matroids of this form are called *representable*.

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to *A*.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Universität Göttingen

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to *A*.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Universität Göttingen

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to *A*.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Universität Göttingen

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Universität Göttingen

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Universität Göttingen

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Universität Göttingen

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Universität Göttingen

Michele D'Adderio

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .

Remark

The multiplicity of $A \subseteq X$ is the *GCD* of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset) = 1$, $m(\{v_2\}) = 2$, $m(\{v_1, v_2, v_3\}) = 3$, $m(\{v_2, v_3\}) = 1$, $m(\{v_1, v_2\}) = 6$, $m(\{v_1\}) = m(\{v_3\}) = 3$, $m(\{v_1, v_3\}) = 9$.

Universität Göttingen

Michele D'Adderio

Arithmetic Tutte

Motivation: two parallel theories

- ・ロ・・個・・モ・・モ・ ヨー ろんの

Universität Göttingen

Michele D'Adderio

Arithmetic Tutte

Motivation: two parallel theories

Continuous theory

Discrete theory

- イロト イ団ト イヨト イヨト - ヨー - つへ(

Michele D'Adderio

Universität Göttingen

Motivation: two parallel theories

Continuous theory

Discrete theory

•
$$X := \{x_1, \ldots, x_k\} \subseteq \mathbb{R}^n$$

• $X := \{x_1, \ldots, x_k\} \subseteq \mathbb{Z}^n$

□ ▶ 《圖 ▶ 《 图 ▶ 《 图 ▶] 图 · · · ○ Q ○

Universität Göttingen

Michele D'Adderio

Motivation: two parallel theories

Continuous theory

Discrete theory

- $X := \{x_1, \ldots, x_k\} \subseteq \mathbb{R}^n$
- Multivariate spline *S*_X(λ) :=

- $X := \{x_1, \ldots, x_k\} \subseteq \mathbb{Z}^n$
- Partition function P_X(λ) :=

Michele D'Adderio

Arithmetic matroids and Tutte polynomials

Universität Göttingen

.

Motivation: two parallel theories

Continuous theory

Discrete theory

$$X := \{x_1, \ldots, x_k\} \subseteq \mathbb{R}^n$$

• Multivariate spline $S_X(\lambda) :=$ vol { $\underline{t} \in \mathbb{R}^n_{\geq 0} \mid \lambda = \sum_{i=1}^k t_i x_i$ }

- $X := \{x_1, \ldots, x_k\} \subseteq \mathbb{Z}^n$
- Partition function $P_X(\lambda) := |\{\underline{t} \in \mathbb{Z}_{\geq 0}^n \mid \lambda = \sum_{i=1}^k t_i x_i\}|$

Michele D'Adderio

Arithmetic matroids and Tutte polynomials

Universität Göttingen

Universität Göttingen

Motivation: two parallel theories

Continuous theory

- $X := \{x_1, \ldots, x_k\} \subseteq \mathbb{R}^n$
- Multivariate spline $S_X(\lambda) :=$ vol { $\underline{t} \in \mathbb{R}^n_{\geq 0} \mid \lambda = \sum_{i=1}^k t_i x_i$ }
- Hyperplane arrangements \mathcal{H}_X

Discrete theory

•
$$X := \{x_1, \ldots, x_k\} \subseteq \mathbb{Z}^n$$

- Partition function $P_X(\lambda) := |\{\underline{t} \in \mathbb{Z}_{\geq 0}^n \mid \lambda = \sum_{i=1}^k t_i x_i\}|$
- Toric arrangements T_X

Michele D'Adderio

Motivation: two parallel theories

Continuous theory

- $X := \{x_1, \ldots, x_k\} \subseteq \mathbb{R}^n$
- Multivariate spline $S_X(\lambda) :=$ vol { $\underline{t} \in \mathbb{R}^n_{\geq 0} \mid \lambda = \sum_{i=1}^k t_i x_i$ }
- Hyperplane arrangements \mathcal{H}_X

 - :

Discrete theory

•
$$X := \{x_1, \ldots, x_k\} \subseteq \mathbb{Z}^n$$

- Partition function $P_X(\lambda) := |\{\underline{t} \in \mathbb{Z}_{\geq 0}^n \mid \lambda = \sum_{i=1}^k t_i x_i\}|$
- Toric arrangements \mathcal{T}_X
 - .

Michele D'Adderio

Arithmetic matroids and Tutte polynomials,

Universität Göttingen

Motivation: two parallel theories

Continuous theory

•
$$X := \{x_1, \ldots, x_k\} \subseteq \mathbb{R}^n$$

- Multivariate spline $S_X(\lambda) :=$ vol { $\underline{t} \in \mathbb{R}^n_{\geq 0} \mid \lambda = \sum_{i=1}^k t_i x_i$ }
- Hyperplane arrangements \mathcal{H}_X
 - :
 - •

Matroid

Discrete theory

•
$$X := \{x_1, \ldots, x_k\} \subseteq \mathbb{Z}^n$$

- Partition function $P_X(\lambda) := |\{\underline{t} \in \mathbb{Z}_{\geq 0}^n \mid \lambda = \sum_{i=1}^k t_i x_i\}|$
- Toric arrangements T_X
 - .
- ???

Universität Göttingen

Michele D'Adderio

Universität Göttingen

Motivation: two parallel theories

Continuous theory

- $X := \{x_1, \ldots, x_k\} \subseteq \mathbb{R}^n$
- Multivariate spline $S_X(\lambda) :=$ vol { $\underline{t} \in \mathbb{R}^n_{\geq 0} \mid \lambda = \sum_{i=1}^k t_i x_i$ }
- Hyperplane arrangements \mathcal{H}_X
- Matroid

Discrete theory

•
$$X := \{x_1, \ldots, x_k\} \subseteq \mathbb{Z}^n$$

- Partition function $P_X(\lambda) := |\{\underline{t} \in \mathbb{Z}_{\geq 0}^n \mid \lambda = \sum_{i=1}^k t_i x_i\}|$
- Toric arrangements T_X

 - 1.1
- ??? Arithmetic matroid!

	Dual and repr.	

Dual arithmetic matroid

Given an arithmetic matroid (\mathfrak{M}_X, m) , its *dual* is (\mathfrak{M}_X^*, m^*) , where \mathfrak{M}_X^* is the dual matroid of \mathfrak{M}_X , and for all $A \subseteq X$ we set $m^*(A) := m(X \setminus A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

Theorem (D.-Moci)

The dual of a representable arithmetic matroid is representable.

Universität Göttingen

In fact we give an explicit construction.
Given an arithmetic matroid (\mathfrak{M}_X, m) , its *dual* is (\mathfrak{M}_X^*, m^*) , where \mathfrak{M}_X^* is the dual matroid of \mathfrak{M}_X , and for all $A \subseteq X$ we set $m^*(A) := m(X \setminus A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

Theorem (D.-Moci)

The dual of a representable arithmetic matroid is representable.

Universität Göttingen

In fact we give an explicit construction.

Michele D'Adderio

Given an arithmetic matroid (\mathfrak{M}_X, m) , its *dual* is (\mathfrak{M}_X^*, m^*) , where \mathfrak{M}_X^* is the dual matroid of \mathfrak{M}_X , and for all $A \subseteq X$ we set $m^*(A) := m(X \setminus A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

Theorem (D.-Moci)

The dual of a representable arithmetic matroid is representable.

Universität Göttingen

In fact we give an explicit construction.

Given an arithmetic matroid (\mathfrak{M}_X, m) , its *dual* is (\mathfrak{M}_X^*, m^*) , where \mathfrak{M}_X^* is the dual matroid of \mathfrak{M}_X , and for all $A \subseteq X$ we set $m^*(A) := m(X \setminus A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

Theorem (D.-Moci)

The dual of a representable arithmetic matroid is representable.

Universität Göttingen

In fact we give an explicit construction.

Michele D'Adderio

Given an arithmetic matroid (\mathfrak{M}_X, m) , its *dual* is (\mathfrak{M}_X^*, m^*) , where \mathfrak{M}_X^* is the dual matroid of \mathfrak{M}_X , and for all $A \subseteq X$ we set $m^*(A) := m(X \setminus A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

Theorem (D.-Moci)

The dual of a representable arithmetic matroid is representable.

Universität Göttingen

In fact we give an explicit construction.

The *arithmetic Tutte polynomial* of the arithmetic matroid (\mathfrak{M}_X, m) is defined as

$$M_X(x,y) := \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

From the definition it is clear that $M_X(1,1)$ is equal to the sum of the multiplicities of the bases of the matroid. For the trivial multiplicity function m(A) = 1 for all $A \subseteq X$ we get the Tutte polynomial $T_X(x, y)$ of \mathfrak{M}_X .

The *arithmetic Tutte polynomial* of the arithmetic matroid (\mathfrak{M}_X, m) is defined as

$$M_X(x,y) := \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

From the definition it is clear that $M_X(1,1)$ is equal to the sum of the multiplicities of the bases of the matroid. For the trivial multiplicity function m(A) = 1 for all $A \subseteq X$ we get the Tutte polynomial $T_X(x, y)$ of \mathfrak{M}_X .

Universität Göttingen

Michele D'Adderio

The *arithmetic Tutte polynomial* of the arithmetic matroid (\mathfrak{M}_X, m) is defined as

$$M_X(x,y) := \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

From the definition it is clear that $M_X(1,1)$ is equal to the sum of the multiplicities of the bases of the matroid. For the trivial multiplicity function m(A) = 1 for all $A \subseteq X$ we get the Tutte polynomial $T_X(x, y)$ of \mathfrak{M}_X .

Universität Göttingen

The *arithmetic Tutte polynomial* of the arithmetic matroid (\mathfrak{M}_X, m) is defined as

$$M_X(x,y) := \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)}.$$

From the definition it is clear that $M_X(1,1)$ is equal to the sum of the multiplicities of the bases of the matroid. For the trivial multiplicity function m(A) = 1 for all $A \subseteq X$ we get the Tutte polynomial $T_X(x, y)$ of \mathfrak{M}_X .

Universität Göttingen

		Arithmetic Tutte	
An exa	ample		

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

		Arithmetic Tutte	
An exa	ample		

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x-1)^{rk(X)-rk(A)}(y-1)^{|A|-rk(A)} = (x-1)^2 + (3+2+3)(x-1) + (x-1)(y-1) + (6+9) + 3(y-1) = x^2 + 5x + 6 + xy + 2y.$

(日) (四) (王) (王)

		Arithmetic Tutte	
An exa	ample		

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

		Arithmetic Tutte	
An eva	ample		
	anipie		

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

		Arithmetic Tutte	
An eva	ample		
	anipie		

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

		Arithmetic Tutte	
An eva	ample		
	anipie		

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

		Arithmetic Tutte	
An eva	ample		
	anipie		

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

Universität Göttingen

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Michele D'Adderio

		Arithmetic Tutte	
An eva	mnle		

Let
$$X = \{v_1 := (3,0), v_2 := (2,-2), v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2$$
.
Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $M_X(x, y) = \sum_{A \subseteq X} m(A)(x - 1)^{rk(X) - rk(A)}(y - 1)^{|A| - rk(A)} = (x - 1)^2 + (3 + 2 + 3)(x - 1) + (x - 1)(y - 1) + (6 + 9) + 3(y - 1) = x^2 + 5x + 6 + xy + 2y.$

Positive coefficients!

Universität Göttingen

Michele D'Adderio

Let (\mathfrak{M}_X, m) be an arithmetic matroid, and $M_X(x, y)$ its arithmetic Tutte polynomial.

Question

Does $M_X(x, y)$ have positive coefficients for any arithmetic matroid?

Question

Is there a combinatorial interpretation of $M_X(x, y)$?

Michele D'Adderio

Let (\mathfrak{M}_X, m) be an arithmetic matroid, and $M_X(x, y)$ its arithmetic Tutte polynomial.

Question

Does $M_X(x, y)$ have positive coefficients for any arithmetic matroid?

Universität Göttingen

Question

Is there a combinatorial interpretation of $M_X(x, y)$?

Michele D'Adderio

Let (\mathfrak{M}_X, m) be an arithmetic matroid, and $M_X(x, y)$ its arithmetic Tutte polynomial.

Question

Does $M_X(x, y)$ have positive coefficients for any arithmetic matroid?

Universität Göttingen

Question

Is there a combinatorial interpretation of $M_X(x, y)$?

Michele D'Adderio

Let (\mathfrak{M}_X, m) be an arithmetic matroid, and $M_X(x, y)$ its arithmetic Tutte polynomial.

Question

Does $M_X(x, y)$ have positive coefficients for any arithmetic matroid?

Universität Göttingen

Question

Is there a combinatorial interpretation of $M_X(x, y)$?

Michele D'Adderio

Let (\mathfrak{M}_X, m) be an arithmetic matroid, and $M_X(x, y)$ its arithmetic Tutte polynomial.

Question

Does $M_X(x, y)$ have positive coefficients for any arithmetic matroid? YES!

Question

Is there a combinatorial interpretation of $M_X(x, y)$? YES!

Universität Göttingen

Michele D'Adderio

Remember that $M_X(1,1)$ is the sum of the multiplicities of the bases extracted from X. $X_1 := \{v_1 := (3,0), v_2 := (2,-2)\} \subseteq G := \mathbb{Z}^2.$ $m(\{v_1, v_2\}) = 6, m(\{v_1\}) = 3, m(\{v_2\}) = 2, m(\emptyset) = 1.$

Universität Göttingen

Michele D'Adderio

Remember that $M_X(1,1)$ is the sum of the multiplicities of the bases extracted from X.

$$X_{1} := \{v_{1} := (3,0), v_{2} := (2,-2)\} \subseteq G := \mathbb{Z}^{2}.$$

$$m(\{v_{1}, v_{2}\}) = 6, m(\{v_{1}\}) = 3, m(\{v_{2}\}) = 2, m(\emptyset) = 1.$$

$$M_{X_{1}}(x, y) = x^{2} + 3x + 2$$

Universität Göttingen

Michele D'Adderio

Remember that $M_X(1,1)$ is the sum of the multiplicities of the bases extracted from *X*. $X_1 := \{v_1 := (3,0), v_2 := (2,-2)\} \subseteq G := \mathbb{Z}^2$. $m(\{v_1, v_2\}) = 6, m(\{v_1\}) = 3, m(\{v_2\}) = 2, m(\emptyset) = 1$. $M_{X_1}(x, y) = x^2 + 3x + 2$

Arithmetic matroids and Tutte polynomials

Michele D'Adderio

Remember that $M_X(1,1)$ is the sum of the multiplicities of the bases extracted from *X*. $X_1 := \{v_1 := (3,0), v_2 := (2,-2)\} \subseteq G := \mathbb{Z}^2$. $m(\{v_1, v_2\}) = 6, m(\{v_1\}) = 3, m(\{v_2\}) = 2, m(\emptyset) = 1$. $M_{X_1}(x, y) = x^2 + 3x + 2$

Arithmetic matroids and Tutte polynomials

Michele D'Adderio

Remember that $M_X(1, 1)$ is the sum of the multiplicities of the bases extracted from *X*. $X_1 := \{v_1 := (3, 0), v_2 := (2, -2)\} \subseteq G := \mathbb{Z}^2$. $m(\{v_1, v_2\}) = 6, m(\{v_1\}) = 3, m(\{v_2\}) = 2, m(\emptyset) = 1$.

$$M_{X_1}(x, y) = x^2 + 3x + 2$$

Michele D'Adderio

Remember that $M_X(1,1)$ is the sum of the multiplicities of the bases extracted from X. $X_1 := \{v_1 := (3,0), v_2 := (2,-2)\} \subseteq G := \mathbb{Z}^2.$ $m(\{v_1, v_2\}) = 6, m(\{v_1\}) = 3, m(\{v_2\}) = 2, m(\emptyset) = 1$

$$M_{X_1}(x, y) = x^2 + 3x + 2$$
??

Michele D'Adderio

Remember that $M_X(1,1)$ is the sum of the multiplicities of the bases extracted from X. $X_1 := \{v_1 := (3,0), v_2 := (2,-2)\} \subseteq G := \mathbb{Z}^2$. $m(\{v_1, v_2\}) = 6, m(\{v_1\}) = 3, m(\{v_2\}) = 2, m(\emptyset) = 1$. $M_{X_1}(x, y) = x^2 + 3x + 2$??

Same bases give different statistics!

Michele D'Adderio

Consider an arithmetic matroid (\mathfrak{M}_X, m) . Let $S \subseteq X$ be of maximal rank, i.e. rk(S) = rk(X). Then $\mu(S) = \sum_{X \supseteq T \supseteq S} (-1)^{|T| - |S|} m(T) \ge 0$. We call L_X the list in which every maximal rank sublist S appears $\mu(S)$ many times. We construct dually L_X^* from (\mathfrak{M}_X^*, m^*) using $\mu^*(S)$. We define the lists $\mathcal{B} := \{(B, T) \mid B \text{ basis}, B \subseteq T, T \in L_X\}$ and its dual $\mathcal{B}^* := \{(B^c, \widetilde{T}) \mid B \text{ basis}, B^c \subseteq \widetilde{T}, \widetilde{T} \in L_X^*\}$. Each basis B appears m(B) times in \mathcal{B} (by inclusion-exclusion).

Consider an arithmetic matroid (\mathfrak{M}_X, m) . Let $S \subseteq X$ be of maximal rank, i.e. rk(S) = rk(X). Then $\mu(S) = \sum_{X \supseteq T \supseteq S} (-1)^{|T| - |S|} m(T) \ge 0$. We call L_X the list in which every maximal rank sublist S appears $\mu(S)$ many times. We construct dually L_X^* from (\mathfrak{M}_X^*, m^*) using $\mu^*(S)$. We define the lists $\mathcal{B} := \{(B, T) \mid B \text{ basis}, B \subseteq T, T \in L_X\}$ and its dual $\mathcal{B}^* := \{(B^c, \widetilde{T}) \mid B \text{ basis}, B^c \subseteq \widetilde{T}, \widetilde{T} \in L_X^*\}$.

Each basis B appears m(B) times in \mathcal{B} (by inclusion-exclusion).

Michele D'Adderio

Consider an arithmetic matroid (\mathfrak{M}_X, m) . Let $S \subseteq X$ be of maximal rank, i.e. rk(S) = rk(X). Then $\mu(S) = \sum_{X \supseteq T \supseteq S} (-1)^{|T| - |S|} m(T) \ge 0$. We call L_X the list in which every maximal rank sublist S appears $\mu(S)$ many times. We construct dually L_X^* from (\mathfrak{M}_X^*, m^*) using $\mu^*(S)$. We define the lists $\mathcal{B} := \{(B, T) \mid B \text{ basis}, B \subseteq T, T \in L_X\}$ and its dual $\mathcal{B}^* := \{(B^c, \widetilde{T}) \mid B \text{ basis}, B^c \subseteq \widetilde{T}, \widetilde{T} \in L_X^*\}$. Each basis B appears m(B) times in \mathcal{B} (by inclusion-exclusion).

Consider an arithmetic matroid (\mathfrak{M}_X, m) . Let $S \subseteq X$ be of maximal rank, i.e. rk(S) = rk(X). Then $\mu(S) = \sum_{X \supseteq T \supseteq S} (-1)^{|T| - |S|} m(T) \ge 0$. We call L_X the list in which every maximal rank sublist S appears $\mu(S)$ many times. We construct dually L_X^* from (\mathfrak{M}_X^*, m^*) using $\mu^*(S)$.

We define the lists $\mathcal{B} := \{(B, T) \mid B \text{ basis}, B \subseteq T, T \in L_X\}$ and its dual $\mathcal{B}^* := \{(B^c, \widetilde{T}) \mid B \text{ basis}, B^c \subseteq \widetilde{T}, \widetilde{T} \in L_X^*\}$. Each basis R appears m(R) times in \mathcal{B} (by inclusion avaluation).

Each basis B appears m(B) times in B (by inclusion-exclusion).

Michele D'Adderio

Consider an arithmetic matroid (\mathfrak{M}_X, m) . Let $S \subseteq X$ be of maximal rank, i.e. rk(S) = rk(X). Then $\mu(S) = \sum_{X \supseteq T \supseteq S} (-1)^{|T| - |S|} m(T) \ge 0$. We call L_X the list in which every maximal rank sublist S appears $\mu(S)$ many times. We construct dually L_X^* from (\mathfrak{M}_X^*, m^*) using $\mu^*(S)$. We define the lists $\mathcal{B} := \{(B, T) \mid B \text{ basis}, B \subseteq T, T \in L_X\}$ and its dual $\mathcal{B}^* := \{(B^c, \widetilde{T}) \mid B \text{ basis}, B^c \subseteq \widetilde{T}, \widetilde{T} \in L_X^*\}$. Each basis B appears m(B) times in \mathcal{B} (by inclusion-exclusion).

Consider an arithmetic matroid (\mathfrak{M}_X, m) . Let $S \subseteq X$ be of maximal rank, i.e. rk(S) = rk(X). Then $\mu(S) = \sum_{X \supseteq T \supseteq S} (-1)^{|T| - |S|} m(T) \ge 0$. We call L_X the list in which every maximal rank sublist S appears $\mu(S)$ many times. We construct dually L_X^* from (\mathfrak{M}_X^*, m^*) using $\mu^*(S)$. We define the lists $\mathcal{B} := \{(B, T) \mid B \text{ basis}, B \subseteq T, T \in L_X\}$ and its dual $\mathcal{B}^* := \{(B^c, \widetilde{T}) \mid B \text{ basis}, B^c \subseteq \widetilde{T}, \widetilde{T} \in L_X^*\}$. Each basis B appears m(B) times in \mathcal{B} (by inclusion-exclusion).

Michele D'Adderio

Consider an arithmetic matroid (\mathfrak{M}_X, m) . Let $S \subseteq X$ be of maximal rank, i.e. rk(S) = rk(X). Then $\mu(S) = \sum_{X \supseteq T \supseteq S} (-1)^{|T| - |S|} m(T) \ge 0$. We call L_X the list in which every maximal rank sublist S appears $\mu(S)$ many times. We construct dually L_X^* from (\mathfrak{M}_X^*, m^*) using $\mu^*(S)$. We define the lists $\mathcal{B} := \{(B, T) \mid B \text{ basis}, B \subseteq T, T \in L_X\}$ and its dual $\mathcal{B}^* := \{(B^c, \widetilde{T}) \mid B \text{ basis}, B^c \subseteq \widetilde{T}, \widetilde{T} \in L_X^*\}$. Each basis B appears m(B) times in \mathcal{B} (by inclusion-exclusion).
Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, \tilde{T}) \in \mathcal{B}^*$, but how do we choose \tilde{T} ?

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its *local* external activity e(B, T) to be the number of elements of $T \setminus B$ that are externally active on B. We define $e^*(B^c, \tilde{T})$ dually (using the same order). Are we done? Not quite: we need to decide how to match the pairs from \mathcal{B} with

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, T) \in \mathcal{B}^*$, but how do we choose \widetilde{T} ?

Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, \tilde{T}) \in \mathcal{B}^*$, but how do we choose \tilde{T} ?

Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

- Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, \tilde{T}) \in \mathcal{B}^*$, but how do we choose \tilde{T} ?
- In fact it is even worst: from the computations of $M_X(x, y)$ we can see that sometimes the same copy of (B, T) needs to go to different (B^c, \tilde{T}) 's!

Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with

			Combinatorial problem
The co	onstruction II		

Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, T) \in \mathcal{B}^*$, but how do we choose T?

Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, \tilde{T}) \in \mathcal{B}^*$, but how do we choose \tilde{T} ?

Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, \tilde{T}) \in \mathcal{B}^*$, but how do we choose \tilde{T} ?

Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, \tilde{T}) \in \mathcal{B}^*$, but how do we choose \tilde{T} ?

Are we done?

Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^* .

Clearly $(B, T) \in \mathcal{B}$ goes to some $(B^c, \tilde{T}) \in \mathcal{B}^*$, but how do we choose \tilde{T} ?

We define a matching $\psi : \mathcal{B} \to \mathcal{B}^*$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements. We do the same with the pairs $(B^c, \widetilde{T}) \in \mathcal{B}^*$. Then we equidistribute these pairs among each others.

Theorem (D.-Moci)

$$M_X(x,y) = \sum_{(B,T)\in\mathcal{B}} x^{e^*(\psi(B,T))} y^{e(B,T)}.$$

Universität Göttingen

Michele D'Adderio

We define a matching $\psi : \mathcal{B} \to \mathcal{B}^*$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements. We do the same with the pairs $(B^c, \widetilde{T}) \in \mathcal{B}^*$. Then we *equidistribute* these pairs among each others.

Theorem (D.-Moci)

$$M_X(x,y) = \sum_{(B,T)\in\mathcal{B}} x^{e^*(\psi(B,T))} y^{e(B,T)}.$$

Universität Göttingen

Michele D'Adderio

We define a matching $\psi : \mathcal{B} \to \mathcal{B}^*$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements. We do the same with the pairs $(B^c, \widetilde{T}) \in \mathcal{B}^*$. Then we equidistribute these pairs among each others.

Theorem (D.-Moci)

$$M_X(x,y) = \sum_{(B,T)\in\mathcal{B}} x^{e^*(\psi(B,T))} y^{e(B,T)}.$$

Universität Göttingen

Michele D'Adderio

We define a matching $\psi : \mathcal{B} \to \mathcal{B}^*$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements. We do the same with the pairs $(B^c, \widetilde{T}) \in \mathcal{B}^*$. Then we equidistribute these pairs among each others.

Theorem (D.-Moci)

$$M_X(x,y) = \sum_{(B,T)\in\mathcal{B}} x^{e^*(\psi(B,T))} y^{e(B,T)}.$$

Universität Göttingen

Michele D'Adderio

We define a matching $\psi : \mathcal{B} \to \mathcal{B}^*$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements. We do the same with the pairs $(B^c, \widetilde{T}) \in \mathcal{B}^*$. Then we *equidistribute* these pairs among each others.

Theorem (D.-Moci)

$$M_X(x,y) = \sum_{(B,T)\in\mathcal{B}} x^{e^*(\psi(B,T))} y^{e(B,T)}.$$

Michele D'Adderio

Universität Göttingen

We define a matching $\psi : \mathcal{B} \to \mathcal{B}^*$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements. We do the same with the pairs $(B^c, \widetilde{T}) \in \mathcal{B}^*$. Then we *equidistribute* these pairs among each others.

Theorem (D.-Moci)

$$M_X(x,y) = \sum_{(B,T)\in\mathcal{B}} x^{e^*(\psi(B,T))} y^{e(B,T)}.$$

Universität Göttingen

Michele D'Adderio

			Combinatorial problem
An exa	ample		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$

			Combinatorial problem
An exa	ample		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are v_1, v_2, v_3 .
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$

			Combinatorial problem
An exa	ample		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$

			Combinatorial problem
An exa	ample		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$

			Combinatorial problem
An exa	ample		

$$\begin{aligned} X &= \{ \mathbf{v}_1 := (3,0) < \mathbf{v}_2 := (2,-2) < \mathbf{v}_3 := (-3,3) \} \subseteq G := \mathbb{Z}^2. \\ \text{Consider the matrix} \begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix} \text{ whose columns are } \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3. \\ \text{Then } m(\emptyset) &= m(\{\mathbf{v}_2, \mathbf{v}_3\}) = 1, \ m(\{\mathbf{v}_1, \mathbf{v}_2\}) = 6, \ m(\{\mathbf{v}_2\}) = 2, \\ m(\{\mathbf{v}_1\}) &= m(\{\mathbf{v}_3\}) = m(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = 3, \ m(\{\mathbf{v}_1, \mathbf{v}_3\}) = 9. \\ L_X &= (\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}^3, \{\mathbf{v}_1, \mathbf{v}_2\}^3, \{\mathbf{v}_1, \mathbf{v}_3\}^6) \\ L_X^* &= (\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \{\mathbf{v}_1, \mathbf{v}_2\}^2, \{\mathbf{v}_1, \mathbf{v}_3\}, \{\mathbf{v}_2, \mathbf{v}_3\}^2, \{\mathbf{v}_2\}^4, \{\mathbf{v}_3\}^2) \end{aligned}$$

		Combinatorial problem
A		

$$\begin{split} &X = \{\mathbf{v}_1 := (3,0) < \mathbf{v}_2 := (2,-2) < \mathbf{v}_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.\\ &\text{Consider the matrix} \begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix} \text{ whose columns are } \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3.\\ &\text{Then } m(\emptyset) = m(\{\mathbf{v}_2, \mathbf{v}_3\}) = 1, \ m(\{\mathbf{v}_1, \mathbf{v}_2\}) = 6, \ m(\{\mathbf{v}_2\}) = 2,\\ &m(\{\mathbf{v}_1\}) = m(\{\mathbf{v}_3\}) = m(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = 3, \ m(\{\mathbf{v}_1, \mathbf{v}_3\}) = 9.\\ &L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)\\ &L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)\\ &\text{Consider the basis } \{v_1, v_2\} \end{split}$$

Universität Göttingen

Michele D'Adderio

		Combinatorial problem
A		

$$\begin{split} &X = \{\mathbf{v}_1 := (3,0) < \mathbf{v}_2 := (2,-2) < \mathbf{v}_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.\\ &\text{Consider the matrix} \begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix} \text{ whose columns are } \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3.\\ &\text{Then } m(\emptyset) = m(\{\mathbf{v}_2, \mathbf{v}_3\}) = 1, \ m(\{\mathbf{v}_1, \mathbf{v}_2\}) = 6, \ m(\{\mathbf{v}_2\}) = 2,\\ &m(\{\mathbf{v}_1\}) = m(\{\mathbf{v}_3\}) = m(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = 3, \ m(\{\mathbf{v}_1, \mathbf{v}_3\}) = 9.\\ &L_X = (\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}^3, \{\mathbf{v}_1, \mathbf{v}_2\}^3, \{\mathbf{v}_1, \mathbf{v}_3\}^6)\\ &L_X^* = (\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \{\mathbf{v}_1, \mathbf{v}_2\}^2, \{\mathbf{v}_1, \mathbf{v}_3\}, \{\mathbf{v}_2, \mathbf{v}_3\}^2, \{\mathbf{v}_2\}^4, \{\mathbf{v}_3\}^2)\\ &\text{Consider the basis } \{\mathbf{v}_1, \mathbf{v}_2\} \end{split}$$

Universität Göttingen

Michele D'Adderio

		Combinatorial problem

$$\begin{split} &X = \{\mathbf{v}_1 := (3,0) < \mathbf{v}_2 := (2,-2) < \mathbf{v}_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.\\ &\text{Consider the matrix} \begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix} \text{ whose columns are } \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3.\\ &\text{Then } m(\emptyset) = m(\{\mathbf{v}_2, \mathbf{v}_3\}) = 1, \ m(\{\mathbf{v}_1, \mathbf{v}_2\}) = 6, \ m(\{\mathbf{v}_2\}) = 2,\\ &m(\{\mathbf{v}_1\}) = m(\{\mathbf{v}_3\}) = m(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = 3, \ m(\{\mathbf{v}_1, \mathbf{v}_3\}) = 9.\\ &L_X = (\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}^3, \{\mathbf{v}_1, \mathbf{v}_2\}^3, \{\mathbf{v}_1, \mathbf{v}_3\}^6)\\ &L_X^* = (\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \{\mathbf{v}_1, \mathbf{v}_2\}^2, \{\mathbf{v}_1, \mathbf{v}_3\}, \{\mathbf{v}_2, \mathbf{v}_3\}^2, \{\mathbf{v}_2\}^4, \{\mathbf{v}_3\}^2)\\ &\text{Consider the basis } \{\mathbf{v}_1, \mathbf{v}_2\} \end{split}$$

Michele D'Adderio

		Combinatorial problem
A		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$
Consider the basis $\{v_1, v_2\}$
 $x^2 + 3x + 2$

Michele D'Adderio

		Combinatorial problem
A		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$
Consider the basis $\{v_1, v_2\}$
 $x^2 + 3x + 2$

Michele D'Adderio

		Combinatorial problem
A		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$
Consider the basis $\{v_1, v_3\}$
 $x^2 + 3x + 2$

		Combinatorial problem
A		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$
Consider the basis $\{v_1, v_3\}$
 $x^2 + 3x + 2$

		Combinatorial problem
A		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$
Consider the basis $\{v_1, v_3\}$
 $x^2 + 3x + 2$

Michele D'Adderio

			Combinatorial problem
An exa	ample		

$$X = \{\mathbf{v}_1 := (3,0) < \mathbf{v}_2 := (2,-2) < \mathbf{v}_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3.$
Then $m(\emptyset) = m(\{\mathbf{v}_2, \mathbf{v}_3\}) = 1, m(\{\mathbf{v}_1, \mathbf{v}_2\}) = 6, m(\{\mathbf{v}_2\}) = 2, m(\{\mathbf{v}_1\}) = m(\{\mathbf{v}_3\}) = m(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}) = 3, m(\{\mathbf{v}_1, \mathbf{v}_3\}) = 9.$
 $L_X = (\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}^3, \{\mathbf{v}_1, \mathbf{v}_2\}^3, \{\mathbf{v}_1, \mathbf{v}_3\}^6)$
 $L_X^* = (\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \{\mathbf{v}_1, \mathbf{v}_2\}^2, \{\mathbf{v}_1, \mathbf{v}_3\}, \{\mathbf{v}_2, \mathbf{v}_3\}^2, \{\mathbf{v}_2\}^4, \{\mathbf{v}_3\}^2)$
Consider the basis $\{\mathbf{v}_1, \mathbf{v}_3\}$
 $x^2 + 3x + 2 + xy + 2y$

(日) (四) (三) (三) (三)

		Combinatorial problem
A		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$
Consider the basis $\{v_1, v_3\}$
 $x^2 + 3x + 2 + xy + 2y + 2x + 4$

Michele D'Adderio

			Combinatorial problem
An exa	ample		

$$X = \{\mathbf{v}_{1} := (3,0) < \mathbf{v}_{2} := (2,-2) < \mathbf{v}_{3} := (-3,3)\} \subseteq G := \mathbb{Z}^{2}.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}.$
Then $m(\emptyset) = m(\{\mathbf{v}_{2}, \mathbf{v}_{3}\}) = 1, m(\{\mathbf{v}_{1}, \mathbf{v}_{2}\}) = 6, m(\{\mathbf{v}_{2}\}) = 2, m(\{\mathbf{v}_{1}\}) = m(\{\mathbf{v}_{3}\}) = m(\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}) = 3, m(\{\mathbf{v}_{1}, \mathbf{v}_{3}\}) = 9.$
 $L_{X} = (\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}, \{\mathbf{v}_{1}, \mathbf{v}_{2}\}^{3}, \{\mathbf{v}_{1}, \mathbf{v}_{3}\}^{6})$
 $L_{X}^{*} = (\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}, \{\mathbf{v}_{1}, \mathbf{v}_{2}\}^{2}, \{\mathbf{v}_{1}, \mathbf{v}_{3}\}, \{\mathbf{v}_{2}, \mathbf{v}_{3}\}^{2}, \{\mathbf{v}_{2}\}^{4}, \{\mathbf{v}_{3}\}^{2})$
Consider the basis $\{\mathbf{v}_{1}, \mathbf{v}_{3}\}$
 $x^{2} + 3x + 2 + xy + 2y + 2x + 4 =$
 $= x^{2} + 3x + 2 + (y + 2)(x + 2)$

(日) (四) (三) (三) (三)

Michele D'Adderio

		Combinatorial problem

$$X = \{\mathbf{v}_{1} := (3,0) < \mathbf{v}_{2} := (2,-2) < \mathbf{v}_{3} := (-3,3)\} \subseteq G := \mathbb{Z}^{2}.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}.$
Then $m(\emptyset) = m(\{\mathbf{v}_{2}, \mathbf{v}_{3}\}) = 1, m(\{\mathbf{v}_{1}, \mathbf{v}_{2}\}) = 6, m(\{\mathbf{v}_{2}\}) = 2,$
 $m(\{\mathbf{v}_{1}\}) = m(\{\mathbf{v}_{3}\}) = m(\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}) = 3, m(\{\mathbf{v}_{1}, \mathbf{v}_{3}\}) = 9.$
 $L_{X} = (\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}^{3}, \{\mathbf{v}_{1}, \mathbf{v}_{2}\}^{3}, \{\mathbf{v}_{1}, \mathbf{v}_{3}\}^{6})$
 $L_{X}^{*} = (\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}, \{\mathbf{v}_{1}, \mathbf{v}_{2}\}^{2}, \{\mathbf{v}_{1}, \mathbf{v}_{3}\}, \{\mathbf{v}_{2}, \mathbf{v}_{3}\}^{2}, \{\mathbf{v}_{2}\}^{4}, \{\mathbf{v}_{3}\}^{2})$
Consider the basis $\{\mathbf{v}_{1}, \mathbf{v}_{3}\}$
 $x^{2} + 3x + 2 + xy + 2y + 2x + 4 =$
 $= x^{2} + 3x + 2 + (y + 2)(x + 2) =$
 $= x^{2} + 5x + 6 + xy + 2y$

Universität Göttingen

Michele D'Adderio

			Combinatorial problem
An exa	ample		

$$X = \{v_1 := (3,0) < v_2 := (2,-2) < v_3 := (-3,3)\} \subseteq G := \mathbb{Z}^2.$$

Consider the matrix $\begin{pmatrix} 3 & 2 & -3 \\ 0 & -2 & 3 \end{pmatrix}$ whose columns are $v_1, v_2, v_3.$
Then $m(\emptyset) = m(\{v_2, v_3\}) = 1, m(\{v_1, v_2\}) = 6, m(\{v_2\}) = 2, m(\{v_1\}) = m(\{v_3\}) = m(\{v_1, v_2, v_3\}) = 3, m(\{v_1, v_3\}) = 9.$
 $L_X = (\{v_1, v_2, v_3\}^3, \{v_1, v_2\}^3, \{v_1, v_3\}^6)$
 $L_X^* = (\{v_1, v_2, v_3\}, \{v_1, v_2\}^2, \{v_1, v_3\}, \{v_2, v_3\}^2, \{v_2\}^4, \{v_3\}^2)$
Consider the basis $\{v_1, v_3\}$

$$x^{2} + 3x + 2 + xy + 2y + 2x + 4 =$$

= $x^{2} + 3x + 2 + (y + 2)(x + 2) =$
= $x^{2} + 5x + 6 + xy + 2y = M_{X}(x, y)!$

Universität Göttingen

Michele D'Adderio

		Combinatorial problem
THF F		

References

M. D'Adderio, L. Moci, Arithmetic matroids, Tutte Polynomial and toric arrangements, arXiv:1105.3220.

2 C. De Concini, C. Procesi, *Topics in hyperplane arrangements, polytopes and box-splines*, Springer 2010.

Universität Göttingen

Michele D'Adderio

			Combinatorial problem
THE E	END		

THANKS!

References

M. D'Adderio, L. Moci, Arithmetic matroids, Tutte Polynomial and toric arrangements, arXiv:1105.3220.

2 C. De Concini, C. Procesi, *Topics in hyperplane arrangements, polytopes and box-splines*, Springer 2010.

Universität Göttingen

Michele D'Adderio