Arithmetic matroids and Tutte polynomials
 (joint work with Luca Moci)

Michele D'Adderio
Georg-August Universität Göttingen

Nagoya, August 2nd 2012

$$
\text { FPSAC } 2012
$$

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function rk $: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
11 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
B if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis.
$r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure:
$r k(A)=\mid$ maximal independent sublist of $A \mid$.

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
11 if $A \subset X$, then $r k(A) \leq|A|$;
밀 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis. $r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure: $r k(A)=\mid$ maximal independent sublist of $A \mid$.

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
II if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis.
$r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure:
$r k(A)=\mid$ maximal independent sublist of $A \mid$.

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
1 if $A \subseteq X$, then $r k(A) \leq|A|$;
믈 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis.
$r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure:
$r k(A)=\mid$ maximal independent sublist of $A \mid$.

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
11 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
B if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank rk (X) is called a basis. $r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure:
$r k(A)=\mid$ maximal independent sublist of $A \mid$

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
11 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\phi)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis. $r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure: $r k(A)=\mid$ maximal independent sublist of $A \mid$.

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
1 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis. $r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure: $r k(A)=\mid$ maximal independent sublist of $A \mid$.

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
1 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank rk(X) is called a basis. $r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure: $r k(A)=\mid$ maximal independent sublist of $A \mid$

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function rk : $\mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:

1 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis.
$r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure:
$r k(A)=\mid$ maximal independent sublist of $A \mid$.

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
1 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$. An independent sublist of maximal rank $r k(X)$ is called a basis. $r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure:
$r k(A)=\mid$ maximal independent sublist of $A \mid$.

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
1 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis. $r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure:
$r k(A)=\mid$ maximal independent sublist of $A \mid$

Definition of Matroid

We use the word list for multiset (repetitions allowed).
A matroid $\mathfrak{M}=\mathfrak{M}_{X}=(X, r k)$ is a list of vectors X with a rank function $r k: \mathbb{P}(X) \rightarrow \mathbb{N} \cup\{0\}$ such that:
1 if $A \subseteq X$, then $r k(A) \leq|A|$;
2 if $A, B \subseteq X$ and $A \subseteq B$, then $r k(A) \leq r k(B)$;
3 if $A, B \subseteq X$, then $r k(A \cup B)+r k(A \cap B) \leq r k(A)+r k(B)$.
In particular rk $(\emptyset)=0$.
We say that a sublist A is independent $\Leftrightarrow r k(A)=|A|$.
An independent sublist of maximal rank $r k(X)$ is called a basis. $r k(X)$ is called the rank of the matroid.
The independent sublists determine the matroid structure:
$r k(A)=\mid$ maximal independent sublist of $A \mid$.

Examples

$1 X$ is a finite list of vectors of a vector space (e.g. \mathbb{R}^{n}); $r k(A)=\operatorname{dim}(\operatorname{span}(A))$;
independent $=$ linearly independent;
2. X a finite list of edges of a graph \mathcal{G}; $r k(A)=\mid$ maximal subforest of $A \mid$; independent $=$ cycle-free (forests).

Examples

$1 X$ is a finite list of vectors of a vector space (e.g. \mathbb{R}^{n}); $r k(A)=\operatorname{dim}(\operatorname{span}(A))$; independent $=$ linearly independent;
2 X a finite list of edges of a graph \mathcal{G}; $r k(A)=\mid$ maximal subforest of $A \mid$; independent $=$ cycle-free (forests).

Examples

$1 X$ is a finite list of vectors of a vector space (e.g. \mathbb{R}^{n}); $r k(A)=\operatorname{dim}(\operatorname{span}(A))$;
independent $=$ linearly independent;
$2 . X$ a finite list of edges of a graph \mathcal{G}; $r k(A)=\mid$ maximal subforest of $A \mid$; independent $=$ cycle-free (forests).

Examples

$1 X$ is a finite list of vectors of a vector space (e.g. \mathbb{R}^{n}); $r k(A)=\operatorname{dim}(\operatorname{span}(A))$; independent $=$ linearly independent;
$2 . X$ a finite list of edges of a graph \mathcal{G}; $r k(A)=\mid$ maximal subforest of $A \mid$; independent $=$ cycle-free (forests).

Examples

$1 X$ is a finite list of vectors of a vector space (e.g. \mathbb{R}^{n}); $r k(A)=\operatorname{dim}(\operatorname{span}(A))$; independent $=$ linearly independent;
$2 X$ a finite list of edges of a graph \mathcal{G}; $r k(A)=\mid$ maximal subforest of $A \mid$; independent $=$ cycle-free (forests)

Examples

$1 X$ is a finite list of vectors of a vector space (e.g. \mathbb{R}^{n}); $r k(A)=\operatorname{dim}(\operatorname{span}(A))$; independent $=$ linearly independent;
$2 X$ a finite list of edges of a graph \mathcal{G}; $r k(A)=\mid$ maximal subforest of $A \mid$;
independent $=$ cycle-free (forests)

Examples

$1 X$ is a finite list of vectors of a vector space (e.g. \mathbb{R}^{n}); $r k(A)=\operatorname{dim}(\operatorname{span}(A))$; independent $=$ linearly independent;
$2 X$ a finite list of edges of a graph \mathcal{G}; $r k(A)=\mid$ maximal subforest of $A \mid$; independent $=$ cycle-free (forests).

Dual Matroid

The dual of the matroid $\mathfrak{M}=(X, r k)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M}.
We will denote it by \mathfrak{M}^{*}. The rank function of \mathfrak{M}^{*} is given by

$$
r k^{*}(A):=|A|-r k(X)+r k(X \backslash A)
$$

In particular the rank of \mathfrak{M}^{*} is $|X|-r k(X)$.

Dual Matroid

The dual of the matroid $\mathfrak{M}=(X, r k)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M}.
We will denote it by \mathfrak{M}^{*}. The rank function of \mathfrak{M}^{*} is given by

$$
r k^{*}(A):=|A|-r k(X)+r k(X \backslash A) .
$$

In particular the rank of \mathfrak{M}^{*} is $|X|-r k(X)$.

Dual Matroid

The dual of the matroid $\mathfrak{M}=(X, r k)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M}.
We will denote it by \mathfrak{M}^{*}. The rank function of \mathfrak{N}^{*} is given by

$$
r k^{*}(A):=|A|-r k(X)+r k(X \backslash A) .
$$

In particular the rank of \mathfrak{M}^{*} is $|X|-r k(X)$.

Dual Matroid

The dual of the matroid $\mathfrak{M}=(X, r k)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M}.
We will denote it by \mathfrak{M}^{*}. The rank function of \mathfrak{M}^{*} is given by

$$
r k^{*}(A):=|A|-r k(X)+r k(X \backslash A) .
$$

In particular the rank of \mathfrak{M}^{*} is $|X|-r k(X)$.

Dual Matroid

The dual of the matroid $\mathfrak{M}=(X, r k)$ is defined as the matroid with the same set X of vectors, and with bases the complements of the bases of \mathfrak{M}.
We will denote it by \mathfrak{M}^{*}. The rank function of \mathfrak{M}^{*} is given by

$$
r k^{*}(A):=|A|-r k(X)+r k(X \backslash A) .
$$

In particular the rank of \mathfrak{M}^{*} is $|X|-r k(X)$.

Tutte Polynomial

The Tutte polynomial of the matroid $\mathfrak{M}=(X, r k)$ is defined as

$$
T_{x}(x, y):=\sum_{A \subseteq x}(x-1)^{r k(x)-r k^{\prime}(A)}(y-1)^{|A|-r k(A)}
$$

From the definition it is clear that $T_{X}(1,1)$ is equal to the number of bases of the matroid.
The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of internal and external activity.
A vector $v \in X$ is dependent on $A \subseteq X$ if $r k(A \cup\{v\})=r k(A)$. A vector $v \in X$ is independent on A if $r k(A \cup\{v\})=r k(A)+1$.

Tutte Polynomial

The Tutte polynomial of the matroid $\mathfrak{M}=(X, r k)$ is defined as

$$
T_{X}(x, y):=\sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)} .
$$

From the definition it is clear that $T_{X}(1,1)$ is equal to the number
of bases of the matroid.
The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of internal and external activity.
A vector $v \in X$ is dependent on $A \subseteq X$ if $r k(A \cup\{v\})=r k(A)$.
A vector $v \in X$ is independent on A if $r k(A \cup\{v\})=r k(A)+1$.

Tutte Polynomial

The Tutte polynomial of the matroid $\mathfrak{M}=(X, r k)$ is defined as

$$
T_{X}(x, y):=\sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)} .
$$

From the definition it is clear that $T_{X}(1,1)$ is equal to the number of bases of the matroid.
The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of internal and external activity.
A vector $v \in X$ is dependent on $A \subseteq X$ if $r k(A \cup\{v\})=r k(A)$.
A vector $v \in X$ is independent on A if $r k(A \cup\{v\})=r k(A)+1$.

Tutte Polynomial

The Tutte polynomial of the matroid $\mathfrak{M}=(X, r k)$ is defined as

$$
T_{X}(x, y):=\sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

From the definition it is clear that $T_{X}(1,1)$ is equal to the number of bases of the matroid.
The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of internal and external activity.
A vector $v \in X$ is dependent on $A \subseteq X$ if $r k(A \cup\{v\})=r k(A)$. A vector $v \in X$ is independent on A if $r k(A \cup\{v\})=r k(A)+1$.

Tutte Polynomial

The Tutte polynomial of the matroid $\mathfrak{M}=(X, r k)$ is defined as

$$
T_{X}(x, y):=\sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

From the definition it is clear that $T_{X}(1,1)$ is equal to the number of bases of the matroid.
The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of internal and external activity.
A vector $v \in X$ is dependent on $A \subseteq X$ if $r k(A \cup\{v\})=r k(A)$. A vector $v \in X$ is independent on A if $r k(A \cup\{v\})=r k(A)+1$

Tutte Polynomial

The Tutte polynomial of the matroid $\mathfrak{M}=(X, r k)$ is defined as

$$
T_{X}(x, y):=\sum_{A \subseteq X}(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}
$$

From the definition it is clear that $T_{X}(1,1)$ is equal to the number of bases of the matroid.
The coefficients of the Tutte polynomial are positive, and they have a nice combinatorial interpretation in terms of internal and external activity.
A vector $v \in X$ is dependent on $A \subseteq X$ if $r k(A \cup\{v\})=r k(A)$. A vector $v \in X$ is independent on A if $r k(A \cup\{v\})=r k(A)+1$.

Crapo's Theorem

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \backslash B$ is externally active on B if v is dependent on the list of elements of B following it.
We say that $v \in B$ is internally active on B if v is externally active on the complement $B^{c}:=X \backslash B$ in the dual matroid.
The number $e(B)$ of externally active vectors is called the external activity of B, while the number $i(B)=e^{*}\left(B^{c}\right)$ of internally active vectors is called the internal activity of B.

Theorem (Crapo)

$$
T_{X}(x, y)=\sum_{\substack{B \subseteq X \\ B \text { basis }}} x^{e^{*}\left(B^{c}\right)} y^{e(B)} .
$$

Crapo's Theorem

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \backslash B$ is externally active on B if v is dependent on the list of elements of B following it.
We say that $v \in B$ is internally active on B if v is externally active on the complement $B^{c}:=X \backslash B$ in the dual matroid.
The number $e(B)$ of externally active vectors is called the external activity of B, while the number $i(B)=e^{*}\left(B^{c}\right)$ of internally active vectors is called the internal activity of B.

Crapo's Theorem

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \backslash B$ is externally active on B if v is dependent on the list of elements of B following it.
We say that $v \in B$ is internally active on B if v is externally active on the complement $B^{c}:=X \backslash B$ in the dual matroid.
The number $e(B)$ of externally active vectors is called the external activity of B, while the number $i(B)=e^{*}\left(B^{c}\right)$ of internally active vectors is called the internal activity of B.

Crapo's Theorem

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \backslash B$ is externally active on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is internally active on B if v is externally active on the complement $B^{c}:=X \backslash B$ in the dual matroid. The number $e(B)$ of externally active vectors is called the external activity of B, while the number $i(B)=e^{*}\left(B^{c}\right)$ of internally active vectors is called the internal activity of B

Crapo's Theorem

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \backslash B$ is externally active on B if v is dependent on the list of elements of B following it. We say that $v \in B$ is internally active on B if v is externally active on the complement $B^{c}:=X \backslash B$ in the dual matroid.
The number $e(B)$ of externally active vectors is called the external activity of B, while the number $i(B)=e^{*}\left(B^{c}\right)$ of internally active vectors is called the internal activity of B.

Crapo's Theorem

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \backslash B$ is externally active on B if v is dependent on the list of elements of B following it.
We say that $v \in B$ is internally active on B if v is externally active on the complement $B^{c}:=X \backslash B$ in the dual matroid.
The number $e(B)$ of externally active vectors is called the external activity of B, while the number $i(B)=e^{*}\left(B^{C}\right)$ of internally active vectors is called the internal activity of B.

Bbasis

Crapo's Theorem

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \backslash B$ is externally active on B if v is dependent on the list of elements of B following it.
We say that $v \in B$ is internally active on B if v is externally active on the complement $B^{c}:=X \backslash B$ in the dual matroid.
The number $e(B)$ of externally active vectors is called the external activity of B, while the number $i(B)=e^{*}\left(B^{c}\right)$ of internally active vectors is called the internal activity of B.

Crapo's Theorem

We fix a total order on X, and let B be a basis extracted from X. We say that $v \in X \backslash B$ is externally active on B if v is dependent on the list of elements of B following it.
We say that $v \in B$ is internally active on B if v is externally active on the complement $B^{c}:=X \backslash B$ in the dual matroid.
The number $e(B)$ of externally active vectors is called the external activity of B, while the number $i(B)=e^{*}\left(B^{c}\right)$ of internally active vectors is called the internal activity of B.

Theorem (Crapo)

$$
T_{X}(x, y)=\sum_{\substack{B \subseteq X \\ \text { Bbasis }}} x^{e^{*}\left(B^{c}\right)} y^{e(B)}
$$

Definition of Arithmetic Matroid

An arithmetic matroid is a pair $\left(\mathfrak{M}_{X}, m\right)$, where \mathfrak{M}_{X} is a matroid on a list of vectors X, and m is a multiplicity function, i.e.
$m: \mathbb{P}(X) \rightarrow \mathbb{N} \backslash\{0\}$ has the following properties:
1 if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup\{v\})$ divides $m(A)$;
2 if $A \subseteq X$ and $v \in X$ is independent on A, then $m(A)$ divides $m(A \cup\{v\})$;
3 if $A \subseteq B \subseteq X$ and B is a disjoint union $B=A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $r k(C)=r k(A)+|C \cap F|$, then $m(A) \cdot m(B)=m(A \cup F) \cdot m(A \cup T)$.
4 if $A \subseteq B \subseteq X$ and $\operatorname{rk}(A)=r k(B)$, then
$\mu_{B}(A):=\sum_{A \subseteq T \subseteq B}(-1)^{|T|-|A|} m(T) \geq 0 ;$
5 if $A \subseteq B \subseteq X$ and $r k^{*}(A)=r k^{*}(B)$, then
$\mu_{B}^{*}(A):=\sum_{A \subseteq T \subseteq B}(-1)^{|T|-|A|} m(X \backslash T) \geq 0$.

Definition of Arithmetic Matroid

An arithmetic matroid is a pair $\left(\mathfrak{M}_{X}, m\right)$, where \mathfrak{M}_{X} is a matroid on a list of vectors X, and m is a multiplicity function, i.e. $m: \mathbb{P}(X) \rightarrow \mathbb{N} \backslash\{0\}$ has the following properties:

II if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup\{v\})$ divides $m(A)$;
2. if $A \subseteq X$ and $v \in X$ is independent on A, then $m(A)$ divides $m(A \cup\{v\}) ;$
3 if $A \subseteq B \subseteq X$ and B is a disjoint union $B=A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $r k(C)=r k(A)+|C \cap F|$, then $m(A) \cdot m(B)=m(A \cup F) \cdot m(A \cup T)$.
44 if $A \subseteq B \subseteq X$ and $r k(A)=r k(B)$, then
$\mu_{B}(A):=\sum_{A \subseteq T \subseteq B}(-1)^{|T|-|A|} m(T) \geq 0 ;$
[if $A \subseteq B \subseteq X$ and $r k^{*}(A)=r k^{*}(B)$, then
$\mu_{B}^{*}(A):=\sum_{A \subseteq T \subseteq B}(-1)^{T|-|A|} m(X \backslash T) \geq 0$

Definition of Arithmetic Matroid

An arithmetic matroid is a pair $\left(\mathfrak{M}_{X}, m\right)$, where \mathfrak{M}_{X} is a matroid on a list of vectors X, and m is a multiplicity function, i.e. $m: \mathbb{P}(X) \rightarrow \mathbb{N} \backslash\{0\}$ has the following properties:
1 if $A \subseteq X$ and $v \in X$ is dependent on A, then $m(A \cup\{v\})$ divides $m(A)$;
2 if $A \subseteq X$ and $v \in X$ is independent on A, then $m(A)$ divides $m(A \cup\{v\}) ;$
B if $A \subseteq B \subseteq X$ and B is a disjoint union $B=A \cup F \cup T$ such that for all $A \subseteq C \subseteq B$ we have $r k(C)=r k(A)+|C \cap F|$, then $m(A) \cdot m(B)=m(A \cup F) \cdot m(A \cup T)$.
4 if $A \subseteq B \subseteq X$ and $r k(A)=r k(B)$, then

$$
\mu_{B}(A):=\sum_{A \subseteq T \subseteq B}(-1)^{|T|-|A|} m(T) \geq 0 ;
$$

5 if $A \subseteq B \subseteq X$ and $r k^{*}(A)=r k^{*}(B)$, then

$$
\mu_{B}^{*}(\bar{A}):=\sum_{A \subseteq T \subseteq B}(-1)^{|T|-|A|} m(X \backslash T) \geq 0
$$

Definition of Arithmetic Matroid

If $A \subseteq B=X$, then we denote $\mu_{X}(A)$ simply by $\mu(A)$. Similarly for $\mu^{*}(A)$.
Setting $m(A)=1$ for all $A \subseteq X$ we get a trivial multiplicity function, which essentially does not add anything to the matroid structure.
So any matroid is trivially an arithmetic matroid.
In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
But of course there are more interesting examples.

Definition of Arithmetic Matroid

If $A \subseteq B=X$, then we denote $\mu_{X}(A)$ simply by $\mu(A)$. Similarly for $\mu^{*}(A)$.
Setting $m(A)=1$ for all $A \subseteq X$ we get a trivial multiplicity function, which essentially does not add anything to the matroid structure.
So any matroid is trivially an arithmetic matroid.
In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
But of course there are more interesting examples.

Definition of Arithmetic Matroid

If $A \subseteq B=X$, then we denote $\mu_{X}(A)$ simply by $\mu(A)$. Similarly for $\mu^{*}(A)$.
Setting $m(A)=1$ for all $A \subseteq X$ we get a trivial multiplicity function, which essentially does not add anything to the matroid structure.
So any matroid is trivially an arithmetic matroid.
In this sense the notion of an arithmetic matroid is a generalization
of the one of a matroid.
But of course there are more interesting examples.

Definition of Arithmetic Matroid

If $A \subseteq B=X$, then we denote $\mu_{X}(A)$ simply by $\mu(A)$. Similarly for $\mu^{*}(A)$.
Setting $m(A)=1$ for all $A \subseteq X$ we get a trivial multiplicity function, which essentially does not add anything to the matroid structure.
So any matroid is trivially an arithmetic matroid.
In this sense the notion of an arithmetic matroid is a generalization
of the one of a matroid.
But of course there are more interesting examples.

Definition of Arithmetic Matroid

If $A \subseteq B=X$, then we denote $\mu_{X}(A)$ simply by $\mu(A)$. Similarly for $\mu^{*}(A)$.
Setting $m(A)=1$ for all $A \subseteq X$ we get a trivial multiplicity function, which essentially does not add anything to the matroid structure.
So any matroid is trivially an arithmetic matroid.
In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
But of course there are more interesting examples.

Definition of Arithmetic Matroid

If $A \subseteq B=X$, then we denote $\mu_{X}(A)$ simply by $\mu(A)$. Similarly for $\mu^{*}(A)$.
Setting $m(A)=1$ for all $A \subseteq X$ we get a trivial multiplicity function, which essentially does not add anything to the matroid structure.
So any matroid is trivially an arithmetic matroid.
In this sense the notion of an arithmetic matroid is a generalization of the one of a matroid.
But of course there are more interesting examples.

The main example

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{s} \mathbb{Z}$.
For $A \subseteq X$ we set
$r k(A):=$ maximal rank of a free abelian subgroup of $\langle A\rangle$;
$m(A):=\left|G_{A}:\langle\hat{A}\rangle\right|$, where G_{A} is the maximal subgroup of G such that $\langle A\rangle \leq G_{A}$ and $\left|G_{A}:\langle A\rangle\right|<\infty$.

Theorem (D.-Moci)
 If we set $\mathfrak{M}_{X}:=(X, r l)$, then $\left(M_{X}, m\right)$ is an arithmetic matroid

Arithmetic matroids of this form are called representable.

The main example

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{s} \mathbb{Z}$.
$r k(A):=$ maximal rank of a free abelian subgroup of $\langle A\rangle$;
$m(A):=\left|G_{A}:\langle\hat{A}\rangle\right|$, where G_{A} is the maximal subgroup of G such that $\langle A\rangle \leq G_{A}$ and $\left|G_{A}:\langle A\rangle\right|<\infty$.

If we set $\mathfrak{M}_{X}:=(X, r k)$, then $\left(\mathfrak{M}_{X}, m\right)$ is an arithmetic matroid.

Arithmetic matroids of this form are called representable

The main example

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{s} \mathbb{Z}$.
For $A \subseteq X$ we set
$r k(A):=$ maximal rank of a free abelian subgroup of $\langle A\rangle$;
$m(A):=\left|G_{A}:\langle A\rangle\right|$, where G_{A} is the maximal subgroup of G such that $\langle A\rangle \leq G_{A}$ and $\left|G_{A}:\langle A\rangle\right|<\infty$.

If we set $\mathfrak{M}_{X}:=(X, r k)$, then $\left(\mathfrak{M}_{X}, m\right)$ is an arithmetic matroid.

Arithmetic matroids of this form are called representable.

The main example

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{s} \mathbb{Z}$.
For $A \subseteq X$ we set
$r k(A):=$ maximal rank of a free abelian subgroup of $\langle A\rangle$;
$m(A):=\left|G_{A}:\langle A\rangle\right|$, where G_{A} is the maximal subgroup of G such that $\langle A\rangle \leq G_{A}$ and $\left|G_{A}:\langle A\rangle\right|<\infty$.

If we set $\mathfrak{M}_{X}:=(X, r k)$, then $\left(\mathfrak{M}_{X}, m\right)$ is an arithmetic matroid.
Arithmetic matroids of this form are called representable.

The main example

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{s} \mathbb{Z}$.
For $A \subseteq X$ we set
$r k(A):=$ maximal rank of a free abelian subgroup of $\langle A\rangle$;
$m(A):=\left|G_{A}:\langle A\rangle\right|$, where G_{A} is the maximal subgroup of G such that $\langle A\rangle \leq G_{A}$ and $\left|G_{A}:\langle A\rangle\right|<\infty$.

Theorem (D.-Moci)

If we set $\mathfrak{M}_{X}:=(X, r k)$, then $\left(\mathfrak{M}_{X}, m\right)$ is an arithmetic matroid.
Arithmetic matroids of this form are called representable.

The main example

Let X be a finite list of elements of a finitely generated abelian group $G \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{s} \mathbb{Z}$.
For $A \subseteq X$ we set
$r k(A):=$ maximal rank of a free abelian subgroup of $\langle A\rangle$;
$m(A):=\left|G_{A}:\langle A\rangle\right|$, where G_{A} is the maximal subgroup of G such that $\langle A\rangle \leq G_{A}$ and $\left|G_{A}:\langle A\rangle\right|<\infty$.

Theorem (D.-Moci)

If we set $\mathfrak{M}_{X}:=(X, r k)$, then $\left(\mathfrak{M}_{X}, m\right)$ is an arithmetic matroid.
Arithmetic matroids of this form are called representable.

A concrete example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are $1 / 1,1 / 2,1 / 3$.
Remark
The multip licity of $A \subseteq X$ is the GCD of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset)=1, m\left(\left\{v_{2}\right\}\right)=2, m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{2}, v_{3}\right\}\right)=1$, $m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.

A concrete example

$$
\text { Let } X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2} \text {. }
$$

Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.

Remark

The multip icity of $A \subseteq X$ is the GCD of the minors of maximal rank in the submatrix corresponding to A.

$$
\begin{aligned}
& \text { So } m(\emptyset)=1, m\left(\left\{v_{2}\right\}\right)=2, m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{2}, v_{3}\right\}\right)=1 \text {, } \\
& m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9 .
\end{aligned}
$$

A concrete example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.

The multiplicity of $A \subseteq X$ is the $G C D$ of the minors of maximal rank in the submatrix corresponding to A.

$$
\begin{aligned}
& \text { So } m(0)=1, m\left(\left\{v_{2}\right\}\right)=2, m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{2}, v_{3}\right\}\right)=1, \\
& m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9 .
\end{aligned}
$$

A concrete example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.

Remark

The multiplicity of $A \subseteq X$ is the $G C D$ of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset)=1, m\left(\left\{v_{2}\right\}\right)=2, m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{2}, v_{3}\right\}\right)=1$, $m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.

A concrete example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.

Remark

The multiplicity of $A \subseteq X$ is the $G C D$ of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset)=1, m\left(\left\{v_{2}\right\}\right)=2, m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{2}, v_{3}\right\}\right)=1$, $m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.

A concrete example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.

Remark

The multiplicity of $A \subseteq X$ is the $G C D$ of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset)=1, m\left(\left\{v_{2}\right\}\right)=2, m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{2}, v_{3}\right\}\right)=1$, $m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.

A concrete example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.

Remark

The multiplicity of $A \subseteq X$ is the $G C D$ of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset)=1, m\left(\left\{v_{2}\right\}\right)=2, m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{2}, v_{3}\right\}\right)=1$, $m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.

A concrete example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.

Remark

The multiplicity of $A \subseteq X$ is the $G C D$ of the minors of maximal rank in the submatrix corresponding to A.

So $m(\emptyset)=1, m\left(\left\{v_{2}\right\}\right)=2, m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{2}, v_{3}\right\}\right)=1$, $m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.

Motivation: two parallel theories

Motivation: two parallel theories

Continuous theory

Discrete theory

Motivation: two parallel theories

Continuous theory
 - $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{R}^{n}$

Discrete theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{n}$

Motivation: two parallel theories

Continuous theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{R}^{n}$
- Multivariate spline $S_{X}(\lambda):=$

Discrete theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{n}$
- Partition function $P_{X}(\lambda):=$

Motivation: two parallel theories

Continuous theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{R}^{n}$
- Multivariate spline $S_{x}(\lambda):=$ $\operatorname{vol}\left\{\underline{t} \in \mathbb{R}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}$

Discrete theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{n}$
- Partition function $P_{x}(\lambda):=$ $\left|\left\{\underline{t} \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}\right|$

Motivation: two parallel theories

Continuous theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{R}^{n}$
- Multivariate spline $S_{X}(\lambda):=$ $\operatorname{vol}\left\{\underline{t} \in \mathbb{R}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}$
- Hyperplane arrangements \mathcal{H}_{X}

Discrete theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{n}$
- Partition function $P_{x}(\lambda):=$ $\left|\left\{\underline{t} \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}\right|$
- Toric arrangements \mathcal{I}_{X}

Motivation: two parallel theories

Continuous theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{R}^{n}$
- Multivariate spline $S_{x}(\lambda):=$ $\operatorname{vol}\left\{\underline{t} \in \mathbb{R}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}$
- Hyperplane arrangements \mathcal{H}_{X}

Discrete theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{n}$
- Partition function $P_{x}(\lambda):=$ $\left|\left\{\underline{t} \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}\right|$
- Toric arrangements \mathcal{I}_{X}

Motivation: two parallel theories

Continuous theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{R}^{n}$
- Multivariate spline $S_{X}(\lambda):=$ $\operatorname{vol}\left\{\underline{t} \in \mathbb{R}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}$
- Hyperplane arrangements \mathcal{H}_{X}
- Matroid

Discrete theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{n}$
- Partition function $P_{x}(\lambda):=$ $\left|\left\{\underline{t} \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}\right|$
- Toric arrangements \mathcal{I}_{X}

Motivation: two parallel theories

Continuous theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{R}^{n}$
- Multivariate spline $S_{X}(\lambda):=$ $\operatorname{vol}\left\{\underline{t} \in \mathbb{R}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}$
- Hyperplane arrangements \mathcal{H}_{X}
- Matroid

Discrete theory

- $X:=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{n}$
- Partition function $P_{x}(\lambda):=$ $\left|\left\{\underline{t} \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda=\sum_{i=1}^{k} t_{i} x_{i}\right\}\right|$
- Toric arrangements \mathcal{I}_{X}
- ??? Arithmetic matroid!

Dual arithmetic matroid

Given an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$, its dual is $\left(\mathfrak{M}_{X}^{*}, m^{*}\right)$, where \mathfrak{M}_{X}^{*} is the dual matroid of \mathfrak{M}_{X}, and for all $A \subseteq X$ we set $m^{*}(A):=m(X \backslash A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

Thand
 The dual of a representable arithmetic matroid is representable.

In fact we give an explicit construction.

Dual arithmetic matroid

Given an arithmetic matroid $\left(\mathfrak{M}_{\chi}, m\right)$, its dual is $\left(\mathfrak{M}_{\chi}^{*}, m^{*}\right)$, where \mathfrak{M}_{X}^{*} is the dual matroid of \mathfrak{M}_{X}, and for all $A \subseteq X$ we set $m^{*}(A):=m(X \backslash A)$.

The dual of an arithmetic matroid is an arithmetic matroid.

The dual of a representable arithmetic matroid is representable.
In fact we give an explicit construction.

Dual arithmetic matroid

Given an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$, its dual is $\left(\mathfrak{M}_{X}^{*}, m^{*}\right)$, where \mathfrak{M}_{X}^{*} is the dual matroid of \mathfrak{M}_{X}, and for all $A \subseteq X$ we set $m^{*}(A):=m(X \backslash A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

In fact we give an explicit construction.

Dual arithmetic matroid

Given an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$, its dual is $\left(\mathfrak{M}_{X}^{*}, m^{*}\right)$, where \mathfrak{M}_{X}^{*} is the dual matroid of \mathfrak{M}_{X}, and for all $A \subseteq X$ we set $m^{*}(A):=m(X \backslash A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

Theorem (D.-Moci)

The dual of a representable arithmetic matroid is representable.
In fact we give an explicit construction.

Dual arithmetic matroid

Given an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$, its dual is $\left(\mathfrak{M}_{X}^{*}, m^{*}\right)$, where \mathfrak{M}_{X}^{*} is the dual matroid of \mathfrak{M}_{X}, and for all $A \subseteq X$ we set $m^{*}(A):=m(X \backslash A)$.

Lemma (D.-Moci)

The dual of an arithmetic matroid is an arithmetic matroid.

Theorem (D.-Moci)

The dual of a representable arithmetic matroid is representable.
In fact we give an explicit construction.

Arithmetic Tutte Polynomial

The arithmetic Tutte polynomial of the arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$ is defined as

$$
M_{X}(x, y):=\sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)} .
$$

From the definition it is clear that $M_{X}(1,1)$ is equal to the sum of the multiplicities of the bases of the matroid.
For the trivial multiplicity function $m(A)=1$ for all $A \subseteq X$ we get the Tutte polynomial $T_{X}(x, y)$ of \mathfrak{M}_{X}.

Arithmetic Tutte Polynomial

The arithmetic Tutte polynomial of the arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$ is defined as

$$
M_{X}(x, y):=\sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)} .
$$

From the definition it is clear that $M_{X}(1,1)$ is equal to the sum of the multiplicities of the bases of the matroid.
For the trivial multiplicity function $m(A)=1$ for all $A \subseteq X$ we get the Tutte polynomial $T_{X}(x, y)$ of \mathfrak{M}_{X}.

Arithmetic Tutte Polynomial

The arithmetic Tutte polynomial of the arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$ is defined as

$$
M_{X}(x, y):=\sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)} .
$$

From the definition it is clear that $M_{X}(1,1)$ is equal to the sum of the multiplicities of the bases of the matroid.
For the trivial multiplicity function $m(A)=1$ for all $A \subseteq X$ we get the Tutte polynomial $T_{X}(x, y)$ of \mathfrak{M}_{X}.

Arithmetic Tutte Polynomial

The arithmetic Tutte polynomial of the arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$ is defined as

$$
M_{X}(x, y):=\sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)} .
$$

From the definition it is clear that $M_{X}(1,1)$ is equal to the sum of the multiplicities of the bases of the matroid.
For the trivial multiplicity function $m(A)=1$ for all $A \subseteq X$ we get the Tutte polynomial $T_{X}(x, y)$ of \mathfrak{M}_{X}.

An example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\phi)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$,
$m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$M_{x}(x, y)=\sum_{A C x} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}=$
$=(x-1)^{2}+(3+2+3)(x-1)+(x-1)(y-1)+(6+9)+3(y-1)=$ $x^{2}+5 x+6+x y+2 y$.

An example

$$
\text { Let } X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2} \text {. }
$$

Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.

$$
\text { Then } m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2 \text {, }
$$

$$
m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9 .
$$

$$
M_{X}(x, y)=\sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}=
$$

$$
=(x-1)^{2}+(3+2+3)(x-1)+(x-1)(y-1)+(6+9)+3(y-1)=
$$

$$
x^{2}+5 x+6+x y+2 y
$$

An example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.

$=(x-1)^{2}+(3+2+3)(x-1)+(x-1)(y-1)+(6+9)+3(y-1)=$ $x^{2}+5 x+6+x y+2 y$.

An example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$M_{X}(x, y)=\sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}=$
$=(x-1)^{2}+(3+2+3)(x-1)+(x-1)(y-1)+(6+9)+3(y-1)=$ $x^{2}+5 x+6+x y+2 y$.

An example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$M_{X}(x, y)=\sum_{A \subseteq x} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}=$ $=(x-1)^{2}+(3+2+3)(x-1)+(x-1)(y-1)+(6+9)+3(y-1)=$ $x^{2}+5 x+6+x y+2 y$.

An example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$M_{X}(x, y)=\sum_{A \subseteq x} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}=$

$$
=(x-1)^{2}+(3+2+3)(x-1)+(x-1)(y-1)+(6+9)+3(y-1)=
$$

An example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$M_{X}(x, y)=\sum_{A \subseteq X} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}=$
$=(x-1)^{2}+(3+2+3)(x-1)+(x-1)(y-1)+(6+9)+3(y-1)=$ $x^{2}+5 x+6+x y+2 y$.

An example

Let $X=\left\{v_{1}:=(3,0), v_{2}:=(2,-2), v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$M_{X}(x, y)=\sum_{A \subseteq x} m(A)(x-1)^{r k(X)-r k(A)}(y-1)^{|A|-r k(A)}=$
$=(x-1)^{2}+(3+2+3)(x-1)+(x-1)(y-1)+(6+9)+3(y-1)=$ $x^{2}+5 x+6+x y+2 y$.

Positive coefficients!

The combinatorial problem

> Let $\left(\mathfrak{M}_{X}, m\right)$ be an arithmetic matroid, and $M_{X}(x, y)$ its arithmetic Tutte polynomial.

Qurestion
Does $M_{x}(x, y)$ have positive coefficients for any arithmetic matroid?

Question

Is there a combinatorial interpretation of $M_{x}(x, y)$?

The combinatorial problem

Let $\left(\mathfrak{M}_{X}, m\right)$ be an arithmetic matroid, and $M_{X}(x, y)$ its arithmetic Tutte polynomial.

Question
 Is there a combinatorial interpretation of $M_{x}(x, y)$?

The combinatorial problem

Let $\left(\mathfrak{M}_{X}, m\right)$ be an arithmetic matroid, and $M_{X}(x, y)$ its arithmetic Tutte polynomial.

Question

Does $M_{X}(x, y)$ have positive coefficients for any arithmetic matroid?

Question Is there a combinatorial interpretation of $M_{X}(x, y)$?

The combinatorial problem

Let $\left(\mathfrak{M}_{X}, m\right)$ be an arithmetic matroid, and $M_{X}(x, y)$ its arithmetic Tutte polynomial.

Question

Does $M_{X}(x, y)$ have positive coefficients for any arithmetic matroid?

Question

Is there a combinatorial interpretation of $M_{X}(x, y)$?

The combinatorial problem

Let $\left(\mathfrak{M}_{X}, m\right)$ be an arithmetic matroid, and $M_{X}(x, y)$ its arithmetic Tutte polynomial.

Question

Does $M_{X}(x, y)$ have positive coefficients for any arithmetic matroid? YES!

Question

Is there a combinatorial interpretation of $M_{X}(x, y)$? YES!

What is the problem?

Remember that $M_{X}(1,1)$ is the sum of the multiplicities of the

 bases extracted from X.$$
\begin{aligned}
& X_{1}:=\left\{v_{1}:=(3,0), v_{2}:=(2,-2)\right\} \subseteq G:=\mathbb{Z}^{2} . \\
& m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=3, m\left(\left\{v_{2}\right\}\right)=2, m(\emptyset)=1 . \\
& M_{X_{1}}(x, y)=x^{2}+3 x+2
\end{aligned}
$$

What is the problem?

Remember that $M_{X}(1,1)$ is the sum of the multiplicities of the bases extracted from X.
$X_{1}:=\left\{v_{1}:=(3,0), v_{2}:=(2,-2)\right\} \subseteq G:=\mathbb{Z}^{2}$
$m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=3, m\left(\left\{v_{2}\right\}\right)=2, m(\emptyset)=1$.
$M_{X_{1}}(x, y)=x^{2}+3 x+2$

What is the problem?

Remember that $M_{X}(1,1)$ is the sum of the multiplicities of the bases extracted from X.
$X_{1}:=\left\{v_{1}:=(3,0), v_{2}:=(2,-2)\right\} \subseteq G:=\mathbb{Z}^{2}$.
$m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=3, m\left(\left\{v_{2}\right\}\right)=2, m(\phi)=1$
$M_{X_{1}}(x, y)=x^{2}+3 x+2$

What is the problem?

Remember that $M_{X}(1,1)$ is the sum of the multiplicities of the bases extracted from X.

$$
\begin{aligned}
& X_{1}:=\left\{v_{1}:=(3,0), v_{2}:=(2,-2)\right\} \subseteq G:=\mathbb{Z}^{2} \\
& m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=3, m\left(\left\{v_{2}\right\}\right)=2, m(\emptyset)=1
\end{aligned}
$$

$$
M_{x_{1}}(x, y)=x^{2}+3 x+2
$$

What is the problem?

Remember that $M_{X}(1,1)$ is the sum of the multiplicities of the bases extracted from X.

$$
\begin{aligned}
& X_{1}:=\left\{v_{1}:=(3,0), v_{2}:=(2,-2)\right\} \subseteq G:=\mathbb{Z}^{2} \\
& m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=3, m\left(\left\{v_{2}\right\}\right)=2, m(\emptyset)=1 \\
& M_{X_{1}}(x, y)=x^{2}+3 x+2
\end{aligned}
$$

What is the problem?

Remember that $M_{X}(1,1)$ is the sum of the multiplicities of the bases extracted from X.

$$
\begin{aligned}
& X_{1}:=\left\{v_{1}:=(3,0), v_{2}:=(2,-2)\right\} \subseteq G:=\mathbb{Z}^{2} \\
& m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=3, m\left(\left\{v_{2}\right\}\right)=2, m(\emptyset)=1 \\
& M_{X_{1}}(x, y)=x^{2}+3 x+2 ? ?
\end{aligned}
$$

What is the problem?

Remember that $M_{X}(1,1)$ is the sum of the multiplicities of the bases extracted from X.

$$
\begin{aligned}
& X_{1}:=\left\{v_{1}:=(3,0), v_{2}:=(2,-2)\right\} \subseteq G:=\mathbb{Z}^{2} \\
& m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{1}\right\}\right)=3, m\left(\left\{v_{2}\right\}\right)=2, m(\emptyset)=1 \\
& M_{X_{1}}(x, y)=x^{2}+3 x+2 ? ?
\end{aligned}
$$

Same bases give different statistics!

The construction I

Consider an arithmetic matroid (\mathfrak{M}_{χ}, m). Let $S \subseteq X$ be of maximal rank, i.e. $r k(S)=r k(X)$.
Then $\mu(S)=\sum_{x \supset T \supset S}(-1)^{T T-|S|} m(T) \geq 0$.
We call L_{X} the list in which every maximal rank sublist S appears $\mu(S)$ many times.
We construct dually L_{X} from (\sum_{χ}^{*}, m^{*}) using $\mu^{*}(S)$.
We define the lists $B:=\{(B, T) \mid B$ basis, $B \subseteq T, T \in L x\}$ and its dual $\mathcal{B}^{*}:=\left\{\left(B^{c}, \tilde{T}\right) \mid B\right.$ basis, $\left.B^{c} \subseteq \tilde{T}, \tilde{T} \in L_{\chi}^{*}\right\}$. Each basis B appears $m(B)$ times in \mathcal{B} (by inclusion-exclusion).

The construction I

Consider an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$. Let $S \subseteq X$ be of maximal rank, i.e. $r k(S)=r k(X)$.
Then $\mu(S)=\sum_{X \supseteq T \supseteq S}(-1)^{T-|S|} m(T) \geq 0$.
We call L_{X} the list in which every maximal rank sublist S appears
$\mu(S)$ many times.
We construct dually L_{x}^{*} from ($\mathfrak{N}_{X}^{*}, m^{*}$) using $\mu^{*}(S)$.
We define the lists $\mathcal{B}:=\left\{(B, T) \mid B\right.$ basis, $\left.B \subseteq T, T \in L_{x}\right\}$ and
its dual $\mathcal{B}^{*}:=\left\{\left(B^{c}, \widetilde{T}\right) \mid B\right.$ basis, $\left.B^{c} \subseteq \widetilde{T}, \widetilde{T} \in L_{\chi}^{*}\right\}$.
Each basis B appears $m(B)$ times in \mathcal{B} (by inclusion-exclusion).

The construction I

Consider an arithmetic matroid (\mathfrak{M}_{χ}, m). Let $S \subseteq X$ be of maximal rank, i.e. $r k(S)=r k(X)$.
Then $\mu(S)=\sum_{x \supseteq T \supseteq s}(-1)^{|T|-|S|} m(T) \geq 0$.
We call L_{x} the list in which every maximal rank sublist S appears
$\mu(S)$ many times.
We construct dually L_{X}^{*} from $\left(\mathfrak{M}_{X}^{*}, m^{*}\right)$ using $\mu^{*}(S)$.
We define the lists $\mathcal{B}:=\left\{(B, T) \mid B\right.$ basis, $\left.B \subseteq T, T \in L_{x}\right\}$ and
its dual $B^{*}:=\left\{\left(B^{c}, \widetilde{T}\right) \mid B\right.$ basis, $\left.B^{c} \subseteq \widetilde{T}, \widetilde{T} \in L_{x}^{*}\right\}$.
Each basis B appears $m(B)$ times in \mathcal{B} (by inclusion-exclusion).

The construction I

Consider an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$. Let $S \subseteq X$ be of maximal rank, i.e. $r k(S)=r k(X)$.
Then $\mu(S)=\sum_{X \supseteq T \supseteq S}(-1)^{|T|-|S|} m(T) \geq 0$.
We call L_{X} the list in which every maximal rank sublist S appears $\mu(S)$ many times.

The construction I

Consider an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$. Let $S \subseteq X$ be of maximal rank, i.e. $r k(S)=r k(X)$.
Then $\mu(S)=\sum_{X \supseteq T \supseteq S}(-1)^{|T|-|S|} m(T) \geq 0$.
We call L_{X} the list in which every maximal rank sublist S appears $\mu(S)$ many times.
We construct dually L_{X}^{*} from ($\mathfrak{M}_{X}^{*}, m^{*}$) using $\mu^{*}(S)$.
We define the lists $B:=\left\{(B, T) \mid B\right.$ basis, $\left.B \subseteq T, T \in L_{x}\right\}$ and
its dual $\mathcal{B}^{*}:=\left\{\left(B^{c}, \widetilde{T}\right) \mid B\right.$ basis, $\left.B^{c} \subseteq \widetilde{T}, \widetilde{T} \in L_{x}^{*}\right\}$.
Each basis B appears $m(B)$ times in \mathcal{B} (by inclusion-exclusion).

The construction I

Consider an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$. Let $S \subseteq X$ be of maximal rank, i.e. $r k(S)=r k(X)$.
Then $\mu(S)=\sum_{x \supseteq T \supseteq S}(-1)^{|T|-|S|} m(T) \geq 0$.
We call L_{X} the list in which every maximal rank sublist S appears $\mu(S)$ many times.
We construct dually L_{X}^{*} from ($\mathfrak{M}_{X}^{*}, m^{*}$) using $\mu^{*}(S)$.
We define the lists $\mathcal{B}:=\left\{(B, T) \mid B\right.$ basis, $\left.B \subseteq T, T \in L_{x}\right\}$ and its dual $\mathcal{B}^{*}:=\left\{\left(B^{c}, \widetilde{T}\right) \mid B\right.$ basis, $\left.B^{c} \subseteq \widetilde{T}, \widetilde{T} \in L_{\chi}^{*}\right\}$.
Each basis B appears $m(B)$ times in \mathcal{B} (by inclusion-exclusion).

The construction I

Consider an arithmetic matroid $\left(\mathfrak{M}_{X}, m\right)$. Let $S \subseteq X$ be of maximal rank, i.e. $r k(S)=r k(X)$.
Then $\mu(S)=\sum_{X \supseteq T \supseteq S}(-1)^{|T|-|S|} m(T) \geq 0$.
We call L_{X} the list in which every maximal rank sublist S appears $\mu(S)$ many times.
We construct dually L_{X}^{*} from ($\mathfrak{M}_{X}^{*}, m^{*}$) using $\mu^{*}(S)$.
We define the lists $\mathcal{B}:=\left\{(B, T) \mid B\right.$ basis, $\left.B \subseteq T, T \in L_{x}\right\}$ and its dual $\mathcal{B}^{*}:=\left\{\left(B^{c}, \widetilde{T}\right) \mid B\right.$ basis, $\left.B^{c} \subseteq \widetilde{T}, \widetilde{T} \in L_{\chi}^{*}\right\}$.
Each basis B appears $m(B)$ times in \mathcal{B} (by inclusion-exclusion).

The construction ||

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity $e(B, T)$ to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, T\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}.
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{C}, T\right) \in B^{*}$, but how do we choose T?
In fact it is even worst: from the computations of $M_{X}(x, y)$ we can see that sometimes the same copy of (B, T) needs to go to different (B^{c}, \widetilde{T})'s!

The construction ||

We fix a total order on X. For every $(B, T) \in B$ we define its local external activity $e(B, T)$ to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, T\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}.
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$, but how do we choose T ?
In fact it is even worst: from the computations of $M_{x}(x, y)$ we can see that sometimes the same copy of (B, T) needs to go to different (B^{c}, \widetilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity $e(B, T)$ to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{C}, T\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from B with the pairs from \mathcal{B}^{*}
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$, but how do we choose T ?
In fact it is even worst: from the computations of $M_{X}(x, y)$ we can see that sometimes the same copy of (B, T) needs to go to different (B^{c}, \widetilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity e(B,T) to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, \widetilde{T}\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{C}, \widetilde{T}\right) \in B^{*}$, but how do we choose T ?
In fact it is even worst: from the computations of $M_{x}(x, y)$ we can see that sometimes the same copy of (B, T) needs to go to different (B^{c}, \widetilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity e(B,T) to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, \widetilde{T}\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{C}, T\right) \in B^{*}$, but how do we choose T?
In fact it is even worst: from the computations of $M_{X}(x, y)$ we can see that sometimes the same copy of (B, T) needs to go to different (B^{c}, \widetilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity e(B,T) to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, \widetilde{T}\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from B with
the pairs from \mathcal{B}^{\prime}
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$, but how do we choose T ?
In fact it is even worst: from the computations of $M_{X}(x, y)$ we can see that sometimes the same copy of (B, T) needs to go to different (B^{c}, \widetilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity $e(B, T)$ to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, \widetilde{T}\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}.
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$, but how do we
choose T ?
In fact it is even worst: from the computations of $M_{X}(x, y)$ we can
see that sometimes the same copy of (B, T) needs to go to
different (B^{c}, \widetilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity $e(B, T)$ to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, \widetilde{T}\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}.
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$, but how do we
choose T?
In fact it is even worst: from the computations of $M_{X}(x, y)$ we can
see that sometimes the same copy of (B, T) needs to go to
different (B^{c}, \tilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity $e(B, T)$ to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, \widetilde{T}\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}.
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$, but how do we choose T ?
In fact it is even worst: from the computations of $M_{X}(x, y)$ we can
see that sometimes the same copy of (B, T) needs to go to
different (B^{c}, \widetilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity $e(B, T)$ to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, \widetilde{T}\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}.
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$, but how do we choose T ?
In fact it is even worst: from the computations of $M_{x}(x, y)$ we can
see that sometimes the same copy of (B, T) needs to go to
different (B^{c}, \widetilde{T})'s!

The construction II

We fix a total order on X. For every $(B, T) \in \mathcal{B}$ we define its local external activity $e(B, T)$ to be the number of elements of $T \backslash B$ that are externally active on B. We define $e^{*}\left(B^{c}, \widetilde{T}\right)$ dually (using the same order).
Are we done?
Not quite: we need to decide how to match the pairs from \mathcal{B} with the pairs from \mathcal{B}^{*}.
Clearly $(B, T) \in \mathcal{B}$ goes to some $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$, but how do we choose T ?
In fact it is even worst: from the computations of $M_{X}(x, y)$ we can see that sometimes the same copy of (B, T) needs to go to different (B^{c}, \widetilde{T})'s!

The construction III

We define a matching $\psi: \mathcal{B} \rightarrow \mathcal{B}^{*}:$ given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements.
We do the same with the pairs $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$. Then we equidistribute these pairs among each others.

Theorem (D.-Moci)

$$
M_{X}(x, y)=\sum_{(B, T) \in \mathcal{B}} x^{e^{*}(\psi(B, T))} y^{e(B, T)} .
$$

The construction III

We define a matching $\psi: \mathcal{B} \rightarrow \mathcal{B}^{*}$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements. We do the same with the pairs $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$. Then we equidistribute these pairs among each others.

$x^{\mathrm{e}^{*}(\psi(B, T))} y^{e(B, T)}$
(B.T) $\in \mathcal{B}$

The construction III

We define a matching $\psi: \mathcal{B} \rightarrow \mathcal{B}^{*}$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements.
We do the same with the pairs $\left(B^{c}, T\right) \in \mathcal{B}^{*}$. Then we equidistribute these pairs among each others.

The construction III

We define a matching $\psi: \mathcal{B} \rightarrow \mathcal{B}^{*}$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements.
We do the same with the pairs $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$. Then we
equidistribute these pairs among each others.

The construction III

We define a matching $\psi: \mathcal{B} \rightarrow \mathcal{B}^{*}$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements.
We do the same with the pairs $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$. Then we equidistribute these pairs among each others.

The construction III

We define a matching $\psi: \mathcal{B} \rightarrow \mathcal{B}^{*}$: given a basis $B \subseteq X$, we identify the pairs $(B, T) \in \mathcal{B}$ having the same elements in T active on B, ignoring the non-active elements.
We do the same with the pairs $\left(B^{c}, \widetilde{T}\right) \in \mathcal{B}^{*}$. Then we equidistribute these pairs among each others.

Theorem (D.-Moci)

$$
M_{X}(x, y)=\sum_{(B, T) \in \mathcal{B}} x^{e^{*}(\psi(B, T))} y^{e(B, T)}
$$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{x}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{x}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{x}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$ $L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$

An example

$$
X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2} .
$$

Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.

$L_{x}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$

An example

$$
X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2} .
$$

Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$

An example

$$
X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2} .
$$

Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{x}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{2}\right\}$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{2}\right\}$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{2}\right\}$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{2}\right\}$
$x^{2}+3 x+2$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{2}\right\}$
$x^{2}+3 x+2$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{3}\right\}$
$x^{2}+3 x+2$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{3}\right\}$
$x^{2}+3 x+2$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{x}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{3}\right\}$
$x^{2}+3 x+2$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{3}\right\}$
$x^{2}+3 x+2+x y+2 y$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{3}\right\}$
$x^{2}+3 x+2+x y+2 y+2 x+4$

An example

$$
X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2} .
$$

Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{3}\right\}$

$$
\begin{aligned}
& x^{2}+3 x+2+x y+2 y+2 x+4= \\
& =x^{2}+3 x+2+(y+2)(x+2)
\end{aligned}
$$

An example

$X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2}$.
Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{3}\right\}$

$$
\begin{aligned}
& x^{2}+3 x+2+x y+2 y+2 x+4= \\
& =x^{2}+3 x+2+(y+2)(x+2)= \\
& =x^{2}+5 x+6+x y+2 y
\end{aligned}
$$

An example

$$
X=\left\{v_{1}:=(3,0)<v_{2}:=(2,-2)<v_{3}:=(-3,3)\right\} \subseteq G:=\mathbb{Z}^{2} .
$$

Consider the matrix $\left(\begin{array}{ccc}3 & 2 & -3 \\ 0 & -2 & 3\end{array}\right)$ whose columns are v_{1}, v_{2}, v_{3}.
Then $m(\emptyset)=m\left(\left\{v_{2}, v_{3}\right\}\right)=1, m\left(\left\{v_{1}, v_{2}\right\}\right)=6, m\left(\left\{v_{2}\right\}\right)=2$, $m\left(\left\{v_{1}\right\}\right)=m\left(\left\{v_{3}\right\}\right)=m\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=3, m\left(\left\{v_{1}, v_{3}\right\}\right)=9$.
$L_{X}=\left(\left\{v_{1}, v_{2}, v_{3}\right\}^{3},\left\{v_{1}, v_{2}\right\}^{3},\left\{v_{1}, v_{3}\right\}^{6}\right)$
$L_{X}^{*}=\left(\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}\right\}^{2},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}^{2},\left\{v_{2}\right\}^{4},\left\{v_{3}\right\}^{2}\right)$
Consider the basis $\left\{v_{1}, v_{3}\right\}$

$$
\begin{aligned}
& x^{2}+3 x+2+x y+2 y+2 x+4= \\
& =x^{2}+3 x+2+(y+2)(x+2)= \\
& =x^{2}+5 x+6+x y+2 y=M_{x}(x, y)!
\end{aligned}
$$

THE END

References

1 M. D’Adderio, L. Moci, Arithmetic matroids, Tutte Polynomial and toric arrangements, arXiv:1105.3220.
2 C. De Concini, C. Procesi, Topics in hyperplane arrangements, polytopes and box-splines, Springer 2010.

THE END

THANKS!

References

1 M. D'Adderio, L. Moci, Arithmetic matroids, Tutte Polynomial and toric arrangements, arXiv:1105.3220.
2 C. De Concini, C. Procesi, Topics in hyperplane arrangements, polytopes and box-splines, Springer 2010.

