A Topological Representation Theorem for Tropical Oriented Matroids

FPSAC 2012, Nagoya

Silke Horn
2 August 2012

Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors - non-realisable OMs

Theorem („Topological Representation
Theorem", Folkman \& Lawrence, 1978)
Every OM can be realised as an
arrangement of pseudohyperplanes.

Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors - non-realisable OMs

Theorem („Topological Representation
Theorem", Folkman \& Lawrence, 1978)
Every OM can be realised as an
arrangement of pseudohyperplanes.

Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
> oriented matroid (OM): combinatorial model for the set of covectors - non-realisable OMs

> Theorem („Topological Representation Theorem", Folkman \& Lawrence, 1978)

> Every OM can be realised as an
> arrangement of pseudohyperplanes.

Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
> non-realisable OMs

Theorem („Topological Representation
Theorem", Folkman \& Lawrence, 1978)
Every OM can be realised as an
arrangement of pseudohyperplanes.

Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem („Topological Representation
Theorem", Folkman \& Lawrence, 1978)
Every OM can be realised as an
arrangement of pseudohyperplanes.

Oriented Matroids

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem („Topological Representation
Theorem", Folkman \& Lawrence, 1978)
Every OM can be realised as an
arrangement of pseudohyperplanes.

Oriented Matroids

TECHNISCHE UNIVERSITAT DARMSTADT

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem („Topological Representation Theorem", Folkman \& Lawrence, 1978)

Every OM can be realised as an
arrangement of pseudohyperplanes.

Oriented Matroids

TECHNISCHE UNIVERSITAT DARMSTADT

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem („Topological Representation Theorem", Folkman \& Lawrence, 1978)
Every OM can be realised as an arrangement of pseudohyperplanes.

Oriented Matroids

TECHNISCHE UNIVERSITAT DARMSTADT

We want a similar theory in the tropical world!

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

Theorem („Topological Representation Theorem", Folkman \& Lawrence, 1978)
Every OM can be realised as an arrangement of pseudohyperplanes.

Tropical Geometry in a Nutshell

- named "tropical" in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring $(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ $x \oplus y:=\min \{x, y\}, x \odot y:=x+y$
- linear tropical polynomial: $p(x)=\bigoplus_{i=1}^{d} a_{i} \odot x_{i}=\min _{1 \leq i \leq d}\left\{a_{i}+x_{i}\right\}$
- vanishing locus / tropical hypersurface: minimum attained twice > tropical hyperplane: vanishing locus of a linear tropical polynomial

Tropical Geometry in a Nutshell

- named "tropical" in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring ($\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ $x \oplus y:=\min \{x, y\}, x \odot y:=x+y$
- vanishing locus / tropical hypersurface: minimum attained twice - tropical hyperplane: vanishing locus of a linear tropical polynomial

Tropical Geometry in a Nutshell

- named "tropical" in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring ($\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ $x \oplus y:=\min \{x, y\}, x \odot y:=x+y$
- linear tropical polynomial: $p(x)=\bigoplus_{i=1}^{d} a_{i} \odot x_{i}=\min _{1 \leq i \leq d}\left\{a_{i}+x_{i}\right\}$
- vanishing locus / tropical hypersurface: minimum attained twice - tropical hyperplane: vanishing locus of a linear tropical polynomial

Tropical Geometry in a Nutshell

- named "tropical" in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring ($\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ $x \oplus y:=\min \{x, y\}, x \odot y:=x+y$
- linear tropical polynomial: $p(x)=\bigoplus_{i=1}^{d} a_{i} \odot x_{i}=\min _{1 \leq i \leq d}\left\{a_{i}+x_{i}\right\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

Tropical Geometry in a Nutshell

- named "tropical" in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring ($\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ $x \oplus y:=\min \{x, y\}, x \odot y:=x+y$
- linear tropical polynomial: $p(x)=\bigoplus_{i=1}^{d} a_{i} \odot x_{i}=\min _{1 \leq i \leq d}\left\{a_{i}+x_{i}\right\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

Tropical Geometry in a Nutshell

- named "tropical" in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring ($\mathbb{R} \cup\{\infty\}, \oplus, \odot)$ $x \oplus y:=\min \{x, y\}, x \odot y:=x+y$
- linear tropical polynomial: $p(x)=\bigoplus_{i=1}^{d} a_{i} \odot x_{i}=\min _{1 \leq i \leq d}\left\{a_{i}+x_{i}\right\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

1-dimensional tropical hyperplane
(tropical line)

Tropical Geometry in a Nutshell

- named "tropical" in honour of Brazilian mathematician Imre Simon
- algebraic geometry over the tropical semiring ($\mathbb{R} \cup\{\infty\}, \oplus, \odot)$

$$
x \oplus y:=\min \{x, y\}, x \odot y:=x+y
$$

- linear tropical polynomial: $p(x)=\bigoplus_{i=1}^{d} a_{i} \odot x_{i}=\min _{1 \leq i \leq d}\left\{a_{i}+x_{i}\right\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

Arrangements of Tropical Hyperplanes

(n, d)-types and tropical covectors

Arrangements of Tropical Hyperplanes

(n, d)-types and tropical covectors

$(1,3,2)$

Arrangements of Tropical Hyperplanes

(n, d)-types and tropical covectors

$(1,13,2)$
(1,3,2)

Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition
A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T P}^{d-1}$ that fixes the boundary.

Problem: Dofine tropical pseudohyperplane arrangements!

Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition
A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T P}{ }^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!

Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition
A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T P}^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!

Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition
A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T P}{ }^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!

Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T P}{ }^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!

Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

 A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T P}{ }^{d-1}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!

Tropical Oriented Matroids (TOMs) and Tropical Pseudohyperplanes

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of $\mathbb{T P ^ { d - 1 }}$ that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!

TOMs and Mixed Subdivisions

The Minkowski sum of two sets X, Y is $X+Y:=\{x+y \mid x \in X, y \in Y\}$.

Definition
A polytopal subdivision of $n \triangle^{d-1}$ is mixed
if every face is a Minkowski sum of faces
of \triangle^{d-1}

Theorem (Ardila, Develin, 2007)
Every TOM yields a mixed subdivision.

Conjecture (Ardila, Develin, 2007)
The converse also holds.

TOMs and Mixed Subdivisions

The Minkowski sum of two sets X, Y is $X+Y:=\{x+y \mid x \in X, y \in Y\}$.

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1}.

Every TOM yields a mixed subdivision.

Conjecture (Ardila, Develin, 2007) The converse also holds.

$$
2 \triangle^{2}(n=2, d=3)
$$

TOMs and Mixed Subdivisions

The Minkowski sum of two sets X, Y is $X+Y:=\{x+y \mid x \in X, y \in Y\}$.

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1}.

Theorem (Ardila, Develin, 2007)
Every TOM yields a mixed subdivision.
Conjecture (Ardila, Develin, 2007)
The converse also holds.

$$
2 \triangle^{2}(n=2, d=3)
$$

TOMs and Mixed Subdivisions

The Minkowski sum of two sets X, Y is $X+Y:=\{x+y \mid x \in X, y \in Y\}$.

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1}.

Theorem (Ardila, Develin, 2007)
Every TOM yields a mixed subdivision.
Conjecture (Ardila, Develin, 2007)
The converse also holds.

$$
2 \triangle^{2}(n=2, d=3)
$$

TOMs and Mixed Subdivisions

The Minkowski sum of two sets X, Y is $X+Y:=\{x+y \mid x \in X, y \in Y\}$.

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1}.

Theorem (Ardila, Develin, 2007)
Every TOM yields a mixed subdivision.
Conjecture (Ardila, Develin, 2007) The converse also holds.

$$
2 \triangle^{2}(n=2, d=3)
$$

"The Bigger Picture"

tropical oriented matroids

mixed subdivisions

 of $n \triangle^{d-1}$tropical hyperplane arrangements
tropical pseudohyperplane arrangements ???

"The Bigger Picture"

tropical oriented
matroids

Ardila/Develin
tropical hyperplane arrangements

mixed subdivisions

 of $n \triangle^{d-1}$TECHNISCHE UNIVERSITATT DARMSTADT
tropical pseudohyperplane arrangements ???

"The Bigger Picture"

tropical oriented \longrightarrow
matroids mixed subdivivisions

Ardila/Develin

tropical hyperplane arrangements

"The Bigger Picture"

"The Bigger Picture"

"The Bigger Picture"

"The Bigger Picture"

Mixed Subdivisions and TROPHYs

TECHNISCHE UNIVERSITAT
DARMSTADT

Discrete
Optimization

Mixed Subdivisions and TROPHYs

TECHNISCHE UNIVERSITATT DARMSTADT

Mixed Subdivisions and TROPHYs

TECHNISCHE UNIVERSITATT
DARMSTADT

Mixed Subdivisions and TROPHYs

TECHNISCHE UNIVERSITAT DARMSTADT

Mixed Subdivisions and TROPHYs

Mixed Subdivisions and TROPHYs

Theorem (H., 2011)
The Poincaré dual of a mixed subdivision of $n \triangle^{d-1}$ yields a family of tropical pseudohyperplanes.

Elimination and Convexity in TOMs

Let M be a TOM.

Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$.
Contains every elimination of A and B.
Theorem (H., 2010)
A mixed subdivision S has the elimination
property $\Longleftrightarrow S_{A B}$ is path-connected for all
$A, B \in S$.
\Rightarrow This is a topological problem!

Elimination and Convexity in TOMs

Let M be a TOM.
Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$.
Contains every elimination of A and B.
Theorem (H., 2010)
A mixed subdivision S has the elimination
property $\Longleftrightarrow S_{A B}$ is path-connected for all
$A, B \in S$.
\Rightarrow This is a topological problem!

Elimination and Convexity in TOMs

Let M be a TOM.
Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.

Elimination and Convexity in TOMs

TECHNISCHE UNIVERSITATT

Let M be a TOM.

Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.

\square
This is a topological problem!

Elimination and Convexity in TOMs

TECHNISCHE UNIVERSITATT

Let M be a TOM.

Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.

Elimination and Convexity in TOMs

TECHNISCHE UNIVERSITATT

Let M be a TOM.

Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.

Elimination and Convexity in TOMs

TECHNISCHE UNIVERSITATT

Let M be a TOM.

Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.

Elimination and Convexity in TOMs

TECHNISCHE UNIVERSITATT

Let M be a TOM.

Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.

\square
This is a topological problem!

Elimination and Convexity in TOMs

TECHNISCHE UNIVERSITATT

Let M be a TOM.

Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.

Elimination and Convexity in TOMs

TECHNISCHE UNIVERSITATT

Let M be a TOM.

Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.

A mixed subdivision S has the elimination property $\Longleftrightarrow S_{A B}$ is path-connected for all
 $A, B \in S$ This is a topological problem!

Elimination and Convexity in TOMs

Let M be a TOM.
Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.
Theorem (H., 2010)
A mixed subdivision S has the elimination property $\Longleftrightarrow S_{A B}$ is path-connected for all
 $A, B \in S$.
\Rightarrow This is a topological problem!

Elimination and Convexity in TOMs

Let M be a TOM.
Elimination property: For $A, B \in M, k \in[n]$ there is $C \in M$ such that

- $C_{k}=A_{k} \cup B_{k}$,
- $C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}$.
convex hull of A and B :
$M_{A B}:=\left\{C \in M \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$. Contains every elimination of A and B.
Theorem (H., 2010)
A mixed subdivision S has the elimination property $\Longleftrightarrow S_{A B}$ is path-connected for all
 $A, B \in S$.
\Rightarrow This is a topological problem!

Arrangements of Tropical Pseudohyperplanes (TROPHYs)

$\mathcal{I}=(2,23,1,12,3,3)$
induced family of (linear) pseudohyperplanes

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ and \mathcal{I}
$\Rightarrow \cap \mathcal{A}_{\mathcal{I}}^{\prime}$ is empty or
$-\mathcal{A}_{\mathcal{I}}^{\prime}$ is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation
Theorem, H., 2011)
A mixed subdivision of $n \triangle^{d-1}$ yields an arrangement of TROPHYs.

Arrangements of Tropical Pseudohyperplanes (TROPHYs)

$\mathcal{I}=(2,23,1,12,3,3)$
induced family of (linear) pseudohyperplanes

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ and \mathcal{I}

- $\cap \mathcal{A}_{\mathcal{I}}^{\prime}$ is empty or
- $\mathcal{A}_{\mathcal{I}}^{\prime}$ is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation
Theorem, H., 2011)
A mixed subdivision of $n \Delta^{d-1}$ yields an arrangement of TROPHYs.

Arrangements of Tropical Pseudohyperplanes (TROPHYs)

$$
\mathcal{I}=(2,23,1,12,3,3)
$$

induced family of (linear) pseudohyperplanes

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ and \mathcal{I}

- $\cap \mathcal{A}_{\mathcal{I}}^{\prime}$ is empty or
- $\mathcal{A}_{\mathcal{I}}^{\prime}$ is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011) A mixed subdivision of $n \Delta^{d-1}$ yields an arrangement of TROPHYs.

Arrangements of Tropical Pseudohyperplanes (TROPHYs)

$$
\mathcal{I}=(2,23,1,12,3,3)
$$

$\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family \mathcal{A} of TROPHYs is ar arrangement if for every $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ and \mathcal{I} - $\bigcap \mathcal{A}_{\mathcal{I}}^{\prime}$ is empty or $-\mathcal{A}_{\mathcal{T}}^{\prime}$ is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem. H.. 2011) A mixed subdivision of $n \triangle^{d-1}$ yields an arrangement of TROPHYs.

Arrangements of Tropical Pseudohyperplanes (TROPHYs)

$$
\mathcal{I}=(2,23,1,12,3,3)
$$

$\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ and \mathcal{I}

- $\bigcap \mathcal{A}_{\mathcal{I}}^{\prime}$ is empty or
- $\mathcal{A}_{\mathcal{I}}^{\prime}$ is an arrangement of linear pseudohyperplanes.
Theorem

$$
-1
$$

A mixed subdivision of $n \triangle^{d-1}$ yields an arrangement of TROPHYs.

Arrangements of Tropical Pseudohyperplanes (TROPHYs)

$$
\mathcal{I}=(2,23,1,12,3,3)
$$

$\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes

IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ and \mathcal{I}

- $\bigcap \mathcal{A}_{\mathcal{I}}^{\prime}$ is empty or
- $\mathcal{A}_{\mathcal{I}}^{\prime}$ is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)
A mixed subdivision of $n \triangle^{d-1}$ yields an arrangement of TROPHYs.

"The Bigger Picture" revisited

The Missing Arrow
 The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

The Missing Arrow
 The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- convex hull of types:
$\operatorname{conv}(A, B):=\left\{C \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$
- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv (A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation

$$
A_{i}=2, B_{i}=13
$$

Theorem.

The Missing Arrow
 The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- convex hull of types:

$$
\operatorname{conv}(A, B):=\left\{C \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}
$$

- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation

$$
A_{i}=2, B_{i}=13
$$

Theorem.

The Missing Arrow
 The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- convex hull of types:

$$
\operatorname{conv}(A, B):=\left\{C \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}
$$

- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation

$$
A_{i}=2, B_{i}=13
$$

The Missing Arrow
 The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- convex hull of types: $\operatorname{conv}(A, B):=\left\{C \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$
- Elimination is satisfied iff convex hull is path-connected.
- Approximate $\operatorname{conv}(A, B)$ by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation

$$
A_{i}=2, B_{i}=13
$$

The Missing Arrow
 The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- convex hull of types: $\operatorname{conv}(A, B):=\left\{C \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$
- Elimination is satisfied iff convex hull is path-connected.
- Approximate $\operatorname{conv}(A, B)$ by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.

- Apply Topological Representation Theorem.

$$
A_{i}=2, B_{i}=13
$$

The Missing Arrow
 The Elimination Property

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- convex hull of types: $\operatorname{conv}(A, B):=\left\{C \mid C_{i} \in\left\{A_{i}, B_{i}, A_{i} \cup B_{i}\right\}\right\}$
- Elimination is satisfied iff convex hull is path-connected.
- Approximate $\operatorname{conv}(A, B)$ by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation Theorem.

$$
A_{i}=2, B_{i}=13
$$

