

A Topological Representation Theorem for Tropical Oriented Matroids

FPSAC 2012, Nagoya

Silke Horn 2 August 2012

2 August 2012 | TU Darmstadt | Silke Horn

arrangements of real hyperplanes

- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

arrangements of real hyperplanes

- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

We want a similar theory in the tropical world!

- arrangements of real hyperplanes
- covectors: describe position relative to the hyperplanes
- oriented matroid (OM): combinatorial model for the set of covectors
- non-realisable OMs

- named "tropical" in honour of Brazilian mathematician Imre Simon
- ▶ algebraic geometry over the tropical semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ $x \oplus y := \min\{x, y\}, x \odot y := x + y$
- ▶ linear tropical polynomial: $p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \le i \le d} \{a_i + x_i\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

- named "tropical" in honour of Brazilian mathematician Imre Simon
- ▶ algebraic geometry over the tropical semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ $x \oplus y := \min\{x, y\}, x \odot y := x + y$
- ▶ linear tropical polynomial: $p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \le i \le d} \{a_i + x_i\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

- named "tropical" in honour of Brazilian mathematician Imre Simon
- ► algebraic geometry over the tropical semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ $x \oplus y := \min\{x, y\}, x \odot y := x + y$
- ▶ linear tropical polynomial: $p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \le i \le d} \{a_i + x_i\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

- named "tropical" in honour of Brazilian mathematician Imre Simon
- ► algebraic geometry over the tropical semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ $x \oplus y := \min\{x, y\}, x \odot y := x + y$
- ▶ linear tropical polynomial: $p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \le i \le d} \{a_i + x_i\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

- named "tropical" in honour of Brazilian mathematician Imre Simon
- ► algebraic geometry over the tropical semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ $x \oplus y := \min\{x, y\}, x \odot y := x + y$
- ► linear tropical polynomial: $p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \le i \le d} \{a_i + x_i\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

- named "tropical" in honour of Brazilian mathematician Imre Simon
- ► algebraic geometry over the tropical semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ $x \oplus y := \min\{x, y\}, x \odot y := x + y$
- ► linear tropical polynomial: $p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \le i \le d} \{a_i + x_i\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

- named "tropical" in honour of Brazilian mathematician Imre Simon
- ▶ algebraic geometry over the tropical semiring $(\mathbb{R} \cup \{\infty\}, \oplus, \odot)$ $x \oplus y := \min\{x, y\}, x \odot y := x + y$
- ► linear tropical polynomial: $p(x) = \bigoplus_{i=1}^{d} a_i \odot x_i = \min_{1 \le i \le d} \{a_i + x_i\}$
- vanishing locus / tropical hypersurface: minimum attained twice
- tropical hyperplane: vanishing locus of a linear tropical polynomial

Arrangements of Tropical Hyperplanes TECHNISCHE (n, d)-types and tropical covectors UNIVERSITÄT DARMSTADT 2 (1, 13, 2)iii (1,3,2)Discrete

Optimization

TECHNISCHE UNIVERSITÄT DARMSTADT

Definition by Ardila and Develin via covector-axioms

- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of \mathbb{TP}^{d-1} that fixes the boundary.

TECHNISCHE UNIVERSITÄT DARMSTADT

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of \mathbb{TP}^{d-1} that fixes the boundary.

TECHNISCHE UNIVERSITÄT DARMSTADT

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- ► There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of \mathbb{TP}^{d-1} that fixes the boundary.

TECHNISCHE UNIVERSITÄT DARMSTADT

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- ► There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of \mathbb{TP}^{d-1} that fixes the boundary.

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of \mathbb{TP}^{d-1} that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!

Optimization

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of \mathbb{TP}^{d-1} that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!

TECHNISCHE UNIVERSITÄT DARMSTADT

- Definition by Ardila and Develin via covector-axioms
- Ardila, Develin: The types in an arrangement of tropical hyperplanes yield a TOM.
- There are non-realisable TOMs.
- Analogue to the Topological Representation Theorem?

Definition

A tropical pseudohyperplane (TROPHY) is the image of a tropical hyperplane under a PL homeomorphism of \mathbb{TP}^{d-1} that fixes the boundary.

TECHNISCHE UNIVERSITÄT DARMSTADT

The Minkowski sum of two sets *X*, *Y* is $X + Y := \{x + y \mid x \in X, y \in Y\}.$

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1} .

Theorem (Ardila, Develin, 2007) Every TOM yields a mixed subdivision.

The Minkowski sum of two sets X, Y is $X + Y := \{x + y \mid x \in X, y \in Y\}.$

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1} .

Theorem (Ardila, Develin, 2007) Every TOM yields a mixed subdivision.

The Minkowski sum of two sets *X*, *Y* is $X + Y := \{x + y \mid x \in X, y \in Y\}.$

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1} .

Theorem (Ardila, Develin, 2007) Every TOM yields a mixed subdivision.

The Minkowski sum of two sets *X*, *Y* is $X + Y := \{x + y \mid x \in X, y \in Y\}.$

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1} .

Theorem (Ardila, Develin, 2007) Every TOM yields a mixed subdivision.

The Minkowski sum of two sets *X*, *Y* is $X + Y := \{x + y \mid x \in X, y \in Y\}.$

Definition

A polytopal subdivision of $n \triangle^{d-1}$ is mixed if every face is a Minkowski sum of faces of \triangle^{d-1} .

Theorem (Ardila, Develin, 2007) Every TOM yields a mixed subdivision.

"The Bigger Picture"

tropical oriented matroids

mixed subdivisions of $n \triangle^{d-1}$

tropical hyperplane arrangements

tropical pseudohyperplane arrangements ???

"The Bigger Picture"

TECHNISCHE UNIVERSITÄT DARMSTADT

Theorem (H., 2011)

TECHNISCHE UNIVERSITÄT DARMSTADT

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$

there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of A and B: $M_{AB} := \{ C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\} \}.$ Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

TECHNISCHE UNIVERSITÄT DARMSTADT

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of A and B:

 $M_{AB} := \{ C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\} \}.$

Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

TECHNISCHE UNIVERSITÄT DARMSTADT

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of A and B:

 $M_{AB} := \{ C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\} \}.$ Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

TECHNISCHE UNIVERSITÄT DARMSTADT

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of *A* and *B*: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}.$ Contains every elimination of *A* and *B*.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of *A* and *B*: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of *A* and *B*.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of *A* and *B*: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of *A* and *B*.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of *A* and *B*: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of *A* and *B*.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of *A* and *B*: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of *A* and *B*.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

TECHNISCHE UNIVERSITÄT DARMSTADT

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of *A* and *B*: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}$. Contains every elimination of *A* and *B*.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

TECHNISCHE UNIVERSITÄT DARMSTADT

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of *A* and *B*: $M_{AB} := \{C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\}\}.$ Contains every elimination of *A* and *B*.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of A and B:

 $M_{AB} := \{ C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\} \}.$ Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

Let *M* be a TOM.

Elimination property: For $A, B \in M, k \in [n]$ there is $C \in M$ such that

- $\triangleright \quad C_k = A_k \cup B_k,$
- ► $C_i \in \{A_i, B_i, A_i \cup B_i\}.$

convex hull of A and B:

 $M_{AB} := \{ C \in M \mid C_i \in \{A_i, B_i, A_i \cup B_i\} \}.$ Contains every elimination of A and B.

Theorem (H., 2010)

A mixed subdivision S has the elimination property $\iff S_{AB}$ is path-connected for all A, $B \in S$.

 $\mathcal{I} = (2, 23, 1, 12, 3, 3)$ $\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family $\mathcal A$ of TROPHYs is an arrangement if for every $\mathcal A'\subseteq \mathcal A$ and $\mathcal I$

- $\blacktriangleright \ \bigcap \mathcal{A}'_{\mathcal{I}}$ is empty or
- ► A'_I is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)

 $\mathcal{I} = (2, 23, 1, 12, 3, 3)$ $\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family $\mathcal A$ of TROPHYs is an arrangement if for every $\mathcal A'\subseteq \mathcal A$ and $\mathcal I$

- $\blacktriangleright \ \bigcap \mathcal{A}'_{\mathcal{I}} \text{ is empty or }$
- ► A'_I is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)

 $\mathcal{I} = (2, 23, 1, 12, 3, 3)$ $\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family $\mathcal A$ of TROPHYs is an arrangement if for every $\mathcal A'\subseteq \mathcal A$ and $\mathcal I$

- $\blacktriangleright \ \bigcap \mathcal{A}'_{\mathcal{I}} \text{ is empty or }$
- ► A'_I is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)

 $\mathcal{I} = (2, 23, 1, 12, 3, 3)$ $\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family $\mathcal A$ of TROPHYs is an arrangement if for every $\mathcal A'\subseteq \mathcal A$ and $\mathcal I$

- $\bigcap \mathcal{A}'_{\mathcal{I}}$ is empty or
- A'_I is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)

 $\mathcal{I} = (2, 23, 1, 12, 3, 3)$ $\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}' \subseteq \mathcal{A}$ and \mathcal{I}

- $\bigcap \mathcal{A}'_{\mathcal{I}}$ is empty or
- A'_I is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)

 $\mathcal{I} = (2, 23, 1, 12, 3, 3)$ $\mathcal{A}_{\mathcal{I}}$: induced family of (linear) pseudohyperplanes IDEA: Represent convex hull as intersection of affine pseudohalfspaces.

Definition (H., 2010/2011)

A finite family \mathcal{A} of TROPHYs is an arrangement if for every $\mathcal{A}' \subseteq \mathcal{A}$ and \mathcal{I}

- $\blacktriangleright \ \bigcap \mathcal{A}'_{\mathcal{I}} \text{ is empty or }$
- A'_I is an arrangement of linear pseudohyperplanes.

Theorem (Topological Representation Theorem, H., 2011)

"The Bigger Picture" revisited

"The Bigger Picture" revisited

"The Bigger Picture" revisited

"The Bigger Picture" revisited TECHNISCHE LINIVERS DARMSTA Ardila/Develin mixed subdivisions tropical oriented of $n \triangle^{d-1}$ matroids Corollary !!! Topological Representation Ardila/Develin Theorem !!! tropical pseudohyperplane tropical hyperplane arrangements arrangements !!!

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

- convex hull of types: conv(A, B) := { $C \mid C_i \in \{A_i, B_i, A_i \cup B_i\}$ }
- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation Theorem.

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

- ► convex hull of types: conv(A, B) := {C | C_i ∈ {A_i, B_i, A_i ∪ B_i}}
- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation Theorem.

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

- ► convex hull of types: conv(A, B) := {C | C_i ∈ {A_i, B_i, A_i ∪ B_i}}
- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation Theorem.

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

- ► convex hull of types: conv(A, B) := {C | C_i ∈ {A_i, B_i, A_i ∪ B_i}}
- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation Theorem.

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

- ► convex hull of types: conv(A, B) := {C | C_i ∈ {A_i, B_i, A_i ∪ B_i}}
- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation Theorem.

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.

- ► convex hull of types: conv(A, B) := {C | C_i ∈ {A_i, B_i, A_i ∪ B_i}}
- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation Theorem.

 $A_i = 2, B_i = 13$

Theorem (H., 2011)

Tropical pseudohyperplane arrangements satisfy the elimination property.

- ► convex hull of types: conv(A, B) := {C | C_i ∈ {A_i, B_i, A_i ∪ B_i}}
- Elimination is satisfied iff convex hull is path-connected.
- Approximate conv(A, B) by affine pseudohalfspaces.
- Constructed by "blowing up" tropical pseudohyperplanes.
- Apply Topological Representation Theorem.

Thanks for your attention!