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Let m2n(q) =
∑

σ∈M(2n)

qcr(σ) where M(2n) is the set of matchings

on {1, . . . , 2n} and cr(σ) counts the pairs ((i , j), (k , l)) with
i < k < j < l .

Example

b b bb b b bb b b bb

m2(q) = 1,

m4(q) = 2 + q,

m6(q) = 5 + 6q + 3q2 + q3.

m2n(1) = 1× 3× 5× · · · × (2n− 1), m2n(0) = Cn (Catalan).
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mn(q) is the nth moment of the q-semicircular law.
The cumulants kn(q) are defined by:

∑

n≥1

kn(q)
zn

n!
= log

(

∑

n≥0

mn(q)
zn

n!

)

,

For example:

k2(q) = 1 k4(q) = q − 1, k6(q) = (q − 1)2(q + 5),

k8(q) = (q − 1)3(q3 + 7q2 + 28q + 56).

We observe that k2n(q)
(q−1)n−1 has positive coefficients.
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mn(q) is the nth moment of the q-semicircular probability law
w(x)dx , i.e. mn(q) =

∫

xnw(x)dx .
It interpolates between

◮ the standard gaussian 1√
2π
e−x2/2

dx at q = 1,

◮ the semicircular (“free Gaussian”) law 1
2π

√
4− x2dx at q = 0.

The “free cumulants” of the q-semicircular are

c2n(q) =
∑

σ∈M(2n)
σ connected

qcr(σ).

We will show that the classical cumulants kn(q) are also related
with connected matchings, in a different way involving Tutte
polynomials.
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Let G = (V ,E ) a graph.
The Tutte polynomial TG (x , y) is defined by:

TG (x , y) =











xTG/e(x , y) if e is a bridge,

yTG\e(x , y) if e is a loop,

TG/e(x , y) + TG\e(x , y) otherwise,

when e is an edge, and TG (x , y) = 1 if G has no edge.

Example

TG (x , y) = xn−1 if G is a tree with n vertices.
TG (x , y) = xn−1 + · · ·+ x2 + x + y if G is a cycle with n vertices.
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Definition
Let σ be a matching, its crossing graph G (σ) is as follows:
vertices are the pairs of σ, edges are the crossings.

b b b b b b b b b b b b

1 2 3 4 5 6 7 8 9 10 11 12

b b

b

b
b

b

{1, 6}

{2, 8}

{7, 9}
{3, 5}

{4, 11}

{10, 12}
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Definition
Let Mconn(2n) ⊂ M(2n) be the set of connected matchings,
i.e. such that the graph G (σ) is connected.

Theorem

k2n(q)

(q − 1)n−1
=

∑

σ∈Mconn(2n)

TG(σ)(1, q).

Remark
The “free cumulants” c2n(q) of the q-semicircular law are:

c2n(q) =
∑

σ∈Mconn(2n)

qcr(σ).
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Proof
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Let P(n) the lattice of set partitions on {1, . . . , n} ordered by
refinement, and µ its Möbius function.

Lemma
We have:

kn(q) =
∑

π∈P(n)

µ(π, 1̂)
∏

b∈π
m|b|(q).

Proof.
From

∑

m2n(q)
z2n

(2n)! = exp(
∑

k2n(q)
z2n

(2n)! ) we have:

mn(q) =
∑

π∈P(n)

∏

b∈π
k|b|(q),

Then we can use Möbius inversion.
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Lemma
Let σ ∈ M(2n) and π ∈ P(2n) with σ ≤ π, let cr(σ, π) the
number of crossings ((i , j), (k , l)) of σ with {i , j , k , l} ⊂ b for some
b ∈ π. Then:

∏

b∈π
m|b|(q) =

∑

σ∈M(2n)
σ≤π

qcr(σ,π).

Proof.
To choose a matching σ finer than a set partition π, we can choose
a matching σb of b for each block b of π, and take σ = ∪σb.
This means there is a bijection

{σ ∈ M(2n) : σ ≤ π} →
∏

b∈π
M(b)

so that
∑

σ∈M(2n)
σ≤π

qcr(σ,π) can be factorized.
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With the previous two lemmas, we have

k2n(q) =
∑

π∈P(2n)

µ(π, 1̂)
∏

b∈π
m|b|(q) =

∑

π∈P(2n)

µ(π, 1̂)
∑

σ∈M(2n)
σ≤π

qcr(σ,π)

=
∑

σ∈M(2n)

∑

π∈P(2n)
π≥σ

µ(π, 1̂)qcr(σ,π) =
∑

σ∈M(2n)

W (σ),

where we denote

W (σ) =
∑

π∈P(2n)
π≥σ

µ(π, 1̂)qcr(σ,π).
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W (σ) only depends on the crossing graph G (σ).
If G (σ) = (V ,E ) we have:

W (σ) =
∑

π∈P(V )

qi(E ,π)µ(π, 1̂).

where i(E , π) counts edges in E such that both endpoints are in
the same block of π.

12 / 24



Lemma
Let G = (V ,E ) be a graph. If π ∈ P(V ), let i(E , π) the number of
edges in G such that both endpoints are in a same block of π. Let

UG =
1

(q − 1)n−1

∑

π∈P(V )

qi(E ,π)µ(π, 1̂)

Then we have

UG =











δn1 if #V = n and E = ∅,
qUG\e if e ∈ E is a loop,

UG/e + UG\e if e ∈ E is not a loop.

Corollary

UG = TG (1, q) if G connected, 0 otherwise.
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Hence

1

(q − 1)n−1
W (σ) =

{

TG(σ)(1, q) if σ connected,

0 otherwise.

and
1

(q − 1)n−1
k2n(q) =

∑

σ∈Mconn(2n)

TG(σ)(1, q).
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The case q = 2
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In this case:

∑

n≥1

kn(2)
zn

n!
= log

(

∑

n≥0

mn(2)
zn

n!

)

.

k2n(2) is a positive integer.

k2n(2) =
∑

σ∈Mconn(2n)

TG(σ)(1, 2) can be proved with the

exponential formula using:

Proposition (Gioan, 2010)

Let G be connected graph with a root r , then TG (1, 2) counts the
orientations such that for any vertex v , there is an oriented path
from r to v (i.e. root-accessible orientations).
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m2n(2) counts pairs (σ, r) where σ ∈ M(2n) and r is an
orientation of G (σ).

b b

b

b
b

b

{1, 6}

{2, 8}

{7, 9}
{3, 5}

{4, 11}

{10, 12}

b b b b b b b b b b b b

1 2 3 4 5 6 7 8 9 10 11 12
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The block decomposition is as follows: take the leftmost arch,
“push” it, it takes others arches with it, and this defines the first
block. (Then do the same thing with what remains.)

b b b b b b b b b b b b

1 2 3 4 5 6 7 8 9 10 11 12

b b b b

1 2 6 8

b b b b b b

3 4 5 10 11 12

b b

7 9

This defines a decomposition (σ, r) 7→ ((σ1, r1), . . . , (σk , rk)).
For each σi , the leftmost arch is considered as the root of the
crossing graph G (σi). Then ri is an orientation such that each
vertex is accessible from the root.
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The case q = 0 (details omitted)
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In the case q = 0, letting Cn denote the Catalan numbers, we have:

− log

(

∑

n≥0

(−1)nCn

z2n

(2n)!

)

=
∑

n≥1

(−1)n−1k2n(0)
z2n

(2n)!

The integers (−1)n−1k2n(0) form an increasing sequence of
positive numbers [Lassalle, 2010].

(−1)n−1k2n(0) =
∑

TG(σ)(1, 0) can be proved via Viennot’s theory
of “heaps of pieces”, using:

Proposition (Greene-Zaslavsky)

If G is connected and has a root r , TG (1, 0) counts acyclic
orientations such that for each vertex v there is a directed path
from r to v .
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The case q = 0 can be generalized
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Let mn be any sequence of moments, kn (resp. cn) the
corresponding cumulants (resp. free cumulants). The relations
mn ↔ kn (resp. mn ↔ cn) are ruled by Möbius inversion on the
lattice of set partitions (resp. noncrossing set partitions).

What about the relations kn ↔ cn ?

Theorem (Lehner)

cn =
∑

π∈P(n)
π connected

∏

b∈π
k|b|.

This is invertible, but we cannot use the Möbius inversion here.
Our method show that:

kn =
∑

π∈P(n)
π connected

(−1)1+|π|TG(π)(1, 0)
∏

b∈π
c|b|.
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Two (hopefully related) questions:

◮ Is there a generalization for something that interpolates
between the cumulants and free cumulants ?

◮ Is there a generalization involving TG(σ)(p, q) and not just
TG(σ)(1, q) ?

23 / 24



thanks for your attention
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