Cumulants of the q-semicircular law, Tutte polynomials, and heaps

Matthieu Josuat-Vergès
Institut Gaspard Monge, Université de Marne-la-Vallée

FPSAC 2012, Nagoya

Let $m_{2 n}(q)=\sum_{\sigma \in \mathcal{M}(2 n)} q^{\operatorname{cr}(\sigma)}$ where $\mathcal{M}(2 n)$ is the set of matchings on $\{1, \ldots, 2 n\}$ and $\operatorname{cr}(\sigma)$ counts the pairs $((i, j),(k, I))$ with $i<k<j<l$.

Example

$$
\begin{aligned}
& m_{2}(q)=1, \\
& m_{4}(q)=2+q, \\
& m_{6}(q)=5+6 q+3 q^{2}+q^{3} \\
& m_{2 n}(1)=1 \times 3 \times 5 \times \cdots \times(2 n-1), \quad m_{2 n}(0)=C_{n} \quad(\text { Catalan }) .
\end{aligned}
$$

$m_{n}(q)$ is the nth moment of the q-semicircular law.
The cumulants $k_{n}(q)$ are defined by:

$$
\sum_{n \geq 1} k_{n}(q) \frac{z^{n}}{n!}=\log \left(\sum_{n \geq 0} m_{n}(q) \frac{z^{n}}{n!}\right)
$$

For example:

$$
\begin{array}{r}
k_{2}(q)=1 \quad k_{4}(q)=q-1, \quad k_{6}(q)=(q-1)^{2}(q+5) \\
k_{8}(q)=(q-1)^{3}\left(q^{3}+7 q^{2}+28 q+56\right)
\end{array}
$$

We observe that $\frac{k_{2 n}(q)}{(q-1)^{n-1}}$ has positive coefficients.
$m_{n}(q)$ is the nth moment of the q-semicircular probability law $w(x) \mathrm{d} x$, i.e. $m_{n}(q)=\int x^{n} w(x) \mathrm{d} x$.
It interpolates between

- the standard gaussian $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x$ at $q=1$,
- the semicircular ("free Gaussian") law $\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathrm{~d} x$ at $q=0$.

The "free cumulants" of the q-semicircular are

$$
c_{2 n}(q)=\sum_{\substack{\sigma \in \mathcal{M}(2 n) \\ \sigma \text { connected }}} q^{\operatorname{cr}(\sigma)}
$$

We will show that the classical cumulants $k_{n}(q)$ are also related with connected matchings, in a different way involving Tutte polynomials.

Let $G=(V, E)$ a graph.
The Tutte polynomial $T_{G}(x, y)$ is defined by:

$$
T_{G}(x, y)= \begin{cases}x T_{G / e}(x, y) & \text { if } e \text { is a bridge }, \\ y T_{G \backslash e}(x, y) & \text { if } e \text { is a loop }, \\ T_{G / e}(x, y)+T_{G \backslash e}(x, y) & \text { otherwise }\end{cases}
$$

when e is an edge, and $T_{G}(x, y)=1$ if G has no edge.
Example
$T_{G}(x, y)=x^{n-1}$ if G is a tree with n vertices.
$T_{G}(x, y)=x^{n-1}+\cdots+x^{2}+x+y$ if G is a cycle with n vertices.

Definition

Let σ be a matching, its crossing graph $G(\sigma)$ is as follows: vertices are the pairs of σ, edges are the crossings.

Definition

Let $\mathcal{M}^{\text {conn }}(2 n) \subset \mathcal{M}(2 n)$ be the set of connected matchings, i.e. such that the graph $G(\sigma)$ is connected.

Theorem

$$
\frac{k_{2 n}(q)}{(q-1)^{n-1}}=\sum_{\sigma \in \mathcal{M}^{\text {conn }}(2 n)} T_{G(\sigma)}(1, q) .
$$

Remark
The "free cumulants" $c_{2 n}(q)$ of the q-semicircular law are:

$$
c_{2 n}(q)=\sum_{\sigma \in \mathcal{M}^{\operatorname{conn}}(2 n)} q^{\operatorname{cr}(\sigma)}
$$

Proof

Let $\mathcal{P}(n)$ the lattice of set partitions on $\{1, \ldots, n\}$ ordered by refinement, and μ its Möbius function.

Lemma

We have:

$$
k_{n}(q)=\sum_{\pi \in \mathcal{P}(n)} \mu(\pi, \hat{1}) \prod_{b \in \pi} m_{|b|}(q)
$$

Proof.

From $\sum m_{2 n}(q) \frac{z^{2 n}}{(2 n)!}=\exp \left(\sum k_{2 n}(q) \frac{\frac{z}{2}^{2 n}}{(2 n)!}\right)$ we have:

$$
m_{n}(q)=\sum_{\pi \in \mathcal{P}(n)} \prod_{b \in \pi} k_{|b|}(q)
$$

Then we can use Möbius inversion.

Lemma

Let $\sigma \in \mathcal{M}(2 n)$ and $\pi \in \mathcal{P}(2 n)$ with $\sigma \leq \pi$, let $\operatorname{cr}(\sigma, \pi)$ the number of crossings $((i, j),(k, l))$ of σ with $\{i, j, k, l\} \subset b$ for some $b \in \pi$. Then:

$$
\prod_{b \in \pi} m_{|b|}(q)=\sum_{\substack{\sigma \in \mathcal{M}(2 n) \\ \sigma \leq \pi}} q^{\operatorname{cr}(\sigma, \pi)} .
$$

Proof.

To choose a matching σ finer than a set partition π, we can choose a matching σ_{b} of b for each block b of π, and take $\sigma=\cup \sigma_{b}$. This means there is a bijection

$$
\{\sigma \in \mathcal{M}(2 n): \sigma \leq \pi\} \rightarrow \prod_{b \in \pi} \mathcal{M}(b)
$$

so that $\sum_{\substack{\sigma \in \mathcal{M}(2 n) \\ \sigma \leq \pi}} q^{c r(\sigma, \pi)}$ can be factorized.

With the previous two lemmas, we have

$$
\begin{aligned}
k_{2 n}(q) & =\sum_{\pi \in \mathcal{P}(2 n)} \mu(\pi, \hat{1}) \prod_{b \in \pi} m_{|b|}(q)=\sum_{\pi \in \mathcal{P}(2 n)} \mu(\pi, \hat{1}) \sum_{\substack{\sigma \in \mathcal{M}(2 n) \\
\sigma \leq \pi}} q^{\operatorname{cr}(\sigma, \pi)} \\
& =\sum_{\sigma \in \mathcal{M}(2 n)} \sum_{\pi \in \mathcal{P}(2 n)} \mu(\pi, \hat{1}) q^{c r(\sigma, \pi)}=\sum_{\sigma \in \mathcal{M}(2 n)} W(\sigma)
\end{aligned}
$$

where we denote

$$
W(\sigma)=\sum_{\substack{\pi \in \mathcal{P}(2 n) \\ \pi \geq \sigma}} \mu(\pi, \hat{1}) q^{c r(\sigma, \pi)}
$$

$W(\sigma)$ only depends on the crossing graph $G(\sigma)$.
If $G(\sigma)=(V, E)$ we have:

$$
W(\sigma)=\sum_{\pi \in \mathcal{P}(V)} q^{i(E, \pi)} \mu(\pi, \hat{1})
$$

where $i(E, \pi)$ counts edges in E such that both endpoints are in the same block of π.

Lemma

Let $G=(V, E)$ be a graph. If $\pi \in \mathcal{P}(V)$, let $i(E, \pi)$ the number of edges in G such that both endpoints are in a same block of π. Let

$$
U_{G}=\frac{1}{(q-1)^{n-1}} \sum_{\pi \in \mathcal{P}(V)} q^{i(E, \pi)} \mu(\pi, \hat{1})
$$

Then we have

$$
U_{G}= \begin{cases}\delta_{n 1} & \text { if } \# V=n \text { and } E=\emptyset \\ q U_{G \backslash e} & \text { if } e \in E \text { is a loop } \\ U_{G / e}+U_{G \backslash e} & \text { if } e \in E \text { is not a loop }\end{cases}
$$

Corollary
$U_{G}=T_{G}(1, q)$ if G connected, 0 otherwise.

Hence

$$
\frac{1}{(q-1)^{n-1}} W(\sigma)= \begin{cases}T_{G(\sigma)}(1, q) & \text { if } \sigma \text { connected } \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\frac{1}{(q-1)^{n-1}} k_{2 n}(q)=\sum_{\sigma \in \mathcal{M}^{\text {conn }}(2 n)} T_{G(\sigma)}(1, q)
$$

The case $q=2$

In this case:

$$
\sum_{n \geq 1} k_{n}(2) \frac{z^{n}}{n!}=\log \left(\sum_{n \geq 0} m_{n}(2) \frac{z^{n}}{n!}\right)
$$

$k_{2 n}(2)$ is a positive integer.
$k_{2 n}(2)=\sum_{\sigma \in \mathcal{M}^{\text {conn }}(2 n)} T_{G(\sigma)}(1,2)$ can be proved with the
exponential formula using:
Proposition (Gioan, 2010)
Let G be connected graph with a root r, then $T_{G}(1,2)$ counts the orientations such that for any vertex v, there is an oriented path from r to v (i.e. root-accessible orientations).
$m_{2 n}(2)$ counts pairs (σ, r) where $\sigma \in \mathcal{M}(2 n)$ and r is an orientation of $G(\sigma)$.

The block decomposition is as follows: take the leftmost arch, "push" it, it takes others arches with it, and this defines the first block. (Then do the same thing with what remains.)

$\begin{array}{lll}1 & 2 & 6\end{array}$

$\begin{array}{llllll}3 & 4 & 5 & 10 & 11 & 12\end{array}$

79

This defines a decomposition $(\sigma, r) \mapsto\left(\left(\sigma_{1}, r_{1}\right), \ldots,\left(\sigma_{k}, r_{k}\right)\right)$.
For each σ_{i}, the leftmost arch is considered as the root of the crossing graph $G\left(\sigma_{i}\right)$. Then r_{i} is an orientation such that each vertex is accessible from the root.

The case $q=0$ (details omitted)

In the case $q=0$, letting C_{n} denote the Catalan numbers, we have:

$$
-\log \left(\sum_{n \geq 0}(-1)^{n} C_{n} \frac{z^{2 n}}{(2 n)!}\right)=\sum_{n \geq 1}(-1)^{n-1} k_{2 n}(0) \frac{z^{2 n}}{(2 n)!}
$$

The integers $(-1)^{n-1} k_{2 n}(0)$ form an increasing sequence of positive numbers [Lassalle, 2010].
$(-1)^{n-1} k_{2 n}(0)=\sum T_{G(\sigma)}(1,0)$ can be proved via Viennot's theory of "heaps of pieces", using:
Proposition (Greene-Zaslavsky)
If G is connected and has a root $r, T_{G}(1,0)$ counts acyclic orientations such that for each vertex v there is a directed path from r to v.

The case $q=0$ can be generalized

Let m_{n} be any sequence of moments, k_{n} (resp. c_{n}) the corresponding cumulants (resp. free cumulants). The relations $m_{n} \leftrightarrow k_{n}$ (resp. $m_{n} \leftrightarrow c_{n}$) are ruled by Möbius inversion on the lattice of set partitions (resp. noncrossing set partitions).

What about the relations $k_{n} \leftrightarrow c_{n}$?
Theorem (Lehner)

$$
c_{n}=\sum_{\substack{\pi \in \mathcal{P}(n) \\ \pi \text { connected }}} \prod_{b \in \pi} k_{|b|} .
$$

This is invertible, but we cannot use the Möbius inversion here. Our method show that:

$$
k_{n}=\sum_{\substack{\pi \in \mathcal{P}(n) \\ \pi \text { connected }}}(-1)^{1+|\pi|} T_{G(\pi)}(1,0) \prod_{b \in \pi} c_{|b|}
$$

Two (hopefully related) questions:

- Is there a generalization for something that interpolates between the cumulants and free cumulants ?
- Is there a generalization involving $T_{G(\sigma)}(p, q)$ and not just $T_{G(\sigma)}(1, q)$?
thanks for your attention

