A generalization of the alcove model and its applications

Arthur Lubovsky

State University of New York at Albany
FPSAC'12
Nagoya University, August 2, 2012

Joint work with Cristian Lenart.
arXiv:1112.2216v1

Setup

V - is a representation of a quantum group $U_{q}(\mathfrak{g})$.

Setup

V - is a representation of a quantum group $U_{q}(\mathfrak{g})$.
B - crystal basis for V (assuming it exists). Usually B is indexed by some combinatorial objects.

Setup

V - is a representation of a quantum group $U_{q}(\mathfrak{g})$.
B - crystal basis for V (assuming it exists). Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of $U_{q}(\mathfrak{g})$ on B as $q \rightarrow 0$.

Setup

V - is a representation of a quantum group $U_{q}(\mathfrak{g})$.
B - crystal basis for V (assuming it exists). Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of $U_{q}(\mathfrak{g})$ on B as $q \rightarrow 0$.

This action is by partial permutations, and is represented as a colored directed graph

$$
b \xrightarrow{i} b^{\prime} \text { if } f_{i}(b)=b^{\prime},
$$

for $i=1, \ldots, r=\operatorname{rank}(\mathfrak{g})$, and $b, b^{\prime} \in B$.

Setup

V - is a representation of a quantum group $U_{q}(\mathfrak{g})$.
B - crystal basis for V (assuming it exists). Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of $U_{q}(\mathfrak{g})$ on B as $q \rightarrow 0$.

This action is by partial permutations, and is represented as a colored directed graph

$$
b \xrightarrow{i} b^{\prime} \quad \text { if } f_{i}(b)=b^{\prime}
$$

for $i=1, \ldots, r=\operatorname{rank}(\mathfrak{g})$, and $b, b^{\prime} \in B$.
f_{i} are called crystal operators.

Kirillov-Reshetikhin (KR) Crystals

KR-crystals - correspond to certain finite dimensional representations (KR-modules) of quantum affine algebras (have f_{0}, corresponding to the affine simple root α_{0}).

Kirillov-Reshetikhin (KR) Crystals

KR-crystals - correspond to certain finite dimensional representations (KR-modules) of quantum affine algebras (have f_{0}, corresponding to the affine simple root α_{0}).

Indexed by $r \times s$ rectangles and denoted $B^{r, s}$. We only consider columns $B^{r, 1}$.

Goal

Let $\mu^{\prime}=\left(\mu_{1}^{\prime} \geq \mu_{2}^{\prime} \geq \cdots\right)$ be the conjugate partition of μ.

Goal

Let $\mu^{\prime}=\left(\mu_{1}^{\prime} \geq \mu_{2}^{\prime} \geq \cdots\right)$ be the conjugate partition of μ.
$B^{\otimes \mu}:=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$
(corresponds to tensor product of KR modules).

Goal

Let $\mu^{\prime}=\left(\mu_{1}^{\prime} \geq \mu_{2}^{\prime} \geq \cdots\right)$ be the conjugate partition of μ.
$B^{\otimes \mu}:=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$
(corresponds to tensor product of KR modules).
Goal: model $B^{\otimes \mu}$ uniformly across Lie types

Goal

Let $\mu^{\prime}=\left(\mu_{1}^{\prime} \geq \mu_{2}^{\prime} \geq \cdots\right)$ be the conjugate partition of μ.
$B^{\otimes \mu}:=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$
(corresponds to tensor product of KR modules).
Goal: model $B^{\otimes \mu}$ uniformly across Lie types
Note: Existing models are type specific, work mostly in classical Lie types $A-D$, and increase in complexity beyond type A.

Tensor products of KR crystals in type A_{n-1}

The vertices of $B^{\otimes \mu}$ are (viewed as) column-strict fillings of μ with entries $1, \ldots, n$.

Tensor products of KR crystals in type A_{n-1}

The vertices of $B^{\otimes \mu}$ are (viewed as) column-strict fillings of μ with entries $1, \ldots, n$.
Example
Let $\mu=(3,2,2,1), n=5$.

| 2 |
| :--- | :--- |
| 3 |
| 4 |
| 5 |\otimes| 1 |
| :--- |
| 2 |
| 4 |
| 2 |
| 2 |\longleftrightarrow| 2 | 1 | 2 |
| :--- | :--- | :--- |
| 3 | 2 | |
| 4 | 4 | |
| 5 | | |
| 5 | | |

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
n=5, \mu=(5,4,1), \quad b=
$$

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
n=5, \mu=(5,4,1), \quad b=
$$

$b \leftrightarrow \operatorname{word}(b)=5313221311$.

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
n=5, \mu=(5,4,1), \quad b=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 1 & 1 & 1 \\
\hline 3 & 3 & 2 & 3 & \\
\cline { 1 - 4 } 5 & & & & \\
& & &
\end{array}
$$

$$
b \leftrightarrow \operatorname{word}(b)=5313221311 .
$$

Action of f_{1} on b :

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
n=5, \mu=(5,4,1), \quad b=
$$

$$
b \leftrightarrow \operatorname{word}(b)=5313221311 .
$$

Action of f_{1} on b :

- Obtain 1-signature

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
\begin{aligned}
& n=5, \mu=(5,4,1), \quad b=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 1 & 1 & 1 \\
\hline 3 & 3 & 2 & 3 & \\
\hline 5 & &
\end{array} \\
& b \leftrightarrow \operatorname{word}(b)=5313221311 .
\end{aligned}
$$

Action of f_{1} on b :

- Obtain 1-signature 122111

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
\begin{aligned}
& n=5, \mu=(5,4,1), \quad b=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 1 & 1 & 1 \\
\hline 3 & 3 & 2 & 3 & \\
\hline 5 & & & \\
\hline &
\end{array} \\
& b \leftrightarrow \operatorname{word}(b)=5313221311 .
\end{aligned}
$$

Action of f_{1} on b :

- Obtain 1-signature 122111
- Cancel 21 pairs 122111

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
n=5, \mu=(5,4,1), \quad b=
$$

$$
b \leftrightarrow \operatorname{word}(b)=5313221311
$$

Action of f_{1} on b :

- Obtain 1-signature 122111
- Cancel 21 pairs 12111

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
n=5, \mu=(5,4,1), \quad b=
$$

$$
b \leftrightarrow \operatorname{word}(b)=5313221311
$$

Action of f_{1} on b :

- Obtain 1-signature 122111
- Cancel 21 pairs 122111

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
n=5, \mu=(5,4,1), \quad b=
$$

$$
b \leftrightarrow \operatorname{word}(b)=5313221311
$$

Action of f_{1} on b :

- Obtain 1-signature 122111
- Cancel 21 pairs 122111

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
n=5, \mu=(5,4,1), \quad b=
$$

$$
b \leftrightarrow \operatorname{word}(b)=5313221311 .
$$

Action of f_{1} on b :

- Obtain 1-signature 122111
- Cancel 21 pairs 122111
- Rightmost $1 \mapsto 2$

$$
f_{1}(b)=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 1 & 1 & 2 \\
\hline 3 & 3 & 2 & 3 & \\
\cline { 1 - 4 } 5 & & & & \\
\end{array}
$$

Crystal operators on $B^{\otimes \mu}$ in type A

Example

$$
\begin{aligned}
& n=5, \mu=(5,4,1), \quad b=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 1 & 1 & 1 \\
\hline 3 & 3 & 2 & 3 & \\
\hline 5 & &
\end{array} \\
& \hline b \leftrightarrow \operatorname{word}(b)=5313221311 .
\end{aligned}
$$

Action of f_{1} on b :

- Obtain 1-signature 122111
- Cancel 21 pairs 122111
- Rightmost $1 \mapsto 2$

$$
f_{1}(b)=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 1 & 1 & 2 \\
\hline 3 & 3 & 2 & 3 & \\
\hline 5 & & & & \\
\cline { 1 - 1 }
\end{array}
$$

Note: f_{i} is defined by similar procedure on $i, i+1$, for $i \neq 0$ and f_{0} is defined by similar procedure on $n, 1$.

Kashiwara-Nakashima columns

There is a model based on fillings in types B, C, D.

Kashiwara-Nakashima columns

There is a model based on fillings in types B, C, D. $B^{r, 1}$ is realised by Kashiwara-Nakashima columns.

Finite root systems of arbitrary type $X_{n}, X \in\{A \ldots G\}$
$\Phi \subset V=\mathbb{R}^{r}$ is finite and invariant under reflections $s_{\alpha}, \alpha \in \Phi$, in the hyperplane orthogonal to α.

Finite root systems of arbitrary type $X_{n}, X \in\{A \ldots G\}$
$\Phi \subset V=\mathbb{R}^{r}$ is finite and invariant under reflections $s_{\alpha}, \alpha \in \Phi$, in the hyperplane orthogonal to α.

Simple roots: $\alpha_{1}, \ldots, \alpha_{r} \in \Phi$; form a basis of V.

Finite root systems of arbitrary type $X_{n}, X \in\{A \ldots G\}$

$\Phi \subset V=\mathbb{R}^{r}$ is finite and invariant under reflections $s_{\alpha}, \alpha \in \Phi$, in the hyperplane orthogonal to α.

Simple roots: $\alpha_{1}, \ldots, \alpha_{r} \in \Phi$; form a basis of V.
Simple reflections: $s_{i}:=s_{\alpha_{i}}$.

Finite root systems of arbitrary type $X_{n}, X \in\{A \ldots G\}$
$\Phi \subset V=\mathbb{R}^{r}$ is finite and invariant under reflections $s_{\alpha}, \alpha \in \Phi$, in the hyperplane orthogonal to α.

Simple roots: $\alpha_{1}, \ldots, \alpha_{r} \in \Phi$; form a basis of V.
Simple reflections: $\boldsymbol{s}_{i}:=\boldsymbol{s}_{\alpha_{i}}$.

$$
W=\left\langle s_{i}: i=1, \ldots, r\right\rangle .
$$

Finite root systems of arbitrary type $X_{n}, X \in\{A \ldots G\}$
$\Phi \subset V=\mathbb{R}^{r}$ is finite and invariant under reflections $s_{\alpha}, \alpha \in \Phi$, in the hyperplane orthogonal to α.

Simple roots: $\alpha_{1}, \ldots, \alpha_{r} \in \Phi$; form a basis of V.
Simple reflections: $\boldsymbol{s}_{i}:=\boldsymbol{s}_{\alpha_{i}}$.
$W=\left\langle s_{i}: i=1, \ldots, r\right\rangle$.
Length: $\ell(w)=\min \left\{k: w=s_{i_{1}} \ldots s_{i_{k}}\right\}$.

Finite root systems of arbitrary type $X_{n}, X \in\{A \ldots G\}$
$\Phi \subset V=\mathbb{R}^{r}$ is finite and invariant under reflections $s_{\alpha}, \alpha \in \Phi$, in the hyperplane orthogonal to α.

Simple roots: $\alpha_{1}, \ldots, \alpha_{r} \in \Phi$; form a basis of V.
Simple reflections: $\boldsymbol{s}_{i}:=\boldsymbol{s}_{\alpha_{i}}$.
$W=\left\langle s_{i}: i=1, \ldots, r\right\rangle$.
Length: $\ell(w)=\min \left\{k: w=s_{i_{1}} \ldots s_{i_{k}}\right\}$.
Coroots: $\alpha^{\vee}=2 \alpha /\langle\alpha, \alpha\rangle$.

Finite root systems of arbitrary type $X_{n}, X \in\{A \ldots G\}$
$\Phi \subset V=\mathbb{R}^{r}$ is finite and invariant under reflections $s_{\alpha}, \alpha \in \Phi$, in the hyperplane orthogonal to α.

Simple roots: $\alpha_{1}, \ldots, \alpha_{r} \in \Phi$; form a basis of V.
Simple reflections: $s_{i}:=s_{\alpha_{i}}$.
$W=\left\langle s_{i}: i=1, \ldots, r\right\rangle$.
Length: $\ell(w)=\min \left\{k: w=s_{i_{1}} \ldots s_{i_{k}}\right\}$.
Coroots: $\alpha^{\vee}=2 \alpha /\langle\alpha, \alpha\rangle$.
Height: $\alpha=\sum_{i} c_{i} \alpha_{i}, h t(\alpha)=\sum_{i} c_{i}$.

Finite root systems of arbitrary type $X_{n}, X \in\{A \ldots G\}$
$\Phi \subset V=\mathbb{R}^{r}$ is finite and invariant under reflections $s_{\alpha}, \alpha \in \Phi$, in the hyperplane orthogonal to α.

Simple roots: $\alpha_{1}, \ldots, \alpha_{r} \in \Phi$; form a basis of V.
Simple reflections: $s_{i}:=s_{\alpha_{i}}$.
$W=\left\langle s_{i}: i=1, \ldots, r\right\rangle$.
Length: $\ell(w)=\min \left\{k: w=s_{i_{1}} \ldots s_{i_{k}}\right\}$.
Coroots: $\alpha^{\vee}=2 \alpha /\langle\alpha, \alpha\rangle$.
Height: $\alpha=\sum_{i} c_{i} \alpha_{i}, \quad h t(\alpha)=\sum_{i} c_{i}$.
The quantum Bruhat graph on W is the directed graph with labeled edges

$$
\begin{gathered}
w \stackrel{\alpha}{\longrightarrow} w s_{\alpha}, \text { where } \\
\ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad(\text { Bruhat graph }), \quad \text { or } \\
\ell\left(w s_{\alpha}\right)=\ell(w)-2 h t\left(\alpha^{\vee}\right)+1
\end{gathered}
$$

Example type A_{n-1}

Example

$$
V=\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)^{\perp} \text { in } \mathbb{R}^{n}=\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n}\right\rangle .
$$

Example type A_{n-1}

Example

$V=\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)^{\perp}$ in $\mathbb{R}^{n}=\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n}\right\rangle$.
Roots: $\Phi=\left\{\alpha_{i j}=\varepsilon_{i}-\varepsilon_{j}: 1 \leq i \neq j \leq n\right\}$.

Example type A_{n-1}

Example

$V=\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)^{\perp}$ in $\mathbb{R}^{n}=\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n}\right\rangle$.
Roots: $\Phi=\left\{\alpha_{i j}=\varepsilon_{i}-\varepsilon_{j}: 1 \leq i \neq j \leq n\right\}$.
Weyl group: $W \simeq S_{n}$.

Example type A_{n-1}

Example

$V=\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right)^{\perp}$ in $\mathbb{R}^{n}=\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n}\right\rangle$.
Roots: $\Phi=\left\{\alpha_{i j}=\varepsilon_{i}-\varepsilon_{j}: 1 \leq i \neq j \leq n\right\}$.
Weyl group: $W \simeq S_{n}$.
Identify: (i, j) with $\alpha_{i j}$ and $s_{\alpha i j}$.
$s_{\alpha_{i j}}$ is realized as the transposition of i and j.

Bruhat graph for S_{3}

Quantum Bruhat graph for S_{3}

Quantum alcove model

Given a dominant weight μ, we associate with it a sequence of roots, called a μ-chain (several choices possible, but not explained):

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

Quantum alcove model

Given a dominant weight μ, we associate with it a sequence of roots, called a μ-chain (several choices possible, but not explained):

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

We consider subsets of positions in Γ :

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

Quantum alcove model

Given a dominant weight μ, we associate with it a sequence of roots, called a μ-chain (several choices possible, but not explained):

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

We consider subsets of positions in Γ :

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

Let $r_{i}=s_{\beta_{i}}, w_{i}=r_{j_{1}} \ldots r_{j_{i}}$.

Quantum alcove model

Given a dominant weight μ, we associate with it a sequence of roots, called a μ-chain (several choices possible, but not explained):

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

We consider subsets of positions in Γ :

$$
J=\left(j_{1}<\ldots<j_{s}\right) \subseteq\{1, \ldots, m\}
$$

Let $r_{i}=s_{\beta_{i}}, w_{i}=r_{j_{1}} \ldots r_{j_{i}} . J$ is admissible if

$$
I d=w_{0} \xrightarrow{\beta_{j_{1}}} w_{1} \xrightarrow{\beta_{j_{2}}} \ldots \xrightarrow{\beta_{j_{s}}} w_{s}
$$

is a path in the quantum Bruhat graph.

Quantum alcove model (cont.)

Construction: (Lenart and L.) Combinatorial crystal operators f_{1}, \ldots, f_{r} and f_{0} on the collection $\mathcal{A}(\mu)$ of admissible subsets by analogy with the bracketing procedure for words.

Quantum alcove model (cont.)

Construction: (Lenart and L.) Combinatorial crystal operators f_{1}, \ldots, f_{r} and f_{0} on the collection $\mathcal{A}(\mu)$ of admissible subsets by analogy with the bracketing procedure for words.

Remark: The restriction of the non-affine combinatorial crystal operators f_{1}, \ldots, f_{r} to admissible subsets corresponding to paths in the Bruhat graph is the classical alcove model of Lenart-Postnikov (a discrete counterpart of the Littelmann path model).

The quantum alcove model in type A_{n-1} Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{llll}
(k, k+1), & (k, k+2), & \ldots, & (k, n) \\
& \ldots & \\
(2, k+1), & (2, k+2), & \ldots, & (2, n) \\
(1, k+1), & (1, k+2), & \ldots, & (1, n)) .
\end{array}
$$

The quantum alcove model in type A_{n-1} Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{clll}
(k, k+1), & (k, k+2), & \cdots, & (k, n) \\
& \cdots & \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
(1, k+1), & (1, k+2), & \cdots, & (1, n)) .
\end{array}
$$

Example

Let $n=5, k=2$.

$$
\Gamma(2)=
$$

3
4
5

The quantum alcove model in type A_{n-1} Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{clll}
(k, k+1), & (k, k+2), & \cdots, & (k, n) \\
& \cdots & \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
(1, k+1), & (1, k+2), & \cdots, & (1, n)) .
\end{array}
$$

Example

Let $n=5, k=2$.
1
2

$$
\Gamma(2)=\{(2,3)
$$

The quantum alcove model in type A_{n-1} Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{clll}
(k, k+1), & (k, k+2), & \cdots, & (k, n) \\
& \cdots & \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
(1, k+1), & (1, k+2), & \cdots, & (1, n)) .
\end{array}
$$

Example

Let $n=5, k=2$.

$$
\Gamma(2)=\{(2,3),(2,4)
$$

The quantum alcove model in type A_{n-1} Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{clll}
(k, k+1), & (k, k+2), & \cdots, & (k, n) \\
& \cdots & \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
(1, k+1), & (1, k+2), & \cdots, & (1, n)) .
\end{array}
$$

Example

Let $n=5, k=2$.
1
2

$$
\Gamma(2)=\{(2,3),(2,4),(2,5)
$$

The quantum alcove model in type A_{n-1} Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{clll}
(k, k+1), & (k, k+2), & \cdots, & (k, n) \\
& \cdots & \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
(1, k+1), & (1, k+2), & \cdots, & (1, n)) .
\end{array}
$$

Example

Let $n=5, k=2$.
\square

$$
\Gamma(2)=\{(2,3),(2,4),(2,5),(1,3)
$$

3
4
5

The quantum alcove model in type A_{n-1} Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{clll}
(k, k+1), & (k, k+2), & \cdots, & (k, n) \\
& \cdots & \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
(1, k+1), & (1, k+2), & \cdots, & (1, n)) .
\end{array}
$$

Example

Let $n=5, k=2$.
\square

$$
\Gamma(2)=\{(2,3),(2,4),(2,5),(1,3),(1,4) \quad\} .
$$

3
4
5

The quantum alcove model in type A_{n-1} Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{clll}
(k, k+1), & (k, k+2), & \cdots, & (k, n) \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
(1, k+1), & (1, k+2), & \cdots, & (1, n)) .
\end{array}
$$

Example

Let $n=5, k=2$.

$$
\Gamma(2)=\{(2,3),(2,4),(2,5),(1,3),(1,4),(1,5)\} .
$$

3
4
5

The quantum alcove model in type A_{n-1}
Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{llll}
(k, k+1), & (k, k+2), & \ldots, & (k, n) \\
& \ldots & \\
(2, k+1), & (2, k+2), & \ldots, & (2, n) \\
(1, k+1), & (1, k+2), & \ldots, & (1, n))
\end{array}
$$

Example

Let $n=5, k=2$.

$$
\Gamma(2)=\{(2,3),(2,4),(2,5),(1,3),(1,4),(1,5)\} .
$$

Recall: μ is a partition, μ_{i}^{\prime} is the height of column i.

The quantum alcove model in type A_{n-1}

Let $\Gamma(k)$ be the chain of roots:

$$
\begin{array}{clll}
(k, k+1), & (k, k+2), & \cdots, & (k, n) \\
(2, k+1), & (2, k+2), & \cdots, & (2, n) \\
(1, k+1), & (1, k+2), & \cdots, & (1, n)) .
\end{array}
$$

Example

Let $n=5, k=2$.

$$
\Gamma(2)=\{(2,3),(2,4),(2,5),(1,3),(1,4),(1,5)\} .
$$

Recall: μ is a partition, μ_{i}^{\prime} is the height of column i. A μ-chain Γ is constructed by concatenating $\Gamma(k)$ chains for $k=\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots$.

Crystal operators

Example
Let $n=3, \mu=\square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$

Crystal operators

Example
Let $n=3, \mu=\square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$
$((2,3),(1,3)|(2,3),(1,3)|(1,2),(1,3)|(1,2),(1,3)|(1,2),(1,3))$.

Crystal operators

Example

Let $n=3, \mu=\square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$
$((2,3),(1,3)|(2,3),(1,3)|(1,2),(1,3)|(1,2),(1,3)|(1,2),(1,3))$.
Let $J=\{1,4,7,8\}$.
Note: J is admissible: corresponds to a path in the quantum Bruhat graph.

Crystal operators

Example

Let $n=3, \quad \mu=\square \square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$
$((2,3),(1,3)|(2,3),(1,3)|(1,2),(1,3)|(1,2),(1,3)|(1,2),(1,3))$.
Let $J=\{1,4,7,8\}$.
Note: J is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

Crystal operators

Example

Let $n=3, \quad \mu=\square \square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$
$((2,3),(1,3)|(2,3),(1,3)|(1,2),(1,3)|(1,2),(1,3)|(1,2),(1,3))$.
Let $J=\{1,4,7,8\}$.
Note: J is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

$$
(\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)}|(1,2),(1,3)|\underline{(1,2)}, \underline{(1,3)}|(1,2),(1,3))
$$

Crystal operators

Example

Let $n=3, \quad \mu=\square \square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$
$((2,3),(1,3)|(2,3),(1,3)|(1,2),(1,3)|(1,2),(1,3)|(1,2),(1,3))$.
Let $J=\{1,4,7,8\}$.
Note: J is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

$$
\begin{aligned}
& (\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)}|(1,2),(1,3)|\underline{(1,2)}, \underline{(1,3)}|(1,2),(1,3)) \\
& (\underline{(2,3)},(1,3)|(2,3),(1,3)|(1,2),(1,3)|\underline{(1,2)}, \underline{(1,3)}|(3,2),(3,1))
\end{aligned}
$$

Crystal operators

Example

Let $n=3, \quad \mu=\square \square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$
$((2,3),(1,3)|(2,3),(1,3)|(1,2),(1,3)|(1,2),(1,3)|(1,2),(1,3))$.
Let $J=\{1,4,7,8\}$.
Note: J is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

$$
(\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)}|(1,2),(1,3)|\underline{(1,2)}, \underline{(1,3)}|(3,2),(3,1))
$$

Crystal operators

Example

Let $n=3, \quad \mu=\square \square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$
$((2,3),(1,3)|(2,3),(1,3)|(1,2),(1,3)|(1,2),(1,3)|(1,2),(1,3))$.
Let $J=\{1,4,7,8\}$.
Note: J is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

$$
\begin{aligned}
& (\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)}|(1,2),(1,3)|\underline{(1,2)}, \underline{(1,3)}|(3,2),(3,1)) \\
& (\underline{(2,3)},(1,3)|(2,3), \underline{(1,3)}|(1,2),(1,3)|\underline{(1,2)}, \underline{(2,3)}|(3,1),(3,2))
\end{aligned}
$$

Crystal operators

Example

Let $n=3, \quad \mu=\square \square \square . \Gamma=\Gamma(2) \Gamma(2) \Gamma(1) \Gamma(1) \Gamma(1)=$
$((2,3),(1,3)|(2,3),(1,3)|(1,2),(1,3)|(1,2),(1,3)|(1,2),(1,3))$.
Let $J=\{1,4,7,8\}$.
Note: J is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

$$
\Gamma(J)=(\underline{(2,3)},(1,2) \mid(3,2),(\underline{1,2)}|(2,3),(2,1)| \underline{(2,3)}, \underline{(3,1)} \mid(1,2),(1,3))
$$

Crystal operators (cont.)

Step 2. Bracketing.

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.
- Concatenate first letters to make a word.

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.
- Concatenate first letters to make a word.

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
- Cancel 21 pairs like before.

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
- Cancel 21 pairs like before.

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
- Cancel 21 pairs like before.
- Consider rightmost 1 like before.

1121
1121
11

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
- Cancel 21 pairs like before.
- Consider rightmost 1 like before.
- Add corresponding position to J, and remove from J the position corresponding to underlined 1 to its right (if any).

Crystal operators (cont.)

Step 2. Bracketing.
$J=\{1,4,7,8\} . f_{1}(J)=\{1,2,7,8\}$.
$\Gamma(J)=(\underline{(2,3)},(1,2)|(3,2), \underline{(1,2)}|(2,3),(2,1)|\underline{(2,3)}, \underline{(3,1)}|(1,2),(1,3))$

- For f_{1} only look at $(1,2),(2,1)$ in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
- Cancel 21 pairs like before.
- Consider rightmost 1 like before.
- Add corresponding position to J, and remove from J the position corresponding to underlined 1 to its right (if any).

Crystal operators (cont.)

Note: f_{i} is similarly defined based on $(i, i+1)$ in $\Gamma(J)$ for $i \neq 0$ and f_{0} is similarly defined based on $(n, 1)$.

Crystal operators (cont.)

Note: f_{i} is similarly defined based on $(i, i+1)$ in $\Gamma(J)$ for $i \neq 0$ and t_{0} is similarly defined based on $(n, 1)$.

Similar procedure in arbitrary type, using the simple roots α_{i} for $f_{i} \neq f_{0}$ and the longest root θ for $f_{i}=f_{0}$.

Main results

Theorem (Lenart and L.)
$\mathcal{A}(\mu)$ is closed under the action of $f_{0}, f_{1}, \ldots, f_{r}$.

Main results

Theorem (Lenart and L.)
$\mathcal{A}(\mu)$ is closed under the action of $f_{0}, f_{1}, \ldots, f_{r}$.
Conjecture (Lenart and L.)
$\left(\mathcal{A}(\mu),\left\{f_{0}, f_{1}, \ldots, f_{r}\right\}\right)$ in type X_{n} is a model for $B^{\otimes \mu}$ of type $X_{n}^{(1)}$,

Main results

Theorem (Lenart and L.)
$\mathcal{A}(\mu)$ is closed under the action of $f_{0}, f_{1}, \ldots, f_{r}$.
Conjecture (Lenart and L.)
$\left(\mathcal{A}(\mu),\left\{f_{0}, f_{1}, \ldots, f_{r}\right\}\right)$ in type X_{n} is a model for $B^{\otimes \mu}$ of type $X_{n}^{(1)}$, in the sense that it gives all the classical arrows plus most of the 0 -arrows (except those at the end of a 0 -string).

Main results

Theorem (Lenart and L.)
$\mathcal{A}(\mu)$ is closed under the action of $f_{0}, f_{1}, \ldots, f_{r}$.
Conjecture (Lenart and L.)
$\left(\mathcal{A}(\mu),\left\{f_{0}, f_{1}, \ldots, f_{r}\right\}\right)$ in type X_{n} is a model for $B^{\otimes \mu}$ of type $X_{n}^{(1)}$, in the sense that it gives all the classical arrows plus most of the 0 -arrows (except those at the end of a 0 -string).

Theorem (Lenart and L.)
The above conjecture is true in type A and C.

Main results

Theorem (Lenart and L.)
$\mathcal{A}(\mu)$ is closed under the action of $f_{0}, f_{1}, \ldots, f_{r}$.
Conjecture (Lenart and L.)
$\left(\mathcal{A}(\mu),\left\{f_{0}, f_{1}, \ldots, f_{r}\right\}\right)$ in type X_{n} is a model for $B^{\otimes \mu}$ of type $X_{n}^{(1)}$, in the sense that it gives all the classical arrows plus most of the 0 -arrows (except those at the end of a 0 -string).

Theorem (Lenart and L.)

The above conjecture is true in type A and C.
A byproduct is a bijection between $\mathcal{A}(\mu)$ and the filling model for $B^{\otimes \mu}$ in type A and C, which is shown to preserve the corresponding affine crystal structures (cf. Conjecture).

Quantum Lakshmibai-Seshadri paths

Note: Recent work by Lenart, Naito, Sagaki, Schilling and Shimozono: $B^{\otimes \mu}$ is realized in terms of a model which is related to the quantum alcove model, namely the quantum
Lakshmibai-Seshadri paths.

Applications of the quantum alcove model

- Computing the energy function on tensor products of KR crystals. (Work of Lenart, Naito, Sagaki, Schilling, Shimozono).

Applications of the quantum alcove model

- Computing the energy function on tensor products of KR crystals. (Work of Lenart, Naito, Sagaki, Schilling, Shimozono).
- Give an explicit construction of the combinatorial R-matrix, that is, the affine crystal isomorphism between $X \otimes Y$ and $Y \otimes X$.

Applications of the quantum alcove model

- Computing the energy function on tensor products of KR crystals. (Work of Lenart, Naito, Sagaki, Schilling, Shimozono).
- Give an explicit construction of the combinatorial R-matrix, that is, the affine crystal isomorphism between $X \otimes Y$ and $Y \otimes X$.
Based on generalizing the so-called Yang-Baxter moves on the alcove model (analogue of jeu de taquin on tableaux) to the quantum alcove model.

Applications of the quantum alcove model

- Computing the energy function on tensor products of KR crystals. (Work of Lenart, Naito, Sagaki, Schilling, Shimozono).
- Give an explicit construction of the combinatorial R-matrix, that is, the affine crystal isomorphism between $X \otimes Y$ and $Y \otimes X$.
Based on generalizing the so-called Yang-Baxter moves on the alcove model (analogue of jeu de taquin on tableaux) to the quantum alcove model. These are uniform across Lie types.

Thank you

