A generalization of the alcove model and its applications

Arthur Lubovsky

State University of New York at Albany

FPSAC'12 Nagoya University, August 2, 2012

Joint work with Cristian Lenart. arXiv:1112.2216v1

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

V - is a representation of a quantum group $U_q(\mathfrak{g})$.

V - is a representation of a quantum group $U_q(\mathfrak{g})$.

B - crystal basis for V (assuming it exists). Usually B is indexed by some combinatorial objects.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

V - is a representation of a quantum group $U_q(\mathfrak{g})$.

B - crystal basis for V (assuming it exists). Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of $U_q(\mathfrak{g})$ on B as $q \to 0$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

V - is a representation of a quantum group $U_q(\mathfrak{g})$.

B - crystal basis for V (assuming it exists). Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of $U_q(\mathfrak{g})$ on B as $q \to 0$.

This action is by partial permutations, and is represented as a colored directed graph

$$b \stackrel{i}{\longrightarrow} b'$$
 if $f_i(b) = b'$,

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for $i = 1, \ldots, r = \operatorname{rank}(\mathfrak{g})$, and $b, b' \in B$.

V - is a representation of a quantum group $U_q(\mathfrak{g})$.

B - crystal basis for V (assuming it exists). Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of $U_q(\mathfrak{g})$ on B as $q \to 0$.

This action is by partial permutations, and is represented as a colored directed graph

$$b \stackrel{i}{\longrightarrow} b'$$
 if $f_i(b) = b'$,

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for $i = 1, ..., r = \operatorname{rank}(\mathfrak{g})$, and $b, b' \in B$. f_i are called crystal operators.

Kirillov-Reshetikhin (KR) Crystals

KR-crystals - correspond to certain finite dimensional representations (KR-modules) of quantum affine algebras (have f_0 , corresponding to the affine simple root α_0).

(ロ) (同) (三) (三) (三) (○) (○)

Kirillov-Reshetikhin (KR) Crystals

KR-crystals - correspond to certain finite dimensional representations (KR-modules) of quantum affine algebras (have f_0 , corresponding to the affine simple root α_0).

Indexed by $r \times s$ rectangles and denoted $B^{r,s}$. We only consider columns $B^{r,1}$.

(ロ) (同) (三) (三) (三) (○) (○)

Let $\mu' = (\mu'_1 \ge \mu'_2 \ge \cdots)$ be the conjugate partition of μ .

Let $\mu' = (\mu'_1 \ge \mu'_2 \ge \cdots)$ be the conjugate partition of μ . $B^{\otimes \mu} := B^{\mu'_1,1} \otimes B^{\mu'_2,1} \otimes \cdots$

(corresponds to tensor product of KR modules).

Let $\mu' = (\mu'_1 \ge \mu'_2 \ge \cdots)$ be the conjugate partition of μ . $B^{\otimes \mu} := B^{\mu'_1,1} \otimes B^{\mu'_2,1} \otimes \cdots$ (corresponds to tensor product of KR modules).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Goal: model $B^{\otimes \mu}$ uniformly across Lie types

Let $\mu' = (\mu'_1 \ge \mu'_2 \ge \cdots)$ be the conjugate partition of μ . $B^{\otimes \mu} := B^{\mu'_1,1} \otimes B^{\mu'_2,1} \otimes \cdots$ (corresponds to tensor product of KR modules).

Goal: model $B^{\otimes \mu}$ uniformly across Lie types

Note: Existing models are type specific, work mostly in classical Lie types A - D, and increase in complexity beyond type A.

Tensor products of KR crystals in type A_{n-1}

The vertices of $B^{\otimes \mu}$ are (viewed as) column-strict fillings of μ with entries 1, ..., *n*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Tensor products of KR crystals in type A_{n-1}

The vertices of $B^{\otimes \mu}$ are (viewed as) column-strict fillings of μ with entries 1, ..., *n*.

(ロ) (同) (三) (三) (三) (○) (○)

Example

Let $\mu = (3, 2, 2, 1)$, n = 5.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

$$n = 5, \ \mu = (5, 4, 1), \qquad b = \boxed{\begin{array}{c|c|c} 1 & 2 & 1 & 1 & 1 \\ \hline 3 & 3 & 2 & 3 \\ \hline 5 & & \end{array}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$b \leftrightarrow \operatorname{word}(b) = 5313221311$$
.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

Action of f_1 on b:

Obtain 1-signature

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

Action of f_1 on b:

Obtain 1-signature 122111

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

- Obtain 1-signature 122111
- Cancel 21 pairs 122111

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

- Obtain 1-signature 122111
- Cancel 21 pairs 122111

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

- Obtain 1-signature 122111
- Cancel 21 pairs 122111

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

- Obtain 1-signature 122111
- Cancel 21 pairs 122111

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

Action of f_1 on b:

- Obtain 1-signature 122111
- Cancel 21 pairs 122111
- Rightmost $1 \mapsto 2$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Crystal operators on *B*^{⊗µ} in type *A* Example

 $b \leftrightarrow \operatorname{word}(b) = 5313221311$.

Action of f_1 on b:

 ▶ Obtain 1-signature
 122111
 $f_1(b) =$ 1
 2
 1
 1
 2

 ▶ Cancel 21 pairs
 122111
 $f_1(b) =$ 3 3 2 3

 ▶ Rightmost 1 \mapsto 2
 5

Note: f_i is defined by similar procedure on i, i + 1, for $i \neq 0$ and f_0 is defined by similar procedure on n, 1.

Kashiwara-Nakashima columns

There is a model based on fillings in types B, C, D.

Kashiwara-Nakashima columns

There is a model based on fillings in types B, C, D. $B^{r,1}$ is realised by Kashiwara-Nakashima columns.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Finite root systems of arbitrary type X_n , $X \in \{A \dots G\}$ $\Phi \subset V = \mathbb{R}^r$ is finite and invariant under reflections s_{α} , $\alpha \in \Phi$, in

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

the hyperplane orthogonal to α .

Finite root systems of arbitrary type X_n , $X \in \{A \dots G\}$

 $\Phi \subset V = \mathbb{R}^r$ is finite and invariant under reflections s_{α} , $\alpha \in \Phi$, in the hyperplane orthogonal to α .

(ロ) (同) (三) (三) (三) (○) (○)

Simple roots: $\alpha_1, \ldots, \alpha_r \in \Phi$; form a basis of *V*.

(ロ) (同) (三) (三) (三) (○) (○)

Simple roots: $\alpha_1, \ldots, \alpha_r \in \Phi$; form a basis of *V*.

Simple reflections: $s_i := s_{\alpha_i}$.

Simple roots: $\alpha_1, \ldots, \alpha_r \in \Phi$; form a basis of *V*.

Simple reflections: $s_i := s_{\alpha_i}$.

 $W = \langle s_i : i = 1, \ldots, r \rangle.$

Simple roots: $\alpha_1, \ldots, \alpha_r \in \Phi$; form a basis of *V*.

Simple reflections: $s_i := s_{\alpha_i}$.

 $W = \langle s_i : i = 1, \ldots, r \rangle.$

Length: $\ell(w) = \min \{k : w = s_{i_1} \dots s_{i_k}\}.$

Simple roots: $\alpha_1, \ldots, \alpha_r \in \Phi$; form a basis of *V*.

Simple reflections: $s_i := s_{\alpha_i}$.

$$W = \langle s_i : i = 1, \ldots, r \rangle.$$

Length: $\ell(w) = \min \{k : w = s_{i_1} \dots s_{i_k}\}.$

Coroots: $\alpha^{\vee} = 2\alpha/\langle \alpha, \alpha \rangle$.

Simple roots: $\alpha_1, \ldots, \alpha_r \in \Phi$; form a basis of *V*.

Simple reflections: $s_i := s_{\alpha_i}$.

$$W = \langle s_i : i = 1, \ldots, r \rangle.$$

Length: $\ell(w) = \min \{k : w = s_{i_1} \dots s_{i_k}\}.$

Coroots: $\alpha^{\vee} = 2\alpha/\langle \alpha, \alpha \rangle$.

Height: $\alpha = \sum_{i} c_{i} \alpha_{i}$, $ht(\alpha) = \sum_{i} c_{i}$.

Simple roots: $\alpha_1, \ldots, \alpha_r \in \Phi$; form a basis of *V*.

Simple reflections: $s_i := s_{\alpha_i}$.

$$W = \langle s_i : i = 1, \ldots, r \rangle.$$

Length: $\ell(w) = \min \{k : w = s_{i_1} \dots s_{i_k}\}.$

Coroots: $\alpha^{\vee} = 2\alpha/\langle \alpha, \alpha \rangle$.

Height: $\alpha = \sum_{i} c_{i} \alpha_{i}$, $ht(\alpha) = \sum_{i} c_{i}$.

The quantum Bruhat graph on W is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_{\alpha}$$
, where

 $\ell(ws_{\alpha}) = \ell(w) + 1$ (Bruhat graph), or $\ell(ws_{\alpha}) = \ell(w) - 2ht(\alpha^{\vee}) + 1.$

Example type A_{n-1}

Example $V = (\varepsilon_1 + \ldots + \varepsilon_n)^{\perp}$ in $\mathbb{R}^n = \langle \varepsilon_1, \ldots, \varepsilon_n \rangle$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで
Example type A_{n-1}

Example $V = (\varepsilon_1 + \ldots + \varepsilon_n)^{\perp}$ in $\mathbb{R}^n = \langle \varepsilon_1, \ldots, \varepsilon_n \rangle$. Roots: $\Phi = \{ \alpha_{ij} = \varepsilon_i - \varepsilon_j : 1 \le i \ne j \le n \}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example type A_{n-1}

Example $V = (\varepsilon_1 + \ldots + \varepsilon_n)^{\perp}$ in $\mathbb{R}^n = \langle \varepsilon_1, \ldots, \varepsilon_n \rangle$. Roots: $\Phi = \{ \alpha_{ij} = \varepsilon_i - \varepsilon_j : 1 \le i \ne j \le n \}$. Weyl group: $W \simeq S_n$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example type A_{n-1}

Example $V = (\varepsilon_1 + \ldots + \varepsilon_n)^{\perp}$ in $\mathbb{R}^n = \langle \varepsilon_1, \ldots, \varepsilon_n \rangle$. Roots: $\Phi = \{ \alpha_{ij} = \varepsilon_i - \varepsilon_j : 1 \le i \ne j \le n \}$. Weyl group: $W \simeq S_n$.

Identify: (i, j) with α_{ij} and $s_{\alpha_{ij}}$. $s_{\alpha_{ij}}$ is realized as the transposition of *i* and *j*.

Bruhat graph for S_3

Quantum Bruhat graph for S_3

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Given a dominant weight μ , we associate with it a sequence of roots, called a μ -chain (several choices possible, but not explained):

$$\Gamma = (\beta_1, \ldots, \beta_m)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Given a dominant weight μ , we associate with it a sequence of roots, called a μ -chain (several choices possible, but not explained):

$$\Gamma = (\beta_1, \ldots, \beta_m)$$

We consider subsets of positions in Γ :

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Given a dominant weight μ , we associate with it a sequence of roots, called a μ -chain (several choices possible, but not explained):

$$\Gamma = (\beta_1, \ldots, \beta_m)$$

We consider subsets of positions in Γ :

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $r_i = s_{\beta_i}, w_i = r_{j_1} \dots r_{j_i}$.

Given a dominant weight μ , we associate with it a sequence of roots, called a μ -chain (several choices possible, but not explained):

$$\Gamma = (\beta_1, \ldots, \beta_m)$$

We consider subsets of positions in Γ :

$$J = (j_1 < \ldots < j_s) \subseteq \{1, \ldots, m\}.$$

Let $r_i = s_{\beta_i}$, $w_i = r_{j_1} \dots r_{j_i}$. *J* is admissible if

$$Id = w_0 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} \dots \xrightarrow{\beta_{j_s}} w_s$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is a path in the quantum Bruhat graph.

Quantum alcove model (cont.)

Construction: (Lenart and L.) Combinatorial crystal operators f_1, \ldots, f_r and f_0 on the collection $\mathcal{A}(\mu)$ of admissible subsets by analogy with the bracketing procedure for words.

Quantum alcove model (cont.)

Construction: (Lenart and L.) Combinatorial crystal operators f_1, \ldots, f_r and f_0 on the collection $\mathcal{A}(\mu)$ of admissible subsets by analogy with the bracketing procedure for words.

Remark: The restriction of the non-affine combinatorial crystal operators f_1, \ldots, f_r to admissible subsets corresponding to paths in the Bruhat graph is the classical alcove model of Lenart-Postnikov (a discrete counterpart of the Littelmann path model).

(ロ) (同) (三) (三) (三) (○) (○)

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example

Let n = 5, k = 2.

1
2

S
4
5

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example

Let n = 5, k = 2.

$$\Gamma(2) = \{(2,3)\}$$

3
4
5

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

}.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example

Let n = 5, k = 2.

$$\Gamma(2) = \{(2,3), (2,4)$$

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

Example

Let n = 5, k = 2.

 $\Gamma(2)=\,\{(2,3),(2,4),(2,5)$

}.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

Example

Let n = 5, k = 2.

$$\Gamma(2) = \{(2,3), (2,4), (2,5), (1,3)$$

}.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

Example

Let n = 5, k = 2.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 2

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

Example

Let n = 5, k = 2.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 2

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

Example

Let n = 5, k = 2.

1	
2	

$$\Gamma(2) = \ \left\{ (2,3), (2,4), (2,5), (1,3), (1,4), (1,5) \right\}.$$

3 4 5 **Recall**: μ is a partition, μ'_i is the height of column *i*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$((k, k+1), (k, k+2), \dots, (k, n), \dots, (2, k+1), (2, k+2), \dots, (2, n), (1, k+1), (1, k+2), \dots, (1, n)).$$

Example

Let n = 5, k = 2.

1	
2	

Г(2) =	$\{(2,3),(2,3)\}$,4),(2,5),	(1,3),(1	,4),(1,5)}.
--------	-------------------	------------	----------	-------------

3 4 5 **Recall:** μ is a partition, μ'_i is the height of column *i*. A μ -chain Γ is constructed by concatenating $\Gamma(k)$ chains for $k = \mu'_1, \mu'_2, \dots$

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$ ((2,3), (1,3) | (2,3), (1,3) | (1,2), (1,3) | (1,2), (1,3) | (1,2), (1,3)).

- ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$

((2,3),(1,3) | (2,3),(1,3) | (1,2),(1,3) | (1,2),(1,3) | (1,2),(1,3)).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let $J = \{1, 4, 7, 8\}$.

Note: *J* is admissible: corresponds to a path in the quantum Bruhat graph.

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$

((2,3),(1,3) | (2,3),(1,3) | (1,2),(1,3) | (1,2),(1,3) | (1,2),(1,3)).

Let $J = \{1, 4, 7, 8\}$.

Note: *J* is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$

((2,3),(1,3) | (2,3),(1,3) | (1,2),(1,3) | (1,2),(1,3) | (1,2),(1,3)).

Let
$$J = \{1, 4, 7, 8\}$$
.

Note: *J* is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

 $(\underline{(2,3)},(1,3) \mid (2,3),\underline{(1,3)} \mid (1,2),(1,3) \mid \underline{(1,2)},\underline{(1,3)} \mid (1,2),(1,3))$

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$

 $\left((2,3),(1,3) \,|\, (2,3),(1,3) \,|\, (1,2),(1,3) \,|\, (1,2),(1,3) \,|\, (1,2),(1,3) \right).$

Let
$$J = \{1, 4, 7, 8\}$$
.

Note: *J* is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions *J* to the roots at the right of these positions.

$$(\underbrace{(2,3)}_{(1,3)},(1,3) | (2,3),\underbrace{(1,3)}_{(1,3)} | (1,2),(1,3) | \underbrace{(1,2)}_{(1,3)},\underbrace{(1,3)}_{(1,3)} | (1,2),(1,3))$$
$$(\underbrace{(2,3)}_{(1,3)},(1,3) | (2,3),\underbrace{(1,3)}_{(1,3)} | (1,2),(1,3) | \underbrace{(1,2)}_{(1,2)},\underbrace{(1,3)}_{(1,3)} | (3,2),(3,1))$$

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$

 $\left((2,3),(1,3) \,|\, (2,3),(1,3) \,|\, (1,2),(1,3) \,|\, (1,2),(1,3) \,|\, (1,2),(1,3) \right).$

Let
$$J = \{1, 4, 7, 8\}$$
.

Note: J is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions *J* to the roots at the right of these positions.

 $(\underline{(2,3)},(1,3) \mid (2,3),\underline{(1,3)} \mid (1,2),(1,3) \mid \underline{(1,2)},\underline{(1,3)} \mid (3,2),(3,1))$

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$

 $\left((2,3),(1,3) \,|\, (2,3),(1,3) \,|\, (1,2),(1,3) \,|\, (1,2),(1,3) \,|\, (1,2),(1,3) \right).$

Let
$$J = \{1, 4, 7, 8\}$$
.

Note: *J* is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions *J* to the roots at the right of these positions.

$$(\underbrace{(2,3)}_{(1,3)},(1,3) | (2,3),\underbrace{(1,3)}_{(1,3)} | (1,2),(1,3) | \underbrace{(1,2)}_{(1,2)},\underbrace{(1,3)}_{(2,3)} | (3,2),(3,1))$$

$$(\underbrace{(2,3)}_{(2,3)},(1,3) | (2,3),\underbrace{(1,3)}_{(1,3)} | (1,2),(1,3) | \underbrace{(1,2)}_{(2,3)},\underbrace{(2,3)}_{(2,3)} | (3,1),(3,2))$$

Example Let n = 3, $\mu = \square$. $\Gamma = \Gamma(2)\Gamma(2)\Gamma(1)\Gamma(1)\Gamma(1) =$

 $\left((2,3),(1,3) \,|\, (2,3),(1,3) \,|\, (1,2),(1,3) \,|\, (1,2),(1,3) \,|\, (1,2),(1,3) \right).$

Let
$$J = \{1, 4, 7, 8\}$$
.

Note: *J* is admissible: corresponds to a path in the quantum Bruhat graph.

Step 1: Construct a "folded chain" by successively applying reflections in positions J to the roots at the right of these positions.

 $\Gamma(J) = (\underline{(2,3)}, (1,2) \mid (3,2), \underline{(1,2)} \mid (2,3), (2,1) \mid \underline{(2,3)}, \underline{(3,1)} \mid (1,2), (1,3))$

Step 2. Bracketing.

Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For *f*₁ only look at (1,2), (2,1) in Γ(*J*).

Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For *f*₁ only look at (1,2), (2,1) in Γ(*J*).

Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

- For f_1 only look at (1, 2), (2, 1) in $\Gamma(J)$.
- Concatenate first letters to make a word.

Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

- For f_1 only look at (1, 2), (2, 1) in $\Gamma(J)$.
- Concatenate first letters to make a word.

1<u>1</u>21

Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

- For f_1 only look at (1, 2), (2, 1) in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.

1<u>1</u>21 1121
Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

- For f_1 only look at (1, 2), (2, 1) in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters. 1121
 Cancel 21 pairs *like before*. 1121

Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

- For f_1 only look at (1, 2), (2, 1) in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
 Cancel 21 pairs *like before*.
 1121
 11

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

- For f_1 only look at (1, 2), (2, 1) in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
 Cancel 21 pairs *like before*.
 Consider rightmost 1 *like before*.
 11/21

Step 2. Bracketing. $J = \{1, 4, 7, 8\}.$ $\Gamma(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))$

- For f_1 only look at (1, 2), (2, 1) in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
 Cancel 21 pairs *like before*.
 Consider rightmost 1 *like before*.
 Add corresponding position to *J*, and remove from *J* the position corresponding to underlined 1 to its right (if any).

Step 2. Bracketing. $J = \{1, 4, 7, 8\}$. $f_1(J) = \{1, 2, 7, 8\}$. $\Gamma(J) = (\underline{(2,3)}, (1,2) | (3,2), \underline{(1,2)} | (2,3), (2,1) | \underline{(2,3)}, \underline{(3,1)} | (1,2), (1,3))$

- For f_1 only look at (1, 2), (2, 1) in $\Gamma(J)$.
- Concatenate first letters to make a word.
- Ignore underlined letters.
 Cancel 21 pairs *like before*.
 Consider rightmost 1 *like before*.
 Add corresponding position to *J*, and remove from *J* the position corresponding to underlined 1 to its right (if any).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: f_i is similarly defined based on (i, i + 1) in $\Gamma(J)$ for $i \neq 0$ and f_0 is similarly defined based on (n, 1).

Note: f_i is similarly defined based on (i, i + 1) in $\Gamma(J)$ for $i \neq 0$ and f_0 is similarly defined based on (n, 1).

Similar procedure in arbitrary type, using the simple roots α_i for $f_i \neq f_0$ and the longest root θ for $f_i = f_0$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (Lenart and L.)

 $\mathcal{A}(\mu)$ is closed under the action of f_0, f_1, \ldots, f_r .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Theorem (Lenart and L.)

 $\mathcal{A}(\mu)$ is closed under the action of f_0, f_1, \ldots, f_r .

Conjecture (Lenart and L.)

 $(\mathcal{A}(\mu), \{f_0, f_1, \dots, f_r\})$ in type X_n is a model for $\mathbb{B}^{\otimes \mu}$ of type $X_n^{(1)}$,

Theorem (Lenart and L.)

 $\mathcal{A}(\mu)$ is closed under the action of f_0, f_1, \ldots, f_r .

Conjecture (Lenart and L.)

 $(\mathcal{A}(\mu), \{f_0, f_1, \dots, f_r\})$ in type X_n is a model for $B^{\otimes \mu}$ of type $X_n^{(1)}$, in the sense that it gives all the classical arrows plus most of the 0-arrows (except those at the end of a 0-string).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (Lenart and L.)

 $\mathcal{A}(\mu)$ is closed under the action of f_0, f_1, \ldots, f_r .

Conjecture (Lenart and L.)

 $(\mathcal{A}(\mu), \{f_0, f_1, \dots, f_r\})$ in type X_n is a model for $B^{\otimes \mu}$ of type $X_n^{(1)}$, in the sense that it gives all the classical arrows plus most of the 0-arrows (except those at the end of a 0-string).

(日) (日) (日) (日) (日) (日) (日)

Theorem (Lenart and L.)

The above conjecture is true in type A and C.

Theorem (Lenart and L.)

 $\mathcal{A}(\mu)$ is closed under the action of f_0, f_1, \ldots, f_r .

Conjecture (Lenart and L.)

 $(\mathcal{A}(\mu), \{f_0, f_1, \dots, f_r\})$ in type X_n is a model for $B^{\otimes \mu}$ of type $X_n^{(1)}$, in the sense that it gives all the classical arrows plus most of the 0-arrows (except those at the end of a 0-string).

Theorem (Lenart and L.)

The above conjecture is true in type A and C.

A byproduct is a bijection between $\mathcal{A}(\mu)$ and the filling model for $B^{\otimes \mu}$ in type A and C, which is shown to preserve the corresponding affine crystal structures (cf. Conjecture).

Quantum Lakshmibai-Seshadri paths

Note: Recent work by Lenart, Naito, Sagaki, Schilling and Shimozono: $B^{\otimes \mu}$ is realized in terms of a model which is related to the quantum alcove model, namely the quantum Lakshmibai-Seshadri paths.

(ロ) (同) (三) (三) (三) (○) (○)

 Computing the energy function on tensor products of KR crystals. (Work of Lenart, Naito, Sagaki, Schilling, Shimozono).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Computing the energy function on tensor products of KR crystals. (Work of Lenart, Naito, Sagaki, Schilling, Shimozono).
- Give an explicit construction of the combinatorial *R*-matrix, that is, the affine crystal isomorphism between $X \otimes Y$ and $Y \otimes X$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Computing the energy function on tensor products of KR crystals. (Work of Lenart, Naito, Sagaki, Schilling, Shimozono).
- Give an explicit construction of the combinatorial *R*-matrix, that is, the affine crystal isomorphism between $X \otimes Y$ and $Y \otimes X$.

Based on generalizing the so-called Yang-Baxter moves on the alcove model (analogue of jeu de taquin on tableaux) to the quantum alcove model.

(日) (日) (日) (日) (日) (日) (日)

- Computing the energy function on tensor products of KR crystals. (Work of Lenart, Naito, Sagaki, Schilling, Shimozono).
- Give an explicit construction of the combinatorial *R*-matrix, that is, the affine crystal isomorphism between $X \otimes Y$ and $Y \otimes X$.

Based on generalizing the so-called Yang-Baxter moves on the alcove model (analogue of jeu de taquin on tableaux) to the quantum alcove model. These are uniform across Lie types.

(ロ) (同) (三) (三) (三) (○) (○)

Thank you

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○