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Setup

V - is a representation of a quantum group Uq(g).

B - crystal basis for V (assuming it exists).
Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of Uq(g) on B
as q → 0.

This action is by partial permutations, and is represented as a
colored directed graph

b i−→ b′ if fi(b) = b′ ,

for i = 1, . . . , r = rank(g), and b,b′ ∈ B.
fi are called crystal operators.



Setup

V - is a representation of a quantum group Uq(g).

B - crystal basis for V (assuming it exists).
Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of Uq(g) on B
as q → 0.

This action is by partial permutations, and is represented as a
colored directed graph

b i−→ b′ if fi(b) = b′ ,

for i = 1, . . . , r = rank(g), and b,b′ ∈ B.
fi are called crystal operators.



Setup

V - is a representation of a quantum group Uq(g).

B - crystal basis for V (assuming it exists).
Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of Uq(g) on B
as q → 0.

This action is by partial permutations, and is represented as a
colored directed graph

b i−→ b′ if fi(b) = b′ ,

for i = 1, . . . , r = rank(g), and b,b′ ∈ B.
fi are called crystal operators.



Setup

V - is a representation of a quantum group Uq(g).

B - crystal basis for V (assuming it exists).
Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of Uq(g) on B
as q → 0.

This action is by partial permutations, and is represented as a
colored directed graph

b i−→ b′ if fi(b) = b′ ,

for i = 1, . . . , r = rank(g), and b,b′ ∈ B.

fi are called crystal operators.



Setup

V - is a representation of a quantum group Uq(g).

B - crystal basis for V (assuming it exists).
Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of Uq(g) on B
as q → 0.

This action is by partial permutations, and is represented as a
colored directed graph

b i−→ b′ if fi(b) = b′ ,

for i = 1, . . . , r = rank(g), and b,b′ ∈ B.
fi are called crystal operators.



Kirillov-Reshetikhin (KR) Crystals

KR-crystals - correspond to certain finite dimensional
representations (KR-modules) of quantum affine algebras
(have f0, corresponding to the affine simple root α0).

Indexed by r × s rectangles and denoted Br ,s. We only
consider columns Br ,1.
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Goal

Let µ′ = (µ′1 ≥ µ′2 ≥ · · · ) be the conjugate partition of µ.

B⊗µ := Bµ′1,1 ⊗ Bµ′2,1 ⊗ · · ·
(corresponds to tensor product of KR modules).

Goal: model B⊗µ uniformly across Lie types

Note: Existing models are type specific, work mostly in classical
Lie types A− D, and increase in complexity beyond type A.
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Tensor products of KR crystals in type An−1

The vertices of B⊗µ are (viewed as) column-strict fillings of µ
with entries 1, . . . ,n.

Example
Let µ = (3,2,2,1), n = 5.

2
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⊗ 1
2
4

⊗ 2 ←→ 2 1 2
3 2
4 4
5
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Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs
I Rightmost 1 7→ 2

122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs
I Rightmost 1 7→ 2

122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs
I Rightmost 1 7→ 2

122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature

I Cancel 21 pairs
I Rightmost 1 7→ 2

122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature

I Cancel 21 pairs
I Rightmost 1 7→ 2

122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs

I Rightmost 1 7→ 2

122111
122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs

I Rightmost 1 7→ 2

122111
122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs

I Rightmost 1 7→ 2

122111
122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs

I Rightmost 1 7→ 2

122111
122111

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs
I Rightmost 1 7→ 2

122111
122111

f1(b) = 1 2 1 1 2
3 3 2 3
5

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Crystal operators on B⊗µ in type A

Example

n = 5 , µ = (5,4,1) , b = 1 2 1 1 1
3 3 2 3
5

b ↔ word(b) = 5313221311 .

Action of f1 on b:

I Obtain 1-signature
I Cancel 21 pairs
I Rightmost 1 7→ 2

122111
122111

f1(b) = 1 2 1 1 2
3 3 2 3
5

Note: fi is defined by similar procedure on i , i + 1, for i 6= 0 and
f0 is defined by similar procedure on n,1.



Kashiwara-Nakashima columns

There is a model based on fillings in types B,C,D.

Br ,1 is realised by Kashiwara-Nakashima columns.



Kashiwara-Nakashima columns

There is a model based on fillings in types B,C,D.
Br ,1 is realised by Kashiwara-Nakashima columns.



Finite root systems of arbitrary type Xn, X ∈ {A . . .G}
Φ ⊂ V = Rr is finite and invariant under reflections sα, α ∈ Φ, in
the hyperplane orthogonal to α.

Simple roots: α1, . . . , αr ∈ Φ ; form a basis of V .

Simple reflections: si := sαi .

W = 〈si : i = 1, . . . , r〉 .

Length: `(w) = min {k : w = si1 . . . sik} .

Coroots: α∨ = 2α/〈α, α〉.

Height: α =
∑

i ciαi , ht(α) =
∑

i ci .

The quantum Bruhat graph on W is the directed graph with
labeled edges

w α−→ wsα , where

`(wsα) = `(w) + 1 (Bruhat graph) , or
`(wsα) = `(w)− 2ht(α∨) + 1 .
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Example type An−1

Example
V = (ε1 + . . .+ εn)⊥ in Rn = 〈ε1, . . . , εn〉.

Roots: Φ = {αij = εi − εj : 1 ≤ i 6= j ≤ n} .
Weyl group: W ' Sn.

Identify: (i , j) with αij and sαij .
sαij is realized as the transposition of i and j .
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Quantum alcove model

Given a dominant weight µ, we associate with it a sequence of
roots, called a µ-chain (several choices possible, but not
explained):

Γ = (β1, . . . , βm)

We consider subsets of positions in Γ:

J = (j1 < . . . < js) ⊆ {1, . . . ,m} .

Let ri = sβi , wi = rj1 . . . rji . J is admissible if

Id = w0
βj1−→ w1

βj2−→ . . .
βjs−→ ws

is a path in the quantum Bruhat graph.
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Quantum alcove model (cont.)

Construction: (Lenart and L.) Combinatorial crystal operators
f1, . . . , fr and f0 on the collection A(µ) of admissible subsets by
analogy with the bracketing procedure for words.

Remark: The restriction of the non-affine combinatorial crystal
operators f1, . . . , fr to admissible subsets corresponding to
paths in the Bruhat graph is the classical alcove model of
Lenart-Postnikov (a discrete counterpart of the Littelmann path
model).
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The quantum alcove model in type An−1
Let Γ(k) be the chain of roots:

( (k , k + 1), (k , k + 2), . . . , (k ,n) ,
. . .

(2, k + 1), (2, k + 2), . . . , (2,n) ,
(1, k + 1), (1, k + 2), . . . , (1,n) ) .

Example
Let n = 5, k = 2.

Γ(2) = {(2,3), (2,4), (2,5), (1,3), (1,4), (1,5)} .

Recall: µ is a partition, µ′i is the height of column i .
A µ-chain Γ is constructed by concatenating Γ(k)
chains for k = µ′1, µ

′
2, . . ..
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Crystal operators

Example
Let n = 3 , µ = . Γ = Γ(2)Γ(2)Γ(1)Γ(1)Γ(1) =

((2,3), (1,3) | (2,3), (1,3) | (1,2), (1,3) | (1,2), (1,3) | (1,2), (1,3)) .

Let J = {1,4,7,8}.
Note: J is admissible: corresponds to a path in the quantum
Bruhat graph.

Step 1: Construct a “folded chain” by successively applying
reflections in positions J to the roots at the right of these
positions.

Γ(J) = ((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))
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Crystal operators (cont.)
Step 2. Bracketing.

J = {1,4,7,8}.

f1(J) = {1,2,7,8}.

Γ(J) =((2,3), (1,2) | (3,2), (1,2) | (2,3), (2,1) | (2,3), (3,1) | (1,2), (1,3))

I For f1 only look at (1,2), (2,1) in Γ(J).
I Concatenate first letters to make a word.
I Ignore underlined letters.
I Cancel 21 pairs like before.
I Consider rightmost 1 like before.
I Add corresponding position to J, and remove

from J the position corresponding to
underlined 1 to its right (if any).
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Crystal operators (cont.)

Note: fi is similarly defined based on (i , i + 1) in Γ(J) for i 6= 0
and f0 is similarly defined based on (n,1).

Similar procedure in arbitrary type, using the simple roots αi for
fi 6= f0 and the longest root θ for fi = f0.
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Main results

Theorem (Lenart and L.)
A(µ) is closed under the action of f0, f1, . . . , fr .

Conjecture (Lenart and L.)
(A(µ), {f0, f1, . . . , fr}) in type Xn is a model for B⊗µ of type X (1)

n ,
in the sense that it gives all the classical arrows plus most of
the 0-arrows (except those at the end of a 0-string).

Theorem (Lenart and L.)
The above conjecture is true in type A and C.
A byproduct is a bijection between A(µ) and the filling model for
B⊗µ in type A and C, which is shown to preserve the
corresponding affine crystal structures (cf. Conjecture).
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Quantum Lakshmibai-Seshadri paths

Note: Recent work by Lenart, Naito, Sagaki, Schilling and
Shimozono: B⊗µ is realized in terms of a model which is related
to the quantum alcove model, namely the quantum
Lakshmibai-Seshadri paths.



Applications of the quantum alcove model

I Computing the energy function on tensor products of KR
crystals. (Work of Lenart, Naito, Sagaki, Schilling,
Shimozono).

I Give an explicit construction of the combinatorial R-matrix,
that is, the affine crystal isomorphism between X ⊗ Y and
Y ⊗ X .
Based on generalizing the so-called Yang-Baxter moves on
the alcove model (analogue of jeu de taquin on tableaux)
to the quantum alcove model. These are uniform across
Lie types.
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