Crystal energy via charge in types A and C

Cristian Lenart and Anne Schilling

Department of Mathematics SUNY Albany and UC Davis

FPSAC, August 2, 2012
based on arXiv:1107.4169 (Math. Zeitschrift) and work joint with Naito, Sagaki, Shimozono (in progress)

Outline

Crystals

Energy function

Charge

Arbitrary type

Outline

Crystals

Energy function

Charge

Arbitrary type

Crystal graph

A $U_{q}(g)$-crystal is a nonempty set B with maps

Crystal graph

A $U_{q}(\mathfrak{g})$-crystal is a nonempty set B with maps

$$
\begin{aligned}
& \text { wt: } B \rightarrow P \\
& e_{i}, f_{i}: B \rightarrow B \cup\{\emptyset\} \quad \text { for all } i \in I
\end{aligned}
$$

Crystal graph

A $U_{q}(\mathfrak{g})$-crystal is a nonempty set B with maps

$$
\begin{aligned}
& \text { wt: } B \rightarrow P \\
& e_{i}, f_{i}: B \rightarrow B \cup\{\emptyset\} \quad \text { for all } i \in I
\end{aligned}
$$

Write

Kashiwara-Nakashima tableaux

embed $B\left(1^{N}\right) \hookrightarrow B(\square)^{\otimes|\lambda|}$

Type A_{r} :

$$
1 \xrightarrow[\longrightarrow]{1} \xrightarrow{2} \cdots \xrightarrow{r-1} \xrightarrow{r+1}
$$

Kashiwara-Nakashima tableaux

embed $B\left(1^{N}\right) \hookrightarrow B(\square)^{\otimes|\lambda|}$
Type $A_{r}: \quad \square \xrightarrow{1} \xrightarrow{2} \cdots \xrightarrow{r-1} \xrightarrow{r+1}$

Example
Type A_{3}

$$
\begin{array}{|l|}
\hline \frac{1}{3} \\
\hline 4 \\
\hline
\end{array} \mapsto 4 \otimes 3 \otimes 1
$$

Kashiwara-Nakashima tableaux

embed $B\left(1^{N}\right) \hookrightarrow B(\square)^{\otimes|\lambda|}$
Type $A_{r}: \quad \square \xrightarrow{1} \xrightarrow{2} \cdots \xrightarrow{r-1} \xrightarrow{r+1}$

Example

Type A_{3}

$$
\begin{array}{|c|}
\hline \frac{1}{3} \\
\hline 4 \\
\hline
\end{array} \mapsto 4 \otimes 3 \otimes 1
$$

- strictly increasing in columns

Kashiwara-Nakashima tableaux

 embed $B\left(1^{N}\right) \hookrightarrow B(\square)^{\otimes|\lambda|}$Type C_{r} :

$$
1 \xrightarrow[\longrightarrow]{1} \xrightarrow{2} \cdots \xrightarrow{r-1} \xrightarrow{r} \xrightarrow{r} \xrightarrow{r-1} \cdots \xrightarrow{1}
$$

Kashiwara-Nakashima tableaux

 embed $B\left(1^{N}\right) \hookrightarrow B(\square)^{\otimes|\lambda|}$Type C_{r} :

$$
1 \xrightarrow[\longrightarrow]{1} \xrightarrow{2} \cdots \xrightarrow{r-1} \xrightarrow{r} \xrightarrow{r} \xrightarrow{r-1} \cdots \xrightarrow{1}
$$

Example

$$
\begin{array}{l|l}
\text { Type } C_{3} & \begin{array}{|c}
1 \\
\hline \frac{3}{3} \\
\hline
\end{array} \\
\hline
\end{array} \otimes 3 \otimes 1
$$

Kashiwara-Nakashima tableaux

 embed $B\left(1^{N}\right) \hookrightarrow B(\square)^{\otimes|\lambda|}$Type C_{r} :

$$
1 \xrightarrow[\longrightarrow]{1} \xrightarrow{2} \cdots \xrightarrow{r-1} \xrightarrow{r} \xrightarrow{r} \cdots \xrightarrow{r-1}
$$

Example

$$
\begin{array}{l|l}
\text { Type } C_{3} & \begin{array}{|c}
1 \\
\hline \frac{3}{3} \\
\hline
\end{array} \\
\hline
\end{array} \otimes \overline{3} \otimes 1
$$

- alphabet $[\bar{r}]:=\{1<2<\ldots<r<\bar{r}<\overline{r-1}<\ldots<\overline{1}\}$

Kashiwara-Nakashima tableaux

 embed $B\left(1^{N}\right) \hookrightarrow B(\square)^{\otimes|\lambda|}$Type C_{r} :

$$
1 \xrightarrow[\longrightarrow]{1} \xrightarrow{2} \cdots \xrightarrow{r-1} \xrightarrow{r} \xrightarrow{r} \cdots \xrightarrow{r-1}
$$

Example

$$
\begin{array}{l|l}
\text { Type } C_{3} & \begin{array}{|c}
1 \\
\hline \frac{3}{3} \\
\hline
\end{array} \\
\hline
\end{array} \otimes \overline{3} \otimes 1
$$

- alphabet $[\bar{r}]:=\{1<2<\ldots<r<\bar{r}<\overline{r-1}<\ldots<\overline{1}\}$
- strictly increasing in columns

Kashiwara-Nakashima tableaux

 embed $B\left(1^{N}\right) \hookrightarrow B(\square)^{\otimes|\lambda|}$Type C_{r} :

$$
1 \xrightarrow[\longrightarrow]{1} \xrightarrow{2} \cdots \xrightarrow{r-1} \xrightarrow{r} \xrightarrow{r} \xrightarrow{r-1} \cdots \xrightarrow{1}
$$

Example

- alphabet $[\bar{r}]:=\{1<2<\ldots<r<\bar{r}<\overline{r-1}<\ldots<\overline{1}\}$
- strictly increasing in columns
- for column $b=b(k) \ldots b(1)$ there is no pair (z, \bar{z}) s.t.:

$$
z=b(p), \quad \bar{z}=b(q), \quad q-p \leq k-z
$$

Column KR crystals for types $A_{n}^{(1)}$ and $C_{n}^{(1)}$

Example

$$
B^{2,1} \text { of type } A_{3}^{(1)} \quad B^{2,1} \text { of type } C_{2}^{(1)}
$$

Outline

Crystals

Energy function

Charge

Arbitrary type

Energy function

$B:=B_{\mu}=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$, connected by f_{0} arrows.

Energy function

$B:=B_{\mu}=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$, connected by f_{0} arrows.
The energy $D: B \rightarrow \mathbb{Z}$ originates from exactly solvable lattice models (computed via local energies and the combinatorial R-matrix).

Energy function

$B:=B_{\mu}=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$, connected by f_{0} arrows.
The energy $D: B \rightarrow \mathbb{Z}$ originates from exactly solvable lattice models (computed via local energies and the combinatorial R-matrix).

Alternative construction (S., Tingley) as affine grading on B :

Energy function

$B:=B_{\mu}=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$, connected by f_{0} arrows.
The energy $D: B \rightarrow \mathbb{Z}$ originates from exactly solvable lattice models (computed via local energies and the combinatorial R-matrix).

Alternative construction (S., Tingley) as affine grading on B :

- constant on classical components (f_{0} arrows removed)

Energy function

$B:=B_{\mu}=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$, connected by f_{0} arrows.
The energy $D: B \rightarrow \mathbb{Z}$ originates from exactly solvable lattice models (computed via local energies and the combinatorial R-matrix).

Alternative construction (S., Tingley) as affine grading on B :

- constant on classical components (f_{0} arrows removed)
- increases by 1 along f_{0} arrows which are not at the end of a 0-string (Demazure arrows)

Energy function

$B:=B_{\mu}=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$, connected by f_{0} arrows.
The energy $D: B \rightarrow \mathbb{Z}$ originates from exactly solvable lattice models (computed via local energies and the combinatorial R-matrix).

Alternative construction (S., Tingley) as affine grading on B :

- constant on classical components (f_{0} arrows removed)
- increases by 1 along f_{0} arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, B is still connected upon removal of non-Demazure f_{0} arrows.
$\Rightarrow D$ is well-defined up to constant.

Energy function

$B:=B_{\mu}=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots$, connected by f_{0} arrows.
The energy $D: B \rightarrow \mathbb{Z}$ originates from exactly solvable lattice models (computed via local energies and the combinatorial R-matrix).

Alternative construction (S., Tingley) as affine grading on B :

- constant on classical components (f_{0} arrows removed)
- increases by 1 along f_{0} arrows which are not at the end of a 0-string (Demazure arrows)

Remark

In most cases, B is still connected upon removal of non-Demazure f_{0} arrows.
$\Rightarrow D$ is well-defined up to constant.
Notable exception: type C.

Outline

Crystals

Energy function

Charge

Arbitrary type

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ

Example

$\mu=(3,3,3,1)$

1132214323

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ

Example

$\mu=(3,3,3,1)$

1132214323

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ
Example
$\mu=(3,3,3,1)$

1132214323 charge contribution 1

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ

Example

$\mu=(3,3,3,1)$

1132214323 charge contribution 1
112323

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ

Example

$\mu=(3,3,3,1)$

1132214323 charge contribution 1
112323

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ
Example
$\mu=(3,3,3,1)$

1132214323 charge contribution 1
112323 charge contribution 2

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ
Example
$\mu=(3,3,3,1)$

1132214323
112323 charge contribution 2
123
charge contribution 1

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ
Example
$\mu=(3,3,3,1)$

1132214323
112323 charge contribution 2
123

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ
Example
$\mu=(3,3,3,1)$

1132214323
112323 charge contribution 2
123 charge contribution 3

Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content μ
Example
$\mu=(3,3,3,1)$

1132214323 charge contribution 1
112323 charge contribution 2
123 charge contribution 3
$\operatorname{charge}(1132214323)=1+2+3=6$

Charge on KN tableaux - type A

$$
B_{\mu}:=\bigotimes_{i=1}^{\mu_{1}} B^{\mu_{i}^{\prime}, 1}
$$

circular order $\prec_{i}: \quad i \prec_{i} i+1 \prec_{i} \cdots \prec_{i} n \prec_{i} 1 \prec_{i} \cdots \prec_{i} i-1$ construct reordered c from $b \in B_{\mu}$

Charge on KN tableaux - type A

$$
B_{\mu}:=\bigotimes_{i=1}^{\mu_{1}} B^{\mu_{i}^{\prime}, 1}
$$

circular order $\prec_{i}: \quad i \prec_{i} i+1 \prec_{i} \cdots \prec_{i} n \prec_{i} 1 \prec_{i} \cdots \prec_{i} i-1$ construct reordered c from $b \in B_{\mu}$
Example

$$
b=\begin{array}{|ll|l|l}
\hline 3 & 2 & 1 & 2 \\
\hline 5 & 3 & 2 & \\
\hline 6 & 4 & 4
\end{array} \quad \text { and } \quad c=\begin{array}{|l|l|l|l|}
\hline 3 & 3 & 4 & 2 \\
\hline 5 & 2 & 2 & \\
\hline 6 & 4 & 1 \\
\hline
\end{array}
$$

Charge on KN tableaux - type A

$$
B_{\mu}:=\bigotimes_{i=1}^{\mu_{1}} B^{\mu_{i}^{\prime}, 1}
$$

circular order $\prec_{i}: \quad i \prec_{i} i+1 \prec_{i} \cdots \prec_{i} n \prec_{i} 1 \prec_{i} \cdots \prec_{i} i-1$ construct reordered c from $b \in B_{\mu}$
Example

$$
\begin{aligned}
b & =\begin{array}{|l|l|l|l}
\hline 3 & 2 & 1 & 2 \\
5 & 3 & 2 & \\
\hline 6 & 4 & 4
\end{array} \\
\operatorname{cw}(b) & =\left(\begin{array}{llllllllll}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3
\end{array}\right)
\end{aligned}
$$

Charge on KN tableaux - type A

Example

$$
\begin{aligned}
b & =\begin{array}{|l|l|ll}
3 & 2 & 1 & 2 \\
5 & 3 & 2 \\
6 & 4 & 4
\end{array} \\
\hline \operatorname{cw}(b) & =\left(\begin{array}{llllllllll}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3
\end{array}\right)
\end{aligned}
$$

Charge on KN tableaux - type A

Example

$$
\begin{aligned}
b & =\begin{array}{|l|l|ll}
3 & 2 & 1 & 2 \\
5 & 3 & 2 \\
6 & 4 & 4
\end{array} \\
\hline \mathrm{cw}(b) & =\left(\begin{array}{llllllllll}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3
\end{array}\right)
\end{aligned}
$$

Charge on KN tableaux - type A

Example

$$
\begin{aligned}
b & =\begin{array}{|l|l|ll}
3 & 2 & 1 & 2 \\
5 & 3 & 2 \\
6 & 4 & 4
\end{array} \\
\hline \mathrm{cw}(b) & =\left(\begin{array}{llllllllll}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\
1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3
\end{array}\right)
\end{aligned}
$$

Charge on KN tableaux - type A

Example

$$
\left.\begin{array}{rl}
b & =\begin{array}{|l|l|l}
3 & 2 & 1 \\
5 & 3 & 2 \\
6 & 4 & 4
\end{array} \text { and } c=\begin{array}{|ccccccccc}
\hline 3 & 3 & 4 & 2 \\
\hline & 2 & 2 & \\
\hline 6 & 4 & 1
\end{array} \\
\operatorname{cw}(b) & =\left(\begin{array}{ccccccccc}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 \\
1 \\
1_{2} & 1_{2} & 3_{1} & 2_{1} & 2 & 1 & 4 & 3 & 2
\end{array}\right. \\
3
\end{array}\right) .
$$

Charge on KN tableaux - type A

Example

$$
\left.\begin{array}{rl}
b & =\begin{array}{|l|l|l}
3 & 2 & 1 \\
5 & 3 & 2 \\
6 & 4 & 4
\end{array} \text { and } c=\begin{array}{|ccccccccc}
\hline 3 & 3 & 4 & 2 \\
5 & 2 & 2 & \\
\hline 6 & 4 & 1
\end{array} \\
\operatorname{cw}(b) & =\left(\begin{array}{ccccccccc}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 \\
1 \\
1_{2} & 1_{2} & 3_{1} & 2_{1} & 2 & 1 & 4 & 3 & 2
\end{array}\right. \\
3
\end{array}\right) .
$$

$$
\sum_{\gamma \in \operatorname{Des}(c)} \operatorname{arm}(\gamma)=\operatorname{charge}\left(\mathrm{cw}_{2}(b)\right)
$$

Charge on KN tableaux - type A

Example

$$
\left.\begin{array}{rl}
b & =\begin{array}{llll|l}
\hline 3 & 2 & 1 & 2 \\
5 & 3 & 2 \\
6 & 4 & 4
\end{array} \text { and } c=\begin{array}{|ccccccccc}
\hline 3 & 3 & 4 & 2 \\
5 & 2 & 2 & \\
\hline 6 & 4 & 1
\end{array} \\
\operatorname{cw}(b) & =\left(\begin{array}{ccccccccc}
6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 \\
1 \\
1_{2} & 1_{2} & 3_{1} & 2_{1} & 2 & 1 & 4 & 3 & 2
\end{array}\right. \\
3
\end{array}\right) .
$$

$$
\sum_{\gamma \in \operatorname{Des}(c)} \operatorname{arm}(\gamma)=\operatorname{charge}\left(\operatorname{cw}_{2}(b)\right)
$$

Remark

A similar construction works in type C.

Relation between charge and energy

Theorem (Lenart, S. 2011)

$B=B^{r_{N}, 1} \otimes \cdots \otimes B^{r_{1}, 1}$ of type $A_{n}^{(1)}$ or type $C_{n}^{(1)}$
Then for $b \in B$

$$
D(b)=\operatorname{charge}(b)
$$

Idea of proof: Verify that charge satisfies the recursive relations of the energy function.

Relation between charge and energy

Theorem (Lenart, S. 2011)

$B=B^{r_{N}, 1} \otimes \cdots \otimes B^{r_{1}, 1}$ of type $A_{n}^{(1)}$ or type $C_{n}^{(1)}$
Then for $b \in B$

$$
D(b)=\operatorname{charge}(b)
$$

Idea of proof: Verify that charge satisfies the recursive relations of the energy function.

Outline

Crystals

Energy function

Charge

Arbitrary type

Generalizing the charge to arbitrary root systems

Generalizing the charge to arbitrary root systems

Key concept: quantum Bruhat graph (QBG).
In type A_{n-1}, it is the graph on S_{n} with directed edges $W \longrightarrow$ tiij $_{i j}$
where

Generalizing the charge to arbitrary root systems

Key concept: quantum Bruhat graph (QBG).
In type A_{n-1}, it is the graph on S_{n} with directed edges

$$
w \longrightarrow w t_{i j}
$$

Generalizing the charge to arbitrary root systems

Key concept: quantum Bruhat graph (QBG).
In type A_{n-1}, it is the graph on S_{n} with directed edges

$$
w \longrightarrow w t_{i j}
$$

where

$$
\begin{aligned}
& \left.\ell\left(w t_{i j}\right)=\ell(w)+1 \quad \text { (Bruhat graph }\right), \quad \text { or } \\
& \ell\left(w t_{i j}\right)=\ell(w)-\ell\left(t_{i j}\right)=\ell(w)-2(j-i)+1 .
\end{aligned}
$$

Quantum Bruhat graph for S_{3} :

The key ingredient

Fact. Fix two column strict fillings (in type A)

where the second one is reordered according to the first.
There is a unique path in the quantum Bruhat graph of the following form:

The key ingredient

Fact. Fix two column strict fillings (in type A)

where the second one is reordered according to the first.
There is a unique path in the quantum Bruhat graph of the following form:

Fillings as chains of permutations

$$
\begin{aligned}
& b=\begin{array}{|l|l|l|l}
\hline 3 & 2 & 1 & 2 \\
\hline 4 & 3 &
\end{array} \quad, \quad \begin{array}{|l|l|l|l}
\hline 3 & 3 & 1 & 2 \\
\hline 4 & 2 &
\end{array} \mapsto \quad \Pi=\left(\pi_{1}, \pi_{2}, \ldots\right) . \\
& \begin{array}{|l|}
\hline 3 \\
\hline 4 \\
\hline
\end{array}>\begin{array}{|l|}
\hline 3 \\
\hline 1
\end{array}{ }^{3} \\
& \begin{array}{|l|}
\hline 1 \\
\hline 2 \\
\hline
\end{array} \rightarrow \begin{array}{|c|}
\hline 4 \\
2
\end{array}{ }^{\rightarrow} \begin{array}{|l|}
\hline 4 \\
\hline 1 \\
\hline
\end{array}
\end{aligned}
$$

Fillings as chains of permutations

$$
\begin{aligned}
& b=\begin{array}{|l|l|l|l}
\hline 3 & 2 & 1 & 2 \\
\hline 4 & 3 &
\end{array} \quad c=\begin{array}{|l|l|l|l}
\hline 3 & 3 & 1 & 2 \\
\hline 4 & 2 &
\end{array} \mapsto \quad \Pi=\left(\pi_{1}, \pi_{2}, \ldots\right) .
\end{aligned}
$$

$$
\begin{aligned}
& ((2,3),(2,4),(1,3),(1,4) \mid
\end{aligned}
$$

Fillings as chains of permutations

$$
\begin{aligned}
& ((2,3),(2,4),(1,3),(1,4)|(1,2),(1,3),(1,4)|
\end{aligned}
$$

Fillings as chains of permutations

$$
\begin{aligned}
& b=\begin{array}{|l|l|l|l}
\hline 3 & 2 & 1 & 2 \\
\hline 4 & 3 &
\end{array} \quad c=\begin{array}{|l|l|l|l}
\hline 3 & 3 & 1 & 2 \\
\hline 4 & 2 &
\end{array} \mapsto \quad \Pi=\left(\pi_{1}, \pi_{2}, \ldots\right) . \\
& \begin{array}{|l|}
\hline \frac{3}{4}
\end{array}>\begin{array}{|l|}
\hline \frac{3}{1} \\
\hline
\end{array} \\
& \begin{array}{lll}
3 & 4 & 1
\end{array} \\
& 1 \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& ((2,3),(2,4),(1,3),(1,4)|(1,2),(1,3),(1,4)|(1,2),(1,3),(1,4))
\end{aligned}
$$

Fillings as chains of permutations

$$
\begin{aligned}
& b=\begin{array}{|l|l|l|l}
\hline 3 & 2 & 1 & 2 \\
\hline 4 & 3 &
\end{array} \mapsto \quad c=\begin{array}{|l|l|l|l}
\hline 3 & 3 & 1 & 2 \\
\hline 4 & 2 &
\end{array} \quad \mapsto \quad \Pi=\left(\pi_{1}, \pi_{2}, \ldots\right) .
\end{aligned}
$$

Fillings as chains of permutations

3	3	1	2
4	2_{*}	-	-
	$*$	-	-

$$
\begin{array}{|l|l|l|l|}
\hline 3 & 3 & 1 * & 2_{*} \\
\hline 4 & 2 & & \\
\hline & & & \\
\hline & & * & \\
\hline
\end{array}
$$

$I_{r}=\operatorname{arm}($ descent $)$

Fillings as chains of permutations

3	3	1	2
4	2_{*}	-	-
	$*$	-	-

$I_{r}=\operatorname{arm}($ descent $)$
$\operatorname{charge}(b)=\sum_{\gamma \in \operatorname{Des}(c)} \operatorname{arm}(\gamma)=\sum_{\pi_{r}>\pi_{r+1}} I_{r}=: \operatorname{level}(\Pi)$.

Construction of level statistic

Step 1. Fix a partition μ.
Step 2. Associate with μ a sequence (μ-chain) 「 of pairs (i_{r}, j_{r}) (i.e., roots in type A) - several choices possible, but not explained.

$$
\text { For } \mu=(4,2,0) \text {, we considered }
$$

Construction of level statistic

Step 1. Fix a partition μ.
Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_{r}, j_{r}) (i.e., roots in type A) - several choices possible, but not explained.

Construction of level statistic

Step 1. Fix a partition μ.
Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_{r}, j_{r}) (i.e., roots in type A) - several choices possible, but not explained.
Example. For $\mu=(4,2,0)$, we considered
$\Gamma=((2,3),(2,4),(1,3),(1,4)|(1,2),(1,3),(1,4)|(1,2),(1,3),(1,4))$.

Construction of level statistic

Step 1. Fix a partition μ.
Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_{r}, j_{r}) (i.e., roots in type A) - several choices possible, but not explained.
Example. For $\mu=(4,2,0)$, we considered
$\Gamma=((2,3),(2,4),(1,3),(1,4)|(1,2),(1,3),(1,4)|(1,2),(1,3),(1,4))$.
Step 3. Define $I_{r}=\#\left\{s \geq r:\left(i_{s}, j_{s}\right)=\left(i_{r}, j_{r}\right)\right\}$.

Construction of level statistic

Step 1. Fix a partition μ.
Step 2. Associate with μ a sequence (μ-chain) Γ of pairs $\left(i_{r}, j_{r}\right)$ (i.e., roots in type A) - several choices possible, but not explained.
Example. For $\mu=(4,2,0)$, we considered
$\Gamma=((2,3),(2,4),(1,3),(1,4)|(1,2),(1,3),(1,4)|(1,2),(1,3),(1,4))$.
Step 3. Define $I_{r}=\#\left\{s \geq r:\left(i_{s}, j_{s}\right)=\left(i_{r}, j_{r}\right)\right\}$.
Step 4. Define admissible subsets:
$\mathcal{A}(\Gamma)=\mathcal{A}(\mu)=\#\{$ subsets Π of Γ giving rise to paths in the QBG $\}$.

Construction of level statistic

Step 1. Fix a partition μ.
Step 2. Associate with μ a sequence (μ-chain) Γ of pairs (i_{r}, j_{r}) (i.e., roots in type A) - several choices possible, but not explained.
Example. For $\mu=(4,2,0)$, we considered
$\Gamma=((2,3),(2,4),(1,3),(1,4)|(1,2),(1,3),(1,4)|(1,2),(1,3),(1,4))$.
Step 3. Define $I_{r}=\#\left\{s \geq r:\left(i_{s}, j_{s}\right)=\left(i_{r}, j_{r}\right)\right\}$.
Step 4. Define admissible subsets:
$\mathcal{A}(\Gamma)=\mathcal{A}(\mu)=\#\{$ subsets Π of Γ giving rise to paths in the QBG $\}$.
Step 5. Given $\Pi=\left(\pi_{1}, \pi_{2}, \ldots\right) \in \mathcal{A}(\mu)$ as a path in the QBG, define

$$
\operatorname{level}(\Pi)=\sum_{\pi_{r}>\pi_{r+1}} I_{r}
$$

Remarks.

1. The above construction works for any finite root system, as all the ingredients apply to the general case.

Remarks.

1. The above construction works for any finite root system, as all the ingredients apply to the general case.
2. The level statistic originates in the Ram-Yip formula for Macdonald polynomials of arbitrary type:

$$
(*) \quad P_{\mu}(x ; q, 0)=\sum_{\Pi \in \mathcal{A}(\mu)} q^{\operatorname{level}(\Pi)} x^{\text {weight(П) }} .
$$

Remarks.

1. The above construction works for any finite root system, as all the ingredients apply to the general case.
2. The level statistic originates in the Ram-Yip formula for Macdonald polynomials of arbitrary type:

$$
(*) \quad P_{\mu}(x ; q, 0)=\sum_{\Pi \in \mathcal{A}(\mu)} q^{\operatorname{level}(\Pi)} x^{\text {weight(П) }} .
$$

In fact, we can rewrite (*) via the bijection between $\mathcal{A}(\mu)$ and fillings explained before (which also works in type C).

Remarks.

1. The above construction works for any finite root system, as all the ingredients apply to the general case.
2. The level statistic originates in the Ram-Yip formula for Macdonald polynomials of arbitrary type:

$$
(*) \quad P_{\mu}(x ; q, 0)=\sum_{\Pi \in \mathcal{A}(\mu)} q^{\operatorname{level}(\Pi)} x^{\text {weight(} \Pi)} .
$$

In fact, we can rewrite (*) via the bijection between $\mathcal{A}(\mu)$ and fillings explained before (which also works in type C).

Theorem (L.)

In types A and C, we have

$$
P_{\mu}(x ; q, 0)=\quad \sum \quad q^{\operatorname{charge}(b)} x^{\text {weight }(b)}
$$

Main results (in arbitrary type)

Construction. (L. and Lubovsky) On $\mathcal{A}(\mu)$ was defined the structure of an affine crystal (purely combinatorially) - the quantum alcove model.

Main results (in arbitrary type)

Construction. (L. and Lubovsky) On $\mathcal{A}(\mu)$ was defined the structure of an affine crystal (purely combinatorially) - the quantum alcove model.

Conjecture. (L. and Lubovsky)

1. There is a bijection between $\mathcal{A}(\mu)$ in type X_{n} and the $K R$ crystal $B_{\mu}:=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \ldots$ of type $X_{n}^{(1)}$ under which the arrows of $\mathcal{A}(\mu)$ correspond to arrows of B_{μ}.

Main results (in arbitrary type)

Construction. (L. and Lubovsky) On $\mathcal{A}(\mu)$ was defined the structure of an affine crystal (purely combinatorially) - the quantum alcove model.

Conjecture. (L. and Lubovsky)

1. There is a bijection between $\mathcal{A}(\mu)$ in type X_{n} and the $K R$ crystal $B_{\mu}:=B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \ldots$ of type $X_{n}^{(1)}$ under which the arrows of $\mathcal{A}(\mu)$ correspond to arrows of B_{μ}.
2. If $\Pi \in \mathcal{A}(\mu) \leftrightarrow b \in B_{\mu}$ under this bijection, then

$$
E(b)=\operatorname{level}(\Pi)
$$

Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)

Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)

- The KR crystal and its energy function are realized in terms of quantum Lakshmibai-Seshadri (LS) paths.
 μ-chain Γ. The conjecture is verified in this case. 1. relate quantum LS-paths and the quantum alcove model for 2. consider arbitrary μ-chains Γ

Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)

- The KR crystal and its energy function are realized in terms of quantum Lakshmibai-Seshadri (LS) paths.
- For μ regular (in type A : partitions with distinct parts), the quantum LS paths are in bijection with $\mathcal{A}(\Gamma)$ for a special μ-chain Γ. The conjecture is verified in this case.

Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)

- The KR crystal and its energy function are realized in terms of quantum Lakshmibai-Seshadri (LS) paths.
- For μ regular (in type A : partitions with distinct parts), the quantum LS paths are in bijection with $\mathcal{A}(\Gamma)$ for a special μ-chain Γ. The conjecture is verified in this case.
- It remains to:

1. relate quantum LS-paths and the quantum alcove model for arbitrary μ;
2. consider arbitrary μ-chains Γ.
