From KL polynomials to Khovanov algebras

Catharina Stroppel

(Bonn/Chicago)

Catharina Stroppel (Bonn/Chicago) From KL polynomials to Khovanov algebras

• • • • • • • • • • • •

From KL polynomials to Khovanov algebras

Catharina Stroppel

(Bonn/Chicago)

Catharina Stroppel (Bonn/Chicago) From KL polynomials to Khovanov algebras

• • • • • • • • • • • •

H 5

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

(a)

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q,q^{-1}][S_n]$

standard basis

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q, q^{-1}][S_n]$

standard basis $\rightsquigarrow KL - basis$

イロト 不得 トイヨト イヨト

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q, q^{-1}][S_n]$

standard basis $\rightsquigarrow KL - basis$ $w \in S_n$

イロト 不得 トイヨト イヨト

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q, q^{-1}][S_n]$

standard basis $\rightsquigarrow KL - basis$ $w \in S_n \qquad B_w, w \in S_n$

A D A A B A A B A A B A B B

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q, q^{-1}][S_n]$

- standard basis $\rightsquigarrow KL basis$ $w \in S_n \qquad B_w, w \in S_n$
- Defined inductively starting from $B_e = e$,

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q, q^{-1}][S_n]$

- standard basis $\rightsquigarrow KL basis$ $w \in S_n \qquad B_w, w \in S_n$
- Defined inductively starting from $B_e = e$,
- Special case: $B_s = s + q$ for any simple transposition s = (i, i + 1),

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q, q^{-1}][S_n]$

- standard basis $\rightsquigarrow KL basis$ $w \in S_n \qquad B_w, w \in S_n$
- Defined inductively starting from $B_e = e$,
- Special case: $B_s = s + q$ for any simple transposition s = (i, i + 1),
- using the formulas

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q, q^{-1}][S_n]$

- standard basis $\rightsquigarrow KL basis$ $w \in S_n \qquad B_w, w \in S_n$
- Defined inductively starting from $B_e = e$,
- Special case: $B_s = s + q$ for any simple transposition s = (i, i + 1),
- using the formulas

$$wB_s = \begin{cases} ws + qw & \text{if } \ell(ws) > \ell(w) \\ ws + q^{-1}w & \text{if } \ell(ws) < \ell(w) \end{cases}$$
(1)

$$x, y \in S_n \rightsquigarrow p_{x,y} \in \mathbb{Z}[q, q^{-1}]$$

entries of the (inverse) base change matrix in $\mathbb{C}[q, q^{-1}][S_n]$

- standard basis $\rightsquigarrow KL basis$ $w \in S_n \qquad B_w, w \in S_n$
- Defined inductively starting from $B_e = e$,
- Special case: $B_s = s + q$ for any simple transposition s = (i, i + 1),
- using the formulas

$$wB_s = \begin{cases} ws + qw & \text{if } \ell(ws) > \ell(w) \\ ws + q^{-1}w & \text{if } \ell(ws) < \ell(w) \end{cases}$$
(1)

and subtract possibly already constructed basis elements...

The example S_3

KL polynomials (in basis $e, s_1, s_2, s_1s_2, s_2s_1, s_1s_2s_1$)

$$\begin{pmatrix} 1 & q & q & q^2 & q^2 & q^3 \\ 0 & 1 & 0 & q & q & q^2 \\ 0 & 0 & 1 & q & q & q^2 \\ 0 & 0 & 0 & 1 & 0 & q \\ 0 & 0 & 0 & 0 & 1 & q \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

In fact: KL-polys are in $\mathbb{N}[q]$

Lie theoretic explanation/origin: They describe multiplicities of simple highest weight modules in Jordan-Hölder series of Verma modules $M(x) = U(\mathfrak{gl}_3) \otimes_{U(\text{upper triang. matrices})} \mathbb{C}_{x(3,2,1)}$

 $[M(y) : L(x)\langle i \rangle] =$ coefficient of q^i in $p_{x,y}$.

Choose a Young subgroup $W = S_{i_1} \times S_{i_2} \times \cdots \times S_{i_r}$ of S_n (generated by some subset of simple transpositions) $x, y \in W \setminus S_n$ representatives of minimal length \rightsquigarrow parabolic KL-polynomial $p_{x,y}$ with the slightly adjusted rules

$$wB_s = \begin{cases} ws + qw & \text{if } l(ws) > l(w) \\ ws + q^{-1w} & \text{if } l(ws) < l(w) \\ 0 & \text{if } ws \text{ not a minimal length representative} \end{cases}$$

Example: $B_e = e$, $B_{s_1} = s_1 + qe$, $B_{s_1s_2} = s_1s_2 + qs_1$.

イロト 不得 トイヨト イヨト

From now on: special case: $W = S_i \times S_{n-i}$

- Closed formulas and well-studied (Boe, Brenti - Dyck paths, Billey/Warrington - 321-avoiding)
- Overview article by Shigechi/Zinn-Justin
- Appear in many different contexts (e.g. Lie theory, geometry and algebra)
- All described by a certain family of diagrammatical algebras ("generalized Khovanov algebra") developed in joint work with Brundan

Diagrammatical description

Fix bijection

$$S_i \times S_{n-i} \backslash S_n \quad \leftrightarrow \quad \{\land, \lor \text{-sequences of length } n \text{ with } i \land \mathbf{s}\}$$
$$e \quad \mapsto \quad \land \land \cdots \land \lor \lor \lor \cdots \lor$$

To each such element we assign a cup diagram by connecting \lor 's with neighboured \land 's to the right, eg.

We can put the $\wedge \lor$ -sequence for x on top of the cup diagram for y. The result x c(y) is *oriented* if each cup is oriented and there is no ray oriented \lor to the left of a ray labeled \land .

Theorem (Brundan-S.)

The parabolic KL-polynomial is given by

$$p_{x,y}(q) = \begin{cases} q^{\text{clockwise cups}} & \text{if } x \operatorname{c}(y) \text{ is oriented} \\ 0 & \text{otherwise.} \end{cases}$$

Combinatorics labeling the irreducible representations

- Parabolic Verma modules are indexed by highest weights $\lambda = (\lambda_1 > \lambda_2 > \ldots > \lambda_i, \lambda_{i+1} > \ldots > \lambda_n)$
- Schubert cells in Grassmannian are indexed by partitions fitting into an *i*, (*n* − *i*)-box. Boundary path gives an ∧∨-sequence.
- Irreducible modules for walled Brauer algebra $Br_{r,s}(\delta)$ are labeled by certain bipartitions $\lambda = (\lambda^L, \lambda^R)$

$$I_{\wedge}(\lambda) := \{\lambda_1^{\mathrm{L}}, \lambda_2^{\mathrm{L}} - 1, \lambda_3^{\mathrm{L}} - 2, \dots\}$$

$$I_{\vee}(\lambda) := \{1 - \delta - \lambda_1^{\mathrm{R}}, 2 - \delta - \lambda_2^{\mathrm{R}}, 3 - \delta - \lambda_3^{\mathrm{R}}, \dots\}$$

• Finite dimensional $\mathfrak{gl}(a|b)$ -modules are indexed by highest weights $\lambda = (\lambda_1 > \lambda_2 > \ldots > \lambda_a, \lambda_{a+1} < \ldots < \lambda_{a+b})$ $I_{\wedge}(\lambda) := \{x \in \mathbb{Z} \mid x \neq \lambda_k, \forall k\}$ $I_{\vee}(\lambda) := \{x \in \mathbb{Z} \mid x = \lambda_k, x = \lambda'_k \text{ for some } k \neq k'\}$

In each case we can also label with some AV-sequence instead!

Topological description of Springer fibres

N Jordan type (i, n - i), $Y = \{F_1 \subset F_2 \subset \cdots \subset F_n = \mathbb{C}^n \mid NF_i \subset F_{i-1}\}$ $x \in S_i \times S_{n-i} \rightsquigarrow \text{cup diagram } c(x)$ \rightsquigarrow "incidence subset" $Y(x) = \{(x_1, x_2, \dots, x_{2n}) \mid x_i \in \mathbb{S}^2\} \subset (\mathbb{S}^2)^{2n}$ where we require $x_i = x_j$ if there is a cup from *i* to *j* and $x_i = p$ if there is a ray oriented \land at *i* and $x_i = p'$ if there is a ray oriented \lor .

$$Y \cong \bigcup_{x \in S_i \times S_{n-i}} Y(x)$$

Theorem (S.-Webster)

- The Y(x) form a cell decomposition.
- **2** The $\overline{Y(x)}$ with c(x) maximal number of cups form the irred. components of *Y* (cf. Spaltenstein-Vargas classification)
- **③** The graded space $\oplus_{(x,y)} H^*(\overline{Y(x)} \cap \overline{Y(y)})$ has a diagrammatical description!

The diagrammatical algebra K_{Λ}

Fix $\Lambda = S_i \times S_{n-i} \backslash S_n$.

Basis of K_{Λ} : $c(x)^*yc(z)$ $x, y, z \in \Lambda$

where yc(x), yc(z) are oriented, $c(x)^*$ the horizontally reflected c(x)

The diagrammatical algebra K_{Λ}

The diagrammatical algebra K_{Λ}

The diagrammatical algebra K_{Λ} and generalizations

Theorem (Brundan,S.)

- If we set $\deg(c(x)^*yc(z)) = \#$ clockwise cups +# clockwise caps then the graded dimension equals $\sum p_{x,z}p_{z,y} \in \mathbb{N}[q]$.
- There is an explicit diagrammatically defined associative graded algebra structure on K_Λ.

x,y,z

- Nice algebras (e.g. Koszul, quasi-hereditary)
- Construction makes sense for any set Λ of $\wedge \vee$ -sequences with a finite number of $\vee's$.

4 D K 4 B K 4 B K 4 B K

• Generalizes the symmetric group S_n

- Generalizes the symmetric group S_n
- Classical Schur-Weyl duality (1937), $V = \mathbb{C}^n$

$$\mathfrak{gl}_n \curvearrowright V^{\otimes d} \curvearrowleft \mathbb{C}[S_n]$$
 (2)

- Generalizes the symmetric group S_n
- Classical Schur-Weyl duality (1937), $V = \mathbb{C}^n$

$$\mathfrak{gl}_n \curvearrowright V^{\otimes d} \curvearrowleft \mathbb{C}[S_n] \tag{2}$$

• Mixed Schur-Weyl duality (Nikhitin 1980s), $W = V^*$

$$\mathfrak{gl}_n \curvearrowright V^{\otimes r} \otimes W^{\otimes s} \curvearrowleft \operatorname{Br}(n)$$
 (3)

イロト 不得 トイヨト イヨト

- Generalizes the symmetric group S_n
- Classical Schur-Weyl duality (1937), $V = \mathbb{C}^n$

$$\mathfrak{gl}_n \curvearrowright V^{\otimes d} \curvearrowleft \mathbb{C}[S_n] \tag{2}$$

• Mixed Schur-Weyl duality (Nikhitin 1980s), $W = V^*$

$$\mathfrak{gl}_n \curvearrowright V^{\otimes r} \otimes W^{\otimes s} \curvearrowleft \operatorname{Br}(n)$$
 (3)

• Mixed super Schur-Weyl duality (Brundan-S.), equip V with a \mathbb{Z}_2 -grading $V = V_0 \oplus V_1$ with $\dim V_0 - \dim V_1 = m - n = \delta$

$$\mathfrak{gl}(m|n) \frown V^{\otimes r} \otimes W^{\otimes s} \frown \operatorname{Br}(\delta) \tag{4}$$

Diagrammatical description of $Br(\delta)$

basis: isotopy classes of walled Brauer diagrams

- diagrams drawn in a rectangle with (r + s) vertices numbered $1, \ldots, r$ and, separated by a wall, $r + 1, \ldots, r + s$ on top and bottom
- Each vertex must be connected to exactly one other vertex by a smooth curve drawn in the interior of the rectangle; curves can cross transversally, no triple intersections.
- Horizontal edges must cross the wall, vertical edges must not.

Multiplication: concatenation and replacing internal circles by δ .

イロト イボト イヨト・

Example from $Br_{2,2}(\delta)$

2

• dim $Br(\delta) = ?$

æ

<ロ> <問> <問> < 同> < 同> < 同> -

• dim Br(δ) =? Answer: dim Br_{r,s}(δ) = (r + s)!

(日)

- dim Br(δ) =? Answer: dim Br_{r,s}(δ) = (r + s)!
- Combinatorics of the symmetric group:

 $\begin{array}{rcl} \{ \text{irreducible } S_n \text{-modules} \} & \leftrightarrow & \{ \text{partitions of } n \} \\ & & S(\lambda) & \leftrightarrow & \lambda \\ & \{ \text{basis of } S(\lambda) \} & \leftrightarrow & \{ \text{standard tableaux of shape } \lambda \} \end{array}$

- dim Br(δ) =? Answer: dim Br_{r,s}(δ) = (r + s)!
- Combinatorics of the symmetric group:

 $\begin{array}{rcl} \{ \text{irreducible } S_n \text{-modules} \} & \leftrightarrow & \{ \text{partitions of } n \} \\ & & S(\lambda) & \leftrightarrow & \lambda \\ & \{ \text{basis of } S(\lambda) \} & \leftrightarrow & \{ \text{standard tableaux of shape } \lambda \} \end{array}$

• Combinatorics of the walled Brauer algebra ($\delta \neq 0$):

 $\begin{aligned} \text{{irred. Br}_{r,s}-modules} &\leftrightarrow \quad \{\text{bipartitions } \lambda = (\lambda^L, \lambda^R) \text{ with (5)} \} \\ &S(\lambda) \quad \leftrightarrow \quad \lambda \\ \text{{basis of } } S(\lambda) \} \quad \leftrightarrow \quad \{\text{(r,s)-up-down tableaux of shape } \lambda\} \end{aligned}$

$$|\lambda^{\rm L}| = r - t, |\lambda^{\rm R}| = s - t \text{ for } 0 \le t \le \min(r, s)$$
(5)

but: the concrete representation depends on δ .

Given one of our geometric, Lie theoretic or algebraic categories $\ensuremath{\mathcal{C}}$ let

- Λ be the corresponding set of $\wedge \vee\text{-sequences}$ and
- K_{Λ} the associated graded algebra

Theorem (Brundan, S.)

There is an equivalence of categories

 $\mathcal{C} \cong K_{\Lambda} - \mathrm{mod}$

 \Rightarrow elementary, mostly combinatorial, description of C!

< □ > < 同 > < 回 > < 回 > < 回 >

Main References: Series of paper with Jon Brundan (starting from scratch)

Thanks very much for your attention!

Catharina Stroppel (Bonn/Chicago) From KL polynomials to Khovanov algebras

イロト イポト イラト イラト