From KL polynomials to Khovanov algebras

Catharina Stroppel

(Bonn/Chicago)

From KL polynomials to Khovanov algebras

Catharina Stroppel

(Bonn/Chicago)

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$
standard basis

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$
standard basis $\rightsquigarrow K L-b a s i s$

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$

$$
\text { standard basis } \rightsquigarrow K L-\text { basis }
$$

$$
w \in S_{n}
$$

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$

$$
\begin{array}{rll}
\text { standard basis } & \rightsquigarrow L-\text { basis } \\
w \in S_{n} & & B_{w}, w \in S_{n}
\end{array}
$$

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$

$$
\begin{array}{rll}
\text { standard basis } & \rightsquigarrow K L-b \text { asis } \\
w \in S_{n} & & B_{w}, w \in S_{n}
\end{array}
$$

- Defined inductively starting from $B_{e}=e$,

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$

$$
\begin{aligned}
\text { standard basis } & \rightsquigarrow K-\text { basis } \\
w \in S_{n} & B_{w}, w \in S_{n}
\end{aligned}
$$

- Defined inductively starting from $B_{e}=e$,
- Special case: $B_{s}=s+q$ for any simple transposition $s=(i, i+1)$,

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$

$$
\begin{array}{rll}
\text { standard basis } & \rightsquigarrow K L-\text { basis } \\
w \in S_{n} & & B_{w}, w \in S_{n}
\end{array}
$$

- Defined inductively starting from $B_{e}=e$,
- Special case: $B_{s}=s+q$ for any simple transposition $s=(i, i+1)$,
- using the formulas

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$

$$
\begin{array}{rll}
\text { standard basis } & \rightsquigarrow K L-\text { basis } \\
w \in S_{n} & & B_{w}, w \in S_{n}
\end{array}
$$

- Defined inductively starting from $B_{e}=e$,
- Special case: $B_{s}=s+q$ for any simple transposition $s=(i, i+1)$,
- using the formulas

$$
w B_{s}= \begin{cases}w s+q w & \text { if } \ell(w s)>\ell(w) \tag{1}\\ w s+q^{-1} w & \text { if } \ell(w s)<\ell(w)\end{cases}
$$

What are (parabolic) Kazhdan-Lusztig polynomials?

$$
x, y \in S_{n} \rightsquigarrow p_{x, y} \in \mathbb{Z}\left[q, q^{-1}\right]
$$

entries of the (inverse) base change matrix in $\mathbb{C}\left[q, q^{-1}\right]\left[S_{n}\right]$

$$
\begin{array}{rll}
\text { standard basis } & \rightsquigarrow K L-\text { basis } \\
w \in S_{n} & & B_{w}, w \in S_{n}
\end{array}
$$

- Defined inductively starting from $B_{e}=e$,
- Special case: $B_{s}=s+q$ for any simple transposition $s=(i, i+1)$,
- using the formulas

$$
w B_{s}= \begin{cases}w s+q w & \text { if } \ell(w s)>\ell(w) \tag{1}\\ w s+q^{-1} w & \text { if } \ell(w s)<\ell(w)\end{cases}
$$

and subtract possibly already constructed basis elements...

The example S_{3}

KL polynomials (in basis $e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}$)

$$
\left(\begin{array}{cccccc}
1 & q & q & q^{2} & q^{2} & q^{3} \\
0 & 1 & 0 & q & q & q^{2} \\
0 & 0 & 1 & q & q & q^{2} \\
0 & 0 & 0 & 1 & 0 & q \\
0 & 0 & 0 & 0 & 1 & q \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

In fact: KL-polys are in $\mathbb{N}[q]$
Lie theoretic explanation/origin: They describe multiplicities of simple highest weight modules in Jordan-Hölder series of Verma modules $M(x)=U\left(\mathfrak{g l}_{3}\right) \otimes_{U(\text { upper triang. matrices })} \mathbb{C}_{x(3,2,1)}$

$$
[M(y): L(x)\langle i\rangle]=\text { coefficient of } q^{i} \text { in } p_{x, y}
$$

Parabolic versions

Choose a Young subgroup $W=S_{i_{1}} \times S_{i_{2}} \times \cdots \times S_{i_{r}}$ of S_{n} (generated by some subset of simple transpositions)
$x, y \in W \backslash S_{n}$ representatives of minimal length
\rightsquigarrow parabolic KL-polynomial $p_{x, y}$ with the slightly adjusted rules

$$
w B_{s}= \begin{cases}w s+q w & \text { if } l(w s)>l(w) \\ w s+q^{-1 w} & \text { if } l(w s)<l(w) \\ 0 & \text { if } w s \text { not a minimal length representative }\end{cases}
$$

Example: $B_{e}=e, B_{s_{1}}=s_{1}+q e, B_{s_{1} s_{2}}=s_{1} s_{2}+q s_{1}$.

From now on: special case: $W=S_{i} \times S_{n-i}$

- Closed formulas and well-studied (Boe, Brenti - Dyck paths, Billey/Warrington - 321-avoiding)
- Overview article by Shigechi/Zinn-Justin
- Appear in many different contexts (e.g. Lie theory, geometry and algebra)
- All described by a certain family of diagrammatical algebras ("generalized Khovanov algebra") developed in joint work with Brundan

Jordan-Hölder multiplicities for parabolic Verma modules $\left[M^{\mathfrak{p}}(\lambda): L(\mu)\langle i\rangle\right]$

Our special KL polys control:

Jordan-Hölder multiplicities for finite dimensional modules for Lie superalgebras $\mathfrak{g l}(a \mid b)$

Geometry of

 Springer fibers:$N: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ nilpotent map with two Jordan blocks of size $(i, n-i)$ $X=\left\{F_{1} \subset F_{2} \subset \cdots \subset\right.$ $\left.F_{n}=\mathbb{C}^{n}\right\}$ full flags $Y=$ subset of flags satisfying $N F_{i} \subset F_{i-1}$

Diagrammatical description

Fix bijection

$$
\begin{aligned}
S_{i} \times S_{n-i} \backslash S_{n} & \leftrightarrow\{\wedge, \vee \text {-sequences of length } n \text { with } i \wedge \text { ’s }\} \\
e & \mapsto \wedge \wedge \cdots \wedge \vee \vee \cdots \vee
\end{aligned}
$$

To each such element we assign a cup diagram by connecting \vee 's with neighboured \wedge 's to the right, eg.

$$
\begin{array}{lllll}
\wedge \wedge \vee \vee & \wedge \vee \wedge \vee & \vee \wedge \wedge \vee & \wedge \vee \vee \wedge & \vee \wedge \vee \wedge \\
|||\mid & \| \cup \mid & \cup|\mid & \| \vee \wedge \wedge
\end{array}
$$

We can put the $\wedge \vee$-sequence for x on top of the cup diagram for y. The result $x \mathrm{c}(y)$ is oriented if each cup is oriented and there is no ray oriented \vee to the left of a ray labeled \wedge.

Theorem (Brundan-S.)

The parabolic KL-polynomial is given by

$$
p_{x, y}(q)= \begin{cases}q^{\text {clockwise cups }} & \text { if } x \mathrm{c}(y) \text { is oriented } \\ 0 & \text { otherwise } .\end{cases}
$$

Combinatorics labeling the irreducible representations

- Parabolic Verma modules are indexed by highest weights $\lambda=\left(\lambda_{1}>\lambda_{2}>\ldots>\lambda_{i}, \lambda_{i+1}>\ldots>\lambda_{n}\right)$
- Schubert cells in Grassmannian are indexed by partitions fitting into an $i,(n-i)$-box. Boundary path gives an $\wedge \vee$-sequence.
- Irreducible modules for walled Brauer algebra $\operatorname{Br}_{r, s}(\delta)$ are labeled by certain bipartitions $\lambda=\left(\lambda^{L}, \lambda^{R}\right)$

$$
\begin{aligned}
& I_{\wedge}(\lambda):=\left\{\lambda_{1}^{\mathrm{L}}, \lambda_{2}^{\mathrm{L}}-1, \lambda_{3}^{\mathrm{L}}-2, \ldots\right\} \\
& I_{\vee}(\lambda):=\left\{1-\delta-\lambda_{1}^{\mathrm{R}}, 2-\delta-\lambda_{2}^{\mathrm{R}}, 3-\delta-\lambda_{3}^{\mathrm{R}}, \ldots\right\}
\end{aligned}
$$

- Finite dimensional $\mathfrak{g l}(a \mid b)$-modules are indexed by highest weights

$$
\left.\begin{array}{rl}
\lambda=\left(\lambda_{1}>\lambda_{2}>\ldots>\lambda_{a}, \lambda_{a+1}<\ldots<\lambda_{a+b}\right) \\
& I_{\wedge}(\lambda) \\
& I_{\vee}(\lambda)
\end{array}=\left\{x \in \mathbb{Z} \mid x \neq \lambda_{k}, \forall k\right\}, \mathbb{Z} \mid x=\lambda_{k}, x=\lambda_{k}^{\prime} \text { for some } k \neq k^{\prime}\right\}
$$

In each case we can also label with some $\wedge \vee$-sequence instead!

Topological description of Springer fibres

N Jordan type $(i, n-i), Y=\left\{F_{1} \subset F_{2} \subset \cdots \subset F_{n}=\mathbb{C}^{n} \mid N F_{i} \subset F_{i-1}\right\}$ $x \in S_{i} \times S_{n-i} \rightsquigarrow$ cup diagram $\mathrm{c}(x)$
\rightsquigarrow "incidence subset" $Y(x)=\left\{\left(x_{1}, x_{2}, \ldots, x_{2 n}\right) \mid x_{i} \in \mathbb{S}^{2}\right\} \subset\left(\mathbb{S}^{2}\right)^{2 n}$
where we require $x_{i}=x_{j}$ if there is a cup from i to j and $x_{i}=p$ if there is a ray oriented \wedge at i and $x_{i}=p^{\prime}$ if there is a ray oriented \vee.

$$
Y \cong \bigcup_{x \in S_{i} \times S_{n-i}} Y(x)
$$

Theorem (S.-Webster)
(1) The $Y(x)$ form a cell decomposition.
(2) The $\overline{Y(x)}$ with $\mathrm{c}(x)$ maximal number of cups form the irred. components of Y (cf. Spaltenstein-Vargas classification)
(3) The graded space $\oplus_{(x, y)} H^{*}(\overline{Y(x)} \cap \overline{Y(y)})$ has a diagrammatical description!

The diagrammatical algebra K_{Λ}

Fix $\Lambda=S_{i} \times S_{n-i} \backslash S_{n}$.
Basis of $K_{\Lambda}: \quad c(x)^{*} y c(z) \quad x, y, z \in \Lambda$
where $y c(x), y c(z)$ are oriented, $c(x)^{*}$ the horizontally reflected $c(x)$

The diagrammatical algebra K_{Λ}

Fix $\Lambda=S_{i} \times S_{n-i} \backslash S_{n}$.

$$
\text { Basis of } K_{\Lambda}: \quad c(x)^{*} y c(z) \quad x, y, z \in \Lambda
$$

where $y c(x), y c(z)$ are oriented, $c(x)^{*}$ the horizontally reflected $c(x)$ For example: $i=1, n=3$:

The diagrammatical algebra K_{Λ}

Fix $\Lambda=S_{i} \times S_{n-i} \backslash S_{n}$.

$$
\text { Basis of } K_{\Lambda}: \quad c(x)^{*} y c(z) \quad x, y, z \in \Lambda
$$

where $y c(x), y c(z)$ are oriented, $c(x)^{*}$ the horizontally reflected $c(x)$ For example: $i=1, n=3$:

Similarly for arbitrary n. Geometry for $n=5$:

The diagrammatical algebra K_{Λ} and generalizations

Theorem (Brundan,S.)
(1) If we set $\operatorname{deg}\left(c(x)^{*} y c(z)\right)=\#$ clockwise cups $+\#$ clockwise caps then the graded dimension equals $\sum_{x, y, z} p_{x, z} p_{z, y} \in \mathbb{N}[q]$.
(2) There is an explicit diagrammatically defined associative graded algebra structure on K_{Λ}.

- Nice algebras (e.g. Koszul, quasi-hereditary)
- Construction makes sense for any set Λ of $\wedge \vee$-sequences with a finite number of $\vee^{\prime} s$.

Walled Brauer algebra $\operatorname{Br}_{r, s}(\delta)$ (Turaev, Koike)

- Generalizes the symmetric group S_{n}

Walled Brauer algebra $\mathrm{Br}_{r, s}(\delta)$ (Turaev, Koike)

- Generalizes the symmetric group S_{n}
- Classical Schur-Weyl duality (1937), $V=\mathbb{C}^{n}$

$$
\begin{equation*}
\mathfrak{g l}_{n} \curvearrowright V^{\otimes d} \curvearrowleft \mathbb{C}\left[S_{n}\right] \tag{2}
\end{equation*}
$$

Walled Brauer algebra $\mathrm{Br}_{r, s}(\delta)$ (Turaev, Koike)

- Generalizes the symmetric group S_{n}
- Classical Schur-Weyl duality (1937), $V=\mathbb{C}^{n}$

$$
\begin{equation*}
\mathfrak{g l}_{n} \curvearrowright V^{\otimes d} \curvearrowleft \mathbb{C}\left[S_{n}\right] \tag{2}
\end{equation*}
$$

- Mixed Schur-Weyl duality (Nikhitin 1980s), $W=V^{*}$

$$
\begin{equation*}
\mathfrak{g l}_{n} \curvearrowright V^{\otimes r} \otimes W^{\otimes s} \curvearrowleft \operatorname{Br}(n) \tag{3}
\end{equation*}
$$

Walled Brauer algebra $\mathrm{Br}_{r, s}(\delta)$ (Turaev, Koike)

- Generalizes the symmetric group S_{n}
- Classical Schur-Weyl duality (1937), $V=\mathbb{C}^{n}$

$$
\begin{equation*}
\mathfrak{g l}_{n} \curvearrowright V^{\otimes d} \curvearrowleft \mathbb{C}\left[S_{n}\right] \tag{2}
\end{equation*}
$$

- Mixed Schur-Weyl duality (Nikhitin 1980s), $W=V^{*}$

$$
\begin{equation*}
\mathfrak{g l}_{n} \curvearrowright V^{\otimes r} \otimes W^{\otimes s} \curvearrowleft \operatorname{Br}(n) \tag{3}
\end{equation*}
$$

- Mixed super Schur-Weyl duality (Brundan-S.), equip V with a \mathbb{Z}_{2}-grading $V=V_{0} \oplus V_{1}$ with $\operatorname{dim} V_{0}-\operatorname{dim} V_{1}=m-n=\delta$

$$
\begin{equation*}
\mathfrak{g l}(m \mid n) \curvearrowright V^{\otimes r} \otimes W^{\otimes s} \curvearrowleft \operatorname{Br}(\delta) \tag{4}
\end{equation*}
$$

Diagrammatical description of $\operatorname{Br}(\delta)$

basis: isotopy classes of walled Brauer diagrams

- diagrams drawn in a rectangle with $(r+s)$ vertices numbered $1, \ldots, r$ and, separated by a wall, $r+1, \ldots, r+s$ on top and bottom
- Each vertex must be connected to exactly one other vertex by a smooth curve drawn in the interior of the rectangle; curves can cross transversally, no triple intersections.
- Horizontal edges must cross the wall, vertical edges must not.

Multiplication: concatenation and replacing internal circles by δ.

Example from $\mathrm{Br}_{2,2}(\delta)$

Basic properties

- $\operatorname{dim} \operatorname{Br}(\delta)=$?

Basic properties

- $\operatorname{dim} \operatorname{Br}(\delta)=$? Answer: $\operatorname{dim} \operatorname{Br}_{r, s}(\delta)=(r+s)$!

Basic properties

- $\operatorname{dim} \operatorname{Br}(\delta)=$? Answer: $\operatorname{dim} \operatorname{Br}_{r, s}(\delta)=(r+s)$!
- Combinatorics of the symmetric group:
\{irreducible S_{n}-modules $\} \leftrightarrow \quad$ \{partitions of $\left.n\right\}$

$$
S(\lambda) \leftrightarrow \lambda
$$

\{basis of $S(\lambda)\} \quad \leftrightarrow \quad$ \{standard tableaux of shape $\lambda\}$

Basic properties

- $\operatorname{dim} \operatorname{Br}(\delta)=$? Answer: $\operatorname{dim} \operatorname{Br}_{r, s}(\delta)=(r+s)$!
- Combinatorics of the symmetric group:
\{irreducible S_{n}-modules $\} \leftrightarrow \quad$ \{partitions of $\left.n\right\}$

$$
S(\lambda) \leftrightarrow \lambda
$$

\{basis of $S(\lambda)\} \quad \leftrightarrow \quad$ \{standard tableaux of shape $\lambda\}$

- Combinatorics of the walled Brauer algebra ($\delta \neq 0$):
$\left\{\right.$ irred. $\mathrm{Br}_{r, s}$-modules $\} \leftrightarrow \quad\left\{\right.$ bipartitions $\lambda=\left(\lambda^{L}, \lambda^{R}\right)$ with (5) $\}$

$$
S(\lambda) \leftrightarrow \lambda
$$

\{basis of $S(\lambda)\} \quad \leftrightarrow \quad\{(\mathrm{r}, \mathrm{s})$-up-down tableaux of shape $\lambda\}$

$$
\begin{equation*}
\left|\lambda^{\mathrm{L}}\right|=r-t,\left|\lambda^{\mathrm{R}}\right|=s-t \text { for } 0 \leq t \leq \min (r, s) \tag{5}
\end{equation*}
$$

but: the concrete representation depends on δ.

General Theorem

Given one of our geometric, Lie theoretic or algebraic categories \mathcal{C} let

- Λ be the corresponding set of $\wedge \vee$-sequences and
- K_{Λ} the associated graded algebra

Theorem (Brundan, S.)
There is an equivalence of categories

$$
\mathcal{C} \cong K_{\Lambda}-\bmod
$$

\Rightarrow elementary, mostly combinatorial, description of $\mathcal{C}!$

Main References:
 Series of paper with Jon Brundan (starting from scratch)

Thanks very much for your attention!

