A simple model of trees for unicellular maps

Guillaume Chapuy (LIAFA, Paris-VII)

joint work with
Valentin Féray (LaBRI, Bordeaux-I)
Éric Fusy (LIX, Polytechnique)

Unicellular maps (a.k.a. "one-face" maps)

- Start with a (rooted) $2 n$-gon, and paste the edges pairwise in order to form an orientable surface.

Unicellular maps (a.k.a. "one-face" maps)

- Start with a (rooted) $2 n$-gon, and paste the edges pairwise in order to form an orientable surface.

- One obtains an n-edge graph drawn on the surface. The number of handles (=genus) of the surface is given combinatorially by Euler's formula:

$$
\# \text { vertices }=n+1-2 g
$$

Unicellular maps (a.k.a. "one-face" maps)

- Start with a (rooted) $2 n$-gon, and paste the edges pairwise in order to form an orientable surface.

- One obtains an n-edge graph drawn on the surface. The number of handles (=genus) of the surface is given combinatorially by Euler's formula:

$$
\# \text { vertices }=n+1-2 g
$$

- The number of unicellular maps of size n is $(2 n-1)$!!
- What if we fix the genus ? For example, on the sphere (genus 0), unicellular maps $=$ plane trees... so there are $\operatorname{Cat}(n)$ of them.

Unicellular maps: counting!

- Let $\epsilon_{g}(n)$ be the number of unicellular maps with n edges and genus g.
- Are these numbers interesting ? Yes!

$$
\begin{aligned}
& \epsilon_{0}(n)=\operatorname{Cat}(n) \\
& \epsilon_{1}(n)=\frac{(n+1) n(n-1)}{12} \operatorname{Cat}(n) \\
& \epsilon_{2}(n)=\frac{(n+1) n(n-1)(n-2)(n-3)(5 n-2)}{1440} \operatorname{Cat}(n)
\end{aligned}
$$

- These numbers are connection coefficients in $\mathcal{Z}\left(\mathbb{C}\left[\mathfrak{S}_{n}\right]\right)$ (all map numbers are, more or less - but this is not really the point of this talk).

Unicellular maps: some chosen formulas

[Lehman-Walsh 72]

$$
\epsilon_{g}(n)=\left(\sum_{\gamma \vdash g} \frac{(n+1-2 g)_{2 \ell(\gamma)+1}}{2^{2 g} \prod_{i} m_{i}!(2 i+1)^{m_{i}}}\right)_{\text {no bijective proof! }} \operatorname{Cat}(n)
$$

[Harer-Zagier 86] (summation form)

$$
\begin{aligned}
& \sum_{g \geq 0} \epsilon_{g}(n) y^{n+1-2 g}=(2 n-1)!!\sum_{i \geq 1} 2^{i-1}\binom{n}{i-1}\binom{y}{i} \\
& \text { nice bijective proof [Bernardi10] building on [Lass 01, Goulden Nica 05] }
\end{aligned}
$$

[Harer-Zagier 86] (recurrence form)

$$
\begin{gathered}
(n+1) \epsilon_{g}(n)=2(2 n-1) \epsilon_{g}(n-1)+(n-1)(2 n-1)(2 n-3) \epsilon_{g-1}(n-2) \\
\text { no bijective proof! }
\end{gathered}
$$

... and many others! [Jackson 88, Goulden-Jackson 92, Goupil-Schaeffer 98, Schaeffer-Vassilieva 08, Morales-Vassilieva 09, Ch. 09, Bernardi-Ch. 10, ...].

Unicellular maps: some chosen formulas

[Lehman-Walsh 72]

$$
\epsilon_{g}(n)=\left(\sum_{\gamma \vdash g} \frac{(n+1-2 g)_{2 \ell(\gamma)+1}}{2^{2 g} \prod_{i} m_{i}!(2 i+1)^{m_{i}}}\right) \operatorname{Cat}(n)
$$

[Harer-Zagier 86] (summation form)

$$
\begin{aligned}
& \sum_{g \geq 0} \epsilon_{g}(n) y^{n+1-2 g}=(2 n-1)!!\sum_{i \geq 1} 2^{i-1}\binom{n}{i-1}\binom{y}{i} \\
& \text { nice bijective proof [Bernardi10] building on [Lass 01, Goulden Nica 05] }
\end{aligned}
$$

[Harer-Zagier 86] (recurrence form)

$$
\begin{gathered}
(n+1) \epsilon_{g}(n)=2(2 n-1) \epsilon_{g}(n-1)+(n-1)(2 n-1)(2 n-3) \epsilon_{g-1}(n-2) \\
\text { no bijective proof! }
\end{gathered}
$$

\ldots and many others! [Jackson 88, Goulden-Jackson 92, Goupil-Schaeffer 98, Schaeffer-Vassilieva 08, Morales-Vassilieva 09, Ch. 09, Bernardi-Ch. 10, ...].
[Goupil-Schaeffer 98] for $\lambda \vdash 2 n, \lambda=1^{m_{1}} 2^{m_{2}} \ldots$:
$\underset{\text { vertex degrees }}{\epsilon_{g}(n ; \lambda)}=\frac{(l+2 g-1)!}{2^{2 g-1} \prod_{i} m_{i}!} \sum_{\gamma_{1}+\gamma_{2}+\cdots+\gamma_{l}=g} \prod_{i} \frac{1}{2 \gamma_{i}+1}\binom{\lambda_{i}}{2 \gamma_{i}} \quad$ proof!

Our result, in short

- A C-permutation of a set S : - all cycles have odd length

- each cycle carries a sign in $\{+,-\}$
- its genus is $g:=\sum_{i} k_{i}$ where $\left(2 k_{i}+1\right)$ are the cycle-lengths

$$
\# \text { cycles }=|S|-2 g
$$

Our result, in short

- A C-permutation of a set S : - all cycles have odd length

- each cycle carries a sign in $\{+,-\}$
- its genus is $g:=\sum_{i} k_{i}$ where $\left(2 k_{i}+1\right)$ are the cycle-lengths

$$
\# \text { cycles }=|S|-2 g
$$

- C-decorated tree $=$ a rooted plane tree equipped with a C-permutation of its vertices:

Our result, in short

- A C-permutation of a set S :

- all cycles have odd length
- each cycle carries a sign in $\{+,-\}$
- its genus is $g:=\sum_{i} k_{i}$ where $\left(2 k_{i}+1\right)$ are the cycle-lengths

$$
\# \text { cycles }=|S|-2 g
$$

- C-decorated tree $=$ a rooted plane tree equipped with a C-permutation of its

- Theorem [C., Féray, Fusy] (our main result!)

There is a 2^{n+1}-to- 1 -jection between unicellular maps of size n and C-decorated trees with n edges. It preserves the genus.

Our result, in short

- A C-permutation of a set S :

- all cycles have odd length
- each cycle carries a sign in $\{+,-\}$
- its genus is $g:=\sum_{i} k_{i}$ where $\left(2 k_{i}+1\right)$ are the cycle-lengths

$$
\# \text { cycles }=|S|-2 g
$$

- C-decorated tree $=$ a rooted plane tree equipped with a C-permutation of its

the underlying graph is obtained by identifying vertices in each cycle into a big vertex
- Theorem [C., Féray, Fusy] (our main result!)

There is a 2^{n+1}-to- 1 -jection between unicellular maps of size n and C-decorated trees with n edges. It preserves the genus. (and the underlying graph).

Our result, in short

- A C-permutation of a set S :

- all cycles have odd length
- each cycle carries a sign in $\{+,-\}$
- its genus is $g:=\sum_{i} k_{i}$ where $\left(2 k_{i}+1\right)$ are the cycle-lengths

$$
\# \text { cycles }=|S|-2 g
$$

- C-decorated tree $=$ a rooted plane tree equipped with a C-permutation of its

the underlying graph is obtained by identifying vertices in each cycle into a big vertex
- Theorem [C., Féray, Fusy] (our main result!)

There is a 2^{n+1}-to- 1 -jection between unicellular maps of size n and C-decorated trees with n edges. It preserves the genus. (and the underlying graph).

First ingredient: a bijection from FPSAC'09 (1)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

First ingredient: a bijection from FPSAC'09 (1)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- An idea of what happens: 2 g different "vertex blowups"

First ingredient: a bijection from FPSAC'09 (1)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- An idea of what happens: 2 g different "vertex blowups"

$$
\text { map of genus 1: } \mathcal{E}_{1}(n)
$$

First ingredient: a bijection from FPSAC'09 (1)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- An idea of what happens: 2 g different "vertex blowups"

map of genus 1: $\mathcal{E}_{1}(n)$

First ingredient: a bijection from FPSAC'09 (1)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- An idea of what happens: 2 g different "vertex blowups"

map of genus 1: $\mathcal{E}_{1}(n)$

First ingredient: a bijection from FPSAC'09 (1)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- An idea of what happens: 2 g different "vertex blowups"
tree with 3 marked vertices:

$$
\mathcal{E}_{0}^{3}(n)
$$

map of genus 1: $\mathcal{E}_{1}(n)$

First ingredient: a bijection from FPSAC'09 (1)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- An idea of what happens: 2 g different "vertex blowups"
tree with 3 marked vertices:

$$
\mathcal{E}_{0}^{3}(n)
$$

map of genus 1: $\mathcal{E}_{1}(n)$

First ingredient: a bijection from FPSAC'09 (1)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- An idea of what happens: 2 g different "vertex blowups"
tree with 3 marked vertices: $\mathcal{E}_{0}^{3}(n)$

map of genus 1: $\mathcal{E}_{1}(n)$
tree with 3 marked vertices:
$\mathcal{E}_{0}^{3}(n)$

First ingredient: a bijection from FPSAC'09 (1)

Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- An idea of what happens: 2 g different "vertex blowups"

genus 0, 5 marked vertices

First ingredient: a bijection from FPSAC'09 (2)
Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

First ingredient: a bijection from FPSAC'09 (2)

Let $\mathcal{E}_{g}^{(k)}(n)=$ unicellular maps, genus g, n edges, k marked vertices.

- Theorem [Ch.09] There is an explicit $2 g$-to-1-jection that realizes:

$$
2 g \cdot \mathcal{E}_{g}(n)=\mathcal{E}_{g-1}^{(3)}(n)+\mathcal{E}_{g-2}^{(5)}(n)+\cdots+\mathcal{E}_{0}^{(2 g+1)}(n)
$$

- Corollary: $\epsilon_{g}(n)=P_{g}(n) \times \operatorname{Cat}(n)$ where the polynomial P_{g} is defined recursively:
$2 g \cdot P_{g}(n)=\binom{n+3-2 g}{3} P_{g-1}(n)+\binom{n+5-2 g}{5} P_{g-2}(n)+\cdots+\binom{n+1}{2 g+1} P_{0}(n)$
...but now we can say more!

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

1. look at runs separating lower records
2. some may have even length...

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

1. look at runs separating lower records
2. some may have even length..
correct this by applying a small transposition when necessary and write a " + " to remember that you have done it

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

1. look at runs separating lower records
2. some may have even length..
correct this by applying a small transposition when necessary and write a " + " to remember that you have done it

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

1. look at runs separating lower records
2. some may have even length..
correct this by applying a small transposition when necessary and write a " + " to remember that you have done it

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

1. look at runs separating lower records
2. some may have even length..
correct this by applying a small transposition when necessary and write a " + " to remember that you have done it

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

1. look at runs separating lower records
2. some may have even length..
correct this by applying a small transposition when necessary and write a " + " to remember that you have done it

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

1. look at runs separating lower records
2. some may have even length..
correct this by applying a small transposition when necessary and write a " + " to remember that you have done it
3. now close each run into a cycle: this gives a C-permutation.

C-permutations solve the recurrence combinatorially

- Fact: C-permutations satisfy the same recurrence as unicellular maps!

$$
2 g \cdot \mathcal{C}_{g}(n)=\mathcal{C}_{g-1}^{(3)}(n)+\mathcal{C}_{g-2}^{(5)}(n)+\cdots+\mathcal{C}_{0}^{(2 g+1)}(n)
$$

where $\mathcal{C}_{g}^{(k)}(n)=C$-permutations, size n, genus g, k marked cycles.

- Sketch (left-to-right): Start with a C-permutation of genus g. $2 g=$ (\#elements) $-\#$ (cycles) is the number of non-minimal elements

1. look at runs separating lower records
2. some may have even length..
correct this by applying a small transposition when necessary and write a " + " to remember that you have done it
3. now close each run into a cycle: this gives a C-permutation.

Counting C-decorated trees is straightforward

- Theorem [C., Féray, Fusy]

The number of unicellular maps of genus g with n edges satisfies:

$$
2^{n+1} \epsilon_{g}(n)=C_{g}(n+1) \operatorname{Cat}(n)
$$

where $C_{g}(n+1)$ is the number of C-perm. of genus g on $n+1$ elements.

- but $C_{g}(n+1)=$ easy numbers!

$$
\begin{aligned}
& -C_{0}(n+1)=2^{n+1} \\
& -C_{1}(n+1)=\frac{(n+1) n(n-1)}{3} 2^{n-1} \\
& -C_{2}(n+1)=\left(4!\binom{n+1}{5}+40\binom{n+1}{6}\right) 2^{n-3}
\end{aligned}
$$

Counting C-decorated trees is straightforward

- Theorem [C., Féray, Fusy]

The number of unicellular maps of genus g with n edges satisfies:

$$
2^{n+1} \epsilon_{g}(n)=C_{g}(n+1) \operatorname{Cat}(n)
$$

where $C_{g}(n+1)$ is the number of C-perm. of genus g on $n+1$ elements.

- but $C_{g}(n+1)=$ easy numbers!

$$
\begin{aligned}
& -C_{0}(n+1)=2^{n+1} \\
& -C_{1}(n+1)=\frac{(n+1) n(n-1)}{3} 2^{n-1} \\
& -C_{2}(n+1)=\left(4!\binom{n+1}{5}+40\binom{n+1}{6}\right) 2^{n-3}
\end{aligned}
$$

- In general: $\quad C_{g}(n+1)=\left(\sum_{\gamma \vdash g} \frac{(n+1-2 g)_{2 \ell(\gamma)+1}}{\prod_{i} m_{i}!(2 i+1)^{m_{i}}}\right) 2^{n+1-2 g}$ of the C-permutation: $\sqrt{ }$ Lehman-Walsh formula! $\left(2 \gamma_{i}+1\right)=$ cycle lengths.

Conclusion

- It is a series of exercises to recover ALL the known formulas concerning unicellular maps, bijectively with C-decorated trees. You just need to know your classics (count permutations, count trees...). Take a look at the paper!
- For example the beautiful Harer-Zagier recurrence formula has been waiting for a combinatorial interpretation since 1986...

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

rooted tree, n edges, one marked vertex

case a: vertex is a leaf. Delete it.

case b : vertex is not a leaf. Contract the leftmost outgoing edge.

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

rooted tree, n edges, one marked vertex

case a: vertex is a leaf. Delete it.

case b : vertex is not a leaf. Contract the leftmost outgoing edge.

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

rooted tree, n edges, one marked vertex

case a: vertex is a leaf. Delete it.

case b : vertex is not a leaf. Contract the leftmost outgoing edge.

- Then for general g :

C-decorated tree, n edges, genus g, one marked vertex
case 1: vertex is a fixed point: apply Rémy's bijection (one vertex disappears)
case 2: vertex is in a $(2 k+1)$-cycle.
Apply Rémy's bijection twice (two vertices disappear, cycle length decreases by 2)

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

rooted tree, n edges, one marked vertex

case a: vertex is a leaf. Delete it.

case b : vertex is not a leaf. Contract the leftmost outgoing edge.

- Then for general g :

C-decorated tree, n edges, genus g, one marked vertex
case 1: vertex is a fixed point: apply Rémy's bijection (one vertex disappears)
case 2: vertex is in a $(2 k+1)$-cycle.
Apply Rémy's bijection twice (two vertices disappear, cycle length decreases by 2)

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

rooted tree, n edges, one marked vertex

case a: vertex is a leaf. Delete it.

case b : vertex is not a leaf. Contract the leftmost outgoing edge.

- Then for general g :

C-decorated tree, n edges, genus g, one marked vertex
case 1: vertex is a fixed point: apply Rémy's bijection (one vertex disappears)

case 2: vertex is in a $(2 k+1)$-cycle.
Apply Rémy's bijection twice (two vertices disappear, cycle length decreases by 2)

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

rooted tree, n edges, one marked vertex

case a: vertex is a leaf. Delete it.

case b : vertex is not a leaf. Contract the leftmost outgoing edge.

- Then for general g :

C-decorated tree, n edges, genus g, one marked vertex
case 1: vertex is a fixed point: apply Rémy's bijection (one vertex disappears)

case 2: vertex is in a $(2 k+1)$-cycle.
Apply Rémy's bijection twice (two vertices disappear, cycle length decreases by 2)

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

rooted tree, n edges, one marked vertex

case a: vertex is a leaf. Delete it.

case b : vertex is not a leaf. Contract the leftmost outgoing edge.

- Then for general g :

C-decorated tree, n edges, genus g, one marked vertex
case 1: vertex is a fixed point: apply Rémy's bijection (one vertex disappears)

case 2: vertex is in a $(2 k+1)$-cycle.
Apply Rémy's bijection twice (two vertices disappear, cycle length decreases by 2)

Harer-Zagier recurrence formula (1986)

- Classic: for $g=0$, Rémy's bijection [Rémy 85]

$$
(n+1) \operatorname{Cat}(n)=2 \times(2 n-1) \operatorname{Cat}(n-1)
$$

rooted tree, n edges, one marked vertex

case a: vertex is a leaf. Delete it.

case b : vertex is not a leaf. Contract the leftmost outgoing edge.

- Then for general g :

C-decorated tree, n edges, genus g, one marked vertex
case 1: vertex is a fixed point: apply Rémy's bijection (one vertex disappears)

case 2: vertex is in a $(2 k+1)$-cycle.
Apply Rémy's bijection twice (two vertices disappear, cycle length decreases by 2)

Conclusion

- It is a series of exercises to recover ALL the known formulas concerning unicellular maps, bijectively with C-decorated trees. You just need to know your classics (count permutations, count trees...). Take a look at the paper!
- The bijection also applies to Féray's expression of Stanley character polynomials in terms of unicellular maps (we obtain a new expression - is it useful?)
- Next ?
\rightarrow unicellular constellations? ([Poulalhon-Schaeffer 02, Bernardi-Morales 11]) (problem: FPSAC'09 bijection does not work well)
(very partial results in the full version - take a look!)
\rightarrow many-face maps? (KP hierarchy?)
(problem: seems much harder!)
\rightarrow non-orientable surfaces?
(problem: FPSAC'09 bijection only exists in asymptotic version - [Bernardi-Ch., FPSAC'10])

