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noncrossing matching on {1, 2, . . . , 2n}

1 2 3 4 5 6 7 8 9 10

Dyck path of length 2n↔ partition contained in (n− 1, n− 2, . . . , 1)

↔

These objects are counted by Catalan number Cn = 1
n+1

(2n
n

)

.
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This example has matching:

1 2 3 4 5 6

P(π): probability that a random double-dimer has matching π

M: matrix whose rows and columns are indexed by Dyck paths of length 2n:

Mλ,µ =

{

1, if λ ≻ µ,
0, otherwise.

Kenyon and Wilson showed that one can compute P(π) using the inverse of M.

Theorem (Kenyon and Wilson, 2010)

(M−1)λ,µ = (−1)|λ/µ| × (# cover-inclusive Dyck tilings of shape λ/µ)
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(cover-inclusive) Dyck tilings

Dyck tile b
b
b
b
b
b
b

Dyck tiling of shape λ/µ

Cell A is covered by cell B: A

B

cover-inclusive Dyck tiling: if tile A has a cell covered by a cell of tile B,
then A is completely covered by B.
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Notations

D(λ/µ): set of Dyck tilings of shape λ/µ

D(λ/∗) =
⋃

ν∈Dyck(2n)

D(λ/ν),

D(∗/µ) =
⋃

ν∈Dyck(2n)

D(ν/µ).

|D(λ/∗)| = # Dyck tilings with lower path λ = row sum of |M−1|

|D(∗/µ)| = # Dyck tilings with upper path µ = column sum of |M−1|

Main Problem

Find |D(λ/∗)| and |D(∗/µ)|.

Find q-analogs of |D(λ/∗)| and |D(∗/µ)|: Kenyon and Wilson’s conjectures
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A chord is a matching pair of up step and down step

The length |c| and the height ht(c) are defined as follows:

3

1
2
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D(λ/∗): fixed lower path

There are 12 Dyck tilings with fixed lower path

The fixed lower path has half length n = 4 with chords of length 1,1,1,2

1 1 2
1

12 =
4!

1 · 1 · 1 · 2
=

n!∏
c∈Chord(λ) |c|

(weak) Conjecture 1 of KW
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D(∗/µ): fixed upper path
There are 12 Dyck tilings with fixed upper path

The fixed upper path has chords of height 3, 2, 2, 1

1
2
3

2

12 = 3 · 2 · 2 · 1 =
∏

c∈Chord(µ)

ht(c) (weak) Conjecture 2 of KW
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q-analogs?

We need nice statistics of Dyck tilings.

For T ∈ D(λ/µ) define

|T| = number of tiles in T

art(T) =
|λ/µ|+ |T|

2
=

area+tiles

2

area(T) = 5, tiles(T) = 3, art(T) =
5 + 3

2
= 4

The usual q-integers, q-factorials:

[n]q = 1 + q + · · ·+ qn−1, [n]q! = [1]q [2]q · · · [n]q .
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Conjecture (Kenyon and Wilson, 2010)

∑

T∈D(λ/∗)

qart(T) =
[n]q!

∏

c∈Chord(λ) [|c|]q

Conjecture (Kenyon and Wilson, 2010)
∑

T∈D(∗/µ)

q|T| =
∏

c∈Chord(µ)

[ht(c)]q

Conjecture 1 has been proved by Kim (non-bijectively) and Kim, Mészáros,
Panova, Wilson (bijectively).

Conjecture 2 has been proved bijectively by Kim and Konvalinka independently.
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Inductive Proof of Conjecture 1

D(λ/∗; a, b): set of generalized Dyck tilings

The upper path starts a units above the starting point of λ and ends b units above
the ending point of λ.

λ

µ

Theorem (K., 2011)

∑

T∈D(λ/∗;a,b)

qart(T) =
[n]q!

∏

c∈Chord(λ) [|c|]q

∑

T∈D(∆n/∗;a,b)

qart(T)

∆n: the highest path =

D(λ/∗; 0, 0) = D(λ/∗)

D(∆n/∗; 0, 0) has only one tile, the empty tiling of ∆n/∆n.
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⇓
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Bijective Proof of Conjecture 1

Theorem (K., Mészáros, Panova, Wilson, 2011)
There is a bijection φ from Dyck tilings to increasing ordered trees such that the
lower path of T corresponds to the shape of the tree φ(T) and

art(T) = inv(φ(T)).
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Theorem (Björner and Wachs, 1989)

∑

sh(P)=λ

qinv(P) =
[n]q!

∏

c∈Chord(λ) [|c|]q
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A Hermite history of shape µ is a labeling H of the down steps such that

a down step of height i has label in {0, 1, . . . , i − 1}.
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H(µ): set of Hermite histories of shape µ

‖H‖= sum of labels
∑

H∈H(µ)

q‖H‖ =
∏

c∈Chord(µ)

[ht(c)]q .

It is sufficient to find a bijection from D(∗/µ) to H(µ).

There is a simple bijection between Hermite histories and matchings:
2

0
1 1

0
⇔

1 2 3 4 5 6 7 8 9 10

If H ↔ π, then ‖H‖ = cr(π).
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A bijection between Dyck tilings and Hermite histories

The entry and the exit of a Dyck tile are defined:

entry

exit

The label of a down step is the number of tiles traveled:

b 1
b 1 b 3

b 0
b 4

b 1
b 3

b 1
b 0

b 0

b

b

b

b

b

b

b

If T ↔ H, then |T| = ‖H‖.

∑

T∈D(∗/µ)

q|T| =
∑

H∈H(µ)

q‖H‖ =
∏

c∈Chord(µ)

[ht(c)]q .
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How to recover the Dyck tiling

5
1 0 2

4
0

2
1

2
1

0

→

5
1 2

4
0

2
1

2
1

0

←
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Dyck tilings = Dyck tableaux (Aval, Boussicault, Dasse-Hartaut)
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