Proofs of two conjectures of Kenyon and Wilson on Dyck tilings

> Jang Soo Kim University of Minnesota

FPSAC, Nagoya University August 3, 2012

▲□▶▲□▶▲□▶▲□▶ □ のへで

• matching on  $\{1, 2, ..., 2n\}$ 



▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

• matching on  $\{1, 2, ..., 2n\}$ 



• noncrossing matching on  $\{1, 2, \ldots, 2n\}$ 



▲□ > ▲圖 > ▲ 国 > ▲ 国 > → 国 → のへで

• matching on  $\{1, 2, ..., 2n\}$ 



• noncrossing matching on  $\{1, 2, \ldots, 2n\}$ 



• Dyck path of length  $2n \leftrightarrow$  partition contained in (n - 1, n - 2, ..., 1)





• matching on {1, 2, ..., 2*n*}



• noncrossing matching on  $\{1, 2, \ldots, 2n\}$ 



 $\leftrightarrow$ 

• Dyck path of length  $2n \leftrightarrow$  partition contained in (n - 1, n - 2, ..., 1)





• These objects are counted by Catalan number  $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ .

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで



3/19



3/19

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ



• This example has matching:



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ



• This example has matching:



•  $P(\pi)$ : probability that a random double-dimer has matching  $\pi$ 

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@



• This example has matching:



- $P(\pi)$ : probability that a random double-dimer has matching  $\pi$
- *M*: matrix whose rows and columns are indexed by Dyck paths of length 2*n*:

$$M_{\lambda,\mu} = \left\{ egin{array}{cc} 1, & ext{if } \lambda \succ \mu, \ 0, & ext{otherwise.} \end{array} 
ight.$$

#### ▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@



• This example has matching:



•  $P(\pi)$ : probability that a random double-dimer has matching  $\pi$ 

• *M*: matrix whose rows and columns are indexed by Dyck paths of length 2*n*:

$$M_{\lambda,\mu} = \begin{cases} 1, & \text{if } \lambda \succ \mu, \\ 0, & \text{otherwise.} \end{cases}$$

• Kenyon and Wilson showed that one can compute  $P(\pi)$  using the inverse of *M*.

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@



• This example has matching:



•  $P(\pi)$ : probability that a random double-dimer has matching  $\pi$ 

• M: matrix whose rows and columns are indexed by Dyck paths of length 2n:

$$M_{\lambda,\mu} = \begin{cases} 1, & \text{if } \lambda \succ \mu, \\ 0, & \text{otherwise.} \end{cases}$$

• Kenyon and Wilson showed that one can compute  $P(\pi)$  using the inverse of *M*.

Theorem (Kenyon and Wilson, 2010)

 $(M^{-1})_{\lambda,\mu} = (-1)^{|\lambda/\mu|} imes (\texttt{\# cover-inclusive Dyck tilings of shape } \lambda/\mu)$ 



Dyck tile



- Dyck tile
- Dyck tiling of shape  $\lambda/\mu$



▲□▶▲□▶▲三▶▲三▶ 三三 のへで



4/19

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● ● ●

•  $\mathcal{D}(\lambda/\mu)$ : set of Dyck tilings of shape  $\lambda/\mu$ 

$$\mathcal{D}(\lambda/*) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\lambda/\nu),$$
$$\mathcal{D}(*/\mu) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\nu/\mu).$$

▲□▶▲□▶▲目▶▲目▶ 目 のへの

•  $\mathcal{D}(\lambda/\mu)$ : set of Dyck tilings of shape  $\lambda/\mu$ 

$$\mathcal{D}(\lambda/*) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\lambda/\nu),$$
$$\mathcal{D}(*/\mu) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\nu/\mu).$$

•  $|\mathcal{D}(\lambda/*)| = #$  Dyck tilings with lower path  $\lambda = \text{row sum of } |M^{-1}|$ 

▲□▶▲□▶▲□▶▲□▶ □ のへで

•  $\mathcal{D}(\lambda/\mu)$ : set of Dyck tilings of shape  $\lambda/\mu$ 

$$\mathcal{D}(\lambda/*) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\lambda/\nu),$$
$$\mathcal{D}(*/\mu) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\nu/\mu).$$

- $|\mathcal{D}(\lambda/*)| = #$  Dyck tilings with lower path  $\lambda = \text{row sum of } |M^{-1}|$
- $|\mathcal{D}(*/\mu)| = #$  Dyck tilings with upper path  $\mu = \text{column sum of } |M^{-1}|$

•  $\mathcal{D}(\lambda/\mu)$ : set of Dyck tilings of shape  $\lambda/\mu$ 

$$\mathcal{D}(\lambda/*) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\lambda/\nu),$$
$$\mathcal{D}(*/\mu) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\nu/\mu).$$

- $|\mathcal{D}(\lambda/*)| = #$  Dyck tilings with lower path  $\lambda = \text{row sum of } |M^{-1}|$
- $|\mathcal{D}(*/\mu)| = #$  Dyck tilings with upper path  $\mu = \text{column sum of } |M^{-1}|$

Main Problem

•  $\mathcal{D}(\lambda/\mu)$ : set of Dyck tilings of shape  $\lambda/\mu$ 

$$\mathcal{D}(\lambda/*) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\lambda/\nu),$$
$$\mathcal{D}(*/\mu) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\nu/\mu).$$

- $|\mathcal{D}(\lambda/*)| = #$  Dyck tilings with lower path  $\lambda = \text{row sum of } |M^{-1}|$
- $|\mathcal{D}(*/\mu)| = #$  Dyck tilings with upper path  $\mu = \text{column sum of } |M^{-1}|$

#### Main Problem

• Find  $|\mathcal{D}(\lambda/*)|$  and  $|\mathcal{D}(*/\mu)|$ .

#### ◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

D(λ/μ): set of Dyck tilings of shape λ/μ

$$\mathcal{D}(\lambda/*) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\lambda/\nu),$$
$$\mathcal{D}(*/\mu) = \bigcup_{\nu \in \text{Dyck}(2n)} \mathcal{D}(\nu/\mu).$$

- $|\mathcal{D}(\lambda/*)| = #$  Dyck tilings with lower path  $\lambda = \text{row sum of } |M^{-1}|$
- $|\mathcal{D}(*/\mu)| = #$  Dyck tilings with upper path  $\mu = \text{column sum of } |M^{-1}|$

#### Main Problem

- Find  $|\mathcal{D}(\lambda/*)|$  and  $|\mathcal{D}(*/\mu)|$ .
- Find q-analogs of  $|\mathcal{D}(\lambda/*)|$  and  $|\mathcal{D}(*/\mu)|$ : Kenyon and Wilson's conjectures

Chords of Dyck paths

• A chord is a matching pair of up step and down step



▲□▶▲□▶▲≡▶▲≡▶ Ξ のQ@

## Chords of Dyck paths

• A chord is a matching pair of up step and down step



• The length |c| and the height ht(c) are defined as follows:





▲□▶▲□▶▲□▶▲□▶ □ のへで

## $\mathcal{D}(\lambda/*)$ : fixed lower path

• There are 12 Dyck tilings with fixed lower path



▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ● ④ < ○

## $\mathcal{D}(\lambda/*)$ : fixed lower path

• There are 12 Dyck tilings with fixed lower path



• The fixed lower path has half length n = 4 with chords of length 1,1,1,2



## $\mathcal{D}(\lambda/*)$ : fixed lower path

• There are 12 Dyck tilings with fixed lower path



• The fixed lower path has half length n = 4 with chords of length 1,1,1,2

• 
$$12 = \frac{4!}{1 \cdot 1 \cdot 1 \cdot 2} = \frac{n!}{\prod_{c \in \operatorname{Chord}(\lambda)} |c|}$$
 (wea

(weak) Conjecture 1 of KW

#### ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで





8/19

• The fixed upper path has chords of height 3, 2, 2, 1



(日)



• The fixed upper path has chords of height 3, 2, 2, 1



• 
$$12 = 3 \cdot 2 \cdot 2 \cdot 1 = \prod_{c \in \operatorname{Chord}(\mu)} \operatorname{ht}(c)$$

(weak) Conjecture 2 of KW

(日)

э

• We need nice statistics of Dyck tilings.

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

- We need nice statistics of Dyck tilings.
- For  $T \in \mathcal{D}(\lambda/\mu)$  define

$$|T| =$$
 number of tiles in T  
art $(T) = \frac{|\lambda/\mu| + |T|}{2}$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We need nice statistics of Dyck tilings.
- For  $T \in \mathcal{D}(\lambda/\mu)$  define

$$|T| =$$
 number of tiles in T  
art $(T) = \frac{|\lambda/\mu| + |T|}{2}$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We need nice statistics of Dyck tilings.
- For  $T \in \mathcal{D}(\lambda/\mu)$  define

$$|T| =$$
 number of tiles in T  
art $(T) = \frac{|\lambda/\mu| + |T|}{2} = \frac{\text{area+tiles}}{2}$ 

▲□▶▲□▶▲≡▶▲≡▶ Ξ のQ@

- We need nice statistics of Dyck tilings.
- For  $T \in \mathcal{D}(\lambda/\mu)$  define

$$|T|$$
 = number of tiles in T  
art $(T) = \frac{|\lambda/\mu| + |T|}{2} = \frac{\text{area+tiles}}{2}$ 

• 
$$\operatorname{area}(T) = 5$$
,  $\operatorname{tiles}(T) = 3$ ,  $\operatorname{art}(T) = \frac{5+3}{2} = 4$ 



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@
# q-analogs?

- We need nice statistics of Dyck tilings.
- For  $T \in \mathcal{D}(\lambda/\mu)$  define

$$|T|$$
 = number of tiles in T  
art $(T) = \frac{|\lambda/\mu| + |T|}{2} = \frac{\text{area+tiles}}{2}$ 

• 
$$\operatorname{area}(T) = 5$$
,  $\operatorname{tiles}(T) = 3$ ,  $\operatorname{art}(T) = \frac{5+3}{2} = 4$ 



• The usual *q*-integers, *q*-factorials:

$$[n]_q = 1 + q + \dots + q^{n-1}, \qquad [n]_q! = [1]_q [2]_q \dots [n]_q.$$

▲□ > ▲圖 > ▲ 国 > ▲ 国 > → 国 → のへで

Conjecture (Kenyon and Wilson, 2010)

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

#### Conjecture (Kenyon and Wilson, 2010)

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

Conjecture (Kenyon and Wilson, 2010)

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{|T|} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

#### Conjecture (Kenyon and Wilson, 2010)

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

Conjecture (Kenyon and Wilson, 2010)

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{|T|} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

 Conjecture 1 has been proved by Kim (non-bijectively) and Kim, Mészáros, Panova, Wilson (bijectively).

#### Conjecture (Kenyon and Wilson, 2010)

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

Conjecture (Kenyon and Wilson, 2010)

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{|T|} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

- Conjecture 1 has been proved by Kim (non-bijectively) and Kim, Mészáros, Panova, Wilson (bijectively).
- Conjecture 2 has been proved bijectively by Kim and Konvalinka independently.

•  $\mathcal{D}(\lambda/*; a, b)$ : set of generalized Dyck tilings

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ 三回 めん⊙

- $\mathcal{D}(\lambda/*; a, b)$ : set of generalized Dyck tilings
- The upper path starts *a* units above the starting point of λ and ends *b* units above the ending point of λ.



- $\mathcal{D}(\lambda/*; a, b)$ : set of generalized Dyck tilings
- The upper path starts *a* units above the starting point of λ and ends *b* units above the ending point of λ.



Theorem (K., 2011)

$$\sum_{T \in \mathcal{D}(\lambda/*;a,b)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q} \sum_{T \in \mathcal{D}(\Delta_n/*;a,b)} q^{\operatorname{art}(T)}$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへぐ

- D(λ/\*; a, b): set of generalized Dyck tilings
- The upper path starts *a* units above the starting point of λ and ends *b* units above the ending point of λ.



Theorem (K., 2011)



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q Q

- $\mathcal{D}(\lambda/*; a, b)$ : set of generalized Dyck tilings
- The upper path starts *a* units above the starting point of λ and ends *b* units above the ending point of λ.



Theorem (K., 2011)



▲□▶▲□▶▲□▶▲□▶ □ のへ⊙

- $\mathcal{D}(\lambda/*; a, b)$ : set of generalized Dyck tilings
- The upper path starts *a* units above the starting point of λ and ends *b* units above the ending point of λ.



Theorem (K., 2011)



•  $\mathcal{D}(\lambda/*;0,0) = \mathcal{D}(\lambda/*)$ 

D(Δ<sub>n</sub>/\*; 0, 0) has only one tile, the empty tiling of Δ<sub>n</sub>/Δ<sub>n</sub>.

Why are the generalized Dyck tilings easier?



▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Why are the generalized Dyck tilings easier?



### **Bijective Proof of Conjecture 1**

#### Theorem (K., Mészáros, Panova, Wilson, 2011)

There is a bijection  $\phi$  from Dyck tilings to increasing ordered trees such that the lower path of *T* corresponds to the shape of the tree  $\phi(T)$  and

 $\operatorname{art}(T) = \operatorname{inv}(\phi(T)).$ 



▲□▶▲□▶▲□▶▲□▶ □ のへで

#### **Bijective Proof of Conjecture 1**

#### Theorem (K., Mészáros, Panova, Wilson, 2011)

There is a bijection  $\phi$  from Dyck tilings to increasing ordered trees such that the lower path of *T* corresponds to the shape of the tree  $\phi(T)$  and

 $\operatorname{art}(T) = \operatorname{inv}(\phi(T)).$ 



Theorem (Björner and Wachs, 1989)

$$\sum_{\mathrm{sh}(P)=\lambda} q^{\mathrm{inv}(P)} = \frac{[n]_q!}{\prod_{c \in \mathrm{Chord}(\lambda)} [|c|]_q}$$

13/19

▲□▶▲□▶▲□▶▲□▶ □ のへで

• A Hermite history of shape  $\mu$  is a labeling *H* of the down steps such that

- A Hermite history of shape  $\mu$  is a labeling *H* of the down steps such that
- a down step of height *i* has label in  $\{0, 1, \ldots, i-1\}$ .



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- A Hermite history of shape  $\mu$  is a labeling *H* of the down steps such that
- a down step of height *i* has label in  $\{0, 1, \ldots, i-1\}$ .



•  $\mathcal{H}(\mu)$ : set of Hermite histories of shape  $\mu$ 

- A Hermite history of shape  $\mu$  is a labeling *H* of the down steps such that
- a down step of height *i* has label in  $\{0, 1, \ldots, i-1\}$ .



- $\mathcal{H}(\mu)$ : set of Hermite histories of shape  $\mu$
- ||H||= sum of labels

$$\sum_{H \in \mathcal{H}(\mu)} q^{\|H\|} = \prod_{c \in \mathrm{Chord}(\mu)} [\mathrm{ht}(c)]_q$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- A Hermite history of shape  $\mu$  is a labeling *H* of the down steps such that
- a down step of height *i* has label in  $\{0, 1, \ldots, i-1\}$ .



•  $\mathcal{H}(\mu)$ : set of Hermite histories of shape  $\mu$ 

||H||= sum of labels

$$\sum_{H \in \mathcal{H}(\mu)} q^{\|H\|} = \prod_{c \in \text{Chord}(\mu)} \left[ \text{ht}(c) \right]_q.$$

• It is sufficient to find a bijection from  $\mathcal{D}(*/\mu)$  to  $\mathcal{H}(\mu)$ .

#### 

- A Hermite history of shape  $\mu$  is a labeling *H* of the down steps such that
- a down step of height *i* has label in  $\{0, 1, \ldots, i-1\}$ .



*H*(μ): set of Hermite histories of shape μ

||H||= sum of labels

$$\sum_{H \in \mathcal{H}(\mu)} q^{\|H\|} = \prod_{c \in \operatorname{Chord}(\mu)} \left[\operatorname{ht}(c)\right]_q.$$

- It is sufficient to find a bijection from  $\mathcal{D}(*/\mu)$  to  $\mathcal{H}(\mu)$ .
- There is a simple bijection between Hermite histories and matchings:





- A Hermite history of shape  $\mu$  is a labeling *H* of the down steps such that
- a down step of height *i* has label in  $\{0, 1, \ldots, i-1\}$ .



*H*(μ): set of Hermite histories of shape μ

||H||= sum of labels

$$\sum_{H \in \mathcal{H}(\mu)} q^{\|H\|} = \prod_{c \in \operatorname{Chord}(\mu)} \left[\operatorname{ht}(c)\right]_q.$$

- It is sufficient to find a bijection from  $\mathcal{D}(*/\mu)$  to  $\mathcal{H}(\mu)$ .
- There is a simple bijection between Hermite histories and matchings:



• If  $H \leftrightarrow \pi$ , then  $||H|| = \operatorname{cr}(\pi)$ .



• The entry and the exit of a Dyck tile are defined:



▲□▶▲□▶▲≡▶▲≡▶ Ξ のQ@

• The entry and the exit of a Dyck tile are defined:



• The label of a down step is the number of tiles traveled:



▲□▶▲□▶▲□▶▲□▶ □ のへで

The entry and the exit of a Dyck tile are defined:



The label of a down step is the number of tiles traveled:



• If  $T \leftrightarrow H$ , then |T| = ||H||.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The entry and the exit of a Dyck tile are defined:



The label of a down step is the number of tiles traveled:



• If  $T \leftrightarrow H$ , then |T| = ||H||.

۹

$$\sum_{T\in \mathcal{D}(*/\mu)} q^{|T|} = \sum_{H\in \mathcal{H}(\mu)} q^{||H||} = \prod_{c\in \mathrm{Chord}(\mu)} \left[\mathrm{ht}(c)\right]_q.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@



▲□▶▲□▶▲≡▶▲≡▶ Ξ のQ@



▲□▶▲□▶▲≡▶▲≡▶ Ξ のQ@



16/19

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで







▲□▶▲□▶▲≡▶▲≡▶ Ξ のQ@







17/19

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@





17/19

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

#### 18/19

# Summery

• There are three bijections on Dyck tilings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

### Summery

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : {\operatorname{Dyck tilings}} \to {\operatorname{matchings}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶
- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : {\operatorname{Dyck tilings}} \to {\operatorname{matchings}}$
  - $Bij_1 : {Dyck tilings} \rightarrow {increasing ordered trees}$

◆□> <□> < Ξ> < Ξ> < Ξ> < □</p>

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : {\operatorname{Dyck tilings}} \to {\operatorname{matchings}}$
  - Bij<sub>1</sub>: {Dyck tilings} → {increasing ordered trees}
    Bij<sub>2</sub>: {Dyck tilings} → {increasing ordered trees}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : {\operatorname{Dyck tilings}} \to {\operatorname{matchings}}$
  - Bij<sub>1</sub>: {Dyck tilings} → {increasing ordered trees}
    Bij<sub>2</sub>: {Dyck tilings} → {increasing ordered trees}
- Bij<sub>0</sub> sends upper path  $\mu$  to shape (of matching), and tiles to crossings

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{\text{tiles}(T)} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

### (日)

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : { \mathsf{Dyck tilings} } \to { \mathsf{matchings} }$
  - $\operatorname{Bij}_1: { Dyck tilings } \to { increasing ordered trees }$
  - $Bij_2 : {Dyck tilings} \rightarrow {increasing ordered trees}$
- Bij<sub>0</sub> sends upper path  $\mu$  to shape (of matching), and tiles to crossings

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{\text{tiles}(T)} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

• Bij<sub>1</sub> sends lower path  $\lambda$  to shape (of plane tree), and art to inv

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

### ▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQ@

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : {\operatorname{Dyck tilings}} \to {\operatorname{matchings}}$
  - $\operatorname{Bij}_1: { Dyck tilings } \to { increasing ordered trees }$
  - $Bij_2 : {Dyck tilings} \rightarrow {increasing ordered trees}$
- Bij<sub>0</sub> sends upper path  $\mu$  to shape (of matching), and tiles to crossings

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{\text{tiles}(T)} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

• Bij<sub>1</sub> sends lower path  $\lambda$  to shape (of plane tree), and art to inv

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

• When lower path  $\lambda = zigzag_n$ 

### 

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : { \mathsf{Dyck tilings} } \to { \mathsf{matchings} }$
  - $\operatorname{Bij}_1: { Dyck tilings } \to { increasing ordered trees }$
  - $Bij_2 : {Dyck tilings} \rightarrow {increasing ordered trees}$
- Bij<sub>0</sub> sends upper path  $\mu$  to shape (of matching), and tiles to crossings

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{\text{tiles}(T)} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

• Bij<sub>1</sub> sends lower path  $\lambda$  to shape (of plane tree), and art to inv

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

- When lower path  $\lambda = zigzag_n$ 
  - Dyck tilings = Dyck tableaux (Aval, Boussicault, Dasse-Hartaut)

#### ▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : { \mathsf{Dyck tilings} } \to { \mathsf{matchings} }$
  - $\operatorname{Bij}_1: { Dyck tilings } \to { increasing ordered trees }$
  - $Bij_2 : {Dyck tilings} \rightarrow {increasing ordered trees}$
- Bij<sub>0</sub> sends upper path  $\mu$  to shape (of matching), and tiles to crossings

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{\operatorname{tiles}(T)} = \prod_{c \in \operatorname{Chord}(\mu)} \left[\operatorname{ht}(c)\right]_q$$

• Bij<sub>1</sub> sends lower path  $\lambda$  to shape (of plane tree), and art to inv

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

- When lower path  $\lambda = zigzag_n$ 
  - Dyck tilings = Dyck tableaux (Aval, Boussicault, Dasse-Hartaut)
  - increasing ordered trees = permutations

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : { \mathsf{Dyck tilings} } \to { \mathsf{matchings} }$
  - $\operatorname{Bij}_1: { Dyck tilings } \to { increasing ordered trees }$
  - $Bij_2 : {Dyck tilings} \rightarrow {increasing ordered trees}$
- Bij<sub>0</sub> sends upper path  $\mu$  to shape (of matching), and tiles to crossings

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{\text{tiles}(T)} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

• Bij<sub>1</sub> sends lower path  $\lambda$  to shape (of plane tree), and art to inv

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

- When lower path  $\lambda = zigzag_n$ 
  - Dyck tilings = Dyck tableaux (Aval, Boussicault, Dasse-Hartaut)
  - increasing ordered trees = permutations
  - Bij<sub>1</sub> sends art to inv

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : {\operatorname{Dyck tilings}} \to {\operatorname{matchings}}$
  - $\operatorname{Bij}_1: { Dyck tilings } \to { increasing ordered trees }$
  - $Bij_2 : {Dyck tilings} \rightarrow {increasing ordered trees}$
- Bij<sub>0</sub> sends upper path  $\mu$  to shape (of matching), and tiles to crossings

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{\text{tiles}(T)} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

• Bij<sub>1</sub> sends lower path  $\lambda$  to shape (of plane tree), and art to inv

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

- When lower path  $\lambda = zigzag_n$ 
  - Dyck tilings = Dyck tableaux (Aval, Boussicault, Dasse-Hartaut)
  - increasing ordered trees = permutations
  - Bij<sub>1</sub> sends art to inv
  - Bij<sub>2</sub> sends art to mad (mahonian statistic, Clarke, Steingrímsson, Zeng, 1997)

- There are three bijections on Dyck tilings.
  - $\operatorname{Bij}_0 : { \mathsf{Dyck tilings} } \to { \mathsf{matchings} }$
  - $Bij_1 : {Dyck tilings} \rightarrow {increasing ordered trees}$
  - $Bij_2 : {Dyck tilings} \rightarrow {increasing ordered trees}$
- Bij<sub>0</sub> sends upper path  $\mu$  to shape (of matching), and tiles to crossings

$$\sum_{T \in \mathcal{D}(*/\mu)} q^{\text{tiles}(T)} = \prod_{c \in \text{Chord}(\mu)} [\text{ht}(c)]_q$$

• Bij<sub>1</sub> sends lower path  $\lambda$  to shape (of plane tree), and art to inv

$$\sum_{T \in \mathcal{D}(\lambda/*)} q^{\operatorname{art}(T)} = \frac{[n]_q!}{\prod_{c \in \operatorname{Chord}(\lambda)} [|c|]_q}$$

- When lower path  $\lambda = zigzag_n$ 
  - Dyck tilings = Dyck tableaux (Aval, Boussicault, Dasse-Hartaut)
  - increasing ordered trees = permutations
  - Bij<sub>1</sub> sends art to inv
  - Bij<sub>2</sub> sends art to mad (mahonian statistic, Clarke, Steingrímsson, Zeng, 1997)
  - Bij<sub>2</sub> reduces to the bijection of Aval, Boussicault, Dasse-Hartaut

## References



J.-C. Aval, A. Boussicault, and S. Dasse-Hartaut. Dyck tableaux.

Theoretical Computer Science, 2012, to appear.

#### R. W. Kenyon and D. B. Wilson.

Double-dimer pairings and skew Young diagrams. Electron. J. Combin., 18(1):Paper 130, 2011. arXiv:1007.2006.



J. S. Kim. Proofs of two conjectures of Kenyon and Wilson on Dyck tilings. J. Combin. Theory Ser. A 119 (2012) 1692-1710 arXiv:1108.5558.



J. S. Kim, K. Mészáros, G. Panova, and D. B. Wilson. Dyck tilings, linear extensions, descents, and inversions. arXiv:1205.6578

# Thank you for your attention!