The space of phylogenetic trees and the tropical geometry of flag varieties

FPSAC, Nagoya, August 3, 2012

Christopher Manon www.math.berkeley.edu/~manonc supported by NSF fellowship DMS-0902710

Reminder: some representation theory

G a reductive group over \mathbb{C} (e.g. $SL_n(\mathbb{C})$, $SP_{2n}(\mathbb{C})$)

Finite dimensional irreducible representations are indexed by the lattice points λ in a cone Δ_G .

Example:
$$\Delta_{SL_n(\mathbb{C})} = \{(a_1,\ldots,a_{n-1}) | a_i \geq a_j \geq 0, \ i < j\}$$

 $\omega_m = (1, \ldots, 1, 0, \ldots, 0)$

 $V(\omega_m) = \wedge^m(\mathbb{C}^n)$

A flag variety G/P is a complete quotient of G by a parabolic subgroup $P \subset G$.

Any flag variety is the orbit through the highest weight vector in $\mathbb{P}(V(\lambda))$ for some $\lambda \in \Delta$.

$$G/P \cong G \circ [v_{\lambda}] \in \mathbb{P}(V(\lambda))$$

In particular G/P is projective, cut out by the homogeneous ideal I_{λ} , with projective coordinate ring

$$R_{\lambda} = \bigoplus_{N \ge 0} H^{0}(G/P, L_{\lambda}^{\otimes N}) = \bigoplus_{N \ge 0} V(N\lambda^{*})$$

-Borel-Bott-Weil Theorem.

Example: $SL_n(\mathbb{C})$

Let $P_{m,n}$ be the parabolic subgroup of $SL_n(\mathbb{C})$ of the form

 $\left[\begin{array}{cc} A & B \\ 0 & C \end{array}\right]$

where A is $m \times m$, and C is $n - m \times n - m$.

 $SL_n(\mathbb{C})/P_{m,n}\cong Gr_m(\mathbb{C}^n)=SL_n(\mathbb{C})\circ [z_1\wedge\ldots\wedge z_m]\subset \mathbb{P}(\bigwedge^m(\mathbb{C}^n))$

$$R_{\omega_m} = \bigoplus_{N \ge 0} V(N\omega_m^*) = \mathbb{C}[\dots z_{i_1\dots i_m} \dots]/I_{m,n}$$

This algebra is known as the Plücker algebra, and $I_{m,n}$ is the Plücker ideal.

 $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$

 $a \oplus b = max\{a, b\}$ $a \otimes b = a + b.$

$$X = \{x_1, \dots, x_n\}, f(X) = \sum C_{\vec{m}} \vec{x}^{\vec{m}} \in \mathbb{C}[X]$$

 $T(f) = \bigoplus_{C_{\vec{m}} \neq 0} (\bigotimes_{i=1}^{n} m_i x_i) = max\{\dots, \sum_{i=1}^{n} m_i x_i, \dots\}$

 $tr(f) = \{ \vec{p} \in \mathbb{T}^n | T(f) \text{ has two maxima at } \vec{p} \}$

 $I \subset \mathbb{C}[X], tr(\overline{I}) = \bigcap_{f \in I} tr(f)$

There is always a finite set $M \subset I$ such that $tr(I) = \bigcap_{f \in M} tr(f)$. -Bogart, Jensen, Speyer, Sturmfels, Thomas

weighted (phylogenetic) trees

Tree T with n leaves labeled $\{1, \ldots, n\}$ $P_T = \{w : Edge(T) \to \mathbb{R} | \ge 0 \text{ on internal edges} \}$

 $\cong \mathbb{R}^{|Edge(T)| - |Leaf(T)|}_{\geq 0} \times \mathbb{R}^{|Leaf(T)|}_{\geq 0}$

For $\psi : T' \to T$ a map of *n*-trees there is a map $\psi^* : P_T \to P_{T'}$.

We define $\mathcal{T}^n = \coprod_{|Leaf(T)|=n} P_T / \sim$

This space was studied by Billera, Holmes and Vogtman.

For 1 < m < n, and $\{i_1, \ldots, i_m\} \subset \{1, \ldots, n\}$ define

$$d_{i_1,...,i_m}(T,w) = \sum_{e \in C(i_1,...,i_m)} w(e).$$

Figure 3: $d_{134}(T, w) = 14.26$

Definition: -We call $d^m(T, w) = (\dots d_{i_1,\dots,i_m}(T, w) \dots)$ the *m*-dissimilarity vector of (T, w). -We call $d^m : \mathcal{T}^n \to \mathbb{R}^{\binom{n}{m}}$ the *m*-dissimilarity map.

The map $d^2: \mathcal{T}^n \to \mathbb{R}^{\binom{n}{2}}$ is 1-1.

Figure 4: $d_{34} = 13.35$

 $\overline{I_{2,n} = \langle \{z_{ij}z_{kl} - z_{ik}z_{jl} + z_{il}z_{jk} | 1 \leq i < j < k < l \leq n \}} > \subset \mathbb{C}[\dots z_{ij} \dots],$

$$\mathbb{C}[\ldots z_{ij}\ldots]/I_{2,n}=R_{\omega_2}$$

Theorem [Speyer, Sturmfels]: The image of d^2 coincides with $tr(I_{2,n})$.

Plücker relations form a tropical basis of $I_{2,n}$, so the $d^2(\mathcal{T}) \in \mathbb{R}^{\binom{n}{2}}$ satisfy

 $max\{d_{ij} + d_{kl}, d_{ik} + d_{jl}, d_{il} + d_{jk}\}.$

Conjecture [Cools, Pachter, Speyer]: Theorem [Iriarte-Giraldo, M]: $d^m(\mathcal{T}^n) \subset tr(I_{m,n}) \subset \mathbb{R}^{\binom{n}{m}}$

This implies $d^m(T, w)$ satisfies T(f) for all $f \in I_{m,n}$.

Plücker relations no longer make a tropical basis when m > 2.

back to representation theory

An irreducible representation of $GL_n(\mathbb{C})$ is given by a Young diagram.

The representation $V(\lambda)$ has a basis given by semi-standard fillings τ of λ by the indices $\{1, \ldots, n\}$.

 $\wedge^m(\mathbb{C}^n)$ has a basis of elements $z_{i_1} \wedge \ldots \wedge z_{i_m}$, with $i_1 < \ldots < i_m$. This determines a semi-standard filling of a column of m boxes.

 $z_1 \wedge z_3 \wedge z_4 \wedge z_5 \wedge z_6$

back to dissimilarity functions

We have seen that $z_{i_1} \land \ldots \land z_{i_m}$ tropicalizes to the dissimilarity function d_{i_1,\ldots,i_m} : $\mathcal{T}^n \to \mathbb{R}$. What about other semi-standard tableaux?

Definition: We define $d_{\tau} : \mathcal{T}^n \to \mathbb{R}$ to be $\sum d_{I_k}$, where I_k are the columns of τ .

This construction gives a function on \mathcal{T}^n for any basis member of a representation of $GL_n(\mathbb{C})$.

Theorem [M]: Let I_{λ} be the ideal which cuts the flag variety $GL_n(\mathbb{C})/P$ out of $\mathbb{P}(V(\lambda))$. There is a map of complexes $d^{\lambda} : \mathcal{T}^n \to tr(I_{\lambda})$ where $d^{\lambda} = (d_{\tau_1}, \ldots, d_{\tau_t})$

Let A be an algebra over \mathbb{C} . A valuation $v : A \to \mathbb{T}$ is a function which satisfies the following.

$$v(ab) = v(a) + v(b) = v(a) \otimes v(b)$$

$$v(a+b) \le max\{v(a), v(b)\} = v(a) \oplus v(b)$$

$$v(C) = 0$$
 for $0 \neq C \in \mathbb{C}$

 $v(0) = -\infty.$

For A an algebra over \mathbb{C} , let $\mathbb{V}_{\mathbb{T}}(A)$ be the set of valuations of A into \mathbb{T} over \mathbb{C} .

Theorem [Payne]: For any presentation

$$0 \longrightarrow I \longrightarrow \mathbb{C}[X] \longrightarrow A \longrightarrow 0$$

there is a surjective map $\pi_X : \mathbb{V}_{\mathbb{T}}(A) \to tr(I)$ given by $\pi_X(v) = (\dots v(x_i) \dots)$.

Instead of the ideal I_{λ} , we consider the algebra R_{λ}

Theorem[M]: For any commutative G-algebra A, and every chain of subgroups $G_1 \xrightarrow{\phi_1} \dots \xrightarrow{\phi_{k-1}} G_{k-1} \xrightarrow{\phi_k} G$, there is a cone of valuations $D_{\vec{\phi}}$ in $\mathbb{V}_{\mathbb{T}}(A)$.

These cones glue together into a polyhedral complex $\mathcal{D}(G)$ of valuations on A.

Strategy: Find a way to turn trees into chains of subgroups of $GL_n(\mathbb{C})$.

Trees and subgroups of $GL_n(\mathbb{C})$

 $1 \to GL_1(\mathbb{C}) \times GL_1(\mathbb{C}) \times GL_1(\mathbb{C}) \to GL_1(\mathbb{C}) \times GL_2(\mathbb{C}) \to GL_3(\mathbb{C})$

Rule: to an edge $e \in E(T)$ assign the group $GL_k(\mathbb{C})$ where k is the number of leaves "above" e.

Trees and subgroups of $GL_n(\mathbb{C})$

For any Dynkin Diagram Γ , let $G(\Gamma)$ be the associated simply connected, semi-simple group over \mathbb{C} .

The diagram Γ also gives a hyperplane arrangement, we let B_{Γ} denote the Bergman fan of the associated matroid. This space was studied by Ardilla, Klivans and Williams.

Dynkin Diagrams

Faces of B_{Γ} are indexed by "tubings" of Γ . This is related to the graph associahedron of the Dynkin diagram.

Tubings also correspond to chains of Levi subgroups in $G(\Gamma)$.

For Γ a Dynkin diagram, B_{Γ} the Bergman Fan of its associated hyperplane arrangement, and $tr(I_{\lambda})$ the tropical variety associated to an ideal I_{λ} which cuts out a flag variety $G(\Gamma)/P$, we have the following:

Theorem [M]: There is a map of complexes

 $\pi_{\lambda} : B_{\Gamma} \to tr(I_{\lambda})$

Just as semi-standard tableaux give functions on \mathcal{T}^n , basis members (ie canonical basis, standard monomials, etc) of $V(\lambda)$ give functions on B_{Γ} .

The complex $\mathcal{D}(G)$ has a G-action. An element $g \in G$ takes a cone $D_{\phi} \subset \mathcal{D}(G)$ to $D_{g \circ [\phi]}$

$$1 \longrightarrow H \stackrel{\phi}{\longrightarrow} G \stackrel{Adg}{\longrightarrow} G$$

Applying this to the cone defined by $1 \subset T \subset G$ for a maximal torus T yields a copy of (a cone over) the spherical building of G inside $\mathcal{D}(G)$. For A a G-algebra we have,

$\mathcal{B}(\mathbb{C},G) \subset \mathcal{D}(G) \to \mathbb{V}_{\mathbb{C}}(A)$

Results like this have been obtained by Berkovich, and Remy, Thuillier, Werner in the context of flag varieties. In fact, the product complex $\mathcal{B}(\mathbb{C}, G(\Gamma)) \times B(\Gamma)$ is a subcomplex of $\mathcal{D}(G(\Gamma))$.

L.J. Billera, S. Holmes and K. Vogtmann: Geometry of the space of phylogenetic trees, Advances in Applied Mathematics 27 (2001) 733767.

F. Cools: On the relation between weighted trees and the tropical Grassmannian, Journal of Symbolic Compututation, Vol 44, Issue 8, (2009), 1079 -1086

B. Giraldo: Dissimilarity vectors of trees are contained in the tropical Grassmannian, The Electronic Journal of Combinatorics 17, no. 1, 2010

C. Manon: Dissimilarity maps on trees and the representation theory of $SL_m(\mathbb{C})$, to appear J. Alg. Combinatorics.

L. Pachter, B. Sturmfels: Algebraic statistics for computational biology, Cambridge University Press, New York 2005

D. Speyer, B.Sturmfels: The Tropical Grassmannian, Adv. Geom. 4. no. 3, (2004), 389-411.

Thankyou!