The space of phylogenetic trees and the tropical geometry of flag varieties

FPSAC, Nagoya, August 3, 2012
Christopher Manon www.math. berkeley.edu/~manonc
supported by NSF fellowship DMS-0902710

Reminder: some representation theory

G a reductive group over $\mathbb{C}\left(\right.$ e.g. $\left.S L_{n}(\mathbb{C}), S P_{2 n}(\mathbb{C})\right)$

Finite dimensional irreducible representations are indexed by the lattice points λ in a cone \triangle_{G}.

Example: $\Delta_{S L_{n}(\mathbb{C})}=\left\{\left(a_{1}, \ldots, a_{n-1}\right) \mid a_{i} \geq a_{j} \geq 0, i<j\right\}$
$\omega_{m}=(1, \ldots, 1,0, \ldots, 0)$
$V\left(\omega_{m}\right)=\bigwedge^{m}\left(\mathbb{C}^{n}\right)$

Reminder: flag varieties

A flag variety G / P is a complete quotient of G by a parabolic subgroup $P \subset G$.

Any flag variety is the orbit through the highest weight vector in $\mathbb{P}(V(\lambda))$ for some $\lambda \in \triangle$.

$$
G / P \cong G \circ\left[v_{\lambda}\right] \in \mathbb{P}(V(\lambda))
$$

In particular G / P is projective, cut out by the homogeneous ideal I_{λ}, with projective coordinate ring

$$
R_{\lambda}=\bigoplus_{N \geq 0} H^{0}\left(G / P, L_{\lambda}^{\otimes N}\right)=\bigoplus_{N \geq 0} V\left(N \lambda^{*}\right)
$$

-Borel-Bott-Weil Theorem.

Example: $S L_{n}(\mathbb{C})$

Let $P_{m, n}$ be the parabolic subgroup of $S L_{n}(\mathbb{C})$ of the form

$$
\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]
$$

where A is $m \times m$, and C is $n-m \times n-m$.

$$
\begin{gathered}
S L_{n}(\mathbb{C}) / P_{m, n} \cong G r_{m}\left(\mathbb{C}^{n}\right)=S L_{n}(\mathbb{C}) \circ\left[z_{1} \wedge \ldots \wedge z_{m}\right] \subset \mathbb{P}\left(\bigwedge^{m}\left(\mathbb{C}^{n}\right)\right) \\
R_{\omega_{m}}=\bigoplus_{N \geq 0} V\left(N \omega_{m}^{*}\right)=\mathbb{C}\left[\ldots z_{\left.i_{1} \ldots i_{m} \ldots\right] / I_{m, n}}\right.
\end{gathered}
$$

This algebra is known as the Plücker algebra, and $I_{m, n}$ is the Plücker ideal.

Reminder: tropical varieties

$$
\mathbb{T}=\mathbb{R} \cup\{-\infty\}
$$

$a \oplus b=\max \{a, b\}$
$a \otimes b=a+b$.
$X=\left\{x_{1}, \ldots, x_{n}\right\}, f(X)=\sum C_{\vec{m}} \vec{x}^{\vec{m}} \in \mathbb{C}[X]$
$T(f)=\oplus_{C_{\vec{m} \neq 0}}\left(\otimes_{i=1}^{n} m_{i} x_{i}\right)=\max \left\{\ldots, \sum_{i=1}^{n} m_{i} x_{i}, \ldots\right\}$
$\operatorname{tr}(f)=\left\{\vec{p} \in \mathbb{T}^{n} \mid T(f)\right.$ has two maxima at $\left.\vec{p}\right\}$
$I \subset \mathbb{C}[X], \operatorname{tr}(I)=\bigcap_{f \in I} \operatorname{tr}(f)$

Reminder: tropical varieties

There is always a finite set $M \subset I$ such that $\operatorname{tr}(I)=\bigcap_{f \in M} \operatorname{tr}(f)$.
-Bogart, Jensen, Speyer, Sturmfels, Thomas

weighted (phylogenetic) trees

Tree T with n leaves labeled $\{1, \ldots, n\}$ $P_{T}=\{w: \operatorname{Edge}(T) \rightarrow \mathbb{R} \mid \geq 0$ on internal edges $\}$

Figure 1:
$\cong \mathbb{R}_{\geq 0}^{\mid \text {Edge }(T)|-|\operatorname{Leaf}(T)|} \times \mathbb{R}^{\mid \text {Leaf }(T) \mid}$

The space of trees \mathcal{T}^{n}

For $\psi: T^{\prime} \rightarrow T$ a map of n-trees there is a map $\psi^{*}: P_{T} \rightarrow P_{T^{\prime}}$.

Figure 2 :
We define $\mathcal{T}^{n}=\coprod_{|L e a f(T)|=n} P_{T} / \sim$

This space was studied by Billera, Holmes and Vogtman.

Dissimilarity vectors

For $1<m<n$, and $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ define

$$
d_{i_{1}, \ldots, i_{m}}(T, w)=\sum_{e \in C\left(i_{1}, \ldots, i_{m}\right)} w(e) .
$$

Figure 3: $d_{134}(T, w)=14.26$

Dissimilarity vectors

Definition:

-We call $d^{m}(T, w)=\left(\ldots d_{i_{1}, \ldots, i_{m}}(T, w) \ldots\right)$ the m-dissimilarity vector of (T, w).
-We call $d^{m}: \mathcal{T}^{n} \rightarrow \mathbb{R}^{\binom{n}{m}}$ the m-dissimilarity map.

$$
d^{3}(\bullet \xrightarrow{2.5} \bullet \underbrace{1.5}_{2} \cdot(8.5,7,9.5,8)
$$

2-dissimilarity vectors

The map $d^{2}: \mathcal{T}^{n} \rightarrow \mathbb{R}^{\binom{n}{2}}$ is $1-1$.

Figure 4: $d_{34}=13.35$

$$
\begin{aligned}
& I_{2, n}=<\left\{z_{i j} z_{k l}-z_{i k} z_{j l}+z_{i l} z_{j k} \mid 1 \leq i<j<k<l \leq n\right\}> \\
& \subset \mathbb{C}\left[\ldots z_{i j} \ldots\right] \\
& \mathbb{C}\left[\ldots z_{i j} \ldots\right] / I_{2, n}=R_{\omega_{2}}
\end{aligned}
$$

Theorem [Speyer, Sturmfels]:
The image of d^{2} coincides with $\operatorname{tr}\left(I_{2, n}\right)$.

Plücker relations form a tropical basis of $I_{2, n}$, so the $d^{2}(\mathcal{T}) \in \mathbb{R}^{\binom{n}{2}}$ satisfy

$$
\max \left\{d_{i j}+d_{k l}, d_{i k}+d_{j l}, d_{i l}+d_{j k}\right\}
$$

Conjecture of Cools, Pachter, Speyer

Conjecture [Cools, Pachter, Speyer]:
Theorem [Iriarte-Giraldo, M]:
$d^{m}\left(\mathcal{T}^{n}\right) \subset \operatorname{tr}\left(I_{m, n}\right) \subset \mathbb{R}^{\binom{n}{m}}$

This implies $d^{m}(T, w)$ satisfies $T(f)$ for all $f \in I_{m, n}$.
Plücker relations no longer make a tropical basis when $m>2$.

back to representation theory

An irreducible representation of $G L_{n}(\mathbb{C})$ is given by a Young diagram.

The representation $V(\lambda)$ has a basis given by semi-standard fillings τ of λ by the indices $\{1, \ldots, n\}$.

$$
\begin{array}{lllll}
\hline 1 & 1 & 2 & 4 & 5 \\
3 & 3 & 3 & 6 \\
4 & 5 & & \\
5 & & & \\
\hline
\end{array}
$$

Example: $V\left(\omega_{m}\right)=\wedge^{m}\left(\mathbb{C}^{n}\right)$

$\Lambda^{m}\left(\mathbb{C}^{n}\right)$ has a basis of elements $z_{i_{1}} \wedge \ldots \wedge z_{i_{m}}$, with $i_{1}<\ldots<i_{m}$. This determines a semi-standard filling of a column of m boxes.

$$
z_{1} \wedge z_{3} \wedge z_{4} \wedge z_{5} \wedge z_{6}
$$

back to dissimilarity functions

We have seen that $z_{i_{1}} \wedge \ldots \wedge z_{i_{m}}$ tropicalizes to the dissimilarity function $d_{i_{1}, \ldots, i_{m}}: \mathcal{T}^{n} \rightarrow \mathbb{R}$. What about other semi-standard tableaux?

Definition:
We define $d_{\tau}: \mathcal{T}^{n} \rightarrow \mathbb{R}$ to be $\sum d_{I_{k}}$, where I_{k} are the columns of τ.

This construction gives a function on \mathcal{T}^{n} for any basis member of a representation of $G L_{n}(\mathbb{C})$.

Theorem [M]:
Let I_{λ} be the ideal which cuts the flag variety $G L_{n}(\mathbb{C}) / P$ out of $\mathbb{P}(V(\lambda))$. There is a map of complexes $d^{\lambda}: \mathcal{T}^{n} \rightarrow \operatorname{tr}\left(I_{\lambda}\right)$ where $d^{\lambda}=\left(d_{\tau_{1}}, \ldots, d_{\tau_{t}}\right)$

Tropical Theory: valuations

Let A be an algebra over \mathbb{C}.
A valuation $v: A \rightarrow \mathbb{T}$ is a function which satisfies the following.
$v(a b)=v(a)+v(b)=v(a) \otimes v(b)$
$v(a+b) \leq \max \{v(a), v(b)\}=v(a) \oplus v(b)$
$v(C)=0$ for $0 \neq C \in \mathbb{C}$
$v(0)=-\infty$.

Tropical theory: lifting

For A an algebra over \mathbb{C}, let $\mathbb{V}_{\mathbb{T}}(A)$ be the set of valuations of A into \mathbb{T} over \mathbb{C}.

Theorem [Payne]:
For any presentation

$$
0 \longrightarrow I \longrightarrow \mathbb{C}[X] \longrightarrow A \longrightarrow 0
$$

there is a surjective map $\pi_{X}: \mathbb{V}_{\mathbb{T}}(A) \rightarrow \operatorname{tr}(I)$ given by $\pi_{X}(v)=\left(\ldots v\left(x_{i}\right) \ldots\right)$.

Instead of the ideal I_{λ}, we consider the algebra R_{λ}

Valuations from chains of groups

Theorem[M]:
For any commutative G-algebra A, and every chain of subgroups

$$
G_{1} \xrightarrow{\phi_{1}} \ldots \xrightarrow{\phi_{k-1}} G_{k-1} \xrightarrow{\phi_{k}} G,
$$

there is a cone of valuations $D_{\vec{\phi}}$ in $\mathbb{V}_{\mathbb{T}}(A)$.

These cones glue together into a polyhedral complex $\mathcal{D}(G)$ of valuations on A.

Strategy: Find a way to turn trees into chains of subgroups of $G L_{n}(\mathbb{C})$.

Trees and subgroups of $G L_{n}(\mathbb{C})$

Rule: to an edge $e \in E(T)$ assign the group $G L_{k}(\mathbb{C})$ where k is the number of leaves "above" e.

Trees and subgroups of $G L_{n}(\mathbb{C})$

More general groups

For any Dynkin Diagram Γ, let $G(\Gamma)$ be the associated simply connected, semi-simple group over \mathbb{C}.

The diagram Γ also gives a hyperplane arrangement, we let B_{Γ} denote the Bergman fan of the associated matroid. This space was studied by Ardilla, Klivans and Williams.

Dynkin Diagrams

Bergman Fan B_{Γ}

Faces of B_{Γ} are indexed by "tubings" of Γ. This is related to the graph associahedron of the Dynkin diagram.

Tubings also correspond to chains of Levi subgroups in $G(\Gamma)$.

Other groups

For Γ a Dynkin diagram, B_{Γ} the Bergman Fan of its associated hyperplane arrangement, and $\operatorname{tr}\left(I_{\lambda}\right)$ the tropical variety associated to an ideal I_{λ} which cuts out a flag variety $G(\Gamma) / P$, we have the following:

Theorem [M]:
There is a map of complexes

$$
\pi_{\lambda}: B_{\Gamma} \rightarrow \operatorname{tr}\left(I_{\lambda}\right)
$$

Other groups

Just as semi-standard tableaux give functions on \mathcal{T}^{n}, basis members (ie canonical basis, standard monomials, etc) of $V(\lambda)$ give functions on B_{Γ}.

Other Generalizations: Buildings

The complex $\mathcal{D}(G)$ has a G-action. An element $g \in G$ takes a cone $D_{\phi} \subset \mathcal{D}(G)$ to $D_{g \circ[\phi]}$

$$
1 \longrightarrow H \xrightarrow{\phi} G \xrightarrow{A d_{g}} G
$$

Applying this to the cone defined by $1 \subset T \subset G$ for a maximal torus T yields a copy of (a cone over) the spherical building of G inside $\mathcal{D}(G)$. For A a G-algebra we have,

$$
\mathcal{B}(\mathbb{C}, G) \subset \mathcal{D}(G) \rightarrow \mathbb{V}_{\mathbb{C}}(A)
$$

Results like this have been obtained by Berkovich, and Remy, Thuillier, Werner in the context of flag varieties.

Other Generalizations: Buildings

In fact, the product complex $\mathcal{B}(\mathbb{C}, G(\Gamma)) \times B(\Gamma)$ is a subcomplex of $\mathcal{D}(G(\Gamma))$.

References

L.J. Billera, S. Holmes and K. Vogtmann: Geometry of the space of phylogenetic trees, Advances in Applied Mathematics 27 (2001) 733767.
F. Cools: On the relation between weighted trees and the tropical Grassmannian, Journal of Symbolic Compututation, Vol 44, Issue 8, (2009), 1079-1086
B. Giraldo: Dissimilarity vectors of trees are contained in the tropical Grassmannian, The Electronic Journal of Combinatorics 17, no. 1, 2010
C. Manon: Dissimilarity maps on trees and the representation theory of $S L_{m}(\mathbb{C})$, to appear J. Alg. Combinatorics.
L. Pachter, B. Sturmfels: Algebraic statistics for computational biology, Cambridge University Press, New York 2005
D. Speyer, B.Sturmfels: The Tropical Grassmannian, Adv. Geom. 4. no. 3, (2004), 389-411.

Thankyou!

