Minimal transitive factorizations of a permutation of type (p, q)

Jang Soo Kim ${ }^{1}$, Seunghyun Seo ${ }^{2}$, and Heesung Shin ${ }^{3}$

${ }^{1}$ School of Mathematics, University of Minnesota, USA
${ }^{2}$ Department of Math Education, Kangwon National University, South Korea
${ }^{3}$ Department of Mathematics, Inha University, South Korea

FPSAC 2012, NagoYa University, Japan
30 July 2012

Given $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \vdash n$,

$$
\alpha_{\lambda}=\left(1 \ldots \lambda_{1}\right)\left(\lambda_{1}+1 \ldots \lambda_{1}+\lambda_{2}\right) \ldots\left(n-\lambda_{\ell}+1 \ldots n\right) .
$$

$\mathcal{F}_{\lambda}:=$ the set of all $(n+\ell-2)$-tuples $\left(\eta_{1}, \ldots, \eta_{n+\ell-2}\right)$ of transpositions such that
(1) $\eta_{1} \cdots \eta_{n+\ell-2}=\alpha_{\lambda}$
(2) $\left\langle\eta_{1}, \ldots, \eta_{n+\ell-2}\right\rangle=\mathcal{S}_{n}$.

Such tuples are called minimal transitive factorizations of α_{λ}, which are related to the branched covers of the sphere suggested by Hurwitz.

$(14)(13)(12)$	$(23)(14)(13)$
$(14)(12)(23)$	$(24)(14)(23)$
$(13)(12)(34)$	$(23)(13)(34)$
$(14)(23)(13)$	$(24)(23)(14)$
$(12)(24)(23)$	$(23)(34)(14)$
$(12)(23)(34)$	$(34)(14)(12)$
$(13)(34)(12)$	$(34)(12)(24)$
$(12)(34)(24)$	$(34)(24)(14)$

Table: The elements of $\mathcal{F}_{(4)}$ where $\alpha_{(4)}=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$

Question.

Find the cardinality of \mathcal{F}_{λ}.
(1) Goulden and Jackson (1997) proved that if $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \vdash n$,

$$
\left|\mathcal{F}_{\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)}\right|=(n+\ell-2)!n^{\ell-3} \prod_{i=1}^{\ell} \frac{\lambda_{i}^{\lambda_{i}}}{\left(\lambda_{i}-1\right)!}
$$

Their proof is done for arbitrary λ, but this is not bijective.
(2) Bousquet-Mélou and Schaeffer (2000) obtained the above formula by using the inclusion-exclusion principle.

Known bijective proofs

λ	$\left\|\mathcal{F}_{\lambda}\right\|$	bijective proof
(n)	n^{n-2}	Biane et al.
$(1, n-1)$	$(n-1)^{n}$	Kim-Seo (2003)
$(2, n-2)$	$4(n-1)(n-2)^{n-1}$	Seo(2004), Rattan (2006)
$(3, n-3)$	$\frac{27}{2}(n-1)(n-2)(n-3)^{n-2}$	Rattan (2006)

Enumeration of the Case $\lambda=(p, q)$

Recall that Goulden and Jackson's formula is

$$
\left|\mathcal{F}_{\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)}\right|=(n+\ell-2)!n^{\ell-3} \prod_{i=1}^{\ell} \frac{\lambda_{i}^{\lambda_{i}}}{\left(\lambda_{i}-1\right)!} .
$$

In case of $\lambda=(p, q)$,

$$
\left|\mathcal{F}_{(p, q)}\right|=\frac{p q}{p+q}\binom{p+q}{p} p^{p} q^{q} .
$$

Signed permutation

(1) A signed permutation is a permutation σ on $\{ \pm 1, \ldots, \pm n\}$ satisfying $\sigma(-i)=-\sigma(i)$ for all $i \in\{1, \ldots, n\}$.
(2) The hyperoctohedral group B_{n} is the group of signed permutations on $\{ \pm 1, \ldots, \pm n\}$.
(3) We will use the two notations

$$
\begin{aligned}
{\left[a_{1} a_{2} \ldots a_{k}\right] } & =\left(a_{1} a_{2} \ldots a_{k}-a_{1}-a_{2} \ldots-a_{k}\right), \text { zero cycle } \\
\left(\left(a_{1} a_{2} \ldots a_{k}\right)\right) & =\left(a_{1} a_{2} \ldots a_{k}\right)\left(-a_{1}-a_{2} \ldots-a_{k}\right), \text { paired nonzero cycle }
\end{aligned}
$$

(4) $\epsilon_{i}:=[i]=(i-i)$ and $((i j))$, transpositions of type B, satisfies

$$
\epsilon_{i}((i j))=((i j)) \epsilon_{j}=((i-j)) \epsilon_{i}=\epsilon_{j}((i-j))
$$

(1) The absolute order on B_{n} is

$$
\pi \leq \sigma \quad \stackrel{\text { def }}{\Longrightarrow} \quad \ell(\sigma)=\ell(\pi)+\ell\left(\pi^{-1} \sigma\right),
$$

where $\ell(\pi)$ is the absolute length for $\pi \in B_{n}$.
(2) The poset $\mathcal{S}_{\mathrm{nc}}^{B}(p, q)$ of annular noncrossing permutations of type B is defined by the interval poset of B_{p+q} as follows:

$$
\mathcal{S}_{\mathrm{nc}}^{B}(p, q):=\left[\epsilon, \gamma_{p, q}\right]=\left\{\sigma \in B_{p+q}: \epsilon \leq \sigma \leq \gamma_{p, q}\right\} \subseteq B_{p+q},
$$

where ϵ is the identity and $\gamma_{p, q}=[1 \ldots p][p+1 \ldots p+q]$.

Figure: The Hasse diagram for $\mathcal{S}_{\mathrm{nc}}^{B}(2,1)$.

Drawing permutations on annulus with noncrossing arrows

$\pi=\left(\left(\begin{array}{lll}1 & 5 & 6\end{array}\right)\right)\left(\left(\begin{array}{ll}2 & 3\end{array}\right)\right) \in \mathcal{S}_{\mathrm{nc}}^{B}(4,3)$

$$
\sigma=\left[\begin{array}{lll}
15-7 & 2
\end{array}\right]((34)) \in \mathcal{S}_{\mathrm{nc}}^{B}(4,3)
$$

(1) Nica and Oancea (2009) showed that $\mathcal{S}_{\mathrm{nc}}^{B}(p, q)$ is poset-isomorphic to $N C^{(B)}(p, q)$ of annular noncrossing partitions of type B.
(2) Goulden-Nica-Oancea (2011) showed that the number of maximal chains in the poset $N C^{(B)}(p, q)$ is

$$
\binom{p+q}{q} p^{p} q^{q}+\sum_{c \geq 1} 2 c\binom{p+q}{p-c} p^{p-c} q^{q+c} .
$$

(3) It turns out that half of the 2nd term is equal to $\left|\mathcal{F}_{(p, q)}\right|$.

$$
\sum_{c \geq 1} c\binom{p+q}{p-c} p^{p-c} q^{q+c}=\frac{p q}{p+q}\binom{p+q}{q} p^{p} q^{q} .
$$

Connectivity

© A paired nonzero cycle $\left(\left(a_{1} a_{2} \ldots a_{k}\right)\right)$ touching both the interier and exterior circles is called connected.
(2) A signed permutation with at least one connected paired nonzero cycle is called connected.
(3) A maximal chain of $\mathcal{S}_{\mathrm{nc}}^{B}(p, q)$ with at least one connected signed permutation is called connected.

Proposition

The number of disconnected maximal chains of $\mathcal{S}_{\mathrm{nc}}^{B}(p, q)$ is equal to

$$
\binom{p+q}{q} p^{p} q^{q}
$$

and the number of connected maximal chains of $\mathcal{S}_{\text {nc }}^{B}(p, q)$ is equal to

$$
2 \frac{p q}{p+q}\binom{p+q}{q} p^{p} q^{q} .
$$

Figure: Connected maximal chains in $\mathcal{S}_{\mathrm{nc}}^{B}(2,1)$.

Theorem (Kim-Seo-Shin, 2012)

There is a 2-1 map from the $\operatorname{set} \mathcal{C} \mathcal{M}\left(\mathcal{S}_{\mathrm{nc}}^{B}(p, q)\right)$ of connected maximal chains in $\mathcal{S}_{\mathrm{nc}}^{B}(p, q)$ to the set $\mathcal{F}_{(p, q)}$ of minimal transitive factorizations of $\alpha_{p, q}$.

Proof.

The composition of three maps $\left|\varphi^{+}\right|:=|\cdot| \circ(\cdot)^{+} \circ \varphi$

$$
\mathcal{C M}\left(\mathcal{S}_{\mathrm{nc}}^{B}(p, q)\right) \xrightarrow[1-1]{\stackrel{\varphi}{\longrightarrow}} \mathcal{F}_{(p, q)}^{(B)} \xrightarrow[2-1]{(\cdot)^{+}} \mathcal{F}_{(p, q)}^{+} \xrightarrow[1-1]{|\cdot|} \mathcal{F}_{(p, q)}
$$

is the desired 2-1 map.

Description of maps

$$
\begin{aligned}
& \{\epsilon<((13))<((13-2))<[12][3]\} \in \mathcal{C M}\left(\mathcal{S}_{\text {nc }}^{B}(2,1)\right) \\
& \tau_{i=\pi_{i-1}^{-1} \pi_{i}} \\
& (((13)),((2-3)),((1-3))) \quad \in \quad \mathcal{F}_{(2,1)}^{(B)} \\
& { }^{\sigma_{i}=\tau_{i}{ }^{+}} \\
& \left(((13)),\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right),\left(\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right)\right) \\
& \downarrow^{\eta_{i}=\left|\sigma_{i}\right|} \\
& \in \quad \mathcal{F}_{(2,1)}^{+} \\
& \downarrow 1 \cdot 1 \\
& \text { ((13), (2 3), (13)) } \\
& \in \quad \mathcal{F}_{(2,1)}
\end{aligned}
$$

Why is the map $(\cdot)^{+}$surjective?

Given a minimal transitive factorization of $\beta_{3,2}=\left(\left(\begin{array}{ll}1 & 2\end{array} 3\right)\right)\left(\left(\begin{array}{ll}4 & 5\end{array}\right)\right)$

$$
(((12)),((25)),((23)),((45)),((34))) \in \mathcal{F}_{(3,2)}^{+},
$$

since $\gamma_{3,2}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\left[\begin{array}{ll}4 & 5\end{array}\right]=\epsilon_{4} \epsilon_{1} \beta_{3,2}$,

$$
\begin{aligned}
\gamma_{3,2} & =\epsilon_{4} \epsilon_{1}((12))((25))((23))((45))\left(\left(\begin{array}{l}
4
\end{array}\right)\right) \\
& =\epsilon_{4} \epsilon_{2}((1-2))((25))((23))((45))((34)) \\
& =\epsilon_{4} \epsilon_{3}((12))((2-5))((2-3))((45))((34)) \\
& =\epsilon_{4} \epsilon_{4}((12))((2-5))((23))((4-5))((3-4)) \\
& =((12))((2-5))((23))((4-5))((3-4)),
\end{aligned}
$$

we have one minimal transitive factorization of $\gamma_{3,2}$

$$
(((12)),((2-5)),((23)),((4-5)),((3-4))) \in \mathcal{F}_{(3,2)}^{(B)} .
$$

Why is the map $(\cdot)^{+}$two-to-one?

$$
\begin{aligned}
& \left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}\right)=\left(((12)),((2-5)),\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right),((4-5)),((3-4))\right) \in \mathcal{F}_{(3,2)}^{(B)} \\
& \tau_{i}^{\prime}= \begin{cases}\tau_{i} & \text { if } \tau_{i} \text { is disconnected } \\
((a-b)) & \text { if } \tau_{i}=((a b)) \text { is connected. }\end{cases} \\
& \downarrow \\
& \left(\tau_{1}^{\prime}, \tau_{2}^{\prime}, \tau_{3}^{\prime}, \tau_{4}^{\prime}, \tau_{5}^{\prime}\right)=\quad\left(((12)),\left(\left(\begin{array}{ll}
2 & 5
\end{array}\right),\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right),((4-5)),\left(\left(\begin{array}{ll}
3 & 4
\end{array}\right)\right)\right) \in \mathcal{F}_{(3,2)}^{(B)}\right.
\end{aligned}
$$

It satisfies

$$
\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}\right)^{+}=\left(\tau_{1}^{\prime}, \tau_{2}^{\prime}, \tau_{3}^{\prime}, \tau_{4}^{\prime}, \tau_{5}^{\prime}\right)^{+} \in \mathcal{F}_{(3,2)}^{+}
$$

Summary

λ	$\left\|\mathcal{F}_{\lambda}\right\|$	bijective proof
(n)	n^{n-2}	Dénes et al.
$(1, n-1)$	$(n-1)^{n}$	Kim-Seo (2003)
$(2, n-2)$	$4(n-1)(n-2)^{n-1}$	Seo(2004), Rattan (2006)
$(3, n-3)$	$\frac{27}{2}(n-1)(n-2)(n-3)^{n-2}$	Rattan (2006)
(p, q)	$\frac{p q}{p+q}\binom{p+q}{p} p^{p} q^{q}$	Kim-Seo-Shin (2012)
(p, q, r)	$(p+q+r+1) p q r\binom{p+q+r}{p, q, r} p^{p} q^{q} r^{r}$	open
$\left(1^{n}\right)$	$(2 n-2)!n^{n-3}$	open

