Minimal transitive factorizations of a permutation of type (p,q)

Jang Soo Kim¹, Seunghyun Seo², and Heesung Shin³

¹School of Mathematics, University of Minnesota, USA
²Department of Math Education, Kangwon National University, South Korea
³Department of Mathematics, Inha University, South Korea

FPSAC 2012, NAGOYA UNIVERSITY, JAPAN

30 July 2012

Given
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell) \vdash n$$
,
 $\alpha_{\lambda} = (1 \dots \lambda_1)(\lambda_1 + 1 \dots \lambda_1 + \lambda_2) \dots (n - \lambda_\ell + 1 \dots n)$.
 $\mathcal{F}_{\lambda} := \text{the set of all } (n + \ell - 2)\text{-tuples } (\eta_1, \dots, \eta_{n+\ell-2}) \text{ of}$

transpositions such that

$$1 \eta_1 \cdots \eta_{n+\ell-2} = \alpha_\lambda$$

$$(\eta_1,\ldots,\eta_{n+\ell-2}) = \mathcal{S}_n.$$

Such tuples are called minimal transitive factorizations of α_{λ} , which are related to the branched covers of the sphere suggested by Hurwitz.

Table: The elements of $\mathcal{F}_{(4)}$ where $\alpha_{(4)} = (1 \ 2 \ 3 \ 4)$

Question.

Find the cardinality of \mathcal{F}_{λ} .

O Goulden and Jackson (1997) proved that if $(\lambda_1, \ldots, \lambda_\ell) \vdash n$,

$$|\mathcal{F}_{(\lambda_1,\ldots,\lambda_\ell)}| = (n+\ell-2)! n^{\ell-3} \prod_{i=1}^{\ell} \frac{\lambda_i^{\lambda_i}}{(\lambda_i-1)!}.$$

Their proof is done for arbitrary λ , but this is not bijective.

Bousquet-Mélou and Schaeffer (2000) obtained the above formula by using the inclusion-exclusion principle.

Known bijective proofs

Enumeration of the Case $\lambda = (p, q)$

Recall that Goulden and Jackson's formula is

$$|\mathcal{F}_{(\lambda_1,\ldots,\lambda_\ell)}| = (n+\ell-2)! \, n^{\ell-3} \prod_{i=1}^{\ell} \frac{\lambda_i^{\lambda_i}}{(\lambda_i-1)!}.$$

In case of $\lambda = (p,q)$,

$$|\mathcal{F}_{(p,q)}| = rac{pq}{p+q} {p+q \choose p} p^p q^q.$$

Signed permutation

- A signed permutation is a permutation σ on $\{\pm 1, \ldots, \pm n\}$ satisfying $\sigma(-i) = -\sigma(i)$ for all $i \in \{1, \ldots, n\}$.
- 2 The hyperoctohedral group B_n is the group of signed permutations on $\{\pm 1, \ldots, \pm n\}$.
- We will use the two notations

$$[a_1 \ a_2 \dots a_k] = (a_1 \ a_2 \dots a_k \ -a_1 \ -a_2 \dots -a_k), \text{ zero cycle}$$

 $((a_1 \ a_2 \dots a_k)) = (a_1 \ a_2 \dots a_k)(-a_1 \ -a_2 \dots -a_k), \text{ paired nonzero cycle}$

• $\epsilon_i := [i] = (i - i)$ and ((i j)), transpositions of type *B*, satisfies

$$\epsilon_i((i j)) = ((i j))\epsilon_j = ((i - j))\epsilon_i = \epsilon_j((i - j))$$

$$\pi \le \sigma \quad \stackrel{def}{\Longleftrightarrow} \quad \ell(\sigma) = \ell(\pi) + \ell(\pi^{-1}\sigma),$$

where $\ell(\pi)$ is the *absolute length* for $\pi \in B_n$.

2 The poset $S_{nc}^{B}(p,q)$ of annular noncrossing permutations of type *B* is defined by the interval poset of B_{p+q} as follows:

$$\mathcal{S}_{\mathrm{nc}}^{B}(p,q) := [\epsilon, \gamma_{p,q}] = \{ \sigma \in B_{p+q} : \epsilon \leq \sigma \leq \gamma_{p,q} \} \subseteq B_{p+q},$$

where ϵ is the identity and $\gamma_{p,q} = [1 \dots p][p+1 \dots p+q].$

Figure: The Hasse diagram for $S_{nc}^{B}(2, 1)$.

Drawing permutations on annulus with noncrossing arrows

- Nica and Oancea (2009) showed that S^B_{nc}(p,q) is poset-isomorphic to NC^(B)(p,q) of annular noncrossing partitions of type B.
- Goulden-Nica-Oancea (2011) showed that the number of maximal chains in the poset NC^(B)(p,q) is

$$\binom{p+q}{q}p^pq^q + \sum_{c\geq 1} 2c\binom{p+q}{p-c}p^{p-c}q^{q+c}.$$

It turns out that half of the 2nd term is equal to $|\mathcal{F}_{(p,q)}|$.

$$\sum_{c\geq 1} c\binom{p+q}{p-c} p^{p-c} q^{q+c} = \frac{pq}{p+q} \binom{p+q}{q} p^p q^q.$$

Connectivity

- A paired nonzero cycle $((a_1 a_2 \dots a_k))$ touching both the interier and exterior circles is called connected.
- A signed permutation with at least one connected paired nonzero cycle is called connected.
- Solution A maximal chain of $S_{nc}^{B}(p,q)$ with at least one connected signed permutation is called connected.

Proposition

The number of disconnected maximal chains of $\mathcal{S}^{\rm B}_{\rm nc}(p,q)$ is equal to

$$\binom{p+q}{q}p^pq^q$$

and the number of connected maximal chains of $\mathcal{S}^{\rm B}_{\rm nc}(p,q)$ is equal to

$$2\frac{pq}{p+q}\binom{p+q}{q}p^pq^q.$$

Figure: Connected maximal chains in $S^B_{nc}(2,1)$.

Theorem (Kim-Seo-Shin, 2012)

There is a 2-1 map from the set $C\mathcal{M}(S^B_{nc}(p,q))$ of connected maximal chains in $S^B_{nc}(p,q)$ to the set $\mathcal{F}_{(p,q)}$ of minimal transitive factorizations of $\alpha_{p,q}$.

Proof.

The composition of three maps $|\varphi^+| := |\cdot| \circ (\cdot)^+ \circ \varphi$

$$\mathcal{CM}(\mathcal{S}^B_{\mathrm{nc}}(p,q)) \xrightarrow{\varphi} \mathcal{F}^{(B)}_{(p,q)} \xrightarrow{(\cdot)^+} \mathcal{F}^+_{(p,q)} \xrightarrow{|\cdot|} \mathcal{F}_{(p,q)}$$

is the desired 2-1 map.

Description of maps

Why is the map $(\cdot)^+$ surjective?

Given a minimal transitive factorization of $\beta_{3,2} = ((1\ 2\ 3))((4\ 5))$

$$(((1\ 2)), ((2\ 5)), ((2\ 3)), ((4\ 5)), ((3\ 4))) \in \mathcal{F}^+_{(3,2)},$$

since $\gamma_{3,2} = [1 \ 2 \ 3][4 \ 5] = \epsilon_4 \ \epsilon_1 \ \beta_{3,2}$,

$$\begin{split} \gamma_{3,2} &= \epsilon_4 \ \epsilon_1 \ ((1 \ 2)) \ ((2 \ 5)) \ ((2 \ 3)) \ ((4 \ 5)) \ ((3 \ 4)) \\ &= \epsilon_4 \ \epsilon_2 \ ((1 \ -2)) \ ((2 \ 5)) \ ((2 \ 3)) \ ((4 \ 5)) \ ((3 \ 4)) \\ &= \epsilon_4 \ \epsilon_3 \ ((1 \ 2)) \ ((2 \ -5)) \ ((2 \ 3)) \ ((4 \ -5)) \ ((3 \ -4)) \\ &= ((1 \ 2)) \ ((2 \ -5)) \ ((2 \ 3)) \ ((4 \ -5)) \ ((3 \ -4)), \end{split}$$

we have one minimal transitive factorization of $\gamma_{3,2}$

$$(((1\ 2)), ((2\ -5)), ((2\ 3)), ((4\ -5)), ((3\ -4))) \in \mathcal{F}_{(3,2)}^{(B)}.$$

Why is the map $(\cdot)^+$ two-to-one?

$$(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}) = (((1\ 2)), ((2\ -5)), ((2\ 3)), ((4\ -5)), ((3\ -4))) \in \mathcal{F}_{(3,2)}^{(B)}$$

$$\tau_{i}^{\prime} = \begin{cases} \tau_{i} & \text{if } \tau_{i} \text{ is disconnected} \\ ((a\ -b)) & \text{if } \tau_{i} = ((a\ b)) \text{ is connected.} \end{cases}$$

$$(\tau_{1}^{\prime}, \tau_{2}^{\prime}, \tau_{3}^{\prime}, \tau_{4}^{\prime}, \tau_{5}^{\prime}) = ((((1\ 2)), ((2\ 5)), ((2\ 3)), ((4\ -5)), ((3\ 4)))) \in \mathcal{F}_{(3,2)}^{(B)}$$

It satisfies

$$(\tau_1, \tau_2, \tau_3, \tau_4, \tau_5)^+ = (\tau_1', \tau_2', \tau_3', \tau_4', \tau_5')^+ \in \mathcal{F}^+_{(3,2)}.$$

Summary

λ	$ \mathcal{F}_{\lambda} $	bijective proof
<i>(n)</i>	n^{n-2}	Dénes et al.
(1, n - 1)	$(n-1)^n$	Kim-Seo (2003)
(2, n-2)	$4(n-1)(n-2)^{n-1}$	Seo(2004), Rattan (2006)
(3, n-3)	$\frac{27}{2}(n-1)(n-2)(n-3)^{n-2}$	Rattan (2006)
(p,q)	$rac{pq}{p+q} {p+q \choose p} p^p q^q$	Kim-Seo-Shin (2012)
(p,q,r)	$(p+q+r+1)pqr\binom{p+q+r}{p,q,r}p^pq^qr^r$	open
(1^{n})	$(2n-2)!n^{n-3}$	open