Maximal Newton Polygons via the Quantum Bruhat Graph

Elizabeth T. Beazley

Williams College, Williamstown, MA \& Haverford College, Haverford, PA, USA

Abstract

This paper discusses a surprising relationship between the quantum cohomology of the variety of complete flags and the partially ordered set of Newton polygons associated to an element in the affine Weyl group. One primary key to establishing this connection is the fact that paths in the quantum Weyl group, encode saturated chains in the strong Bruhat order on the affine Weyl group. This correspondence is also fundamental in the work of Lam and Shimozono [LS10] establishing Peterson's isomorphism between the quantum cohomology of partial flag varieties and the homology of the affine Grassmannian [Pet96].

Newton Polygons

Let $F=\mathbb{F}_{q}((t))$, and let $G(F)$ be a split connected reductive group. Given $A \in G(F)$, such as

$$
A=\left[\begin{array}{ccc}
-t^{2} & t^{2} & t^{2} \\
1 & 0 & t \\
0 & t^{-2} & t^{-1}
\end{array}\right] \in S L_{3}(F),
$$

the Newton polygon $\nu(A)$ is constructed as follows.

- Step 1: Compute the characteristic polynomial $\operatorname{det}(A-\lambda I)$ for the matrix A :

$$
p_{\lambda}(A)=\lambda^{3}-\left(t^{-1}-t^{2}\right) \lambda^{2}-\left(t^{-1}+t+t^{2}\right) \lambda-1 .
$$

- Step 2: Plot $-\operatorname{val}\left(a_{i}\right)$ for each of the coefficients a_{i} in $p_{\lambda}(A)$, where $\operatorname{val}\left(a_{i}\right)$ equals the lowest power of t appearing in a_{t}
- Step 3: Take the upper convex hull of this set of points.

A Newton polygon is also uniquely determined by its slope sequence, in which we record successive slopes of the edges left to right, repeated with multiplicity. For example, we also say $\nu(A)=(1,0,-1)$.

The Poset and Maximal Elements

Let I be the Iwahori subgroup, and let $x \in \widetilde{W}$ be an element of the affine Weyl group. If $\mathcal{O}=\mathbb{F}[t]]$,

$$
I=\left[\begin{array}{ccc}
\mathcal{O}^{\times} & t \mathcal{O} & t \mathcal{O} \\
\mathcal{O} & \mathcal{O}^{\times} & t \mathcal{O} \\
\mathcal{O} & \mathcal{O} & \mathcal{O}^{\times}
\end{array}\right] \leq S L_{3}(F) \quad \text { and }\left[\begin{array}{ccc}
0 & 0 & t^{2} \\
1 & 0 & 0 \\
0 & t^{-2} & 0
\end{array}\right]=t^{(2,0,-2)} s_{1} s_{2} \in \widetilde{S_{3}} .
$$

The affine Bruhat decomposition says that $G(F)=\amalg_{x \in \widetilde{W}} I x I$. We may then study

$$
\mathcal{N}(G)_{x}=\{\nu(g) \mid g \in I x I\} .
$$

$\mathcal{N}(G)_{x}$ is a partially ordered set containing a unique maximal element ν_{x}. We say $\nu(A) \geq \nu(B)$ if they share a left and rightmost vertex and all edges of $\nu(A)$ lie either on or above those of $\nu(B)$, o if all partial sums for the slope sequence for $\nu(A)$ are greater than or equal to those for $\nu(B)$.

The Quantum Bruhat Graph

The quantum Bruhat graph is a weighted directed graph with vertices indexed by the Weyl group and weights given by the reflection used to get from one element to the other.

- Vertices: The elements $w \in W$ of the finite Weyl group.
- Edges: Draw an edge if the elements are related by a reflection satisfying one of two conditions:

$$
w \longrightarrow w s_{\alpha} \text { if } \ell\left(w s_{\alpha}\right)=\ell(w)+1 \text {, or }
$$

$w \longrightarrow w s_{\alpha}$ if $\ell\left(w s_{\alpha}\right)=\ell(w)-\left\langle\alpha^{\vee}, 2 \rho\right\rangle+1$
Note that if G is of type $A D E$, then we have $\ell(w)-\left\langle\alpha^{\vee}, 2 \rho\right\rangle+1=\ell(w)-\ell\left(s_{\alpha}\right)$.

- Weights: Label any downward edge from $w \longrightarrow w s_{\alpha}$ by the coroot α^{\vee} corresponding to s_{α}.

The quantum Bruhat graph for S_{3}.
The weight of a path in the quantum Bruhat graph is then defined to be the sum of the weights of The weight of a path in the quant
these downward edges in the path.

Main Theorem

Theorem 1. Fix M sufficiently large, and let $x=t^{\nu \lambda^{+}} w \in \widetilde{W}$, where λ^{+}is dominant and $|\langle\lambda, \alpha\rangle| \geq M$ for all $\alpha \in R^{+}$. Then

$$
\begin{equation*}
\nu_{x}=\lambda^{+}+w_{0}\left(\alpha_{d}^{\vee}\right), \tag{1}
\end{equation*}
$$

where α_{d}^{\vee} is the weight of any path of minimal length in the quantum Bruhat graph from vw to $w^{-1} v w_{0}$, and w_{0} denotes the longest element in the finite Weyl group W.

Example 2. Consider $x=t^{(2,0,-2)} s_{1} s_{2}$ in the affine symmetric group $\widetilde{s_{3}}$. Here, $v=1$ and $w=s_{1} s_{2}$ so that $v w_{0}=s_{1} s_{2} s_{1}$ and $w^{-1} v w_{0}=\left(s_{2} s_{1}\right)\left(s_{1} s_{2} s_{1}\right)=s_{1}$. In the quantum Bruhat graph for $W=S_{3}$, the weight of both paths of minimal length from $s_{1} s_{2} s_{1}$ to s_{1}, each of which has length 2 , equals $\alpha_{1}^{\vee}+\alpha_{2}^{\vee}=(1,0,-1)$. Therefore, by Theorem 1

$$
\nu_{x}=(2,0,-2)+w_{0}(1,0,-1)=(2,0,-2)+(-1,0,1)=(1,0,-1) .
$$

Key Idea: Finding Pure Translations

Theorem 3 (Viehmann [Vie09]). Given $x \in \widetilde{W}$, then

$$
\nu_{x}=\max \{\nu(y) \mid y \in \widetilde{W} \text { with } y \leq x\},
$$

where the maximum is taken with respect to dominance order and $y \leq x$ in Bruhat order. Proposition 4. Let $y=t^{\lambda} w \in \widetilde{W}$, and suppose that the order of w in W equals k. Then

$$
\begin{equation*}
\nu(y)=\left(\frac{1}{k} \sum_{i=1}^{k} w^{i}(\lambda)\right)^{+} \tag{3}
\end{equation*}
$$

Proposition 5. Chose M sufficiently large, and suppose that $|\langle\lambda, \alpha\rangle| \geq M$ for all $\alpha \in R^{+}$. Proposition 5. Chose M sufficiently large, and suppose that $|\lambda, \alpha\rangle \geq M$ for all $\alpha \in \kappa$.
Given any saturated chain of minimal length in strong Bruhat order from $x=t^{\lambda} w \in \widetilde{W}$ to a Given any saturated chain of minimal length in strong Bruhat
pure translation, say $x>x_{1} \gtrdot x_{2} \gtrdot \cdots>x_{k}=t^{\mu}$, then $\nu_{x}=\mu^{+}$

Quantum Bruhat Graph and Affine Bruhat Order

Using work of Lam and Shimizono [LS10], we can related cocovers of $x=t^{\nu \lambda^{+}} w \in \widetilde{W}$ in affine Bruhat order to edges in the quantum Bruhat graph:

- an edge $v w_{0} \longrightarrow v w_{0} r_{\alpha}$ means $x \gtrdot t^{v r_{w_{0}}(\lambda)} r_{v w_{0} \alpha} w$
- an edge $v w_{0} \longrightarrow v w_{0} r_{\alpha}$ means $x \gtrdot t^{t r_{w_{0}}\left(\lambda+w_{0} \alpha \nu\right)} r_{v w_{0} \alpha} w$
- an edge $w^{-1} v w_{0} r_{\alpha} \longrightarrow w^{-1} v w_{0}$ means $x \gtrdot t^{v(\lambda)} r_{v w_{0}} w$
- an edge $w^{-1} v w_{0} r_{\alpha} \longrightarrow w^{-1} v w_{0}$ means $x>t^{v\left(\lambda+w_{0} \alpha^{\alpha}\right)} r_{v w_{0} \alpha} w$

Any path of minimal length k in the quantum Bruhat graph from $v w_{0}$ to $w^{-1} v w_{0}$ then corresponds to exactly 2^{k} saturated chains of minimal length from x to a pure translation.

Saturated chains from $x=t^{(2,0,-2)} s_{1} s_{2}$ to translations and corresponding paths in the QBG for S_{3}

> Connection to Quantum Schubert Calculus

The quantum cohomology ring of the complex complete flag variety G / B equals

$$
Q H^{*}(G / B)=H^{*}(G / B, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}\left[q_{1}, \ldots, q_{r}\right],
$$

where r is the rank of G. As a $\mathbb{Z}\left[q_{1}, \ldots, q_{r}\right]$-module, $Q H^{*}(G / B)$ has a basis of Schubert classes σ_{w} where $w \in W$. The main problem in modern quantum Schubert calculus is to explicitly compute

$$
\sigma_{u} * \sigma_{v}=\sum_{w, d} c_{c, v}^{w, d} q^{d} \sigma_{w},
$$

by finding non-recursive, positive combinatorial formulas for the coefficients $c_{u, v}^{u, d}$ and monomials q^{d}. Theorem 6 (Postnikov (Pos055). The unique minimal monomial occurring in the quantum prod uct $\sigma_{u} * \sigma_{v}$ equals $q^{\alpha}=q_{1}^{a_{1}} \cdots q_{r}^{d_{r}^{r}}$, where $\alpha_{d}^{\vee}=d_{1} \alpha_{1}^{\vee}+\cdots+d_{r} \alpha_{r}^{\vee}$ is the weight of any shortest path from u to $w_{0} v$ in the quantum Bruhat graph.
Theorem 7. Fix M sufficiently large, and suppose that $|\langle\lambda, \alpha\rangle| \geq M$ for all $\alpha \in R^{+}$. Then q^{d} is the minimal monomial in the quantum product $\sigma_{u} * \sigma_{v}$ if and only if $\lambda^{+}+w_{0}\left(\alpha_{d}^{\vee}\right)$ is the maximal Newton polygon in $\mathcal{N}(G)_{x}$, where $x=t^{u w_{0}(\lambda+} u^{-1} w_{0}$.

References

[LS10] Thomas Lam and Mark Shimozono. Quantum cohomology of G / P and homology of affine Grassmannian. Acta Math., 204(1):49-90, 2010.
(Pet96] D. Peterson. Lectures on quantum cohomology of G / P. M.I.T., 1996
(Pos05) Alexander Postnikov. Quantum Bruhat graph and Schubert polynomials. Proc. Amer. Math Soc., 133(3):699-709 (electronic), 2005.
[Vie09] E. Viehmann. Truncations of level 1 of elements in the loop group of a reductive group math.AG/0907.2331v1, 2009.

