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B�i�e�n�v�e�n�u�e �à� P�a�r�i�s!
Nous sommes ravis de vous accueillir à Paris pour la 25e édition de la conférence Séries
Formelles et Combinatoire Algébrique (SFCA). Cette conférence a été initiée a Lille en 1988
puis a eu lieu a Paris en 1990. Elle s’est ensuite baladée partout dans le monde mais son
attache française reste importante. Ainsi elle a été organisée à Bordeaux en 1992 puis à
Marne la Vallée en 1995.

Le succès de SFCA est maintenant garanti. Chaque année, nous avons de plus en plus de
soumissions et de participants!

Longue vie à SFCA!

Sylvie Corteel
pour le comité d’organisation

L’édition 2013 de SFCA à Paris a fait l’objet d’un nombre record de 176 soumissions. Le
comité de programme et les rapporteurs auxiliaires ont souligné dans leur ensemble la qualité
exceptionnelle des contributions proposées. Au vu du format de la conférence, 27 exposés
et 75 posters ont été acceptés soit un taux de 57% d’acceptation. La conférence SFCA a
comme tradition d’accueillir et d’encourager particulièrement les contributions d’étudiants,
ainsi que d’offrir un programme varié, intéressant et solide scientifiquement autour de la com-
binatoire et de ses applications.

This year, a record number of 176 contributions were submitted to the scientific committee
of FPSAC 2013. According to our panel of evaluators, the quality of the submitted papers
was exceptionally high. In view of temporal and physical constraints, 27 talks and 75 posters
were accepted for a ratio of acceptance of 57%. FPSAC has a tradition of welcoming and
encouraging student submissions. We are also careful in selecting a broad, interesting and
solid scientific program.

Bonne lecture et bonne conférence !

Alain Goupil et Gilles Schaeffer
Program committee co-chairs
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A unified bijective framework for planar maps

Olivier Bernardi
Brandeis University, Department of Mathematics, 415 South Street, Waltham, MA 02453, USA.

Abstract. Planar maps are connected planar graphs embedded in the plane. In the last fifteen years, a bijective
approach for studying planar maps has been developped; and there are now dozens of bijections between classes of
maps and classes of trees. We present a unified way to think about these bijections. Roughly speaking, we show that
all the bijective results for maps can be recovered by specializing a unique “master bijection”. The subtlety is that the
master bijection acts on oriented maps. Thus, the known bijections are recovered by choosing a suitable orientation
for the maps in the class considered, and then applying the master bijection. The suitable orientations implicitly
used in the known bijections are in fact part of an infinite family (Ωd)d≥0 of orientations that we characterize. The
parameter d is related to the girth of the maps.

Keywords: Bijection, Planar maps, Trees, Girth

Planar maps are connected planar graphs embedded in the plane, considered up continuous deforma-
tions. Planar maps have been actively studied in combinatorics ever since the seminal work of William
Tutte in the sixties. Along the years, deep connections have been fruitfully exploited between planar maps
and subjects as diverse as the combinatorics of the symmetric group, graph drawing algorithms, random
matrix theory, statistical mechanics, and 2D quantum gravity.

In the last decade, following the seminal work of Cori and Vauquelin Cori and Vauquelin (1981),
Arquès Arquès (1986) and Schaeffer Schaeffer (1998), many bijections have been discovered between
classes of maps (e.g. triangulations, bipartite maps) and classes of trees Schaeffer (1998). These bijections
provide the “proofs from the Book” for the many simple-looking counting formulas discovered by Tutte
and his followers. Moreover they proved to be invaluable tools in order to study the metric properties of
maps, finding algorithms for maps, and solving statistical mechanics models on maps.

There are now dozens of bijections between classes of planar maps and classes of trees; see for instance
Schaeffer (1998, 1997); Bouttier et al. (2002); Poulalhon and Schaeffer (2003); Bouttier et al. (2004); Fusy
et al. (2008); Fusy (2009); Bousquet-Mélou and Schaeffer (2000, 2002); Bouttier et al. (2007); Bernardi
(2007); Fusy et al. (2009). We will present a bijective framework, developed jointly with Eric Fusy, which
unifies and extend these bijections Bernardi and Fusy (2012a,b, 2013b,a). There are two ingredients to
our approach:

• A master bijection between a class of oriented maps and a class of trees. The master bijection Φ is
illustrated in Figures 1 and 2.

• The existence of certain canonical orientations for planar maps of given girth.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



2 Olivier Bernardi

Fig. 1: The three types of edges in a bi-oriented map and the local rule of the master bijection Φ.

Fig. 2: The master bijection Φ applied to a bi-oriented map: the image is a tree with black and white vertices with
some decorations on black vertices.
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Self-avoiding walks on the honeycomb lattice

Mireille Bousquet-Mélou
CNRS, LaBRI, UMR 5800, Université de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex, France

In 2010, Duminil-Copin and Smirnov [2] proved a long standing conjecture [3], according to which
the number of n-step self-avoiding walks (SAWs) on the honeycomb lattice grows like µn, up to sub-
exponential factors, where µ =

√
2 +
√
2.

Their proof is in fact rather simple, but also very original, at least to a combinatorialist’s eyes. At the
heart of the proof is a remarkable identity, that relates several generating functions of SAWs evaluated at
the critical point 1/µ. We will discuss this identity and some of its extensions, with applications to SAWs
interacting with a surface [1], and to the O(n) loop model.

References
[1] N. Beaton, M. Bousquet-Mélou, J. de Gier, H. Duminil-Copin, and A. J. Guttmann. The criti-

cal fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is 1 +
√

(2).
arXiv:1109.0358.

[2] H. Duminil-Copin and S. Smirnov. The connective constant of the honeycomb lattice equals√
2 +
√
2. Ann. of Math., 175(3):1653–1665, 2012. Arxiv:1007.0575.

[3] B. Nienhuis. Exact critical point and critical exponents of O(n) models in two dimensions. Phys.
Rev. Lett., 49:1062–1065, 1982.
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Topological combinatorics of Bruhat order
and total positivity

Patricia Hersh †

North Carolina State University

This talk will focus on the rich interplay of combinatorics, topology, and representation theory arising
in the theory of total positivity and in particular in the study of the totally nonnegative part of a matrix
Schubert variety. Along the way, we will survey what combinatorics of a closure poset can and what it
cannot tell us about the topology of a stratified space. Braid moves on reduced and nonreduced words
in the associated 0-Hecke algebra are interpreted topologically, yielding information about the possible
relations among (exponentiated) Chevalley generators of a Lie group. The subword complexes introduced
by Allen Knutson and Ezra Miller also play a role in this story, giving the face poset structure for the fibers
of a map f(i1,...,id) suggested in work of Lusztig where f(i1,...,id) is given by a product of exponentiated
Chevalley generators. Sergey Fomin and Michael Shapiro conjectured that totally nonnegative spaces
arising as images of these maps, or equivalently as the Bruhat decompositions of the totally nonnegative
part of matrix Schubert varieties, together with the links of their cells, are regular CW complexes home-
omorphic to balls having the intervals of Bruhat order as their closure posets. We will discuss the new
combinatorics and topology which the proof of this conjecture revealed.

†Supported by NSF grant DMS-1200730.
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Quiver mutation and combinatorial
DT-invariants

Bernhard Keller†

Université Paris Diderot – Paris 7, Institut Universitaire de France, Institut de Mathématiques de Jussieu – Paris Rive
Gauche, UMR 7586 du CNRS, Paris, France

received 2013-05-26,

A quiver is an oriented graph. Quiver mutation is an elementary operation on quivers. It appeared in physics in
Seiberg duality in the nineties and in mathematics in the definition of cluster algebras by Fomin-Zelevinsky in 2002.
We show how, for large classes of quivers Q, using quiver mutation and quantum dilogarithms, one can construct the
combinatorial DT-invariant, a formal power series intrinsically associated with Q. When defined, it coincides with the
‘total’ Donaldson-Thomas invariant of Q (with a generic potential) provided by algebraic geometry (work of Joyce,
Kontsevich-Soibelman, Szendroi and many others). We illustrate combinatorial DT-invariants on many examples and
point out their links to quantum cluster algebras and to (infinite) generalized associahedra.

Un carquois est un graphe orienté. La mutation des carquois est une opération élémentaire sur les carquois. Elle
est apparue en physique dans la dualité de Seiberg dans les années 90 et en mathématiques dans la définition des
algèbres amassées par Fomin–Zelevinsky en 2002. Nous montrons comment, pour de grandes classes de carquois Q,
à l’aide de la mutation des carquois et des dilogarithmes quantiques, on peut construire l’invariant DT combinatoire,
une série formelle associée intrinsèquement à Q. Quand cet invariant est défini, il est égal à l’invariant de Donaldson–
Thomas ‘total’ associé à Q (avec un potentiel générique) qui est fourni par la géométrie algébrique (travaux de
Joyce, Kontsevich–Soibelman, Szendroi et beaucoup d’autres). Nous illustrons les invariants DT combinatoires sur
beaucoup d’exemple et évoquons leurs liens avec les algèbres amassées quantiques et des associaèdres généralisés
(infinis).

Keywords: Cluster algebra, quiver mutation, Donaldson-Thomas invariants

1 Introduction
A quiver is an oriented graph. Quiver mutation is an elementary operation on quivers. It appeared in
physics already in the nineties in Seiberg duality, cf. Seiberg (1995). In mathematics, quiver mutation
was introduced by Fomin and Zelevinsky (2002) as the basic combinatorial ingredient of their definition
of cluster algebras. Thus, quiver mutation is linked to the large array of subjects where cluster algebras
have subsequently turned out to be relevant, cf. for example the cluster algebras portal maintained by

†Email: keller@math.jussieu.fr

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Fomin (2002) and the survey articles by Fomin (2010), Leclerc (2010), Reiten (2010), Williams (2012).
Among these links, the one to representation theory and algebraic geometry has been particularly fruitful.
It has allowed to ‘categorify’ cluster algebras and thereby to prove conjectures about them which seem
beyond the scope of the purely combinatorial methods, cf. for example the articles of Derksen et al.
(2010), Geißet al. (2011), Plamondon (2011), Cerulli Irelli et al. (2012), . . . .

The constructions and results we present in this talk are another manifestation of this fruitful interaction.
They are inspired by the theory of Donaldson–Thomas invariants as it has been developped by Bridgeland,
Joyce and Song (2009), Kontsevich and Soibelman (2008, 2010), Nagao (2010), Reineke (2011), Szendrői
(2008) and many others. In this theory, one assigns Donaldson–Thomas invariants to three-dimensional,
possibly non commutative, Calabi–Yau varieties. These invariants exist in many different versions. Here
we use the ‘total’ Donaldson–Thomas invariant, which is a certain power series in (slighly) non commu-
tative variables. One important construction of non commutative 3-Calabi–Yau varieties takes as its input
a quiver (with a generic potential). Thus, there is a Donaldson–Thomas invariant associated with ‘each’
quiver (some technical problems remain to be solved for a completely general definition). It turns out that
for a suprisingly large class of quivers, it is possible to construct this invariant in a combinatorial way
using products of quantum dilogarithm series associated with so-called reddening sequences of quiver
mutations. This construction yields the definition of the combinatorial DT-invariant, which is the main
point of this talk (section 4). It is an important fact that a given quiver may admit many distinct reddening
sequences. Each of them yields a product decomposition for the combinatorial DT-invariant and in this
way, one obtains many interesting quantum dilogarithm identities (section 5).

Let us emphasize that the use of (products of) quantum dilogarithm series in the study of (quantum)
cluster algebras goes back to the insight of Fock and Goncharov (2009a,b). They also pioneered their
application in the study of (quantum) dilogarithm identities, which was subsequently developped by many
authors. We refer to Nakanishi (2012) for a survey. Geometric as well as combinatorial constructions of
DT-invariants also appear in physics, cf. for example Cecotti et al. (2010), Alim et al. (2011a,b), Cecotti
et al. (2011), Cecotti and Vafa (2011), Gaiotto et al. (2009, 2010a,b), Xie (2012), . . . .

2 Quiver mutation
A quiver is an oriented graph, i.e. a quadruple Q = (Q0, Q1, s, t) formed by a set of vertices Q0, a set
of arrows Q1 and two maps s and t from Q1 to Q0 which send an arrow α respectively to its source s(α)
and its target t(α). In practice, a quiver is given by a picture as in the following example

Q : 3
λ

���������
5α

$$ ////// 6

1 ν
// 2

β //

µ
^^>>>>>>>

4.
γ

oo

An arrow α whose source and target coincide is a loop; a 2-cycle is a pair of distinct arrows β and γ such
that s(β) = t(γ) and t(β) = s(γ). Similarly, one defines n-cycles for any positive integer n. A vertex i
of a quiver is a source (respectively a sink) if there is no arrow with target i (respectively with source i).
A Dynkin quiver is a quiver whose underlying graph is a Dynkin diagram of type An, n ≥ 1, Dn, n ≥ 4,
or E6, E7, E8.
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By convention, in the sequel, by a quiver we always mean a finite quiver without loops nor 2-cycles
whose set of vertices is the set of integers from 1 to n for some n ≥ 1. Up to an isomorphism fixing
the vertices, such a quiver Q is given by the skew-symmetric matrix B = BQ whose coefficient bij is
the difference between the number of arrows from i to j and the number of arrows from j to i for all
1 ≤ i, j ≤ n. Conversely, each skew-symmetric matrix B with integer coefficients comes from a quiver.

Let Q be a quiver and k a vertex of Q. The mutation µk(Q) is the quiver obtained from Q as follows:

1) for each subquiver i
β // k

α // j , we add a new arrow [αβ] : i→ j;

2) we reverse all arrows with source or target k;

3) we remove the arrows in a maximal set of pairwise disjoint 2-cycles.

For example, if k is a source or a sink of Q, then the mutation at k simply reverses all the arrows incident
with k. In general, if B is the skew-symmetric matrix associated with Q and B′ the one associated with
µk(Q), we have

b′ij =

{
−bij if i = k or j = k ;
bij + sign(bik) max(0, bikbkj) else. (2.1)

This is the matrix mutation rule for skew-symmetric (more generally: skew-symmetrizable) matrices
introduced by Fomin and Zelevinsky (2002), cf. also Fomin and Zelevinsky (2007).

One checks easily that µk is an involution. For example, the quivers

1

2 3

EE����� ��22222

oo

and
1

2 3
������� YY33333

(2.2)

are linked by a mutation at the vertex 1. Notice that these quivers are drastically different: The first one is
a cycle, the second one the Hasse diagram of a linearly ordered set.

Two quivers are mutation equivalent if they are linked by a finite sequence of mutations. For example,
it is an easy exercise to check that any two orientations of a tree are mutation equivalent. Using the quiver
mutation applet by Keller (2006) or the Sage package by Musiker and Stump (2011) one can check that
the following three quivers are mutation equivalent

1

2 3

4 5 6

7 8 9 10

EE���� ��2222

oo
FF���� ��3333 FF���� ��2222

oo
FF���� ��2222

oo
EE���� ��2222 FF���� ��2222

oo oo oo

1

2
3

4

5

67

8
9

10
��

��!
!!

XX111

ZZ55
55lll

��!
!!

--\\\

mm\\\

�����

((RRR

1

2

3
4 5

6

7

8
9

10
""EE

QQ$$$

<<xx

jjUUU
��66

~~}}

||xxx

��$
$$

**UUU >>||

.

(2.3)
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The common mutation class of these quivers contains 5739 quivers (up to isomorphism). The mutation
class of ‘most’ quivers is infinite. The classification of the quivers having a finite mutation class was
achieved by by Felikson et al. (2012a) (and by Felikson et al. (2012b) in the skew-symmetric case): in
addition to the quivers associated with triangulations of surfaces (with boundary and marked points, cf.
Fomin et al. (2008)), the list contains 11 exceptional quivers, the largest of which is in the mutation class
of the quivers (2.3).

3 Green quiver mutation
Let Q be a quiver without loops nor 2-cycles. The framed quiver Q̃ is obtained from Q by adding, for
each vertex i, a new vertex i′ and a new arrow i→ i′. Here is an example:

Q : 1 // 2 Q̃ : 1 //

��
2
��

1′ 2′

.

The vertices i′ are called frozen vertices because we never mutate at them. Now suppose that we have
transformed Q̃ into Q̃ ′ by a finite sequence of mutations (at non frozen vertices). A vertex i of Q is green
in Q̃ ′ if there are no arrows j ′ → i in Q̃ ′. Otherwise, it is red. A sequence i = (i1, . . . , iN ) is green if
for each 1 ≤ t ≤ N , the vertex it is green in the partially mutated quiver Q̃(i, t) defined by

Q̃(i, t) = µit−1
. . . µi2µi1(Q̃),

where for t = 1, we have the empty mutation sequence and obtain the initial quiver Q̃. It is maximal green
if it is green and all the vertices of the final quiver µi(Q̃) are red (so that indeed, the sequence i cannot be
extended to any strictly longer green sequence).

In Figure 1, we have encircled the green vertices. We see that in this example, we have two maximal
green sequences 12 and 212 and that the final quivers associated with these two sequences are isomorphic
by an isomorphism which fixes the frozen vertices. We call such an isomorphism a frozen isomorphism.
A sequence i = (i1, . . . , iN ) is reddening if all vertices of the final quiver

µi(Q̃) = Q̃(i, N)

are red. Of course, maximal green sequences are reddening. In the example of Figure 1, the sequence
1, 2, 1, 2, 1, 2, 1 is reddening but not green.

Theorem 3.1 If i and i′ are reddening sequences, there is a frozen isomorphism between the final quivers

µi(Q̃) ∼→ µi′(Q̃).

The statement of the theorem is purely combinatorial but the known proofs (cf. section 7 of Keller
(2012) and the references given there) are based on representation theory and geometry. For an arbitrary
sequence i of non frozen vertices, we define the c-matrix C(i) as the n × n-matrix occuring in the right
upper corner of the skew-symmetric matrix associated with the final quiver µi(Q̃), so that we have

Bµi(Q̃) =

[
∗ C(i)
∗ ∗

]
.
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'&%$ !"#1 //

��

'&%$ !"#2

��

'&%$ !"#1

�� ��@@@@@@@@ 2oo

1′ 2′ 1′ 2′

OO

1 '&%$ !"#2oo

��

1 // '&%$ !"#2

��~~~~~~~~

1′

OO

2′ 1′

OO

2′

__@@@@@@@@

1 // 2 1 2oo

1′

OO

2′

OO

1′

??~~~~~~~~
2′

__@@@@@@@@

µ2 //

µ1

��~~~~ µ1

��@@@@

µ2 ��@@@@
µ2��~~~~

frozen
isom

µ12

��

µ212

��6666666666666666666666

Fig. 1: The two maximal green sequences for A2

Thus, the (i, j)-coefficient of the matrix C(i) is the difference between the number of arrows i → j′ and
j′ → i. The c-vectors associated with the sequence i are by definition the columns of the matrix C(i).
The following statement is known as the sign coherence of c-vectors.

Theorem 3.2 (Derksen et al. (2010)) Each c-vector lies in Nn or (−N)n.

Again, the known proof of this combinatorial statement uses representation theory and geometry. The
oriented exchange graph of the quiver Q is defined to be the quiver EQ whose vertices are the frozen
isomorphism classes of the quivers µi(Q̃), where i is an arbitrary sequence of vertices of Q, and where
we have an arrow

Q̃′ → µj(Q̃
′)

whenever j is a green vertex of Q̃′. For example, if Q is the quiver 1→ 2, then we see from Figure 1 that
the oriented exchange graph is the oriented pentagon

• //

��~~~~
•

��@@@@

•
''OOOOOOOO •

wwoooooooo

•

By Theorem 3.1, the quiver EQ has at most one sink. One can also show that it always has a unique
source. An arbitrary sequence i of non frozen vertices corresponds to a walk in EQ (a sequence of arrows
and formal inverses of arrows) and a reddening sequence to a path (a formal composition of arrows) from
the source to the sink. IfQ is mutation equivalent to a quiver whose underlying graph is a Dynkin diagram
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of type An (resp. ∆), then EQ is an orientation of the 1-skeleton of the nth Stasheff associahedron (resp.
of the generalized associahedron of type ∆, cf. Chapoton et al. (2002)).

One can show that EQ is the Hasse graph of a poset (a subposet of the set of torsion subcategories, cf.
section 7.7 of Keller (2012)). If Q is the linear orientation of An, this poset the Tamari lattice. For certain
classes of quivers, this poset is studied from the viewpoint of representation theory for example by Adachi
et al. (2012), Brüstle et al. (2012), King and Qiu (2011), Koenig and Yang (2012) and Ladkani (2007).

Not all quivers admit reddening sequences. For example the quiver

•
��~~~~~

��~~~~~

• // // •

__@@@@@

__@@@@@

does not admit a reddening sequence. On the other hand, reddening sequences do exist for large classes of
quivers, cf. section 5 below. In particular, each acyclic quiver (=quiver without oriented cycles) admits a
maximal green sequence corresponding to an increasing enumeration of the vertices for the order defined
by the existence of a path.

4 Combinatorial DT-invariants
Our aim is to associate an intrinsic formal power series EQ with each quiver Q admitting a reddening
sequence. For quiver with a unique vertex and no arrows, this series will be the quantum dilogarithm
series

E(y) = 1 +
q1/2

q − 1
· y + · · ·+ qn

2/2yn

(qn − 1)(qn − q) · · · (qn − qn−1)
+ · · ·

∈ Q(q1/2)[[y]],

where q1/2 is an indeterminate whose square is denoted by q and y is an indeterminate. This series is
a classical object with many remarkable properties, cf. for example Zagier (1991). We will focus on
one of them, namely the pentagon identity: If y1 and y2 are two indeterminates which q-commute, i.e.
y1y2 = qy2y1, then we have

E(y1)E(y2) = E(y2)E(q−1/2y1y2)E(y1). (4.1)

It is due to Faddeev and Volkov (1993) and Faddeev and Kashaev (1994); a recent account can be found
in Volkov (2012). Notice a striking structural similarity between this identity and the diagram in Figure 1:
The two factors E(y1)E(y2) on the left correspond to the two mutations in the path on the left, the three
factors E(y2)E(q−1/2y1y2)E(y1) on the right correspond to the three mutations in the path on the right
and the equality corresponds to the frozen isomorphism between the final quivers. The common value
of the two products will be defined as the combinatorial DT-invariant EQ associated with the quiver
Q : 1→ 2.

Let Q be a quiver. For any sequence i = (i1, . . . , iN ) of vertices of Q, we will define a product EQ,i of
quantum dilogarithm series. For this, let λQ : Zn×Zn → Z be the bilinear antisymmetric form associated
with the matrix BQ. Define the complete quantum affine space as the algebra

ÂQ = Q(q1/2)〈〈yα, α ∈ Nn | yαyβ = q1/2λ(α,β)yα+β〉〉.
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This is a slightly non commutative deformation of an ordinary commutative power series algebra in n
indeterminates. We define the product

EQ,i = E(yε1β1)ε1 · · ·E(yεNβN )εN ,

where the product is taken in ÂQ, the vector βt is the t-th column of the c-matrix C(i1, . . . , it−1) and εt
is the common sign of the entries of this column (Theorem 3.2), 1 ≤ t ≤ N .

Theorem 4.1 If i and i′ are two sequences of vertices of Q such that there is a frozen isomorphism
between µi(Q̃) and µi′(Q̃), then we have the equality

EQ,i = EQ,i′ .

The theorem is proved in section 7.11 of Keller (2012) and independently in Nagao (2011). In par-
ticular, if i and i′ are two reddening sequences, then by Theorem 4.1, the above equality holds. More
generally, the theorem shows that to each vertex of the oriented exchange graph EQ, a canonical power
series in ÂQ is associated. The one associated to the unique sink (if it exists) is EQ and any reddening
sequence gives a product expansion for EQ.

Definition 4.2 If Q admits a reddening sequence i, the combinatorial DT-invariant of Q is defined as

EQ = EQ,i ∈ ÂQ.

The adjoint combinatorial DT-invariant of Q is DTQ = Σ ◦ Ad(EQ) : Frac(ÂQ) → Frac(ÂQ), where
Frac(ÂQ) is the non commutative field of fractions of ÂQ (cf. the Appendix of Berenstein and Zelevinsky
(2005)) and Σ its automorphism determined by Σ(yα) = y−α for all α ∈ Nn.

For the agreement with the geometrically defined DT-invariant, we refer to section 7 of Keller (2012).
In physics, an equivalent procedure has been discovered independently, cf. Xie (2012) and the references
given there. It is easy to check that for Q : 1 → 2, the above definition yields the left and right hand
sides of the pentagon identity (4.1) associated with the two maximal green sequences of Figure 1 so that
indeed, the combinatorial DT-invariant EQ equals these two products. One can show that in this case,
the adjoint combinatorial DT-invariant satisfies (DTQ)5 = Id. Below, we will explore some remarkable
generalizations of this example.

5 Examples
5.1 Dynkin quivers
Let Q be an alternating Dynkin quiver, i.e. a simply laced Dynkin diagram endowed with an orientation
such that each vertex is a source or a sink, for example

Q = ~A5 : • ◦oo // • ◦oo // • .

Let i+ be the sequence of all sources ◦ and i− the sequence of all sinks • (in any order). One can show
that in this case, the sequence i = i+i− is maximal green and so is

i ′ = i−i+i− . . .︸ ︷︷ ︸
h factors

,
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• // ◦

�����������
•oo // ◦

�����������

• // ◦
��1111 •oo // ◦

��1111

◦

XX1111

KK���������

��

•oo // ◦

KK���������

XX1111

��

•oo

• // ◦
��

OO

•oo // ◦

OO

��◦

OO

•oo // ◦

OO

•oo

Fig. 2: The quiver ~A4� ~D5

where h is the Coxeter number of the underlying graph of Q. Thus, we have E(i) = E(i ′) and EQ is
the common value. The identity E(i) = E(i ′) is due to Reineke (2010). Using the geometry of the
generalized associahedra of Chapoton et al. (2002), one can show that it is a consequence of the pentagon
identity, cf. Qiu (2011) for another approach. For the adjoint combinatorial DT-invariant, we have

DTh+2
Q = Id.

This is closely related to the original form of the periodicity conjecture of Zamolodchikov (1991) proved
by Fomin and Zelevinsky (2003). We refer to Brüstle et al. (2012) for the study of maximal green se-
quences for more general acyclic quivers.

5.2 Square products of Dynkin quivers

LetQ1 andQ2 be alternating Dynkin quivers andQ = Q1�Q2 their square product as defined in section 8
of Keller (2010). For example, for suitable orientations of A4 and D5, the square product is depicted in
Figure 2. There are no longer sources or sinks in the square product. However, we can consider the
sequence i+ of all even vertices ◦ (corresponding to a pair of sources or a pair of sinks) and the sequence
i− of all odd vertices • (corresponding to a mixed pair). Let

i = i+i−i+ . . . with h factors,
i ′ = i−i+i− . . . with h ′ factors,

where h and h′ are the Coxeter numbers of the Dynkin diagrams underlying the two quivers. One can
check that both of these sequences are maximal green. In particular, the combinatorial DT-invariant
is well-defined and we have EQ = E(i) = E(i ′). It is an open question whether these identities are
consequences of the pentagon identity. One can show (cf. section 5.7 of Keller (2011) or section 8.3.2 of
Cecotti et al. (2010)) that in this case, the adjoint combinatorial DT-invariant satisfies

(DTQ)m = Id, where m =
2(h+ h′)
gcd(h, h′)

.
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5.3 Quivers from reduced expressions in Coxeter groups
If R is an acyclic quiver and w̃ a reduced expression for an element of the Coxeter group associated with
the underlying graph of R, there is a canonical quiver Q associated with the pair (R, w̃), cf. Berenstein
et al. (2005). For example, ifQ isA4 with the linear orientation and w̃ a suitable expression for the longest
element, one obtains the first quiver in (2.3). As shown by Geißet al. (2011), such quivers always admit
maximal green sequences. In the A4-example, such a sequence is given by

7, 8, 9, 10, 4, 5, 6, 2, 3, 1, 7, 8, 9, 2, 3, 1, 7, 8, 4, 7.

Thus, the combinatorial DT-invariant is well-defined. In the above example (and for all members of the
‘triangular’ family it belongs to), the adjoint combinatorial DT-invariant satisfies (DTQ)6 = Id. It is an
open question for which pairs (R, w̃) the invariant DTQ is of finite order.

5.4 Another product construction
The following quiver is obtained as the triangle product (cf. section 8 of Keller (2010)) of a quiver of type
A3 with the quiver appearing in the first column (the arrows marked by 2 are double arrows).

1 2 3

4 5 6

7 8 9

//

2

OO

2
����

������

//

2

OO

2
����

������
2

OO
//

OO

������������

//

OO

~~~~~~~~~~~~ OO
// //

It admits the maximal green sequence 3, 6, 9, 2, 5, 8, 1, 4, 7, 3, 6, 9, 2, 5, 8, 3, 6, 9. In this case, the invariant
DTQ is of infinite order.
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Particles jumping on a cycle: a process on
permutations and words

Svante Linusson
Department of mathematics, KTH - Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Abstract. I will describe recent research regarding the so called TASEP on a cycle. It describes permutations (or more
generally words) on a cycle, where a small number may jump over a larger number. This process has been studied
for reasons coming both from algebraic combinatorics and probability. It exhibits a number of very nice structural,
probabilistic and enumerative properties, several of which are still unproved.

Keywords: TASEP, exclusion process, cyclic permutations, cyclic words

Assume we have n particles labeled {1, 2, . . . , n} on a cycle. A particle i can jump to the left if the
particle to the left is labelled j, where j > i. A jump means that i and j switch places. This Markov
chain is an example of a TASEP (Totally asymmetric simple exclusion process). See Figure 1 for the full
Markov chain when n = 3 and all possible jumps occur with the same rate.

321 1/9

2312/9 312 2/9

2131/9 132 1/9

123 2/9

Fig. 1: The cyclic-TASEP Markov chain for n = 3. The stationary probabilities are given in red.
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TASEPs (and other exclusion processes) on a line have been studied intensively in combinatorics in
recent years, see e.g. Duchi and Scheaffer [DS], and Corteel and Williams [CW].

The cyclic TASEP described above when all particles are equally likely to try to jump (i.e. having the
same rate) exhibits many interesting properties. For example it was proved by Ferrari and Martin [FM]
that the stationary probability for the (cyclic) reverse permutation w0 = n...21 is exactly

1∏n
i=1

(
n
i

) .

It was conjectured by Lam [L] that the probability for the (cyclic) identity permutation is

∏n−1
i=1

(
n−1
i

)
∏n
i=1

(
n
i

) ,

which was later proved by Aas [A].
One key ingredient to understanding these probabilities are the multiline queues (MLQ) introduced by

Ferrari and Martin. These are intricate combinatorial objects such that each of them map to a cyclic per-
mutation (or more generally a cyclic word). Let q(π) be the number of MLQs that map to the permutation
π. Then Ferrari and Martin proved that the stationary probability for π is

q(π)∏n
i=1

(
n
i

) .

Hence one way to understand the cyclic TASEP is to study the combinatorics of the MLQs.
I will describe the MLQs in the talk and discuss what is known and present combinatorial conjectures.

I will also discuss the more general case when different particles have different jump rates, see e.g.[AL].
Very interesting positivity properties were conjectured in [LW], some of which now have been proved and
some remain open.

Fig. 2: A large random 4-core, and the limiting piecewise-linear curve.

I will also give some motivation to why this cyclic TASEP is particularly interesting. As Lam [L]
showed, it is connected to the shape of both infinite reduced words in the affine Weyl group Ãn and the
shape of a random n-core partition, i.e. partitions where no hook has length n. Recent unpublished work
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by Ayyer and Linusson proves that the latter turns to a specific piecewise linear form as conjectured by
Lam, see Figure 2.
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Boundaries of branching graphs

Grigori Olshanski
Russian Academy of Sciences, Russia

A branching graph is an infinite graded graph, sometimes with an additional structure. The boundary of
such a graph describes all possible ways of escaping to infinity along ”regular” monotone paths. This no-
tion emerged about 30 years ago in the work of Vershik and Kerov on characters of the infinite symmetric
group. I will survey old and new results related to boundaries of concrete graphs, and state open ques-
tions. The problems here originate from representation theory and probability theory, while the methods
are mainly of combinatorial nature and rely on the theory of symmetric functions and their analogs, such
as supersymmetric and quasisymmetric functions.

Frontières des graphes de branchement

Un graphe de branchement est un graphe gradué infini, muni parfois d’une structure supplémentaire. La
frontière d’un tel graphe décrit toutes les manières possibles d’échapper à l’infini le long des chemins
monotones “ réguliers”. Cette notion a émergé il y a 30 années d’environ dans le travail de Vershik et
Kerov sur les caractères du groupe symétrique infini. Je vais présenter un synthèse des résultats anciens
et nouvaux liés aux frontières des graphes concrets et formuler des questions ouvertes. Les problèmes ici
proviennent de la théorie des représentations et des probabilités, tandis que les méthodes sont principale-
ment de nature combinatoire et sont fondées sur la théorie des fonctions symétriques et leur analogues,
telles que les fonctions supersymétriques et quasisymmétriques.
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Beyond q: special functions on elliptic curves

Eric Rains
Caltech, USA

An important thread in modern representation theory (and combinatorics) is that many important ob-
jects have so- called q-analogues, generalizations depending on a parameter q which reduce to more fa-
miliar objects when q = 1. For instance, the Schur functions (irreducible characters of the unitary group)
have q,t-analogues, namely the famous Macdonald polynomials, and similarly the Koornwinder poly-
nomials are six-parameter q-analogues of the characters of other classical groups. It turns out that many
q-analogues extend further to elliptic analogues, in which q is replaced by a point on an elliptic curve. The
Macdonald/Koornwinder polynomials are no exception; I will describe a relatively elementary approach
to those polynomials and how to modify the approach to obtain an elliptic analogue.
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Recent Progress on the Diameter of
Polyhedra and Simplicial Complexes

Francisco Santos†

Universidad de Cantabria, Santander, SPAIN

We review several recent results on the diameter of polytopes, polyhedra and simplicial complexes, motivated by the
(now disproved, but not quite solved) Hirsch Conjecture.

Keywords: Polyhedra, simplicial complexes, diameter, simplex method

Introduction
The Hirsch Conjecture, understood in a broad sense, asked what is the maximum possible combinatorial
diameter of a convex polyhedron of dimension d and with n facets. Let us denote this number H(n, d).
Although the original conjecture H(n, d) ≤ n − d has been disproved [7, 9], the underlying problem is
still wide open:

• The known counter-examples violate the conjecture only by a constant and small factor (25% in the
case of unbounded polyhedra, 5% for bounded polytopes).

• No polynomial upper bound is known for H(n, d). All we know is H(n, d) ≤ nlog d+2 (quasi-
polynomial bound of Kalai and Kleitman [6]) and H(n, d) ≤ 2d−3n (linear bound in fixed dimen-
sion by Larman [8]).

Some recent attempts of settling this question go by looking at the problem in the more general context
of pure simplicial complexes: What is the maximum diameter of the dual graph of a simplicial (d − 1)-
sphere or (d− 1)-ball with n vertices?

Here a simplicial (d − 1)-ball or sphere is a simplicial complex homeomorphic to the (d − 1)-ball or
sphere. These complexes are necessarily pure (all the maximal simplices have the same dimension).
The dual graph of a pure simplicial complex is the graph whose vertices are the maximal simplices
(a. k. a. facets) and whose edges correspond to adjacent facets. We can also remove the sphere/ball
condition and ask the same for all pure simplicial complexes. Some recent results in this direction are:

†Email: francisco.santos@unican.es. Work of F. Santos is supported in part by the Spanish Ministry of Science
(MICINN) through grant MTM2011-22792 and by the MICINN-ESF EUROCORES programme EuroGIGA - ComPoSe IP04 -
Project EUI-EURC-2011-4306.
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• For arbitrary pure simplicial complexes the diameter can be exponential, in the order of n2d/3 [5].

• For complexes in which every star is strongly connected (that is, the dual graph of every star is
connected) the Kalai-Kleitman and the Larman bounds stated above hold, essentially with the same
proofs. These complexes have been called normal or locally strongly connected in the literature.

• For complexes which are not only normal but also flag (meaning that the complex is the clique
complex of its 1-skeleton), the original Hirsch bound holds [1].

Going back to polytopes, there is also a recent bound in terms of n, d and the maximum determinant
of the system defining the polytope [2] and a recent construction of polytopes which fail to have the
k-decomposability property, for arbitrarily large k [4].
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Razumov-Stroganov–type Correspondences
in the 6-Vertex and O(1) Dense Loop Model

Andrea Sportiello
CNRS, and LIPN, Université Paris 13, Sorbonne Paris Cité

Razumov and Stroganov conjectured in 2001 a correspondence between the enumerations of Fully-Packed Loops
(FPL) on a square domain (a version of the 6-Vertex Model), refined according to the link pattern, and the ground-
state components of the Hamiltonian in the periodic XXZ Quantum Spin Chain at ∆ = −1/2, a realisation of the
O(1) Dense Loop Model (DLM) on a cylinder.

Extensions have been considered later on. In particular, Di Francesco in 2004 suggested a one-parameter generaliza-
tion: on the ‘DLM side’, the ground state of the Hamiltonian H is replaced by the one of the Scattering Matrix, S(t);
on the ‘FPL side’, one also considers the refinement on the last row.

Similar conjectures existed for two large families of domains: those with a ‘hidden dihedral symmetry’, or with
‘vertical symmetry’, respectively. Both the basic and extended conjectures have been proven, in the dihedral case, by
L. Cantini and the speaker, while the vertical cases are open.

We present the subject, its implications on Algebraic Combinatorics and Statistical Mechanics, and how the foremen-
tioned conjectures have been proven.
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A combinatorial method to find sharp lower
bounds on flip distances

Lionel Pournin1,2,3
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2LIAFA, Université Paris Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13, France
3EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract. Consider the triangulations of a convex polygon with n vertices. In 1988, Daniel Sleator, Robert Tarjan,
and William Thurston have shown that the flip distance of two such triangulations is at most 2n−10 when n is greater
than 12 and that this bound is sharp when n is large enough. They also conjecture that “large enough” means greater
than 12. A proof of this conjecture was recently announced by the author. A sketch of this proof is given here, with
emphasis on the intuitions underlying the construction of lower bounds on the flip distance of two triangulations.

Résumé. En 1988, Daniel Sleator, Robert Tarjan et William Thurston ont montré que la distance, en nombre de flips,
de deux triangulations d’un polygone convexe de n sommets est au plus 2n − 10 quand n est supérieur à 12. Ils
ont également montré que cette borne est atteinte si n est suffisamment grand et ils conjecturent qu’il existe deux
triangulations à distance 2n − 10 dès que n est supérieur à 12. Un preuve de cette conjecture a récemment été
proposée par l’auteur. Une ébauche de cette preuve est présentée ici qui explique de manière intuitive les méthodes
permettant d’obtenir des bornes inférieures sur la distance, en nombre de flips, de deux triangulations.

Keywords: Triangulations, Flip-graph, Rotation distance, Binary tree, Associahedra

1 Introduction
Consider a convex polygon π with n vertices. For convenience, π will be identified with the set of its
vertices. An edge of π is a subset of π with two elements. A triangulation of π is a maximal set of
pairwise non-crossing edges of π. The elements of a triangulation will be referred to as its edges.

According to this definition, a triangulation T of π contains every boundary edge of π. All the other
edges of T will be called its interior edges. Note that an interior edge ε of T is the diagonal of a quadri-
lateral q whose four boundary edges belong to T . Replacing ε within T by the other diagonal, say ς , of
quadrilateral q results in another triangulation T/ε of π:

T/ε = [T\{ε}] ∪ {ς}.

This operation is called a flip. While working on the dynamic optimality conjecture [7], Daniel Sleator,
Robert Tarjan, and William Thurston have shown that, when n is greater than 12, one can transform any
triangulation of π into any other triangulation of π by performing at most 2n − 10 flips [8]. In other
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words, the flip distance of two triangulations of π is at most 2n− 10 when n is greater than 12. It is also
proven in [8] that when n is “large enough”, there exist pairs of triangulations of π whose flip distance
is precisely 2n − 10. Unfortunately their proof does not give an hint on how large n should be, and they
propose the following conjecture: there exist pairs of triangulations of π whose flip distance is precisely
2n− 10 whenever n is greater than 12.

While the upper bound obtained by Daniel Sleator, Robert Tarjan, and William Thurston follows from
an easy combinatorial argument, they use constructions in hyperbolic space to prove the existence of
pairs of triangulations at maximal flip distance. They comment that the role played by hyperbolic geom-
etry in this problem, whose statement is purely combinatorial, may seem mysterious and they ask for a
combinatorial proof of their existence result. Three years ago, Patrick Dehornoy made progress toward
such a proof by finding a lower bound of the form 2d − O(

√
d) on the diameter of the d-dimensional

associahedron, using combinatorial arguments [1].
A solution to these two open problems has been announced recently [6]. The purpose of this extended

abstract is to sketch this proof with emphasis on the underlying intuitions.
Two triangulations at maximal flip distance are described in Section 3. The proof that these triangu-

lations are indeed maximally distant is sketched in Section 4, and the combinatorial methods used to do
so (i.e. general equalities and inequalities on flip distances) are presented in Section 2. In some places,
proofs are omitted. In these cases, the interested reader is referred to [6] for the complete argument.

2 Equalities and inequalities on flip distances
In this section, several types of equalities and inequalities on flip-distance are obtained. Consider two
triangulations U and V of a same polygon. A path of length k between U and V is a sequence of k flips
that transforms U into V . A such path is called minimal when its length is minimal among all the path
between U and V . Hereafter, the length of any minimal path between U and V is denoted by δ({U, V }).
Part (a) of Lemma 3 from [8] states that, if an edge of V can be introduced in U by some flip, then there is
a minimal path from U to V that begins with this flip. This result is generalized by the following theorem,
whose straightforward proof can be found in [6]:

Theorem 1 Let T , U , and V be three triangulations of a convex polygon. If:

i. T is found along a minimal path between U and V ,

ii. An edge of T can be introduced in U by some flip,

then there is a minimal path from U to V that begin with this flip.

This theorem makes it possible to prescribe the first flip along some minimal path between two trian-
gulations. It can also be thought of as an equality on flip distances. Indeed, if ε is the edge removed by
the flip mentioned in the second statement of Theorem 1, then the conclusion of this theorem is:

δ({U, V }) = δ({U/ε, V }) + 1.

Theorem 1 can further be generalized to sequences flips [6]. This generalization will be replaced here
by less complete as in the proof of Theorem 6 thereafter. The proof sketched in Section 4 will also require
inequalities that compare flip distances in the case of two polygons with different numbers of vertices. In
order to obtain such inequalities, one can use the contraction operation that is now introduced.
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"

v

Fig. 1: A (minimal) path between the two triangulations of the hexagon whose interior edges form a triangle (top
row), and the sequence of triangulations resulting from the contraction of edge ε to vertex v (bottom row). The framed
triangulations in the bottom row are identical, and one of them can be removed from the sequence.

Let ε be some boundary edge of a given polygon π. Contracting ε in a triangulation T of π consists in
replacing the two vertices of ε by a single point v within every edge of T\{ε}. If v belongs to conv(ε),
then this operation results in a triangulation of (π\ε) ∪ {v} (a proof of this is given in [6]). It is assumed
in the following that v inherits the labels of the two vertices of ε, and can be referred to indifferently using
these two labels. This convention on the labeling of the contracted polygon is slightly different from that
in [6]. Denote by Tgε the triangulation obtained by contracting edge ε in a triangulation T of π.

The effect of contractions on a path between two triangulations is now described using an example.
Denote by U and V the two triangulations of the hexagon whose interior edges form a triangle. A path
between U and V is shown in the top of Figure 1. Contracting the boundary edge ε at the top of the
hexagon (as shown in the figure) in every triangulation along this path results in the sequence of tri-
angulations of the pentagon depicted in the bottom of the figure. It can be seen that two consecutive
triangulations in this sequence are either identical or connected by a flip. Now observe that the second
and the third triangulation in the second row are identical precisely because the two corresponding tri-
angulations in the top row are connected by a flip that modifies the triangle containing edge ε. In other
words, the length of the path between Ugε and Vgε resulting from the contraction is less than the length
of the path between U and V by the number of flips along this path that modify the triangle containing ε.
According to the following theorem, proven in [6], this property holds in general:

Theorem 2 Let U and V be two triangulations of a same polygon and ε a boundary edge of this polygon.
If ψ is a path of length k between U and V , then there exists a path of length k − j between Ugε and
Vgε, where j is the number of flips along path ψ that modify the triangle containing edge ε.

Consider a pair P of triangulations of a polygon π and a boundary edge ε of π. Theorem 2 provides
a convenient way to obtain inequalities between the flip distances of P and of Pgε. Call ϑ(P, ε) the
maximal number of flips that modify the triangle containing ε along any minimal path between the two
elements of P . The following corollary is a direct consequence of Theorem 2:

Corollary 1 Let P be a pair of triangulations of a polygon π. If ε is a boundary edge of π then:

δ(P ) ≥ δ(Pgε) + ϑ(P, ε).

This corollary provides lower bounds on δ(P ) that depend on ϑ(P, ε). The remainder of the section is
dedicated to finding a lower bound on ϑ(P, ε).
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Fig. 2: Triangulations U (left) and V (right) depicted according to the requirements of Theorem 3, and triangulation
T (center) used in the proof of this theorem. The dotted line shows that edge {b} ∪ λ({a, b}, U) is replaced by edge
{a, c} in triangulation T by some flip along a minimal path from U to V .

Let T be a triangulation of a polygon π and ε a boundary edge of π. Call a and b the two vertices of ε.
Denote by c the vertex of π so that {a, c} and {b, c} are two edges of T . In other words, a, b, and c are the
three vertices of the triangle in T that contains edge ε. The link of ε in T , denoted by λ(ε, T ) hereafter, is
the set {c}. The following theorem is borrowed from [6]:

Theorem 3 Let U and V be two triangulations of a polygon π. If a, b, and c three vertices of π so that:

i. {a, b} and {b, c} are boundary edges of π and {a, c} belongs to V ,

ii. λ({a, b}, U) and λ({b, c}, U) are distinct subsets of π\{a, c},
then ϑ({U, V }, {a, b}) and ϑ({U, V }, {b, c}) are not both less than 2.

Proof: Consider three vertices a, b, and c of π. Assume that {a, b} and {b, c} are boundary edges of
π and that {a, c} is an edge of V . As a consequence, triangle {a, b, c} is found in triangulation V .
Further assume that λ({a, b}, U) and λ({b, c}, U) are distinct subsets of π\{a, c}. It follows that the two
edges {a, b} and {b, c} are contained in two distinct triangles of U whose unique common vertex is b.
Triangulations U and V are depicted in the left and in the right of Figure 2 in this case.

Now assume that ϑ({U, V }, {a, b}) ≤ 1. Since the triangles in U containing {a, b} and {b, c} are
distinct, edge {a, b} cannot be contained in the same triangle in U and in V . Hence, there is exactly one
flip that modifies the triangle containing {a, b} along any minimal path from U to V . Consider such a
path ψ, and call T the triangulation in which this flip is performed along path ψ. Since there is only one
such flip along path ψ, this flip necessarily replaces edge {b} ∪ λ({a, b}, U) by edge {a, c} as shown in
the center of figure 2, where the latter edge is depicted as a dotted line. As λ({a, b}, U) and λ({b, c}, U)
are distinct, then the triangle containing edge {b, c} must have been modified at least once along path ψ
before T is reached. Moreover, the flip performed in T also modifies the triangle containing edge {b, c}.
As a consequence, the triangle containing edge {b, c} is modified at least twice along path ψ, which shows
that ϑ({U, V }, {b, c}) is not less than 2. 2

Theorem 1, Corollary 1 and Theorem 3 are the basic building blocks of the combinatorial method used
in Section 4 to obtain sharp lower bounds of flip distances. While they need to be generalized to allow for
a rigorous proof of the desired result (see [6]), such generalizations will not be given here. Intuition on
how the proof works will be provided instead using the results presented above.
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Fig. 3: Triangulations W−
n (left) and W+

n (right) depicted when n is greater than 8.

3 A pair of triangulations at maximal distance
Let π be a convex polygon with n vertices labeled clockwise from 0 to n− 1. Consider the triangulations
W−n and W+

n of π depicted in Figure 3 depending on the parity of n. It is shown in [6] that these two
triangulations have flip distance 2n − 10 when n is greater than 12. As can be seen in the figure, W−n
contains three interior edges incident to vertex n − 1. A such set of edges will be referred to as a comb
with three teeth at vertex n−1. TriangulationW−n has another comb at vertex bn/2c−1 with three or four
teeth depending on the parity of n. Triangulation W+

n contains a comb with four teeth at vertex 0, and
another comb at vertex bn/2cwith three or four teeth depending on the parity of n. The remaining interior
edges of W−n and W+

n form a zigzag (i.e. a simple path whose vertices of edges belong to “opposite”
sides of the polygon) that connects the two combs contained in these triangulations. One can see in Figure
3 that the size of these zigzags depends on n. When n is equal to 9, the polygon is precisely large enough
to contain the two combs. In this case, the combs have a common tooth, and the zigzag disappears. For
this reason, the above description of W−n and W+

n , and their representation in Figure 3 are only valid
when n is greater than 8.

The definition of W−n and W+
n given in [6] is more general. In particular, it is valid whenever n is

greater than 2. Obviously, when 3 ≤ n ≤ 8, the combs found in these triangulations lose teeth, or even
disappear. For these small values of n, though, W−n and W+

n keep a number of important properties that
are needed in the proof. Triangulations W−n and W+

n are sketched in Figure 4 when 4 ≤ n ≤ 8. If n
is equal to 3, both triangulations shrink to a single triangle, and for this reason, they are omitted in the
figure. For any n greater than 2, denote:

An = {W−n ,W+
n }.

When 3 ≤ n ≤ 12, the flip distance of pair An can be easily found using a computer program or a
mathematical proof. In particular, the flip distances reported in the following table are obtained in [6]
using the methods presented in Section 2, and their generalizations:

n 3 4 5 6 7 8 9 10 11 12
δ(An) 0 1 2 4 5 7 8 10 12 14

One can see in this table that δ(An) is greater than 2n − 10 when 3 ≤ n ≤ 8 and equal to this value
when 9 ≤ n ≤ 12. Using the results of the previous section, a recursive lower bound on δ(An) will be
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Fig. 4: Triangulations W−
n (left) and W+

n (right) depicted when 4 ≤ n ≤ 8.

obtained in the next section for any n > 12. This lower bound together with the values of δ(An) reported
in the above table will produce the desired result.

4 Sketch of the proof
It can be seen in Figures 3 and 4 that contracting edge {n − 2, n − 1} in triangulations W−n and W+

n

results in pair An−1, up to a relabeling of the vertices. Note that this observation holds whenever n is
greater than 3. Hence, one obtains the following result as a consequence of Corollary 1:

Theorem 4 Let n be an integer greater than 3, if ϑ(An, {n− 2, n− 1}) ≥ 2,

δ(An) ≥ δ(An−1) + 2.

Assuming that the inequality δ(An) ≥ δ(An−1) + 2 holds in general for any n greater than 3, the
desired result immediately follows. Unfortunately, this inequality is only obtained under a rather strong
condition, that is the existence of a minimal path between W−n and W+

n that modifies at least twice the
triangle containing edge {n− 2, n− 1}. In fact, such a minimal path does not necessarily exist. In order
to overcome this difficulty, other contractions will be considered.

Observe, for instance, that the contraction considered in Theorem 4 can be iterated. If n is greater than
4, contracting edge {n− 2, n− 1} in An and then edge {0, 1} will result in pair An−2, up to a relabeling
of the vertices. This observation remains true if one exchanges the order of the two contractions: first
contracting edge {0, 1} and then edge {n− 2, n− 1} in An still results in a pair of triangulations whose
flip-distance is δ(An−2). It can be seen in Figures 3 and 4 that the triangle containing edge {n−2, n−1}
is not the same in triangulations W−n g{0, 1} and W+

n g{0, 1}. Note that this observation holds whenever
n is greater than 5. Hence, at least one flip modifies this triangle in any minimal path between these two
triangulations and, as a consequence, Corollary 1 yields:

δ(Ang{0, 1}) ≥ δ(An−2) + 1.
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Fig. 5: Sketch of the proof of Theorem 9. An arc of weight w from a pair P to a pair Q represents the inequality
δ(P ) ≥ δ(Q) + w obtained under some condition. These conditions are omitted in this sketch but can be found in
the statements of the corresponding theorems.

Combining this inequality with the inequality obtained invoking Corollary 1 for the contraction of
{0, 1} in pair An results in the following theorem:

Theorem 5 Let n be an integer greater than 5, if ϑ(An, {0, 1}) ≥ 3,

δ(An) ≥ δ(An−2) + 4.

As was the case with Theorem 4, the inequality provided by Theorem 5 is subject to an (even stronger)
condition involving the existence of a particular path between W−n and W+

n . Again, nothing tells us
that such a path exists. For this reason, the condition complementary to the requirements of Theorems 4
and 5 will have to be investigated. Before going any further, consider Figure 5, where the main proof is
sketched using a tree. In this figure, each arc corresponds to an inequality obtained under some condition.
The inequality corresponding to an arc of weight w from a pair P to a pair Q is:

δ(P ) ≥ δ(Q) + w.

Hence, the arcs from An to An−1 and from An to An−2 respectively correspond to Theorems 4 and
5. Since these two inequalities are obtained under the condition that particular paths exist between W−n
and W+

n , the third arc originating at pair An in Figure 4 will be considered under the complementary
condition. Observe that this arc has two ends. This is due to the fact that the inequality corresponding to
this arc relates δ(An) with either δ(Bn−1) or δ(Cn−1). The two pairs of triangulations Bn and Cn can be
defined for any integer n greater than 8 as:

Bn = {Y −n , Y +
n } and Cn = {X−n , Y +

n },

where Y −n , Y +
n , and X−n are depicted in Figure 6. Triangulation Y −n is depicted using solid lines in the

left of the figure. It contains two combs at vertices 3 and dn/2e−1. The comb at vertex 3 always has three
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Fig. 6: Triangulation Y −
n (left) and Y +

n (right) shown in solid lines when n is greater than 8. Triangulation X−
n ,

obtained by flipping edge {1, 3} in Y −
n is depicted using dotted lines (left).

teeth, and the other comb has four teeth if n is even, and only three is n is odd. The remaining interior
edges of the triangulation form a zigzag that connects the two combs. Note that when n is equal to 9 or
to 10, the zigzag disappears as the two combs become adjacent. Triangulation X−n is obtained by flipping
edge {1, 3} in triangulation Y −n , which is sketched using dotted lines in the left of Figure 6. Observe that
this flip removes the comb at vertex 3. Triangulation Y +

n is shown in the right side of the figure. As can
be seen, Y +

n can be built by appropriately relabeling the vertices of W−n . In particular Y +
n contains a

comb with three teeth at vertex 0 and another comb at vertex dn/2e whose number of teeth (three or four)
depends on the parity of n.

Observe that pairsBn and Cn are also defined when 7 ≤ n ≤ 8 in [6]. This is needed for the computer-
free proof that δ(An) ≥ 2n − 10 when 3 ≤ n ≤ 12. This result has already been given above without a
proof (see [6] for one). It is therefore not necessary to define Bn and Cn when 7 ≤ n ≤ 8 here. For the
same reason, the following theorem is stated here when n is greater than 9 rather than when n is greater
than 7. It gives the inequality corresponding to the leftmost arc originating at pair An in Figure 5:

Theorem 6 Let n be an integer greater than 9. If ϑ(An, {n − 2, n − 1}) ≤ 1 and ϑ(An, {0, 1}) ≤ 2,
then there exists P ∈ {Bn−1, Cn−1} so that δ(An) = δ(P ) + 3 and ϑ(P, {0, 1}) ≤ 1.

Proof (sketch): Assume that ϑ(An, {n − 2, n − 1}) ≤ 1 and that ϑ(An, {0, 1}) ≤ 2. Observe that
{n− 2, n− 1} is not contained in the same triangle in W−n and W+

n . Hence, there is exactly one flip that
modifies the triangle containing this edge along any minimal path from W−n to W+

n . Consider such a path
ψ, and call T the triangulation resulting from the flip along this path that modifies the triangle containing
{n−2, n−1}. Since there is only one such flip along path ψ, this flip necessarily replaces edge {3, n−1}
by edge {0, n− 2}. In particular, T contains edges {0, n− 2} and {0, 3}. As a first consequence, all the
boundary edges of quadrilateral {0, 1, 2, 3} are contained in T and one diagonal of this quadrilateral (i.e.
{0, 2} or {1, 3}) must also be contained in T . Denote by ε this diagonal.

It can be seen in Figure 3 that edges {0, 2}, {0, 3}, and {0, n − 2} can be introduced in W−n by
successively flipping {1, n− 1}, {2, n− 1}, and {3, n− 1} in this order. Reversing the order of the first
two flips, this sequence will introduce edges {1, 3}, {0, 3}, and {0, n− 2} instead. This proves that edges
ε, {0, 3}, and {0, n−2} can be introduced inW−n by performing three consecutive flips. As shown above,
these three edges are contained in T . Hence, it follows from Theorem 1 that this sequence of three flips is
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Fig. 7: Triangulation U (center) used in the proof of Theorem 6, and shown here depending on ε. In this proof,
triangulation U is reached after three flips along a path φ from W−

n to W+
n .

the beginning of some minimal path φ from W−n to W+
n .

The triangulation U obtained after the three first flips along path φ is shown in Figure 7 depending
on whether ε is equal to {0, 2} or to {1, 3}. One can see that U and W+

n both contain the triangle with
vertices 0, n− 1, and n− 2. Hence, it follows from part (b) of Lemma 3 from [8] that this triangle will be
contained in every triangulation found along any minimal path between U and W+

n . As a consequence,
one can remove the two boundary edges of π incident to vertex n − 1 from U and from W+

n without
changing the flip distance. The pair of triangulations thus obtained is either equal to Bn−1 (if ε = {1, 3})
or to Cn−1 (if ε = {0, 2}). Observe in particular that relabeling the vertices of π is unnecessary here.

Denote P = Bn−1 if ε = {1, 3} and P = Cn−1 if ε = {0, 2}. It has been proven that:

δ(An) = δ({U,W+
n }) + 3 and δ({U,W+

n }) = δ(P ).

Combining these two equalities yields δ(An) = δ(P ) + 3. Now observe that exactly one of the first
three flips along path φ modifies the triangle that contains in {0, 1}. Since a minimal path between W−n
and W+

n can be built from the three first flips along path φ and from any minimal path between the two
elements of P , one obtains:

ϑ(An, {0, 1}) ≥ ϑ(P, {0, 1}) + 1.

As ϑ(An, {0, 1}) ≤ 2, this proves that ϑ(P, {0, 1}) is not greater than 1. 2

Two more inequalities have to be obtained, corresponding to the arcs originating at pairs Bn−1 and
Cn−1 in Figure 5. According to the statement of Theorem 6, these two inequalities can be proven under
the assumption that the image by ϑ(P, {0, 1}) is at most 1, where P is the pair at the origin of the arc. The
proofs of these inequalities rely on Theorem 3 and its generalizations. Here, only the simplest of these
inequalities will be proven. Moreover, instead of using the generalization of Theorem 3 found in [6], the
proof will be sketched in an alternative, more intuitive way.

Theorem 7 Let n be an integer greater than 11. If ϑ(Cn, {0, 1}) ≤ 1, then δ(Cn) ≥ δ(An−4) + 7.
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Fig. 8: The first three contractions used in the proof of Theorem 7. The arrows indicate the successive contractions
of edges {1, 2}, ε, and ς in triangulations X−

n and Y +
n . The vertex resulting from the contraction of edge {1, 2} is

labeled by 1 and by 2 following the convention introduced in Section 2. The vertex labeled x is either equal to 3 or to
4, and the vertex labeled y is either equal to 3, to 4, or to 5 depending on ε and ς .

Proof (sketch): Assume that ϑ(Cn, {0, 1}) ≤ 1. First observe that successively contracting edges {1, 2},
{n− 3, n− 2}, {n− 2, n− 1}, and {0, n− 1} in pair Cn results in pair An−4 up to a renumbering of the
vertices. It can be seen in Figure 6 that, in pair Cn, vertices 0, 1, and 2 satisfy the conditions on a, b, and
c required by Theorem 3. As ϑ(Cn, {0, 1}) ≤ 1, then according to this theorem,

ϑ(Cn, {1, 2}) ≥ 2. (1)

The two elements of pair Cng{1, 2} are depicted in the left of Figure 8. It can be seen in this figure
that the links of edges {n − 3, n − 2}, {n − 2, n − 1}, and {0, n − 1} in triangulation X−n g{1, 2} are
respectively {5}, {4}, and {3}. This is a consequence of n being greater than 11. Indeed, recall that X−n
has a comb at vertex dn/2e− 1 (see Figure 6). Since n is greater than 11 then 5 ≤ dn/2e− 1 and, among
the three edges {n−3, n−2}, {n−2, n−1}, and {0, n−1}, only the first one is possibly placed between
two teeth of the comb at vertex dn/2e − 1. Hence, the three links are necessarily distinct.

Now observe that contracting edges {n − 3, n − 2}, {n − 2, n − 1}, and {0, n − 1} in any order in
this pair always result in An−4 (recall that when an edge is contracted to a vertex, this vertex inherits the
labels of the two vertices of the contracted edge). It can be proven, using Theorem 3, that one of these
orders provides the desired inequality. Indeed, it can be seen in the left of Figure 8 that, in pairCng{1, 2},
vertices 0, n− 1, and n− 2 satisfy the conditions on a, b, and c in the statement of this theorem. Hence,
the following inequality holds, either with ε = {0, n− 1} or with ε = {n− 2, n− 1}:

ϑ(Cng{1, 2}, ε) ≥ 2. (2)

The two elements of pair Cng{1, 2}gε are depicted in the center of Figure 8. In this figure, x is either
equal to 3 (if ε = {n − 2, n − 1}) or to 4 (if ε = {0, n − 1}). It can be seen that, in pair Cng{1, 2}gε,
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vertices 0, n − 2, and n − 3 satisfy the conditions on a, b, and c in the statement of Theorem 3. Hence,
the following inequality holds, with ς = {0, n− 2} or with ς = {n− 3, n− 2}:

ϑ(Cng{1, 2}gε, ς) ≥ 2. (3)

The two elements of pair Cng{1, 2}gεgς are depicted in the right of Figure 8. Here, y is equal to 3,
to 4, or to 5 depending on the values of ε and ς . Now recall that n is greater than 11. As a consequence,
y < n − 4. It can be seen in Figure 8 that, in this case, the triangle containing edge {0, n − 3} is not
the same in the two elements of pair Cng{1, 2}gεgς . Hence, every minimal path between these two
triangulations modifies at least once the triangle containing edge {0, n− 3}, and therefore:

ϑ(Cng{1, 2}gεgς, {0, n− 3}) ≥ 1. (4)

Invoking four times Corollary 1 and using (1), (2), (3), and (4) yields the desired inequality. 2

Observe that Theorem 7 can be proven using a generalization of Corollary 1, which avoids invoking
this corollary four times (see [6]). The above alternative proof explains how this generalization works,
and may help the interested reader in understanding the argument used in [6]. Note in particular, that the
sequence of contractions used in the above proof is built so that every contraction “eats up” at least two
flips, except for the last one.

Using a similar argument, one obtains the following result, that corresponds to the arc originating at
pair Bn−1 in Figure 5. The reader will find a rigorous proof of this result in [6]. Note that this proof
requires five successive contractions instead of just four.

Theorem 8 Let n be an integer greater than 11. If ϑ(Bn, {0, 1}) ≤ 1 then δ(Bn) ≥ δ(An−5) + 9.

This theorem provides the last of the inequalities corresponding to the arcs shown in Figure 5. Recall
that every inequality is obtained under some condition. The conditions associated to the different arcs
originating at a given pair in Figure 5 exhaust all possibilites, though, and one can read this figure as the
following recursive lower bound on δ(An):

Theorem 9 For any integer n greater than 12,

δ(An) ≥ min(δ(An−1) + 2, δ(An−2) + 4, δ(An−5) + 10, δ(An−6) + 12).

This result can be used to prove inductively that δ(An) ≥ 2n + O(1) for every integer n greater than
2. Now recall that, as mentioned in Section 3, the flip-distance of W−n and W+

n is at least 2n− 10 when
3 ≤ n ≤ 12. Hence, one obtains that δ(An) ≥ 2n+ 10 for every integer n greater than 2. Further recall
that, as shown in [8] using a combinatorial argument, the flip distance of two such triangulations is at most
2n− 10 when n is larger than 12. One therefore obtains the following result:

Theorem 10 For any integer n greater than 12,

i. The flip distance of triangulations W−n and W+
n is exactly 2n− 10,

ii. The flip graph of a polygon with n vertices has diameter 2n− 10.
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5 Conclusion
The method given in [6] to obtain sharp lower bounds on flip distances has been presented here with
emphasis on the underlying intuitions, sometimes at the expense of completeness. The reader is referred
to [6] for a complete and rigorous argument. This method provides a way to solve the two open problems
formulated in [8]. In other words, it can be used to obtain a combinatorial proof that the flip-graph (i.e.
the graph whose vertices are the triangulations, and whose edges are the flips) of a polygon with n vertices
has diameter 2n − 10 when n is greater than 12. A direct consequence of this result is that the diameter
of the d-dimensional associahedron [4] is 2d− 4 for all integers d greater than 9.

It is natural to ask whether this method, or a variation of it, could be applied to the several generaliza-
tions of triangulations and flips that can be found in the literature. One of these generalizations consists in
considering the regular triangulations of a finite, but otherwise arbitrary d-dimensional set of points (see
for instance [2] and [3]). In this case, though, the operation of edge contraction may not be possible [6].
Another way to generalize the problem is to consider multitriangulations and their flips [5]. It has been
shown that edge contraction is possible in this case. Unfortunately, Lemma 3 from [8] may not carry over
to multitriangulations, and one may need alternative arguments.

Finally, it was suggested by a referee of this paper that the methods presented above could also be used
to obtain the maximal distance of centrally symmetric triangulations, under the modified flip operation
that either exchanges two diameters of the polygon or simultaneously exchanges the diagonals of two
centrally symmetric quadrilaterals. In this case, contractions should affect two opposite edges of the
polygon. Solving this problem would, in addition, provide the diameters of cyclohedra.
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Wenjie Fang1†

1Ecole normale supérieure, 45 rue d’Ulm, F-75230 Paris Cedex 05, France

Abstract. Constellations and hypermaps generalize combinatorial maps, i.e. embedding of graphs in a surface, in
terms of factorization of permutations. In this paper, we extend a result of Jackson and Visentin (1990) on an enu-
merative relation between quadrangulations and bipartite quadrangulations. We show a similar relation between
hypermaps and constellations by generalizing a result in the original paper on factorization of characters. Using this
enumerative relation, we recover a result on the asymptotic behavior of hypermaps of Chapuy (2009).

Résumé. Les constellations et les hypercartes généralisent les cartes combinatoires, i.e. les plongements de graphe
dans une surface, en terme de factorisation de permutations. Dans cet article, nous généralisons un résultat de Jackson
et Visentin (1990) sur une relation énumérative entre les quadrangulations ordinaires et biparties. Nous montrons une
relation similaire entre les constellations et les hypercartes en généralisant un résultat de factorisation de caractère.
Avec cette relation, on retrouve un résultat sur le comportement asymptotique des hypercartes dans Chapuy (2009).

Keywords: combinatorial maps, constellations, enumeration, character factorization

1 Introduction
Maps are combinatorial structures describing an embedding of a graph in a surface. They can be encoded
as factorizations of identity in the symmetric group. Enormous efforts have been devoted to the enumer-
ation of these combinatorial objects and their variants, see e.g. [LZ04] and references therein. In [JV99],
the following strikingly simple enumerative relation was established:

E
(g)
n,D =

g∑

i=0

4g−iB(g−i,2i)
n,D = 4gB

(g,0)
n,D + 4g−1B(g−1,2)

n,D + . . . .

Here, for D ⊆ N+, we define B(g,k)
n,D as the number of rooted bipartite maps with every face degree of

the form 2d and d ∈ D, whose vertices are colored black and white, of genus g with n edges such that
k black vertices are marked. The number E(g)

n,D is the counterpart for rooted (non necessarily bipartite)
maps with the same restriction on face degrees, without the marking part. In the planar case, we have
E

(0)
n,D = B

(0,0)
n,D , meaning that every planar map of all faces with even degree is always bipartite. This is
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not true for higher genera. Consider a rectangular grid of size m × n on a torus. It is a map of all faces
with even degree, but it is bipartite if and only if m,n are both even, which is not always true.

The special case on D = {2} had been proved in [JV90a], and the maps in concern are quadrangu-
lations, which gives this special case the name quadrangulation relation. It had been then extended to
D = {p} in [JV90b]. Despite its nice form, the combinatorial meaning of the quadrangulation rela-
tion remains unclear, though some effort is done in [JV99] to explore properties of the possible hinted
bijection.

In enumeration of maps, there is a recurrent phenomenon: results on bipartite maps can often be gen-
eralized to constellations (see e.g. [BMS00, BDFG04, PS02]). In the same spirit, we will generalize the
quadrangulation relation to m-constellations and m-hypermaps. As an example, our result in the case
m = 3 gives rise to the following relation (c.f. Corollary 4.3):

H
(g)
n,3,D =

g∑

i=0

32g−2i
2i∑

l=0

2l+1 − (−1)l+1

3
C

(g−i,l,2i−l)
n,3,D .

Here, C(g,a,b)
n,3,D is the number of rooted 3-constellations with n hyperedges, and hyperface degree restricted

by the set D, with a vertices of color 1 and b vertices of color 2 marked. The number H(g)
n,3,D is the

counterpart for rooted 3-hypermaps without markings. See Section 2.1 for the definitions of these notions.
This simple relation suggests a more general bijection for constellations and hypermaps than the one
implied by the quadrangulation relation. Finally, we recover a relation between the asymptotic behavior
of m-constellations and m-hypermaps in [Cha09], which can be seen as an asymptotic version of our
relation.

Given a partition µ ` n, we note mµ the partition obtained by multiplying every part in µ by m. In
[JV90a], the quadrangulation relation was obtained using a factorization of irreducible characters of the
symmetric group on partitions of the form [(mk)n] using a notion calledm-balanced partition. A general-
ization to partitions of the form 2λ is stated in [JV99]. In this paper, we will present a generalization of this
character factorization to partitions of the form mλ (Theorem 3.1). This result can be derived from two
different perspectives, algebraic or combinatorial. We then give our generalization of the quadrangulation
relation in Corollaries 4.2, 4.3 and 4.4 using our generalized character factorization.

2 Preliminaries
2.1 Constellations and hypermaps
A map M is an embedding of a connected graph G, with possibly multi-edges or loops, into a closed,
connected and orientable surface S such that all faces, i.e. components of S \M , are topological disks.
Maps are defined up to orientation-preserving homeomorphisms. We define the genus g of a map to be
that of the surface it is embedded into. We thus have the Euler relation |V | − |E|+ |F | = 2− 2g.

We now define two special kinds of maps following [LZ04, Cha09]. Anm-hypermap is a map with two
types of faces, hyperedges with degreem and hyperfaces with degree divisible bym, such that every edge
is located between a hyperedge and a hyperface. Each edge then is naturally oriented with the hyperedge
on its right. Conventionally hyperedges are colored black and hyperfaces white. An m-constellation is
an m-hypermap with additional condition that all vertices are colored with an integer between 1 and m
in a fashion that every hyperedge has its vertices colored by 1, 2, . . . ,m in clockwise order. A map with
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faces of even degree can be considered as a 2-hypermap by replacing every edge with a 2-hyperedge, and
a bipartite map can be considered as a 2-constellation in the same way. A rooted m-hypermap is an m-
hypermap with a distinguished edge. Rooted m-constellations are similarly defined, with the convention
that the starting vertex of the root in natural orientation has color 1. We consider only rootedm-hypermaps
and rooted m-constellations hereinafter.

Figure 1 provides an example of planar 3-hypermap. It can also be considered as a planar 3-constellation.
More generally, every planarm-hypermap can have its vertices colored to meet the additional condition to
be an m-constellation, that is to say, every planar m-hypermaps can be considered as an m-constellation.
However, this is not necessarily true for higher genera, in which m-hypermaps do not necessarily have a
coloring that conforms with the additional condition to be an m-constellations.

Fig. 1: Example of planar 3-hypermap.

We use x to denote a sequence of variables x1, . . . , xm, and [xi ← f(i)] to denote the substitution of x
by xi = f(i). We defineH(x, y, z, u) to be the ordinary generating series of rootedm-hypermaps, with x
marking the number of vertices, y the number of hyperfaces, z the number of hyperedges and u twice the
genus. Similarly, we define C(x, y, z, u) to be the ordinary generating series of rooted m-constellations,
except that with xi we mark the number of vertices with color i.

A k-factorization of identity (or simply k-factorization) in Sn is a family of k permutations (σ1, . . . , σk)
in Sn such that σ1 · · ·σk = id. Such a factorization is transitive if the family acts transitively on
{1, . . . , n}. There is a 1-to-(n − 1)!mn−1 correspondence between rooted m-hypermaps with n hy-
peredges and transitive 3-factorizations in Smn with cycle lengths in σ1 all divisible by m. Similarly,
rooted m-constellations with n hyperedges are in 1-to-(n − 1)! correspondence with transitive (m + 1)-
factorizations in Sn (c.f. [LZ04]). By noting Cλ the set of permutations with cycle type λ and l(π) the
number of cycles in a permutation π, we define the following generating series:

RH(x, y, z) =
∑

n≥1

zn

n!

∑

στπ=idmn
π∈Cmµ

xl(σ)yl(π), RC(x, y, z) =
∑

n≥1

zn

n!

∑

σ1...σmπ=idn

yl(π)
m∏

i=1

x
l(σi)
i .

By taking the logarithm of the corresponding generating series, we can pass from general k-factorizations
to transitive ones. We can now easily verify the following relations concerning generating series H,C of
m-hypermaps and m-constellations, and RH , RC defined above:

H(x, y, z, u) = mu2
(
z
∂

∂z
(logRH)

)
(xu−1, yu−1,

1

m
zum−1), (1)
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C(x, y, z, u) = u2
(
z
∂

∂z
(logRC)

)
([xi ← xiu

−1], yu−1, zum−1). (2)

In an algebraic point of view, the series RH and RC are much easier to manipulate than H and C. To
investigate the link between m-hypermaps and m-constellations, we will start by analyzing RH and RC
using the group algebra of the symmetric group.

2.2 Characters and group algebra of the symmetric group
The group algebra CSn of the symmetric group Sn is a complex vector space with a canonical basis
indexed by elements of Sn and a multiplication of elements extending distributively the group law of Sn.
For θ a partition of n (noted as θ ` n), we define Kθ to be the formal sum of elements in Sn with cycle
type θ. The elements (Kθ)θ`n form a basis of the center of CSn. According to the classic representation
theory (c.f. [Ser77]), the center of CSn has another basis (Fθ)θ`n formed by orthogonal idempotents.

For a partition λ = [1m12m2 . . .] ` n in which i appears mi times, we note zλ =
∏
i>0 i

mimi!, and we
know that n!z−1λ is the number of permutations of cycle type λ. The change of basis between (Kθ)θ`n
and (Fθ)θ`n is thus given by Fλ = fλ(n!)−1

∑
θ`n χ

λ
θKθ and Kλ = n!z−1λ

∑
θ`n χ

θ
λ(fθ)−1Fθ, where

χλθ is the irreducible character indexed by λ evaluated on the conjugacy class of cycle type θ, and fλ the
dimension of the irreducible representation indexed by λ (c.f. [Sta99]).

We now consider the coefficient ofKθ inKαKβ(1) · · ·Kβ(k) for arbitrary partitions θ, α, β(1), . . . , β(k)

of n. This coefficient, noted as [Kθ]KαKβ(1) · · ·Kβ(k) , can be interpreted as the number of factorizations
πτ1 · · · τkσ = id with π and τi of cycle type α and β(i) respectively, and σ a fixed permutation of cycle
type θ. With this interpretation, using the change of basis between (Kθ)θ`n and (Fθ)θ`n given above and
the fact that (Fθ)θ`n are orthogonal idempotents, we can rewrite RH and RC as following.

RH(x, y, z) =
∑

n≥1

zn

n!

∑

λ`mn,µ`n
n!z−1λ z−1mµx

l(λ)yl(mµ)
∑

θ`mn

1

fθ
χθλχ

θ
[mn]χ

θ
mµ (3)

RC(x, y, z) =
∑

n≥1

zn

n!

∑

λ(1),...,λ(m),µ`n

(
m∏

i=1

x
l(λ(i))

i

)
yl(µ)

∑

θ`n
(fθ)(1−m)z−1µ χθµ

k∏

i=1

n!z−1
λ(i)χ

θ
λ(i) (4)

To further simplify the expressions above, we define the rising factorial function x(n) = x(x +

1) · · · (x+ n− 1) for n ∈ N. For a partition θ, we define the polynomial Hθ(x) as
∏l(θ)
i=1(x− i+ 1)(θi).

Using this notation, we give the following expressions of RH and RC .

Proposition 2.1 We can rewrite RH and RC as follows:

RH(x, y, z) =
∑

n≥1

zn

n!

∑

µ`n
m−l(µ)z−1µ yl(µ)

∑

θ`mn
χθ[mn]χ

θ
mµHθ(x),

RC(x, y, z) =
∑

n≥1

zn

n!

∑

µ`n
yl(µ)z−1µ

∑

θ`n
fθχθµ

(
m∏

i=1

Hθ(xi)

)
.
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This proposition comes from direct application of the following lemma (Lemma 3.4 in [JV90a]) to (3)
and (4). We omit the proof of this lemma here. Readers can refer to the original paper for a proof.

Lemma 2.1 We have the following equality:

n!
∑

α`n
z−1α χθαx

l(α) = fθHθ(x).

We can see that the characters in RH in Proposition 2.1 are all evaluated at the partition [mn] and
partitions of the form mµ with µ ` n. In [JV90a], χθ[mn] is proved to have an expression as a product of
smaller characters, which is a crucial step towards the quadrangulation relation. This factorization is also
presented in [JK81] (Section 2.7) under the framework of p-core and abacus display of a partition. By
extending this approach in the next section to all partitions of the form mµ, we will give a similar relation
between m-hypermaps and m-constellations in Section 4.

3 Factorization of characters evaluated at mλ
In this section we give a result on factorizing χθ[mλ] into smaller characters. Our result can be viewed in
both algebraic and combinatorial perspectives.

• Algebraic approach
This approach exploits algebraic relations between symmetric functions and characters χθλ (c.f.
[Sta99]). More specifically, to evaluate χθ[mλ], we want to use the Jacobi-Trudi identity to express
Schur function sθ as a determinant D in homogeneous functions, then extract the coefficient of
power sum function pmλ from D. Due to properties of symmetric functions, many terms in the
determinant are irrelevant in extraction of coefficient, and thus we only need to evaluate a simpler
determinantD′ that has a block structure which can be revealed by them-decomposition of θ intro-
duced in [JV90a]. Since each block has a similar structure to D itself, we obtain the factorization
desired. Though the basic ingredients already exist in [JV90a, JV99], our presentation here stresses
more on the block structure of the reduced Jacobi-Trudi determinant, rendering our proof much
more conceptual and accessible.

• Combinatorial approach
This approach gives a purely combinatorial interpretation of our factorization of characters using
ribbon tableaux and the boson-fermion correspondence. With the Murnaghan-Nakayama rule (c.f.
[Sta99]), character evaluation can be expressed using enumeration of signed ribbon tableaux. By
coding partitions as infinite lattice paths, we define a notion of m-split for partitions θ with an
empty m-core, and we establish a bijection between ribbon tableaux of shape θ and of content mλ
to tuples of smaller ribbon tableaux whose shapes are exactly components in the m-split of θ. With
the boson-fermion correspondence and the infinite wedge space (c.f. [Oko01]), we also verify that
the sign incorporates well in our bijection for the desired factorization. This approach is also related
to the notion of p-core and p-quotient (c.f. [JK81]).

These two approaches are essentially two sides of the same coin, since we can show that the notions of
m-decomposition and m-split coincide. For consistency of style, we only present the algebraic approach
here. For details on the combinatorial approach, readers can refer to a future full version of this paper.
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Before proceeding to our algebraic approach, we try to convey our idea about character factorization
via an example. Consider the partition θ = (6, 6, 4, 4, 4, 3, 3). To evaluate χθ3λ for arbitrary λ, we want to
extract the coefficient of the power sum function p3λ in det(D) for D below provided by the Jacobi-Trudi
identity for the Schur function sθ. Terms in D are all homogeneous symmetric functions (hk)k∈N.

D =




h6 h7 h8 h9 h10 h11 h12
h5 h6 h7 h8 h9 h10 h11
h2 h3 h4 h5 h6 h7 h8
h1 h2 h3 h4 h5 h6 h7
h0 h1 h2 h3 h4 h5 h6
0 0 h0 h1 h2 h3 h4
0 0 0 h0 h1 h2 h3




Since the power sum functions (pk)k>0 are algebraically independent, when extracting the coefficient
of p3λ in D, we only need to consider hk with k divisible by 3. We can thus ignore a lot of terms in D,
leading to evaluating det(D1) on a simpler matrix D1, which can be arranged with permutation of rows
and columns to be a block matrix D2 as below.

D1 =




h6 0 0 h9 0 0 h12
0 h6 0 0 h9 0 0
0 h3 0 0 h6 0 0
0 0 h3 0 0 h6 0
h0 0 0 h3 0 0 h6
0 0 h0 0 0 h3 0
0 0 0 h0 0 0 h3




, D2 =




h6 h9 h12 0 0 0 0
h0 h3 h6 0 0 0 0
0 h0 h3 0 0 0 0
0 0 0 h6 h9 0 0
0 0 0 h3 h6 0 0
0 0 0 0 0 h3 h6
0 0 0 0 0 h0 h3




We can see that each block of D2 has a similar form to the matrix in Jacobi-Trudi identity, up to some
variable substitutions. From the block structure we can clearly observe a factorization of χθ3λ in 3 parts.

To achieve a rigorous description of the phenomenon presented in the example above, we start with the
following definition of the m-decomposition of a partition and of m-balanced partitions, first introduced
in [JV90a]. Though apparently artificial and technical at first sight, the notion of m-balanced partition
can arise from the boson-fermion correspondence in a very natural way in our combinatorial perspective,
which will be discussed in a future full version of this paper.

Definition 3.1 (m-decomposition of a partition, m-balanced partition) Given m,n ∈ N, let α be a
partition of mn. For j from 1 to m, we define the following objects:

• the set Pj = {i | αi − i+ j ≡ 0 mod m},

• mj the cardinality of Pj ,

• pj,1, . . . , pj,mj as a list of elements of Pj with increasing order,

• α(j) = (α
(j)
1 , . . . , α

(j)
mj ) for all j, where α(j)

i = i− 1 + (αpj,i − pj,i + j)/m for all i from 1 to mj .
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We can see that the sets Pj form a set partition of {1, 2, . . . , l(α)}.We note αm = (α(1), . . . , α(m)) the
m-decomposition of α, and we define two permutations πα, π′α defined explicitly as follows:

πα =

(
1 2 . . . m1 m1 + 1 . . . l(α)
p1,1 p1,2 . . . p1,m1

p2,1 . . . pk,mk

)
,

π′α =

(
1 2 3 . . . . . . . . . l(α)
1 k + 1 2k + 1 . . . 2 k + 2 . . .

)
.

If for all j we have mj = d(l(α)− j + 1)/me, we say that α is m-balanced.

In our running example, we verify that the partition θ = (6, 6, 4, 4, 4, 3, 3) is 3-balanced, and its 3-
decomposition is ((2, 1, 1), (2, 2), (1, 1)). The permutations πθ and π′θ are respectively row and column
permutation used to go from matrix D1 to D2.

Given a partition λ ` n, we note |λ| = n the weight of λ. For an m-balanced partition α ` mn with
αm = (α(1), . . . , α(m)), we have

∑m
i=1 |α(i)| = n. Conversely, given a list of partitions (α(1), . . . , α(m))

with
∑m
i=1 |α(i)| = n, we can recover an m-balanced partition α ` mn. There is a bijection between

m-balanced partitions of mn and lists of m partitions that sums in total to n (c.f. Proposition 4.2, 4.3, 4.5
and Lemma 4.6 in [JV90a]).

The m-decomposition of a partition introduces the following factorization of the polynomial Hθ(x).

Lemma 3.1 For θ ` n, we have

Hθ(x) = mmn
m∏

i=1

m−1∏

j=0

Hθ(i)

(
x− i+ j + 1

m

)
.

Proof: We define Hθ
m(x) =

∏l(θ)
i=1(x − mi + m)(mθi). By direct computation, we easily verify that

Hθ
m(x) = mmn

∏m−1
j=0 Hθ(

x+j
m ). We then obtain our result by applying Lemma 4.11 of [JV90a], which

states that Hθ(x) =
∏m
i=1H

θ(i)

m (x− i+ 1), to the equality we just verified. 2

For an alternative proof that is purely combinatorial, readers can refer to the combinatorial perspective
of character factorization in a future full version of this paper.

In [JV90a], the notion ofm-decomposition is used to give a factorization of irreducible characters of the
symmetric group evaluated at “semiregular” partitions, i.e. partitions of the form [(mk)n], into characters
in smaller symmetric groups. We now extend this result to partitions of the form mλ. The theorem and
its proof we are giving below stress more on the block structure of the reduced Jacobi-Trudi determinant.
As a result, not only is our result more general, but our proof is also more conceptual.

Theorem 3.1 (Main result on character factorization) Let m,n be two natural numbers, and λ ` n,
θ ` mn be two partitions. We consider partitions as multisets and we denote multiset sum by ]. If θ is
m-balanced, we have

χθmλ = zλ sgn(πθπ
′
θ)

∑

λ(1)]···]λ(m)=λ

m∏

i=1

χθ
(i)

λ(i)z
−1
λ(i) .

If θ is not m-balanced, χθmλ = 0.
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Proof: According to the Jacobi-Trudi identity, we can express χθλ as a determinant.

χθλ = zλ[pλ]sθ = zλ[pλ] det(hθi−i+j)l(θ)×l(θ)

= zλ
∑

σ∈Sl(θ)
sgn(σ)[pλ]

l(θ)∏

i=1

hθi−i+σ(i)

= zλ
∑

λ(1)]···]λ(l(θ))=λ

∑

σ∈Sl(θ)
sgn(σ)

l(θ)∏

i=1

[pλ(i) ]hθi−i+σ(i)

In the case of χθmλ, we have

χθmλ = zmλ
∑

λ(1)]···]λ(l(θ))=λ

∑

σ∈Sl(θ)
sgn(σ)

l(θ)∏

i=1

[pmλ(i) ]hθi−i+σ(i).

We notice that [pλ]hk 6= 0 implies λ ` k. Consider the matrix M = (hθi−i+j)i,j in the Jacobi-Trudi
identity. Since we always take the coefficient [pmλ(i) ]hθi−i+σ(i) when computing the determinant of M ,
we can ignore entries hk in M when k is not a multiple of m. As the entry at (i, j) is hθi−i+j in M , we
consider only the entries hθi−i+j where θi − i+ j is a multiple of m, which is equivalent to i ∈ Pj in the
m-decomposition of θ. If we permute the columns of M with πθ and the rows of M with π′θ, we obtain a
block diagonal matrix M ′. For M ′ to have full rank, we need θ to be m-balanced. As a result, when θ is
not m-balanced, M ′ does not have full rank, and we have χθmλ = 0 since the determinant is zero.

We now analyze the case where θ is m-balanced. We can see that, in the sum over σ, only those σ
with i ∈ Pσ(i) mod m for every i have a non-zero contribution. In the perspective of the block diagonal
matrix M ′, they are exactly permutations compatible with its blocks. It is now natural to see σ as a list of
permutations over each Pi, and to decompose the sum as a product of sums over permutations of each Pi,
which is equivalent to evaluating det(M ′) as the product of determinants of blocks in M ′.

We notice that, for λ = [1t12t2 . . .] ` n, we have [pλ]hn = z−1λ , and zmλ =
∏
i≥1(mi)titi! =

ml(λ)
∏
i≥1(i)titi! = ml(λ)zλ. With the equality above, we now conclude our proof by the promised

decomposition.

χθmλ = zmλ sgn(πθπ
′
θ)

∑

λ(1)]···]λ(l(θ))=λ
σ1∈Sm1 ,...,σm∈Smm

m∏

j=1

(
sgn(σj)

mj∏

i=1

[pmλ(i) ]h
m(θ

(j)
i −i+σj(i))

)

= zmλ sgn(πθπ
′
θ)

∑

λ(1,1)]···]λ(m,mm)=λ
σ1∈Sm1

,...,σm∈Smm

m∏

j=1

(
sgn(σj)

mj∏

i=1

m−mj [pλ(i,j) ]h
θ
(j)
i −i+σj(i)

)

= zλ sgn(πθπ
′
θ)

∑

λ(1)]···]λ(m)=λ

m∏

i=1

χθ
(i)

λ(i)z
−1
λ(i)

2
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4 Generalization of the quadrangulation relation
In this section, using Theorem 3.1, we establish a relation between m-hypermaps and m-constellations
in arbitrary genus that generalizes the quadrangulation relation. We then recover a result in [Cha09] on
asymptotic behavior of m-hypermaps related to that of m-constellations. We start by showing a link
between the series RH and RC , using Theorem 3.1.

Proposition 4.1 The generating series RH and RC are related by the following equation.

RH(x, y, z) =

m∏

j=1

RC

([
xi ←

x− j + i

m

]
,
y

m
,mmz

)

Proof: We take the expressions of RH and RC from Proposition 2.1. We observe that, in the expression
of RH , we only need to consider those θ which are m-balanced. For θ m-balanced, let (θ(1), . . . , θ(m))
be the m-decomposition of θ, and we have the following equality derived from Theorem 3.1.

χθ[mn]χ
θ
mµ = n!zµ

∑

µ(1)]···]µ(m)=µ

m∏

i=1

fθ
(i)

χθ
(i)

µ(i)

(|θ(i)|)!zµ(i)

We then substitute the equality above and Lemma 3.1 into the expression of RH in Corollary 2.1 to
factorize RH into a product of RC evaluated on different points as follows:

RH(x, y, z)

=
∑

n≥1
(mmz)n

∑

µ`n

( y
m

)l(µ) ∑

θ`mn

∑

µ(1)]···]µ(m)=µ

m∏

i=1


 fθ

(i)

χθ
(i)

µ(i)

(|θ(i)|)!zµ(i)

m−1∏

j=0

Hθ(i)

(
x− i+ j + 1

m

)


=
m∏

j=1

RC

([
xi ←

x− j + i

m

]
,
y

m
,mmz

)
.

2

This link between RH and RC can be translated directly into a link between the series H(x, y, z, u) of
m-hypermaps and the series C(x, y, z, u) of m-constellations, resulting in our main result as follows.

Theorem 4.1 The generating series of m-constellations and m-hypermaps are related by the following
formula:

H(x, y, z, u) = m
m∑

j=1

C

([
xi ←

x+ (i− j)u
m

]
,
y

m
,mm−1z, u

)
.

Proof: This comes directly from a substitution of the equality in Proposition 4.1 into (1) and (2). 2

We note H(g)(x, y, z) = [u2g]H(x, y, z, u) and C(g)(x, y, z) = [u2g]C(x, y, z, u) the generating func-
tions of m-hypermaps and m-constellations of genus g respectively. We can now express the following
corollary concerning the link between m-hypermaps and m-constellations with respect to the genus.
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Corollary 4.1 We have the following relation between the generating series H(g) and C(g):

H(g)(x, y, z) =

g∑

k=0

m2g−2k

m(2k)!

(
m∑

j=1

( m∑

i=1

(i− j) ∂

∂xi

)2k

C(g−k)
)

([xi ← x], y, z).

Proof: We want to compute H(g)(x, y, z) = [u2g]H(x, y, z, u).

[u2g]H(x, y, z, u) = m
m∑

j=1

g∑

k=0

[u2k]C(g−k)
([
xi ←

x+ (i− j)u
m

]
,
y

m
,mm−1z

)

= m

m∑

j=1

g∑

k=0

1

(2k)!

(
∂

∂u

)2k

C(g−k)
([
xi ←

x+ (i− j)u
m

]
,
y

m
,mm−1z

) ∣∣∣∣
u=0

= m

m∑

j=1

g∑

k=0

1

(2k)!

(( m∑

i=1

i− j
m

∂

∂xi

)2k

C(g−k)
)([

xi ←
x

m

]
,
y

m
,mm−1z

)

To obtain the final result, we then simplify the formula above with the fact that each term in C(g) has the
form xv11 · · ·xvmm yf1zf2 with v1 + · · ·+ vm−mf2 + f1 + f2 = 2− 2g, according to the Euler relation. 2

We can further generalize these results. Let D be a subset of N∗. We define (m,D)-hypermaps and
(m,D)-constellations as m-hypermaps and m-constellations with the restriction that every hyperface has
its degree in mD. We note respectively HD(x, y, z, u) and CD(x, y, z, u) their generating functions. We
have the following corollary. We omit its proof here, but we can see that the whole proof mechanism for
Theorem 4.1 transfers directly onto HD(x, y, z, u) and CD(x, y, z, u) with the observation that, in the
proof of Theorem 3.1, if all parts of λ are in mD, then all parts of every λ(i) are in D.

Corollary 4.2 (Main result in the form of series) We have the following equations:

HD(x, y, z, u) = m
m∑

j=1

CD

([
xi ←

x+ (i− j)u
m

]
,
y

m
,mm−1z, u

)

H
(g)
D (x, y, z) =

g∑

k=0

m2g−2k

m(2k)!

(
m∑

j=1

( m∑

i=1

(i− j) ∂

∂xi

)2k

C
(g−k)
D

)
([xi ← x], y, z).

By taking m = 2 and D = {2}, {p} or D arbitrary, we recover the quadrangulation relation and
its extensions in [JV90b] and [JV99] respectively. Though the relation seems to be a bit monstrous at
first glance, it actually has an elegant combinatorial interpretation. We define C(g,a1,...,am−1)

n,m,D to be the
number of rooted m-constellations with n hyperedges, and hyperface degree restricted by the set D, with
ai marked vertices of color i for i from 1 to m − 1. The number H(g)

n,m,D is the counterpart for rooted
m-hypermaps without the marking part. For m = 3 and m = 4, we have the following elegant relations.
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Corollary 4.3 (Generalization of the quadrangulation relation, special case m = 3, 4) For m = 3, 4,
we have

H
(g)
n,3,D =

g∑

i=0

32g−2i
2i∑

l=0

2 · 2l + (−1)l

3
C

(g−i,l,2i−l)
n,3,D ,

H
(g)
n,4,D =

g∑

i=0

42g−2i
∑

l1,l2≥0,l1+l2≤2i

2(3l12l2 + 2l2(−1)l1)

4
C

(g−i,l1,l2,2i−l1−l2)
n,4,D .

We notice that the coefficients are always positive integers. This is not a coincidence. In fact, by
carefully rearranging terms, we can obtain the following more general relation.

Corollary 4.4 (Generalization of the quadrangulation relation, for arbitrary m) With certain coeffi-
cients c(m)

k1,...,km−1
all integral and positive, we have

H
(g)
n,m,D =

g∑

i=0

m2g−2i ∑

k1,...,km−1≥0
k1+···+km−1=2i

c
(m)
k1,...,km−1

C
(g−i,k1,...,km−1)
n,m,D .

A detailed proof can be found in a future full version of this paper. This relation might hint an un-
known combinatorial bijection between m-hypermaps with given genus and some families of decorated
m-constellations with lower genus. It is thus interesting to try to understand the combinatorial meaning
of these coefficients.

According to Theorem 3.1 in [Cha09], the number C(g)
n,m,D = C

(g,0,...,0)
n,m,D of (m,D)-constellations with

n hyperedges without marking grows asymptotically in Θ(n
5
2 (g−1)ρnm,D) when n tends to infinity in

multiples of gcd(D). Using Corollary 4.2, we now give a new proof of Theorem 3.2 of [Cha09] about the
asymptotic behavior of the number of (m,D)-hypermaps.

Corollary 4.5 (Asymptotic behavior of (m,D)-hypermaps) We have the following asymptotic behav-
ior of (m,D)-hypermaps when n tends to infinity in multiples of gcd(D):

H
(g)
n,m,D ∼ m2gC

(g)
n,m,D.

Proof: We observe that, in the second part of Corollary 4.2, for a fixed k, the number of differential
operators applied to C(g−k)

D does not depend on n, and they are all of order 2k. Since in an m-hypermap,
the number of vertices with a fixed color i is bounded by the number of hyperedges n, the contribution of
the term with k = t is O(n

5
2 (g−t−1)+2tρnm,D) = O(n

5
2 (g−1)− 1

2 tρnm,D). The dominant term is therefore

given by the case k = 0, with C(g)
n,m,D = Θ(n

5
2 (g−1)ρnm,D), and we can easily verify the multiplicative

constant. 2

This corollary, alongside with its proof, is a refinement of the asymptotic enumerative results estab-
lished in [Cha09] on the link between m-hypermaps and m-constellations.
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1 Introduction
Our goal in this series of papers (see [LNSSS1, LNSSS2]) is to obtain a uniform construction of tensor
products of one-column Kirillov–Reshetikhin (KR) crystals. As a consequence we shall prove the equality
Pλ(q) = Xλ(q), where Pλ(q) is the Macdonald polynomial Pλ(q, t) specialized at t = 0 and Xλ(q)
is the graded character of a simple Lie algebra coming from tensor products of KR modules. Both the
Macdonald polynomials and KR modules are of arbitrary untwisted affine type. The index λ is a dominant
weight for the simple Lie subalgebra obtained by removing the affine node. Macdonald polynomials
and characters of KR modules have been studied extensively in connection with various fields such as
statistical mechanics and integrable systems, representation theory of Coxeter groups and Lie algebras
(and their quantized analogues given by Hecke algebras and quantized universal enveloping algebras),
geometry of singularities of Schubert varieties, and combinatorics.

Our point of departure is a theorem of Ion [Ion], which asserts that the nonsymmetric Macdonald
polynomials at t = 0 are characters of Demazure submodules of highest weight modules over affine
algebras. This holds for the Langlands duals of untwisted affine root systems (and type A(2)

2n in the case
of nonsymmetric Koornwinder polynomials). Our results apply to the untwisted affine root systems. The
overlapping cases are the simply-laced affine root systems A(1)

n , D(1)
n and E(1)

6,7,8.
It is known [FL, FSS, KMOU, KMOTU, ST, Na] that certain affine Demazure characters (including

those for the simply-laced affine root systems) can be expressed in terms of KR crystals, which motivates
the relation between P and X . For types A(1)

n and C(1)
n , the equality P = X was achieved in [Le2, LeS]

by establishing a combinatorial formula for the Macdonald polynomials at t = 0 from the Ram–Yip
formula [RY], and by using explicit models for the one-column KR crystals [FOS]. It should be noted
that, in types A(1)

n and C(1)
n , the one-column KR modules are irreducible when restricted to the canonical

simple Lie subalgebra, while in general this is not the case. For the cases considered by Ion [Ion], the
corresponding KR crystals are perfect. This is not necessarily true for the untwisted affine root systems
considered in this work, especially for the untwisted non-simply-laced affine root systems.

In this work we provide a type-free approach to the equality P = X for untwisted affine root systems.
Lenart’s specialization [Le2] of the Ram–Yip formula for Macdonald polynomials uses the quantum al-
cove model [LeL1], whose objects are paths in the quantum Bruhat graph (QBG), which was defined and
studied in [BFP] in relation to the quantum cohomology of the flag variety. On the other hand, Naito
and Sagaki [NS1, NS2, NS4, NS5] gave models for tensor products of KR crystals of one-column type in
terms of projections of level-zero Lakshmibai–Seshadri (LS) paths to the classical weight lattice. Hence
we need to establish a bijection between the quantum alcove model and projected level-zero LS paths.

In analogy with [BFP] and inspired by the quantum Schubert calculus of homogeneous spaces [Mi, P]
we define the parabolic quantum Bruhat graph (PQBG), which is a directed graph structure on parabolic
quotients of the Weyl group with respect to a parabolic subgroup. We construct two lifts of the PQBG. The
first lift is from the PQBG to the Bruhat order of the affine Weyl group. This is a parabolic analogue of the
lift of the QBG to the affine Bruhat order [LS], which is the combinatorial structure underlying Peterson’s
theorem [P]; the latter equates the Gromov-Witten invariants of finite-dimensional homogeneous spaces
with the Pontryagin homology structure constants of Schubert varieties in the affine Grassmannian. We
obtain Diamond Lemmas for the PQBG via projection of the standard Diamond Lemmas for the affine
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Weyl group. We find a second lift of the PQBG into a poset of Littelmann [Li] for level-zero weights
and characterize its local structure (such as cover relations) in terms of the PQBG. Littelmann’s poset
was defined in connection with LS paths for arbitrary (not necessarily dominant) weights, but the local
structure was not previously known. The weight poset precisely controls the combinatorics of the level-
zero LS paths and therefore their classical projections, which we formulate directly as quantum LS paths.
Finally, we describe a bijection between the quantum alcove model and the quantum LS paths.

The paper is organized as follows. In Section 2 we prepare the background and define the PQBG.
Section 3 is reserved for the two lifts of the PQBG and the statement of the Diamond Lemmas. In
Section 4 we describe KR crystals in terms of the quantum LS paths and the quantum alcove model in
[LeL1]; we also give simple combinatorial formulas for the energy function. Finally, we conclude in
Section 5 with the results on (nonsymmetric) Macdonald polynomials at t = 0.

Acknowledgments

We would like to thank Thomas Lam for helpful discussions during FPSAC 2012, and Daniel Orr for his
discussions about Ion’s work [Ion]. We used SAGE [Sa] and SAGE-COMBINAT [Sa-comb] to discover
properties about the level-zero weight poset and to obtain some of the pictures in [LNSSS1].

2 Background
2.1 Untwisted affine root datum

Let Iaf = I t {0} (resp. I) be the Dynkin node set of an untwisted affine algebra gaf (resp. its canonical
subalgebra g), Waf (resp. W ) the affine (resp. finite) Weyl group with simple reflections ri for i ∈ Iaf

(resp. i ∈ I), and Xaf = Zδ ⊕⊕i∈Iaf
ZΛi (resp. X =

⊕
i∈I Zωi) the affine (resp. finite) weight lattice.

Let {αi | i ∈ Iaf} be the simple roots, Φaf = Waf {αi | i ∈ Iaf} (resp. Φ = W {αi | i ∈ I}) the
set of affine real roots (resp. roots), and Φaf+ = Φaf ∩⊕i∈Iaf

Z≥0αi (resp. Φ+ = Φ ∩⊕i∈I Z≥0αi)
the set of positive affine real (resp. positive) roots. Furthermore, Φaf− = −Φaf+ (resp. Φ− = −Φ+)
are the negative affine real (resp. negative) roots. Let X∨af = HomZ(Xaf ,Z) be the dual lattice, 〈· , ·〉 :
X∨af × Xaf → Z the evaluation pairing, and {d} ∪ {α∨i | i ∈ Iaf} the dual basis of X∨af . The natural
projection cl : Xaf → X has kernel ZΛ0 ⊕ Zδ and sends Λi 7→ ωi for i ∈ I .

The affine Weyl group Waf acts on Xaf and X∨af by

riλ = λ− 〈α∨i , λ〉αi and riµ = µ− 〈µ , αi〉α∨i ,

for i ∈ Iaf , λ ∈ Xaf , and µ ∈ X∨af . For β ∈ Φaf , let w ∈ Waf and i ∈ Iaf be such that β = wαi. Define
the associated reflection rβ ∈Waf and associated coroot β∨ ∈ X∨af by rβ = wriw

−1 and β∨ = wα∨i .
The null root is the unique element δ ∈ ⊕i∈Iaf

Z>0αi which generates the rank 1 sublattice {λ ∈
Xaf | 〈α∨i , λ〉 = 0 for all i ∈ Iaf}. We have δ = α0 + θ, where θ is the highest root for g. The
canonical central element is the unique element c ∈⊕i∈Iaf

Z>0α
∨
i which generates the rank 1 sublattice

{µ ∈ X∨af | 〈µ , αi〉 = 0 for all i ∈ Iaf}. The level of a weight λ ∈ Xaf is defined by level(λ) = 〈c , λ〉.
Let X0

af ⊂ Xaf be the sublattice of level-zero elements.
We denote by `(w) for w ∈ Waf (resp. W ) the length of w and by l the Bruhat cover. The element

tµ ∈Waf is the translation by the element µ in the coroot lattice Q∨ =
⊕

i∈I Zα∨i .
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2.2 Affinization of a weight stabilizer
Let λ ∈ X be a dominant weight, which is fixed throughout the remainder of Sections 2 and 3. Let
WJ be the stabilizer of λ in W . It is a parabolic subgroup, being generated by ri for i ∈ J , where
J = {i ∈ I | 〈α∨i , λ〉 = 0}. Let Q∨J =

⊕
i∈J Zα∨i be the associated coroot lattice, W J the set of

minimum-length coset representatives inW/WJ , ΦJ ⊃ Φ+
J the set of roots and positive roots respectively,

and ρJ = (1/2)
∑
α∈Φ+

J
α (if J = ∅, then ρJ is denoted by ρ). Define

(WJ)af = WJ nQ∨J = {wtµ ∈Waf | w ∈WJ , µ ∈ Q∨J} , (1)

Φaf+
J = {β ∈ Φaf+ | cl(β) ∈ ΦJ} = Φ+

J ∪ (Z>0δ + ΦJ) , (2)

(W J)af = {x ∈Waf | x · β > 0 for all β ∈ Φaf+
J }. (3)

By [LS, Lemma 10.5] [P], any w ∈ Waf factors uniquely as w = w1w2, where w1 ∈ (W J)af and
w2 ∈ (WJ)af . Therefore, we can define πJ : Waf → (W J)af by w 7→ w1. We say that µ ∈ Q∨ is
J-adjusted if πJ(tµ) = zµtµ with zµ ∈W . Say that µ ∈ Q∨ is J-superantidominant if µ is antidominant
(i.e., 〈µ , α〉 ≤ 0 for all α ∈ Φ+), and 〈µ , α〉 � 0 for α ∈ Φ+ \ Φ+

J .

2.3 The parabolic quantum Bruhat graph
The parabolic quantum Bruhat graph QB(W J) is a directed graph with vertex set W J , whose directed
edges have the form w

α−→ bwrαc for w ∈W J and α ∈ Φ+ \Φ+
J . Here we denote by bvc the minimum-

length representative in the coset vWJ for v ∈W . There are two kinds of edges:

1. (Bruhat edge) w l wrα. (One may deduce that wrα ∈W J .)

2. (Quantum edge) `(bwrαc) = `(w) + 1− 〈α∨ , 2ρ− 2ρJ〉.
If J = ∅, then we recover the quantum Bruhat graph QB(W ) defined in [BFP].

3 Two lifts of the parabolic quantum Bruhat graph
3.1 Lifting QB(W J) to Waf

We construct a parabolic analogue of the lift of QB(W ) to Waf given in [LS].
Let Ω∞J ⊂ Waf be the subset of elements of the form wπJ(tµ) with w ∈ W J and µ ∈ Q∨ J-

superantidominant and J-adjusted. We have Ω∞J ⊂ (W J)af ∩W−af , where W−af is the set of minimum-
length coset representatives in Waf/W . Impose the Bruhat covers in Ω∞J whenever the connecting root
has classical part in Φ \ ΦJ . Then Ω∞J is a subposet of the Bruhat poset Waf .

Proposition 3.1 Every edge in QB(W J) lifts to a downward Bruhat cover in Ω∞J , and every cover in
Ω∞J projects to an edge in QB(W J). More precisely:

1. For any edge bwrαc α←− w in QB(W J), and µ ∈ Q∨ that is J-superantidominant and J-adjusted
with πJ(tµ) = ztµ, there is a covering relation y l x in Ω∞J where

x = wztµ , y = xrα̃ = wrαtχα∨ztµ , α̃ = z−1α+ (χ+ 〈µ , z−1α〉)δ ∈ Φaf− ,

and χ is 0 or 1 according as the arrow in QB(W J) is of Bruhat or quantum type respectively.
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2. Suppose ylx is an arbitrary covering relation in Ω∞J . Then we can write x = wztµ with w ∈W J ,
z = zµ ∈ WJ , and µ ∈ Q∨ J-superantidominant and J-adjusted, as well as y = xrγ with
γ = z−1α+nδ ∈ Φaf , α ∈ Φ+ \Φ+

J , and n ∈ Z. With the notation χ := n− 〈µ , z−1α〉, we have

χ ∈ {0, 1} , γ = z−1α+ (χ+ 〈µ , z−1α〉)δ ∈ Φaf− ;

furthermore, there is an edge wrαz
z−1α←−−− wz in QB(W ) and an edge bwrαc α←− w in QB(W J),

where both edges are of Bruhat type if χ = 0 and of quantum type if χ = 1.

3.2 The Diamond Lemmas
In the following, a dotted (resp. plain) edge represents a quantum (resp. Bruhat) edge in QB(W J),
whereas a dashed edge can be of both types. Given w ∈ W J and γ ∈ Φ+, define z ∈ WJ by rθw =
brθwcz. We now state the Diamond Lemmas for QB(W J). They are proved based on the lift of QB(W J)
to Waf in Proposition 3.1 and the fact that such a lemma holds for any Coxeter group [BB].

Lemma 3.2 Let α ∈ Φ be a simple root, γ ∈ Φ+ \Φ+
J , and w ∈W J . Then we have the following cases,

in each of which the bottom two edges imply the top two edges, and vice versa.

1. In the left diagram we assume γ 6= w−1(α). In both cases we have rαbwrγc = brαwrγc.

rαbwrγc

rαw bwrγc

w

::ttttttt

γ
ddJJJJJJJ
bwrγc−1(α)

ddJJJJJJJJJw−1(α)

::tttttttt γ

rαbwrγc

rαw bwrγc

w

::
γ

ddJJJJJJJ
bwrγc−1(α)

ddJJJJJJJJJw−1(α)

::

γ

(4)

2. Here z is defined as above. We assume γ 6= −w−1(θ) whenever both of the hypothesized edges are
quantum ones. In the left diagram, the dashed edge is a quantum (resp. a Bruhat) edge depending
on 〈γ∨, w−1(θ)〉 being nonzero (resp. zero). In the right diagram, the dashed edge is a Bruhat
(resp. a quantum) edge depending on 〈γ∨, w−1(θ)〉 being nonzero (resp. zero).

brθwrγc

brθwc bwrγc

w

::t
t

t

z(γ)
dd −bwrγc−1(θ)

dd

−w−1(θ)

::tttttttt γ

brθwrγc

brθwc bwrγc

w

::t
t

t

z(γ)
dd −bwrγc−1(θ)

dd

−w−1(θ)

::

γ

(5)

3.3 Lifting QB(W J) to the level-zero weight poset
In [Li], Littelmann introduced a poset related to LS paths for arbitrary (not necessarily dominant) integral
weights. Littelmann did not give a precise local description of it. We consider this poset for level-zero
weights and characterize its cover relations in terms of the PQBG.
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Let λ ∈ X be a fixed dominant weight (cf. Section 2.2 and the notation thereof, e.g.,WJ is the stabilizer
of λ). We view X as a sublattice of X0

af . Let X0
af(λ) be the orbit Wafλ.

Definition 3.3 (Level-zero weight poset [Li]) A poset structure is defined on X0
af(λ) as the transitive

closure of the relation
µ < rβ(µ) ⇔ 〈β∨, µ〉 > 0 ,

where β ∈ Φaf+. This poset is called the level-zero weight poset for λ.

The cover µ l ν = rβ(µ) of X0
af(λ) is labeled by the root β ∈ Φaf+. The projection map cl restricts

to the map cl : X0
af(λ) → Wλ. We identify Wλ ' W/WJ ' W J , and consider QB(W J). Our main

result is the construction of a lift of QB(W J) to X0
af(λ). The proof is based on Lemma 3.2.

Theorem 3.4 Let µ ∈ X0
af(λ) and w := cl(µ) ∈ W J . If µ l ν is a cover in X0

af(λ), then its label
β is in Φ+ or δ − Φ+. Moreover, w → cl(ν) is an up (respectively down) edge in QB(W J) labeled
by w−1(β) ∈ Φ+ \ Φ+

J (respectively w−1(β − δ)), depending on β ∈ Φ+ (respectively β ∈ δ − Φ+).

Conversely, if w wrγ = w′//γ
(respectively w bwrγc = w′//γ

) in QB(W J) for γ ∈ Φ+ \ Φ+
J ,

then there exists a cover µl ν in X0
af(λ) labeled by w(γ) (respectively δ + w(γ)) with cl(ν) = w′.

4 Models for KR crystals and the energy function
4.1 Quantum LS paths
Throughout this section, we fix a dominant integral weight λ ∈ X , and set J :=

{
i ∈ I | 〈α∨i , λ〉 = 0

}
.

Definition 4.1 Let x, y ∈ W J , and let σ ∈ Q be such that 0 < σ < 1. A directed σ-path from y to x is,
by definition, a directed path

x = w0
γ1← w1

γ2← w2
γ3← · · · γn← wn = y

from y to x in QB(W J) such that σ〈γ∨k , λ〉 ∈ Z for all 1 ≤ k ≤ n.

A quantum LS path of shape λ is a pair η = (x ; σ) of a sequence x : x1, x2, . . . , xs of elements in
W J with xu 6= xu+1 for 1 ≤ u ≤ s−1 and a sequence σ : 0 = σ0 < σ1 < · · · < σs = 1 of rational num-
bers such that there exists a directed σu-path from xu+1 to xu for each 1 ≤ u ≤ s−1. Denote by QLS(λ)
the set of quantum LS paths of shape λ. We identify an element η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈
QLS(λ) with the following piecewise linear, continuous map η : [0, 1]→ R⊗Z X:

η(t) =

u−1∑

u′=1

(σu′ − σu′−1)xu′ · λ+ (t− σu−1)xu · λ for σu−1 ≤ t ≤ σu, 1 ≤ u ≤ s,

and set wt(η) =: η(1). Following [Li], we define the root operators ei and fi for i ∈ Iaf = I t {0} as
follows. For η ∈ QLS(λ) and i ∈ Iaf , we set

H(t) = Hη
i (t) := 〈α∨i , η(t)〉 for t ∈ [0, 1],

m = mη
i := min

{
Hη
i (t) | t ∈ [0, 1]

}
;
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in fact, m ∈ Z≤0. If m = 0, then eiη := 0. If m ≤ −1, then we define eiη by:

(eiη)(t) =





η(t) if 0 ≤ t ≤ t0,

ri,m+1(η(t)) = η(t0) + si(η(t)− η(t0)) if t0 ≤ t ≤ t1,

ri,m+1ri,m(η(t)) = η(t) + α̃i if t1 ≤ t ≤ 1,

where
t1 := min

{
t ∈ [0, 1] | H(t) = m

}
,

t0 := max
{
t ∈ [0, t1] | H(t) = m+ 1

}
,

ri, n is the reflection with respect to the hyperplane Hi, n :=
{
µ ∈ R ⊗Z X | 〈α∨i , µ〉 = n

}
for each

n ∈ Z, and

α̃i :=

{
αi if i 6= 0,

−θ if i = 0,
si :=

{
ri if i 6= 0,

rθ if i = 0.

Fig. 1: Root operator ei.

The definition of fiη is similar. The following theorem is one of our main results.

Theorem 4.2 (1) The set QLS(λ) together with crystal operators ei, fi for i ∈ Iaf and weight function
wt, becomes a regular crystal with weight lattice X .

(2) For each i ∈ I , the crystal QLS(ωi) is isomorphic to the crystal basis of W (ωi), the fundamental
representation of level zero, introduced by Kashiwara [Ka].

(3) Let i = (i1, i2, . . . , ip) be an arbitrary sequence of elements of I , and set λi := ωi1 + ωi2 + · · ·+
ωip . There exists a crystal isomorphism Ψi : QLS(λi)

∼→ QLS(ωi1)⊗QLS(ωi2)⊗· · ·⊗QLS(ωip).

Remark 4.3 It is known that the fundamental representation W (ωi) (of level zero) is isomorphic to the
KR module W (i)

1 in the sense of [HKOTT, §2.3] (but for the explicit form of the Drinfeld polynomials of
W (ωi), see [N, Remark 3.3]), and that it has a global crystal basis (see [Ka, Theorem 5.17]). Furthermore,
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the crystal basis of W (ωi) ∼= W
(i)
1 is unique, up to a nonzero constant multiple (see also [NS3, Lemma

1.5.3]); we call it a (one-column) KR crystal. By the theorem above, the crystal QLS(λ) is a model for
the corresponding tensor product of KR crystals.

4.2 Sketch of the proof of Theorem 4.2
First, let us recall the definition of LS paths of shape λ from [Li].

Definition 4.4 For µ, ν ∈ X0
af(λ) with µ > ν (see Definition 3.3) and a rational number 0 < σ < 1, a

σ-chain for (µ, ν) is, by definition, a sequence µ = ξ0 m ξ1 m · · ·m ξn = ν of covers in X0
af(λ) such that

σ〈γ∨k , ξk−1〉 ∈ Z for all k = 1, 2, . . . , n, where γk is the label for ξk−1 m ξk.

Definition 4.5 An LS path of shape λ is, by definition, a pair (ν ; σ) of a sequence ν : ν1 > ν2 > · · · > νs
of elements in X0

af(λ) and a sequence σ : 0 = σ0 < σ1 < · · · < σs = 1 of rational numbers such that
there exists a σu-chain for (νu, νu+1) for each u = 1, 2, . . . , s− 1.

We denote by B(λ) the set of all LS paths of shape λ. We identify an element

π = (ν1, ν2, . . . , νs ; σ0, σ1, . . . , σs) ∈ B(λ)

with the following piecewise linear, continuous map η : [0, 1]→ R⊗Z Xaf :

π(t) =
u−1∑

u′=1

(σu′ − σu′−1)νu′ + (t− σu−1)νu for σu−1 ≤ t ≤ σu, 1 ≤ u ≤ s.

Let B(λ)cl :=
{

cl(π) | π ∈ B(λ)
}

, where cl(π) is the piecewise linear, continuous map [0, 1]→ R⊗ZX
defined by (cl(π))(t) := cl(π(t)) for t ∈ [0, 1]. For η ∈ B(λ)cl and i ∈ Iaf , we define eiη and fiη
in exactly the same way as above. Then it is known from [NS1, NS2] that the same statement as in
Theorem 4.2 holds for B(λ)cl. Thus, Theorem 4.2 follows immediately from the following proposition.

Proposition 4.6 The affine crystals QLS(λ) and B(λ)cl are isomorphic.

This proposition is a consequence of Theorem 3.4. Let us show that if η ∈ QLS(λ), then η ∈ B(λ)cl.
Here, for simplicity, we assume that η = (x, y ; 0, σ, 1) ∈ QLS(λ), and x = w0

γ1← w1
γ2← w2 = y is a

directed σ-path from y to x. Take an arbitrary µ ∈ X0
af(λ) such that cl(µ) = y. By applying Theorem 3.4

to w1
γ2← w2 = y, we obtain a cover ν1 m µ for some ν1 ∈ X0

af(λ) with cl(ν1) = w1. Then, by applying
Theorem 3.4 to x = w0

γ1← w1, we obtain a cover ν m ν1 for some ν ∈ X0
af(λ) with cl(ν) = x. Thus

we get a sequence ν m ν1 m µ of covers in X0
af(λ). It can be easily seen that this is a σ-chain for (ν, µ),

which implies that π = (ν, µ ; 0, σ, 1) ∈ B(λ). Therefore, η = cl(π) ∈ B(λ)cl. The reverse inclusion
can be shown similarly.

4.3 Description of the energy function in terms of quantum LS paths
Recall the notation in Theorem 4.2 (2); for simplicity, we set λ := λi. In [NS5], Naito and Sagaki
introduced a degree function Degλ : B(λ)cl = QLS(λ) → Z≤0, and proved that Degλ is identical to
the energy function [HKOTT, HKOTY] on the tensor product B(ωi1)cl ⊗ B(ωi2)cl ⊗ · · · ⊗ B(ωip)cl =
QLS(ωi1) ⊗ QLS(ωi2) ⊗ · · · ⊗ QLS(ωip) (which is isomorphic to the corresponding tensor product of
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KR crystals; see Remark 4.3) via the isomorphism Ψi. The function Degλ : B(λ)cl → Z≤0 is described
in terms of QB(W J) as follows. For x, y ∈W J let

d : x = w0
β1← w1

β2← · · · βn← wn = y

be a shortest directed path from y to x, and define

wt(d) :=
∑

1≤k≤n such that

wk−1

βk← wk is a down arrow

β∨k .

The value 〈wt(d) , λ〉 does not depend on the choice of a shortest directed path d from y to x, and

Theorem 4.7 Let η = (x1, x2, . . . , xs ; σ0, σ1, . . . , σs) ∈ QLS(λ) = B(λ)cl. Then,

Deg(η) = −
s−1∑

u=1

(1− σu)
〈
λ, wt(du)

〉
, (6)

where du is a shortest directed path from xu+1 to xu.

4.4 The quantum alcove model
The quantum alcove model is a generalization of the alcove model of the first author and Postnikov
[LP1, LP2], which, in turn, is a discrete counterpart of the Littelmann path model [Li]. For the affine
Weyl group terminology below, we refer to [H]. Fix a dominant weight λ. We say that two alcoves are
adjacent if they are distinct and have a common wall. Given a pair of adjacent alcoves A and B, we write

A
β−→ B for β ∈ Φ if the common wall is orthogonal to β and β points in the direction from A to B.

Definition 4.8 [LP1] The sequence of roots (β1, β2, . . . , βm) is called a λ-chain if

A0 = A◦
−β1−→ A1

−β2−→ · · · −βm−→ Am = A◦ − λ

is a shortest sequence of alcoves from the fundamental alcove A◦ to its translation by −λ.

The lex λ-chain Γlex is a particular λ-chain defined in [LP2, Section 4]. Given an arbitrary λ-chain Γ =
(β1, β2, . . . , βm), let ri = rβi and define the level sequence (l1, . . . , lm) of Γ by li = | {j ≥ i | βj = βi} |.
Definition 4.9 [LeL1] A (possibly empty) finite subset J = {j1 < j2 < · · · < js} of {1, . . . ,m} is a
Γ-admissible subset if we have the following path in QB(W ):

1
βj1−→ rj1

βj2−→ rj1rj2
βj3−→ · · · βjs−→ rj1rj2 · · · rjs = κ(J) . (7)

Let AΓ(λ) be the collection of Γ-admissible subsets. Define the level of J ∈ AΓ(λ) by level(J) =∑
j∈J− lj , where J− ⊆ J corresponds to the down steps in Bruhat order in (7).

Theorem 4.10 There is an isomorphism of graded classical crystals Ξ : AΓlex(λ)→ QLS(λ).
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The map Ξ is the following forgetful map. Given the path (7), based on the structure of Γlex we select
a subpath, and project its elements under W → W/Wλ where Wλ is the stabilizer of λ in W , thereby
obtaining a quantum LS path. The inverse map is more subtle, and is based on the so-called tilted Bruhat
theorem of [LNSSS1]; this is a QBG analogue of the minimum-length Deodhar lift [De] W/Wλ →W .

An affine crystal structure was defined on AΓlex(λ) in [LeL1]. We show that Ξ is an affine crystal
isomorphism, up to removing some f0-arrows from QLS(λ). The remaining arrows are called Demazure
arrows in [ST], as they correspond to the arrows of a certain affine Demazure crystal, cf. [FSS]. Moreover
the above bijection sends the level statistic to the Deg statistic of (6). Thus, we have proved that AΓlex(λ)
is also a model for KR crystals.

In [LeL2], we show that all the affine crystals AΓ(λ), for various Γ, are isomorphic. Making particular
choices in classical types, we can translate the level statistic into a so-called charge statistic on sequences
of the corresponding Kashiwara–Nakashima columns [KN]. In typeA, we recover the classical Lascoux–
Schützenberger charge [LSc]. Type C was worked out in [Le2, LeS], while type B is considered in [BL].

5 Macdonald polynomials
The symmetric Macdonald polynomials Pλ(x; q, t) [M] are a remarkable family of orthogonal polynomi-
als associated to any affine root system (where λ is a dominant weight for the canonical finite root system),
which depend on parameters q, t. They generalize the corresponding irreducible characters, which are re-
covered upon setting q = t = 0. For untwisted affine root systems the Ram–Yip formula [RY] expresses
Pλ(x; q, t) in terms of all subsequences of any λ-chain Γ (cf. Definition 4.8). In [Le2], it was shown that
the Ram–Yip formula takes the following simple form for t = 0:

Pλ(x; q, 0) =
∑

J∈AΓ(λ)

qlevel(J) xwt(J) , (8)

where wt(J) is a weight associated with J . By using the results in Section 4.4, we can write the right-hand
side of (8) as a sum over the corresponding tensor product of KR crystals. It follows that Pλ(x; q, 0) =
Xλ(q). Furthermore, we can express the nonsymmetric Macdonald polynomial Ewλ(x; q, 0), for w ∈W ,
in a similar way to (8), by summing over those J ∈ AΓ(λ) with κ(J) ≤ w (in Bruhat order), where κ(J)
was defined in (7). This formula can be derived both by induction, based on Demazure operators, and
from the Ram–Yip formula (in this case, for nonsymmetric Macdonald polynomials); however, the latter
derivation is more involved than the one of (8), as it uses the transformation on admissible subsets defined
in [Le1, Section 5.1].
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Abstract. We develop a new method for studying the asymptotics of symmetric polynomials of representation–
theoretic origin as the number of variables tends to infinity. Several applications of our method are presented: We
prove a number of theorems concerning characters of infinite–dimensional unitary group and their q–deformations.
We study the behavior of uniformly random lozenge tilings of large polygonal domains and find the GUE–eigenvalues
distribution in the limit. We also investigate similar behavior for Alternating Sign Matrices (equivalently, six–vertex
model with domain wall boundary conditions). Finally, we compute the asymptotic expansion of certain observables
in the O(n = 1) dense loop model.

Résumé. Nous développons une nouvelle méthode pour étudier l’asymptotique des polynômes symétriques d’origine
représentation théorique quand le nombre de variables tend vers l’infini. Plusieurs applications de notre méthode
seront présentées: Nous démontrons un certain nombre de théorèmes concernant les caractères du groupe unitaire
de dimension infinie et leurs q–déformations. Nous étudions le comportement des pavages en losange a distribution
uniforme et aléatoire de grands domaines polygonaux et nous trouvons la distribution des valeurs propres des GUE à la
limite. Nous étudions également le comportement similaire des ASM. Enfin, nous calculons l’expansion asymptotique
de certains paramètres observables en O(n = 1) modèle de la boucle dense.

Keywords: Schur functions, asymptotics, GUE, ASM, infinite-dimensional unitary group, dense loop model, lozenge
tilings

1 Introduction
In this article we study the asymptotic behavior of symmetric functions as the number of variables tends
to infinity. The functions of interest originate in representation theory but have interpretations in combi-
natorics and statistical mechanics. In this extended abstract we focus on the Schur functions, but most of
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our results hold in a greater generality, e.g. for the characters of the symplectic and orthogonal groups,
BCn characters.

The [rational] Schur function sλ(x1, . . . , xn) is a symmetric Laurent polynomial in variables x1, . . . ,
xn parameterized by N–tuple of integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ) (we call such N–tuples signatures,
they from the set GTN ) and given by Weyl’s character formula as

sλ(x1, . . . , xN ) =
det
[
x
λj+N−j
i

]N
i,j=1∏

i<j(xi − xj)
.

Here we study the asymptotic behavior of the following normalized symmetric polynomials

Sλ(x1, . . . , xk;N, 1) =
sλ(x1, . . . , xk,

N−k︷ ︸︸ ︷
1, . . . , 1)

sλ(1, . . . , 1︸ ︷︷ ︸
N

)
(1)

Sλ(x1, . . . , xk;N, q) =
sλ(x1, . . . , xk, 1, . . . , q

N−k−1)

sλ(1, . . . , qN−1)
(2)

for some q > 0. Here λ = λ(N) is allowed to vary with N , k is any fixed number and x1, . . . , xk are
complex numbers, which may or may not vary together with N , depending on the context.

The asymptotic analysis of expressions (1), (2) is important because of the various applications in
representation theory, statistical mechanics and probability, including:

• Convergence of (1) for any k and any fixed x1, . . . , xk with |xi| = 1 to some limit and identification
of this limit can be put in representation–theoretic framework as the approximation of indecompos-
able characters of infinite–dimensional unitary group U(∞) by normalized characters of unitary
groups U(N), the latter problem was first studied by Vershik and Kerov [VK].

• Convergence of (2) for any k and any fixed x1, . . . , xk is similarly related to the quantization of
characters of U(∞), see [G].

• Asymptotic behavior of (1) can be put in the context of Random Matrix Theory as the study of
Harish–Chandra-Itzykson–Zuber integral

∫

U(N)

exp(Trace(AUBU−1))dU, (3)

where A is a fixed Hermitian matrix of finite rank and B = B(N) is an N ×N matrix changing in
a regular way as N →∞. This problem was thoroughly studied by Guionnet and Maı̈da [GM].

• (1) can be interpreted as the expectation of a certain observable in the probabilistic model of uni-
formly random lozenge tilings of planar domains. The asymptotical analysis of (1) asN →∞ with
xi = exp(yi/

√
N) and fixed yi gives a direct way to prove the local convergence of random tilings

to a distribution of random matrix origin — GUE–corners process. Informal argument explaining
that such convergence should hold was suggested earlier by Okounkov and Reshetikhin [OR1].
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• When λ is the double staircase Young diagram with 2N rows λ(2N) = (N − 1, N − 1, N −
2, N − 2, . . . , 1, 1, 0, 0), then (1) gives the expectation of a certain observable for the uniformly
random configurations of the six–vertex model with domain wall boundary conditions, equivalently,
Alternating Sign Matrices. Asymptotic behavior N → ∞ with xi = exp(yi/

√
N) and fixed yi

gives a way to study the local limit of this model near the boundary, equivalently, the positions of
1s and −1s in ASMs near the edges.

• For the same staircase λ the expression involving (1) with k = 4 and Schur polynomials replaced by
the characters of symplectic group is related to the boundary-to-boundary current for the completely
packed O(n = 1) model, see [GNP]. The asymptotic (now with fixed xi not depending on N )
gives the limit behavior of this current, significant for the understanding of this critical model. The
problem of finding the asymptotic behavior was presented by Jan de Gier during the MSRI program
on Random Spatial Processes and it is solved in the present paper.

We develop a new unified approach to the study of the asymptotics of Schur functions (1), (2) (and
also for more general symmetric functions like symplectic characters and polynomials corresponding to
the root system BCn), which gives a way to answer all of the above limit questions. There are 3 main
ingredients of our method:

1. We find a simple contour integral representations for the normalized Schur polynomials (1), (2)
with k = 1, i.e. for

sλ(x, 1, . . . , 1)

sλ(1, . . . , 1)
and

sλ(x, 1, . . . , qN−2)

sλ(1, . . . , qN−1)
, (4)

and also for more general symmetric functions of representation–theoretic origin.

2. We study the asymptotics of the above contour integrals using the steepest descent method.

3. We find the formulas expressing (1), (2) as k × k determinant of expressions involving (4), and
combining these formulas with the asymptotics of (4) compute the limits of (1), (2).

In the rest of this abstract we will state our asymptotic results and then explain in more detail how
they are applied to solve the limit problems listed above. Full details, background and a complete list of
references can be found in our 67-page long paper by the same name.

2 Method and asymptotic results
The main ingredient of our approach to the asymptotic analysis of symmetric functions is the following
integral formula.

Theorem 2.1 . Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ), and let x be a complex number other than 0 and 1 , then

Sλ(x;N, 1) =
sλ(x, 1N−1)

sλ(1N )
=

(N − 1)!

(x− 1)N−1

1

2π
√
−1

∮

C

xz
∏N
i=1(z − (λi +N − i))

dz, (5)

where the contour C encloses all the singularities of the integrand.
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We also prove various generalizations of formula (5), omitted here for brevity: one can replace 1s by ge-
ometric series 1, q, q2, . . . , Schur functions can be replaced with characters of symplectic group or, more,
generally, with multivariate Jacobi polynomials. In all these cases a normalized symmetric function is
expressed as a contour integral with integrand being the product of elementary factors. The only excep-
tion is the most general case of Jacobi polynomials, where we have to use certain hypergeometric series.
Similar formula appears in [CPZ] and [HJ].

Applying tools from complex analysis to formula (5), mainly the method of steepest descent, we com-
pute the limit behavior of (1) for k = 1 under different convergence regimes for λ, as described below.

Suppose that there exists a function f(t) for which the vector (λ1(N)/N, . . . , λN (N)/N) converges
to (f(1/N), . . . , f(N/N)) pointwise as N → ∞. Let R1, R∞ denote the corresponding norms of the
difference of vectors (λj(N)/N) and f(j/N)):

R1(λ, f) =
N∑

j=1

∣∣∣∣
λj(N)

N
− f(j/N)

∣∣∣∣ , R∞(λ, f) = sup
j=1...,N

∣∣∣∣
λj(N)

N
− f(j/N)

∣∣∣∣ .

We also introduce the function F(w) defined as

F(w) =

∫ 1

0

ln(w − f(t)− 1 + t)dt. (6)

Proposition 2.2 Suppose that f(t) is piecewise-continuous,R∞(λ(N), f) is bounded andR1(λ(N), f)/N
tends to zero as N →∞, then we have for any fixed y ∈ R \ {0}

lim
N→∞

lnSλ(N)(e
y;N, 1)

N
= yw0 − F (w0)− 1− ln(ey − 1),

where w0 is a root of F ′(w) = y (when y is real then w is real also).

Remark 1. This proposition holds for any real y and in many cases when y is complex under some
mild technical assumptions on F(w) which will not be discussed here.

Remark 2. Note that piecewise-continuity of f(t) is a reasonable assumption since f is monotonous.
Remark 3. The solution w to ∂/∂wF(w) = y can be interpreted as inverse Hilbert transform.
Remark 4. A somewhat similar statement was proven by Guionnet and Maı̈da, [GM, Theorem 1.2].
Proposition 2.2 can be refined as follows.

Proposition 2.3 Suppose that the limit shape of λ, given by f(t), is twice-differentiable and

lim
N→∞

N∏

j=1

(
1 +

f(j/N)− λj(N)/N

w − f(j/N)− 1 + j/N

)
= g(w) (7)

uniformly on an openM set in C, containing w0. Then as N →∞ we have for any fixed y ∈ R \ {0}

Sλ(N)(e
y;N, 1) =

√
− w0 − f(0)− 1

F ′′(w0)(w0 − f(1))
g(w0)

exp(N(yw0 −F(w0)))

eN (ey − 1)N−1

(
1 + o(1)

)
.

where w0 is a root of F ′(w) = y. The remainder o(1) is uniform over y belonging to compact subsets of
R \ {0} and such that w0 = w0(y) ∈M.
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The last crucial ingredient in the asymptotic analysis is expressing the multivariate normalized sym-
metric functions through the univariate ones.

Theorem 2.4 : Sλ(x1, . . . , xk;N, 1) can be expressed in terms of Sλ(xi;N, 1) as follows

Sλ(x1, . . . , xk;N, 1) =
1∏

i<j(xi − xj)
k∏

i=1

(N − i)!
(xi − 1)N−k

× det
[
Dk−j
xi

]k
i,j=1




k∏

j=1

Sλ(xj ;N, 1)
(xj − 1)N−1

(N − 1)!


 , (8)

where Dx is the differential operator x ∂
∂x .

Formula (8) can again be generalized: the 1s can be replaced with geometric series 1, q, q2, . . . (and D
is replaced by Dq(f)(x) = f(qx)−f(x)

q−1 ), Schur functions can be replaced with characters of symplectic
group or, more, generally, with multivariate Jacobi polynomials. In principle, the formulas similar to (8)
can be found in the literature, see e.g. [GP, Proposition 6.2].

Formula (8) allows us to derive the full asymptotics for the multivariate normalized Schur function,
Sλ(x1, . . . , xk;N, 1) from the asymptotics for Sλ(x;N, 1). As a side remark, since we deal with analytic
functions and convergence in our formulas is always (at least locally) uniform, differentiation in formula
(8) does not introduce any issues.

3 Applications
3.1 Asymptotic representation theory
The asymptotic analysis developed in this paper can be applied to obtain new simpler proofs of some
classical theorems in asymptotic representation theory.

Let U(N) denote the group of all N × N unitary matrices. The infinite dimensional unitary group is
defined as the inductive limit of U(N)s, where U(N) embeds in U(N + 1) by fixing the N + 1st vector:

U(∞) =
∞⋃

N=1

U(N).

A [normalized] character of a group G is a continuous function which is constant on conjugacy classes,
positive definite and evaluates to 1 at the unit element. Extreme character is an extreme point of the
convex set of all characters. IfG is a compact group, then extreme characters are normalized matrix traces
of irreducible representations. Applying this result to U(N), and using the classical fact that irreducible
representations of the unitary group U(N) are parameterized by signatures λ ∈ GTN , and their characters
are the Schur functions sλ(u1, . . . , uN ) we have that normalized characters of U(N) are the normalized
Schur functions sλ(u)/sλ(1N ).

For “big groups” such as U(∞) the situation is more delicate. The classification theorem for the char-
acters of infinite dimensional unitary group is summarized in the Voiculescu-Edrei ([Vo], [Ed]) theorem,
which gives the explicit form of the extreme characters. The following approximation theorem explains
the connection of characters of U(∞) with limits of normalized Schur functions.
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Proposition 3.1 ([VK],[OO]) Every extreme normalized character χ of U(∞) is a uniform limit of ex-
treme characters of U(N): for every χ there exists a sequence λ(N) ∈ GTN such that for every k

χ(u1, . . . , uk, 1, . . . ) = lim
N→∞

Sλ(u1, . . . , uk;N, 1)

uniformly on the torus (S1)k.

The sequences of characters ofU(N) which approximate characters ofU(∞) has originally been found
in [VK] as follows. Let µ be a Young diagram with row lengths µi, column lengths µ′i and the length of
main diagonal d. Introduce modified Frobenius coordinates:

pi = µi − i+ 1/2, qi = µ′i − i+ 1/2, i = 1, . . . , d.

Note that
∑d
i=1 pi+qi = |µ|. Let λ ∈ GTN be a signature, we associate two Young diagrams λ+ and λ−

to it: row lengths of λ+ are positive of λi’s, while row lengths of λ− are minus negative ones. In this way
we get two sets of modified Frobenius coordinates: p+

i , q
+
i , i = 1, . . . , d+ and p−i , q

−
i , i = 1, . . . , d−. As

a direct corollary of our results on asymptotics of normalized Schur polynomials from Section 2 we can
reprove the following Theorem.

Theorem 3.2 ([VK], [OO], [BO],[P2]) Let ω = (α±, β±, ; δ±), such that

α± = (α±1 ≥ α±2 ≥ · · · ≥ 0) ∈ R∞, β± = (β±1 ≥ β±2 ≥ · · · ≥ 0) ∈ R∞,

∞∑

i=1

(α±i + β±i ) ≤ δ±, β+
1 + β−1 ≤ 1.

Suppose that the sequence λ(N) ∈ GTN is such that

p+
i (N)/N → α+

i , p−i (N)/N → α−i , q+
i (N)/N → β+

i , q−i (N)/N → β+
i ,

|λ+|/N → δ+, |λ−|/N → δ−.

Then for every k the normalized character of U(∞), parameterized by ω, satisfies

χω(u1, . . . , uk, 1, . . . ) = lim
N→∞

Sλ(N)(u1, . . . , uk;N, 1)

uniformly on torus (S1)k.

Note that every normalized character of U(∞) is in fact parametrized by such ω.
Voiculescu–Edrei’s formula for the characters of U(∞) exhibits a remarkable multiplicavity where the

value of character on the matrix is expressed as a product of values on its eigenvalues of a single func-
tion. Formula (8) should be viewed as a manifestation of approximate multiplicativity for (normalized)
characters of U(N), in particular, formula (8) implies informally that

Sλ(x1, . . . , xk;N, 1) = Sλ(x1;N, 1) · · ·Sλ(xk;N, 1) +O(1/N), (9)

so normalized characters ofU(N) are approximately multiplicative and exactly multiplicative asN →∞.
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A q–deformation of the notion of character of U(∞) was suggested in [G] . Let λ(N) be such that

sλ(N)(x1, . . . , xk, q
−k, q−k−1, . . . , q1−N )

sλ(i)(1, q−1, . . . , q1−N )
(10)

converges uniformly on {(x1, . . . , xk) ∈ Ck | |xi| = q1−i} for every k. The q–analogues of formulas (5)
and (8) give a short proof of the second part of the following quantized version of Theorem 3.2.

Theorem 3.3 ([G]) Let 0 < q < 1. Extreme q–characters of U(∞) are parameterized by the points of
set N of all non-decreasing sequences of integers: N = {ν1 ≤ ν2 ≤ ν3 ≤ . . . } ⊂ Z∞, Suppose that
λ(N) ∈ GTN is such that for any j > 0 lim

i→∞
λ(N)N+1−j = νj , then for every k

sλ(N)(x1, . . . , xk, q
−k, q−k−1, . . . , q1−N )

sλ(N)(1, q−1, . . . , q1−N )
(11)

converges uniformly on {(x1, . . . , xk) ∈ Ck | |xi| = q1−i}. These limits define the q–character of U(∞).

3.2 Random lozenge tilings
Consider a tiling of a domain drawn on the regular triangular lattice of the kind shown at Figure 1 with
rhombi of 3 types, called lozenges, where each rhombus is a union of 2 elementary triangles. The con-
figuration of the domain is encoded by the number N which is its width and N integers µ1 > µ2 >
· · · > µN which are the positions of horizontal lozenges sticking out of the right boundary. If we write
µi = λi +N − i, then λ is a partition of size N and we denote the corresponding domain by Ωλ. Tilings
of such domains are in correspondence with tilings of certain polygonal domains, see Figure 1. It is
well–known that each lozenge tiling can be identified with a stepped surface in R3, see e.g. [Ke].

Let Υλ denote a uniformly random lozenge tiling of Ωλ. Lozenge tilings have remarkable asymptotic
behavior. When N is large the rescaled stepped surface corresponding to Υλ concentrates near a deter-
ministic limit shape (this holds for more general domains as well, see [CKP]). One feature of the limit
shape is the formation of so–called frozen regions; these are the regions where asymptotically with high
probability only a single type of lozenges is observed. For general polygonal domains the frozen boundary
is an inscribed algebraic curve, see [KO] and [P1].

In this article we study the local behavior of lozenge tiling near a turning point of the frozen boundary,
which is the point where the boundary of the frozen region touches (and is tangent to) the boundary of the
domain. Okounkov and Reshetikhin gave in [OR1] a non-rigorous argument explaining that the scaling
limit of tilings in such situation should be governed by, what we call GUE–corners process (introduced
and studied in [Bar] and [JN] as GUE-minors process) and defined below. In one model of tilings of
infinite polygonal domains presented in [OR1], the proof of the convergence is based on the determinan-
tal structure of the correlation functions of the model and on the double–integral representation for the
correlation kernel.

The GUE random matrix ensemble is a probability measure on the set of k × k Hermitian matrix with
density proportional to exp(−Trace(X2)/2) and GUE–distribution GUEk is the distribution of the k
(ordered) eigenvalues of such random matrix. The GUE–corners process is the joint distribution of the
eigenvalues of the k principal submatrices of a k × k matrix from a GUE ensemble.
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3 +2

+1

5

1

2 +3

4

+4

Fig. 1: Left: the 3 types of lozenges, top one is called “horizontal”. Middle and right: a lozenge tiling of the domain
encoded by a signature λ (here λ = (4, 3, 3, 0, 0)) and of the corresponding polygonal domain (right).

Theorem 3.4 Let λ(N) ∈ GTN , N = 1, 2, . . . be a sequence of signatures. Suppose that there exist a
non-constant piecewise-differentiable weakly decreasing function f(t) such that

N∑

i=1

∣∣∣∣
λi(N)

N
− f(i/N)

∣∣∣∣ = o(
√
N)

as N →∞ and also supi,N |λi(N)/N | <∞. Then for every k as N →∞ we have

Υk
λ(N) −NE(f)
√
NS(f)

→ GUEk

in the sense of weak convergence, where

E(f) =

∫ 1

0

f(t)dt, S(f) =

∫ 1

0

f(t)2dt− E(f)2 +

∫ 1

0

f(t)(1− 2t)dt.

Corollary 3.5 Under the same assumptions as in Theorem 3.4 the (rescaled) joint distribution of the
k(k + 1)/2 horizontal lozenges (tiles) on the left k lines weakly converges to the GUE–corners process.

Approach to the proof of Theorem 3.4: The moment generating function for the position of the hori-
zontal lozenges along the kth vertical section of the tiling is essentially given by Sλ(ex1 , . . . , exk ;N, 1).
Using the asymptotic results of Section 2 we derive the following asymptotic expansion

Sλ(e
h1√
N , . . . , e

hk√
N ;N, 1) = exp

(√
NE(f)(h1 + · · ·+ hk) +

1

2
S(f)(h2

1 + · · ·+ h2
k) + o(1)

)
,

which corresponds to the moment generating function for the GUE–corners process. 2

Remark. As N →∞ our domains may approximate a non–polygonal limit domain, where the results
of [KO] describing the limit shape as an algebraic curves do not apply and the exact shape of the frozen
boundary is unknown. Even an explicit expression for the position of the point where the frozen boundary
touches the left boundary (a side result of Theorem 3.4) seems not to have been present in the literature.
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3.3 The six–vertex model and random Alternating Sign Matrices
An Alternating Sign Matrix (ASM) of size N is a N ×N matrix filled with 0s 1s and −1s such that the
sum along every row and column is 1 and along each row and each column the nonzero entries alternate
in sign. ASMs are in bijection with configurations of the six-vertex model with domain-wall boundary
conditions as shown at Figure 2 and have been a subject of interest in both combinatorics and statistical
mechanics, see [Br] for a review. They are enumerated by a remarkable formula, proven independently by
Zeilberger and Kuperberg twenty years ago, but not much more of their refined enumeration or statistics
is known, see [BFZ] for some state of the art results.




0 0 0 1 0
0 1 0 −1 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0




Fig. 2: Alternating sign matrix of size 5 and the corresponding configuration of the 6–vertex model .

We are interested in what the uniformly random ASM of size N looks like when N is large. Conjec-
turally, the features of this model should be similar to those of lozenge tilings: we expect the formation of a
limit shape and various connections with random matrices. The existence and properties of the limit shape
were studied by Colomo and Pronko [CP2], however their arguments are physical, while a mathematical
proof is yet unavailable.

In the present article we prove a partial result toward the following conjecture.

Conjecture 3.6 Fix any k. As N → ∞ the probability that the number of (−1)s in the first k rows of
uniformly random ASM of size N is maximal (i.e. there is one (−1) in second row, two (−1)s in third row,
etc) tends to 1, and, thus, the 1s in the first k rows are interlacing. After proper centering and rescaling
the distribution of the positions of 1s tends to GUE–corners process as N →∞.

Let Ψk(N) denote the sum of horizontal coordinates of 1s minus the sum of horizontal coordinates of
(−1)s in the kth row of a uniformly random ASM of size N . We prove that

Theorem 3.7 For any fixed k the random variable Ψk(n)−N/2√
N

weakly converges to the normal random

variable N (0,
√

3/8). Moreover, the joint distribution of any collection of such variables converges to
the distribution of independent normal random variables N (0,

√
3/8).

Our proof of Theorem 3.7 is based on the results of Okada [Ok] and Stroganov [St] that sums of certain
quantities over all ASMs (i.e. the partition functions of the 6-vertex model) can be expressed through
Schur polynomials and on the asymptotic analysis of these polynomials. In fact, we claim that the precise
statement Theorem 3.7 together with additional probabilistic argument implies Conjecture 3.6. However,
this argument in itself is unrelated to the asymptotics of symmetric polynomials and is postponed to a
future publication.
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3.4 The O(n = 1) dense loop model
Recently found parafermionic observables in the completely packed O(n = 1) dense loop model in a strip
are also simply related to symmetric polynomials, see [GNP]. The O(n = 1) dense loop model is one
of the representations of the percolation model on the square lattice. For the critical percolation models
similar observables and their asymptotic behavior were studied (see e.g. [Sm]), however, the methods
involved are usually completely different from ours.

A configuration of the O(n = 1) loop model in a vertical strip consists of two parts: a tiling of the
strip on a square grid of width L and infinite height with squares of two types shown in Figure 3, and a
choice of one of the two types of boundary conditions for each 1 × 2 segment along each of the vertical
boundaries of the strip, see3. Let kL denote the set of all configurations of the model in the strip of
width L. As the arcs drawn on squares and boundary segments form closed loops and paths joining the
boundaries, the elements of kL are interpreted as collections of non-intersecting paths and closed loops.

x

yζ1 ζ2

L

Fig. 3: Left: the two types of squares. Middle: the two types of boundary conditions. Right:A particular configuration
of the dense loop model showing a path passing between two vertically adjacent points x and y.

A probability distribution on kL is defined by choosing the type of square for each point on the grid
according to a weight defined as a certain function of its horizontal coordinate and depending on L pa-
rameters z1, . . . , zL; two other parameters ζ1, ζ2 control the probabilities of the boundary conditions and,
using a parameter q, the whole configuration is further weighted by its number of closed loops. Setting
zi = 1 and q = exp(−

√
−1π/6) makes the choice of square type for each position an I.I.D. Bernoulli

RV with parameter 1/2. See [GNP] for exact details.
Fix two points x and y and consider a configuration ω ∈ kL. For each path τ passing between x and y,

define the current c(τ) as 1 if τ joins the two boundaries and x lies above τ ; −1 if τ joins the two bound-
aries and x lies below τ ; and 0 otherwise. The total currentCx,y(ω) is the sum of c(τ) over all [necessarily
finitely many] paths passing between x and y. The mean total current F x,y is defined as the expectation
of Cx,y . As F x,y is skew-symmetric and additive, it can be expressed as a sum of several instances of
the mean total current between two horizontally adjacent points, F (i,j),(i,j+1), and two vertically adjacent
points, F (j,i),(j+1,i). The authors of [GNP] present a formula for F (i,j),(i,j+1), and F (j,i),(j+1,i), which,
based on certain assumptions, expresses them through the symplectic characters χλL(z2

1 , . . . , z
2
L, ζ

2
1 , ζ

2
2 )

as certain functions denoted YL and X(j)
L , where λL = (bL−1

2 c, bL−2
2 c, . . . , 1, 0, 0).

Our approach from Section 2 allows us to compute the asymptotic behavior of the formulas of [GNP]
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as the lattice width L→∞ in the homogenous case with q = exp(−
√
−1π/6) as follows.

Theorem 3.8 As L → ∞, the formula of [GNP] for the mean total current between two horizontally
adjacent points is asymptotically

X
(j)
L

∣∣∣
zj=z; zi=1, i 6=j

=

√
−3

4L
(z3 − z−3) + o

(
1

L

)
.

The formula of [GNP] for the mean total current between two vertically adjacent points is asymptotically

YL

∣∣∣
zi=1, i=1,...,L;zL+1=w,zL+2=q−1w

=

√
−3

4L
(w3 − w−3) + o

(
1

L

)
.

Remark 1. When z = 1, X(j)
L is identically zero and so is our asymptotics.

Remark 2. The fully homogeneous case corresponds tow = exp(−
√
−1π/6), then YL =

√
3

2L +o
(

1
L

)
.

Remark 3. The leading asymptotics terms do not depend on the boundary parameters ζ1 and ζ2.
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Combinatorics of non-ambiguous trees†‡

Jean-Christophe Aval, Adrien Boussicault, Mathilde Bouvel and Matteo
Silimbani
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Abstract. This article investigates combinatorial properties of non-ambiguous trees. These objects we define may
be seen either as binary trees drawn on a grid with some constraints, or as a subset of the tree-like tableaux previ-
ously defined by Aval, Boussicault and Nadeau. The enumeration of non-ambiguous trees satisfying some additional
constraints allows us to give elegant combinatorial proofs of identities due to Carlitz, and to Ehrenborg and Ste-
ingrı́msson. We also provide a hook formula to count the number of non-ambiguous trees with a given underlying
tree. Finally, we use non-ambiguous trees to describe a very natural bijection between parallelogram polyominoes
and binary trees.

Résumé. Cet article s’intéresse aux propriétés combinatoires des arbres non-ambigus. Ces objets, que nous défi-
nissons, peuvent être vus soit comme des arbres dessinés sur une grille sous certaines contraintes, soit comme un
sous-ensemble des tableaux boisés précédemment définis par Aval, Boussicault et Nadeau. L’énumération des arbres
non-ambigus satisfaisant des contraintes supplémentaires nous permet de donner des preuves combinatoires élégantes
d’identités dues à Carlitz, et à Ehrenborg et Steingrı́msson. Nous donnons aussi une formule des équerres pour le
comptage des arbres non-ambigus dont l’arbre sous-jacent est fixé. Enfin, nous utilisons les arbres non-ambigus pour
décrire une bijection très naturelle entre polyominos parallélogrammes et arbres binaires.

Keywords: tree, polyomino, non-ambiguous tree, tree-like tableau, hook formula, Bessel function

1 Introduction
It is well known that Catalan numbers Cn = 1

n+1

(
2n
n

)
enumerate many combinatorial objects, such as

binary trees and parallelogram polyominoes. Several bijective proofs in the literature show that parallel-
ogram polyominoes are enumerated by Catalan numbers, the two most classical being Delest-Viennot’s
bijection with Dyck paths [DV84] and Viennot’s bijection with bicolored Motzkin paths [DV84].

In this paper we demonstrate a bijection –which we believe is more natural– between binary trees and
parallelogram polyominoes. In some sense, we show that parallelogram polyominoes may be seen as
two-dimensional drawings of binary trees. This point of view gives rise to a new family of objects – we
call them non-ambiguous trees – which are particular compact embeddings of binary trees in a grid.

†This short paper is an extended abstract of [ABBS], where details of the proofs are provided.
‡All authors are supported by ANR – PSYCO project (ANR-11-JS02-001).

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The tree structure of these objects leads to a hook formula for the number of non-ambiguous trees with
a given underlying tree. Unlike the classical hook formula for trees due to Knuth (see [Knu98], §5.1.4,
Exercise 20), this one is defined on the edges of the tree.

Non-ambiguous trees are in bijection with permutations such that all their (strict) excedances stand at
the beginning of the permutation word. Ehrenborg and Steingrı́msson in [ES00] give a closed formula
(involving Stirling numbers of the second kind) for the number of such permutations. We show that this
formula can be easily proved using non-ambiguous trees and a variation of the insertion algorithm for
tree-like tableaux introduced in [ABN11]. Indeed, non-ambiguous trees can also be seen as a subclass of
tree-like tableaux, objects defined in [ABN11], that are in bijection with permutation tableaux [SW07] or
alternative tableaux [Nad11, Vie07].

A particular subclass of non-ambiguous trees leads to unexpected combinatorial interpretations. We
study complete non-ambiguous trees, defined as non-ambiguous trees such that their underlying binary
tree is complete, and show that their enumerating sequence is related to the formal power series of the
logarithm of the Bessel function of order 0. This gives rise to new combinatorial interpretations of some
identities due to Carlitz [Car63].

The paper is organized as follows: in Section 2 we define non-ambiguous trees. Then, in Section 3
we give the enumeration of non-ambiguous trees satisfying certain constraints: those contained into a
given rectangular box, and those with a fixed underlying tree. Section 4 introduces the family of complete
non-ambiguous trees, and studies the relations between this family and the Bessel function. Finally, in
Section 5 we describe our new bijection between binary trees and parallelogram polyominoes.

2 Definitions and notations
In this paper, trees are embedded in a bidimensional grid N × N. The grid is not oriented as usual: the
x-axis has south-west orientation, and the y-axis has south-east orientation, as shown on Figure 1.

yx

0

1

2

0

1

2

Fig. 1: The underlying grid for non-ambiguous trees

←→

Fig. 2: The edges of a non-ambiguous tree are not
necessary

Every x-oriented (resp. y-oriented) line will be called column (resp. row). Each column (resp. row) on
this grid is numbered with an integer corresponding to its y (resp. x) coordinate. A vertex v located on
the intersection of two lines has the coordinate representation: (X(v), Y (v)).

A non-ambiguous tree may be seen as a binary tree embedded in the grid in such a way that the embed-
ding of its vertices in the grid determines the tree completely (i.e. determines its edges – see Figure 2).

Formally, a non-ambiguous tree of size n is a set A of n points (x, y) ∈ N× N such that:
1. (0, 0) ∈ A; we call this point the root of A;
2. given a non-root point p ∈ A, there exists one point q ∈ A such that Y (q) < Y (p) and X(q) =
X(p), or one point r ∈ A such that X(r) < X(p), Y (r) = Y (p), but not both (which means that
the pattern is avoided);
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3. there is no empty line between two given points: if there exists a point p ∈ A such that X(p) = x
(resp. Y (p) = y), then for every x′ < x (resp. y′ < y) there exists q ∈ A such that X(q) = x′

(resp. Y (q) = y′).
Figure 3 shows some examples and counterexamples of non-ambiguous trees.

(a) Four non-ambiguous trees (b) These four are not non-ambiguous trees

Fig. 3: Some examples and counterexamples of non-ambiguous trees

It is straightforward that a non-ambiguous tree A has a tree structure: except for the root, every point
p ∈ A has a unique parent, which is the nearest point q preceding p in the same row (resp. column). In
this case, we will say that p is the right child (resp. left child) of q. In this paper, we orient every edge of
a tree from the root to the leaves. We shall denote by T (A) the underlying binary tree associated to A.

Figure 4 shows all the non-ambiguous trees of size 4, grouping inside a rectangle those having the same
underlying binary tree.

Fig. 4: The 16 non-ambiguous trees of size 4

Fig. 5: A tree-like
tableau

Remark 1 A tree-like tableau [ABN11] of size n is a set of n points placed in the
boxes of a Ferrers diagram such that conditions 1, 2, 3 defining non-ambiguous
trees are satisfied. Figure 5 shows an example of a tree-like tableau of size 7. It
should be clear that non-ambiguous trees are in bijection with tree-like tableaux
with rectangular shape.

3 Enumeration of non-ambiguous trees
Non ambiguous trees of size n are in bijection with permutations of size n with all their strict excedances
at the beginning. This fact is a consequence of Lemma 5 in [SW07] and of results proved in [ABN12].
The sequence (an)n≥1 counting the number of non-ambiguous tree of size n is referenced in [Slo] as
A136127 = [1, 2, 5, 16, 63, 294, 1585, 9692, . . . ], but no simple formula is known.

3.1 Non-ambiguous trees inside a fixed box
Given a non-ambiguous tree, its x-size (resp. y-size) may be defined as the maximum of the x-coordinate
(resp. y-coordinate) of its points. The aim of this subsection is to give a formula for the number A(k, `)
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of non-ambiguous trees with x-size equal to k and y-size equal to `. We denote by c(n, j) the unsigned
Stirling numbers of the first kind, i.e. the number of permutations of size n with exactly j disjoint cycles.

Proposition 2 For every integers n, `, one has:

n∑

k=1

c(n, k)A(k, `) = n`−1 n! . (1)

We may inverse (1) to get:

A(k, `) =
k∑

i=1

(−1)
k−i

S(k, i) i! i`−1, (2)

where S(k, i) denotes the Stirling numbers of the second kind, i.e. the number of partitions of a set
of k elements into i non-empty parts. Since (from [SW07, ABN12]) A(k, `) is equal to the number of
permutations of size k+`with exactly k strict excedances in position 1, 2, . . . , k, Equation (1) is equivalent
to Corollary 6.6 in [ES00]. In that paper, (2) is obtained through an inclusion-exclusion argument, and (1)
is deduced by inversion.

In our setting, we may interpret c(n, k) through tree-like tableaux. We refer to [ABN11] for definitions,
and basic properties. As mentioned in Remark 1, non-ambiguous trees are nothing but tree-like tableaux
with a rectangular shape. Permutations of size n with exactly j disjoint cycles are in bijection with tree-
like tableaux of size n with exactly j points in their first row (a consequence of Theorem 4.2 in [Bur07]
and of the results contained in [ABN12]). We are thus able to interpret (1) with unified objects: tree-like
tableaux and non-ambiguous trees.

With these tools, the proof of Proposition 2 is a simple use of a variation of the insertion algorithm
defined on tree-like tableaux in [ABN11], but we cannot give the details in this extended abstract.

3.2 Non-ambiguous trees with a fixed underlying tree: a new hook formula
Let T be a binary tree. We define NA(T ) as the number of non-ambiguous trees A such that their
underlying binary tree T (A) is T . The aim of this section is to get a formula for NA(T ): this will be
done by Proposition 6, which shows thatNA(T ) may be expressed by a new and elegant hook formula on
the edges of T . To do this, we encode any non-ambiguous tree A by a triple Φ(A) = (T, αL, αR) where
T is a binary tree, and αL (resp. αR) is a word called the left (resp. right) code of A. To distinguish the
vertices of A, we label them by integers from 1 to the size of A, as shown on Figure 6.

A =

1

2

3

4

5

6

78

, T =

1

2

3 4

5

67

8

.

Fig. 6: A non-ambiguous tree A with labeled vertices, and the associated binary tree T

The first entry in Φ(A) is the underlying binary tree T associated to A. Observe that we keep the labels
on vertices when we extract the underlying binary tree. Now we denote by VL (resp. VR) the set of the
end points of the left (resp. right) edges of A, which gives VL = {2, 3, 8, 7} and VR = {5, 6, 4} on the



Combinatorics of non-ambiguous trees 85

example in Figure 6. The definition of non-ambiguous trees ensures that the set {X(v), v ∈ VL} is the
interval {1, . . . , |VL|}. Thus for i = 1, . . . , |VL|, we may set αL(i) as the unique label v ∈ VL such that
X(v) = i, and we proceed symmetrically for αR. On the example of Figure 6, we have: αL = 2378 and
αR = 564. Our starting point is the following lemma.

Lemma 3 The application Φ which sends A to the triple (T, αL, αR) is injective.

Proof: The proof shall not be detailed here: it is elementary to check that, given the tree T , the left and
right codes uniquely determine the coordinates of every point in A. 2

Lemma 3 allows us to encode a non-ambiguous tree A by a triple (T, αL, αR), where T is a binary
tree, and αL (resp. αR) is a word in which every label v ∈ VL (resp. VR) appears exactly once. Of

course, Φ is not surjective on such triples. If we take T =
1

2

3
, it should be clear that αL is forced

to be 23. Consequently, our next task is to characterize the pairs of codes (αL, αR) which are compatible
with a given binary tree T , i.e. such that (T, αL, αR) is in the image of Φ. In order to describe this
characterization, we need to define partial orders on the sets VL and VR. The pairs (αL, αR) of compatible
codes will be seen to correspond to pairs of linear extensions of the posets VL and VR. The posets are
defined as follows: given a, b ∈ VL (resp. VR), we say that a ≤ b if and only if there exists a path in the
oriented tree starting from a and ending at b. Figure 7 and Figure 9 (with minima at the top) illustrate this
notion.

T =

1

2

3

4

5

6

VL = 2 6 VR =

3

4

5

Fig. 7: The posets VL and VR of a tree T

The next lemma is the crucial step to prove Proposition 6.

Lemma 4 Given a binary tree T , the pairs of codes compatible with T are exactly the pairs (αL, αR)
where αL is a linear extension of VL and αR is a linear extension of VR.

Figure 8 gives these compatible codes, together with the corresponding non-ambiguous trees, in the
case of the tree T of Figure 7.

(26, 534)
1

2

3

4

5

6

(26, 354)
1

2

3

4

5

6

(26, 345)
1

2

3

4 5

6

(62, 534)
1

2

3

4

5

6

(62, 354)
1

2

3

4

5

6

(62, 345)
1

2

3

4

5

6

Fig. 8: Non-ambiguous trees of the tree T of Figure 7

Proof: We shall only give the main arguments of the proof.
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Given a tree T , consider the map ΦT defined on the set of non-ambiguous trees with underlying tree T
as follows:

ΦT (A) := (αL, αR),

where Φ(A) = (T, αL, αR). Since Φ is injective (by Lemma 3), so is ΦT . It remains to prove that the
image of ΦT is L(VL)× L(VR), where we denote by L(P ) the set of linear extensions of a poset P .

First, we prove that ImΦT ⊆ L(VL) × L(VR). Without loss of generality, we will prove that αL ∈
L(VL). We need to prove that, if s <VL

t, then s precedes t in αL, which we shall write s <αL
t. If

s <VL
t, there exists a path in T starting from s and ending at t. When we go through the path, the

X-coordinates of the vertices remain unchanged along right edges, while they increase along left edges.
Since s 6= t, we have X(s) < X(t), which is equivalent to s <αL

t.
Now the hard part is to prove that L(VL) × L(VR) ⊆ ImΦT . Let (αL, αR) ∈ L(VL) × L(VR). It is

always possible to use the triple (T, αL, αR) to build a set of points in the grid which we may denote by
A: we just have to place the root at position (0, 0) and every other vertex v of T at the position

{
X(v) = i with αL(i) = v and Y (v) = Y (parent(v)) if v ∈ VL;
X(v) = X(parent(v)) and Y (v) = j with αR(j) = v if v ∈ VR.

The goal is to prove that A is a non-ambiguous tree, which is quite technical. The main steps are:
1. check that for every left (resp. right) edge (s, t) of T , we have X(s) < X(t) (resp. Y (s) < Y (t))

in A;
2. prove that A avoids the pattern ;
3. check that two different vertices in T occupy different positions in A. 2

Now we come to the final step toward proving Proposition 6.

Lemma 5 The Hasse diagrams of VL and VR are forests.

Figure 9 shows an example of the forests obtained by computing the Hasse diagrams of VL and VR.

T =

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

H(VL) =

2

3 5

6

7

10

11

13

15

16 18 H(VR) =

4

8

9

12

14

17

Fig. 9: The Hasse diagrams H(VL) and H(VR) of VL and VR are forests

Proof: We prove this proposition by contradiction. Suppose that there is a cycle in the Hasse diagram of
VR (the case of VL is analogous). We can deduce from the poset structure that there are two paths in VR
starting from an element v and ending at w. This would imply that in the tree there are two different paths
from v to w, and hence there would be a cycle in the tree. 2

As a consequence the number of non-ambiguous trees with underlying tree T is given by the product of
the results of Knuth’s hook formula [Knu98] applied to the Hasse diagram of VL and to the Hasse diagram
of VR. We can make this more precise. To do so, we associate to each edge an integer ne. Given a left
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edge e (resp. right edge) the integer ne is the number of left edges (resp. right edges) contained in the
subtree whose root is the ending point of e, plus 1.

Proposition 6 The number of non-ambiguous trees with underlying tree T is given by

NA(T ) =
#{left edges}! #{right edges}!∏

e∈VL

ne
∏

e∈VR

ne
. (3)

This new hook formula is illustrated by Figure 10.

NA




1
1

3
1

1

1

2

1

2

 =

5! · 4!

1 · 1 · 1 · 1 · 3 · 1 · 1 · 2 · 2

Fig. 10: A hook formula for non-ambiguous trees

Remark 7 Equation (3) gives a way to compute the number of permutations of size n with all their strict
excedances at the beginning, by summing over all binary trees T with n vertices.

4 Complete non-ambiguous trees and Bessel function
4.1 Definition and enumeration of complete non-ambiguous trees
A non-ambiguous tree is complete whenever its vertices have either 0 or 2 children. An example of
complete non-ambiguous tree can be found in Figure 11. A complete non-ambiguous tree has always
an odd number of vertices. Moreover, as in complete binary trees, a complete non-ambiguous tree with
2k + 1 vertices has exactly k internal vertices, k + 1 leaves, k right edges and k left edges. Denote by bk
the number of complete non-ambiguous trees with k internal vertices. The sequence (bk)k≥0 is known in
[Slo] as A002190 = [1, 1, 4, 33, 456, 9460, . . . ], and two remarkable identities satisfied by this sequence
are given by Carlitz [Car63]. Propositions 8 and 10 give combinatorial interpretations for these identities.

Denote by Cn the number of complete binary trees with n internal vertices. It is well-known that
Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number, and that, for every n ≥ 0, we have the identity:

Cn+1 =
∑

i+j=n

CiCj . (4)

Proposition 8 gives a variant of this identity for complete non-ambiguous trees:

Proposition 8 For every n ≥ 0, we have:

bn+1 =
∑

i+j=n

(
n+ 1

i

)(
n+ 1

j

)
bi bj . (5)
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A = −→ AL = AR =

Fig. 11: The root suppression in a complete non-ambiguous tree

Proof: The proof of this proposition is similar to the classical proof of (4): the left (resp. right) subtreeAL
(resp. AR) of a complete non-ambiguous tree A with n+ 1 internal vertices is a complete non-ambiguous
tree with i (resp. j) internal vertices, where i+ j = n.

Figure 11 shows an example of left and right subtree of a complete non-ambiguous tree.
Hence, in order to construct an arbitrary complete non-ambiguous tree A with n + 1 internal vertices,

we need to choose:
• the number i of internal vertices contained in AL (i may range between 0 and n, the number j is

equal to n− i);
• the complete non-ambiguous tree structure of AL (resp. AR) – we have bi (resp. bj) choices;
• the way of interlacing the right (resp. left) edges of AL and AR.

We denote by u1, u2, . . . , ui (resp. v1, v2, . . . , vj) the end points of the right edges in AL (resp. AR)
such that if k < l, then Y (uk) < Y (ul) (resp. Y (vk) < Y (vl)), and by u0 and v0 the roots of AL and
AR. Now, if we want to interlace the right edges in AL with those in AR, we need to decide at what
positions we want to insert the vertices u1, u2, . . . , ui with respect to v0, v1, v2, . . . , vj , saving the relative
order among u0, u1, u2, . . . , ui and v0, v1, v2, . . . , vj . A vertex uk can be placed either to the left of v0,
or between vt and vt+1 (0 ≤ t ≤ j − 1), or to the right of vj .

Hence, we must choose the i positions of u1, u2, . . . , ui (multiple choices of the same position are
allowed) among j + 2 possible ones. This shows that there are

((
j+2
i

))
=
(
i+j+1
i

)
=
(
n+1
i

)
ways

of interlacing the right edges of the subtrees AL and AR, where
((
a
b

))
denotes the number of way of

choosing b objects within a, with possible repetitions.
Analogous arguments apply to left edges. In this case, we have

((
i+2
j

))
=
(
n+1
j

)
different interlace-

ments. This ends the proof. 2

Corollary 9 The sequence bk satisfies the following identity

∑

k≥0
bk

x2(k+1)

((k + 1)!2k+1)2
= − ln (J0(x)) . (6)

Proof: It is well known (see, e.g., [AS64]) that the Bessel function J0(x) =
∑

k≥0
jkx

k satisfies the

differential equation
d2y

dx2
+

1

x

d y

dx
+ y = 0, (7)

The first coefficients in its series expansion are j0 = 1 and j1 = 0.
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Consider now the function B(x) = exp


−

∑

k≥0
bk

x2(k+1)

((k + 1)!2k+1)2


 =

∑

k≥0
βkx

k. Equation (5)

ensures that B(x) satisfies Equation (7), i.e. the same second order differential equation as J0(x).

Setting x = 0, we have β0 = B(0) = 1 = j0. Moreover, in Z(x) = −
∑

k≥0
bk

x2(k+1)

((k + 1)!2k+1)2
only the

even powers of x have non-zero coefficients. Hence, since B(x) = exp (Z(x)) =
∑

k≥0

Z(x)k

k!
, we have

β2i+1 = 0 for every i ≥ 0. In particular, β1 = 0 = j1. These arguments imply that B(x) = J0(x). 2

4.2 Proving identities combinatorially
Corollary 9 shows that non-ambiguous trees provide a combinatorial interpretation –and to our knowledge,
the first one– of sequence A002190 [Slo].
In [Car63], the author shows analytically that identities (5) and (8) below are equivalent. We give a
combinatorial proof of this fact.

Proposition 10 For every n ≥ 1, we have:

n−1∑

k=0

(−1)k
(

n

k + 1

)(
n− 1

k

)
bk = 1. (8)

Fig. 12: An example of gridded
tree with 2 internal vertices drawn
on a 6× 6 grid

Proof: We fix an integer n and we take 0 ≤ k ≤ n − 1. We define
a gridded tree of size (k, n) to be a set of 2k + 1 points placed in a
n × n grid, such that Condition 2 defining non-ambiguous trees is sat-
isfied (which means we consider a non-ambiguous tree of size 2k + 1
embedded in a n×n grid) and such that the underlying tree is complete
and that its root belongs to the first column. This implies that there are
n− k − 1 empty columns and n− k − 1 empty rows, and that the first
column is not empty. Figure 12 shows an example of a gridded tree of
size (2, 6).
It is easy to verify that there are

(
n
k+1

)(
n−1
k

)
bk gridded tree of size

(k, n). We call trivial gridded tree the tree of size (0, n) consisting
of a single vertex in (0, 0). Now, for every integer n, we define an
involution on the set of non trivial gridded trees. This involution associates a gridded tree of size (k, n)
with a gridded tree either of size (k − 1, n) or (k + 1, n).
To define this involution, consider a gridded tree of size (k, n) and add a virtual root at position (−1, 0);
the previous root becomes the left child of the virtual root. Now consider the path starting from the virtual
root, going down through the tree, turning at each internal vertex, and ending at a leaf. This path is unique.
There are two cases:

1. the path does not cross an empty row, nor an empty column: we erase the leaf and its parent from
the tree, getting a new gridded tree of size (k − 1, n). We can always erase the leaf and its parent,
except if the parent were the virtual root. This happens only if the tree is the trivial gridded tree. As
we restricted to non trivial gridded trees, this case never happens.
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2. the path crosses an empty row or an empty column: we choose the first empty row or column met
while visiting the path. Without loss of generality, we suppose that it is a column, say c. Then,
we add a new vertex v at the position where c crosses the path, and we add in the same column a
new leaf (whose parent is v) in the topmost empty row. While visiting the path, we did not meet an
empty row. Since there are as many empty rows as empty columns, there is always an empty row
below v. This operation gives rise to a new gridded tree of size (k + 1, n).

Figure 13 shows how the involution acts on two examples.

r

1.−−−−→
←−−−−

2.

r

r

1.−−−−→
←−−−−

2.

r

Fig. 13: The involution acting on two examples of non trivial gridded trees

Remark that adding (resp. removing) a leaf and its parent p in (resp. from) a gridded tree following the
previous algorithm does not remove (resp. add) any empty row or column that crosses the path from the
virtual root to p. For this reason, this operation is an involution. 2

In a similar fashion to the proof of Proposition 10, it is possible to prove that Catalan numbers satisfy∑n
k=0(−1)n+k

(
n+k
n−k
)
Ck = 0, for any n ≥ 1. This identity and Proposition 10 allow us to prove a further

identity involving the sequence bn. Our proof uses the methodology described in [PWZ96] and settles a
conjecture of P. Hanna (see [Slo] sequence A002190):

Proposition 11 For every n ≥ 1, we have
n∑

k=0

(−1)kbkCk

(
n+ k

n− k

)2

= 0.

5 A new bijection between trees and parallelogram polyominoes
We recall that a parallelogram polyomino of size n is a pair of lattice paths of length n+1 with south-west
and south-east steps starting at the same point, ending at the same point, and never meeting each other.
Figure 14 shows some examples of parallelogram polyominoes of size 4. The two paths defining a given
parallelogram polyomino delimit a connected set of boxes. We will consider the parallelogram polyomino
from this point of view.

We now describe a bijection between parallelogram polyominoes of size n and binary trees with n
vertices by showing that a parallelogram polyomino hides a non-ambiguous tree.

Given a parallelogram polyomino P , consider the set SP of dots defined as follows:

• we enlighten P from north-west to south-east and from north-east to south-west;
• we put a dot in the enlightened boxes.
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Fig. 14: Example of parallelogram polyominoes of size 4

It is easy to verify that SP is a non-ambiguous tree. Indeed, it is impossible that all three points in
the pattern are enlightened. Moreover, only the northernmost box in the parallelogram polyomino
can be enlightened twice. This implies that every dot (except for the one in the northernmost box) has a
parent. Let Ψ be the application that associates to a parallelogram polyomino the underlying binary tree
of SP . An example of this application is shown in Figure 15.

non-ambiguous−−−−−−−−→
tree

tree−−→

Fig. 15: Parallelogram polyominoes are just a way of drawing a binary tree in the plane

Proposition 12 The map Ψ is a bijection between the set of parallelogram polyominoes of size n and the
set of binary trees with n vertices.

Proof: We are able in [ABBS] to describe explicitly the inverse of Ψ. But in this extended abstract, we
shall only prove that Ψ is injective. Since the two considered sets have the same cardinality, this is enough
to prove Proposition 12. In order to do that, we will construct a parallelogram polyomino P and the
associated tree Ψ(P ) (actually, a non-ambiguous tree of shape Ψ(P )) at the same time. More precisely,
when creating the parallelogram polyomino, we start from the origin of the two paths, and we add:

Fig. 16: An example of
parallelogram polyomino
with its tree under con-
struction

• one step to each of the two paths at a time in the parallelogram poly-
omino;
• the enlightened dot(s) corresponding to the inserted steps, when needed.

Figure 16 shows an example of this construction.
Consider two different parallelogram polyominoes and construct them simul-
taneously, together with the associated non-ambiguous trees. While the begin-
ning of the paths are the same, the associated trees are also the same. Consider
the first time where one path in the first parallelogram polyomino differs from
its homologous in the other parallelogram polyomino. One of the two added
steps will be SW-oriented, and the other will be SE-oriented. This means that,
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only one of these steps is associated with a new dot, connected to its parent v. The dot v exists in both
trees, but it does not have the same number of children in both trees. 2
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Network parameterizations for the
Grassmannian

Kelli Talaska†and Lauren Williams‡
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Abstract. Deodhar introduced his decomposition of partial flag varieties as a tool for understanding Kazhdan-Lusztig
polynomials. The Deodhar decomposition of the Grassmannian is also useful in the context of soliton solutions to
the KP equation, as shown by Kodama and the second author. Deodhar componentsSD of the Grassmannian are
in bijection with certain tableauxD calledGo-diagrams, and each component is isomorphic to(K∗)a × (K)b for
some non-negative integersa andb. Our main result is an explicit parameterization of each Deodhar component in
the Grassmannian in terms of networks. More specifically, from a Go-diagramD we construct a weighted network
ND and itsweight matrixWD, whose entries enumerate directed paths inND . By letting the weights in the network
vary overK or K∗ as appropriate, one gets a parameterization of the Deodhar componentSD . One application
of such a parameterization is that one may immediately determine which Plücker coordinates are vanishing and
nonvanishing, by using the Lindstrom-Gessel-Viennot Lemma. We also give a (minimal) characterization of each
Deodhar component in terms of Plücker coordinates.

Résuḿe.Deodhar a introduit une décomposition des variétés drapeaux pour comprendre les polynômes de Kazhdan-
Lusztig. La décomposition de Deodhar des Grassmanniennesest aussi utile dans le contexte des solutions solitons de
l’équation KP, ce qui a été établi par Kodama et le deuxi`eme auteur. Les composantes de DeodharSD sont en bijection
avec certains tableauxD appelésdiagrammes de Go, et chaque composante est isomorphe à(K∗)a × (K)b oùa et b
sont des entiers positifs. Notre résultat principal est une paramétrisation explicite de chaque composante de Deodhar
des Grassmanniennes en termes de réseaux. Plus précisément, à partir d’un diagramme de GoD, nous construisons
un réseauND et samatrice de poidsWD, dont les composantes énumèrent les chemins dirigés dansND . En faisant
varier les poids dansK ouK∗, nous obtenons une paramétrisation de la composante de DeodharSD . Une application
de cette paramétrisation est que nous pouvons déterminerquelles coordonnées de Plücker s’annulent, en utilisantle
lemme de Lindstrom-Gessel-Viennot. Nous donnons aussi unecaractérisation minimale de chaque composante en
termes de coordonnées de Plücker.

Keywords: Grassmannian, Deodhar decomposition, networks

1 Introduction
There is a remarkable subset of the real GrassmannianGrk,n(R) called its totally non-negative part
(Grk,n)≥0 [7, 9], which may be defined as the subset of the real Grassmannian where all Plücker coor-
dinates have the same sign. Postnikov showed that(Grk,n)≥0 has a decomposition intopositroid cells,
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which are indexed by certain tableaux called

Γ

-diagrams. He also gave explicit parameterizations of each
cell. In particular, he showed that from each

Γ

-diagram one can produce a planarnetwork, and that one
can write down a parameterization of the corresponding cellusing theweight matrixof that network. This
parameterization shows that the cell is isomorphic toRd

>0 for somed. Such a parameterization is con-
venient, because for example, one may read off formulas for Plücker coordinates from non-intersecting
paths in the network, using the Lindstrom-Gessel-Viennot Lemma.

A natural question is whether these network parameterizations for positroid cells can be extended from
(Grk,n)≥0 to the entire real GrassmannianGrk,n(R). In this paper we give an affirmative answer to this
question, by replacing the positroid cell decomposition with the Deodhar decomposition of the Grassman-
nianGrk,n(K) (hereK is an arbitrary field).

The components of the Deodhar decomposition are not in general cells, but nevertheless have a simple
topology: by [2, 3], each one is isomorphic to(K∗)a × (K)b. The relation of the Deodhar decomposition
of Grk,n(R) to Postnikov’s cell decomposition of(Grk,n)≥0 is as follows: the intersection of a Deodhar
componentSD

∼= (R∗)a×(R)b with (Grk,n)≥0 is precisely one positroid cell isomorphic to(R>0)
a if b =

0, and is empty otherwise. In particular, when one intersectsthe Deodhar decomposition with(Grk,n)≥0,
one obtains the positroid cell decomposition of(Grk,n)≥0. There is a relatedpositroid stratificationof
the real Grassmannian, and each positroid stratum is a unionof Deodhar components.

As for the combinatorics, components of the Deodhar decomposition are indexed bydistinguished
subexpressions[2, 3], or equivalently, by certain tableaux calledGo-diagrams[6], which generalize

Γ

-
diagrams. In this paper we associate a network to each Go-diagram, and write down a parameterization
of the corresponding Deodhar component using the weight matrix of that network. Our construction
generalizes Postnikov’s, but our networks are no longer planar in general.

Our main results can be summed up as follows. See Theorems 3.15 and 4.3 and the constructions
preceding them for complete details.

Theorem. LetK be an arbitrary field.

• Every point inGrk,n(K) can be realized as the weight matrix of a unique network associated to
a Go-diagram, and we can explicitly construct the corresponding network. The networks corre-
sponding to points in the same Deodhar component have the same underlying graph, but different
weights.

• Every Deodhar component may be characterized by the vanishing and nonvanishing of certain
Plücker coordinates. Using this characterization, we can also explicitly construct the network
associated to a point given either by a matrix repsresentative or by a list of Pl̈ucker coordinates.

To illustrate the main results, we provide a small example here. More complicated examples may be
seen throughout the rest of the paper.

Example 1.1. Consider the GrassmannianGr2,4. The large Schubert cell in this Grassmannian can be
characterized as

Ωλ = {A ∈ Gr2,4 |∆1,2(A) 6= 0},

where∆J denotes the Plücker coordinate corresponding to the column setJ in a matrix representative of
a point inGr2,4. This Schubert cell contains multiple positroid strata, includingSI , whereI is the Grass-
mann necklaceI = (12, 23, 34, 14).This positroid stratum can also be characterized by the nonvanishing
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+ +
+ +

D1

a1a2

a3a4
b

b

b

b

b 1

b 2
b 3b 4

② +
+ ✐

D2

a2

a3c4b

b

b b 1

b 2
b 3b 4

Fig. 1: The diagrams and networks associated toSD1 andSD2 in Example 1.1.

of certain Pl̈ucker coordinates:

SI = {A ∈ Gr2,4 | ∆1,2(A) 6= 0, ∆2,3(A) 6= 0, ∆3,4(A) 6= 0, ∆1,4(A) 6= 0}.

Figure 1 shows two Go-diagramsD1 andD2 and their associated networks. Note that the network on
the right is not planar. The weight matrices associated to these diagrams are

(
1 0 −a3 −(a3a4 + a3a2)
0 1 a1 a1a2

)
and

(
1 0 −a3 −a3c4
0 1 0 a2

)
.

The positroid stratumSI is the disjoint union of the two corresponding Deodhar componentsSD1 and
SD2 , which can be characterized in terms of vanishing and nonvanishing of minors as:

SD1 = {A ∈ SI | ∆1,3 6= 0} andSD2 = {A ∈ SI | ∆1,3 = 0}.

Note that if one lets theai’s range overK∗ and letsc4 range overK, then we see thatSD1
∼= (K∗)4 and

SD2
∼= (K∗)2 ×K.

There are several applications of our construction. First,as a special case of our theorem, one may pa-
rameterize allk×n matrices using networks. Second, by applying the Lindstrom-Gessel-Viennot Lemma
to a given network, one may write down explicit formulas for Plücker coordinates in terms of collections
of non-intersecting paths in the network. Third, building upon work of [6], we obtain (minimal) descrip-
tions of Deodhar components in the Grassmannian, in terms ofvanishing and nonvanishing of Plücker
coordinates. It follows that each Deodhar component is a union of matroid strata.

Although less well known than the Schubert decomposition and matroid stratification, the Deodhar
decomposition is very interesting in its own right. Deodhar’s original motivation for introducing his de-
composition was the desire to understand Kazhdan-Lusztig polynomials. In the flag variety, one may
intersect two opposite Schubert cells, obtaining a Richardson variety, which Deodhar showed is a union
of Deodhar components. Each Richardson varietyRv,w(q) may be defined over a finite fieldK = Fq, and
in this case, the number of points determines theR-polynomialsRv,w(q) = #(Rv,w(Fq)), introduced
by Kazhdan and Lusztig [4] to give a recursive formula for theKazhdan-Lusztig polynomials. Since
each Deodhar component is isomorphic to(F∗

q)
a × (Fq)

b for somea andb, if one understands the de-
composition of a Richardson variety into Deodhar components, then in principle one may compute the
R-polynonomials and hence Kazhdan-Lusztig polynomials.

Another reason for our interest in the Deodhar decomposition is its relation to soliton solutions of the
KP equation. It is well-known that from each pointA in the real Grassmannian, one may construct a
soliton solutionuA(x, y, t) of the KP equation. It was shown in recent work of Kodama and the second
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author [6] that when the time variablet tends to−∞, the combinatorics of the solutionuA(x, y, t) depends
precisely on which Deodhar componentA lies in.

The outline of this paper is as follows. In Section 2, we give some background on the Grassmannian
and its decompositions, including the Schubert decomposition, the positroid stratification, and the matroid
stratification. In Section 3, we present our main construction: we explain how to construct a network from
each diagram, then use that network to write down a parameterization of a subset of the Grassmannian
that we call a network component. Our main result is that thisnetwork component coincides with the
corresponding Deodhar component in the Grassmannian. Finally in Section 4 we give a characterization
of Deodhar components in terms of the vanishing and nonvanishing of certain Plücker coordinates.

ACKNOWLEDGEMENTS: L.W. is grateful to Yuji Kodama for their joint work on soliton solutions of
the KP equation, which provided motivation for this project.

2 Background on the Grassmannian
TheGrassmannianGrk,n is the space of allk-dimensional subspaces of ann-dimensional vector space
Kn. In this paper we will usually letK be an arbitrary field, though we will often think of it asR or C.
An element ofGrk,n can be viewed as a full-rankk×n matrix modulo left multiplication by nonsingular
k × k matrices. In other words, twok × n matrices represent the same point inGrk,n if and only if
they can be obtained from each other by row operations. Let

(
[n]
k

)
be the set of allk-element subsets of

[n] := {1, . . . , n}. ForI ∈
(
[n]
k

)
, let∆I(A) be thePlücker coordinate, that is, the maximal minor of the

k × n matrixA located in the column setI. The mapA 7→ (∆I(A)), whereI ranges over
(
[n]
k

)
, induces

thePlücker embeddingGrk,n →֒ KP(
n
k)−1 into projective space.

We now describe several useful decompositions of the Grassmannian: the Schubert decomposition,
the positroid stratification, and the matroid stratification. Note that the matroid stratification refines the
positroid stratification, which refines the Schubert decomposition. The main subject of this paper is the
Deodhardecomposition of the Grassmannian, which refines the positroid stratification, and is refined by
the matroid stratification (as we prove in Corollary 4.4).

2.1 The Schubert decomposition of Grk,n

Throughout this paper, we identify partitions with their Young diagrams. Recall that the partitionsλ
contained in ak × (n − k) rectangle are in bijection withk-element subsetI ⊂ [n]. The boundary of
the Young diagram of such a partitionλ forms a lattice path from the upper-right corner to the lower-
left corner of the rectangle. Let us label then steps in this path by the numbers1, . . . , n, and define
I = I(λ) as the set of labels on thek vertical steps in the path. Conversely, we letλ(I) denote the
partition corresponding to the subsetI.

Definition 2.1. For each partitionλ contained in ak × (n− k) rectangle, we define theSchubert cell

Ωλ = {A ∈ Grk,n | I(λ) is the lexicographically minimal subset such that∆I(λ)(A) 6= 0}.

Asλ ranges over the partitions contained in ak×(n−k) rectangle, this gives theSchubert decomposition
of the GrassmannianGrk,n, i.e.

Grk,n =
⊔

λ⊂(n−k)k

Ωλ.
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We now define theshifted linear order<i (for i ∈ [n]) to be the total order on[n] defined by

i <i i+ 1 <i i+ 2 <i · · · <i n <i 1 <i · · · <i i− 1.

One can then definecyclically shifted Schubert cellsas follows.

Definition 2.2. For each partitionλ contained in ak× (n− k) rectangle, and eachi ∈ [n], we define the
cyclically shifted Schubert cell

Ωi
λ = {A ∈ Grk,n | I(λ) is the lexicographically minimal subset with respect to<i such that∆I(λ) 6= 0}.

2.2 The positroid stratification of Grk,n
Thepositroid stratificationof the GrassmannianGrk,n is obtained by taking the simultaneous refinement
of then Schubert decompositions with respect to then shifted linear orders<i. This stratification was
first considered by Postnikov [9], who showed that the strataare conveniently described in terms ofGrass-
mann necklaces, as well asdecorated permutationsand

Γ

-diagrams. Postnikov coined the terminology
positroid because the intersection of the positroid stratification ofthe real Grassmannian with thetotally
non-negative part of the Grassmannian(Grk,n)≥0 gives a cell decomposition of(Grk,n)≥0 (whose cells
are calledpositroid cells).

Definition 2.3. [9, Definition 16.1] AGrassmann necklaceis a sequenceI = (I1, . . . , In) of subsets
Ir ⊂ [n] such that, fori ∈ [n], if i ∈ Ii thenIi+1 = (Ii \ {i}) ∪ {j}, for somej ∈ [n]; and if i /∈ Ii then
Ii+1 = Ii. (Here indicesi are taken modulon.) In particular, we have|I1| = · · · = |In|, which is equal
to somek ∈ [n]. We then say thatI is a Grassmann necklace oftype(k, n).

Example 2.4. I = (1345, 3456, 3456, 4567, 4567, 1467, 1478, 1348) is an example of a Grassmann
necklace of type(4, 8).

Lemma 2.5. [9, Lemma 16.3] GivenA ∈ Grk,n, let I(A) = (I1, . . . , In) be the sequence of subsets in
[n] such that, fori ∈ [n], Ii is the lexicographically minimal subset of

(
[n]
k

)
with respect to the shifted

linear order<i such that∆Ii(A) 6= 0. ThenI(A) is a Grassmann necklace of type(k, n).

Thepositroid stratificationof Grk,n is defined as follows.

Definition 2.6. Let I = (I1, . . . , In) be a Grassmann necklace of type(k, n). Thepositroid stratumSI
is defined to be

SI = {A ∈ Grk,n | I(A) = I}.
Equivalently, each positroid stratum is an intersection ofn cyclically shifted Schubert cells, that is,

SI =

n⋂

i=1

Ωi
λ(Ii)

.

Grassmann necklaces are in bijection with tableaux called

Γ

-diagrams.

Definition 2.7. [9, Definition 6.1] Fixk, n. A

Γ

-diagram(λ,D)k,n of type(k, n) is a partitionλ con-
tained in ak × (n − k) rectangle together with a fillingD : λ → {0,+} of its boxes which has the

Γ

-property: there is no0 which has a+ above it and a+ to its left.(i) (Here, “above” means above and
in the same column, and “to its left” means to the left and in the same row.)

In Figure 2 we give an example of a

Γ

-diagram.
(i) This forbidden pattern is in the shape of a backwardsL, and hence is denoted

Γ

and pronounced “Le.”
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+ 0 + +
+ 0 +
0 0 +
+ 0

Fig. 2: A Le-diagramL = (λ,D)k,n.

2.3 The matroid stratification of Grk,n

Definition 2.8. A matroidof rank k on the set[n] is a nonempty collectionM ⊂
(
[n]
k

)
of k-element

subsets in[n], calledbasesofM, that satisfies theexchange axiom:
For anyI, J ∈ M andi ∈ I there existsj ∈ J such that(I \ {i}) ∪ {j} ∈ M.

Given an elementA ∈ Grk,n, there is an associated matroidMA whose bases are thek-subsetsI ⊂ [n]
such that∆I(A) 6= 0.

Definition 2.9. LetM ⊂
(
[n]
k

)
be a matroid. Thematroid stratumSM is defined to be

SM = {A ∈ Grk,n | ∆I(A) 6= 0 if and only ifI ∈ M}.

This gives a stratification ofGrk,n called thematroid stratification, or Gelfand-Serganova stratification.

Remark 2.10. Clearly the matroid stratification refines the positroid stratification, which in turn refines
the Schubert decomposition.

3 The main result: network parameterizations from Go-diagrams
In this section we define certain tableaux calledGo-diagrams, then explain how to parameterize the Grass-
mannian using networks associated to Go-diagrams. First wewill define more general tableaux called
diagrams.

3.1 Diagrams and networks

Definition 3.1. Letλ be a partition contained in ak × (n− k) rectangle. Adiagramin λ is an arbitrary
filling of the boxes ofλ with pluses+, black stones✈, and white stones❢.

To each diagramD we associate a networkND as follows.

Definition 3.2. Let λ be a partition withℓ boxes contained in ak × (n − k) rectangle, and letD be a
diagram inλ. Label the boxes ofλ from 1 to ℓ, starting from the rightmost box in the bottom row, then
reading right to left across the bottom row, then right to left across the row above that, etc. The(weighted)
networkND associated toD is a directed graph obtained as follows:

• Associate aninternal vertexto each+ and each✈;
• After labeling the southeast border of the Young diagram with the numbers1, 2, . . . , n (from north-

east to southwest), associate aboundary vertexto each number;
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• From each internal vertex, draw an edge right to the nearest+-vertex or boundary vertex;

• From each internal vertex, draw an edge down to the nearest+-vertex or boundary vertex;

• Direct all edges left and down. After doing so,k of the boundary vertices becomesourcesand the
remainingn− k boundary vertices becomesinks.

• If e is a horizontal edge whose left vertex is a+-vertex (respectively a✈-vertex) in boxb, assign
e the weightab (respectivelycb). We think ofab and cb as indeterminates, but later they will be
elements ofK∗ andK respectively.

• If e is a vertical edge, assigne the weight1.

Note that in general such a directed graph is not planar, as two edges may cross over each other without
meeting at a vertex. See Figure 3 for an example of a diagram and its associated network.

+ + + +

+ ⑤ +
⑤ + ❧
+ ❧ a2

a4c5

a6c7a8

a9a10a11a12
b

b

b

b

b

b

b b b

b

b 1
b 2

b 3

b 4
b 5

b 6
b 7b 8

Fig. 3: An example of a diagram and its associated network.

We now explain how to associate aweight matrixto such a network.

Definition 3.3. LetND be a network as in Definition 3.2. LetI = {i1 < i2 < · · · < ik} ⊂ [n] denote
the sources. IfP is a directed path in the network, letw(P ) denote the product of all weights alongP . If
P is the empty path which starts and ends at the same boundary vertex, we letw(P ) = 1. If r is a source
ands is any boundary vertex, define

Wrs = ±
∑

P

w(P ),

where the sum is over all pathsP fromr to s. The sign is chosen (uniquely) so that

∆I\{r}∪{s}(WD) =
∑

P

w(P ), where

WD = (Wrs)

is thek× (n− k) weight matrix. We make the convention that the rows ofWD are indexed by the sources
i1, . . . , ik from top to bottom, and its columns are indexed by1, 2, . . . , n from left to right.
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Example 3.4. The weight matrix associated to the network in Figure 3 is




1 a9 0 0 a9a10 0 −a9a10(a11 + c7) −a9a10(a11a12 + a11c5 + a8 + c7c5)
0 0 1 0 −a6 0 a6c7 a6a8 + a6c7c5
0 0 0 1 0 0 a4 −a4c5
0 0 0 0 0 1 0 a2




3.2 Distinguished expressions
We now review the notion of distinguished subexpressions, as in [2] and [8]. This definition will be
essential for defining Go-diagrams. We assume the reader is familiar with the (strong) Bruhat order< on
W = Sn, and the basics of reduced expressions, as in [1].

Let w := si1 . . . sim be a reduced expression forw ∈ W . A subexpressionv of w is a word obtained
from the reduced expressionw by replacing some of the factors with1. For example, consider a reduced
expression inS4, says3s2s1s3s2s3. Thens3s2 1 s3s2 1 is a subexpression ofs3s2s1s3s2s3. Given a
subexpressionv, we setv(k) to be the product of the leftmostk factors ofv, if k ≥ 1, andv(0) = 1.

Definition 3.5. [8, 2] Given a subexpressionv of a reduced expressionw = si1si2 . . . sim , we define

J◦
v := {k ∈ {1, . . . ,m} | v(k−1) < v(k)},

J+
v := {k ∈ {1, . . . ,m} | v(k−1) = v(k)},
J•
v := {k ∈ {1, . . . ,m} | v(k−1) > v(k)}.

The expressionv is called non-decreasing ifv(j−1) ≤ v(j) for all j = 1, . . . ,m, e.g.J•
v = ∅.

Definition 3.6 (Distinguished subexpressions). [2, Definition 2.3] A subexpressionv of w is called dis-
tinguished if we have

v(j) ≤ v(j−1) sij for all j ∈ {1, . . . ,m}. (1)

In other words, if right multiplication bysij decreases the length ofv(j−1), then in a distinguished subex-
pression we must havev(j) = v(j−1)sij .

We writev ≺ w if v is a distinguished subexpression ofw.

Definition 3.7 (Positive distinguished subexpressions). We call a subexpressionv of w a positive distin-
guished subexpression (or a PDS for short) if

v(j−1) < v(j−1)sij for all j ∈ {1, . . . ,m}. (2)

In other words, it is distinguished and non-decreasing.

Lemma 3.8. [8] Given v ≤ w and a reduced expressionw for w, there is a unique PDSv+ for v in w.

3.3 Go-diagrams
In this section we explain how to index distinguished subexpressions by certain tableaux calledGo-
diagrams, which were introduced in [6]. Go-diagrams are fillings of Young diagrams by pluses+, black
stones✈, andwhite stones❢.(ii)
(ii) In KW2, we used a slightly different convention and used blank boxes in place of+’s.
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s5 s4 s3 s2 s1

s6 s5 s4 s3 s2

s7 s6 s5 s4 s3

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

15 12 9 6 3

14 11 8 5 2

13 10 7 4 1

Fig. 4: The labeling of a the boxes of a partition by simple generators si, and two reading orders.

Fix k andn. Let Wk = 〈s1, s2, . . . , ŝn−k, . . . , sn−1〉 be a parabolic subgroup ofW = Sn. Let W k

denote the set of minimal-length coset representatives ofW/Wk. Recall that adescentof a permutation
π is a positionj such thatπ(j) > π(j + 1). ThenW k is the subset of permutations ofSn which have at
most one descent; and that descent must be in positionn− k.

It follows from [11] and [10] that elementsw of W k can be identified with partitionsλw contained in a
k×(n−k) rectangle. More specifically, letQk be the poset whose elements are the boxes of ak×(n−k)
rectangle; ifb1 andb2 are two adjacent boxes such thatb2 is immediately to the left or immediately above
b1, we have a cover relationb1 ⋖ b2 in Qk. The partial order onQk is the transitive closure of⋖. Now
label the boxes of the rectangle with simple generatorssi as in the figure below. Ifb is a box of the
rectangle, then letsb denote its label by a simple generator. Letwk

0 ∈ W k denote the longest element
in W k. Then the set of reduced expressions ofwk

0 can be obtained by choosing a linear extension ofQk

and writing down the corresponding word in thesi’s. We call such a linear extension areading order;
two linear extensions are shown in the figure below. Additionally, given a partitionλ contained in the
k× (n−k) rectangle (chosen so that the upper-left corner of its Youngdiagram is aligned with the upper-
left corner of the rectangle), and a linear extension of the sub-poset ofQk comprised of the boxes ofλ,
the corresponding word insi’s is a reduced expression of a minimal length coset representativesw ∈ W k.
The elementw ∈ W k depends only on the partition, not the linear extension, andall reduced expressions
of w can be obtained by varying the linear extension. Finally, this correspondence is a bijection between
partitionsλw contained in thek × (n− k) rectangle and elementsw ∈ W k.

Definition 3.9. [6, Section 4] Fixk andn. Letw ∈ W k, letw be a reduced expression forw, and letv be
a distinguished subexpression ofw. Thenw andw determine a partitionλw contained in ak × (n− k)
rectangle together with a reading order of its boxes. TheGo-diagramassociated tov andw is a filling
of λw with pluses and black and white stones, such that: for eachk ∈ J◦

v we place a white stone in the
corresponding box; for eachk ∈ J•

v we place a black stone in the corresponding box ofλw; and for each
k ∈ J+

v we place a plus in the corresponding box ofλw.

Remark 3.10. By [6, Section 4], the Go-diagram associated tov andw does not depend onw, only
onw. Moreover, whether or not such a filling of a partitionλw is a Go-diagram does not depend on the
choice of reading order of the boxes ofλw .

Definition 3.11. We define thestandard reading orderof the boxes of a partition to be the reading order
which starts at the rightmost box in the bottom row, then reads right to left across the bottom row, then
right to left across the row above that, then right to left across the row above that, etc. This reading order
is illustrated at the right of the figure below.

By default, we will use the standard reading order in this paper.
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Example 3.12. Let k = 3 andn = 7, and letλ = (4, 3, 1). The standard reading order is shown at the
right of the figure below.

s4 s3 s2 s1

s5 s4 s3

s6

8 7 6 5

4 3 2

1

Then the following diagrams are Go-diagrams of shapeλ.

❤ ❤ ❤ ❤❤ ❤ ❤❤
+ ❤ ❤ +
+ ❤ +❤

① + + ❤
+ ❤ ❤
+

They correspond to the expressionss6s3s4s5s1s2s3s4, s61s411s2s31, and1s3s41s111s4. The first and
second are positive distinguished subexpressions (PDS’s), and the third one is a distinguished subexpres-
sion (but not a PDS).

Remark 3.13. The Go-diagrams associated to PDS’s are in bijection with

Γ

-diagrams, see [6, Section
4]. Note that the Go-diagram associated to a PDS contains only pluses and white stones. This is precisely
a

Γ

-diagram.

3.4 The main result
To state the main result, we now consider Go-diagrams (not arbitrary diagrams), the corresponding net-
works (Go-networks), and the corresponding weight matrices.

Definition 3.14. LetD be a Go-diagram contained in ak × (n − k) rectangle. We define a subsetRD

of the GrassmannianGrk,n by letting each variableai of the weight matrix (Definition 3.3) range over
all nonzero elementsK∗, and letting each variableci of the weight matrix range over all elementsK. We
call RD thenetwork component associated toD.

We will not define the Deodhar decomposition of the Grassmannian, but refer to [2, 3, 8] for details.

Theorem 3.15.LetD be a Go-diagram contained in ak×(n−k) rectangle. Suppose thatD hast pluses
andu black stones. ThenRD is isomorphic to the corresponding Deodhar component, and in particular
is isomorphic to(K∗)t × Ku. Furthermore,Grk,n is the disjoint union of the network componentsRD,
asD ranges over all Go-diagrams contained in ak× (n− k) rectangle. In other words, each point in the
GrassmannianGrk,n can be represented uniquely by a weighted network associated to a Go-diagram.

Corollary 3.16. Every matrix can be represented by a unique weighted networkassociated to a Go-
diagram.

4 A characterization of Deodhar components by minors
In this section we characterize Deodhar components in the Grassmannian by a list of vanishing and non-
vanishing Plücker coordinates.
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Definition 4.1. [6, Definition 5.4] LetW = Sn, letw = si1 . . . sim be a reduced expression forw ∈ W k

and choosev ≺ w. This determines a Go-diagramD of shapeλ = λw. Let I = I(λ). It is not hard to
check thatI = w{n, n− 1, . . . , n− k + 1}.

Let b be any box ofD. Note that the set of all boxes ofD which are weakly southeast ofb forms a
Young diagramλin

b ; also the complement ofλin
b in λ is a Young diagram which we callλout

b (see Example
4.2 below). By looking at the restriction ofw to the positions corresponding to boxes ofλin

b , we obtained
a reduced expressionwin

b for some permutationwin
b , together with a distinguished subexpressionvin

b for
some permutationvinb . Similarly, by using the positions corresponding to boxes of λout

b , we obtainedwout
b ,

wout
b , vout

b , andvoutb . When the boxb is understood, we will often omit the subscriptb.
If b contains a+, defineIb = vin(win)−1I ∈

(
[n]
k

)
. If b contains a white or black stone, define

Ib = vinsb(w
in)−1I ∈

(
[n]
k

)
.

Example 4.2. Let W = S7 andw = s4s5s2s3s4s6s5s1s2s3s4 be a reduced expression forw ∈ W 3.
Let v = s4s511s41s5s111s4 be a distinguished subexpression. Sow = (3, 5, 6, 7, 1, 2, 4) and v =
(2, 1, 3, 4, 6, 5, 7). We can represent this data by the posetλw and the corresponding Go-diagram:

s4 s3 s2 s1

s5 s4 s3 s2

s6 s5 s4

① + + ❤① ❤ + +❤❤+

Letb be the box of the Young diagram which is in the second row and the second column (counting from
left to right). Then the diagram below shows: the boxes ofλin andλout; a reading order which puts the
boxes ofλout after those ofλin; and the corresponding labeled Go-diagram. Using this reading order,
win = s4s5s2s3s4, wout = s6s5s1s2s3s4, vin = s4s511s4, andvout = 1s5s111s4.

out out out out

out in in in

out in in

11 10 9 8

7 5 4 3

6 2 1

Theorem 4.3. LetD be a Go-diagram of shapeλ contained in ak × (n− k) rectangle. LetA ∈ Grk,n.
ThenA lies in the Deodhar componentSD if and only if the following conditions are satisfied:

1. ∆Ib(A) = 0 for all boxes inD containing a white stone.

2. ∆Ib(A) 6= 0 for all boxes inD containing a+.

3. ∆I(λ)(A) 6= 0.

4. ∆J(A) = 0 for all k-subsetsJ which are lexicographically smaller thanI(λ).

Corollary 4.4. The Deodhar decomposition of the Grassmannian is a coarsening of the matroid stratifi-
cation: in other words, each Deodhar component is a union of matroid strata.
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Remark 4.5. Theorem 4.3 implicitly gives an algorithm for determining the Deodhar component and
corresponding network of a point of the Grassmannian, givenby a matrix representative or by a list of its
Plücker coordinates. The steps are as follows.

1. Find the lexicographically minimal nonzero Plücker coordinate∆I . Then the Go-diagram has
shapeλ(I). Fix a reading order for this shape.

2. We determine how to fill each box, working in the reading order, as follows. First check whether
the boxb is forced to contain a black stone. If not,b must contain a white stone if∆I(b) = 0, andb
must contain a plus if∆I(b) 6= 0. This process will completely determine the Go-diagram.

3. Given the Go-diagram, we know the underlying graph of the network. To determine the weights
on horizontal edges, work in the reading order again. The Plücker coordinate∆I(b) will only use
edge weightsab (whenb contains a+) or cb (whenb contains a black stone) and weightsab′ and
cb′ corresponding to boxesb′ which are earlier thanb in the reading order. Thus, we may use the
Lindström-Gessel-Viennot Lemma recursively to determine each weightab or cb.
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Abstract. We study the vector spaces and integer lattices of cuts and flows of an arbitrary finite CW complex, and
their relationships to its critical group and related invariants. Our results extend the theory of cuts and flows in graphs,
in particular the work of Bacher, de la Harpe and Nagnibeda. We construct explicit bases for the cut and flow spaces,
interpret their coefficients topologically, and describe sufficient conditions for them to be integral bases of the cut
and flow lattices. Second, we determine the precise relationships between the discriminant groups of the cut and
flow lattices and the higher critical and cocritical groups; these are expressed as short exact sequences with error
terms corresponding to torsion (co)homology. As an application, we generalize a result of Kotani and Sunada to give
bounds for the complexity, girth, and connectivity of a complex in terms of Hermite’s constant.

Resumé. Nous étudions les espaces vectoriels et les réseaux entiers des coupures et flots d’un CW-complexe arbi-
traire fini, et leur relations avec son groupe critical et invariants similaires. Nos résultats développent la théorie des
coupures et flots dans les graphes, en particulier le travail de Bacher, de la Harpe et Nagnibeda. Nous construisons
des bases explicites pour les espaces des coupures et des flots, donnons une description topologique de leurs coeffi-
cients, et décrivons conditions suffisants pour qu’ils soient des bases entières des réseaux des coupures et des flots.
De plus, nous déterminons les relations précises entre les groupes discriminantes des réseaux, et les groupes criti-
cal et cocritical; ces relations prennent la forme des suites exactes courtes, avec termes correspondant à la torsion
(co)homologie. Comme application, nous généralisons un résultat de Kotani et Sunada sur bornes pour la complexité,
la circonférence, et la connectivité d’un CW-complexe en termes de la constante d’Hermite.

Keywords: cut lattice, flow lattice, critical group, spanning forest, cell complex

1 Introduction
This paper is about vector spaces, integer lattices of cuts and flows, and finite group invariants associated
with a finite cell complex.

By way of background, the critical group of a graph is a finite abelian group whose order is the number
of spanning forests. The definition was introduced independently in several different settings, including
arithmetic geometry Lorenzini [1991], physics Dhar [1990], and algebraic geometry Bacher et al. [1997]
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(where it is also known as the Picard group or Jacobian group). It has received considerable recent atten-
tion for its connections to discrete dynamical systems, tropical geometry, and linear systems of curves;
see, e.g., Baker and Norine [2007], Biggs [1999], Bond and Levine [2011], Haase et al. [2012].

In previous work, the authors studied cellular generalizations of the graph-theoretic concepts of span-
ning trees Duval et al. [2009, 2011a] and the critical group Duval et al. [2011b]. To summarize, a cellular
spanning tree of a d-dimensional CW-complex Σ is a subcomplex Υ ⊆ Σ generated by facets corre-
sponding to a column basis of the cellular boundary matrix ∂ : Cd(Σ) → Cd−1(Σ). The critical group
K(Σ) is the torsion part of the cokernel of the combinatorial Laplacian ∂∂∗, and its order is a weighted
enumeration of the cellular spanning trees of Σ. Moreover, the action of the critical group on cellular
(d − 1)-cochains gives a model of discrete flow on Σ, generalizing the chip-firing and sandpile models;
see, e.g., Biggs [1999], Dhar [1990].

The lattices C and F of integral cuts and flows of a graph were first defined in Bacher et al. [1997], in
which the authors regarded a graph as an analogue of a Riemann surface and interpreted the discriminant
groups C]/C and F ]/F respectively as the Picard group of divisors and as the Jacobian group of holo-
morphic forms. In particular, they showed that the critical group K(G) is isomorphic to both C]/C and
F ]/F . Similar definitions and results appear in Biggs [1999].

Here, we define the cut and flow spaces and lattices of a cell complex Σ by

Cut(Σ) = imR ∂
∗, Flow(Σ) = kerR ∂,

C(Σ) = imZ ∂
∗, F(Σ) = kerZ ∂.

In topological terms, cut- and flow-vectors are cellular coboundaries and cycles, respectively. Equiv-
alently, the vectors in Cut(Σ) support sets of facets whose deletion increases the codimension-1 Betti
number, and the vectors in Flow(Σ) support nontrivial rational homology classes. In the language of
matroid theory, cuts and flows correspond to cocircuits and circuits, respectively, of the cellular matroid
represented by the columns of ∂. Indeed, every cellular spanning tree Υ ⊆ Σ gives rise to a natural basis
for each of the cut and flow spaces, whose elements are supported on fundamental cocircuits and circuits
of Υ, respectively. In the graph case the coefficients of these basis vectors are ±1; in the general case,
they are (up to sign) the cardinalities of homology groups of cellular spanning trees obtained from Υ by
matroid basis exchange. Under certain conditions, these vector space bases are in fact integral bases for
the cut and flow lattices (Theorem 4.3).

The idea of studying cuts and flows of matroids goes back to Tutte [1965]. The recent work Su and
Wagner [2010] defines cuts and flows of a regular matroid (i.e., one represented by a totally unimodular
matrixM ); whenM is the boundary matrix of a cell complex, this is the case where the torsion coefficients
are all trivial. Su and Wagner’s definitions coincide with ours; their focus, however, is on recovering the
structure of a matroid from the metric data of its flow lattice.

As we will see, the groups C]/C and F ]/F are not necessarily isomorphic to each other. Their precise
relationship involves several other groups: the critical group K(Σ), a dually defined cocritical group
K∗(Σ), and the cutflow group Zn/(C ⊕ F). We show (Theorem 5.5) that the critical and cocritical
groups are respectively isomorphic to the discriminant groups of the cut lattice and flow lattice, and that
the cutflow group mediates between them with an “error term” given by homology. The sizes of the
critical and cocritical groups are respectively torsion-weighted enumerators for cellular spanning trees
and for relatively acyclic subcomplexes. As an application of our theory, we generalize a theorem of
Kotani and Sunada [2000] to obtain a geometric bound for the girth and complexity of a cellular matroid
(Theorem 6.2).
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This is an extended abstract of the full article Duval et al. [2012], to which the reader is referred for the
proofs of all results stated herein.

2 Preliminaries
We assume that the reader is familiar with the basic topology of cell complexes. In general, we adopt the
notation of Hatcher [2002] for chain groups, (co)homology, etc. Throughout the paper, Σ will denote a
finite CW complex of dimension d. We adopt the convention that Σ has a unique cell of dimension −1
(as though it were an abstract simplicial complex); this will allow our results to specialize correctly to
the case d = 1 (i.e., that Σ is a graph). We write Σi for the set of i-dimensional cells in Σ, and Σ(i)

for the i-dimensional skeleton of Σ, i.e., Σ(i) = Σi ∪ Σi−1 ∪ · · · ∪ Σ0. A cell of dimension d is called
a facet. Unless otherwise stated, every d-dimensional subcomplex Γ ⊆ Σ is assumed to have a full
codimension-1 skeleton, i.e., Γ(d−1) = Σ(d−1). Accordingly, for simplicity of notation, we will often
make no distinction between the subcomplex Γ itself and its set Γd of facets. For a coefficient ring R,
we say that Σ is R-acyclic in codimension one if H̃d−1(Σ;R) = 0. For a graph (d = 1), both Q-
and Z-acyclicity in codimension one are equivalent to connectedness. The ith reduced Betti number is
β̃i(Σ) = dim H̃i(Σ;Q), and the ith torsion coefficient ti(Σ) is the cardinality of the torsion subgroup
T(H̃i(Σ;Z)).

A cellular spanning forest (CSF) of Σ is a subcomplex Υ ⊆ Σ such that Υ(d−1) = Σ(d−1) and

H̃d(Υ;Z) = 0, (1a)

rank H̃d−1(Υ;Z) = rank H̃d−1(Σ;Z), and (1b)

|Υd| = |Σd| − β̃d(Σ) + β̃d−1(Σ). (1c)

These conditions generalize the definition of a spanning forest of a graph G: respectively, it is acyclic,
connected, and has n − c edges, where n and c are the numbers of vertices and components of G. (By
“spanning forest,” we mean a maximal acyclic subgraph, not merely an acyclic subgraph containing all
vertices.) Just as in the graphic case, any two of the conditions (1a), (1b), (1c) together imply the third.
An equivalent definition is that a subcomplex Υ ⊆ Σ is a cellular spanning forest if and only if its d-cells
correspond to a column basis for the cellular boundary matrix ∂ = ∂d(Σ). In the case that Σ is Q-acyclic
in codimension one, this definition specializes to our earlier definition of a cellular spanning tree [Duval
et al., 2011a, Definition 2.2].

The complexity of Σ is

τ(Σ) = τd(Σ) =
∑

CSFs Υ⊆Σ

|T(H̃d−1(Υ;Z))|2. (2)

When d = 1, this is just the number of spanning forests. More generally, the complexity can be calculated
using a generalization of the matrix-tree theorem, as we now describe. Define the ith up-down, down-up
and total Laplacian operators of Σ by

Lud
i = ∂i+1∂

∗
i+1 : Ci(Σ)→ Ci(Σ), Ldu

i = ∂∗i ∂i : Ci(Σ)→ Ci(Σ), Ltot
i = Lud

i + Ldu
i .

(These are discrete versions of the Laplacian operators on differential forms of a Riemannian manifold.
The interested reader is referred to Eckmann [1945] and Dodziuk and Patodi [1976] for their origins in
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differential geometry and, e.g., Denham [2001], Friedman [1998], Merris [1994] for more recent appear-
ances in combinatorics.) The cellular matrix-tree theorem [Duval et al., 2011a, Theorem 2.8] states that
if Σ is Q-acyclic in codimension one and LῩ is the submatrix of Lud

d−1(Σ) obtained by deleting the rows
and columns corresponding to the facets of a (d− 1)-spanning tree Υ, then

τ(Σ) =
|T(H̃d−2(Σ;Z))|2
|T(H̃d−2(Υ;Z))|2

detLῩ.

One of our first results is that the condition H̃d−1(Σ;Q) = 0 can be dropped; see equation (3.3) below.
Closely related results, also applicable to all cell complexes, appear in Catanzaro et al. [2012] and Lyons
[2009].

A lattice L is a discrete subgroup of a finite-dimensional vector space V ; that is, it is the set of integer
linear combinations of some basis of V . (For background, see, e.g., [Artin, 1991, Chapter 12], [Godsil
and Royle, 2001, Chapter 14], [Hungerford, 1980, Chapter IV].) Every lattice L ⊆ Rn is isomorphic to
Zr for some integer r ≤ n, called the rank of L. The elements of L span a vector space denoted by L⊗R.
For L ⊆ Zn, the saturation of L is defined as L̂ = (L⊗R)∩Zn. An integral basis of L is a set of linearly
independent vectors v1, . . . , vr ∈ L such that L = {c1v1 + · · ·+ crvr : ci ∈ Z}. Fixing the standard inner
product 〈·, ·〉 on Rn, we define the dual lattice of L by

L] = {v ∈ L ⊗ R : 〈v, w〉 ∈ Z ∀w ∈ L}.

Note that L] can be identified with the dual Z-module L∗ = Hom(L,Z), and that (L])] = L. A lattice
is called integral if it is contained in its dual; for instance, any subgroup of Zn is an integral lattice.
The discriminant group (or determinantal group) of an integral lattice L is L]/L; its cardinality can be
calculated as detMTM , for any matrix M whose columns form an integral basis of L.

Many of our results of the paper may be expressed in the language of matroids, with which we assume
the reader is familiar (for a general reference on matroids, see, e.g., Oxley [1992]). We adopt the following
notation. IfM is a matroid on ground set E and B is a basis ofM, then for every e ∈ Bthe fundamental
bond (or fundamental cocircuit) of e with respect to B is

bo(B, e) = {f ∈ E : B \ {e} ∪ {f} is a basis ofM

and for every e 6∈ B the fundamental circuit is

ci(B, e) = {f ∈ E : B ∪ {e} \ {f} is a basis ofM.

The cellular matroid of Σ is the matroid M(Σ) represented over R by the columns of the boundary
matrix ∂. Thus the ground set ofM(Σ) naturally corresponds to the d dimensional cells Σd, andM(Σ)
records which sets of columns of ∂ are linearly independent. If Σ is a graph, then M(Σ) is its usual
graphic matroid, while if Σ is a simplicial complex thenM(Σ) is its simplicial matroid (see Cordovil and
Lindström [1987]). The bases ofM(Σ) are the collections of facets of cellular spanning forests of Σ. If r
is the rank function of the matroidM(Σ), then for each set of facets B ⊆ Σd, we have r(B) = rank ∂B ,
where ∂B is the submatrix consisting of the columns indexed by the facets in B. Moreover, we have

r(Σ) := r(Σd) = rankM(Σ) = rank ∂ = |Σd| − β̃d(Σ)
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by the definition of Betti number.
A set of facets B ⊆ Σd is called a cut if deleting B from Σ increases its codimension-one homology,

i.e., β̃d−1(Σ \B) > β̃d−1(Σ). A cut B is a bond if r(Σ \B) = r(Σ)− 1, but r((Σ \B)∪ σ) = r(Σ) for
every σ ∈ B. That is, a bond is a minimal cut. In matroid terminology, a bond of Σ is precisely a cocircuit
ofM(Σ), i.e., a minimal set that meets every basis ofM(Σ). Equivalently, a bond is the complement of
a flat of rank r(Σ)− 1.

It is important to point out that the cut and flow spaces and lattices of a complex Σ are not matroid
invariants, i.e., they are not determined by the cellular matroid M(Σ). (See Su and Wagner [2010]
for more on this subject.) Below is a table collecting some of the standard terminology from linear
algebra, graph theory, and matroid theory, along with the analogous concepts that we will be using for cell
complexes.

Linear algebra Graph Matroid Cell complex
Column vectors Edges Ground set Facets
Independent set Acyclic subgraph Independent set Acyclic subcomplex

Min linear dependence Cycle Circuit Circuit
Basis Spanning forest Basis CSF

Set meeting all bases Disconnecting set Codependent set Cut
Min set meeting all bases Bond Cocircuit Bond

Rank # edges in spanning forest Rank # facets in CSF

Here “codependent” means dependent in the dual matroid.

3 Enumerating Cellular Spanning Forests
Our first result generalizes the simplicial and cellular matrix-tree theorems of Duval et al. [2009] and
Duval et al. [2011a] (where we required that Σ be Q-acyclic in codimension one). Closely related results
have been obtained independently Catanzaro et al. [2012] and Lyons [2009].

Definition 3.1 Let Σ be a d-dimensional cell complex with rank r. Let Γ ⊆ Σ be a subcomplex of
dimension less than or equal to d− 1 such that Γ(d−2) = Σ(d−2). We say that Γ is relatively acyclic if the
inclusion map i : Γ→ Σ induces isomorphisms i∗ : H̃k(Γ;Q)→ H̃k(Σ;Q) for all k < d.

By the long exact sequence for relative homology, Γ is relatively acyclic if and only if H̃d(Σ;Q) →
H̃d(Σ,Γ;Q) is an isomorphism and H̃k(Σ,Γ;Q) = 0 for all k < d. These conditions can occur only if
|Γd−1| = |Σd−1| − r. This quantity may be zero (in which case the only relatively acyclic subcomplex is
Σ(d−2)). A relatively acyclic subcomplex is precisely the complement of a (d− 1)-cobase (a basis of the
matroid represented over R by the rows of the boundary matrix ∂) in the terminology of Lyons [2009].
Two special cases are worth noting. First, if d = 1, then a relatively acyclic complex consists of one
vertex in each connected component. Second, if H̃d−1(Σ;Q) = 0, then Γ is relatively acyclic if and only
if it is a cellular spanning forest of Σ(d−1).

For a matrix M , denote by MA,B the submatrix with rows A and columns B.

Proposition 3.2 Let Σ be a d-dimensional cell complex, let Υ ⊆ Σ be a cellular spanning forest, and let
Γ ⊆ Σ be a relatively acyclic (d− 1)-subcomplex. Then

td−1(Υ) td−1(Σ,Γ) = td−1(Σ) td−1(Υ,Γ).

The proof uses the following observation: the maximal nonsingular square submatrices of ∂ are pre-
cisely those whose columns correspond to a cellular spanning tree Υ and whose rows correspond to a
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relatively acyclic subcomplex Γ, and in this case the determinant of such a matrix is (up to sign) the
cardinality of the relative complex (Υ,Γ).

Expanding detLΓ with the Binet-Cauchy formula and using the fact that |det ∂Γ,Υ| = td−1(Υ,Γ)
(where Υ is a cellular spanning tree and Γ is a subcomplex generated by r ridges) implies the following
formula for the complexity of Σ.

Proposition 3.3 Let Σ be a d-dimensional cell complex and let Γ ⊆ Σ be a relatively acyclic (d − 1)-
dimensional subcomplex, and let LΓ be the restriction of Lud

d−1(Σ) to the (d− 1)-cells of Γ. Then

τd(Σ) =
td−1(Σ)2

td−1(Σ,Γ)2
detLΓ.

As an example of the usefulness of homological techniques, suppose that H̃d−1(Σ;Z) is purely torsion
(a frequent case). Then the relative homology sequence of the pair (Σ,Γ) gives rise to the exact sequence

0→ T(H̃d−1(Σ;Z))→ T(H̃d−1(Σ,Γ;Z))→ T(H̃d−2(Γ;Z))→ T(H̃d−2(Σ;Z))→ 0

which implies that td−1(Σ)/td−1(Σ,Γ) = td−2(Σ)/td−2(Γ). Thus, Proposition 3.3 becomes the for-
mula τd(Σ) = td−2(Σ)2

td−2(Γ)2 detLΓ, which was one of the original versions of the cellular matrix-tree theorem
[Duval et al., 2011a, Theorem 2.8(2)] (see also Catanzaro et al. [2012] and Lyons [2009]).

4 Bases of the Cut and Flow Spaces
As before, let Σ be a cell complex of dimension d and rank r; that is, every cellular spanning forest of Σ
has r facets), and identify cellular chains and cochains by the standard inner product. We wish to construct
combinatorially meaningful bases for the cut space im ∂∗d and the flow space ker ∂d. We first recall the
construction in the case of a graph.

There are two natural ways to construct bases of the cut space of a graph. First, if G is a graph on
vertex set V and R is a set of (“root”) vertices, one in each connected component, then the rows of ∂
corresponding to the vertices V \R form a basis for Cut1(G). This observation generalizes easily to cell
complexes: a set of r rows of the top-dimensional boundary matrix forms a row basis if and only if the
corresponding set of (d− 1)-cells is the complement of a relatively acyclic (d− 1)-subcomplex.

Second, for every spanning tree of a graph the signed characteristic vectors of its fundamental bonds
form a basis of its cut space (see [Godsil and Royle, 2001, Chapter 14]) In the more general setting of a
cell complex Σ, it is relatively straightforward to show that each bond in Σ supports a one-dimensional
subspace of Cut(Σ).

Theorem 4.1 Let Σ be a d-dimensional cell complex with top boundary map ∂, and let L = Ldu
d (Σ) =

∂∗∂. Let Υ = {σ1, σ2, . . . , σr} be a cellular spanning tree, and σ = σi ∈ Υ. Then:

1. The vector

χ̄(Υ, σi) =
r∑

j=1

(−1)j(detLΥ\σi,Υ\σj
)Lσj ∈ Cd(Σ)

spans the space of all cut-vectors with support contained in the fundamental bond bo(Υ, σi).

2. The set {χ̄(Υ, σ1), . . . , χ̄(Υ, σr)} is a vector space basis for Cut(Σ).
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3. The coefficients of χ̄(Υ, σi) have the following interpretation. Let

µ = µΥ = td−1(Υ)
∑

Γ

td−1(Σ,Γ)2

td−1(Σ)2
.

Then
χ̄(Υ, σ) =

∑

ρ∈bo(Υ,σ)

(detLΥ\σ∪ρ,Υ)ρ = µ
∑

ρ∈bo(Υ,σ)

(±td−1(Υ \ σ ∪ ρ))ρ.

The vectors χ(Υ, σ) = χ̄(Υ, σ)/µ are the cellular analogues of signed characteristic vectors of bonds
in graphs. (Note that if indeed d = 1, then all the torsion coefficients are 1; µ is just the number of
vertices of Σ; and for any edge σ in Υ, the vector χ(Υ, σ) is the usual signed characteristic vector of the
fundamental bond bo(Υ, σ).)

Torsion plays a role in the characteristic vectors of bonds, even when Σ is a simplicial complex. For
example, let Σ be the the complete 2-dimensional simplicial complex on 6 vertices and let Υ be the
triangulation of RP2 obtained by identifying opposite faces in an icosahedron. Then Υ is a cellular
spanning forest of Σ (and in fact Σ has twelve spanning forests of this kind). For any facet σ ∈ Υ, we
have bo(Υ, σ) = Σ2 \Υ2 ∪ {σ}, and the entries of the calibrated cut-vector include both ±2 (in position
σ) as well as ±1’s (in positions Σ \Υ).

The analogous theorem for the flow space is as follows.

Theorem 4.2 Let Σ be a d-dimensional cell complex with top boundary map ∂. For every circuit C in
the cellular matroid, the space of flow vectors supported on a subset of C is one-dimensional, spanned by

ϕ(C) =
∑

σ∈C
±td−1(∆ \ σ)σ.

Moreover, for every cellular spanning forest Υ ⊆ Σ, the set {ϕ(ci(Υ, σ)) : σ 6∈ Υ} is a vector space basis
for Flow(Σ).

The argument is easier for the flow space than for the cut space; for instance, the explicit formula for
ϕ(C) is essentially a calculation using Cramer’s rule.

In the graph case, these combinatorial bases of the cut and flow spaces are in fact integral bases of the
lattices C and F respectively. In the cellular case, the possibility of torsion requires additional assump-
tions. Specifically:

Theorem 4.3 Let Υ be a cellular spanning forest of Σ.

1. If H̃d−1(Υ;Z) is torsion-free, then {χ(Υ, σ) : σ ∈ Υ} is an integral basis for the cut lattice C(Σ).

2. If H̃d−1(Υ;Z) = H̃d−1(Σ;Z), then {ϕ̂(Υ, σ) : σ 6∈ Υ} is an integral basis for the flow lat-
tice F(Σ), where ϕ̂ denotes ϕ divided by the g.c.d. of its coefficients.

5 Groups and Lattices
In this section, we define the critical, cocritical, and cutflow groups of a cell complex. We identify
the relationships between these groups and to the discriminant groups of the cut and flow lattices. The
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graphical case was studied in detail in Bacher et al. [1997] and Biggs [1999], and is presented concisely
in [Godsil and Royle, 2001, Chapter 14]. Throughout the section, all (co)chain and (co)homology groups
are assume to have coefficients in Z; in particular, we identify both Cd(Σ;Z) and Cd(Σ;Z) with Zn.

Definition 5.1 The critical group of Σ is

K(Σ) := T(ker ∂d−1/ im ∂d∂
∗
d) = T(coker(im ∂d∂

∗
d)).

Definition 5.2 The cutflow group of Σ is Zn/(C(Σ)⊕F(Σ)).

In order to define the cocritical group of a cell complex, we need the notion of an acyclization. of Σ,
which is a (d + 1)-dimensional complex Ω such that Ω(d) = Σ and H̃d+1(Ω;Z) = H̃d(Ω;Z) = 0.
Algebraically, this construction corresponds to finding an integral basis for ker ∂d(Σ) and declaring its
elements to be the columns of ∂d+1(Ω) (so in particular |Ω(d+1)| = β̃d(Σ)). The definition of acyclization
and the universal coefficient theorem for cohomology together imply that H̃d+1(Ω;Z) = 0; that is,
∂∗d+1(Ω) is surjective.

Definition 5.3 The cocritical group K∗(Σ) is

K∗(Σ) := Cd+1(Ω;Z)/ im ∂∗d+1∂d+1 = cokerLdu
d+1.

It is not immediate that the group K∗(Σ) is independent of the choice of Ω; we will prove this in-
dependence as part of Theorem 5.5. For the moment, it is at least clear that K∗(Σ) is finite, since
rank ∂∗d+1 = rankLdu

d+1 = rankCd+1(Ω;Z). In the special case of a graph, the cocritical group co-
incides with the discriminant group of the lattice generated by the columns of the “intersection matrix”
defined by Kotani and Sunada Kotani and Sunada [2000]. (See also [Biggs, 2007, Sections 2, 3].)

Remark 5.4 As in Duval et al. [2011b], one can define critical and cocritical groups in every dimension
by

Ki(Σ) = T(Ci(Σ;Z)/ im ∂i+1∂
∗
i+1), K∗i (Σ) = T(Ci(Σ;Z)/ im ∂∗i ∂i).

If the cellular chain complexes of Σ and Ψ are algebraically dual (for example, if Σ and Ψ are Poincaré
dual cell structures on a compact orientable d-manifold), then Ki(Ψ) = K∗d−i(Σ) for all i.

Our main theorem states that the critical and cocritical groups are isomorphic to the discriminant groups
of the cut and flow lattices respectively, and the cutflow group mediates between the critical and cocritical
groups, with an “error term” given by torsion. Specifically:

Theorem 5.5 Let Σ be a cell complex of dimension d with n facets. Then there are short exact sequences

0 → Zn/(C ⊕ F) → C]/C ∼= K(Σ) → T(H̃d(Σ;Z)) → 0

and
0 → T(H̃d−1(Σ;Z)) → Zn/(C ⊕ F) → F ]/F ∼= K∗(Σ) → 0.

In fact, the error terms T(H̃d(Σ;Z)) and T(H̃d−1(Σ;Z)) are in fact isomorphic, by a special case of the
universal coefficient theorem for cohomology [Hatcher, 2002, p. 205, Corollary 3.3].

Corollary 5.6 If H̃d−1(Σ;Z) is torsion-free, then the groups K(Σ), K∗(Σ), C]/C, F ]/F , and Zn/(C ⊕
F) are all isomorphic to each other.
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Corollary 5.6 includes the case that Σ is a graph, as studied in Bacher et al. [1997] and Biggs [1999]. It
also includes the combinatorially important family of Cohen-Macaulay simplicial complexes, as well as
cellulations of compact orientable manifolds.

Example 5.7 Suppose that H̃d(Σ;Z) = Z and that H̃d−1(Σ;Z) is torsion-free. Then the flow lattice is
generated by a single element, and it follows from Corollary 5.6 thatK(Σ) ∼= K∗(Σ) ∼= F ]/F is a cyclic
group. For instance, if Σ is homeomorphic to a cellular sphere or torus, then the critical group is cyclic
of order equal to the number of facets. (The authors had previously proved this fact for simplicial spheres
[Duval et al., 2011b, Theorem 3.7], but this approach using the cocritical group makes the statement more
general and the proof transparent.)

Example 5.8 Let Σ be the standard cellulation e0 ∪ e1 ∪ e2 of the real projective plane, whose cellular
chain complex is

Z ∂2=2−−−→ Z ∂1=0−−−→ Z.

Then C = im ∂∗2 = 2Z, C] = 1
2Z, and K(Σ) = C]/C = Z4. Meanwhile, F = F ] = F ]/F = K∗(Σ) =

0. The cutflow group is Z2. Note that the rows of the Theorem 5.5 are not split in this case.

Example 5.9 Let a, b ∈ Z \ {0}. Let Σ be the cell complex whose cellular chain complex is

Z ∂2=[a b]−−−−−→ Z ∂1=0−−−→ Z.

Topologically, Σ consists of a vertex e0, a loop e1, and two facets of dimension 2 attached along e1 by
maps of degrees a and b. Then

C]/C = Zτ , Z2/(C ⊕ F) = Zτ/g, F ]/F = Zτ/g2 ,

where τ = a2 + b2 and g = gcd(a, b). Note that τ = τ2(Σ) is the complexity of Σ (see equation (2))
and that g = |H̃1(Σ;Z)|. The short exact sequence for K∗(Σ) of Theorem 5.5 is in general not split (for
example, if a = 6 and b = 2).

For a connected graph, the cardinality of the critical group equals the number of spanning trees. In the
cellular case, Examples 5.8 and 5.9 both indicate that K(Σ) ∼= C]/C should have cardinality equal to the
complexity τ(Σ). Indeed, in Theorem 4.2 of Duval et al. [2011b], the authors proved that |K(Σ)| = τ(Σ)
whenever Σ has a cellular spanning tree Υ such that H̃d−1(Υ;Z) = H̃d−1(Σ;Z) = 0 (in particular, Σ
must be not merely Q-acyclic, but actually Z-acyclic, in codimension one). We prove that this condition
holds true for any cell complex. Together with Theorem 5.5, we obtain:

Theorem 5.10 Let Σ be a d-dimensional cell complex and let t = td−1(Σ) = |T(H̃d−1(Σ;Z))|. Then

|C]/C| = |K(Σ)| = τd(Σ),

|Zn/(C ⊕ F)| = τd(Σ)/t, and

|F ]/F| = |K∗(Σ)| = τd(Σ)/t2.

Dually, we can interpret the cardinality of the cocritical group as enumerating cellular spanning forests
by relative torsion (co)homology:
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Theorem 5.11 Let Ω be an acyclization of Σ. Then

|K∗(Σ)| =
∑

Υ

|H̃d+1(Ω,Υ;Z)|2 =
∑

Υ

|H̃d(Ω,Υ;Z)|2

with the sums over all cellular spanning forests Υ ⊆ Σ.

Note that the groups H̃d+1(Ω,Υ;Z) and H̃d(Ω,Υ;Z) are all finite, by definition of acyclization.

Remark 5.12 Let τ∗(Σ) =
∑

Υ |H̃d(Ω,Υ;Z)|2, as in Theorem 5.11. Then combining Theorems 5.10
and Theorems 5.11 gives

|C]/C| = |K(Σ)| = τ(Σ) = τ∗(Σ) · t2,

|F ]/F| = |K∗(Σ)| = τ∗(Σ) = τ(Σ)/t2,

|Zn/(C ⊕ F)| = τ(Σ)/t = τ∗(Σ) · t,
highlighting the duality between the cut and flow lattices.

6 Bounds on combinatorial invariants from lattice geometry
Let n ≥ 1 be an integer. The Hermite constant γn is defined as the maximum value of

(
min

x∈L\{0}
〈x, x〉

)
(|L]/L|)−1/n (3)

over all lattices L ⊆ Rn, where 〈·, ·〉 is the standard inner product. The Hermite constant arises both in
the study of quadratic forms and in sphere packing; see [Lagarias, 1995, Section 4]. It is known that γn
is finite for every n, although the precise values are known only for 1 ≤ n ≤ 8 and n = 24 Cohn and
Kumar [2009].

As observed in Kotani and Sunada [2000], if L = F is the flow lattice of a connected graph, then the
shortest vector in F is the characteristic vector of a cycle of minimum length; therefore, the numerator in
equation (3) is the girth of G. Meanwhile, |F ]/F| is the number of spanning trees. We now generalize
this theorem to cell complexes.

Definition 6.1 Let Σ be a cell complex. The girth and the connectivity are defined as the cardinalities of,
respectively the smallest circuit and the smallest cocircuit of the cellular matroid of Σ.

Theorem 6.2 Let Σ be a cell complex of dimension d with girth g and connectivity k, and top boundary
map of rank r. Let b = rank H̃d−1(Σ;Z). Then

kτ(Σ)−1/r ≤ γr and gτ∗(Σ)−1/b ≤ γb.

Proof: Every nonzero vector of the cut lattice (resp., the flow lattice) contains a cocircuit (resp., a circuit)
in its support. Therefore,

min
x∈C\{0}

〈x, x〉 ≥ k and min
x∈F\{0}

〈x, x〉 ≥ g.

Meanwhile, |C]/C| = τ and |F ]/F| = τ∗ by Theorem 5.10. The desired inequalities now follow from
applying the definition of Hermite’s constant to the cut and flow lattices respectively. 2
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Denominator vectorsr and compatibility
degrees in cluster algebras of finite type
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Abstract. We present two simple descriptions of the denominator vectors of the cluster variables of a cluster algebra
of finite type, with respect to any initial cluster seed: one in terms of the compatibility degrees between almost positive
roots defined by S. Fomin and A. Zelevinsky, and the other in terms of the root function of a certain subword complex.
These descriptions only rely on linear algebra, and provide simple proofs of the known fact that the d-vector of any
non-initial cluster variable with respect to any initial cluster seed has non-negative entries and is different from zero.

Résumé. Nous présentons deux descriptions élémentaires des vecteurs dénominateurs des algèbres amassées de type
fini pour tout amas initial: l’une en termes de degrés de compatibilitié entre racines presque positives définis par
S. Fomin et A. Zelevinsky, et l’autre en termes de la fonction racine d’un certain complexe de sous-mots. Ces de-
scriptions ne reposent que sur l’algèbre linéaire et fournissent des preuves simples du fait (connu) que le d-vecteur de
toute variable d’amas, qui n’est pas dans l’amas initial, a des entrées positives ou nulles et est différent du vecteur nul.

Keywords: Finite type cluster algebras, d-vectors, subword complexes.

1 Introduction
Cluster algebras were introduced by S. Fomin and A. Zelevinsky in [FZ02, FZ03a]. They are commuta-
tive rings generated by a (possibly infinite) set of cluster variables, which are grouped into overlapping
clusters. The clusters can be obtained from any initial cluster seed X = {x1, . . . , xn} by a mutation
process. Each mutation exchanges a single variable y to a new variable y′ satisfying a relation of the
form yy′ = M+ +M−, where M+ and M− are monomials in the variables involved in the current clus-
ter and distinct from y and y′. The precise content of these monomials M+ and M− is controlled by a
combinatorial object (a skew-symmetrizable matrix, or equivalently a weighted quiver [Kel12]) which is
attached to each cluster and is also transformed during the mutation. We refer to [FZ02] for the precise
definition of these joint dynamics. In [FZ02, Thm. 3.1], S. Fomin and A. Zelevinsky proved that given
any initial cluster seed X = {x1, . . . , xn}, the cluster variables obtained during this mutation process are
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Laurent polynomials in the variables x1, . . . , xn. That is to say, every non-initial cluster variable y can be
written in the form

y =
F (x1, . . . , xn)

xd11 · · ·xdnn
where F (x1, . . . , xn) is a polynomial which is not divisible by any variable xi for i ∈ [n]. This in-
triguing property is called Laurent Phenomenon in cluster algebras [FZ02]. The denominator vector
(or d-vector for short) of the cluster variable y with respect to the initial cluster seed X is defined
as the vector d(X, y) := (d1, . . . , dn). The d-vector of the initial cluster variable xi is by definition
d(X,xi) := − ei := (0, . . . ,−1, . . . , 0).

Note that we think of the cluster variables as a set of variables satisfying some algebraic relations. These
variables can be expressed in terms of the variables in any initial cluster seed X = {x1, . . . , xn} of the
cluster algebra. Starting from a different cluster seedX ′ = {x′1, . . . , x′n}would give rise to an isomorphic
cluster algebra, expressed in terms of the variables x′1, . . . , x

′
n of this seed. Therefore, the d-vectors of

the cluster variables depend on the choice of the initial cluster seed X in which the Laurent polynomials
are expressed. This dependence is explicit in the notation d(X, y). Note also that since the denominator
vectors do not depend on coefficients, we restrict our attention to coefficient-free cluster algebras.

In this paper, we only consider finite type cluster algebras, i.e. cluster algebras whose mutation graph
is finite. They were classified in [FZ03a, Thm. 1.4] using the Cartan-Killing classification for finite
crystallographic root systems. In [FZ03a, Thm. 1.9], S. Fomin and A. Zelevinsky proved that in the
cluster algebra of any given finite type, with a bipartite quiver as initial cluster seed,

(i) there is a bijection φ from almost positive roots to cluster variables, which sends the negative simple
roots to the initial cluster variables;

(ii) the d-vector of the cluster variable φ(β) corresponding to an almost positive root β is given by the
vector (b1, . . . , bn) of coefficients of the root β =

∑
biαi on the linear basis ∆ formed by the simple

roots α1, . . . , αn; and

(iii) these coefficients coincide with the compatibility degrees (αi ‖ β) defined in [FZ03b, Sec. 3.1].
These results were extended to all cluster seeds corresponding to Coxeter elements of the Coxeter group

(see e.g. [Kel12, Thm. 3.1 & Sec. 3.3]). More precisely, assume that the initial seed is the cluster Xc

corresponding to a Coxeter element c (its associated quiver is the Coxeter graph oriented according to c).
Then one can define a bijection φc from almost positive roots to cluster variables such that the d-vector of
the cluster variable φc(β) corresponding to β, with respect to the initial cluster seed Xc, is still given by
the vector (b1, . . . , bn) of coordinates of β =

∑
biαi in the basis ∆ of simple roots. Under this bijection,

the collections of almost positive roots corresponding to clusters are called c-clusters and were studied by
N. Reading [Rea07, Sec. 7].

In this paper, we provide similar interpretations for the denominators of the cluster variables of any
finite type cluster algebra with respect to any initial cluster seed (acyclic or not):

(i) Our first description (Corollary 3.2) uses compatibility degrees: if {β1, . . . , βn} is the set of almost
positive roots corresponding to the cluster variables in any initial seed X = {φ(β1), . . . , φ(βn)},
then the d-vector of the cluster variable φ(β) corresponding to an almost positive root β, with respect
to the initial cluster seed X , is given by the vector of compatibility degrees ((β1 ‖ β), . . . , (βn ‖ β))
of [FZ03b, Sec. 3.1]. We also provide a refinement of this result parametrized by a Coxeter element c,
using the bijection φc together with the notion of c-compatibility degrees (Corollary 3.3).
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(ii) Our second description (Corollary 3.4) uses the recent connection [CLS13] between the theory of
cluster algebras of finite type and the theory of subword complexes, initiated by A. Knutson and
E. Miller [KM04]. We describe the entries of the d-vector in terms of certain coefficients given by
the root function of a subword complex associated to a certain word.

These results lead to simple alternative proofs of the known fact that, in a cluster algebra of finite type,
the d-vector of any non-initial cluster variable with respect to any initial cluster seed is non-negative and
not equal to zero (Corollary 3.5).

Finally, we also provide explicit geometric interpretations for all the concepts and results in this paper
for the classical types A, B, C and D in Section 4. Our interpretation in type D is new and differs from
known interpretations in the literature. It simplifies certain combinatorial and algebraic aspects and makes
an additional link between the theory of cluster algebras and pseudotriangulations [RSS08].

The proofs of our results, omitted in this extended abstract, can be found in [CP13].

2 Preliminaries
Let (W,S) be a finite crystallographic Coxeter system of rank n. We consider a root system Φ, with
simple roots ∆ := {α1, . . . , αn}, positive roots Φ+, and almost positive roots Φ≥−1 := Φ+ ∪ −∆. We
refer to [Hum90] for a reference on Coxeter groups and root systems.

Let A(W ) denote the cluster algebra associated to type W , as defined in [FZ03a]. Each cluster is
formed by n cluster variables, and is endowed with a weighted quiver (an oriented and weighted graph
on S) which controls the cluster dynamics. Since we will not make extensive use of it, we believe that
it is unnecessary to recall here the precise definition of the quiver and cluster dynamics, and we refer
to [FZ02, Kel12] for details. For illustrations, we recall geometric descriptions of these dynamics in
types A, B, C, and D in Section 4.

Let c be a Coxeter element of W , and c := (c1, · · · , cn) be a reduced expression of c. The element c
defines a particular weighted quiverQc: the Coxeter graph of the Coxeter system (W,S) directed accord-
ing to the order of appearance of the simple reflections in c. We denote by Xc the cluster seed whose
associated quiver is Qc. Let w◦(c) := (w1, · · · , wN ) denote the c-sorting word for w◦, i.e. the lexico-
graphically first subword of the infinite word c∞ which represents a reduced expression for the longest
element w◦ ∈W . We consider the word Qc := cw◦(c) and denote bym :=n+N the length of this word.

2.1 Cluster variables, almost positive roots, and positions in the word Qc

We recall here the above-mentioned bijections between cluster variables, almost positive roots and posi-
tions in the word Qc. We will see in the next sections that both the clusters and the d-vectors (expressed
on any initial cluster seed X) can also be read off in these different contexts. Figure 1 summarizes these
different notions and the corresponding notations. We insist that the choice of the Coxeter element c and
the choice of the initial cluster X are not related. The former provides a labeling of the cluster variables
by the almost positive roots or by the positions in Qc, while the latter gives an algebraic basis to express
the cluster variables and to assign them d-vectors.

First, there is a natural bijection between cluster variables and almost positive roots, which can be
parametrized by the Coxeter element c. Start from the initial cluster seed Xc associated to the weighted
quiver Qc corresponding to the Coxeter element c. Then the d-vectors of the cluster variables of A(W )
with respect to the initial seed Xc are given by the almost positive roots Φ≥−1. This defines a bijection
φc from almost positive roots to cluster variables. Notice that this bijection depends on the choice of the
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cluster variables x, y ∈ A(W )
cluster X = {x1, . . . , xn}
compatibility degree d(x, y)
denominator vector d(X, y)

almost positive roots α, β ∈ Φ≥−1
c-cluster B = {β1, . . . , βn}
c-compatibility degree (α ‖c β)
compatibility vector dc(B, β)

positions i, j ∈ [m] in the word Qc

c-cluster I = {i1, . . . , in}
c-compatibility degree {i ‖c j}

coefficient vector dc(I, j)

φc ψc

χc

τ

τc τc

Fig. 1: Three different contexts for cluster algebras of finite type, their different notions of compatibility
degrees, and the bijections between them. See Sections 2.1, 2.2 and 2.3 for definitions.

Coxeter element c. When c is a bipartite Coxeter element, it is the bijection φ of S. Fomin and A. Zelevin-
sky [FZ03a, Thm. 1.9] mentioned above. Transporting the structure of the cluster algebra A(W ) through
the bijection φc, we say that a subset B of almost positive roots forms a c-cluster iff the corresponding
subset of cluster variables φc(B) forms a cluster of A(W ). The collection of c-clusters forms a simpli-
cial complex on the set Φ≥−1 of almost positive roots called the c-cluster complex. This complex was
described in purely combinatorial terms by N. Reading in [Rea07, Sec. 7]. Given an initial c-cluster
seed B := {β1, . . . , βn} in Φ≥−1 and an almost positive root β, we define the d-vector of β with respect
to B as dc(B, β) :=d

(
φc(B), φc(β)

)
. If c is a bipartite Coxeter element, then we speak about classical

clusters and omit c in the previous notation to write d(B, β).
Second, there is a bijection χc from the positions in the word Qc = cw◦(c) to the almost positive roots

as follows. The letter ci of c is sent to the negative root −αci , while the letter wi of w◦(c) is sent to the
positive root w1 · · ·wi−1(αwi). To be precise, note that this bijection depends not only on the Coxeter
element c, but also on its reduced expression c. This bijection was defined by C. Ceballos, J.-P. Labbé and
C. Stump in [CLS13, Thm. 2.2].

Composing the two maps described above provides a bijection ψc from positions in the word Qc to
cluster variables (precisely defined by ψc :=φc ◦ χc). Transporting the structure of A(W ) through the
bijection ψc, we say that a subset I of positions in Qc forms a c-cluster iff the corresponding cluster
variables ψc(I) form a cluster of A(W ). Moreover, given an initial c-cluster seed I ⊆ [m] in Qc and a
position j ∈ [m] in Qc, we define the d-vector of j with respect to I as dc(I, j) :=d

(
ψc(I), ψc(j)

)
. It

turns out that the c-clusters can be read off directly in the word Qc as follows.

Theorem 2.1 ([CLS13, Thm. 2.2 & Coro. 2.3]) A subset I of positions in Qc forms a c-cluster in Qc if
and only if the subword of Qc formed by the complement of I is a reduced expression for w◦.

Remark 2.2 The previous theorem relates c-cluster complexes to subword complexes as defined by A. Knut-
son and E. Miller [KM04]. Given a word Q on the generators S of W and an element π ∈ W , the
subword complex SC(Q, ρ) is the simplicial complex whose faces are subwords P of Q such that the
complement Q r P contains a reduced expression of π. See [CLS13] for more details on this connection.
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2.2 The rotation map
In this section we introduce a rotation map τc on the positions in the word Qc, and naturally extend it to a
map on almost positive roots and cluster variables using the bijections of Section 2.1 (see Figure 1). The
rotation map plays the same role for arbitrary finite type as the rotation of the polygons associated to the
classical types A, B, C and D, see e.g. [CLS13, Thm. 8.10] and Section 4.

Definition 2.3 (Rotation maps) The rotation τc : [m] −→ [m] is the map on the positions in the word
Qc defined as follows. If qi = s, then τc(i) is defined as the position in Qc of the next occurrence of s if
possible, and as the first occurrence of w◦sw◦ otherwise.

Using the bijections χc (resp. ψc) from the positions in the word Qc to almost positive roots (resp. to
cluster variables), this rotation can also be regarded as a map on almost positive roots (resp. on cluster
variables). For simplicity, we abuse notation and also write τc for the composition χc ◦ τc ◦χ−1c and τ for
the composition ψc ◦ τc ◦ψ−1c . These maps can also be expressed purely in terms of almost positive roots
or cluster variables, see [CP13].

Lemma 2.4 The rotation map preserves clusters:
(i) a subset I ⊂ [m] of positions in the word Qc is a c-cluster if and only if τc(I) is a c-cluster;

(ii) a subset B ⊂ Φ≥−1 of almost positive roots is a c-cluster if and only if τc(B) is a c-cluster; and
(iii) a subset X of cluster variables is a cluster if and only if τ(X) is a cluster.

Remark 2.5 Let c be a bipartite Coxeter element, with sources corresponding to the positive vertices (+)
and sinks corresponding to the negative vertices (−). Then, the rotation τc on the set of almost positive
roots is the product of the maps τ+, τ− : Φ≥−1 → Φ≥−1 defined in [FZ03b, Sec. 2.2]. We refer the
interested reader to that paper for the definitions of τ+ and τ−.

2.3 Three descriptions of c-compatibility degrees
In this section we introduce three notions of compatibility degrees on the set of cluster variables, almost
positive roots, and positions in the word Qc. We will see in Section 3 that these three notions coincide
under the bijections of Section 2.1, and will use it to describe three different ways to compute d-vectors
for cluster algebras of finite type. We refer again to Figure 1 for a summary of our notations in these three
situations.

On cluster variables. Let X = {x1, . . . , xn} be a set of cluster variables of A(W ) forming a cluster,
and let

y =
F (x1, . . . , xn)

xd11 · · ·xdnn
(1)

be a cluster variable of A(W ) expressed in terms of the variables {x1, . . . , xn} such that F (x1, . . . , xn)
is a polynomial which is not divisible by any variable xj for j ∈ [n]. Recall that the d-vector of y with
respect to X is d(X, y) = (d1, . . . , dn).

Lemma 2.6 For cluster algebras of finite type, the i-th component of the d-vector d(X, y) is independent
of the cluster X containing the cluster variable xi.

Definition 2.7 (Compatibility degree on cluster variables) For any two cluster variables x and y, we
denote by d(x, y) the x-component of the d-vector d(X, y) for any cluster X containing the variable x.
We refer to d(x, y) as the compatibility degree of y with respect to x.
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On almost positive roots. Extending the definition of [FZ03b, Sec. 3.1], we now define compatibility
degrees on almost positive roots.

Definition 2.8 (c-compatibility degree on almost positive roots) The c-compatibility degree on the set
of almost positive roots is the unique function

Φ≥−1 × Φ≥−1 −→ Z
(α, β) 7−→ (α ‖c β)

characterized by the following two properties:

(−αi ‖c β) = bi, for all i ∈ [n] and β =
∑

biαi ∈ Φ≥−1, (2)

(α ‖c β) = (τcα ‖c τcβ), for all α, β ∈ Φ≥−1. (3)

Remark 2.9 This definition is motivated by the classical compatibility degree defined by S. Fomin and
A. Zelevinsky in [FZ03b, Sec. 3.1]. Namely, if c is a bipartite Coxeter element, then the c-compatibility de-
gree (· ‖c ·) coincides with the compatibility degree (· ‖ ·) of [FZ03b, Sec. 3.1] except that (α ‖c α) = −1
while (α ‖ α) = 0 for any α ∈ Φ≥−1. Throughout this paper, we ignore this difference: we still call
classical compatibility degree, and denote by (· ‖ ·), the c-compatibility degree for a bipartite Coxeter
element c.

On positions in the word Qc. We recall now the notion of root functions associated to c-clusters in Qc,
and use them in order to define a c-compatibility degree on the set of positions in Qc. This description
relies only on linear algebra and is one of the main contributions of this paper. The root function was
defined by C. Ceballos, J.-P. Labbé, and C. Stump in [CLS13, Def. 3.2] and was extensively used by
V. Pilaud and C. Stump in the construction of Coxeter brick polytopes [PS11].

Definition 2.10 ([CLS13]) The root function r(I, ·) : [m] −→ Φ associated to a c-cluster I ⊆ [m] in Qc

is defined by r(I, j) :=σc
[j−1]rI(αqj ), where σc

X denotes the product of the reflections qx ∈ Qc for x ∈ X
in this order. The root configuration of I is the multiset R(I) := {{r(I, i) | i ∈ I}}.

As proved in [CLS13, Sec. 3.1], the root function r(I, ·) encodes exchanges in the c-cluster I . Namely,
any i ∈ I can be exchanged with the unique j /∈ I such that r(I, j) = ±r(I, j) (see [CLS13, Lem. 3.3]),
and the root function can be updated during this exchange (see [CLS13, Lem. 3.6]). It was moreover
shown in [PS11, Sec. 6] that the root configuration R(I) forms a basis for Rn for any given initial c-
cluster I in Qc. It enables us to decompose any other root on this basis to get the following coefficients,
which will play a central role in the remainder of the paper.

Definition 2.11 (c-compatibility degree on positions in Qc) Fix any initial c-cluster I ⊆ [m] of Qc. For
any position j ∈ [m], we decompose the root r(I, j) on the basis R(I) as follows:

r(I, j) =
∑

i∈I
ρi(j)r(I, i).

For i ∈ I and j ∈ [m], we define the c-compatibility degree as the coefficient

{i ‖c j} =

{
ρi(j) if j > i,

−ρi(j) if j ≤ i.

Lemma 2.12 The coefficients {i ‖c j} are independent of the c-cluster I ⊆ [m] of Qc containing i.
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3 Main results: Three descriptions of d-vectors
The following result states that the three notions of compatibility degrees above are essentially the same.
The proof can be found in [CP13].

Theorem 3.1 The three notions of compatibility degrees on the set of cluster variables, almost positive
roots, and positions in the word Qc coincide under the bijections of Section 2.1. More precisely, for every
pair of positions i, j in the word Qc we have

d(ψc(i), ψc(j)) = (χc(i) ‖c χc(j)) = {i ‖c j}.
In particular, if c is a bipartite Coxeter element, then these coefficients coincide with the classical com-
patibility degrees of S. Fomin and A. Zelevinsky [FZ03b, Sec. 3.1] (except for Remark 2.9).

The following three statements are the main results of this paper and are direct consequences of The-
orem 3.1. The first statement describes the denominator vectors in terms of the compatibility degrees
of [FZ03b, Sec. 3.1].

Corollary 3.2 Let B := {β1, . . . , βn} ⊆ Φ≥−1 be a (classical) cluster in the sense of S. Fomin and
A. Zelevinsky [FZ03a, Thm. 1.9], and let β ∈ Φ≥−1 be an almost positive root. Then the d-vector d(B, β)
of the cluster variable φ(β) with respect to the initial cluster seed φ(B) = {φ(β1), . . . , φ(βn)} is given
by

d(B, β) =
(
(β1 ‖ β), . . . , (βn ‖ β)

)
,

where (βi ‖ β) is the compatibility degree of β with respect to βi as defined by S. Fomin and A. Zelevin-
sky [FZ03b, Sec. 3.1] (except for Remark 2.9).

The next statement extends this result to any Coxeter element c of W .

Corollary 3.3 Let B := {β1, . . . , βn} ⊆ Φ≥−1 be a c-cluster in the sense of N. Reading [Rea07, Sec. 7],
and let β ∈ Φ≥−1 be an almost positive root. Then the d-vector dc(B, β) of the cluster variable φc(β)
with respect to the initial cluster seed φc(B) = {φc(β1), . . . , φc(βn)} is given by

dc(B, β) =
(
(β1 ‖c β), . . . , (βn ‖c β)

)
,

where (βi ‖c β) is the c-compatibility degree of β with respect to βi as defined in Definition 2.8.

Finally, the third statement describes the denominator vectors in terms of the coefficients {i ‖c j} ob-
tained from the word Qc.

Corollary 3.4 Let I ⊆ [m] be a c-cluster and j ∈ [m] be a position in Qc. Then the d-vector dc(I, j) of
the cluster variable ψc(j) with respect to the initial cluster seed ψc(I) = {ψc(i) | i ∈ I} is given by

dc(I, j) =
(
{i ‖c j}

)
i∈I .

These corollaries lead to simple proofs of the following statement.

Corollary 3.5 For cluster algebras of finite type, the d-vector of a cluster variable that is not in the initial
seed is non-negative and not equal to zero.

This corollary was conjectured by S. Fomin and A. Zelevinsky for arbitrary cluster algebras [FZ07,
Conj. 7.4]. In the case of cluster algebras of finite type, this conjecture also follows from [CCS06,
Thm. 4.4 & Rem. 4.5] and from [BMR07, Thm. 2.2], where the authors show that the d-vectors can
be computed as the dimension vectors of certain indecomposable modules.
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4 Geometric interpretations in types A, B, C and D

In this section, we present geometric interpretations for the classical types A, B, C, and D of the objects
discussed in this paper: cluster variables, clusters, mutations, compatibility degrees, and d-vectors. These
interpretations are classical in types A, B and C when the initial cluster seed corresponds to a bipartite
Coxeter element, and can already be found in [FZ03b, Sec. 3.5] and [FZ03a, Sec. 12]. In contrast, our
interpretation in type D slightly differs from that of S. Fomin and A. Zelevinsky since we prefer to
use pseudotriangulations (we motivate this choice in Remark 4.1). Moreover, these interpretations are
extended here to any initial cluster seed, acyclic or not.

We can associate to each classical finite type a geometric configuration, so that there is a correspondence
between:

(i) cluster variables and diagonals (or centrally symmetric pairs of diagonals) in the geometric picture;
(ii) clusters and geometric clusters: triangulations in typeA, centrally symmetric triangulations in typesB

and C, and centrally symmetric pseudotriangulations in type D (i.e. maximal crossing-free sets of
centrally symmetric pairs of chords in the geometric picture);

(iii) cluster mutations and geometric flips (we can also express geometrically the exchange relations on
cluster variables);

(iv) compatibility degrees and crossing numbers of (centrally symmetric pairs of) diagonals;
(v) d-vectors and crossing vectors of (centrally symmetric pairs of) diagonals.

Due to space limitations, we only detail the cases of types An and Dn. A similar analysis in types Bn
and Cn, as well as explicit examples of computation for all classical finite types can be found in [CP13].

4.1 Type An

Consider the Coxeter groupAn = Sn+1, generated by the simple transpositions τi := (i i+ 1) for i ∈ [n].
The corresponding geometric picture is a convex regular (n+3)-gon. Cluster variables, clusters, exchange
relations, compatiblity degrees, and d-vectors in the cluster algebra A(An) can be interpreted geometri-
cally as follows:

(i) Cluster variables correspond to (internal) diagonals of the (n + 3)-gon. We denote by χ(δ) the
cluster variable corresponding to a diagonal δ.

(ii) Clusters correspond to triangulations of the (n+ 3)-gon.
(iii) Cluster mutations correspond to flips between triangulations. See Figure 2.
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a

xy = ac + bd

Fig. 2: Flip in type A.
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Moreover, flipping diagonal pr to diagonal qs in a quadrilateral {p, q, r, s} results in the exchange
relation

χ(pr) · χ(qs) = χ(pq) · χ(rs) + χ(ps) · χ(qr).

In this relation, we set χ(δ) = 1 when δ is a boundary edge of the (n+ 3)-gon.
(iv) Given any two diagonals θ, δ, the compatibility degree d(χ(θ), χ(δ)) between the corresponding

cluster variables χ(θ) and χ(δ) is given by the crossing number [ θ ‖ δ ] of the diagonals θ and δ. By
definition, [ θ ‖ δ ] is equal to −1 if θ = δ, to 1 if the diagonals θ 6= δ cross, and to 0 otherwise.

(v) Given any initial seed T := {θ1, . . . , θn} and any diagonal δ, the d-vector of the cluster variable χ(δ)
with respect to the initial cluster seed χ(T ) is the crossing vector d(T, δ) := ([ θ1 ‖ δ ], . . . , [ θn ‖ δ ])
of δ with respect to T .

4.2 Type Dn

Consider the Coxeter group Dn of even signed permutations of [n], generated by the simple transposi-
tions τi := (i i + 1) for i ∈ [n − 1] and by the operator τ0 which exchanges 1 and 2 and invert their
signs. Note that τ0 and τ1 play symmetric roles in Dn (they both commute with all the other simple
generators except with τ2). This Coxeter group can be folded in type Cn−1, which provides a geo-
metric interpretation of the cluster algebra A(Dn) on a 2n-gon with bicolored long diagonals [FZ03b,
Sec. 3.5][FZ03a, Sec. 12.4]. In this section, we present a new interpretation of the cluster algebra A(Dn)
in terms of pseudotriangulations. The precise connection to the classical interpretation of type Dn cluster
algebras [FZ03b, Sec. 3.5][FZ03a, Sec. 12.4] is given in Remark 4.1.

We consider a regular convex 2n-gon, together with a disk D (placed at the center of the 2n-gon),
whose radius is small enough such that D only intersects the long diagonals of the 2n-gon. We denote
by Dn the resulting configuration, see Figure 3. The chords of Dn are all the diagonals of the 2n-gon,
except the long ones, plus all the segments tangent to the diskD and with one endpoint among the vertices
of the 2n-gon. Note that each vertex p is adjacent to two of the latter chords; we denote by pL (resp. by pR)
the chord emanating from p and tangent on the left (resp. right) to the disk D. Cluster variables, clusters,
exchange relations, compatiblity degrees, and d-vectors in the cluster algebras A(Dn) can be interpreted
geometrically as follows:

0
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Fig. 3: The configuration D3 with its 9 centrally symmetric pairs of chords (left). A centrally symmet-
ric pseudotriangulation T of D3 (middle). The centrally symmetric pseudotriangulation of D3 obtained
from T by flipping the chords 2R and 2̄R.
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(i) Cluster variables correspond to centrally symmetric pairs of (internal) chords of the geometric con-
figuration Dn. See Figure 3 (left). To simplify notations, we identify a chord δ, its centrally symmet-
ric copy δ̄, and the pair {δ, δ̄}. We denote by χ(δ) = χ(δ̄) the cluster variable corresponding to the
pair of chords {δ, δ̄}.

(ii) Clusters of A(Dn) correspond to centrally symmetric pseudotriangulations of Dn (i.e. maximal
centrally symmetric crossing-free sets of chords of Dn). Each pseudotriangulation of Dn contains
exactly 2n chords, and partitions conv(Dn)rD into pseudotriangles (i.e. interiors of simple closed
curves with three convex corners related by three concave chains). See Figure 3 (middle) and (right).
We refer to [RSS08] for a complete survey on pseudotriangulations.

(iii) Cluster mutations correspond to flips of centrally symmetric pairs of chords between centrally sym-
metric pseudotriangulations of Dn. A flip in a pseudotriangulation T replaces an internal chord e by
the unique other internal chord f such that (T r e) ∪ f is again a pseudotriangulation of T . To be
more precise, deleting e in T merges the two pseudotriangles of T incident to e into a pseudoquad-
rangle (i.e. the interior of a simple closed curve with four convex corners related by four concave
chains), and adding f splits the pseudoquadrangle into two new pseudotriangles. The chords e
and f are the two unique chords which lie both in the interior of and on a geodesic between two
opposite corners of . We refer again to [RSS08] for more details.

For example, the two pseudotriangulations of Figure 3 (middle) and (right) are related by a centrally
symmetric pair of flips. We have represented different types of flips between centrally symmetric
pseudotriangulations of the configuration Dn in Figure 4.

As in types A, B, and C, the exchange relations between cluster variables during a cluster mutation
can be understood in the geometric picture. More precisely, flipping e to f in the pseudoquadrangle
with convex corners {p, q, r, s} (and simultaneously ē to f̄ in the centrally symmetric pseudoquad-
rangle ¯ ) results in the exchange relation

Π( , p, r) ·Π( , q, s) = Π( , p, q) ·Π( , r, s) + Π( , p, s) ·Π( , q, r),

where

• Π( , p, r) denotes the product of the cluster variables χ(δ) corresponding to all chords δ of the
geodesic from p to r in — and similarly for Π( , q, s),

• Π( , p, q) denotes the product of the cluster variables χ(δ) corresponding to all chords δ of the
concave chain from p to q in — and similarly for Π( , q, r), Π( , r, s), and Π( , p, s).

For example, the four flips in Figure 4 result in the following relations:

χ(pr) · χ(qs) = χ(pq) · χ(rs) + χ(ps) · χ(qr),

χ(pr) · χ(qR) = χ(pq) · χ(rR) + χ(pR) · χ(qr),

χ(pr) · χ(qp̄) = χ(pq) · χ(rp̄) + χ(p̄L) · χ(pR) · χ(qr),

χ(p̄L) · χ(pR) · χ(qR) = χ(pq) · χ(p̄R) + χ(qp̄) · χ(pR).

Note that the last relation will always simplify by χ(pR) = χ(p̄R).



Denominator vectors and compatibility degrees in cluster algebras of finite type 127

p

q
r

s

p

q
r

s

p

q
r

s

p

q
r

s

p

q
r

q
r

p

p

q
r

q
r

p

p

q

p

q

p

q

p

q

x

c

d

b

a

b

a a

y

c

d

x

x
b

c

d

b

a

b

a a
c

d
b

xy = ac + bd xy = ac + bd (xc)y = ac + bc

y

p

q
r

q
r

p

p

q
r

q
r

p

b

ac

d

x

b

ac

d

d’

d’

xy = ac + bdd’

y y

c

c

c

c

Fig. 4: Different types of flips in type D.

(iv) Given any two centrally symmetric pairs of chords θ, δ, the compatibility degree d(χ(θ), χ(δ)) be-
tween the corresponding cluster variables χ(θ) and χ(δ) is given by the crossing number [ θ ‖ δ ] of
the pairs of chords θ and δ. By definition, [ θ ‖ δ ] is equal to −1 if θ = δ, and to the number of times
that a representative diagonal of the pair δ crosses the chords of θ if θ 6= δ.

(v) Given any initial centrally symmetric seed pseudotriangulation T := {θ1, . . . , θn} and any centrally
symmetric pair of chords δ, the d-vector of the cluster variable χ(δ) with respect to the initial cluster
seed χ(T ) is the crossing vector d(T, δ) := ([ θ1 ‖ δ ], . . . , [ θn ‖ δ ]) of δ with respect to T .

Remark 4.1 Our geometric interpretation of typeD cluster algebras slightly differs from that of S. Fomin
and A. Zelevinsky in [FZ03b, Sec. 3.5][FZ03a, Sec. 12.4]. Namely, to obtain their interpretation, we can
just remove the disk in the configuration Dn and replace the centrally symmetric pairs of chords {pL, p̄L}
and {pR, p̄R} by long diagonals pp̄ colored in red and blue respectively. Long diagonals of the same color
are then allowed to cross, while long diagonals of different colors cannot. Flips and exchange relations
can then be worked out, with special rules for colored long diagonals, see [FZ03b, Sec. 3.5][FZ03a,
Sec. 12.4]. Although our presentation is only slightly different from the classical presentation, we believe
that it has certain advantages:

(i) Since there is no color code, it simplifies certain combinatorial and algebraic aspects (e.g. the notion
of crossing, the d-vector, the cluster mutations, and the exchange relations are simpler to express).

(ii) It makes an additional link between cluster algebras and pseudotriangulations.
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Abstract. The descent set of an oscillating (or up-down) tableau is introduced. This descent set plays the same role
in the representation theory of the symplectic groups as the descent set of a standard tableau plays in the represen-
tation theory of the general linear groups. In particular, we show that the descent set is preserved by Sundaram’s
correspondence.

This gives a direct combinatorial interpretation of the branching rules for the defining representations of the symplectic
groups; equivalently, for the Frobenius character of the action of a symmetric group on an isotypic subspace in a tensor
power of the defining representation of a symplectic group.

Résumé. Dans cet article, nous définissons la notion d’ensemble de descentes pour un tableau oscillant. Ces descentes
sont analogues aux descentes d’un tableau standard dans la théorie des représentations des groupes généraux linéaires.
Nous montrons que la correspondance de Sundaram préserve cet ensemble et nous donnons une interprétation com-
binatoire directe des règles de branchement pour la représentation des groupes symplectiques. Enfin, nous décrivons
combinatoirement les caractères de Frobenius associés à l’action du groupe symétrique sur les composantes isotyp-
iques du produit tensoriel des représentations d’un groupe symplectique.

Keywords: oscillating tableaux, quasisymmetric expansion, Frobenius character

1 Introduction
There is a well developed combinatorial theory associated with the polynomial representations of the
algebraic groups GL(n). For a textbook treatment we refer to Stanley’s book [6]. At its core is the
Robinson-Schensted correspondence

RS : {1, . . . , n}r →
⋃

µ∈P (r)
`(µ)≤n

SSY T (µ, n)× SY T (µ),

where the union is over the set of partitions µ of r into at most n parts, SSY T (µ, n) is the set of semis-
tandard Young tableaux of shape µ and entries no larger than n and SY T (µ) is the set of standard Young
tableaux of shape µ.

This correspondence can be regarded as a combinatorial counterpart of the direct sum decomposition of
the r-th tensor power of the defining representation V of GL(n) as a GL(n)×Sr module, where GL(n)

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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acts diagonally and the symmetric group acts by permuting tensor coordinates:

⊗rV ∼=
⊕

µ∈P (r)
`(µ)≤n

V (µ)⊗ S(µ), (1)

where V (µ) and S(µ) are irreducible representations of GL(n) and Sr and respectively. Namely, the
character of V (µ) is given by the Schur function associated to µ,

sµ(x1, . . . , xn) =
∑

T∈SSY T (µ,n)

xT . (2)

and there is a basis of S(µ) indexed by the elements of SY T (µ).
A remarkable property of the Robinson-Schensted correspondence, due to Schützenberger [5, Remar-

que 2], is that the descent set of a word equals the descent set of the standard Young tableau to which it is
mapped. In this article we prove an analogous result for the symplectic groups Sp(2n), Theorem 5.1. As
a corollary we obtain Theorem 3.8, which is a symplectic version of the expansion of Schur functions in
terms of the fundamental quasisymmetric functions Lα:

sµ =
∑

T∈SY T (µ)

Lco Des(T ), (3)

where we associate with a subset D = {d1 < d2 < · · · < dk−1} of {1, . . . , r − 1} the composition
coD = {d1, d2 − d1, . . . , r − dk−1} of r, and

LcoD =
∑

i1≤···≤ir
ij<ij+1 if j∈D

xi1xi2 · · ·xir .

2 The general setting
Let V be a finite dimensional rational representation of a complex reductive algebraic group G. Let
Λ be the set of isomorphism classes of irreducible rational representations of G and let V (µ) be the
representation corresponding to µ ∈ Λ. For example, when G is the general linear group GL(n) we
can identify Λ with the set of non-decreasing sequences of integers of length n. Also, when G is the
symplectic group Sp(2n) we can identify Λ with the set of partitions with at most n parts. In both cases,
the trivial representation corresponds to the empty partition and the defining representation corresponds
to the partition 1.

Let Sr be the symmetric group permuting r elements. We identify the isomorphism classes of its
irreducible representations with P (r) and denote the representation corresponding to λ ∈ P (r) by S(λ).

For each r ≥ 0, the tensor power ⊗rV is a rational representation of G×Sr, where G acts diagonally
and Sr acts by permuting tensor coordinates. This representation is completely reducible. Decomposing
it as a representation of G we obtain the following analogue of Equation (1):

⊗rV ∼=
⊕

µ∈Λ

V (µ)⊗ U(r, µ). (4)
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The isotypic space U(r, µ) inherits the action of Sr and therefore decomposes as

U(r, µ) ∼=
⊕

λ∈P (r)

A(λ, µ)⊗ S(λ). (5)

Thus, the Frobenius character of U(r, µ) is

chU(r, µ) =
∑

λ∈P (r)

a(λ, µ)sλ, (6)

where a(λ, µ) = dimA(λ, µ) and sλ is the Schur function associated to λ.
When V is the defining representation of GL(n) the coefficient a(λ, µ) equals 1 for λ = µ and vanishes

otherwise. Thus, in this case the Frobenius character is simply sµ. For the defining representation of the
symplectic group Sp(2n) the coefficients a(λ, µ) were determined by Sundaram [7]. In general it is a
difficult problem to determine these characters explicitly.

We would like to advertise a new approach to describe the Frobenius character, using descent sets. It
appears that the proper setting for a general definition of descent set is the combinatorial theory of crystal
graphs. This theory is an off-shoot of the representation theory of Drinfeld-Jimbo quantised enveloping
algebras. However, for our purposes a few notions from this theory suffice. For a textbook treatment we
refer to the book by Hong and Kang [2].

For each rational representation V of a connected reductive algebraic group there is a crystal. A crystal
is a combinatorial framework for the representation. The vector space V is replaced by a set of cardinality
dim(V ). The raising and lowering operators, which are certain linear operators on V , are replaced by
partial functions on the set. It is common practice to represent these partial functions by directed graphs.
Each vertex of the crystal has a weight and the sum of these weights is the character of the representa-
tion, see Equations (2) and (9). Isomorphic modules correspond to crystal graphs that are isomorphic as
coloured digraphs and the module is irreducible if and only if the graph is connected.

For example, the crystal graph corresponding to the defining representation of GL(n) is

1
1−→ 2

2−→ · · · n−2−→ n− 1
n−1−→ n. (7)

while the crystal graph corresponding to the defining representation of Sp(2n) is

1
1−→ 2

2−→ · · · n−2−→ n− 1
n−1−→ n

n−→ −n n−1−→ −(n− 1)
n−2−→ · · · 2−→ −2

1−→ −1. (8)

A vertex in a crystal graph with no in-coming arcs is a highest weight vertex. Each connected compo-
nent contains a unique highest weight vertex. The weight of this vertex is the weight of the representation
it corresponds to. Finally, there is a (relatively) simple way to construct the crystal graph of a tensor prod-
uct of two modules given their individual crystal graphs. Thus, the highest weight vertices of the crystal
corresponding to ⊗rV can be regarded as words of length r with letters being vertices of the crystal
corresponding to V .

Many aspects of the classical theory can be generalised at least to the crystals corresponding to the
classical groups. In particular, explicit analogues of the Robinson-Schensted correspondence were found
for the defining representations of the symplectic groups Sp(2n) as well as for the odd and even orthogonal
groups, see [4].

Analogous to the expansion in Equation (3) of sµ we can now state the fundamental property we require
for a general descent set:
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Definition 2.1. A function Des which assigns a subset of {1, 2, . . . , r − 1} to each highest weight vertex
of the crystal graph corresponding to ⊗rV is a descent function if it satisfies

chU(r, µ) =
∑

w

Lco Des(w),

where the sum is over all highest weight vertices of weight µ.

In particular, when V is the defining representation of the GL(n), the highest weight vertices of the
corresponding crystal graph can be taken to be the reversals of the Yamanouchi words (or lattice per-
mutations) in {1, . . . , n}r. It is straightforward to check that the restriction of the Robinson-Schensted
correspondence to these words is a bijection to standard Young tableaux such that the weight of the word
is mapped to the shape of the tableau. Therefore,

chU(r, µ) = sµ =
∑

T∈SY T (µ)

Lco Des(T ) =
∑

w

Lco Des(w),

the last summation being over all highest weight vertices of weight µ. Thus the usual descent set of a
word, Des(w1w2 . . . wr) = {k |wk > wk+1}, is a descent set in the sense of Definition 2.1. We remark
that in terms of the crystal graph (7) above, a highest weight vertex w1w2 . . . wr has a descent at position
k if and only if there is a (nontrivial) directed path from wk+1 to wk in the crystal graph.

In the remaining sections we will show that we can define a descent function for the symplectic group
in almost the same way. In the next section we define a notion of descent set for oscillating tableaux which
will permit us to give the desired combinatorial interpretation of chU(r, µ) in Theorem 3.8. Section 4
describes the tools necessary to prove this theorem, namely symplectic Littlewood-Richardson tableaux
and a correspondence due to Sundaram. In Section 5 we give the proof by analysing this correspondence
in detail.

3 Oscillating tableaux and descents
In the case of the defining representation of the symplectic group Sp(2n) the vertices of the crystal graph
corresponding to ⊗rV are words w1w2 . . . wr in {±1, . . . ,±n}r. The weight of a vertex is the tuple
(µ1, . . . , µn), where µi is the number of letters i minus the number of letters −i in w. The vertex is a
highest weight vertex if for any k ≤ r, the weight of w1, . . . , wk is a partition, i.e., µ1 ≥ µ2 · · · ≥ µn.

Definition 3.1. A highest weight vertex w1w2 . . . wr in the crystal graph corresponding to ⊗rV has a
descent at position k if there is a (nontrivial) directed path from wk to wk+1 in the crystal graph (8).

The descent set of w is
Des(w) = {k | k is a descent of w}.

We can now state our main result:

Theorem 3.2. Let V be the defining representation of the symplectic group Sp(2n). Then the Frobenius
character of ⊗rV is

chU(r, µ) =
∑

w

Lco Des(w),

where the sum is over all highest weight vertices of the corresponding crystal graph.
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To prove this theorem we will first rephrase it in terms of n-symplectic oscillating tableaux, also known
as up-down-tableaux, which are in bijection with the highest weight vertices of ⊗rV :

Definition 3.3. An oscillating tableau of length r and (final) shape µ is a sequence of partitions

(∅=µ0, µ1, . . . , µr=µ)

such that the Ferrers diagrams of two consecutive partitions differ by exactly one cell.
The k-th step (going from µk−1 to µk) is an expansion if a cell is added and a contraction if a cell is

deleted. We will refer to the cell that is added or deleted in the k-th step as bk.
The oscillating tableau O = (µ0, µ1, . . . , µr) is n-symplectic if every partition µi has at most n non-

zero parts.

The oscillating tableau corresponding to a highest weight vertex w1w2 . . . wr is given by the sequence
of weights of its initial factors w1, w1w2, w1w2w3, . . . , w1w2 . . . wr.

Example 3.4. The 1-symplectic oscillating tableaux of length three are

(∅, 1, 2, 3), (∅, 1, 2, 1), and (∅, 1, ∅, 1).

The corresponding words are
1 1 1, 1 1 -1, and 1 -1 1.

As a running example, we will use the oscillating tableau

O = (∅, 1, 11, 21, 2, 1, 2, 21, 211, 21)

which has length 9 and shape 21. It is 3-symplectic (since no partition has four parts) but it is not 2-
symplectic (since there is a partition with three parts). The corresponding word is 1 2 1 -2 -1 1 2 3 -3 with
descent set {1, 3, 4, 6, 7, 8}.
Definition 3.5. An oscillating tableau O has a descent at position k in any of the following three cases:

1. Step k is an expansion and step k + 1 is a contraction,

2. steps k and k + 1 are both expansions and bk is in a row strictly above bk+1.

3. steps k and k + 1 are both contractions and bk is in a row strictly below bk+1,

where we view all Ferrers diagrams in English notation. The descent set of O is

Des(O) = {k | k is a descent of O}.

Example 3.6. The descent set of the oscillating tableau O from Example 3.4 is

Des(O) = {1, 3, 4, 6, 7, 8}.

The definition for the descent set of an oscillating tableau is such that the bijection between highest
weight vertices and oscillating tableaux has the following property:

Proposition 3.7. The descent set of an n-symplectic oscillating tableau coincides with the descent set of
the corresponding highest weight vertex of the crystal graph of ⊗rV .
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Thus it suffices to prove the following variant of Theorem 3.2:

Theorem 3.8. Let V be the defining representation of the symplectic group Sp(2n). Then the Frobenius
character of ⊗rV is

chU(r, µ) =
∑

O

Lco Des(O),

where the sum is over all n-symplectic oscillating tableaux of length r and shape µ.

Let us motivate Definition 3.5 in a second way. Note first that a standard Young tableau T can be
regarded as an oscillating tableau O where every step is an expansion and the cell containing k in T is
added during the k-th step in O. In this case

Des(O) = Des(T ),

so the definition of descents for oscillating tableaux is an extension of the one for standard tableaux.
In Sundaram’s correspondence an arbitrary oscillating tableau O is first transformed into a fixed-point-

free involution ι and a partial Young tableau T , that is, a filling of a Ferrers shape with all entries distinct
and increasing in rows and columns. There is a natural extension of descents for these objects:

Definition 3.9. The descent set of an involution ι (or in fact any permutation) defined on a set A is

Des(ι) = {k : k, k + 1 ∈ A, ι(k) > ι(k + 1)}.

For a partial Young tableau T whose set of entries is A, the descent set is

Des(T ) = {k : k, k + 1 ∈ A, k + 1 is in a row below k}.

The definition for descents in oscillating tableaux is constructed so that the descent set of the oscillating
tableau contains the union of the descent set of the associated partial tableau and permutation.

4 The correspondences of Berele and Sundaram
One of our main tools for proving Theorem 3.8 will be a bijection Sun due to Sundaram [7, 8]. In combi-
nation with a correspondence due to Berele [1], which is a combinatorial counterpart of the isomorphism
in Equation (4) in the case where V is the defining representation of Sp(2n), Sundaram’s bijection can be
regarded as a combinatorial counterpart of the isomorphism in Equation (5). In this section we define the
objects involved, the bijection itself will be described in detail in the next section.

Definition 4.1. Let u be a word with letters in N. Then u is a Yamanouchi word (or lattice permutation)
if in any initial factor u1u2 . . . uk and for each i, there are at least as many occurrences of i in u as there
are occurrences of i+ 1.

The weight β of a lattice permutation u is the partition β = (β1 ≥ β2 ≥ · · · ), where βi is the number
of occurrences of the letter i in u.

For a skew semistandard Young tableau S the reverse reading word wrev(S) is the reversal of the word
obtained by concatenating the rows from bottom to top.

A skew semistandard Young tableau S of shape λ/µ is an n-symplectic Littlewood-Richardson tableau
of weight β if
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• its reverse reading word is a lattice permutation of weight β, where β is a partition with all columns
having even height, and

• entries in row n+ i+ 1 of λ are strictly larger than 2i+ 1 for 0 ≤ i ≤ 1
2`(β).

The number of n-symplectic Littlewood-Richardson tableaux of shape λ/µ and weight β is denoted by
cλµ,β(n).

For `(λ) ≤ n+1 and β a partition with all columns having even height, the number cλµ,β(n) is the usual
Littlewood-Richardson coefficient. This is trivial for `(λ) ≤ n, and follows from the correspondence Sun
described below for `(λ) = n+ 1.

Note that we are only interested in the case that the length of µ is at most n. In this case the restriction
on the size of the entries is equivalent to the condition given by Sundaram that 2i + 1 appears no lower
than row n+ i for 0 ≤ i ≤ 1

2`(β).
As an example, when µ = (1) there is a single 1-symplectic Littlewood-Richardson tableau of weight

β = (1, 1):
1

2

We alert the reader that there is a typo both in [7, Definition 9.5] and [8, Definition 3.9], where the
range of indices is stated as 1 ≤ i ≤ 1

2`(β). With this definition,

1
2

would also be 1-symplectic, since β = (1, 1) and 3 does not appear at all. However, there are only two
1-symplectic oscillating tableaux of length 3 and shape (1), and there are two standard Young tableaux of
shape (2, 1). Thus, if the tableau above would also be 1-symplectic, Theorem 4.2 below would fail.

We now have all the definitions in place to explain the domain and range of the correspondence Sun.

Theorem 4.2 ([7, Theorem 9.4]). There is an explicit bijection Sun between n-symplectic oscillating
tableaux of length r and shape µ and pairs (Q,S), where

• Q is a standard tableau of shape λ, with |λ| = r, and

• S is an n-symplectic Littlewood-Richardson tableau of shape λ/µ and weight β, where |β| = r−|µ|
and has even columns.

For completeness, let us point out the relation between Sundaram’s bijection and Berele’s correspon-
dence. This correspondence involves the following objects due to King [3], indexing the irreducible
representations of the symplectic group Sp(2n):

Definition 4.3. An n-symplectic semistandard tableau of shape µ is a filling of µ with letters from 1 <
−1 < 2 < −2 < · · · < n < −n such that

• entries in rows are weakly increasing,

• entries in columns are strictly increasing, and
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• the entries in row i are greater than or equal to i, in the above ordering.

Denoting the set of n-symplectic oscillating tableaux of length r and final shape µ by Osc(r, n, µ)
and the set of n-symplectic semistandard tableaux of shape µ by K(µ, n), Berele’s correspondence is a
bijection

Ber : {±1, . . . ,±n}r →
⋃

µ∈P (r)
`(µ)≤n

K(µ, n)×Osc(r, n, µ).

In analogy to Equation (2), the character of the representation V (µ) of the symplectic group Sp(2n) is

spµ(x±1
1 , . . . , x±1

n ) =
∑

T∈K(µ,n)

xT . (9)

Now consider an n-symplectic oscillating tableau as a word in the ordered alphabet 1 < −1 < 2 <
−2 < · · · < n < −n, as described just after Definition 3.3. We can then apply the Robinson-Schensted
correspondence to obtain a semistandard Young tableau PRS in this alphabet and a (usual) standard Young
tableauQRS. Alternatively, we can compose Berele’s correspondence with Sundaram’s bijection to obtain
a triple (PBer, QSun, SSun). It then turns out that QRS = QSun. This implies that for each standard
Young tableau QSun we have a correspondence PRS 7→ (PBer, SSun). Moreover, this correspondence is
independent of the choice of QSun. One can then show the following theorem:

Theorem 4.4 ([7, Theorem 12.1]). For all λ, µ the coefficient a(λ, µ) is given by

a(λ, µ) =
∑

β

cλµ,β(n)

where the sum is over the partitions β of |λ| − |µ| having only columns of even length.

5 Correspondences and the proof of the main result
In light of Sundaram’s results, we claim that to prove Theorem 3.8 it suffices to demonstrate the following:

Theorem 5.1. Let Sun(O) = (Q,S). Then

Des(O) = Des(Q).

Proof of Theorem 3.8: We have∑

O

Lco Des(O) =
∑

(Q,S)

Lco Des(Q) (by Theorems 4.2 and 5.1)

=
∑

|Q|=r

∑

β

cshQµ,β (n)Lco Des(Q) (by Definiton 4.1)

=
∑

|Q|=r
a(sh(Q), µ)Lco Des(Q) (by Theorem 4.4)

=
∑

λ∈P (r)

a(λ, µ)
∑

sh(Q)=λ

Lco Des(Q)

= chU(r, µ) (by Equations (3) and (6))
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which is the desired conclusion.

In order to prove Theorem 5.1, we will need to analyse the bijection Sun in detail. Sundaram described
Sun as the composition of several bijections. Specifically, Sun is the composition

O
Sun17→ (ι, T ) 7→ (RS(ι), T )

Sun27→ (Q,S)

where Sun1 and Sun2 are described below and RS denotes the Robinson-Schensted correspondence. We
will prove Theorem 5.1 by tracking their effect on the descent set.

5.1 Sundaram’s first bijection
We now describe Sundaram’s first bijection which we will denote Sun1. It maps an oscillating tableau O
to a pair (ι, T ) where ι is a fixed-point-free involution, T is a partial Young tableau (that is, a filling of a
Ferrers shape with all entries distinct and increasing in rows and columns), and the entries of ι and T are
complementary sets.

Let O = (∅ = µ0, µ1, . . . , µr) be an oscillating tableau. We then construct a sequence of pairs (ιk, Tk)
for 0 ≤ k ≤ r, such that sh(Tk) = µk and the set of entries of the pair (ιk, Tk) is {1, . . . , k}, all entries
being distinct.

Both ι0 and T0 are empty. For k > 0 the pair (ιk, Tk) is constructed from the pair (ιk−1, Tk−1) and the
k-th step in the oscillating tableau:

• If the k-th step is an expansion then ιk = ιk−1 and Tk is obtained from Tk−1 by putting k in cell
bk.

• Otherwise, if the k-th step is a contraction then take Tk−1 and bump out (using Robinson-Schensted
column deletion) the entry in cell bk to get a letter x and the standard tableau Tk. In other words,
let x and Tk be such that column inserting x into Tk yields Tk−1. The involution ιk is then given
by adjoining the transposition (k, x) to ιk−1.

The result of the bijection is the final pair (ιr, Tr).

Lemma 5.2 (Sundaram [7, Lemma 8.7]). The map Sun1 is a bijection between oscillating tableaux of
length r and shape µ and pairs (ι, T ) where

• ι is a fixed-point-free involution of a set A ⊆ {1, . . . , r}, and

• T is a partial tableau of shape µ such that its set of entries is {1, . . . , r} \A.

Example 5.3. Starting with the oscillating tableau O from Example 3.4 we get the following sequence
of pairs (Tk, ik), where in the diagram below we only list each pair of the involution once when it is
produced by the algorithm.

k: 0 1 2 3 4 5 6 7 8 9

Tk: ∅ 1 1
2

1 3
2

1 3 3 3 6 3 6
7

3 6
7
8

3 6
7

ιk: ∅ (2, 4) (1, 5) (8, 9)
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So the final output is the involution

ι = (1, 5)(2, 4)(8, 9) =
1 2 4 5 8 9
5 4 2 1 9 8

and the partial tableau

T = 3 6
7

with ι ·∪T = {1, . . . , 9}.
We wish to define the descent set of a pair (ι, T ) in such a way that this map preserves descents. Let us

define for any pair A and B

Des(A/B) = {k : k ∈ A and k + 1 ∈ B}
and define

Des(ι, T ) = Des(ι) ·∪Des(T ) ·∪Des(T/ι),

where we use Definition 3.9 for the descent sets of ι and T . Thus, in our running example, Des(T/ι) =
{3, 7} and Des(ι, T ) = {1, 3, 4, 6, 7, 8}, which coincides with Des(O).

We can now take our first step in proving Theorem 5.1.
Proposition 5.4. Let O be an oscillating tableau and suppose that Sun1(O) = (ι, T ). Then

Des(O) = Des(ι, T ).

Proof: We proceed by analysing the effect of two successive steps in the oscillating tableau.
If step k is an expansion and step k + 1 is a contraction then k + 1 ∈ ι and ι(k + 1) < k + 1. Now k

either ends up in T or in ι. In the former case, k ∈ Des(T/ι). In the latter case ι(k) > k ≥ ι(k + 1) and
k ∈ Des(ι). In both cases this gives a descent of (ι, T ).

If step k is a contraction and step k + 1 is an expansion then k ∈ ι and ι(k) < k. Now either
k + 1 ends up in T or in ι. In the former case k ∈ Des(ι/T ) rather than Des(T/ι). In the latter case
ι(k) < k < k + 1 < ι(k + 1). Neither of these cases gives a descent of (ι, T ).

If steps k and k + 1 are both contractions then k, k + 1 ∈ ι. If bk is strictly below bk+1 then, by
well-known properties of RS, the element removed when bumping out bk will be in a lower row than the
one obtained when bumping out bk+1. Thus ι(k) > ι(k + 1) and k ∈ Des(ι, T ) as desired. By a similar
argument, if bk is weakly above bk+1 then ι(k) < ι(k + 1) and k 6∈ Des(ι, T ).

Now suppose steps k and k + 1 are both expansions. If bk is in a row strictly above bk+1, then any
column deletion will keep k in a row strictly above k + 1. It follows that at the end we have one of three
possibilities. The first is that k, k + 1 ∈ T and, as was just observed, we must have k ∈ Des(T ). If either
element is removed, then k+ 1 must be removed first because the row condition forces k+ 1 to always be
in a column weakly left of k. So at the end we either have k ∈ T and k+1 ∈ ι, or we have ι(k) > ι(k+1)
and in both cases k ∈ Des(ι, T ).

If steps k and k+1 are both expansions and bk is in a row weakly below bk+1, then any column deletion
will keep k in a row weakly below k+ 1. Again there are three possibilities. The first is that k, k+ 1 ∈ T
and, as was just observed, we must have k 6∈ Des(T ). If either element is removed, then k must be
removed first because the row condition forces k to always be in a column strictly left of k + 1. So at the
end either we have k + 1 ∈ T and k ∈ ι or we have ι(k + 1) > ι(k), and neither are descents of (ι, T ).

This completes the check of all the cases and the proof.
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5.2 Robinson-Schensted
Next, we apply the Robinson-Schensted correspondence to the fixed-point-free involution ι to obtain a
partial Young tableau I with the same set of entries. Let us first recall the following fact:

Lemma 5.5 ([6, Exercise 7.28a]). Let π ∈ Sr and let RS(π) = (P,Q). Then π is a fixed-point-free
involution if and only if P = Q and all columns of Q have even length.

Combining Proposition 5.4 with this lemma we obtain:

Proposition 5.6. Let O be an oscillating tableau, let Sun1(O) = (ι, T ) and let RS(ι) = (I, I). Then

Des(O) = Des(I) ·∪Des(T ) ·∪Des(T/I).

Example 5.7. The fixed point free involution from Example 5.3 is mapped to the tableau

I =

1 8
2 9
4
5

5.3 Sundaram’s second bijection
Finally, we need a bijection Sun2 that transforms the pair of partial Young tableaux (I, T ) to pairs (Q,S)
as in Theorem 4.2. Let Q be the standard Young tableau of shape λ obtained by column-inserting the
reverse reading word of the tableau I into the tableau T . Also construct a skew semistandard Young
tableau S as follows: whenever a letter of wrev(I) is inserted, record its row index in I in the cell which
is added. Then Sun2(I, T ) = (Q,S).

Sundaram actually defines this map for pairs (I, T ) of semistandard Young tableaux. But we will not
need this level of generality.

Lemma 5.8 (Sundaram [7, Theorem 8.11, Theorem 9.4]). The map Sun2 is a bijection from pairs of
partial Young tableaux (I, T ) of shapes β and µ, respectively, such that I ·∪T = {1, . . . , r} to pairs
(Q,S) such that

• Q is a standard Young tableau of shape λ ∈ P (r) and

• S is an n-symplectic Littlewood-Richardson tableau of shape λ/µ and weight β, for some n.

Example 5.9. The tableau I from Example 5.7 has wrev(I) = 819245. Inserting this word into the
tableau T from Example 5.3 and recording the row indices yields the pair of tableaux

(Q,S) =




1 3 6
2 7
4 8
5 9

,

1
2

1 3
2 4


 .

Note that the Des(Q) = {1, 3, 4, 6, 7, 8} = Des(O) as desired.

To prove Theorem 5.1 we need two properties of column insertion:

Lemma 5.10. Let π be a permutation and suppose that RScol(π) = T . Then
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• RScol
(
wrev(T )

)
= T

• Des(T ) = {k : k is left of k + 1 in the 1-line notation of π}.

Proof of Theorem 5.1: By the first assertion of Lemma 5.10 we have that Q can also be obtained by
column-inserting the concatenation of wrev(T ) and wrev(I). By the second assertion of Lemma 5.10,
the descent set of Q equals Des(I) ·∪Des(T ) ·∪Des(T/I), which in turn equals the descent set of O by
Proposition 5.6.
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Abstract. We define and study a recurrence relation in Z3, called the hexahedron recurrence, which is similar to
the octahedron recurrence (Hirota bilinear difference equation) and cube recurrence (Miwa equation). Like these
examples, solutions to the hexahedron recurrence are partition functions for configurations on a certain graph, and
have a natural interpretation in terms of cluster algebras. We give an explicit correspondence between monomials in
the Laurent expansions arising in the recurrence with certain double-dimer configurations of a graph. We compute
limit shapes for the corresponding double-dimer configurations. The Kashaev difference equation arising in the Ising
model star-triangle relation is a special case of the hexahedron recurrence. In particular this reveals the cluster nature
underlying the Ising model. The above relation allows us to prove a Laurent phenomenon for the Kashaev difference
equation.

Resumé. Nous définissons une relation sur Z3 appellée “hexahedron recurrence”, qui est un cousin des relations
bilinéaires “octaédrale” et “cubique”. Comme ces exemples, ses solutions peuvent être décrits comme fonctions de
partition pour certaines configurations d’arêtes sur un graphe planaire, et ont une interprétation naturelle en termes
de clusters. Nous trouvons une correspondance explicite entre le termes dans les développements de Laurent dans ce
récurrences et certains double-recouvrements par dimères du graphe sous-jacent. On calcule les formes limites.

L’équation de Kashaev paraissant dans l’opération triangle-étoile du modèle d’Ising est un cas spéciale de notre
récurrence. Ce fait révèle la nature “cluster” du modèle d’Ising, et nous permette de montrer la propriété de Laurent
pour l’équation de Kashaev.

Keywords: cluster algebra, urban renewal, Laurent property, Y-Delta

1 Introduction
We study the hexahedron recurrence and its specialization to the Kashaev recurrence. In this introductory
section we review known facts about the related cube and octahedron recurrences and state the main
definitions and results for the hexahedron recurrence.
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A function f : Z3 → C is said to satisfy the octahedron recurrence (or Hirota bilinear difference
equation) if

f(1)f(23) = f(2)f(13) + f(3)f(12) . (1)

Here, f(S) represents f evaluated at the translate of v by the basis vectors in S, e.g., f(12)(v) = f(v +
e1 + e2). This is a specialization to Z3 of a transformation on that replaces a vertex v of a locally finite
graph by a vertex w with slightly different local connections and replaces the value f(v) by f(w) :=
[f(v1)f(v2) + f(v3)f(v4)]/f(v). Such a move is an example of a cluster algebra mutation (Fomin
and Zelevinsky 2002b). The Laurent phenomenon for cluster algebras implies that the new values of f
produced by iterating such moves, which are a fortiori rational functions of the original values, are in
fact Laurent polynomials in those values (Fomin and Zelevinsky 2002a). The octahedron recurrence goes
back to Dodgson (1866) who observed that it was satisfied by subdeterminants and used it as a means of
recursively computing determinants.

The function g : Z3 → C is said to satisfy the cube recurrence (or Miwa equation) if

g(123)g = g(1)g(23) + g(2)g(13) + g(3)g(12). (2)

This recurrence also has its roots in the 19th century. Consider a resistor network containing somewhere in
it a node, v, of degree 3. It was observed by Kennelly (1899) that replacing the three resistors incident to v
by three resistors making pairwise connections between the neighbors of v leaves the effective resistance
of the network unchanged, provided that the new resistances are related to the old resistance via (using a
different parametrization) the cube recurrence.

The main object of study in this paper is the hexahedron recurrence. The quantities related by the
hexahedron recurrence are variables indexed by the vertices and faces of the cubic lattice Z3. Let Z3

1/2

denote the even vertices of 1
2Z

3, that is, those whose coordinates sum to an integer. Each non-integer point
of Z3

1/2 is the center of a square face of the cubic lattice, perpendicular to one of the three coordinate axes.
Let

h, h(x), h(y), h(z):Z3 → C

be four functions on the three-dimensional lattice. We think of h(v) as sitting on the vertex v. Similarly,
h(x)(v) sits on the face center perpendicular to the x-axis having vertices v, v+e2, v+e3 and v+e2 +e3;
the values of h(y)(v) and h(z)(v) are similarly situated at face centers of the other two types. We may
identify these four functions with a single function f on Z3

1/2, where for integers v,

f(v) = h(v), f(v+(0, 1/2, 1/2)) = h(x)(v), f(v+(1/2, 0, 1/2)) = h(y)(v) and f(v+(1/2, 1/2, 0)) = h(z)(v) .

Definition 1 (hexahedron recurrence) We say that four functions h, h(x), h(y) and h(z) satisfy the hex-
ahedron recurrence if the following equations are satisfied for all v ∈ Z3.

h
(x)

(1)h
(x)h = h(x)h(y)h(z) + h(1)h(2)h(3) + hh(1)h(23) (3)

h
(y)

(2)h
(y)h = h(x)h(y)h(z) + h(1)h(2)h(3) + hh(2)h(13) (4)

h
(z)

(3)h
(z)h = h(x)h(y)h(z) + h(1)h(2)h(3) + hh(3)h(12) (5)
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h(123)h
2h(x)h(y)h(z) =

(
h(x)h(y)h(z)

)2

(6)

+h(x)h(y)h(z) [2h(1)h(2)h(3) + hh(1)h(23) + hh(2)h(13) + hh(3)h(12)

]

+
(
h(1)h(2) + hh(12)

) (
h(1)h(3) + hh(13)

) (
h(2)h(3) + hh(23)

)
. (7)

Here again h(1) = hv+e1 and so on.

Statistical mechanical interpretations
The octahedron recurrence on Z3 expresses fv as a Laurent polynomial in the values fw as w ranges
over variables in a region lying underneath v in an initial plane. This Laurent polynomial is a generating
function for a statistical mechanical ensemble: its monomials are in bijection with perfect matchings of the
Aztec diamond graph, associated with the region in the initial graph lying underneath v (see, e.g., Speyer
2007). Setting the initial indeterminates all equal to one allows us to count perfect matchings; in general
the indeterminates represent multiplicative weights, which we may change in certain natural ways to study
further properties of the ensemble of perfect matchings.

The cube recurrence (2) also has a combinatorial interpretation. Its monomials are in bijection with
cube groves. These were first defined and studied by Carroll and Speyer (2004). In a cube grove, each
edge of a large triangular box in the planar triangular lattice is either present or absent. The allowed con-
figurations are those in which there are no cycles and no islands (thus they are essential spanning forests),
and the connectivity of boundary points has a prescribed form. Both Aztec diamond matchings and cube
groves have limiting shapes. Specifically, as the size of the box goes to infinity, there is a boundary, which
is an algebraic curve, outside of which there is no entropy and inside of which there is positive entropy
per site. The hexahedron recurrence has a statistical mechanical interpretation as well. In Section 2 we
define the double-dimer model on a finite bipartite graph; in Section 4 we prove the following theorem.

Theorem The monomials of the Laurent polynomial hnnn are in bijection with taut double-dimer cov-
erings of the graph Γ(U−3n).

The remainder of the paper is spent investigating the properties of the double-dimer ensemble. In Sec-
tion 5 we analyze the limiting shape under several natural, periodic specifications of the initial varibles.
In Section 6 we find a specialization of the initial variables under which urban renewal becomes the Ising
Y -∆ transformation, which is a transformation of the Ising model changing the interaction strengths in
a different way from how they change under the resistor network Y -∆ transformation, but changing the
graph in exactly the same way.

2 Dimer model
Definitions
Let Γ be a finite bipartite graph with positive edge weights ν : E → R+. A dimer cover or perfect
matching is a collection of edges with the property that every vertex is an endpoint of exactly one edge.
The “dimers” of a dimer cover are the chosen edges (terminology suggesting a collection of bi-atomic
molecules packed into the graph). We let Ωd(Γ) be the set of dimer covers and we define the probability
measure µd on Ωd giving a dimer cover m ∈ Ωd a probability proportional to the product of its edge
weights. A double-dimer configuration is a union of two dimer covers: it is a covering of the graph with
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loops and doubled edges. The double dimer measure µdd is the probability measure defined by taking
the union of two µd-independent dimer covers.

It is convenient to parametrize the measure µd by parameters other than the edge weight function ν.
Given a function A on the faces of a planar bipartite graph, define

νA(e) =
1

A(f)A(g)
, (8)

where f and g are the two faces containing e.

Urban renewal
Certain local rearrangements of Γ preserve the dimer measure µd, see Ciucu (1998). Some are obvious.
For example, given a vertex v of degree 2 (with equal edge weights) one can contract its two edges,
erasing v and merging its two neighbors into one vertex. Another local rearrangement is called urban
renewal. It involves taking a quadrilateral face, call it 0, and adding “legs”. This is shown in Figure 1,
ignoring for the moment the specific values a0, . . . , a4 shown for the pre-weights A(0), . . . , A(4). Let us

a0 a1a2

a3

a4

a0' a1a2

a3

a4

a0
a1a2

a3

a4
a0'

a1a2

a3

a4

Fig. 1: Two versions of urban renewal; the central variable a0 changes from a0 to a5 =
a1a2 + a3a4

a0
.

designate the faces around face 0 by the numbers 1, 3, 2 and 4. Each of these faces gains two new edges.
In the new graph Γ′, there are faces 1′, 2′, 3′ and 4′ each with two more edges than the corresponding face
1, 2, 3, 4. There is a face 0′ which is also square. Each other face f of Γ corresponds to a face f ′ of Γ′

with the same number of edges as f . There are four new neighboring relations among faces: 1′, 2′, 3′ and
4′ are neighbors in cyclic order, in addition to any neighboring relations that may have held before. The
point of urban renewal is to give a corresponding adjustment of the weights that preserves µd. This is
most easily done in terms of the A variables.

Proposition 2 (urban renewal) Suppose 0 is a quadrilateral face of Γ. Let Γ′ be constructed from Γ as
above. Define the new pre-weight function A : F ′ → C by A(f ′) = A(f) if f 6= 0 and

A(0′) :=
A(1)A(2) +A(3)A(4)

A(0)
.

Let µ′ denote the dimer measure on Γ′ with face weights XA′ and µ the dimer measure on Γ with face
weights XA. Then µ and µ′ may be coupled so that the sample pair (m,m′) agrees on every edge other
than the four edges bounding face 0 in Γ and the eight edges touching face 0′ in Γ′. 2

The transformation of (Γ, A) to (Γ′, A′) under urban renewal is, in the language of cluster algebras, a
mutation operation. It follows (Fomin and Zelevinsky 2002a) that that the final variables after any number
of urban renewals are Laurent polynomials in the original variables {A(f) : f ∈ F}.
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Superurban renewal transformation for the dimer model
Figure 2 defines superurban renewal as a sequence of six urban renewals on a planar face-weighted
bipartite graph at a hexagonal face for which with at least one alternating set of neighbors is quadrilateral.

*

*

*

*

*

*

Fig. 2: Superurban renewal: the stars indicate which face undergoes urban renewal

The end result of superurban renewal is the transformation of face-weighted graphs shown in Figure 3.

a0

a1

a2 a3

a4

a5a6

a7

a8 a9

a0
*

a1
*

a2
*a3

*

a4

a5a6

a7

a8 a9

Fig. 3: Result of superurban renewal

Computing the result of the six operations yields the following equations for the four new quantities
a∗0, a

∗
1, a
∗
1 and a∗3 in Figure 3 in terms of the old quantities a0 – a9.

a∗1 =
a1a2a3 + a4a5a6 + a0a4a7

a0a1
(9)

a∗2 =
a1a2a3 + a4a5a6 + a0a5a8

a0a2
(10)

a∗3 =
a1a2a3 + a4a5a6 + a0a6a9

a0a3
(11)

a∗0 =
a21a

2
2a

2
3 + a1a2a3(2a4a5a6 + a0a4a7 + a0a5a8 + a0a6a9) + (a5a6 + a0a7)(a4a5 + a0a9)(a4a6 + a0a8)

a20a1a2a3
.(12)

Because superurban renewal is built from urban renewal, the Laurent property for urban renewal stem-
ming from its cluster algebra representation immediately yields

Proposition 3 (Laurent property for superurban renewal) Under iterated superurban renewal, all new
variables are Laurent polynomials in the original variables. 2

Just as urban renewal is the basis for the octahedron recurrence, we will see that superurban renewal is
the basis for the hexahedron recurrence (see Section 3). In section 6 we show how superurban renewal
specializes to the Y-Delta transformation for the Ising model.
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3 Stepped surfaces and the operation of adding a cube

A stepped solid in R3 is a union U of lattice cubes that is down-
wardly closed (closed under moves in the −x,−y and −z direc-
tions). A stepped surface is the topological boundary of a stepped
solid. Every stepped surface is the union of lattice squares and ev-
ery lattice square has vertex set of the form {v, v + ei, v + ej , v +
ei + ej} for some v ∈ Z3 and some integers 1 ≤ i < j ≤ 3. For
each stepped surface ∂U , the associated graph Γ(U) is obtained
by starting with the planar dual graph and replacing each vertex
by a small quadrilateral. Figure 4 shows the 4-6-12 graph, which
is the graph Γ(U) when U = Z2 is the union of all cubes lying
entirely within the region {(x, y, z) : x+ y + z ≤ 2}.

Fig. 4: The 4-6-12 graph is drawn on the
stepped surface U0 bounding the union
of cubes up to level 2

Proposition 4 (superurban renewal is adding a cube) LetU be a downwardly closed stepped solid with
stepped surface ∂U and associated graph Γ(U). Suppose that (i, j, k) is a point of ∂U which is a local
minimum with respect to the height function i + j + k. Let U+ijk be the union of U with the cube
[i, i+ 1]× [j, j + 1]× [k, k + 1].

1. The face in Γ(U) corresponding to (i, j, k) is a hexagon with alternating neighbors quadrilateral.

2. The graph Γ(U+ijk) is obtained from the graph Γ(U) by superurban renewal at this hexagon.

3. The variables associated with each face of Γ(U) transform under superurban renewal (9)–(12)
according to the hexahedron recurrence (3)–(7), provided we interpret h(i, j, k) = A(i, j, k),
h(x)(i, j, k) = A(i, j + 1/2, k + 1/2) and so forth.

2

We now know that adding a cube to a downwardly closed stepped solid corresponds to superurban
renewal on the associated graph, which corresponds to the use of the hexahedron recurrence to write the
top variable in terms of lower variables.

Let U0 be the union of cubes in the negative orthant. The associated graph Γ(U0) is called the cubic
corner graph and is shown on the left of Figure 5. Let L be the lattice of all downwardly closed subsets
of U0 containing all but finitely many cubes of U0. For each U ∈ L, one may add a finite sequence of
cubes resulting in U0. Therefore, a finite sequence of superurban renewals represents A(0, 0, 0) in terms
of the variables labeling faces and vertices of the stepped surface ∂U that are in the union of the removed
lattice cubes. Denote this set of variables by I = I(U).

Proposition 5 (i) The rational function F representing A(0, 0, 0) in terms of the variables in I is a
Laurent polynomial. (ii) If U ′ ⊆ U in L and the representation of each variable w ∈ I(U) in terms
of variables in I(U ′) is substituted into F , the resulting Laurent polynomial is the representation of
A(0, 0, 0) in terms of variables in I(U ′).



Double-dimers and the hexahedron recurrence 147

Fig. 5: The cubic corner graph, before and after removing the top cube

Proof: By Proposition 4, the expression F is obtained by a sequence of superurban renewals. By defini-
tion, each of these is a sequence of six urban renewals, hence part (i) follows from the Laurent property
for urban renewal. Part (ii) is a consequence of the lack of relations among the variables in any stepped
surface. 2

Two classes of examples of stepped surfaces play a role in our combinatorial interpretations of these
formulae. The first are the parallel surfaces Z−n defined to be the set of all lattice cubes lying in the
halfspace x+ y+ z ≤ −n. The associated graph Γ(∂Z−n) is isomorphic to the 4-6-12 graph of Figure 4.
Its labels are precisely I(Z−n) of Z3 at levels −n − 2,−n − 1 and −n together with the half integer
points at level −n − 1. The second are the surfaces U−n defined to be those cubes of U0 lying entirely
within the halfspace {(x, y, z) : x+ y + z ≤ −n}. This solid and its associated graph are illustrated for
n = −1 (only the top cube removed) on the right of Figure 5.

The graphs U−n differ from U0 by finitely many cubes so they are better for recurrences, while the
graphs Z−n are translation invariant so they are better for exhibiting translation invariant formulae. The
hexahedron recurrence imposes no relations on I(−n), hence from the point of view of determining
A(0, 0, 0) as a function of the variables in I(−n), we may use U−n instead, thus guaranteeing a finite
recursion.

We define a double-dimer configuration m0 on the cubic corner graph Γ(U0) as in Figure 6. This
configuration m0 plays the role of our initial configuration. This configuration has the following property.
If we erase a finite piece ofm0, there is a unique way to complete it to a double-dimer configuration which
has the same boundary connections, that is, connections between far-away points. For U ∈ L, we say that
a double-dimer configuration on Γ(U) is taut if it has the same boundary connections as m0, that is, it is
identical to m0 far from the origin and there is a bijection between its bi-infinite paths and those of m0

which is the identity near∞. There are a finite number of taut configurations. See Figure 6 for one such
on Γ(U−1).

4 Main formula
Given a taut dimer configuration m, let c(m) denote the number of loops in m and define c(m; i, j, k) :=
L(i, j, k) − 2 − d(m; i, j, k) where L(i, j, k) is the number of edges in the face (i, j, k) and d(m; i, j, k)
is the number of dimers lying along the face (i, j, k) in the matching m. In the configuration m0, all
quadrilateral faces have 2 dimers and all octagonal faces have 6 dimers, so the only face (i, j, k) with
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a0

a1

a2a3

a4

a5 a6

a7

a8a9

Fig. 6: Left: the initial double-dimer configuration m0; Center: a taut configuration on Γ(U−1); Right: a taut
configuration on Γ(U−12).

c(m0; i, j, k) 6= 0 is the hexagonal face which has 3 dimers and c(m0; 0, 0, 0) = 6− 2− 3 = 1. Any taut
configuration differs from m0 in finitely many places, hence has finitely many variables appearing in it.

Theorem 6 Fix any U ∈ L and let I(U) be the labels of Γ(U). Use the notation m � U to signify
that m is a taut double-dimer configuration on Γ(U). Then the representation of A(0, 0, 0) as a Laurent
polynomial in the variables in I(U) is given by

A(0, 0, 0) =
∑

m� U
2c(m)

∏

(i,j,k)∈I(U)

A(i, j, k)c(m;i,j,k) . (13)

Specializing to U−n and A(i, j, k) = 1 for all i, j, k with −n− 2 ≤ i+ j + k ≤ −n gives the formula

A(0, 0, 0) =
∑

m� U−n

2c(m) .

For example, the middle configuration of Figure 6 has monomial
a24a5a6a7
a0a1a2a3

.

Proof: We induct on U . It is true for U = U2: there is one configuration, m0, with c(m0; i, j, k) = 1 if
i = j = k = 0 and zero otherwise. For the induction, we need to see that the conclusion remains true if
we remove a maximal cube, that is, when we execute a superurban renewal. Checking this for each type
of boundary connection is straightforward. In one instance, the ratio of monomials on the right side and
left side of the equation is

a25a
2−4
1 a2−42 a2−43 a2−44

2a−20 a−11 a−12 a−13 a−14 + a−20 a−21 a−22 a03a
0
4 + a−20 a01a

0
2a
−2
3 a−24

=
a25a

2
0

a1a2a3a4(2 + a3a4
a1a2

+ a1a2
a3a4

)
= 1 .

The other cases are similar. 2

5 Limit shapes
Isotropic solutions
In this section we specialize values of the initial variables in several natural ways and study the behavior
of the resulting ensembles. Let I = I(2) denote the integer vertices (i, j, k) with i + j + k = 0, 1, 2
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together with the half integer vertices with i+ j+k = 1. Say that the function f is isotropic if it depends
only on i + j + k and whether (i, j, k) is integral. If f is isotropic on I then the hexahedron recurrence
extends f to an isotropic function on all of Z3

1/2. Letting An denote the common value on integral points
with i + j + k = n and Bn be the value at nonintegral points with i + j + k = n + 1, it is easy to find
isotropic solutions to the recurrence. The simplest is

An = 3n
2/2, Bn = 2 · 3(n+1)2/2 . (14)

Another interesting solution is obtained by setting the initial variables A0, A1, A2, B0 all equal to 1. This
yields A3 = 14, B1 = 3 and B2 = 14 and leads to the following proposition.

Proposition 7 The number of taut double-dimer configurations of Γ(U−n), weighted by 2c(m), is equal
to

14
n
2 (n

2 +1)+ 1
4 δodd(n) .

2

Recurrence for the derivative
Isotropic initial conditions allow simplification of the formal derivative of the four hexahdron recurrence
equations with respect to a parameter t. Let g(v) denote the formal derivative of log f(v) with respect to a
formal parameter t. Taking the logarithmic derivative of the four recurrence relations and plugging in the
initial conditions (14) gives the linear system

g(123) = −g +
1

3
(g(1) + g(2) + g(3) + g(23) + g(13) + g(12))

and similar equations for g(x)(1) , g
(y)
(2) and g(z)(3) . The first of these equations gives a self-contained recurrence

for the logarithmic derivatives at the integer points. In other words, letting F (x, y, z) =
∑
gi,j,kx

iyjzk,
we see that the solution to the recurrence above with boundary conditions g(0, 0, 0) = 1, g(i, j, k) = 0 for
other points (i, j, k) with i+ j + k ≤ 0 and satisfying the recurrence everywhere except at (−1− 1− 1),
we see that

F (x, y, z) =
G(x, y, z)

H(x, y, z)
=

1

1 + xyz − 1
3 (x+ y + z + xy + xz + yz)

.

This is the same as the recurrence as is satisfied by the cube grove placement probabilities (Petersen and
Speyer 2005). The boundary of the dual cone is known as the “arctic circle”, which is the inscribed circle
in the triangular region {x + y + z = n, x, y, z ≥ 0}. Outside of this, the placement probabilities decay
exponentially while inside the arctic circle they do not. Inside, the limit function is homogeneous of
degree−1 and is asymptotically equal to the inverse of the distance to the arctic circle in the plane normal
to the diagonal direction (Baryshnikov and Pemantle 2011). We can conclude from this that with high
probability, a random configuration from Γn is equal to m0 outside a neighborhood of size o(n) of the
arctic circle and that there is positive local entropy everywhere inside the arctic circle.

Different periodic initial conditions lead to different limiting shapes. As a somewhat generic example,
let A0 = 1, B0 = 1, A1 = 2, A2 = 3. The resulting linear system is more complicated but may be solved
and yields a recursion with characteristic polynomial

H = 63x2y2z2−62(x2yz+xy2z+xyz2)−(x2y2+x2z2+y2z2)+62(xy+xz+yz)+(x2+y2+z2)−63 .
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The generating function F (x, y, z) =
∑
i,j,k g(i, j, k)xiyjzk is a rational function with denominator H .

Asymptotics for g(i, j, k) may be computed from the generating functions by the methods of Baryshnikov
and Pemantle (2011). We briefly sketch the computation.

Step one is to compute the leading homogeneous part H of H at (1, 1, 1), namely the terms of lowest
degree in the Taylor expansion there. In this case H is the symmetric function

H = 62(x2y + xy2 + x2z + y2z + xz2 + yz2) + 132xyz .

The arctic boundary is the algebraic dual of this cubic curve, which may be computed by setting z =
ax+ by and setting ∂H/∂x = ∂H/∂y = 0, yielding

P
∗
(a, b) = 923521 + 5125974 ba− 3044572 ab

2 − 2085370 ab
5 − 3044572 b

3
a− 3044572 a

2
b+ 45167 a

2
b
4

+5125974 b
4
a+ 6191514 a

2
b
2
+ 2233364 b

3
a
3
+ 45167 a

4
b
2 − 3044572 a

2
b
3 − 2085370 a

5
b

−3044572 a3b+ 5125974 a
4
b− 3044572 b

2
a
3 − 2085370 a− 2085370 b+ 45167 a

2
+ 45167 b

2

+45167 b
4
+ 2233364 b

3
+ 2233364 a

3 − 2085370 b
5
+ 45167 a

4 − 2085370 a
5
+ 923521 b

6
+ 923521 a

6
.

The arctic boundary is shown in Figure 7 after the change to barycentric
coordinates α = a/(1− a− b), β = b/(1− a− b).
The meaning of this curve is that it represents the regions of sub-
exponential decay of coefficients of the generating function: the tri-
angle represents the set of directions in the positive orthant in Z3; a
direction (α, β, γ) outside or on the arctic curve means that the coeffi-
cientGbnαc,bnβc,bnγc decays exponentially fast with n. The coefficients
within the “temperate region” decay polynomially. The coefficients in
the facet region near the center decay exponentially towards a constant
nonzero value.

H1,0,0L H0,1,0L

H0,0,1L

Fig. 7: The arctic boundary is a
degree-6 curve.

The case for general initial conditionsA0, A1, A2, B0 is not much different. Dividing out by a constant,
the leading homogeneous term of the characteristic polynomial is in general given by

H = x2y + xy2 + x2z + y2z + xz2 + yz2 + λxyz

with λ ∈ (2, 3]. This is irreducible for λ in the open interval (2, 3). The picture varies continuously with
λ. When λ = 3, which corresponds to the initial conditions (14), the outer curve is the inscribed circle
and the facet has shrunk to a point; in fact H factors in this case and is the same as the characteristic
polynomial for cube groves. As λ approaches 2, the outer curve approaches an inscribed triangle and the
facet expands to fill up the entire temperate region. The limiting characteristic polynomial at λ = 2 is the
product (x+ y)(x+ z)(y + z) of linear factors but is not attained by any initial conditions.

6 Ising model, the Ising-Y-Delta move, and Kashev’s equation
In this section we will show how the Ising-Y-Delta move for the Ising model is a special case of the
hexahedron recurrence. We begin by recalling the definition of the Ising model. Let G = (V,E) be a
finite graph with c : E → R+ a positive weight function on edges. The Ising model is a probability
measure µ on the configuration space Ω = {±1}V . A configuration of spins σ ∈ Ω has probability

µ(σ) =
1

Z

∏

e={v,v′}∈E
c(e)(1+σ(v)σ(v

′))/2, (15)
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where the product is over all edges in E and the partition function Z is the sum of the unweighted proba-
bilities

∏
c(e)(1+σ(v)σ(v

′))/2 over all configurations σ. In other words, the probability of a configuration
is proportional to the product of the edge weights of those edges where the spins are equal. The Ising
model originated as a thermodynamical ensemble with energy function H(σ) = −∑e σ(v)σ(v′)J(e):
take J(e) = (T/2) log c(e) where T is Boltzmann’s constant times the temperature.

The Ising-Y-Delta move on the weighted graph G = (V,E, c) transforms the graph the same way as
does the Y-Delta move for electrical networks but transforms the edge weights differently. The transfor-
mation is depicted in Figure 8. Its key property is preservation of the associated measure.

=a

b

c

A

C

B

A =

√
(abc+ 1)(a+ bc)

(b+ ac)(c+ ab)
(16)

B =

√
(abc+ 1)(b+ ac)

(a+ bc)(c+ ab)
(17)

C =

√
(abc+ 1)(c+ ab)

(a+ bc)(b+ ac)
. (18)

Fig. 8: The Y-Delta move.

When placed on a lattice, these relations have an interpretation as a recurrence for stepped surfaces.
Previously we associated a graph Γ(U) with each stepped surface ∂U ; now we associate a planar graph
Υ(U). The vertices of Υ(U) are taken to be the even vertices of ∂U and the edges of Υ(U) are the
digaonals of the faces of ∂U whose endpoints are even. If f : Zd → R+ is a positive function, define
edge weight w(e) on an edge e of Υ(U) to be the positive solution to (w − 1/w)2/4 = b where b =
f(v)f(v′)/(f(u)f(u′)), where e = {v, v′} and where u and u′ are the other two vertices of the face of
∂U on which e lies. The following lemma is known as Kashaev’s difference equation.

Lemma 8 (Kashaev (1996)) Let U ⊆ U ′ be stepped solids differing by a single cube.

1. The graph Υ(U ′) differs from Υ(U) by a Y-Delta move: Y to Delta if the bottom vertex of the added
cube was even and Delta to Y otherwise.

2. If e is a weight function on the edges of Υ(U), extended by the Ising-Y-Delta relations to the edges
of Υ(U ′), and if f is a function on the vertices of Zd inducing e on the edges of Υ(U) and Υ(U ′)
then at the eight vertices of the added cube, f satisfies the relations

f2f2(123) + f2(1)f
2
(23) + f2(2)f

2
(13) + f2(3)f

2
(12) − 2f(1)f(2)f(23)f(13) (19)

−2f(1)f(3)f(23)f(12) − 2f(3)f(2)f(12)f(13) − 2ff(123)(f(1)f(23)

+f(2)f(13) + f(3)f(12))− 4ff(23)f(13)f(12) − 4f(123)f(1)f(2)f(3) = 0 .

2

Kashaev’s equation for f : Z3 → C may be embedded in the hexahedron recurrence by extending f to
Z3
1/2 as follows.
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Proposition 9 Suppose f : Z3
1/2 → C satisfies the following relation for integer (i, j, k):

f(i+ 1/2, j + 1/2, k)2 = f(i, j, k)f(i+ 1, j + 1, k) + f(i, j + 1, k)f(i+ 1, j, k)

f(i+ 1/2, j, k + 1/2)2 = f(i, j, k)f(i+ 1, j, k + 1) + f(i, j, k + 1)f(i+ 1, j, k)

f(i, j + 1/2, k + 1/2)2 = f(i, j, k)f(i, j + 1, k + 1) + f(i, j, k + 1)f(i, j + 1, k) .

Then f satisfies Kashaev’s relation (19) at integer points if and only if f satisfies the hexahedron rela-
tions (3)–(7), where as usual we interpret h = f , h(x) = f(0,1/2,1/2), and so forth. 2

Specializing the hexahedron recurrence creates redundancy, which may be exploited to produce simpler
forms of the hexahedron/Kashaev recurrence. The following result may be proved.

Theorem 10 Let X(v) := f
(x)
(v) , Y (v) := f

(y)
(v) , and Z(v) := f

(z)
(v) . Then fi,j,k may be written as a

Laurent polynomial in the initial variables {fi,j,k}0≤i+j+k≤2 and {Xi,j,k, Yi,j,k, Zi,j,k}i+j+k=0 with the
X,Y, Z variables appearing only with power 0 or 1. 2

Open question What are the natural combinatorial structures counted by fi,j,k?
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Ehrhart h∗-vectors of hypersimplices

Nan Li†

Department of Mathematics, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, MA 02139, USA

Abstract. We consider the Ehrhart h∗-vector for the hypersimplex. It is well-known that the sum of the h∗i is the
normalized volume which equals an Eulerian number. The main result is a proof of a conjecture by R. Stanley which
gives an interpretation of the h∗i coefficients in terms of descents and excedances. Our proof is geometric using a
careful book-keeping of a shelling of a unimodular triangulation. We generalize this result to other closely related
polytopes.

Résumé. Nous considérons que la Ehrhart h∗-vecteur pour la hypersimplex. il est bien connu que la somme de la
h∗i est le volume normalisé qui est égal à un nombre eulérien. Le résultat principal est une preuve de la conjecture
par R. Stanley qui donne une interprétation des coefficients h∗i en termes de descentes et excedances. Notre preuve
est géom etrique àl’aide d’un attention la comptabilité d’un bombardement d’une triangulation unimodulaire. Nous
généralisons ce résultat à d’autres polytopes étroitement liés.

Keywords: Hypersimplex, Ehrhart h∗-vector, Shellable triangulation, Eulerian statistics

1 Introduction
Hypersimplices appear naturally in algebraic and geometric contexts. For example, they can be considered
as moment polytopes for torus actions on Grassmannians or weight polytopes of the fundamental repre-
sentations of the general linear groups GLn. Fix two integers 0 < k ≤ n. The (k, n)-th hypersimplex is
defined as follows

∆k,n = {(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ 1; x1 + · · ·+ xn = k},

or equivalently,

∆k,n = {(x1, . . . , xn−1) | 0 ≤ x1, . . . , xn−1 ≤ 1; k − 1 ≤ x1 + · · ·+ xn−1 ≤ k}.

They can be considered as the slice of the hypercube [0, 1]n−1 located between the two hyperplanes∑n−1
i=1 xi = k − 1 and

∑n−1
i=1 xi = k.

For a permutation w ∈ Sn, we call i ∈ [n− 1] a descent of w, if w(i) > w(i+ 1). We define des(w)
to be the number of descents of w. We call Ak,n−1 the Eulerian number, which equals the number of
permutations in Sn−1 with des(w) = k − 1. The following result is well-known (see for example, [9,
Exercise 4.59 (b)]).
†Partially supported by the US National Science Foundation under Grant DMS-0604423.
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154 Nan Li

Theorem 1.1 (Laplace) The normalized volume of ∆k,n is the Eulerian number Ak,n−1.

Let Sk,n be the set of all points (x1, . . . , xn−1) ∈ [0, 1]n−1 for which xi < xi+1 for exactly k − 1 values
of i (including by convention i = 0). Foata asked whether there is some explicit measure-preserving map
that sends Sk,n to ∆k,n. Stanley [6] gave such a map, which gave a triangulation of the hypersimplex
into Ak,n−1 unit simplices and provided a geometric proof of Theorem 1.1. Sturmfels [10] gave another
triangulation of ∆k,n, which naturally appears in the context of Gröbner bases. Lam and Postnikov [5]
compared these two triangulations together with the alcove triangulation and the circuit triangulation.
They showed that these four triangulations are identical. We call a triangulation of a convex polytope
unimodular if every simplex in the triangulation has normalized volume one. It is clear that the above
triangulations of the hypersimplex are unimodular.

Let P ∈ ZN be any n-dimensional integral polytope (its vertices are given by integers). Then Ehrhart’s
theorem tells us that the function

i(P, r) := #(rP ∩ ZN )

is a polynomial in r, and
∑

r≥0

i(P, r)tr =
h∗(t)

(1− t)n+1
,

where h∗(t) is a polynomial in t with degree ≤ n. We call h∗(t) the h∗-polynomial of P , and the vector
(h∗0, . . . , h

∗
n), where h∗i is the coefficient of ti in h∗(t), is called the h∗-vector of P . We denote its term

by h∗i (P). It is known that the sum
∑n
i=0 h

∗
i (P) equals the normalized volume of P .

Katzman [3] proved the following formula for the h∗-vector of the hypersimplex ∆k,n. In particular, we
see that

∑n
i=0 h

∗
i (∆k,n) = Ak,n−1. Write

(
n
r

)
`

to denote the coefficient of tr in (1+t+t2 + · · ·+t`−1)n.
Then the h∗-vector of ∆k,n is (h∗0(∆k,n), . . . , h∗n−1(∆k,n)), where for d = 0, . . . , n− 1

h∗d(∆k,n) =
k−1∑

i=0

(−1)i
(
n

i

)(
n

(k − i)d− i

)

k−i
. (1)

Moreover, since all the h∗i (∆k,n) are nonnegative integers ([7]) (this is not clear from (1)), it will be
interesting to give a combinatorial interpretation of the h∗i (∆k,n).

The half-open hypersimplex ∆′k,n is defined as follows. If k > 1,

∆′k,n = {(x1, . . . , xn−1) | 0 ≤ x1, . . . , xn−1 ≤ 1; k − 1 < x1 + · · ·+ xn−1 ≤ k},

and
∆′1,n = ∆1,n.

We call ∆′k,n “half-open” because it is basically the normal hypersimplex with the “lower” facet removed.
From the definitions, it is clear that the volume formula and triangulations of the usual hypersimplex ∆k,n

also work for the half-open hypersimplex ∆′k,n, and it is nice that for fixed n, the half-open hypersimplices
∆′k,n, for k = 1, . . . , n− 1, form a disjoint union of the hypercube [0, 1]n−1. From the following formula
for the h∗-polynomial of the half-open hypersimplices, we can compute the h∗-polynomial of the usual
hypersimplices inductively. Also, we can compute its Ehrhart polynomial.

For a permutation w, we call i an excedance of w if w(i) > i (a reversed excedance if w(i) < i). We
denote by exc(w) the number of excedances of w. The main theorems of the paper are the following.
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Theorem 1.2 The h∗-polynomial of the half-open hypersimplex ∆′k,n is given by

∑

w∈Sn−1

exc(w)=k−1

tdes(w).

We prove this theorem first by a generating function method (in Section 2) and second by a geometric
method, i.e., giving a shellable triangulation of the hypersimplex (in Sections 4). In Section 3, we will
provide some background.

We can define a different shelling order on the triangulation of ∆′k,n, and get another expression
of its h∗-polynomial using descents and a new permutation statistic called cover (see its definition in
Lemma 5.4).

Theorem 1.3 The h∗-polynomial of ∆′k,n is

∑

w∈Sn−1

des(w)=k−1

tcover(w).

Combining Theorem 1.3 with Theorem 1.2, we have the equal distribution of (exc,des) and (des, cover):

Corollary 1.4 ∑

w∈Sn
tdes(w)xcover(w) =

∑

w∈Sn
texc(w)xdes(w).

Finally, we study the generalized hypersimplex ∆k,α (see definition in Section 6). This polytope is related
to algebras of Veronese type. For example, it is known [1] that every algebra of Veronese type coincides
with the Ehrhart ring of a polytope ∆k,α. We can extend the second shelling to the generalized hypersim-
plex ∆′k,α (defined in (6)), and express its h∗-polynomial in terms of a colored version of descents and
covers (see Theorem 6.2). This extended abstract is based on [4], where you can find more details.

2 Proof of Theorem 1.2 by generating functions
Here is a proof of this theorem using generating functions.

Proof: Suppose we can show that

∑

r≥0

∑

k≥0

∑

n≥0

i(∆′k+1,n+1, r)u
nsktr =

∑

n≥0

∑

σ∈Sn
tdes(σ)sexc(σ) un

(1− t)n+1
. (2)

By considering the coefficient of unsk in (2), we have

∑

r≥0

i(∆′k+1,n+1, r)t
r = (1− t)−(n+1)




∑

w∈Sn
exc(w)=k

tdes(w)


 ,
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which implies Theorem 1.2. By the following equation due to Foata and Han [2, Equation (1.15)],
∑

n≥0

∑

σ∈Sn
tdes(σ)sexc(σ) un

(1− t)n+1
=
∑

r≥0

tr
1− s

(1− u)r+1(1− us)−r − s(1− u)
,

we only need to show that
∑

k≥0

∑

n≥0

i(∆′k+1,n+1, r)u
nsk =

1− s
(1− u)r+1(1− us)−r − s(1− u)

.

By the definition of the half-open hypersimplex, we have, for any r ∈ Z≥0,

r∆′k+1,n+1 = {(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ r, rk + 1 ≤ x1 + · · ·+ xn ≤ (k + 1)r},
if k > 0, and for k = 0,

r∆′1,n+1 = {(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ r, 0 ≤ x1 + · · ·+ xn ≤ r}.
So

i(∆′k+1,n+1, r) = ([xkr+1] + · · ·+ [x(k+1)r])

(
1− xr+1

1− x

)n
, (3)

if k > 0, and when k = 0, we have

i(∆′1,n+1, r) = ([x0] + [x] + · · ·+ [xr])

(
1− xr+1

1− x

)n
, (4)

where the notation [xi]f(x) for some power series f(x) denotes the coefficient of xi in f(x). Notice that
the case of k = 0 is different from k > 0 and i(∆′1,n+1, r) is obtained by evaluating k = 0 in (3) plus

an extra term [x0]
(

1−xr+1

1−x

)n
. Since the coefficient of xk of a function f(x) equals the constant term of

f(x)
xk

, we have

([xkr+1] + · · ·+ [x(k+1)r])

(
1− xr+1

1− x

)n
= [x0]

(
1− xr+1

1− x

)n
(x−kr−1 + · · ·+ x−(k+1)r)

= [xkr]

(
1− xr+1

1− x

)n
(x−kr−1 + · · ·+ x−(k+1)r)xkr

= [xkr]
(1− xr)(1− xr+1)n

(1− x)n+1xr
.

So we have, for k > 0,
∑

n≥0

i(∆′k+1,n+1, r)u
n =

∑

n≥0

[xkr]
(1− xr)(1− xr+1)n

(1− x)n+1xr
un

= [xkr]
(1− xr)

(1− x)xr

∑

n≥0

(
(1− xr+1)u

1− x

)n

= [xkr]
xr − 1

xr(u− uxr+1 − 1 + x)
.
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For k = 0, based on the difference between (3) and (4) observed above, we have:

∑

n≥0

i(∆′1,n+1, r)u
n =

∑

n≥0

[x0]
(1− xr)(1− xr+1)n

(1− x)n+1xr
un +

∑

n≥0

[x0]

(
1− xr+1

1− x

)n
un

=

(
[x0]

xr − 1

xr(u− uxr+1 − 1 + x)

)
+

1

1− u.

So

∑

k≥0

∑

n≥0

i(∆′k+1,n+1, r)u
nsk =


∑

k≥0

[xkr]
xr − 1

xr(u− uxr+1 − 1 + x)
sk


+

1

1− u.

Let y = xr. We have

∑

k≥0

∑

n≥0

i(∆′k+1,n+1, r)u
nsk =

∑

k≥0

[xkr]
y − 1

y(u− uxy − 1 + x)
sk +

1

1− u.

Expand y−1
y(u−uxy−1+x) in powers of x, we have

y − 1

y(u− uxy − 1 + x)
=
y − 1

y
· 1

u− 1− (uxy − x)

=
y − 1

y(u− 1)
· 1

1− x(uy−1)
u−1

=
1− y

y(1− u)

∑

i≥0

(
(1− uy)x

1− u

)i
.

Since we only want the coefficient of xi such that r divides i, we get

1− y
y(1− u)

∑

j≥0

(
(1− uy)x

1− u

)rj
=

1− y
y(1− u)

· 1

1− (1−uy)rxr

(1−u)r

=
1− y

y(1− u)
· (1− u)r

(1− u)r − (1− uy)rxr

=
(1− u)r−1(1− y)

y(1− u)r − y2(1− yu)r
.

So
∑

k≥0

∑

n≥0

i(∆′k+1,n+1, r)u
nsk =


∑

k≥0

sk[yk]
(1− u)r−1(1− y)

y(1− u)r − y2(1− yu)r


+

1

1− u.
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To remove all negative powers of y, we do the following expansion

(1− u)r−1(1− y)

y(1− u)r − y2(1− yu)r
=

1− y
(1− u)y

· 1

1− y(1−yu)r

(1−u)r

=
∑

i≥0

(
yi−1(1− uy)ri

(1− u)ri+1
− yi(1− uy)ri

(1− u)ri+1

)

=
1

1− uy
−1 + nonnegative powers of y.

Notice that
∑
k≥0 s

k[yk] (1−u)r−1(1−y)
y(1−u)r−y2(1−yu)r is obtained by taking the sum of nonnegative powers of y in

(1−u)r−1(1−y)
y(1−u)r−y2(1−yu)r and replacing y by s. So

∑

k≥0

sk[yk]
(1− u)r−1(1− y)

y(1− u)r − y2(1− yu)r
=

(1− u)r−1(1− s)
s(1− u)r − s2(1− su)r

− 1

s(1− u)
.

Therefore,

∑

k≥0

∑

n≥0

i(∆′k+1,n+1, r)u
nsk =

(1− u)r−1(1− s)
s(1− u)r − s2(1− su)r

− 1

s(1− u)
+

1

1− u

=
1− s

(1− u)r+1(1− us)−r − s(1− u)
.

2

3 Background
3.1 Shellable triangulation and the h∗-polynomial
Let Γ be a triangulation of an n-dimensional polytopeP , and let α1, . . . , αs be an ordering of the simplices
(maximal faces) of Γ. We call (α1, . . . , αs) a shelling of Γ [7], if for each 2 ≤ i ≤ s, αi∩(α1∪· · ·∪αi−1)
is a union of facets ((n − 1)-dimensional faces) of αi. For example, (ignore the letters A, B, and C for
now) Γ1 is a shelling, while any order starting with Γ2 cannot be a shelling.

Γ1 :

A

ooooooooo OOOOOOOOO
RRRRRRRR

qqqqqq
M M M M

ooooQQQQ

mmmm α1

α2

α3

α4

, Γ2 : B

C

OOOOOOOOOOOOOOOO oooooooooooooooo

α1α2

An equivalent condition (see e.g., [8]) for a shelling is that every simplex has a unique minimal non-face,
where by a “non-face”, we mean a face that has not appeared in previous simplices. For example, for
α2 ∈ Γ1, the vertex A is its unique minimal non-face, while for α2 ∈ Γ2, both B and C are minimal and
have not appeared before α2. We call a triangulation with a shelling a shellable triangulation. Given a
shellable triangulation Γ and a simplex α ∈ Γ, define the shelling number of α (denoted by #(α)) to be
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the number of facets shared by α and some simplex preceding α in the shelling order. For example, in Γ1,
we have

#(α1) = 0, #(α2) = 1, #(α3) = 1, #(α4) = 2.

The benefit of having a shelling order for Theorem 1.2 comes from the following result.

Theorem 3.1 ([7] Shelling and Ehrhart polynomial) Let Γ be a unimodular shellable triangulation of
an n-dimensional polytope P . Then

∑

r≥0

i(P, r)tr =

(∑

α∈Γ

t#(α)

)
(1− t)−(n+1).

3.2 Excedances and descents
Let w ∈ Sn. Define its standard representation of cycle notation to be a cycle notation of w such that
the first element in each cycle is its largest element and the cycles are ordered with their largest elements
increasing. We define the cycle type of w to be the composition of n: C(w) = (c1, . . . , ck) where ci
is the length of the ith cycle in its standard representation. The Foata map F : w → ŵ maps w to ŵ
obtained from w by removing parentheses from the standard representation of w. For example, consider
a permutation w : [5] → [5] given by w(1) = 5, w(2) = 1, w(3) = 4, w(4) = 3 and w(5) = 2 or in one
line notation w = 51432. Its standard representation of cycle notation is (43)(521), so ŵ = 43521. The
inverse Foata map F−1 : ŵ → w allows us to go back from ŵ tow as follows: first insert a left parenthesis
before every left-to-right maximum and then close each cycle by inserting a right parenthesis accordingly.
In the example, the left-to-right maximums of ŵ = 43521 are 4 and 5, so we get back (43)(521). Based
on the Foata map, we have the following result for the equal distribution of excedances and descents.

Theorem 3.2 (Excedances and descents) The number of permutations in Sn with k excedances equals
the number of permutations in Sn with k descents.

3.3 Triangulation of the hypersimplex
We start from a unimodular triangulation {tw | w ∈ Sn} of the hypercube, where

tw = {(y1, . . . , yn) ∈ [0, 1]n | yw1 ≤ yw2 ≤ · · · ≤ ywn}.

It is easy to see that tw has the following n + 1 vertices: v0 = (0, . . . , 0), and vi = (y1, . . . , yn) given
by yw1

= · · · = ywn−i = 0 and ywn−i+1
= · · · = ywn = 1. It is clear that vi+1 = vi + ewn−i . Now

define the following map φ ([6],[5]) that maps tw to sw, a simplex in ∆k+1,n+1, sending (y1, . . . , yn) to
(x1, . . . , xn), where

xi =

{
yi − yi−1, if (w−1)i > (w−1)i−1,

1 + yi − yi−1, if (w−1)i < (w−1)i−1,
(5)

where we set y0 = 0. For each point (x1, . . . , xn) ∈ sw, set xn+1 = k+ 1− (x1 + · · ·+ xn). Since vi+1

and vi only differ in ywn−i , by (5), φ(vi) and φ(vi+1) only differ in xwn−i and xwn−i+1. More explicitly,
we have

Lemma 3.3 Denote wn−i by r. For φ(vi), we have xrxr+1 = 01 and for φ(vi+1), we have xrxr+1 =
10. In other words, from φ(vi) to φ(vi+1), we move a 1 from the (r + 1)th coordinate forward by one
coordinate.
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Proof: First, we want to show that for φ(vi), we have xr = 0 and xr+1 = 1. We need to look at the
segment yr−1yryr+1, of vi. We know that yr = 0, so there are four cases for yr−1yryr+1: 000, 001, 100,
101. If yr−1yryr+1 = 000 for vi, then yr−1yryr+1 = 010 for vi+1. Therefore, w−1

r−1 < w−1
r > w−1

r+1.
Then by (5), we have xrxr+1 = 01. Similarly, we can check in the other three cases that xrxr+1 = 01
for φ(vi).

Similarly, we can check the four cases for yr−1yryr+1: 010, 011, 110, 111 in φ(vi+1) and get xrxr+1 =
10 in all cases. 2

Let des(w−1) = k. It follows from Lemma 3.3 that the sum of the coordinates
∑n
i=1 xi for each

vertex φ(vi) of sw is either k or k + 1. So we have the triangulation [6] of the hypersimplex ∆k+1,n+1:
Γk+1,n+1 = {sw | w ∈ Sn, des(w−1) = k}.

Now we consider a graph Gk+1,n+1 on the set of simplices in the triangulation of ∆k+1,n+1. There is
an edge between two simplices s and t if and only if they are adjacent (they share a common facet). We
can represent each vertex of Gk+1,n+1 by a permutation and describe each edge of Gk+1,n+1 in terms of
permutations [5]. We call this new graph Γk+1,n+1. It is clear that Γk+1,n+1 is isomorphic to Gk+1,n+1.

Proposition 3.4 ([5, Lemma 6.1 and Theorem 7.1]) The graph Γk+1,n+1 can be described as follows:
its vertices are permutations u = u1 . . . un ∈ Sn with des(u−1) = k. There is an edge between u and v,
if and only if one of the following two holds:

1. (type one edge) ui−ui+1 6= ±1 for some i ∈ {1, . . . , n−1}, and v is obtained from u by exchanging
ui, ui+1.

2. (type two edge) un 6= 1, n, and v is obtained from u by moving un to the front of u1, i.e., v =
unu1 . . . un−1; or this holds with u and v switched.

Example 3.5 Here is the graph Γ3,5 for ∆′3,5.

Γ3,5 : 2413

3214

3241 2143
3421 1432

4213 4132

2431

4231 4312









444444

jjjj
????

���� TTTT

DDDDD

ooooα OOOO
zzzzz

�������

#######

ssssss
KKKKKK β

dd

V V

Z Z

hh

In the above graph, the edge α between u = 2413 and v = 4213 is a type one edge with i = 1, since
4− 2 6= ±1 and one is obtained from the other by switching 2 and 4; the edge β between u = 4312 and
v = 2431 is a type two edge, since u4 = 2 6= 1, 4 and v = u4u1u2u3. The dotted line attached to a
simplex s indicates that s is adjacent to some simplex t in ∆2,5. Since we are considering the half-open
hypersimplices, the common facet s ∩ t is removed from s.
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4 Proof (outline) of Theorem 1.2 by a shellable triangulation
We want to show that the h∗-polynomial of ∆′k+1,n+1 is

∑

w∈Sn
exc(w)=k

tdes(w).

Compare this to Theorem 3.1: if ∆′k+1,n+1 has a shellable unimodular triangulation Γk+1,n+1, then its
h∗-polynomial is ∑

α∈Γk+1,n+1

t#(α).

We will define a shellable unimodular triangulation Γk+1,n+1 for ∆′k+1,n+1, label each simplex α ∈
Γk+1,n+1 by a permutation wα ∈ Sn with exc(wα) = k. Then show that #(α) = des(wα).

We start from the triangulation Γk+1,n+1 studied in Section 3.3. By Proposition 3.4, each simplex is
labeled by a permutation u ∈ Sn with des(u−1) = k. Based on the Foata map defined in Section 3.2,
we can use a sequence of maps and get a graph Sk+1,n+1 with vertices being permutations in Sn with
k excedances. Applying the above maps to vertices of Γk+1,n+1, we call the new graph Sk+1,n+1. We
will define the shelling order on the simplices in the triangulation by orienting each edge in the graph
Sk+1,n+1. If we orient an edge (u, v) such that the arrow points to u, then in the shelling, let the simplex
labeled by u be after the simplex labeled by v. We can orient each edge of Sk+1,n+1 such that the directed
graph is acyclic. This digraph therefore defines a partial order on the simplices of the triangulation. We
can prove that any linear extension of this partial order gives a shelling order. Given any linear extension
obtained from the digraph, the shelling number of each simplex is the number of incoming edges. Let wα
be the permutation in Sk+1,n+1 corresponding to the simplex α. Then we can show that for each simplex,
its number of incoming edges equals des(wα). We will leave out the details here.

5 Proof of Theorem 1.3: second shelling
We want to show that the h∗-polynomial of ∆′k+1,n+1 is also given by

∑

w∈Sn
des(w)=k

tcover(w),

we will define cover in a minute. Compare this to Theorem 3.1: if ∆′k+1,n+1 has a shellable unimodular
triangulation Γk+1,n+1, then its h∗-polynomial is

∑

α∈Γk+1,n+1

t#(α).

Similar to the proof of Theorem 1.2, we will define shellable unimodular triangulation for ∆′k+1,n+1, but
this shelling is different from the one we use for Theorem 1.2. Label each simplex α ∈ Γk+1,n+1 by a
permutation wα ∈ Sn with des(wα) = k. Then show that #(α) = cover(wα).
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We start from the graph Γk+1,n+1 studied in Section 3.3. Define a graph Mk+1,n+1 such that w ∈
V (Mk+1,n+1) if and only ifw−1 ∈ V (Γk+1,n+1) and (w, u) ∈ E(Mk+1,n+1) if and only if (w−1, u−1) ∈
E(Γk+1,n+1). By Proposition 3.4, we have

V (Mk+1,n+1) = {w ∈ Sn | des(w) = k},

and (w, u) ∈ E(Mk+1,n+1) if and only if w and u are related in one of the following ways:

1. type one: exchanging the letters i and i+ 1 if these two letters are not adjacent in w and u

2. type two: one is obtained by subtracting 1 from each letter of the other (1 becomes n− 1).

Now we want to orient the edges ofMk+1,n+1 to make it a digraph. Consider e = (w, u) ∈ E(Mk+1,n+1).

1. if e is of type one, and i is before i + 1 in w, i.e., inv(w) = inv(u) − 1, then orient the edge as
w ← u.

2. if edge (w, u) is of type two, and v is obtained by subtracting 1 from each letter of u (1 becomes
n− 1), then orient the edge as w ← u.

Example 5.1 Here is the directed graph M3,5 for ∆′3,5:

3142

3214

4213 2143
4312 1432

3241 2431

4132

4231 3421
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Lemma 5.2 There is no cycle in the directed graph Mk+1,n+1.

Therefore, Mk+1,n+1 defines a poset on V (Mk+1,n+1) and Mk+1,n+1 is the Hasse diagraph of the
poset, which we still denote as Mk+1,n+1.

For an element in the poset Mk+1,n+1, the larger its rank is, the further its corresponding simplex is
from the origin. More precisely, notice that each v = (x1, . . . , xn) ∈ Vk+1,n+1 = ∆k+1,n+1 ∩ Zn

has |v| =
∑n
i=1 xi = k or k + 1. For u ∈ Mk+1,n+1, by which we mean u ∈ V (Mk+1,n+1), define

Au = #{v is a vertex of the simplex su−1 | |v| = k + 1}.
Proposition 5.3 Let w > u in the above poset Mk+1,n+1. Then Aw ≥ Au.

This proposition follows from a lemma proving that Au = un, and the definition of the two types of
directed edges.

We define the cover of a permutation w ∈Mk+1,n+1 to be the number of permutations v ∈Mk+1,n+1

it covers, i.e., the number of incoming edges of w in the graph Mk+1,n+1. From the above definition, we
have the following, (in the half-open setting):
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Lemma 5.4 1. If w1 = 1, then cover(w) = #{i ∈ [n− 1] | (w−1)i + 1 < (w−1)i+1};

2. if w1 6= 1, then cover(w) = #{i ∈ [n− 1] | (w−1)i + 1 < (w−1)i+1}+ 1.

Proposition 5.5 Any linear extension of the above ordering gives a shelling order on the triangulation of
∆′k+1,n+1.

It is clear that the shelling number of the simplex corresponding to w is cover(w). Then by Theorem
3.1 and Proposition 5.5, we have a proof of Theorem 1.3.

6 The h∗-polynomial for generalized half-open hypersimplex
We want to extend Theorem 1.3 to the hyperbox B = [0, a1] × · · · × [0, an]. Write α = (a1, . . . , an),
ai ∈ Z>0 and define the generalized half-open hypersimplex as

∆′k,α = {(x1, . . . , xn) | 0 ≤ xi ≤ ai; k − 1 < x1 + · · ·+ xn ≤ k}. (6)

Note that the above polytope is a multi-hypersimplex studied in [5]. For a nonnegative integral vector
β = (b1, . . . , bn), let Cβ = β + [0, 1]n be the cube translated from the unit cube by the vector β. We call
β the color of Cβ .

We extend the triangulation of the unit cube to B by translation and assign to each simplex in B a
colored permutation

wβ ∈ Sα = {w ∈ Sn | bi < ai, i = 1, . . . , n}.
Let Fi = {xi = 0} ∩ [0, 1]n for i = 1, . . . , n. Define the exposed facets for the simplex su−1 in [0, 1]n

to be Expose(u) = {i | su−1 ∩ Fi is a facet of su−1}.
We can compute Expose(u) explicitly as follows.

Lemma 6.1 Set u0 = 0. Then Expose(u) = {i ∈ [n] | ui−1 + 1 = ui}.
Now we want to extend the second shelling on the unit cube to the larger rectangle. In this extension,

Fi will be removed from Cβ if bi 6= 0. Therefore, for the simplex swβ , we will remove the facet Fi ∩ swβ
for each i ∈ Expose(w) ∩ {i | bi 6= 0} as well as the cover(wβ) facets for neighbors within Cβ . We call
this set Expose(w) ∩ {i | bi 6= 0} the colored exposed facet (cef), denoted by cef(wβ), for each colored
permutation wβ = (w, β).

Based on the above extended shelling, with some modifications of Proposition 5.5, we can show that
the above order is a shelling order. Then, by Theorem 3.1 and the fact that the shelling number for wβ is
cover(wβ) + cef(wβ), we have the following theorem.

Theorem 6.2 The h∗-polynomial for ∆′k,α is

∑

wβ∈Sα
des(w)+|β|=k−1

tcover(wβ)+cef(wβ).

We have some interesting identities about exc, des, cover and Expose.

Proposition 6.3 For any k ∈ [n− 1], we have

1. #{w ∈ Sn | exc(w) = k, des(w) = 1} =
(
n
k+1

)
.
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2. {w ∈ Sn | des(w) = k, cover(w) = 1} = {w ∈ Sn | # Expose(w) = n− (k + 1)}.
3. #{w ∈ Sn | des(w) = k, cover(w) = 1,Expose(w) = S} = 1, for any S ⊂ [n] with |S| =
n− (k + 1).

4. #{w ∈ Sn | des(w) = k, cover(w) = 1} =
(
n
k+1

)
.

Proposition 6.4 For any 1 < k < n, we have

1. #{w ∈ Sn | exc(w) = 1,des(w) = k} =
(
n+1
2k

)
.

2. #{w ∈ Sn | des(w) = 1,# Expose(w) = n− 2k or n+ 1− 2k} = 1

3. {w ∈ Sn | des(w) = 1,# Expose(w) = n− 2k or n+ 1− 2k} ⊂ {w ∈ Sn | cover(w) = k}.
4. #{w ∈ Sn | des(w) = 1, cover(w) = k} =

(
n
2k

)
+
(

n
2k−1

)
=
(
n+1
2k

)
.
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The idea of enumeration using the Euler characteristic was suggested throughout Rota’s work and
influenced by Schanuel’s categorical viewpoint [21, 23, 24, 25]. In order to carry out such a program that
is topologically meaningful and which captures the broadest possible classes of examples, two key insights
are required. First, the notion of grading in the face lattice of a polytope must be relaxed. Secondly, the
usual zeta function in the incidence algebra must be extended to include the Euler characteristic as an
important instance.

The flag f -vector of a graded poset counts the number of chains passing through a prescribed set of
ranks. In the case of a polytope, it records all of the face incidence data, including that of the f -vector.
Bayer and Billera proved that the flag f -vector of any Eulerian poset satisfies a collection of linear equal-
ities now known as the generalized Dehn–Sommerville relations [2]. These linear equations may be
interpreted as natural redundancies among the components of the flag f -vector. Bayer and Klapper re-
moved these redundancies by showing that the space of flag f -vectors of Eulerian posets has a natural
basis with Fibonacci many elements consisting of certain non-commutative polynomials in the two vari-
ables c and d [3]. The coefficients of this cd-index were later shown by Stanley to be non-negative in the
case of spherically-shellable posets [27]. Other milestones for the cd-index include its inherent coalge-
braic structure [11], its appearance in the proofs of inequalities for flag vectors [5, 9, 10, 20], its use in
understanding the combinatorics of arrangements of subspaces and sub-tori [6, 14], and most recently, its
connection to the Bruhat graph and Kazhdan–Lusztig theory [4, 13].

In this article we extend the cd-index and its properties to a more general situation, that of quasi-graded
posets and Whitney stratified spaces. A quasi-grading on a poset P consists of a strictly order-preserving
“rank” function ρ : P → N and a weighted zeta function ζ̄ in the incidence algebra I(P ) such that
ζ̄(x, x) = 1 for all x ∈ P . See Section 2. A quasi-graded poset (P, ρ, ζ̄) will be said to be Eulerian if the
function (−1)ρ(y)−ρ(x) · ζ̄(x, y) is the inverse of ζ̄(x, y) in the incidence algebra of P . This reduces to
the classical definition of Eulerian if (P, ρ, ζ̄) is a ranked poset with the standard zeta function ζ.

Theorem 3.1 states that the cd-index is defined for Eulerian quasi-graded posets. The existence of
the cd-index for Eulerian quasi-graded posets is equivalent to the statement that the flag f̄ -vector of an
Eulerian quasi-graded poset satisfies the generalized Dehn–Sommerville relations (Theorem 3.2).

Eulerian ranked posets arise geometrically as the face posets of regular cell decompositions of a sphere,
whereas Eulerian quasi-graded posets arise geometrically from the more general case of Whitney strat-
ifications. A Whitney stratification X of a compact topological space W is a decomposition of W into
finitely many smooth manifolds which satisfy Whitney’s “no-wiggle” conditions on how the strata fit to-
gether. See Section 4. These conditions guarantee (a) thatX does not exhibit Cantor set-like behavior and
(b) that the closure of each stratum is a union of strata. The faces of a convex polytope and the cells of a
regular cell complex are examples of Whitney stratifications, but in general, a stratum in a stratified space
need not be contractible. Moreover, the closure of a stratum of dimension d does not necessarily contain
strata of dimension d− 1, or for that matter, of any other dimension. Natural Whitney stratifications exist
for real or complex algebraic sets, analytic sets, semi-analytic sets and for quotients of smooth manifolds
by compact group actions.

The strata of a Whitney stratification (of a topological space W ) form a poset, where the order relation
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A < B is given by A ⊂ B. Moreover, this set admits a natural quasi-grading which is defined by
ρ(A) = dim(A) + 1 and ζ̄(A,B) = χ(link(A) ∩ B) whenever A < B are strata and χ is the Euler
characteristic. See Definition 4.4. This is the setting for our Euler-characteristic enumeration.

Theorem 4.5 states that the quasi-graded poset of strata of a Whitney stratified set is Eulerian and
therefore its cd-index is defined and its flag f̄ -vector satisfies the generalized Dehn–Sommerville rela-
tions. Due to space constraints, the background and results needed for this proof are omitted. Please refer
to the full-length article for details.

It is important to point out that, unlike the case of polytopes, the coefficients of the cd-index of Whitney
stratified manifolds can be negative. See Examples 4.1 and 4.8. It is our hope that by applying topolog-
ical techniques to stratified manifolds, a combinatorial interpretation for the coefficients of the cd-index
will be discovered. This may ultimately explain Stanley’s non-negativity results for spherically shellable
posets [27] and Karu’s results for Gorenstein* posets [20], and settle the conjecture that non-negativity
holds for regular cell complexes.

In his proof that the cd-index of a polytope is non-negative, Stanley introduced the notion of semi-
suspension. Given a polytopal complex that is homeomorphic to a ball, the semisuspension adds another
facet whose boundary is the boundary of the ball. The resulting spherical CW -complex has the same
dimension, and the intervals in its face poset are Eulerian [27].

It is precisely the setting of Whitney stratified manifolds, and the larger class of Whitney stratified
spaces, which is critical in order to study face enumeration of the semisuspension in higher dimensional
spheres and more general topologically interesting examples. In Section 5 the nth semisuspension and
its cd-index is studied. In Theorem 5.2, by using the method of quasi-graded posets, we are able to
give a short proof (that completely avoids the use of shellings) of a key result of Billera and Ehren-
borg [5] that was needed for their proof that the n-dimensional simplex minimizes the cd-index among
all n-dimensional polytopes. Furthermore, we establish the Eulerian relation for the nth semisuspension
(Theorem 5.3).

In Section 6 the cd-index of the nth semisuspension of a non-pure shellable simplicial complex is de-
termined. The cd-index of the shelling components are shown to satisfy a recursion involving a derivation
which first appeared in [11]. By relaxing the notion of shelling, we furthermore show that the shelling
components satisfy a Pascal type recursion. This yields new expressions for the shelling components and
illustrates the power of leaving the realm of regular cell complexes for that of Whitney stratified spaces.

2 Quasi-graded posets and their ab-index

Recall the incidence algebra of a poset is the set of all functions f : I(P ) → C where I(P ) denotes the
set of intervals in the poset. The multiplication is given by (f · g)(x, y) =

∑
x≤z≤y f(x, z) · g(z, y) and

the identity is given by the delta function δ(x, y) = δx,y , where the second delta is the usual Kronecker
delta function δx,y = 1 if x = y and zero otherwise. A poset is said to be ranked if every maximal chain
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in the poset has the same length. This common length is called the rank of the poset. A poset is said to be
graded if it is ranked and has a minimal element 0̂ and a maximal element 1̂. For other poset terminology,
we refer the reader to Stanley’s treatise [26].

We introduce the notion of a quasi-graded poset. This extends the notion of a ranked poset.

Definition 2.1 A quasi-graded poset (P, ρ, ζ̄) consists of (i) a finite poset P (not necessarily ranked),
(ii) a strictly order-preserving function ρ from P to N, that is, x < y implies ρ(x) < ρ(y), and (ii)
a function ζ̄ in the incidence algebra I(P ) of the poset P , called the weighted zeta function, such that
ζ̄(x, x) = 1 for all elements x in the poset P .

Observe that we do not require the poset to have a minimal element or a maximal element. Since ζ̄(x, x) 6=
0 for all x ∈ P , the function ζ̄ is invertible in the incidence algebra I(P ) and we denote its inverse by µ̄.

For x ≤ y in a quasi-graded poset P = (P, ρ, ζ̄), the rank difference function is given by ρ(x, y) =
ρ(y) − ρ(x). We say that a quasi-graded poset (P, ρ, ζ̄) with minimal element 0̂ and maximal element 1̂
has rank n if ρ(0̂, 1̂) = n. The interval [x, y] is itself a quasi-graded poset together with the rank function
ρ[x,y](w) = ρ(w)− ρ(x) and the weighted zeta function ζ̄.

Let (P, ρ, ζ̄) be a quasi-graded poset with unique minimal element 0̂ and unique maximal element 1̂.
The assumption of a quasi-graded poset having a 0̂ and 1̂ will be essential in order to define its ab-index
and cd-index. For a chain c = {x0 < x1 < · · · < xk} in the quasi-graded poset P , define ζ̄(c) to be the
product

ζ̄(c) = ζ̄(x0, x1) · ζ̄(x1, x2) · · · ζ̄(xk−1, xk). (2.1)

Similarly, for the chain c define its weight to be

wt(c) = (a− b)ρ(x0,x1)−1 · b · (a− b)ρ(x1,x2)−1 · b · · ·b · (a− b)ρ(xk−1,xk)−1,

where a and b are non-commutative variables each of degree 1. The ab-index of a quasi-graded poset
(P, ρ, ζ̄) is

Ψ(P, ρ, ζ̄) =
∑

c

ζ̄(c) · wt(c), (2.2)

where the sum is over all chains starting at the minimal element 0̂ and ending at the maximal element 1̂,
that is, c = {0̂ = x0 < x1 < · · · < xk = 1̂}. When the rank function ρ and the weighted zeta function
are clear from the context, we will write the shorter Ψ(P ). Observe that if a quasi-graded poset (P, ρ, ζ̄)
has rank n+ 1 then its ab-index is homogeneous of degree n.

The ab-index depends on the rank difference function ρ(x, y) but not on the rank function itself. Hence
we may uniformly shift the rank function without changing the ab-index. Later we will use the convention
that ρ(0̂) = 0.

The ab-index of a quasi-graded poset is a coalgebra homomorphism. Define a coproduct ∆ : Z〈a,b〉 −→
Z〈a,b〉⊗Z〈a,b〉 by ∆(1) = 0 and for an ab-monomial u = u1u2 · · ·uk by ∆(u) =

∑k
i=1 u1 · · ·ui−1⊗
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ui+1 · · ·uk and extend ∆ extend to Z〈a,b〉 by linearity. It is straightforward to see that this coproduct is
coassociative. The coproduct ∆ first appeared in [11].

Theorem 2.2 Let (P, ρ, ζ̄) be a quasi-graded poset. Then the following identity holds:

∆(Ψ(P, ρ, ζ̄)) =
∑

0̂<x<1̂

Ψ([0̂, x], ρ, ζ̄)⊗Ψ([x, 1̂], ρ, ζ̄).

A quasi-graded poset is said to be Eulerian if for all pairs of elements x ≤ z we have that

∑

x≤y≤z
(−1)ρ(x,y) · ζ̄(x, y) · ζ̄(y, z) = δx,z. (2.3)

In other words, the function µ̄(x, y) = (−1)ρ(x,y) · ζ̄(x, y) is the inverse of ζ̄(x, y) in the incidence
algebra. In the case ζ̄(x, y) = ζ(x, y), we refer to relation (2.3) as the classical Eulerian relation.

Theorem 2.3 (Alexander duality for quasi-graded posets) Let (P, ρ, ζ̄) be an Eulerian quasi-graded
poset with 0̂ and 1̂ of rank n + 1. Let Q and R be two subposets of P such that Q ∪ R = P and
Q ∩R = {0̂, 1̂}. Then

(ζ̄|Q)−1(0̂, 1̂) = (−1)n · (ζ̄|R)−1(0̂, 1̂).

3 The cd-index and quasi-graded posets

Bayer and Billera determined all the linear relations which hold among the flag f -vector of (classical) Eu-
lerian posets, known as the generalized Dehn–Sommerville relations [2]. Bayer and Klapper showed that
the space of flag f -vectors of Eulerian posets have a natural basis of Fibonacci dimension as expressed by
the cd-index [3]. Stanley later gave a more elementary proof of the existence of the cd-index for Eulerian
posets and showed the coefficients are non-negative for spherically-shellable posets [27]. Generalizing the
classical result of Bayer and Klapper for graded Eulerian posets, we have the analogue for quasi-graded
posets.

Theorem 3.1 For an Eulerian quasi-graded poset (P, ρ, ζ̄) its ab-index Ψ(P, ρ, ζ̄) can be written uniquely
as a polynomial in the non-commutative variables c = a + b and d = ab + ba. Furthermore, if the
function ζ̄ is integer-valued then the cd-index only has integer coefficients.

A different way to express the existence of the cd-index is as follows.
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Theorem 3.2 The flag f̄ -vector of an Eulerian quasi-graded poset of rank n+ 1 satisfies the generalized
Dehn–Sommerville relations. More precisely, for a subset S ⊆ {1, . . . , n} and i, k ∈ S ∪ {0, n+ 1} with
i < k and S ∩ {i+ 1, . . . , k − 1} = ∅, the following relation holds:

k∑

j=i

(−1)j · f̄S∪{j} = 0. (3.1)

4 Whitney stratified sets

Example 4.1 Consider the non-regular CW -complex Ω consisting of one vertex v, one edge e and one
2-dimensional cell c such that the boundary of c is the union v∪ e, that is, boundary of the complex Ω is a
one-gon. Its face poset is the four element chain F(Ω) = {0̂ < v < e < c}. This is not an Eulerian poset.
The classical definition of the ab-index, in other words, using ζ̄(x, y) = 1 for all x ≤ y, yields that the
ab-index of Ω is a2. Note that a2 cannot be written in terms of c and d.

Observe that the edge e is attached to the vertex v twice. Hence it is natural to change the value of
ζ̄(v, e) to be 2. The face poset F(Ω) is now Eulerian, its ab-index is given by ζ̄(Ω) = a2 +b2 and hence
its cd-index is ζ̄(Ω) = c2 − d.

The motivation for the value 2 in Example 4.1 is best expressed in terms of the Euler characteristic of
the link. The link of the vertex v in the edge e is two points whose Euler characteristic is 2. In order to
view this example in the right topological setting, we review the notion of a Whitney stratification. For
more details, see [8], [17], [18, Part I §1.2], and [22].

A subset S of a topological space M is locally closed if S is a relatively open subset of its closure S.
Equivalently, for any point x ∈ S there exists a neighborhood Ux ⊆ S such that the closure Ux ⊆ S
is closed in M . Another way to phrase this is a subset S ⊂ M is locally closed if and only if it is the
intersection of an open subset and a closed subset of M .

Definition 4.2 Let W be a closed subset of a smooth manifold M which has been decomposed into a
finite union of locally closed subsets

W =
⋃

X∈P
X.

Furthermore suppose this decomposition satisfies the condition of the frontier:

X ∩ Y 6= ∅ ⇐⇒ X ⊆ Y .

This implies the closure of each stratum is a union of strata, and it provides the index set P with the partial
ordering: X ⊆ Y ⇐⇒ X ≤P Y. This decomposition of W is a Whitney stratification if

1. Each X ∈ P is a (locally closed, not necessarily connected) smooth submanifold of M .
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2. If X <P Y then Whitney’s conditions (A) and (B) hold: Suppose yi ∈ Y is a sequence of points
converging to some x ∈ X and that xi ∈ X converges to x. Also assume that (with respect to some
local coordinate system on the manifold M ) the secant lines `i = xiyi converge to some limiting
line ` and the tangent planes TyiY converge to some limiting plane τ . Then the following inclusions
hold:

(A) TxX ⊆ τ and (B) ` ⊆ τ.

Remark 4.3 An example of an algebraic set W with a decomposition into smooth manifolds that is not
locally trivial is provided by Whitney’s cusp. See [22, Example 2.6] and [30].

We next state the key definition for developing face incidence enumeration for Whitney stratified spaces.

Definition 4.4 LetW be a Whitney stratified closed subset of a smooth manifoldM . Define the face poset
F = F(W ) ofW to be the quasi-graded poset consisting of the poset of strata P adjoined with a minimal
element 0̂. The rank function is given by ρ(X) = dim(X) + 1 if X > 0̂ and ρ(0̂) = 0. The weighted zeta
function is ζ̄(X,Y ) = χ(linkY (X)) if X > 0̂ and ζ̄(0̂, Y ) = χ(Y ).

Theorem 4.5 Let W be Whitney stratified closed subset of a smooth manifold M . Then the face poset
of W is an Eulerian quasi-graded poset.

We now give a few examples of Whitney stratifications beginning with the classical polygon.

Example 4.6 Consider a two dimensional cell c with its boundary subdivided into n vertices v1, . . . , vn
and n edges e1, . . . , en. There are three ways to view this as a Whitney stratification.

(1) Declare each of the 2n+ 1 cells to be individual strata. This is the classical view of an n-gon. Here
the weighted zeta function is the classical zeta function, that is, always equal to 1 (assuming n ≥ 2).

(2) Declare the union of the n edges to be one stratum e = ∪ni=1ei, that is, we have the n + 2 strata
v1, . . . , vn, e, c. Here the non-one values of the weighted zeta function are given by ζ̄(0̂, e) = n
and ζ̄(vi, e) = 2.

(3) Lastly, we can have the three strata v = ∪ni=1vi, e = ∪ni=1ei and c. Now non-one values of the
weighted zeta function are given by ζ̄(0̂, v) = ζ̄(0̂, e) = n and ζ̄(v, e) = 2.

In contrast, we cannot have v, e1, . . . , en, c as a stratification, since the link of a point p in ei depends on
the point p in v chosen.

The cd-index of each of the three Whitney stratifications in Example 4.6 are the same, that is, the cd-index
of an n-gon is given by c2 + (n− 2) · d for n ≥ 1.

The last stratification in the previous example can be extended to any simple polytope.
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Example 4.7 Let P be an n-dimensional simple polytope. Recall that the simple condition implies that
every interval [x, y], where 0̂ < x ≤ y, is a Boolean algebra. We obtain a different stratification of the
ball by joining all the facets together to one strata. Note that the cd-index does not change, since the
information is carried in the weighted zeta function. We continue by joining all the subfacets together
to one strata. Again the cd-index remains unchanged. In the end we obtain a stratification where the
union of all the i-dimensional faces forms the ith strata xi+1. The face poset of this stratification is the
(n + 2)-element chain C = {0̂ = x0 < x1 < · · · < xn+1 = 0̂}, with the rank function ρ(xi) = i and
weighted zeta function ζ̄(0̂, xi) = fi−1(P ) and ζ̄(xi, xj) =

(
n+1−i
n+1−j

)
. We have Ψ(C, ρ, ζ̄) = Ψ(P ).

A similar stratification can be obtained for any regular polytope, since the isomorphism type of any
upper interval [x, 1̂] only depends on the rank ρ(x).

The next example is a higher dimensional analogue of the one-gon in Example 4.1.

Example 4.8 Consider the subdivision Ωn of the n-dimensional ball Bn consisting of a point p, an (n−1)-
dimensional cell c and the interior b of the ball. If n ≥ 2, the face poset is {0̂ < p < c < b} with
the elements having ranks 0, 1, n and n + 1, respectively. In the case n = 1, the two elements p
and c are incomparable. The weighted zeta function is given by ζ̄(0̂, p) = ζ̄(0̂, c) = ζ̄(0̂, b) = 1,
ζ̄(p, c) = 1 + (−1)n, and ζ̄(p, b) = ζ̄(c, b) = 1. When n is even, the cd-index evaluates to

Ψ(Ωn) =
1

2
·
[
(c2 − 2d)n/2 + c · (c2 − 2d)(n−2)/2 · c

]
, (4.1)

and when n is odd

Ψ(Ωn) =
1

2
·
[
c · (c2 − 2d)(n−1)/2 + (c2 − 2d)(n−1)/2 · c

]
. (4.2)

As a remark, these cd-polynomials played an important role in proving that the cd-index of a polytope is
coefficient-wise minimized on the simplex, namely, Ψ(Ωn) = (−1)n−1 ·αn, where αn are defined in [5].
See Theorem 5.2 for a generalization of one of the main identities in [5].

5 The semisuspension

Let Γ be a polytopal complex, that is, a regular cell complex whose cells are polytopes. Assume the
dimension of Γ is k. Let n > k be an integer. We define the nth semisuspension of Γ, denoted Semi(Γ, n),
to be the family ofCW -complexes obtained by embedding Γ in the boundary of an n-dimensional ball Bn,
if they exist. Note that one really has a family of embeddings. For example, one can embed a circle into
the boundary of a 4-dimensional ball so that the result is any given knot. Nevertheless, we will show the
face poset of Semi(Γ, n) is well-defined. Furthermore, in the case Γ is homeomorphic to a k-dimensional
ball, the semisuspension Semi(Γ, n) is unique.

Theorem 5.1 Let Γ and ∆ be two polytopal complexes such that their union Γ∪∆ is a polytopal complex
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of dimension less than n. Then the following inclusion-exclusion relation holds:

Ψ(Semi(Γ, n)) + Ψ(Semi(∆, n)) = Ψ(Semi(Γ ∩∆, n)) + Ψ(Semi(Γ ∪∆, n)).

The next theorem generalizes Proposition 4.3 in [5] which considered the case when F1, . . . , Fr is the
initial line shelling segment of an n-dimensional polytope. Their proof is based on shelling, whereas our
proof of Theorem 5.2 is an application of inclusion-exclusion.

Theorem 5.2 Let Γ be a polytopal complex of dimension less than n. Assume that Γ has facetsF1, . . . , Fr.
Then the cd-index of the semisuspension Semi(Γ, n) is given by

Ψ(Semi(Γ, n)) = −
∑

F

χ̃(linkΓ(F )) ·Ψ(F ) ·Ψ(Ωn−dim(F )),

where the sum is over all possible intersections F of the facets F1, . . . , Fr.

Let Γ be a regular subdivision of an n-dimensional ball Bn such that the interior of the ball is one the
faces. Let Λ be a regular subdivision of Γ such that the interior of the ball is yet again a face of Λ. For a
face F of Γ we define Λ|F to be the subdivision of F induced by Λ. There are two extremal cases. When
F is the empty set, let Λ|F be the empty subdivision of the empty face. In this case the semisuspension
Semi(Λ|F , n) is the (n − 1)-dimensional sphere and the interior of the n-dimensional ball. The second
extremal case is when F = 1̂, and we let Λ|F and Semi(Λ|F , n) denote the subdivision Λ of the n-
dimensional sphere.

Theorem 5.3 Let Γ be a regular subdivision of the n-ball Bn and let Λ be a regular subdivision of Γ such
that both subdivisions have the interior of the ball as a face. Then the alternating sum of cd-indices of
semisuspensions is equal to zero, that is,

∑

F∈Γ

(−1)ρ(F,1̂) ·Ψ(Semi(Λ|F , n)) = 0.

6 Shelling components for non-pure simplicial complexes

We now turn our attention to computing the cd-index of the nth semisuspension of a (non-pure) shellable
simplicial complex. The first step is to define the shelling components. For i ≤ k let ∆k,i be the simplicial
complex consisting of i+ 1 facets of the k-dimensional simplex. Define the quasi-graded poset Pn,k,i for
0 ≤ i ≤ k ≤ n to be the face poset of the semisuspension Pn,k,i = F(Semi(∆k,i, n)). Define the shelling
component Φ̌(n, k, i) to be the difference Φ̌(n, k, i) = Ψ(Pn,k,i) − Ψ(Pn,k,i−1) for 1 ≤ i ≤ k ≤ n and
Φ̌(n, k, 0) = Ψ(Pn,k,0) for 0 ≤ k ≤ n. The polynomials Φ̌(n, n, i) (the case k = n) were introduced by
Stanley [27]. Let G be the derivation on Z〈c,d〉 defined by G(c) = d and G(d) = cd.
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Theorem 6.1 The shelling components of the simplex satisfy the recursion

G(Φ̌(n, k, i)) = Φ̌(n+ 1, k + 1, i+ 1)

with the boundary conditions Φ̌(n, k, 0) = Ψ(Bk) ·Ψ(Ωn−k+1), for k ≥ 1 and Φ̌(n, 0, 0) is (c2−2d)n/2

or (c2 − 2d)(n−1)/2 · c depending on parity of n.

Recall that Björner and Wachs [7] extended the notion of shellability to non-pure complexes. They
generalized the h-vector to the h-triangle.

Theorem 6.2 Let ∆ be a non-pure shellable simplicial complex of dimension at most n. Then the cd-
index of the semisuspension of ∆ is given by

Ψ(Semi(∆, n)) =

n∑

k=0

k∑

i=0

hk,i · Φ̌(n, k, i),

where the h-triangle entry hk,i is the number of facets of shelling type (k, i).

7 Concluding remarks

As was mentioned in the introduction, finding the linear inequalities that hold among the entries of the
cd-index of a Whitney stratified manifold expands the program of determining linear inequalities for
flag vectors of polytopes. Since the coefficients may be negative, one must ask what should the new
minimization inequalities be. Observe that Kalai’s convolution [19] still holds. More precisely, let M
and N be two linear functionals defined on the cd-coefficients of any m-dimensional, respectively, n-
dimensional manifold. If both M and N are non-negative then their convolution is non-negative on any
(m+ n+ 1)-dimensional manifold.

Other inequality questions are: Can Ehrenborg’s lifting technique [9] be extended to stratified mani-
folds? Is there an associated Stanley–Reisner ring for the barycentric subdivision of a stratified space, and
if so, what is the right version of the Cohen–Macaulay property [28]? Finally, what non-linear inequalities
hold among the cd-coefficients?

One interpretation of the coefficients of the cd-index is due to Karu [20] who, for each cd-monomial,
gave a sequence of operators on sheaves of vector spaces to show the non-negativity of the coefficients of
the cd-index for Gorenstein* posets [20]. Is there a signed analogue of Karu’s construction to explain the
negative coefficients occurring in the cd-index of quasi-graded posets?

Observe that the shelling components Φ̌(n, k, i) can have negative coefficients. For which values of
n, k and i do we know that they are non-negative? Is there a combinatorial interpretation of the cd-
polynomials Φ̌(n, k, i)? In the case n = k such interpretations are known in terms of André permutations
and Simsun permutations [11, 15, 16].
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Given a Whitney stratified space, its face poset with rank function given by dimension and weighted
zeta function involving the Euler characteristic (see Definition 4.4 and Theorem 4.5) yields an Eulerian
quasi-graded poset. Conversely, given an Eulerian quasi-graded poset (P, ρ, ζ̄) can one construct an
associated Whitney stratified space? It is clear that for x ≺ y with ρ(x) + 1 = ρ(y) one must require
ζ̄(x, y) to be a positive integer since linky x is a 0-dimensional space consisting of a collection of one or
more points. What other conditions on an Eulerian quasi-graded poset are necessary so that it is the face
poset of a Whitney stratified space?

As always when the ab-index is defined one also has the companion quasisymmetric function. This
quasisymmetric function can be defined by the (almost) isomorphism γ in [12, Section 3]. More directly,
for a chain c = {0̂ = x0 < x1 < · · · < xk = 1̂}, define the composition ρ(c) = (ρ(x0, x1), ρ(x1, x2),
. . . , ρ(xk−1, xk)). Then the quasisymmetric function of a quasi-graded poset (P, ρ, ζ̄) is given by
F (P, ρ, ζ̄) =

∑
c ζ̄(c) ·Mρ(c), where M is the monomial quasisymmetric function. It is straightforward

to observe that F can be viewed as a Hopf algebra morphism as follows.

∆(F (P, ρ, ζ̄)) =
∑

0̂≤x≤1̂

F ([0̂, x], ρ, ζ̄)⊗ F ([x, 1̂], ρ, ζ̄),

F (P ×Q, ρP×Q, ζ̄P×Q) = F (P, ρP , ζ̄P )× F (Q, ρQ, ζ̄Q).

See [1] for results on generalized Dehn–Sommerville relations in the setting of combinatorial Hopf alge-
bras.
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Abstract. An element of a Coxeter group W is fully commutative if any two of its reduced decompositions are
related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by
Stembridge in the finite case. In this work we deal with any finite or affine Coxeter group W , and we enumerate
fully commutative elements according to their Coxeter length. Our approach consists in encoding these elements by
various classes of lattice walks, and we then use recursive decompositions of these walks in order to obtain the desired
generating functions. In type A, this reproves a theorem of Barcucci et al.; in type Ã, it simplifies and refines results
of Hanusa and Jones. For all other finite and affine groups, our results are new.
Résumé. Un élément d’un groupe de Coxeter W est dit totalement commutatif si deux de ses décompositions réduites
peuvent toujours être reliées par une suite de transpositions de générateurs adjacents qui commutent. Ces éléments
ont été étudiés en détail par Stembridge dans le cas où W est fini. Dans ce travail, nous considérons W fini ou affine,
et énumérons les éléments totalement commutatifs selon leur longueur de Coxeter. Notre approche consiste à encoder
ces éléments par diverses classes de chemins du plan que nous décomposons récursivement pour obtenir les fonctions
génératrices voulues. Pour le type A cela redonne un théorème de Barcucci et al.; pour Ã, cela simplifie et précise
des résultats de Hanusa et Jones. Pour tous les autres groupes finis et affines, nos résultats sont nouveaux.

Keywords: Fully commutative elements, Coxeter groups, generating functions, lattice walks, heaps.

Introduction
Let W be a Coxeter group. An element w ∈ W is said to be fully commutative if any reduced expression
for w can be obtained from any other one by transposing adjacent pairs of commuting generators. Fully
commutative elements were extensively studied by Stembridge in a series of papers [9, 10, 11] where,
among others, he classified the Coxeter groups having a finite number of fully commutative elements
and enumerated them in each case. In the symmetric group, the fully commutative elements are the 321-
avoiding permutations, counted by the Catalan numbers. A nice q-analogue of the Catalan numbers arises
when these permutations are enumerated according to their inversion number. This has been done by
Barcucci et al. [1], where an elegant expression for the corresponding generating function as a ratio of
q-Bessel functions is provided. In the case of the affine symmetric group, a similar q-analogue has been
recently found by Hanusa and Jones [7].

The main goal of the present paper is the computation of the generating function
∑
w∈WFC q`(w), when

W is any finite or affine irreducible Coxeter group. Here WFC denotes the subset of fully commutative
†Partially supported by ANR grant PSYCO ANR-11-JS02-001

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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elements of W , and ` denotes the Coxeter length. It is known that fully commutative elements in Coxeter
groups index a basis for a quotient of the associated Iwahori-Hecke algebra ([4, 5]), so that our formulas
give the graded dimensions of these algebras for finite and affine W .

Our investigation in the finite case (Section 2) is based on the spinal analysis of Stembridge [9, §2.2],
which he uses to find and solve recurrences for the number of elements in WFC when this set is finite.
Here we reformulate his results in terms of certain lattice walks (cf. Definition 6), which allows us to take
the Coxeter length into account. We then use recursive decompositions of these various families of walks
to compute the length generating functions of WFC for all finite W . In type A this gives a simple proof
of a result of Barcucci et al. [1]; to our knowledge, the results are new in all other finite types.

In the affine case (Section 3), not tackled by Stembridge, we can also associate lattice walks to fully
commutative elements. As in the finite case, decompositions of these walks lead to the computation of the
length generating function ofWFC for any affine Coxeter groupW . The main result of this section is that,
in each case, the sequence of coefficients of this generating function is ultimately periodic (Theorem 14).
This was already shown in type Ã by Hanusa and Jones [7, §5]; however our method gives a much simpler
expression for the generating function, and settles positively a question in [7] regarding the beginning of
the periodicity. For all other affine types our results are new. In a last section we mention various possible
extensions of this work, for instance to involutions.

Finally we point out that the GAP package GBNP was extremely useful at many stages of this work.

1 Fully commutative elements, heaps and walks
1.1 Fully commutative elements in Coxeter groups
Let W be a Coxeter group with finite generating set S, and Coxeter matrix M = (mst)s,t∈S . That is, M
is a symmetric matrix withmss = 1 and, for s 6= t, mst = mts ∈ {2, 3, . . .}∪{∞}. The relations among
the generators are of the form (st)mst = 1 if mst < ∞. The pair (W,S) is called a Coxeter system. We
can write the relations as sts · · · = tst · · · , each side having length mst; these are usually called braid
relations; when mst = 2, this is a commutation relation. The Dynkin diagram Γ associated to (W,S) is
the graph with vertex set S and, for each pair s, t with mst ≥ 3, an edge between s and t labeled by mst

(when mst = 3 the edge is left unlabeled).
For w ∈ W we denote by `(w) the minimum length of any expression w = s1 · · · sl with si ∈

S. Such expressions with minimum length are called reduced, and we denote by R(w) the set of all
reduced expressions of w. A fundamental result in Coxeter group theory is that any expression in R(w)
can be obtained from any other one using only braid relations (see [8]). If an element w satisfies the
stronger condition that any reduced expression for w can be obtained from any other one by using only
commutation relations, then it is said to be fully commutative (which we shall sometimes abbreviate in
FC). The following characterization of FC elements is particularly useful.

Proposition 1 ([9], Prop. 2.1) An element w ∈W is fully commutative if and only if for all s, t such that
3 ≤ mst <∞, there is no expression inR(w) that contains the factor sts · · ·︸ ︷︷ ︸

mst

.

1.2 Heaps
We follow Stembridge [9] in this section. Fix a word s = (sa1 , . . . , sal) in S∗, the free monoid generated
by S. We define a partial ordering of the indices {1, . . . , l} by i ≺ j if i < j and m(si, sj) ≥ 3 and
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extend by transitivity. We denote by Hs this poset together with the “labeling” i 7→ sai : this is the heap
of s. In the Hasse diagram of Hs, elements with the same labels will be drawn in the same column. The
size |H| of a heap H is the length l of the corresponding word, and for each sa ∈ S we let |H|a be the
number of elements in H with label sa. In Figure 1, we fix a Dynkin diagram on the left, and we give two
examples of words with the corresponding heaps.

s0 s1 s2 s3 s0 s1 s2 s3

s = s1s2s3s2s0s1s2s0s1 s = s1s2s3s2s0s3s1s2s0s1

s0 s1 s2 s3

4 5

Fig. 1: Two words and their respective heaps.

If we consider heaps up to poset isomorphism which preserve the labeling, then heaps encode precisely
commutativity classes, that is, if the word s′ is obtainable from s by transposing commutating generators
then there exists a poset isomorphism between Hs and Hs′ . In particular, if w is fully commutative, the
heaps of the reduced words are all isomorphic, and thus we can define the heap of w, denoted by Hw.

A linear extension of a poset H is a linear ordering π of H such that π(i) < π(j) implies i ≺ j. Now
let L(Hs) be the set of words (sπ(1), . . . , sπ(l)) where π goes through all linear extensions of s.

Proposition 2 ([9], Theorem 3.2) Let w be a fully commutative element. Then L(Hs) is equal to R(w)
for some (equivalently every) s ∈ R(w).

We say that a chain i1 ≺ · · · ≺ im in a poset H is convex if the only elements u satisfying i1 � u � im
are the elements ij of the chain. The next result characterizes FC heaps, namely the heaps representing
the commutativity classes of FC elements.

Proposition 3 ([9], Proposition 3.3) A heap H is the heap of some FC element if and only if (a) there is
no convex chain i1 ≺ · · · ≺ imst

in H such that si1 = si3 = · · · = s and si2 = si4 = · · · = t where
3 ≤ mst <∞, and (b) there is no covering relation i ≺ j in H such that si = sj .

Therefore it is equivalent to characterize FC elements in the Coxeter system (W,S) and heaps verifying
the conditions of Proposition 3. The heap on the right of Figure 1 is a FC heap, whereas the one on the left
is not since it contains the convex chain with labels (s2, s1, s2) while ms1s2 = 3. In the next section we
will exhibit a class of heaps which play an important role for the Coxeter systems we will be interested in.

1.3 Alternating heaps and walks
In all this section, we fix m01,m12, . . . ,mn−1n ∈ {3, 4, . . .} ∪ {∞} and we consider the Coxeter system
(W,S) corresponding to the linear Dynkin diagram Γn = Γn((mi i+1)i) of Figure 2.

Definition 4 (Alternating words and heaps) A reduced word s ∈ S∗ is alternating if, for i = 0, . . . , n−
1, the occurrences of si alternate with those of si+1. A heap is called alternating if it is of the form Hs

for an alternating word s; a FC element is alternating if its heap is.
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0 1 n2

m01 m12 mn−1n

n− 1

Fig. 2: The linear Dynkin diagram Γn.

s = 851078627108
L

R
L

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Hs ϕ(Hs)

Fig. 3: An alternating word s with corresponding heap Hs, and its encoding by a walk.

An alternating heap is presented in Figure 3. Not all alternating heaps correspond to FC elements, but
a characterization is easy by Proposition 3.

Proposition 5 An alternating heap H is FC if and only if

{
m01 > 3 or |H|0 ≤ 1

mn−1n > 3 or |H|n ≤ 1.

The alternating word/heap in Figure 3 is FC if and only if m01,mn−1n > 3.

Definition 6 (Walks) We call walk P of length n a sequence of points (P0, P1, . . . , Pn) in N2 with n
steps in the set {(1, 1), (1,−1), (1, 0)}, where the horizontal steps (1, 0) are labeled either by L or R.
Walks are furthermore required to start at a point P0 with abscissa 0. A walk is said to satisfy condition
(∗) if all horizontal steps of the form (i, 0)→ (i+ 1, 0) have label L.

The set of all walks of length n will be denoted by Gn. The subset of walks ending at Pn = (n, 0) will
be denoted by Qn, and the subset of Qn with P0 = (0, i) will be denoted by M(i)

n . For short we will
writeMn = M(0)

n for walks starting and ending on the x-axis. To each family Fn ⊆ Gn corresponds
subfamilies F∗n ⊆ Fn consisting of those walks in Fn which satisfy the condition (∗), and F̌n ⊆ Fn
consisting of those walks hit the x-axis at some point.

Remark: Write U,D to represent steps (1, 1), (1,−1), and L,R to represent steps (1, 0) with these
labels; then we can encode our walks by the data of P0 and a word in {U,D,L,R}. Consider the injective
transformation on such words U 7→ UU,D 7→ DD,L 7→ UD,R 7→ DU . This restricts to a bijection
fromM∗n to Dyck walks, i.e. walks from (0, 0) to (2n, 0) with steps U,D staying above the x-axis.

The total height ht of a walk is the sum of the heights of its points: if Pi = (i, hi) then ht(P ) =∑n
i=0 hi. To each family Fn ⊆ Gn we associate the series Fn(q) =

∑
P∈Fn

qht(P ), and we define the
generating functions in the variable x by

F (x) =
∑

n≥0
Fn(q)xn and F ∗(x) =

∑

n≥0
F ∗n(q)xn.

We now define a bijective encoding of alternating heaps by walks. In the next section we will exploit
this bijection in order to compute some generating functions.
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Definition 7 (Map ϕ) Let H be an alternating heap of type Γn. To each si ∈ S we associate a point
Pi = (i, |H|i). If |H|i+1 = |H|i > 0 we label the ith step by L (resp. R) if among all elements of H
indexed by i and i+ 1, the lowest element has index i+ 1 (resp. i). If |H|i+1 = |H|i = 0, we label the
ith step by L. We define ϕ(H) as the walk (P0, P1, . . . , Pn) with the labels on its steps.

Theorem 8 The map H 7→ ϕ(H) is a bijection between alternating heaps of type Γn and G∗n. The size
|H| of the heap is the total height of ϕ(H).

Proof: The map is clearly well defined since for any alternating heap H , we have −1 ≤ |H|i− |H|i+1 ≤
1. Fix (P0, P1, . . . , Pn) ∈ G∗n. If the step Pi = (i, hi) → Pi+1 = (i + 1, hi+1) is equal to (1, 1)
(resp. (1,−1)), then we define a convex chain Ci of length hi+1 (resp. hi) as (si+1, si, . . . , si+1) (resp.
(si, si+1, . . . , si)). If the step Pi → Pi+1 is labeled by L (resp. R), then we define a chain Ci of
length hi = hi+1 as (si, si+1, . . . , si, si+1) (resp. (si+1, si, . . . , si+1, si)). We define H as the transitive
closure of the chains C0, . . . , Cn−1. The heap H is uniquely defined, alternating, and satisfies ϕ(H) =
(P0, P1, . . . , Pn). Since hi = |H|i the result follows. 2

2 Finite types
The irreducible Coxeter systems corresponding to finite groups are completely classified ([8]). There are
in particular three infinite families whose Dynkin diagrams are given below.

4

s1 sn−1 t s1 s1 sn−1

t1

t2

sn−1

An−1 Bn Dn+1

s2 s2 s2

The elements of WFC were enumerated by Stembridge using recurrence relations. Here we reinterpret
in many cases the decompositions leading to these recurrences as describing certain lattice walks. The
advantage of this approach is that we can take into account the Coxeter length via Theorem 8 and then
find recursive decomposions of the walks leading to equations for the generating functions.

For each group W we define WFC(q) =
∑

w∈WFC

q`(w).

2.1 Type A

In this case, we show that it is possible to derive from Theorem 8 the generating function AFC(x) =∑
n≥1A

FC
n−1(q)xn, which was computed in a different way in [1].

Proposition 9 We have AFCn−1(q) = M∗n(q), and equivalently AFC(x) = M∗(x)− 1.

Proof: We are in the setting of Section 1.3 with a diagram Γn−2 and mi,i+1 = 3 for i = 0, . . . , n − 3.
The key property in this type is that all FC elements are alternating (see Definition 4): this is easy to show
(cf. [2, Theorem 2.1]), and is also a particular case of Proposition 15 from Section 3.1. By Proposition 5
and Theorem 8, AFCn−1 is then in bijection with walks in G∗n−2 with starting and ending point at height 0
or 1. This set is clearly in bijection withM∗n: it suffices to add two extra points to ϕ(Hw) on the x-axis
(one at the beginning and one at the end). 2

Specializing at q = 1, this shows that AFCn−1 has cardinality the nth Catalan number Catn = 1
n+1

(
2n
n

)
,

sinceM∗n is in bijection with Dyck walks by the remark in Section 1.3.
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Corollary 10 The generating function AFC satisfies the following functional equation

AFC(x) = x+ xAFC(x) + qxAFC(x)(AFC(qx) + 1). (1)

Proof: We have the following walk decompositions with corresponding equations:

= + **
R

= ++ L

* * *

M(x) = M∗(x) + xM∗(x)M(x), (2)

M∗(x) = 1 + xM∗(x) + qx2M∗(x)M(qx). (3)

The identity (2) givesM(x) = M∗(x)/(1−xM∗(x)), which can be replaced in (3) to yield after some
simplifications:

M∗(x) = 1 + xM∗(x) + qx(M∗(x)− 1)M∗(qx). (4)

Finally, we see through Proposition 9 that (4) is exactly Equation (1). 2

Corollary 10 gives another proof of [1, Eq. (3.0.2)], where AFC(x) is denoted by C(x, q). In this
work, Barcucci et al. also proved an expression for C(x, q) as a quotient of q-Bessel type functions, using
a recursive rewriting rule for 321-avoiding permutations and a result of Bousquet-Mélou [3]. It is possible
to derive their ratio of q-Bessel functions by writing

AFC(x) + 1 = M∗(x) =

∑
n≥0 αn(q)xn/(x; q)n+1∑
n≥0 αn(q)xn/(x; q)n

, (5)

where (x; q)n = (1 − x) · · · (1 − xqn−1) stands for the classical q-rising factorial, and αn(q) is a q-
hypergeometric coefficient . Then plugging (5) into (4) yields after a few simplifications and identification
αn(q) = (−1)nqn(n+1)/2α0(q)/(q; q)n, as in [1].

2.2 Type B

The goal of this subsection is to extend the previous results to the typeB. To this aim, we setBFC0 (q) = 1,
BFC1 (q) = 1 + q, and BFC(x) =

∑
n≥0B

FC
n (q)xn. Then we prove the following result.

Proposition 11 We have BFC(x) = Q∗(x) +
x2q3

1− xq2M
∗(x)M(qx).

Moreover Q∗(x) can be explicitly computed by using the two following equations

Q(x) = M(x)(1 + xqQ(qx)) and Q∗(x) = M∗(x)(1 + xqQ(qx)). (6)

Proof: We first compute the generating function for FC elements inBn corresponding to alternating heaps
of type Γn−1. By using Proposition 5, we see that these FC elements correspond to alternating heaps H
of type Γn−1 with m0,1 = 4 and mi,i+1 = 3 for i = 1, . . . , n − 2, such that |H|n−1 ≤ 1. Moreover,
Theorem 8 implies that ϕ(H) is a path in G∗n−1 with ending point at height 0 or 1. This set is clearly in
bijection withQ∗n: it suffices to add an extra point to ϕ(H) on the x-axis at the end. Adding the trivial FC
element corresponding to n = 0, one gets the generating function Q∗(x).
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It remains to compute the generating function for FC elements in Bn which do not correspond to
alternating heaps. Following Stembridge [11, Lemma 2.3], we know that these elements correspond to
heaps Hs containing exactly one t, two s1’s, . . . , two sm’s (for some m ∈ {1, . . . , n − 1}) and such
that (a) the restriction of s to t, s1, . . . , sm is (sm, . . . , s1, t, s1, . . . , sm), and (b) the restriction of s to
sm, . . . , sn−1, where we also delete one of the two sm’s, is an alternating word. Thanks to Theorem 8
the subwords in (b) are in bijection with M(1)∗

n−m. This shows that the generating function of the non
alternating FC elements in Bn is M (1)∗(x) × xq2/(1 − xq2). We derive BFC(x) by using the relation
M (1)∗(x) = xqM∗(x)M(qx), which can easily be obtained by splitting the path at the first intersection
with the x-axis. Similar decompositions finally yield the equations (6). 2

Note that the elements in BFCn corresponding to alternating heaps are called fully commutative top
elements of Bn in [10], and commutative elements of the Weyl group Cn in [4]. Therefore Q∗(x) gives a
generating function for these particular elements.

2.3 Type D

In this subsection, we will see how it is possible to derive from the previous results in type B analogous
expressions in type D. We set DFC

1 (q) = 1, DFC
2 (q) = (1 + q)2, and DFC(x) =

∑
n≥0D

FC
n+1(q)xn,

and we prove the following result.

Proposition 12 We have DFC(x) = 2Q∗(x)−M∗(x) +
xq2

1− xq2M
∗(x)M(qx).

Proof: Reformulating Stembridge [11, §3.3], each element of DFC
n+1 can be obtained from one of BFCn by

exactly one of the following rules. Consider an alternating elementw inBFCn and s ∈ R(w). If s contains
no occurrence of t it yields an element of DFC

n+1. If s contains at least one occurrence of t, then we can
replace its subword (t, . . . , t) by (t1, t2, . . .) or (t2, t1, . . .), giving rise to two elements in DFC

n+1. If s
contains exactly one occurrence of t, we obtain a FC element of type D by replacing t by t1t2 (= t2t1).
By the proof of Proposition 11, the generating function corresponding to these three families is given by

M∗(x) + 2(Q∗(x)−M∗(x)) + qM (1)∗(x).

The remaining elements of DFC
n+1 are simply obtained from non alternating elements of BFCn by again

replacing t by t1t2, therefore yielding M (1)∗(x)× xq3/(1− xq2), and the results follows. 2

2.4 The exceptional cases

The exceptional types are I2(m), H3, H4, F4, E6, E7, and E8. For the dihedral group W = I2(m) one
easily has I2(m)FC(q) = 1 + 2q + 2q2 + · · ·+ 2qm−1 = 1 + 2q(1− qm−1)/(1− q). For the remaining
cases, we used the computer to find the generating polynomials WFC(q); for instance, E8(q) has degree
29 in q. Note that the number of FC elements in a Coxeter group may be finite even though the group itself
is infinite: Stembridge [9] discovered that there are three families En(n > 8), Fn(n > 4), Hn(n > 4)
of infinite groups with a finite number of FC elements. Extending Stembridge [11] with similar walk
techniques, it is possible to enumerate such elements according to their length.
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3 Affine types
The Dynkin diagrams of the infinite families of affine groups are represented below.

4 4

4

s1 sn−1

s0

t s1 u

s1 s1sn−1

t1

t2

t1

t2

u1

u2
u

sn−1

sn−1

C̃n

D̃n+2

Ãn−1

B̃n+1

Lemma 13 Suppose F (q) =
∑
i≥0 aiq

i = P (q)/(1−qN ) where P (q) is a polynomial of degree d. Then
one has ai+N = ai for all i ≥ d. Furthermore the average value over a period (ai + ai+1 + · · · +
ai+N−1)/N is equal to P (1)/N for i ≥ d.

We will show that this lemma applies to all generating functions WFC(q) when W is affine.

Theorem 14 For each irreducible affine group W , the sequence of coefficients of WFC(q) is ultimately
periodic, with period recorded in the following table (F̃FC4 , ẼFC8 are finite sets):

AFFINE TYPE Ãn−1 C̃n B̃n+1 D̃n+2 Ẽ6 Ẽ7 G̃2 F̃4, Ẽ8

PERIODICITY n n+ 1 (n+ 1)(2n+ 1) n+ 1 4 9 5 1

The periods for B̃n+1 look surprising at first sight, but they are experimentally close to the actual
minimal periods: for n + 1 = 3, 4, 5, 6, the formula gives 15, 28, 45, 66 while the minimal periods are
15, 7, 45, 33.

The proof of Theorem 14 will be detailed in type Ãn, and simply outlined for other types.

3.1 Type Ãn

The generating function ÃFCn−1(q) was computed by Hanusa and Jones [7]; we will compare our results to
theirs at the end of this section.

Proposition 15 An element w ∈ Ãn−1 is fully commutative if and only if, in any reduced decomposition
of w, the occurrences of si and si+1 alternate for all i ∈ {0, . . . , n− 1}, where we set sn = s0.

Proof: The condition is clearly sufficient by using Proposition 1. To show that it is necessary, assume
w ∈ ÃFCn−1 and w1 · · ·wl is a reduced word for w (wk ∈ S). We will show that between two consecutive
si there is necessarily a si+1, which suffices to prove the proposition. Assume then for the sake of
contradiction that there exist i ∈ {0, . . . , n − 1} and j1 < j2 such that wj1 = wj2 = si and that for
all j satisfying j1 < j < j2 one has wj 6= si, si+1. Among all possible i, j1, j2, pick one with j2 − j1
minimal. Now consider the number m of indices j with j1 < j < j2 and wj = si−1. If m = 0, then
by successive commutations we see that the word is not reduced, which is excluded. If m = 1, then by
successive commutations one obtains a factor sisi−1si which is excluded by Proposition 1. If m ≥ 2,
then two consecutive occurrences of si−1 contradict the minimality of j2 − j1. This finishes the proof. 2
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We are not exactly in the case of Section 1.3 since the Dynkin diagram is not linear, but one can
nonetheless define walks from the “alternating” words described in Proposition 15: given w ∈ ÃFCn−1 and
i = 0, . . . , n − 1, draw a step from Pi = (i, |w|si) to Pi+1 = (i + 1, |w|si+1) as in the definition of ϕ;
here |w|s is the number of occurrences of s in any reduced decomposition of w. This forms a path noted
ϕ′(w) of length n, with both P0 and Pn at height |w|s0 .

So we have ϕ′(w) ∈ On, defined as the set of paths P in Gn whose starting and ending point are at the
same height. Define also ht′(P ) =

∑
i<n hi where Pi = (i, hi), so that we count just once the height of

the final and initial point (one should think of these walks as being on a cylinder, with these two points
coinciding). We also define On(q) to be the generating function of On with respect to the modified total
height ht′. Finally, denote by En the set of horizontal walks in O∗n with all vertices at height h > 0 and
all steps with the same label L or R.

Theorem 16 The map ϕ′ : ÃFCn−1 → O∗n \ En is a bijection such that `(w) = ht′(ϕ′(w)).

Proof (Sketch): The walks in En are not of the form ϕ′(w): indeed, given an element w ∈ ÃFCn−1 and any
reduced word for it, consider the positions j0, j1, . . . , jn−1 of the leftmost s0, s1, . . . , sn−1 respectively.
Suppose ϕ′(w) consists of horizontal steps labeled R: then this would imply j0 < j1 < · · · < jn−1 < j0
which is a contradiction. The case of labels L is similar, so the image of ϕ′ is included in O∗n \ En. The
function ϕ′ is injective, since, as for Theorem 8, the walk ϕ′(w) allows us to reconstruct the heap Hw.

For the surjectivity we omit the proof in this abstract: one has to check that when trying to reconstruct
the possible heap of w from a walk P ∈ O∗n \ En as in the proof of Theorem 8, one always gets the Hasse
diagram of a poset in the end. 2

As an immediate corollary we have that ÃFCn−1(q) = O∗n(q) − 2qn/(1 − qn). Now we have to count
walks in O∗n, and to this end we decompose them according to their lowest point: this is pictured below
and gives the equation O∗n(q) = Ǒ∗n(q) + qnǑn(q)/(1− qn).

*

= + *> 0

By Theorem 16, we thus have the generating function

ÃFCn−1(q) = O∗n(q)− 2
qn

1− qn =
qn(Ǒn(q)− 2)

1− qn + Ǒ∗n(q). (7)

Note that Ǒ∗n(q) and Ǒn(q) are polynomials, both of degree dn/2ebn/2c. By Lemma 13, the coeffi-
cients of ÃFCn−1(q) are periodic of period n, and the average value over a period is 1

n

((
2n
n

)
− 2
)
. Indeed

we have Ǒn(1) =
(
2n
n

)
: to see this, shift any path from Ǒn so that it starts at the origin, and use the

transformations U 7→ UU,D 7→ DD,L 7→ UD,R 7→ DU defined after Definition 6. This is a bijection
from Ǒn to paths from the origin to (2n, 0) using steps U or D, and there are obviously

(
2n
n

)
such paths.
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We still have to explain how to compute Ǒn(q) and Ǒ∗n(q). Walks
in Ǒn (resp. in Ǒ∗n) either belong to Mn (resp. M∗n) or can be
decomposed as in the picture on the right. Using standard techniques,
this translates into the equations:

Ǒ(x) = M(x)

(
1 + qx2

∂(xM)

∂x
(xq)

)
and Ǒ∗(x) = M∗(x)

(
1 + qx2

∂(xM)

∂x
(xq)

)
, (8)

which allows us to compute easily the generating functions ÃFCn−1(q).

Link with [7]: Hanusa and Jones [7] compute the same generating function ÃFCn−1(q) by using the real-
ization of Ãn−1 as the affine symmetric group S̃n. It is known [6] that FC elements in this representation
correspond to 321-avoiding permutations, extending the finite case. The expressions in [7] are much more
complicated than ours, and more difficult to derive. The authors show that periodicity of the coefficients
start at the index 2bn/2cdn/2e but conjecture that 1 + b(n − 1)/2)cd(n − 1)/2e is the right beginning.
Lemma 13 applied to (7) gives the slightly worse result of n + bn/2cdn/2e, but we can actually prove
their conjecture. Consider the operation Up on O∗n which simply adds 1 to the height of each point:
this sends a walk P with ht′(P ) = k to a walk Q with ht′(Q) = n + k. Now it is easy to see that if
k > b(n − 1)/2)cd(n − 1)/2e, then no path P with ht′(P ) = k has an horizontal step at height zero.
From this one deduces that if k > b(n− 1)/2)cd(n− 1)/2e, then Up is a bijection between paths P with
ht′(P ) = k and paths P with ht′(P ) = n+ k, which proves the conjecture of [7].

3.2 Other affine types
Type C̃n: Starting from a certain length (depending on n), we can show that FC elements can be clas-
sified in two families: (a) alternating elements, which correspond to walks in G∗n by Proposition 3 and the
bijection ϕ from Theorem 8, and (b) exceptional elements, whose reduced words appear as factors of the
infinite periodic word (ts1s2 · · · sn−1usn−1 · · · s2s1)

∞. The heaps of the words in (b) are totally ordered,
and for any length > n+ 1 these words are not alternating and there 2n of them. Using a decomposition
of G∗n extending the one for O∗n, we can then write

C̃FCn (q) =
qn+1Ǧn(q)

1− qn+1
+

2nqn+2

1− q +Rn(q), (9)

where Rn(q) is a certain polynomial that we are able to compute, and this also holds for Ǧn(q) since
Ǧ(x) = M(x) (1 + qxQ(qx))

2 by extending the decomposition we used for Ǒ(x) .
Applying Lemma 13 to (9), we have that the coefficients of C̃FCn (q) are ultimately periodic of period

n + 1, and that the average value over a period is 2n + 4n/(n + 1). Indeed, Ǧn(1) = 4n, which can be
immediately seen by shifting down walks of Ǧn so that they start at the origin.

Types B̃n+1 and D̃n+2: For a large enough length (depending on n), there are for both types only two
families of FC elements (as in type C̃n):

(a) Those coming from alternating heaps of type C̃n, as in Section 2.3 relating Bn and Dn+1. In type
B̃n+1, apply the replacements (t, t, t, . . .) 7→ (t1, t2, t1, . . .) or (t2, t1, t2, . . .). In type D̃n+2, apply this
map together with the same one with u, u1, u2 instead of t, t1, t2. The length generating function of these
FC elements is clearly ultimately periodic with period n+ 1 in both types B̃n+1 and D̃n+2.
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(b) Exceptional elements similar to those of type C̃n. In type B̃n+1, these have for reduced words
the factors of (t1t2s1s2 . . . sn−1usn−1 . . . s2s1)

∞ where t1, t2 are allowed to commute. For a large
enough length i, there are 2n + 3 such elements unless i is divisible by 2n + 1, in which case there
are 2n + 4 such factors. In type D̃n+2, these exceptional elements have for reduced words the factors of
(t1t2s1s2 . . . sn−1u1u2sn−1 . . . s2s1)

∞ where u1, u2 are also allowed to commute. For a large enough
length i, there are 2n+ 6 such factors unless i is divisible by n+ 1, in which case there are 2n+ 8 factors.

From this, it follows that the coefficients of B̃FCn+1(q) (resp. D̃FC
n (q)) are ultimately periodic with

period (n+ 1)(2n+ 1) (resp. n+ 1).

Exceptional types: The remaining irreducible affine types are Ẽ6, Ẽ7, Ẽ8, F̃4, and G̃2. The number of
FC elements in F̃4 or Ẽ8 is actually finite, since they correspond in Stembridge’s classification [9, Theo-
rem 5.1] to types F5 and E9: the corresponding polynomials F̃4(q) and Ẽ8(q) have degrees respectively
18 and 44. The number of FC elements according to the length is ultimately periodic in the remaining
types Ẽ6, Ẽ7, G̃2, the periods being 4, 9 and 5 respectively: this is easily seen in type G̃2 and requires a
finer analysis in the two other types. In all three cases we can actually compute the whole seriesWFC(q).

4 Further questions
Involutions: As explained by Stembridge in [11], a FC element w in a Coxeter group is an involution if
and only if R(w) is palindromic, meaning that it includes the mirror image of some (equivalently, all) of
its members. Thanks to Theorem 8, the alternating FC involutions correspond to Motzkin type walks hav-
ing no horizontal steps at height greater than zero. Therefore, denoting by A

FC
(x) =

∑
n≥1A

FC

n−1(q)xn,

B
FC

(x) =
∑
n≥0B

FC

n (q)xn and D
FC

(x) =
∑
n≥0D

FC

n+1(q)xn the generating functions for FC invo-
lutions in types A, B and D, we can prove that:

A
FC

(x) =
Cat(x)

1− xCat(x)
− 1,

B
FC

(x) =
Cat+(x)

1− xCat(x)
+

x2q3

1− xq2
Cat(x)Cat(qx)

1− xCat(x)
,

D
FC

(x) = 2 · Cato(x)

1− xCat(x)
+

Cat

1− xCat(x)
+

xq2

1− xq2
Cat(x)Cat(qx)

1− xCat(x)
,

where Cat(x) (resp. Cat+(x), resp. Cato(x) ) denotes the generating function for q weighted Dyck
walks. (resp. suffixes of Dyck walks, resp. suffixes of Dyck walks starting at an odd height). Note that all
these generating functions can be computed by the functional equations Cat(x) = 1+qx2Cat(x)Cat(qx),
Cat+(x) = Cat(x)(1 + xqCat+(qx)), and Cato(x) = xqCat(x)Cat(qx)(1 + xq2Cato(q2x)).

Other problems: One may try to find a formula forQ∗(x), maybe in terms of certain q-Bessel functions
as for M∗(x), since this would give formulas for BFC(x) and DFC(x).

It would be interesting to study other statistics on the sets WFC ; for instance, the number of descents,
which has the advantage of being defined for any Coxeter group.

In the hyperplane arrangement associated to an affine group W , elements correspond to the regions
(named alcoves). One may wonder where the alcoves corresponding to FC elements are located, and how
the periodicity of Theorem 14 is involved.
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Finally, a natural problem is to determine which Coxeter groups W are such that WFC(q) has ul-
timately periodic coefficients. This is work in progress: there are apparently exactly two exceptional,
non-affine groups with such a periodicity.
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Matroids over a ring
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Abstract. We introduce the notion of a matroid M over a commutative ring R, assigning to every subset of the
ground set an R-module according to some axioms. When R is a field, we recover matroids. When R = Z, and
when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids,
respectively. More generally, whenever R is a Dedekind domain, we extend the usual properties and operations
holding for matroids (e.g., duality), and we compute the Tutte-Grothendieck group of matroids over R.

Résumé. Nous introduisons la notion de matroı̈de M sur un anneau commutatif R, qui assigne à chaque partie
d’un ensemble E un R-module selon certains axiomes. Quand R est un corps, on retrouve les matroı̈des. Lorsque
R = Z, et lorsque R est un anneau de valuation discrète, nous obtenons (structures qui contiennent toutes les
données) respectivement des matroı̈des quasi-arithmétiques et des matroı̈des valués. En plus de généralité, quand R
est un anneau de Dedekind, nous étendons les propriétés et operations habituelles pour les matroı̈des (par exemple, la
dualité), et nous calculons le groupe de Tutte-Grothendieck des matroı̈des sur R.

Keywords: arithmetic matroids, valuated matroids, tropical flag variety, Dedekind domains, Tutte polynomial, Tutte-
Grothendieck group

1 Introduction
The notion of a matroid axiomatizes the linear algebra of a list of vectors. Matroid theory has proved
to be a versatile language to deal with many problems on the interfaces of combinatorics and algebra.
In the years since 1935, when Whitney first introduced matroids, a number of enriched variants thereof
have arisen, among them oriented matroids [2], valuated matroids [8], complex matroids [1], and (quasi-)
arithmetic matroids [13, 5]. Each of these structures retains some information about a vector configuration,
or an equivalent object, which is richer than the purely linear algebraic information that matroids retain.

As a running motivating example, let us focus on quasi-arithmetic matroids. A quasi-arithmetic matroid
endows a matroid with a multiplicity function, whose values (in the representable case) are the cardinal-
ities of certain finite abelian groups, namely, the torsion parts of the quotients of an ambient lattice Zn
by the sublattices spanned by subsets of vectors. From a list of vectors with integer coordinates one may
produce objects like a toric arrangement, a partition function, and a zonotope. In order to have a combina-
torial structure from which these objects may be read off, one needs to keep track of arithmetic properties
of the vectors, and this is what quasi-arithmetic matroids provide.
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‡Marie Curie Fellow of INdAM, partially supported by PRIN ”Spazi di Moduli e Teoria di Lie”
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It is natural to ask how well these generalizations of matroids can be unified under one framework. Such
a unification was sought by Dress in his program of matroids with coefficients, represented for example
in his work with Wenzel [8] wherein valuated matroids are matroids with coefficients in a “fuzzy ring”.

In the present paper we suggest a different approach to such unification, by defining the notion of a
matroid M over a commutative ring R. Such an M assigns, to every subset A of a ground set, a finitely
generated R-module M(A) according to some axioms (Definition 2.1). We find this definition to have
multiple agreeable features. For one, by building on the well-studied setting of modules over commutative
rings, we get a theory where the considerable power and development of commutative algebra can be
easily brought to bear. For another, unlike arithmetic and valuated matroids, a matroid over R is not
defined as a matroid decorated with extra data; there are only two axioms, and we suggest that they are
comparably simple to the matroid axioms themselves. In particular, a representable matroid over R is
precisely a vector configuration in a finitely generated R-module.

When R is a field, a matroid M over R is nothing but a matroid: the data M(A) is a vector space,
which contains only the information of its dimension, and this directly encodes the rank function of M .
When R = Z, every module M(A) is an abelian group, and by extracting its torsion subgroup we get a
quasi-arithmetic matroid. When R is a discrete valuation ring (DVR), we may similarly extract a valuated
matroid. More generally, whenever R is a Dedekind domain, we can extend the usual properties and
operations holding for matroids, such as duality.

The idea of matroids over rings was suggested by features of the theory of quasi-arithmetic matroids.
Some significant information about an integer vector configuration is not retained in the multiplicity func-
tion, as many finite abelian groups can have the same cardinality. Recording the whole structure of these
groups is desirable in several situations, for example, in developing a combinatorial intersection theory for
the arrangements of subtori arising as characteristic varieties. The properties of the multiplicity function
of a quasi-arithmetic matroid turn out to be just shadows of group-theoretic properties.

One of the most-loved invariants of matroids is their Tutte polynomial TM (x, y). It thus comes as no
surprise that the Tutte polynomial has been considered for generalizations of matroids as well. A quasi-
arithmetic matroid M̂ has an associated arithmetic Tutte polynomial MM̂ (x, y), which has proved to be
a useful tool in studying toric arrangements, partition functions, zonotopes, and graphs ([13, 7, 3]). More
strongly, the authors of [3] define a Tutte quasi-polynomial of an integer vector configuration, interpolating
between TM (x, y) and MM̂ (x, y), which is no longer an invariant of the quasi-arithmetic matroid (as it
depends on the groups, not just their cardinalities).

Among its properties, the Tutte polynomial of a classical matroid is the universal deletion-contraction
invariant. In more algebraic language, following [4], the class of a matroid in the Tutte-Grothendieck
group for deletion-contraction relations is exactly its Tutte polynomial. While the arithmetic Tutte poly-
nomial and Tutte quasi-polynomial are deletion-contraction invariants, neither is universal for this prop-
erty. Our generalization of the Tutte polynomial for matroids over a Dedekind ring R is also the class in
the Tutte-Grothendieck group, so it retains the universality of the usual Tutte polynomial, and we obtain
the two generalizations of Tutte just mentioned as evaluations of it.

This paper is organized as follows. In Section 2 we give the basic definitions for matroids over a
commutative ring, including representability, and we explain how they generalize the classical ones.

We introduce the assumption that R is a Dedekind domain, and do some groundwork, in Section 3.
This assumption on R remains for the most part in force from this section onward. Its first application
comes in Section 4, where we establish the existence and the properties of the dual of a matroid over a
Dedekind domain R.
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In Section 5 we develop the local theory, with a structure theorem for matroids over a DVR. We show
connections with the Hall algebra and with the tropical Plücker relations for the flag variety. Finally, we
describe how to recover valuated matroids.

The global theory is developed in Section 6. We describe the structure of a matroid over a Dedekind
ring R in terms of the structure of all its localizations (completely described in the previous section) plus
some global information coming from the Picard group of R . This also explains the connection between
matroids over Z and quasi-arithmetic matroids.

Finally, in Section 7 we compute the Tutte-Grothendieck group. In particular, given a matroid over Z,
we present its Tutte quasi-polynomial as an evaluation of its class in K(Z-Mat).

This paper is an extended abstract of the article [10], to which the interested reader is suggested to refer
for many details and for all the proofs, which are omitted here.

2 Matroids over a ring
By R-Mod we mean the category of finitely generated R-modules over a commutative ring R. We write
“f.g.” for “finitely generated” throughout.

Definition 2.1 Let R be a commutative ring. A matroid over R on the ground set E is a function M
assigning to each subset A ⊆ E a finitely-generated R-module M(A) satisfying the following axioms:

(M1) For any A ⊆ E and b ∈ E \ A, there exists a surjection M(A) � M(A ∪ {b}) whose kernel is a
cyclic submodule of M(A).

(M2) For any A ⊆ E and b 6= c ∈ E \A, there exists a pushout

M(A)

y
//

��

M(A ∪ {b})

��
M(A ∪ {c}) // M(A ∪ {b, c})

where all four morphisms are surjections with cyclic kernel.

Polymatroids can be defined similarly (see [10, Definition 2.2]). Clearly, Axiom (M1) is redundant if
|E| ≥ 2, and the choice of the modules M(A) is only relevant up to isomorphism. For concision, we will
hereafter let M(Ab) abbreviate M(A ∪ {b}), M(Abc) stand for M(A ∪ {b, c}), and so forth.

The fundamental way of producing matroids over R is from vector configurations in an R-module.
Given a f.g. R-module N and a list X = x1, . . . , xn of elements of N , the matroid MX of X associates
to the sublist A of X the quotient

MX(A) = N
/(∑

x∈A
Rx

)
. (2.1)

For each x ∈ X there is a quotient map from MX(A) to MX(A∪{x}), which quotients out by the image
of Rx in MX(A); this system of maps satisfies axioms (M1) and (M2).

The following definition captures this concisely. Let B(E) be the category of the Boolean poset of
subsets of E, where inclusions of sets are the morphisms.
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Definition 2.2 A matroid M over R is representable (or realizable) if it is the map on objects of some
functor F : B(E) → R-Mod, and axioms (M1) and (M2) are satisfied by choosing the morphisms
F (A→ Ab). A representation (or realization) of M is a choice of such an F .

So MX is a representable matroid, and X gives a representation thereof. We have chosen to cast
Definition 2.2 as we did, as opposed to in a more down-to-earth way involving MX , to emphasize the
way in which a representable matroid is a matroid. A representation of a matroid over R is a functor
from B(E), with both objects and morphisms having images. A general matroid over R is what is gotten
by retaining only the objects as data, discarding the morphisms and merely requiring that they can be
resupplied to look like a represented matroid over R in any square of covering relations in B(E).

Fact 2.3 If a matroid M over R is representable, corresponding to the functor F , then it is the matroid
MX of a vector configuration (N,X = {xa}), whereN is F (∅), and xa is a generator of kerF (∅ → {a})
for each a ∈ E. Indeed, in this above setting, the pushout axiom (M2) applied to F guarantees that
equation (2.1) holds for all A ⊆ E.

Our having chosen to call these objects “matroids over R” is appropriate, as they are a generalization
of matroids in the classical sense, as we show in Proposition 2.5. There is one hitch in the equivalence,
corresponding to the ability to choose a vector configuration that does not span its ambient space. Ac-
cordingly, let us say that a matroid M over R is full-rank if no nontrivial projective module is a direct
summand of M(E). Lemma 2.4 shows that very little is lost in restricting to full-rank matroids.

Before getting there we must generalize some standard operations on matroids. Let M and M ′ be
matroids over R on respective ground sets E and E′. We define their direct sum M ⊕M ′ on the ground
set E q E′ by

(M ⊕M ′)(AqA′) = M(A)⊕M ′(A′).
If i is an element of E, we define two matroids over R on the ground set E \ {i}: the deletion of i in M ,
denoted M \ i, by

(M \ i)(A) = M(A)

and the contraction of i in M , denoted M \ i, by

(M/i)(A) = M(A ∪ {i}).

It is easily seen that the class of representable matroids is closed under minors and direct sums.
If N is an R-module, let the empty matroid for N be the matroid over R on the ground set ∅ which

maps ∅ to N . By a projective empty matroid we mean an empty matroid for a projective module.

Lemma 2.4 Every matroid M over R is the direct sum of a full-rank matroid over R and a projective
empty matroid.

Recall that the corank cork(A) of a setA in a classical matroid is equal to rk(E)−rk(A), where rk(E)
is the rank of the matroid.

Proposition 2.5 Let K be a field. Full-rank matroids M over K are equivalent to (classical) matroids.
If M is a full-rank matroid over K, then dimM(A) is the corank of A in the corresponding classical
matroid. Furthermore, a matroid over K is representable if and only if, as a classical matroid, it is
representable over K.
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The proof of this fact is simple, and relies on the fact that finitely generated modules over K are the
finite-dimensional K-vector spaces, which are completely classified up to isomorphism by dimension. So
we may replace M(A) by its K-dimension without losing information.

Let R → S be a map of rings. Then every matroid over S is naturally also a matroid over R. Further-
more, given such a map R → S, the tensor product — ⊗R S is a functor R-Mod → S-Mod. One can
use this to perform base change of matroids over R. If M is a matroid over R, define M ⊗R S be the
composition of M with —⊗R S, so that for every A

(M ⊗R S)(A) = M(A)⊗R S.

Proposition 2.6 If M is a matroid over R, then M ⊗R S is a matroid over S.

Two special cases of this construction will be of fundamental importance for our theory.

1. For every prime ideal m of R, let Rm be the localization of R at m. We call Mm
.
= M ⊗R Rm the

localization of M at m.

2. If R is an integral domain, let Frac(R) be the fraction field of R. Then we call Mgen
.
= M ⊗R

Frac(R) the generic matroid of M .

Our approach will be much based on studying the matroid M via these localizations.
Notice that every matroid over Rm induces a matroid over the residue field Rm/(m); the latter, as well

as Mgen, is by Proposition 2.5 equivalent to a classical matroid (except that it may be not full-rank).

3 Dedekind domains
In several ways, Definition 2.1 yields a theory best parallelling the theory of classical matroids just when
R is a Dedekind domain. The reason for that is explained in [10, Lemma 3.1 and Example 3.2].

We next recall some structural results about modules over a Dedekind domain R. Given an R-module
N , let Ntors ⊆ N denote the submodule of its torsion elements, and Nproj denote the projective module
N/Ntors. Then N is the direct sum of Ntors and of a projective module isomorphic to Nproj. We recall
the following fact.

Proposition 3.1 [9, exercises 19.4–6] Every torsion R-module may be written uniquely up to isomor-
phism as a sum of submodules R/mk for m a maximal prime of R and k ∈ Z>0.

Every nonzero projective R-module is uniquely isomorphic to Rh ⊕ I for some h ≥ 0 and nonzero
ideal I , up to differing isomorphic choices of I . For ideals I and J , we have I ⊕ J ∼= R⊕ (I ⊗ J).

We recall the following definitions. The Picard group of R, Pic(R), is the set of the isomorphism
classes of f.g. projective modules of rank 1, with product induced by the tensor product. If P is a
projective module of rank n, the exterior algebra ΛnP is a f.g. projective module of rank

(
n
n

)
= 1. We

call determinant, and denote by det(P ), its class in Pic(R).
We will also find useful a description of the algebraic K-theory group K0(R) of f.g. R-modules:

that is, the abelian group generated by isomorphism classes [N ] of f.g. R-modules, modulo the relations
[N ] = [N ′] + [N ′′] for any exact sequence

0→ N ′ → N → N ′′ → 0.
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Proposition 3.2 There is an isomorphism of groups

Φ : K0(R) −→ Z⊕ Pic(R).

In fact, when P is a projective module, the map above is simply given by Φ([P ]) = (rk(P ),det(P )).
In virtue of the isomorphism above, from now on we will denote by det(N) the class of any f.g. R-

module N in the Picard group, i.e. the second summand of Φ([N ]). In the same way, by rk(N) we
denote the first summand of Φ([N ]): this coincides with the rank of Nproj, i.e. with the dimension of
N ⊗ Frac(R).

Note in particular that Φ extends the usual map from invertible ideals to Pic(R).
The potential nontriviality of this summand Pic(R) ⊆ K0(R) has global consequences for matroids

over R: see Proposition 4.3 below.

4 Duality for matroids over Dedekind domains
In this section R will be a Dedekind domain. Let M be a matroid over R, on ground set E. Fix a free
module F that surjects on M(∅). For any A ⊆ E and maximal flag of subsets ∅ = A0 ( A1 ( · · · (
A|A| = A, we obtain a composite surjection

F →M(∅)→M(A1)→ · · · →M(A).

Using the horseshoe lemma, we may assemble minimal projective resolutions of each step of this compo-
sition into a projective resolution of F/M(A), yielding a projective resolution

P (A)• : 0→ P2(A)→ P1(A)
d1→ F →M(A)→ 0

of M(A). As usual, we write ∨ for the contravariant functor Hom(—, R).

Definition 4.1 Define the module M∗(E \A) as the cokernel of the map dual to d1 in P (A)•, that is

M∗(E \A)
.
= coker

(
F∨

d∨1−→ P1(A)∨
)
.

This is well-defined ([10, Lemma 4.2]). We define M∗, the dual matroid over R to M , to be the collection
of these modules M∗(E \A).

Theorem 4.2 If R is a Dedekind domain, and M is a matroid over R, then its dual M∗ is a full-rank ma-
troid over R. Furthermore, M is the direct sum of M∗∗ and the projective empty matroid for M(E)proj;
in particular, if M is full-rank, M∗∗ = M .

If M is representable, also M∗ is.

The last statement above gives a generalization of the classical Gale duality of vector configurations.
Furthermore, duality of matroids over rings is well-behaved with respect to deletion, contraction, direct

sums, and tensor products, as shown in [10, Proposition 4.9].

Proposition 4.3 Let M be a matroid over R. The element

det(M)
.
= det(M(A)proj) + det(M∗(E \A)proj) + det(M(A)tors)

of Pic(R) is independent of the choice of A ⊆ E.
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5 Structure of matroids over a DVR
In this section and the next we record some structure theorems for matroids over R in terms of structure
theorems for the modules over R themselves. Our analysis of general Dedekind domains in the next
section will make much use of base changing to localizations of R, so we begin here with the local case.

For the whole of this section, R will be a DVR with maximal ideal m. We first recall the structure
theory of f.g.R-modules: any indecomposible f.g.R-module is isomorphic to eitherR orR/mn for some
integer n ≥ 1. We will sometimes formally subsume R into the latter family by writing it as R/m∞. So,
if N is a f.g. R-module and i ≥ 1 is an integer, define

di(N)
.
= dimR/m(mi−1N/miN),

and d≤i(N)
.
=
∑i
j=1 dj(N), and for convenience di(N) = d≤i(N) = 0 if i ≤ 0. Let d•(N) denote the

infinite sequence of these. We have

di(R/m
n) =

{
1 0 < i ≤ n
0 i > n

,

where n may be∞. The following is a quick consequence.

Proposition 5.1 Isomorphism types of f.g. R-modules are in bijection with nonincreasing infinite se-
quences d• of nonnegative integers indexed by positive integers, the bijection being given by

N ←→ d•(N).

This bijection permits a straightforward identification of those isomorphism classes of modules which
permit maps satisfying axioms (M1) and (M2).

Theorem 5.2 Let N and N ′ be f.g. R-modules. There exists a surjection φ : N → N ′ with cyclic kernel
if and only if

(L1) for each n ≥ 1,
dn(N)− dn(N ′) ∈ {0, 1}.

Let M(∅), M(1), M(2), and M(12) be f.g. R-modules. There exist four surjections with cyclic kernels
forming a pushout square

M(∅)

y
φ //

ψ

��

M(1)

ψ′

��
M(2)

φ′
// M(12)

if and only if (L1) is satisfied for each pair M(A),M(Ab), and moreover

(L2a) for each n ≥ 1,

d≤n(M(∅))− d≤n(M(1))− d≤n(M(2)) + d≤n(M(12)) ≥ 0;
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(L2b) for any n ≥ 1 such that dn(M(1)) 6= dn(M(2)), equality holds above:

d≤n(M(∅))− d≤n(M(1))− d≤n(M(2)) + d≤n(M(12)) = 0.

Condition (L2a) asserts that A 7→ −d≤n(M(A)) is a submodular function.
In the case that N and N ′ have finite length, condition (L1) follows from facts about the Hall algebra

[11]. Indeed, it is equivalent that N have finite length and that di(N) stabilize to 0 for i � 0. In this
case di is a partition, and its conjugate partition is the one usually used to label N . For a cyclic module,
this conjugate partition has a single row. Then, under the specialization taking the Hall polynomials to the
Littlewood-Richardson coefficients, condition (L1) is a consequence of the Pieri rule.

The structure of matroids over R in fact has interesting tropical-geometric import (for background on
tropical geometry, see [12]). The first inkling of this is in three-element matroids:

Proposition 5.3 Let M be a matroid over R on the ground set [3], and let n be a natural or ∞. Then,
among the three quantities

d≤n(M(1)) + d≤n(M(23)), d≤n(M(2)) + d≤n(M(13)), d≤n(M(3)) + d≤n(M(12)),

the minimum is achieved at least twice.

Let M be a matroid over R with ground set E. For A ⊆ E, define pA to be d≤n(M(A)). Proposi-
tion 5.3 applied to the 3-element minors of M can be taken to say that the tropicalizations of the relations

pAbpAcd − pAcpAbd + pAdpAbc = 0 (5.1)

hold of the numbers p•, where we continue abbreviating A ∪ {b, c} as Abc and similarly.
The relations (5.1) are among the Plücker relations for the full flag variety (of type A). We can show

[10, Proposition 5.6] that the p• satisfy some of the other Plücker relations, which imply that for every r
the point (pA : |A| = r) lies on the Dressian Dr(r, n). The Dressian is one Grassmannian-like space in
tropical geometry: it is the parameter space for tropical linear spaces. That is, there is a tropical linear
space determined by (pA : |A| = r). Corollary 5.4 follows.

Corollary 5.4 Let M be a matroid over a DVR (R,m). Then the function A 7→ dimR/mM(A) makes
the generic matroid of M into a valuated matroid, in the sense of Dress and Wenzel [8].

To be precise, our sign convention is the opposite of the one adopted in [8]; for perfect agreement we
would have to negate this function. But our sign convention is frequently adopted in tropical geometry.

Conjecture 5.5 The collection of the pA satisfies every tropical Plücker relation, i.e. gives a point on the
Dressian analogue of the tropical full flag variety.

We expect that Conjecture 5.5 follows directly from Proposition 5.3, and needs no further matroidal
arguments. The main obstruction to proving 5.5 seems to be only that the tropical full flag variety has
been little studied.
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6 Global structure of matroids over a Dedekind domain
Throughout this section R will be a Dedekind domain. Let us recall that given a R-module N , by det(N)
we will denote its class in the Picard group Pic(R), as defined in Section 3. The next Theorem gives a
complete characterization of the structure of matroids over R, in terms of their localizations for which we
have Theorem 5.2.

Theorem 6.1 Let N and N ′ be f.g. R-modules. There exists a surjection N → N ′ with cyclic kernel if
and only if there exists such a surjection Nm → N ′m after localizing at each maximal prime m of R, and

• if rk(N)− rk(N ′) = 0 then det(Nproj) = det(N ′proj), whereas

• if rk(N)− rk(N ′) = 1 then det(N) = det(N ′).

Let M(∅), M(1), M(2), and M(12) be f.g. R-modules. There exist four surjections with cyclic kernels
forming a pushout square

M(∅)

y
//

��

M(1)

��
M(2) // M(12)

if and only if the same is true after localizing at each maximal prime m, and the above conditions on
classes are true of each (N,N ′) = (M(A),M(Ab)).

6.1 Quasi-arithmetic matroids
If M is a matroid over Z, then we can define a corank function of M as the corank function of the generic
matroid M ⊗Z Q described above, that is cork(A) = rkZ(M(A)proj).

As before, we let M(A)tors denote the torsion submodule (subgroup, in this case) of M(A). Then we
define

m(A)
.
= |M(A)tors|.

Corollary 6.2 The triple (E, cork,m) is a quasi-arithmetic matroid, i.e (E, cork) defines a matroid, and
m satisfies the following properties:

(A1) Let be A ⊆ E and b ∈ E; if b is dependent on A, then m(A∪ {b}) divides m(A); otherwise m(A)
divides m(A ∪ {b});

(A2b) if A ⊆ B ⊆ E and B is a disjoint union B = A ∪ F ∪ T such that for all A ⊆ C ⊆ B we have
rk(C) = rk(A) + |C ∩ F |, then

m(A) ·m(B) = m(A ∪ F ) ·m(A ∪ T ).

Furthermore it satisfies the following property:

(A2a) if A,B ⊆ E and rk(A ∪ B) + rk(A ∩ B) = rk(A) + rk(B), then m(A) ·m(B) divides m(A ∪
B) ·m(A ∩B)
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In fact properties (A1), (A2a), (A2b) follow from (L1), (L2a), (L2b) respectively. This corollary estab-
lishes that matroids over Z recover many of the essential features of the second author’s theory of arith-
metic matroids from [5]. To be precise, the objects we have recaptured are quasi-arithmetic matroids: see
[10, Remark 6.4]. In fact the two objects are not truly equivalent, in that the information contained in
matroids over Z is richer, because there are many finite abelian groups with the same cardinality.

7 The Tutte-Grothendieck group
In this section we continue to let R be a Dedekind domain. All matroids over R in this section are full-
rank. As we defined the operations of deletion and contraction in Section 2, any element may be deleted
or contracted. However, suppose a ∈ E is a (generic) coloop of a matroid M over R, that is a coloop of
the generic matroid, equivalently an element such that M(E \ {a}) has a nontrivial projective summand.
In this case, M \ a is not full-rank. The dual of this situation is the case where a is a (generic) loop, i.e. a
loop of the generic matroid, and one contracts a.

Essentially following Brylawski [4], define the Tutte-Grothendieck group of matroids overR, which we
here denote K(R-Mat), to be the abelian group generated by a symbol TM for each unlabelled full-rank
matroid M over R with nonempty ground set, modulo the relations

TM = TM\a + TM/a

whenever a is not a generic loop or coloop (so that we avoid the above situations). We have omitted empty
matroids for technical reasons, though they cause no essential problem; the interested reader can refer to
[10, Remark 7.2]. By “unlabelled”, we mean that we consider two matroids M and M ′ over R to be
identical if there is a bijection σ : E

∼→ E′ of their ground sets such that M(A) ∼= M ′(σ(A)) for each
subset A of E.

The ring K(R-Mat) turns out to be best understood in terms of the monoid ring of the monoid of R-
modules under direct sum, as in Theorem 7.1 below. Define Z[R-Mod] to be the ring with a Z-linear
basis {uN} with an element uN for each f.g. R-module N up to isomorphism, and product given by
uNuN

′
= uN⊕N

′
.

Theorem 7.1 The Tutte-Grothendieck group K(R-Mat) is a ring without unity, with product given by
TM ·TM ′ = TM⊕M ′ . As a ring it injects into Z[R-Mod]⊗Z[R-Mod], and under this injection, the class
of M maps to

TM =
∑

A⊆E
XM(A)YM

∗(E\A), (7.1)

where {XN} and {Y N} are the respective bases of the two tensor factors Z[R-Mod].
If we include empty matroids, the ring K(R-Mat) is the subring of Z[R-Mod]⊗Z[R-Mod] generated by

XP and Y P as P ranges over rank 1 projective modules, and (XY )N asN ranges over torsion modules.

Here (XY )N abbreviates XNY N . We immediately compare Theorem 7.1 with the case of matroids
over a field, where the Tutte-Grothendieck invariant is the familiar Tutte polynomial TM . If R is a field,
then Z[R-Mod] is the univariate polynomial ring Z[u], and then Z[R-Mod]⊗Z[R-Mod] is, appropriately,
a bivariate polynomial ring. If we call the generators of the two tensor factors x− 1 and y− 1 rather than
X and Y , then equation (7.1) in fact gives the classical Tutte polynomial, since dimM(A) is the corank
of A and dimM∗(E \A) is its nullity.
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Since decomposing a matroid M over a ring into M \ i and M/i is not a unique decomposition in the
sense of [4], and the irreducibles for direct sum are not all single-element matroids, Theorem 7.1 does not
follow directly from the bidecomposition methods of [4].

7.1 Arithmetic Tutte polynomial and quasi-polynomial
In this subsection, M is a matroid over Z. We show that the arithmetic Tutte polynomial of its asso-
ciated quasi-arithmetic matroid M̂ , and its Tutte quasi-polynomial, are each images of TM under ring
homomorphisms. When R = Z, the Picard group is trivial, and

TM =
∑

A⊆E
(XR)corkM (A)(Y R)nullityM (A)(XY )M(A)tors .

where we use the notation nullityM (A) = corkM∗(E \A) = dimM∗(E \A).
We may define a specialization of TM by specializing XR to (x − 1), Y R to (y − 1), and (XY )N to

the cardinality of N for each torsion module N . This specialization is the arithmetic Tutte polynomial
MM̂ (x, y) of the quasi-arithmetic matroid M̂ defined by M :

MM̂ (x, y) =
∑

A⊆E
m(A)(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

This polynomial proved to have several applications to toric arrangements, partition functions, zonotopes,
and graphs with labeled edges (see [13, 6, 5]). Notice that an ordinary matroid M̃ can be trivially made
into an arithmetic matroid M̂ by setting all the multiplicities to be equal to 1, and then MM̂ (x, y) is
nothing but the classical Tutte polynomial TM̃ (x, y).

The polynomial MM̂ (x, y) is not the universal deletion-contraction invariant of M̂ : for instance, the or-
dinary Tutte polynomial TM̃ (x, y) of the matroid M̃ obtained from M̂ by forgetting of its arithmetic data
is also a deletion-contraction invariant of M̂ , which is not determined by MM̂ (x, y). This led the authors
of [3] to define a Tutte quasi-polynomial QM (x, y), interpolating between TM̃ (x, y) and MM̂ (x, y). This
invariant is stronger, but still not universal, and more importantly, it is not an invariant of the arithmetic
matroid, as it depends on the groups M(A)tors and not just on their cardinalities. In fact QM (x, y) is an
invariant of the matroid over Z, and we show explicitly how to compute it from the universal invariant.

For every positive integer q, let us define a function Vq as Vq((XY )Z/p
k

) = 1 if pk divides q, while
Vq((XY )Z/p

k

) = pk−j if pk does not divide q and j ≥ 0 is the largest integer such that pj divides q. We
will extend this to define Vq((XY )N ) multiplicatively for any torsion abelian group N . Then we define a
specialization of TM to the ring of quasipolynomials by specializing XR to (x− 1), Y R to (y − 1), and
(XY )N to V(x−1)(y−1)((XY )N ). This gives

QM (x, y) =
∑

A⊆E

|M(A)tors|
|(x− 1)(y − 1)M(A)tors|

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

Since (q+ |G|)G = qG holds for any finite group G, it follows that QM (x, y) is a quasi-polynomial in
q = (x− 1)(y − 1). In particular, when |M(A)tors| divides (x− 1)(y − 1), then the group (x− 1)(y −
1)M(A)tors is trivial and QM (x, y) coincides with MM̂ (x, y); while when |M(A)tors| is coprime with
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(x − 1)(y − 1), then QM (x, y) coincides with TM̃ (x, y). Then in some sense QM (x, y) interpolates
between the two polynomials.

Notice that while MM̂ and TM̃ (x, y) only depend on the induced quasi-arithmetic matroid M̂ , TM

and QM (x, y) are indeed invariants of the matroid over Z, M . Also the chromatic quasi-polynomial and
the flow quasi-polynomial defined in [3] are actually invariants of the matroid over Z: by [3, Theorem 9.1]
they are specializations of QM (x, y), and hence of the universal invariant TM .
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Moments of Askey-Wilson polynomials

Jang Soo Kim and Dennis Stanton

School of Mathematics, University of Minnesota, USA

Abstract. New formulas for the nth moment µn(a, b, c, d; q) of the Askey-Wilson polynomials are given. These are
derived using analytic techniques, and by considering three combinatorial models for the moments: Motzkin paths,
matchings, and staircase tableaux. A related positivity theorem is given and another one is conjectured.

Résumé. Nous présentons de nouvelles formules pour les n-moments µn(a, b, c, d; q) des polynômes Askey-Wilson.
Ils sont calculés avec des techniques analytiques, et en considérant trois modèles combinatoires pour les moments:
des chemins de Motzkin, des couplages, et des tableaux escalier. Un théorème de positivité liée est donné et un autre
est conjecturé.

Keywords: Askey-Wilson polynomials, moments of orthogonal polynomials, Motzkin paths, hypergeometric series

1 Introduction
The monic Askey-Wilson polynomials Pn = Pn(x; a, b, c, d; q) are polynomials in x of degree n which
depend upon five parameters a, b, c, d, and q. They may be defined by the three-term recurrence Pn+1 =
(x−bn)Pn−λnPn−1 with P−1 = 0 and P0 = 1 for bn = 1

2 (a+a
−1−(An+Cn)) and λn = 1

4An−1Cn,
where

An =
(1− abqn)(1− acqn)(1− adqn)(1− abcdqn−1)

a(1− abcdq2n−1)(1− abcdq2n) ,

Cn =
a(1− qn)(1− bcqn−1)(1− bdqn−1)(1− cdqn−1)

(1− abcdq2n−2)(1− abcdq2n−1) .

We refer to [6] for the standard basic hypergeometric notation and for information about the Askey-Wilson
polynomials.

In view of the above three-term recurrence relation, the Askey-Wilson polynomials are orthogonal
polynomials. An explicit absolutely continuous measure [1, Theorem 2.2], may be given for these poly-
nomials. (We assume here that max{|a|, |b|, |c|, |d|} < 1.) It is supported on x ∈ [−1, 1], and with
x = cos θ, the measure is

w(cos θ, a, b, c, d; q) =
(e2iθ)∞(e−2iθ)∞

(aeiθ)∞(ae−iθ)∞(beiθ)∞(be−iθ)∞(ceiθ)∞(ce−iθ)∞(deiθ)∞(de−iθ)∞
.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The measure has total mass given by the Askey-Wilson integral,

I0 =
(q)∞
2π

∫ π

0

w(cos θ, a, b, c, d; q)dθ =
(abcd)∞

(ab)∞(ac)∞(ad)∞(bc)∞(bd)∞(cd)∞
. (1)

The purpose of this paper is to study the nth moment µn(a, b, c, d; q) of the measure w(x; a, b, c, d; q)
for the Askey-Wilson polynomials

µn(a, b, c, d; q) = C

∫ 1

−1
xnw(x; a, b, c, d; q)

dx√
1− x2

.

for some normalization constant C. With the normalization of µ0(a, b, c, d; q) = 1, (the explicit C may be
found from (1)), the nth moment is known to be a rational function of a, b, c, d and q. We shall give new
explicit expressions for µn(a, b, c, d; q) and study three combinatorial models for µn(a, b, c, d; q). One
unusual feature of these results is the mixture of binomial and q-binomial terms in the explicit formulas.
We shall see why this occurs, both analytically and combinatorially.

The simplest expression for µn(a, b, c, d; q) is a double sum (see [4, Theorem 1.12])

µn(a, b, c, d; q) =
1

2n

n∑

m=0

(ab, ac, ad; q)m
(abcd; q)m

qm
m∑

j=0

q−j
2

a−2j(aqj + q−j/a)n

(q, q1−2j/a2; q)j(q, q2j+1a2; q)m−j
. (2)

However this expression is not obviously symmetric in a, b, c, and d, even though the Askey-Wilson
polynomials Pn(x; a, b, c, d; q) and the moments µn(a, b, c, d; q) are symmetric. Nor does it exhibit the
correct poles of µn(a, b, c, d; q) as a rational function. For d = 0 the moments are polynomials in a, b, c,
and q. We give new expressions for the moments µn(a, b, c, d; q), which are symmetric and polynomial
when d = 0 , see Theorem 2.3. We also give a symmetric version for all a, b, c, d in Theorem 2.7, although
the polynomial dependence in q is not clear. We give new expressions for the moments µn(a, b, c, d; q) in
the special case b = −a, d = −c, see Theorem 2.4 and Theorem 2.5. We prove a new positivity theorem
in Corollary 4.4, and conjecture another one in Conjecture 1.

Our second goal is to combinatorially study the moments µn(a, b, c, d; q) as functions of a, b, c, and d.
We use three combinatorial models for this purpose. The moments for any set of orthogonal polynomials
may be given as weighted Motzkin paths [13]. In this case µn(a, b, c, d; q) is the generating function
for Motzkin paths with weights which are rational functions of a, b, c, d and q. We use this setup and
a generalization of an idea of D. Kim [11] to combinatorially prove Theorem 3.1 and Corollary 3.2 in
Section 3. A special combinatorial model for the Askey-Wilson integral, which evaluated the normal-
ization constant C, was given in [7]. We modify this model appropriately to give a combinatorial model
for some non-normalized moments in Theorem 4.1. We also give new explicit rational expressions for
µn(a, b, c, d; q) so that (abcd)nµn(a, b, c, d; q) are clearly polynomials in a, b, c, d and q, see Theorem 4.2
and Theorem 4.3.

A third combinatorial model was given by Corteel and Williams [5]. They give a combinatorial in-
terpretation for the polynomial 2n(abcd)nµn(a, b, c, d; q) using a rational transformation over the com-
plex numbers of the parameters a, b, c, and d to parameters α, β, γ, and δ. In these new parameters
2n(abcd)nµn(a, b, c, d; q) is a polynomial with positive integer coefficients with a combinatorial meaning.
(See Section 5). Using their ideas, we explicitly find coefficients of certain terms in
2n(abcd)nµn(a, b, c, d; q) as Catalan numbers in Theorem 5.2.
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2 Askey-Wilson moments
In this section we consider the moments µn(a, b, c, d; q) as functions of the parameters a, b, c, d and q.
Our goal is to give new explicit formulas for these moments, using simple series and integral evaluations.
First we note an elementary fact.

Proposition 2.1. 2n(abcd; q)nµn(a, b, c, d; q) is a polynomial in a, b, c, d, q with integer coefficients.

Note that the expression (2) has some removable singularities as functions of a and q. The method
of proof of (2), which appears in [4], is to use an appropriate q-Taylor expansion. Theorem 2.2 and
Theorem 2.3 below follow from (2) by series manipulations which are not given here.

Using (2) we have the following theorem, which exhibits 2n(abcd; q)nµn(a, b, c, d; q) as a symmetric
polynomial in b, c, and d.

Theorem 2.2. The Askey-Wilson moments are

2nµn(a, b, c, d; q) =
n∑

m=0

(ab, ac, ad; q)m
(abcd; q)m

(−q)m
n+1∑

s=0

((
n

s

)
−
(

n

s− 1

))

×
n−2s−m∑

p=0

a−n+2s+2p

[
m+ p

m

]

q

[
n− 2s− p

m

]

q

q(−n+2s+p)m+(m2 ).

If k is not a nonnegative integer, we define
(
n
k

)
= 0.

Theorem 2.3. The Askey-Wilson moments for d = 0 are

2nµn(a, b, c, 0; q) =

n∑

k=0

((
n
n−k
2

)
−
(

n
n−k
2 − 1

))

×
∑

u+v+w+2t=k

aubvcw(−1)tq(t+1
2 )
[
u+ v + t

v

]

q

[
v + w + t

w

]

q

[
w + u+ t

u

]

q

,

where the second sum is over all integers 0 ≤ u, v, w ≤ k and−k ≤ t ≤ k/2 satisfying u+v+w+2t = k.

A special case of the Askey-Wilson polynomials has a different expression for the moments. Consider
b = −a and d = −c, so that the Askey-Wilson measure is an even function. In this case bn = 0, so
the odd moments are zero, and the 2nth moment has a shorter alternative expression, again proven by
q-Taylor series and integration.

Theorem 2.4. The non-zero Askey-Wilson moments for b = −a and d = −c are

4nµ2n(a,−a, c,−c; q) =
n∑

m=0

(−a2; q)2m(a2c2; q2)m
(qa2c2; q2)m

q2m
m∑

j=0

a−4jq−2j
2

(aqj + a−1q−j)2n

(q2, a4q2+4j ; q2)m−j(q2, a−4q2−4j ; q2)j
.

Zeng [14] found a formula equivalent to Theorem 2.4 when c = 0. Theorem 2.4 has a version with
differences of binomial coefficients, similar to Theorem 2.2.
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Theorem 2.5. The non-zero Askey-Wilson moments for b = −a and d = −c are

4nµ2n(a,−a, c,−c; q) =
n∑

m=0

(−a2; q)2m(a2c2; q2)m
(qa2c2; q2)m

(−q2)m

×
2n+2∑

s=0

((
2n+ 1

s

)
−
(
2n+ 1

s− 1

)) n−m−s∑

p=0

a−2n+4p+2s

[
m+ p

m

]

q2

[
n− p− s

m

]

q2
q−2m(n−p−s)+m(m−1).

There is a positivity conjecture for the moments µ2n(a,−a, c,−c; q). These moments are not poly-
nomials, but Proposition 2.1 implies that 4n(a2c2; q)2nµ2n(a,−a, c,−c; q) is a polynomial. Half of the
apparent poles of µ2n(a,−a, c,−c; q) do not occur.

Proposition 2.6. The Askey-Wilson moments

τ2n(a
2, c2) = 4n(qa2c2; q2)nµ2n(a,−a, c,−c; q)/(1− q)n

are polynomials in a2, c2 and q with integer coefficients. Moreover the sum of the coefficients in τ2n(a2, c2)
is 22n(2n− 1)(2n− 3) · · · 1.

Conjecture 1. The coefficients of τ2n(a2, c2) are non-negative integers.

If q = 0, one may show that τ2n(a2, c2) is a non-negative polynomial by a combinatorial method. The
sum of the coefficients is 22n. It is a generating function for certain non-crossing complete matchings.

Although simple, (2) does not clearly demonstrate the symmetry or polynomiality of µn(a, b, c, d; q) in
all four parameters a, b, c and d. We next give such a formula, which generalizes Theorem 2.2.

Let A be an arbitrary parameter. Let

8W7(m) = 8W7(A
2/q;A/a,A/b,A/c,A/d, q−m; q; abcdqm).

From the definition of the 8W7 one may show that (aA, bA, cA, dA; q)m 8W7(m) is a symmetric polyno-
mial in a, b, c and d.

Using Watson’s transformation [6, (III.17)] of an 8W7 to a 4φ3, the following apparent rational function
of A and q is in fact a polynomial in each of the parameters: a, b, c, d, A, and q.

(aA, bA, cA, dA; q)m
(A2; q)m

8W7(m) =
m∑

j=0

[
m

j

]

q

(cd)j(A/c,A/d; q)j(ab; q)j(Aaq
j , Abqj , cd; q)m−j .

The next result, proven using q-Taylor series and integration, gives a symmetric polynomial version for
2n(abcd; q)nµn(a, b, c, d; q). Theorem 2.7 is independent of A.

Theorem 2.7.

2nµn(a, b, c, d; q) =

n∑

m=0

(aA, bA, cA, dA; q)m
(A2, abcd; q)m

(−q)m8W7(m)

n+1∑

s=0

((
n

s

)
−
(

n

s− 1

))

×
n−2s−m∑

p=0

A−n+2s+2p

[
m+ p

m

]

q

[
n− 2s− p

m

]

q

qm(−n+2s+p)+(m2 ).

If A = a, then Theorem 2.7 becomes Theorem 2.2. Theorem 2.7 has one defect: not all of the powers
of q are positive due to the qm(−n+2s+p) term. The individual terms are Laurent polynomials in q.

If A2 = q, the p-sum in Theorem 2.7 is evaluable by the q-Vandermonde sum [6, II.6].
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3 Weighted Motzkin paths
The first combinatorial model uses weighted Motzkin paths to find the moments. The weights are given
by the complicated rational functions in the three-term recurrence relation. However if c = d = 0, these
rational weights become simple polynomial weights, and the combinatorial model provided by Motzkin
paths simplifies, as does the formula for the moments.

Theorem 3.1. The Askey-Wilson moments for c = d = 0 are

2nµn(a, b, 0, 0; q) =
n∑

k=0

((
n
n−k
2

)
−
(

n
n−k
2 − 1

)) ∑

u+v+2t=k

aubv(−1)tq(t+1
2 )
[
u+ v + t

u, v, t

]

q

, (3)

where the second sum is over all nonnegative integers u, v, t satisfying u+ v + 2t = k.

Theorem 3.1 is equivalent to a result of Josuat-Vergès [9, Theorem 6.1.1], and has an attractive special
case.

Corollary 3.2. We have

2nµn(a, q/a, 0, 0; q) =

n∑

k=0

((
n
n−k
2

)
−
(

n
n−k
2 − 1

))
(q/a)k

k∑

i=0

a2iqi(k−i−1).

In this section we sketch combinatorial proofs of Theorem 3.1 and Corollary 3.2.
The main idea is as follows. We first interpret the moment 2nµn(a, b, 0, 0; q) as a weighted sum of

Motzkin paths. Then using Penaud’s decomposition [12] we can decompose a weighted Motzkin path into
a pair of paths: a Dyck prefix and another weighted Moztkin path. We map the new weighted Moztkin path
to a new object: doubly striped skew shapes. These objects are a generalization of striped skew shapes
introduced by D. Kim [11] in order to prove the moment formula for Al-Salam-Carlitz polynomials. We
then find a sign-reversing involution on doubly striped skew shapes and show that the fixed points have a
weighted sum equal to a q-trinomial coefficient. This completes the sketch of the proof of Theorem 3.1.
For Corollary 3.2, we find a further cancellation on the doubly striped skew shapes which leaves only one
fixed point for given size.

A Motzkin path is a lattice path in N× N from (0, 0) to (n, 0) consisting of up steps (1, 1), down steps
(1,−1), and horizontal steps (1, 0). We say that the level of a step is i if it is an up step or a down step
between the lines y = i − 1 and y = i, or it is a horizontal step on the line y = i. A weighted Motzkin
path is a Motzkin path in which each step has a certain weight. The weight wt(p) of a weighted Motzkin
path p is the product of the weights of all steps. Note that the level of an up step or a down step is at least
1 and the level of a horizontal step may be 0.

Let Motn(a, b) denote the set of weighted Motzkin paths of length n such that the weight of an up step
of level i is either qi or −1, the weight of a down step of level i is either abqi−1 or −1, and the weight of
a horizontal step of level i is either aqi or bqi. Then by Viennot’s theory [13] we have

2nµn(a, b, 0, 0; q) =
∑

P∈Motn(a,b)

wt(P ). (4)

We define Mot∗n(a, b) to be the set of weighted Motzkin paths in Motn(a, b) such that there is no peak
of weight 1, that is, an up step of weight −1 immediately followed by a down step of weight −1.
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By the same idea that is a variation of Penaud’s decomposition as in [8, Proposition 5.1], we have

∑

P∈Motn(a,b)

wt(P ) =
n∑

k=0

((
n
n−k
2

)
−
(

n
n−k
2 − 1

)) ∑

P∈Mot∗k(a,b)

wt(P ). (5)

By (4) and (5), Theorem 3.1 and Corollary 3.2 can be restated as follows.

Theorem 3.3. We have
∑

P∈Mot∗k(a,b)

wt(P ) =
∑

u+v+2t=k

aubv(−1)tq(t+1
2 )
[
u+ v + t

u, v, t

]

q

,

∑

P∈Mot∗k(a,q/a)

wt(P ) = (q/a)k
k∑

i=0

a2iqi(k−i−1).

We note that the second identity in Theorem 3.3 is equivalent to a result of Corteel et al. [3, Propo-
sition 5], which is used to prove a formula [3, Theorem 1] for the moments of q-Laguerre polynomials.
Their proof of [3, Theorem 1] is combinatorial except for the proof of [3, Proposition 5]. In this section
we prove the above theorem combinatorially, thus providing the first combinatorial proof of their result.

In order to give combinatorial proofs of the two formulas in Theorem 3.3 we introduce doubly striped
skew shapes. These objects are a generalization of striped skew shapes introduced by D. Kim [11].

A doubly striped skew shape of size m × n is a quadruple (λ, µ,W,B) of partitions µ ⊂ λ ⊂ (nm)
and a set W of white stripes and a set B of black stripes with W ∩ B = ∅. Here, a white stripe is a
diagonal set S of λ/µ such that λ/µ contains neither the cell to the left of the leftmost cells of S nor the
cell below the rightmost cell of S, where a diagonal set means a set of cells in row r+ i and column s+ i
for i = 1, 2, . . . , p for some integers r, s, p. Similarly, a black stripe is a diagonal set S of λ/µ such that
λ/µ contains neither the cell above the leftmost cell of S and the cell to the right of the rightmost cell S.
We will call a cell in a white stripe (resp. black stripe) a white dot (resp. black dot).

Let DSS(m,n) denote the set of doubly striped skew shapes of size m × n. We define the weight of
(λ, µ,W,B) ∈ DSS(m,n) to be

wta,b(λ, µ,W,B) = ambn(−1)|W |+|B|q|λ/µ|−‖W‖−‖B‖(q/ab)|W |, (6)

where ‖W‖ and ‖B‖ are the total numbers of white dots and black dots respectively.
We define a map ρ : Mot∗k(a, b) →

⋃k
i=0 DSS(i, k − i) as follows. Let P ∈ Mot∗k(a, b). We will

construct an upper path and a lower path which determine two partitions λ and µ respectively. The upper
path and the lower path start at the origin. For each step of P , we add one step to the two lattice paths
as follows. If the step is an up step of weight abqi−1, we add a north step of weight a to the upper path
and an east step of weight b to the lower path. If the step is an up step of weight −1, we add a north step
of weight a to the upper path and an east step of weight b to the lower path, and we make a white stripe
between these two steps, see Figure 1. Similarly we add one step to the upper and lower paths for the
other types of steps in P as shown in Figure 1. Then we define ρ(P ) to be the resulting diagram. See
Figure 2 for an example of ρ. It is easy to see that ρ is a weight-preserving bijection, which implies

∑

P∈Mot∗k(a,b)

wt(P ) =
k∑

i=0

∑

S∈DSS(i,k−i)
wta,b(S).
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i− 1
i

abqi−1

⇔ {i− 1

a

b

i− 1
i

qi
⇔

{
i

1

1

i− 1
i

−1

⇔ {i− 1

a

b

i− 1
i

−1

⇔

{
i

1

1

i

aqi
⇔

{
i

a

1
i

bqi
⇔

{
i

1

b

Fig. 1: Converting a weighted Motzkin path to a doubly striped skew shape.
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Fig. 2: An example of the bijection ρ. The steps of weight −1 are the thick steps.
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⇔

{
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{
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⇔
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Thus Theorem 3.3 is equivalent to the following proposition.

Proposition 3.4. For k ≥ 0, we have

k∑

i=0

∑

S∈DSS(i,k−i)
wta,b(S) =

∑

u+v+2t=k

aubv(−1)tq(t+1
2 )
[
u+ v + t

u, v, t

]

q

, (7)

k∑

i=0

∑

S∈DSS(i,k−i)
wta,q/a(S) = (q/a)k

k∑

i=0

a2iqi(k−i−1). (8)

Our proof of Proposition 3.4 is based on D. Kim’s sign-reversing involution on striped skew shapes.

4 Matchings
In this section we provide the second combinatorial approach to compute a non-normalized nth moment,
using an idea in [7]. The orthogonality relation for Askey-Wilson polynomials is

∫ π

0

Pn(cos θ, a, b, c, d; q)Pm(cos θ, a, b, c, d; q)w(cos θ, a, b, c, d; q)dθ = 0, n 6= m.

Let

In :=
(q)∞
2π

∫ π

0

(cos θ)nw(cos θ, a, b, c, d; q)dθ.

Then In = µn(a, b, c, d; q)I0.
The integral In, which is a multiple of the nth moment, is the q-exponential generating function for a set

of complete matchings. Ismail, Stanton, and Viennot [7] evaluated the Askey-Wilson integral I0 by inter-
preting the weight function w(cos θ, a, b, c, d; q) as a generating function of four q-Hermite polynomials.
By generalizing the method in [7], we obtain the following theorem.

Theorem 4.1. We have

In =

(√
1− q
2

)n ∑

n1,n2,n3,n4≥0

ãn1 b̃n2 c̃n3 d̃n4

[n1]q![n2]q![n3]q![n4]q!
f̃n(n1, n2, n3, n4; q), (9)

where ã = a/
√
1− q, b̃ = b/

√
1− q, c̃ = c/

√
1− q, d̃ = d/

√
1− q, and

f̃n(n1, . . . , nk; q) =
∑

σ∈CM(n;n1,n2,...,nk)

qcr(σ),

where CM(n;n1, n2, . . . , nk) is the set of complete matchings on [n] ] [n1] ] · · · ] [nk] such that homo-
geneous edges are contained in [n], see below for the precise definition.

A matching is a set partition of {1, 2, . . . , n} in which every block has size 1 or 2. A block of size 2 is
called an edge and a block of size 1 is called a fixed point. A complete matching is a matching without fixed
points. For a matching π we define the crossing number cr(π) to be the number of pairs (e1, e2) of blocks
e1, e2 ∈ π such that e1 = {i1, j1}, e2 = {i2, j2} with i1 < i2 < j1 < j2 or e1 = {i1, j1}, e2 = {j2} with
i1 < i2 < j1.
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For fixed integers n0, n1, n2, . . . , nk, let Si = {mi−1 + 1,mi−1 + 2, . . . ,mi} for i = 0, 1, 2, . . . , k,
where m−1 = 0 and mi = n0 + n1 + · · ·+ ni for i = 0, 1, . . . , k. We define CM(n0;n1, n2, . . . , nk) to
be the set of complete matchings π on

⋃k
i=0 Si such that if an edge of π is contained in Si, then i = 0.

We can use Theorem 4.1 to find new explicit formulas for the moments, and also explain the mixed
binomial and q-binomial coefficients. The reason is that the generating function for a crossing number of
matchings (not necessarily complete) always has such a formula.

LetM(n,m) denote the set of matchings on {1, 2, . . . , n}withm fixed points. Note thatM(n,m) = ∅
unless n ≡ m mod 2. Josuat-Vergès [10, Proposition 5.1] showed the following (see also [2, Proposi-
tion 15]): if n ≡ m mod 2, we have

∑

π∈M(n,m)

qcr(π) =
1

(1− q)(n−m)/2

∑

k≥0

((
n
n−k
2

)
−
(

n
n−k
2 − 1

))
(−1)(k−m)/2q(

(k−m)/2+1
2 )

[k+m
2

k−m
2

]

q

.

(10)
Let

P (n,m) =
∑

π∈M(n,m)

qcr(π), P (n,m) = (1− q)(n−m)/2P (n,m).

An explicit formula for f̃0(n1, . . . , nk; q) in [7, Theorem 3.2] allows one give new formulas for the
moments, which are explicit rational functions with the correct singularities.

Theorem 4.2. We have

2nµn(a, b, c, d; q) =
∑

α,β,γ,δ≥0
aαbβcγdδP (n, α+ β + γ + δ)

[
α+ β + γ + δ

α, β, γ, δ

]

q

(ad)β+γ(ac)β(bd)γ
(abcd)β+γ

,

2nµn(a, b, c, 0; q) =
∑

α,β,γ≥0
aαbβcγP (n, α+ β + γ)

[
α+ β + γ

α, β, γ

]

q

(ac)β ,

2nµn(a, b, 0, 0; q) =
∑

α,β≥0
aαbβP (n, α+ β)

[
α+ β

α

]

q

.

Theorem 4.3. We have

2nµn(a, b, c, d; q) =
n∑

k=0

((
n
n−k
2

)
−
(

n
n−k
2 − 1

)) ∑

α+β+γ+δ+2t=k

aαbβcγdδ
(ac)β(bd)γ
(abcd)β+γ

× (−1)tq(t+1
2 )
[
α+ β + γ + t

α

]

q

[
β + γ + δ + t

β, γ, δ + t

]

q

[
δ + α+ t

δ

]

q

,

in the second sum, α, β, γ, δ ≥ 0 and −k ≤ t ≤ k/2.

In Theorem 4.3, if c = 0, then γ = 0 in the sum. Thus we get Theorem 2.3.
When ac = bd = q in Theorem 4.3, the formula can be simplified and we obtain a positivity theorem

of the moments.
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Corollary 4.4. We have

2nµn(a, b, q/a, q/b; q) =

n∑

k=0

((
n
n−k
2

)
−
(

n
n−k
2 − 1

))
1

[k + 1]q

∑

|A|+|B|≤k
A+B≡k mod 2

aAbBq
k−A−B

2 ,

where the second sum is over all integers A and B such that |A| + |B| ≤ k and A + B ≡ k mod 2.
Thus [n + 1]q!2

nµn(a, b, q/a, q/b; q) is a Laurent polynomial in a and b whose coefficients are positive
polynomials in q.

Our proof of Corollary 4.4 involves hypergeometric series summations. Since the formula is simple it
will be very interesting to find a combinatorial proof of it.

Problem 1. Find a combinatorial proof of Corollary 4.4.

The Laurent polynomiality in Corollary 4.4 seems to be generalized further.

Conjecture 2. 2n[n+ i+ j − 1]q!µn(a, b, q
i/a, qj/b; q) is a Laurent polynomial in a, b and polynomial

in q with nonnegative coefficients.

5 Staircase tableaux
In this section we review the third combinatorial model, called staircase tableaux, for the moments
of Askey-Wilson polynomials. The staircase tableaux were first introduced in [5] and further stud-
ied in [4]. Using the staircase tableaux we shall find the coefficient of the first few highest terms in
2n(abcd; q)nµn(a, b, c, d; q).

A staircase tableau of size n is a filling of the Young diagram of the staircase partition (n, n−1, . . . , 1)
with α, β, γ, δ such that every diagonal cell is nonempty, all cells above an α or γ in the same column are
empty, and all cells to the left of a β or δ in the same row are empty. Here a diagonal cell is a cell in the
ith row and (n + 1 − i)th column for some i ∈ {1, 2, . . . , n}. We denote by T (n) the set of staircase
tableaux of size n.

Each empty cell s of T ∈ T (n) is labeled uniquely as follows. Here, for brevity let right(s) be the
first nonempty cell to the right of s in the same row, and below(s) the first nonempty cell below s in the
same column. If right(s) has a β, then s is labeled with u. If right(s) has a δ, then s is labeled with q. If
right(s) has an α or γ, and below(s) has an α or δ, then s is labeled with u. If right(s) has an α or γ,
and below(s) has an β or γ, then s is labeled with q. See Figure 3 for an example of a staircase tableau
and the labeling of its empty cells.

For T ∈ T (n), we define b(T ) to be the number of α’s and δ’s on the diagonal cells, and A(T ), B(T ),
C(T ),D(T ),E(T ) to be the number of α’s, β’s, γ’s, δ’s, empty cells labeled with q in T respectively. For
example, if T is the staircase tableau in Figure 3, we have b(T ) = 3, A(T ) = 2, B(T ) = 3, C(T ) = 3,
D(T ) = 3, and E(T ) = 11.

Corteel et al. [4] showed that

µn(a, b, c, d; q) =
(1− q)n

2nin
∏n−1
j=0 (αβ − γδqj)

Zn(−1;α, β, γ, δ; q), (11)
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β γ
γ α α

δ
δ γ

β

δ
β

u u β q u u γ
q γ q q α α
q q q q δ
q δ q γ

u u β
q δ
β

Fig. 3: A staircase tableau and the labeling of its empty cells.

Let
Zn(y;α,β, γ, δ; q) =

∑

T∈T (n)

yb(T )αA(T )βB(T )γC(T )δD(T )qE(T ).

Corteel et al. [4] showed that

µn(a, b, c, d; q) =
(1− q)n

2nin
∏n−1

j=0 (αβ − γδqj)
Zn(−1;α,β, γ, δ; q), (11)

where α = 1−q
(1+ai)(1+ci) ,β = 1−q

(1−bi)(1−di) , γ = ac(1−q)
(1+ai)(1+ci) , δ = bd(1−q)

(1−bi)(1−di) .

Since αβ − γδqj = (1−q)2(1−abcdqj)
(1+ai)(1+ci)(1−bi)(1−di) , we can rewrite (11) as follows.

Proposition 5.1. The Askey-Wilson moments satisfy

2n(abcd; q)nµn(a, b, c, d; q) = i−n
∑

T∈T (n)

(−1)b(T )(1− q)A(T )+B(T )+C(T )+D(T )−nqE(T )

× (ac)C(T )(bd)D(T )
(
(1 + ai)(1 + ci)

)n−A(T )−C(T )(
(1− bi)(1− di)

)n−B(T )−D(T )
.

The highest degree term appearing in Proposition 5.1 is anbncndnq(
n
2). By analyzing staircase tableaux

we obtain the coefficients of the first few highest degree terms.
Theorem 5.2. We have

[
anbncndnq(

n
2)
]
2n(abcd; q)nµn(a, b, c, d; q) = Cat

(n
2

)
,

[
an−1bncndnq(

n
2)
]
2n(abcd; q)nµn(a, b, c, d; q) = −Cat

(
n+ 1

2

)
,

[
an−1bn−1cndnq(

n
2)
]
2n(abcd; q)nµn(a, b, c, d; q) = Cat

(
n+ 2

2

)
− Cat

(n
2

)
,

where Cat(n) = 1
n+1

(
2n
n

)
if n is a nonnegative integer, and Cat(n) = 0 otherwise.
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On r-stacked triangulated manifolds
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8512, Japan
2 Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel

Abstract. The notion of r-stackedness for simplicial polytopes was introduced by McMullen and Walkup in 1971 as
a generalization of stacked polytopes. In this paper, we define the r-stackedness for triangulated homology manifolds
and study their basic properties. In addition, we find a new necessary condition for face vectors of triangulated
manifolds when all the vertex links are polytopal.

Résumé. Généralisant les polytopes simpliciaux empilés, McMullen et Walkup ont introduit en 1971 la notion de
r-empilement pour les polytopes simpliciaux. Dans cet article, nous définissons la notion de r-empilement pour les
variétés homologiques simpliciales et étudions ses propriétés élémentaires. En outre, nous donnons une nouvelle
condition pour les f -vecteurs des variétés simpliciales lorsque tous les sommets ont un lien polytopal.

Keywords: stackedness, triangulation, manifold, f -vector, face ring

1 Introduction
A triangulated d-ball is said to be r-stacked if it has no interior faces of dimension ≤ d − r − 1, and the
boundary of an r-stacked d-ball is called an r-stacked (d−1)-sphere. It is known that r-stacked d-balls and
(d − 1)-spheres with r < d

2 have many nice combinatorial properties, and they have been used to obtain
several important results on polytopes and triangulated spheres. For example, they appeared in Barnette’s
lower bound theorem [Ba1, Ba2] and in the generalized lower bound conjecture given by McMullen and
Walkup [MW]. They also appeared in the proof of the sufficiency of the famous g-theorem by Billera and
Lee [BL] (see [KlL]) as well as in the construction of many non-polytopal triangulated spheres given by
Kalai [Ka1]. The purpose of this paper is to extend this notion to triangulated manifolds, and establish
their fundamental properties.

Throughout the paper, we fix a field k. For a simplicial complex ∆ and its face F ∈ ∆, the link of F in
∆ is the simplicial complex

lk∆(F ) = {G ∈ ∆ : F ∪G ∈ ∆ and F ∩G = ∅}.

A simplicial complex ∆ of dimension d is said to be a (k-)homology d-sphere if, for all faces F ∈ ∆
(including the empty face ∅), one has βi(lk∆(F )) = 0 for i 6= d−#F and βd−#F (lk∆(F )) = 1, where

†Partially supported by KAKENHI #22740018.
‡partially supported by Marie Curie grant IRG-#270923 and by ISF grant.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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βi(∆) = dimk H̃i(∆;k) is the ith Betti number of ∆ over k. A simplicial complex is said to be pure if
all its facets have the same dimension. A (k-)homology d-manifold without boundary is a d-dimensional
pure simplicial complex all whose vertex links are k-homology spheres. A pure d-dimensional simplicial
complex ∆ is said to be a (k-)homology d-manifold with boundary if it satisfies

(i) for all ∅ 6= F ∈ ∆, βi(lk∆(F )) vanish for i 6= d−#F and is equal to 0 or 1 for i = d−#F .

(ii) the boundary ∂∆ = {F ∈ ∆ : βi(lk∆(F )) = 0} ∪ {∅} of ∆ is a k-homology (d − 1)-manifold
without boundary.

Triangulations of topological manifolds are examples of homology manifolds. Also, condition (ii) can be
omitted if we replace k by Z (see [Mi]).

We say that a homology d-manifold ∆ with boundary is r-stacked if it has no interior faces (namely,
faces which are not in ∂∆) of dimension ≤ d − r − 1. Also, a homology manifold without boundary is
said to be r-stacked if it is the boundary of an r-stacked homology manifold with boundary. We prove the
following properties for r-stacked homology manifolds.

(a) Enumerative criterion: We give a simple criterion for the r-stackedness in terms of h-vectors and
Betti numbers for homology manifolds with boundary (Theorem 3.1). Also, we give a similar result
for (r − 1)-stacked homology (d− 1)-manifolds without boundary with r ≤ d

2 when all the vertex
links are polytopal (Corollary 5.5). In particular, these results prove that r-stackedness depends
only on face numbers and Betti numbers for these manifolds.

(b) Vanishing of Betti numbers and missing faces: We show that if a homology manifold (with or
without boundary) is r-stacked, then it has zero Betti numbers and no missing faces in certain
dimensions (Corollary 3.2 and Theorem 4.4).

(c) Uniqueness of stacked manifolds: For an (r − 1)-stacked (d − 1)-manifold ∆ without boundary,
it is shown that if r ≤ d

2 then there is a unique (r − 1)-stacked homology manifold Σ such that
∂Σ = ∆ (Theorem 4.2).

(d) Local criterion: For r < d
2 , we show that a homology (d − 1)-manifold without boundary is

(r − 1)-stacked if and only if all its vertex links are (r − 1)-stacked (Theorem 4.6).

(e) The g̃-vector — a new necessary condition for face vectors: Motivated by a recent conjecture given
by Bagchi and Datta, we define the g̃-vector of a simplicial complex ∆, and show that it is an
M -vector if ∆ is an (r − 1)-stacked homology (d − 1)-manifolds without boundary when r ≤ d

2 .
Moreover, regardless of stackedness, we show that the same result holds for connected orientable
rational homology manifolds all whose vertex links are polytopal (Theorem 5.4).

Most of the results listed above are natural extensions of known results for triangulated balls and spheres.
However their proofs are not straightforward and we believe that these properties are useful in the study of
face numbers of triangulated manifolds. Indeed, the results about the g̃-vector prove a refinment of [BD2,
Conjecture 1.6] for orientable homology manifolds all whose vertex links are polytopal.

About (c) and (d), the same results were proved independently by Bagchi and Datta [BD3, Theorem
2.19] with essentially the same proof. Their results also prove vanishing of missing faces in (b).



On r-stacked triangulated manifolds 215

This paper is organized as follows. In Section 2, we recall basic properties of h′- and h′′-vectors which
play an important role in the study of face numbers of homology manifolds. In Section 3, we study r-
stacked homology manifolds with boundary. In Sections 4 and 5, we study r-stacked homology manifolds
without boundary and consider the g̃-vector. Some of the proofs are omitted from this extended abstract,
for space limit, and can be found in the full version of this paper, at math arXiv:1209.0868.

2 h′- and h′′-vectors
In this section, we recall h′- and h′′-vectors and their algebraic meanings. We first recall some basics
on simplicial complexes. A simplicial complex ∆ on the vertex set V is a collection of subsets of V
satisfying that F ∈ ∆ and G ⊂ F imply G ∈ ∆. Elements of ∆ are called faces of ∆ and subsets
of V which are not faces of ∆ are called non-faces of ∆. The maximal faces of ∆ (with respect to
inclusion) are called the facets of ∆ and the minimal non-faces of ∆ are called the missing faces of ∆.
The dimension of a face (or a missing face) F is #F − 1, where #X denotes the cardinality of a finite
set X , and a face (or a missing face) of dimension k is called a k-face (or a missing k-face). Also, the
dimension of a simplicial complex is the maximum dimension of its faces. For a simplicial complex ∆
of dimension d − 1, let fk = fk(∆) be the number of k-faces of ∆ for k = −1, 0, . . . , d − 1, where
f−1 = 1. The vector f(∆) = (f−1, f0, . . . , fd−1) is called the f -vector of ∆. Also, the h-vector
h(∆) = (h0(∆), h1(∆), . . . , hd(∆)) of ∆ is defined by the relation

d∑

i=0

hi(∆)ti =
d∑

i=0

fi−1(∆)ti(1− t)d−i.

Now we define h′- and h′′-vectors. For a simplicial complex ∆ of dimension d − 1, its h′-vector
h′(∆) = (h′0(∆), . . . , h′d(∆)) and its h′′-vector h′′(∆) = (h′′0(∆), . . . , h′′d(∆)) are defined by

h′i(∆) = hi(∆)−
(
d

i

) i−1∑

k=1

(−1)i−kβk−1(∆)

for i = 0, 1, . . . , d, and by

h′′i (∆) = hi(∆)−
(
d

i

) i∑

k=1

(−1)i−kβk−1(∆) = h′i(∆)−
(
d

i

)
βi−1(∆)

for i = 0, 1, . . . , d− 1 and h′′d(∆) = h′d(∆). Note that

h′′d(∆) = h′d(∆) =
∑d
`=0(−1)`−df`−1 −

∑d−1
k=0(−1)d−kβk−1(∆) = βd−1(∆).

If one knows the Betti numbers of ∆, then knowing h(∆) is equivalent to knowing h′(∆) (or h′′(∆)).
h′- and h′′-vectors have nice algebraic meanings in terms of Stanley–Reisner rings. Let S = k[x1, . . . , xn]

be a polynomial ring over a field k with deg xi = 1 for all i. For a simplicial complex ∆ on [n] =
{1, 2, . . . , n}, the Stanley–Reisner ring of ∆ is the quotient ring

k[∆] = S/I∆
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where I∆ = (xi1 · · ·xik : {i1, . . . , ik} 6∈ ∆). If ∆ has dimension d − 1 and k is infinite, there is a
sequence Θ = θ1, . . . , θd ∈ S1 of linear forms such that dimk(S/(I∆ + (Θ))) < ∞. This sequence Θ
is called a linear system of parameters (l.s.o.p. for short) of k[∆]. In the rest of this paper, we always
assume that k is infinite.

A simplicial complex ∆ of dimension d− 1 is said to be Cohen–Macaulay (over k) if, for all F ∈ ∆,
H̃i(lk∆(F );k) vanishes for i 6= d− 1−#F . Note that any Cohen–Macaulay simplicial complex is pure.
A pure simplicial complex is said to be Buchsbaum (over k) if all its vertex links are Cohen–Macaulay.
Homology manifolds are examples of Buchsbaum simplicial complexes.

Let m = (x1, . . . , xn) be the graded maximal ideal of S. For a graded S-module N , let FN (t) =∑
i∈Z(dimkNi)t

i be the Hilbert Series of N , where Ni is the graded component of N of degree i, and
let Soc(N) = {f ∈ N : mf = 0} be the socle of N . The following results shown in [Sc, p. 137] and
[NS1, Theorem 3.5] give algebraic meanings of h′- and h′′-vectors.

Lemma 2.1 Let ∆ be a Buchsbaum simplicial complex of dimension d− 1, Θ = θ1, . . . , θd an l.s.o.p. of
k[∆] and R = S/(I∆ + (Θ)). Then

(i) (Schenzel) FR(t) = h′0(∆) + h′1(∆)t+ · · ·+ h′d(∆)td.

(ii) (Novik–Swartz) dimk(Soc (R))i ≥
(
d
i

)
βi−1(∆) for all i. In particular, there is an ideal N ⊂

Soc(R) such that FR/N (t) = h′′0(∆) + h′′1(∆)t+ · · ·+ h′′d(∆)td.

In the rest of this section, we study the relation between the vanishing of h′′-numbers and missing faces.
For a homogeneous ideal I ⊂ S, let µk(I) be the number of elements of degree k in a minimal generating
set of I , namely, µk(I) = dimk(I/mI)k. Since missing faces of ∆ correspond to the minimal generators
of I∆, µk(I∆) is equal to the number of missing (k − 1)-faces of ∆.

Lemma 2.2 Let I ⊂ S be a homogeneous ideal, w ∈ S1 a linear form and k ≥ 2 an integer. If the
multiplication ×w : (S/I)k−1 → (S/I)k is injective then µk(I) = µk(I + (w)).

Proof: It is clear that µk(I) ≥ µk(I + (w)) for k ≥ 1 even without injectivity assumption. We show
µk(I) ≤ µk(I + (w)). Let σ1, . . . , σt ∈ I be elements of degree k which are linearly independent in
I/mI . What we must prove is that they are also linearly independent in (I + (w))/m(I + (w)).

Let τ = λ1σ1 + · · ·+λtσt ∈ m(I+ (w)), where λ1, . . . , λt ∈ k. We claim τ ∈ mI . Indeed, if τ 6∈ mI
then there are ρ′ ∈ mI and ρ′′ 6∈ I such that τ = ρ′ + wρ′′, which implies ρ′′ is in the kernel of the
multiplication map ×w : (S/I)k−1 → (S/I)k, contradicting the assumption. 2

Lemma 2.3 For a homogeneous ideal I ⊂ S, if (S/I)j = 0 for some j ≥ 0 then µk(I) = 0 for k ≥ j+1.

Proof: Since (S/I)j = 0, we have Ik = mk for k ≥ j. Thus µk(I) = µk(m) = 0 for j ≥ k + 1. 2

The following statement appears in [Sc, Corollary 2.5 and Theorem 4.3].

Lemma 2.4 (Schenzel) Let ∆ be a Buchsbaum simplicial complex of dimension d − 1, R = k[∆], Θ =
θ1, . . . , θd an l.s.o.p. of k[∆], and let K(i) be the kernel of

×θi : R/(θ1, . . . , θi−1)R→ R/(θ1, . . . , θi−1)R.

Then dimkK(i)j =
(
i−1
j

)
βj−1(∆) for all i and j.



On r-stacked triangulated manifolds 217

Proposition 2.5 Let ∆ be a Buchsbaum simplicial complex of dimension d− 1. If h′′r (∆) = 0 then

(i) βk(∆) = 0 for k ≥ r.

(ii) ∆ has no missing faces of dimension ≥ r + 1.

Proof: Let Θ be an l.s.o.p. of k[∆]. Since h′′r (∆) = 0, by Lemma 2.1(ii) all elements in S/(I∆ + (Θ)) of
degree r are contained in the socle of S/(I∆ + (Θ)). This fact implies

S/(I∆ + (Θ))k = 0 for all k ≥ r + 1. (1)

Then since dimk(S/(I∆ + (Θ)))k ≥
(
d
k

)
βk−1(∆) by Lemma 2.1(ii), we have βk(∆) = 0 for k ≥ r,

proving (i). Moreover, this fact and Lemmas 2.2 and 2.4 show µk(I∆) = µk(I∆ + (Θ)) for k ≥ r + 1.
Since S/(I∆ + (Θ))r+1 = 0 by (1), the statement (ii) follows from Lemma 2.3. 2

3 Stacked manifolds with boundary
In this section, we study r-stacked manifolds with boundary. Recall that a homology d-manifold with
boundary is said to be r-stacked if it has no interior faces of dimension ≤ d− r − 1 and that a homology
manifold without boundary is said to be r-stacked if it is the boundary of an r-stacked homology manifold
with boundary. For a simplicial complex ∆ of dimension d− 1, let

gi(∆) = hi(∆)− hi−1(∆)

for i = 0, 1, . . . , d.

Enumerative criterion
It is known that a homology ball ∆ is (r − 1)-stacked if and only if hr(∆) = 0. See [Mc, Proposition
2.4]. We first extend this property for stacked manifolds.

Let ∆ be a homology (d − 1)-manifold with boundary. Then the Dehn–Sommerville relations for
homology manifolds with boundary [Gr, Corollary 2.2] say

gi(∂∆) = hi(∆)− hd−i(∆) +
(
d
i

)
(−1)d−1−iχ̃(∆), (2)

where χ̃(∆) =
∑d−1
k=−1(−1)kfk(∆) is the reduced Euler characteristic. By substituting hd−i(∆) =

h′′d−i(∆) +
(
d
i

)∑d−i
k=1(−1)d−i−kβk−1(∆) and χ̃(∆) =

∑d−1
k=0(−1)kβk(∆) in (2), we obtain

gi(∂∆) = hi(∆)− h′′d−i(∆) +
(
d
i

)∑d−1
k=d−i(−1)d−1−i−kβk(∆). (3)

Theorem 3.1 Let 1 ≤ r ≤ d and let ∆ be a homology (d − 1)-manifold with boundary. Then ∆ is
(r − 1)-stacked if and only if h′′r (∆) = 0.

Proof: We first prove that ∆ is (r − 1)-stacked if and only if gi(∂∆) = hi(∆) for all i ≤ d− r. Indeed,
it is clear that ∆ is (r − 1)-stacked if and only if fi(∂∆) = fi(∆) for all i ≤ d − r − 1. Consider the
equations

d∑

i=0

fi−1(∆)ti =
d∑

i=0

hi(∆)ti(t+ 1)d−i (4)
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and

d−1∑

i=0

fi−1(∂∆)ti =
∑d−1
i=0 hi(∂∆)ti(t+ 1)d−i−1 (5)

=
∑d−1
i=0 hi(∂∆){ti(t+ 1)d−i − ti+1(t+ 1)d−(i+1)}.

By comparing the coefficients of the polynomials in (4) and (5), we conclude that fi(∂∆) = fi(∆) for
i ≤ d− r − 1 if and only if hi(∂∆)− hi−1(∂∆) = hi(∆) for all i ≤ d− r.

We first prove the ‘if’ part. Suppose h′′r (∆) = 0. Then we have h′′k(∆) = 0 for all k ≥ r, as h′′(∆)
is an M -sequence by Lemma 2.1(ii). Also, βr(∆) = · · · = βd−1(∆) = 0 by Proposition 2.5. Then the
Dehn–Sommerville relation (3) shows

gi(∂∆) = hi(∆)

for all i ≤ d− r, as desired.
Next, we prove the ‘only if’ part. Suppose gi(∂∆) = hi(∆) for all i ≤ d− r. The Dehn–Sommerville

relations (3) imply

h′′d−i(∆) = −
(
d

i

)
βd−i(∆) +

(
d

i

) d−1∑

k=d−i+1

(−1)d−1−i−kβk(∆) (6)

for all i ≤ d − r. We show by induction on i that βd−i(∆) = 0 and h′′d−i(∆) = 0 for i ≤ d − r: The
claim is clear for i = 0 by (6). For i > 0, by induction the second summand on the right-hand side of (6)
vanish. Thus h′′d−i(∆) = −

(
d
i

)
βd−i(∆). Since h′′-vectors and Betti numbers are non-negative we have

h′′d−i(∆) = βd−i(∆) = 0. 2

Vanishing of missing faces
If ∆ is an (r − 1)-stacked triangulated ball then ∆ is Cohen–Macaulay and hr(∆) = 0. These facts
and Lemmas 2.2 and 2.3 say that ∆ has no missing faces of dimension ≥ r (another proof of this fact
was given in [BD3, Lemma 2.10]). Proposition 2.5 and Theorem 3.1 prove an analogue of this fact for
manifolds.

Corollary 3.2 Let ∆ be an (r − 1)-stacked homology manifold with boundary. Then

(i) βk(∆) = 0 for k ≥ r.

(ii) ∆ has no missing k-faces of dimension ≥ r + 1.

Finally, we give a few known examples of stacked manifolds.

Example 3.3 (Kühnel–Lassmann construction [Kü, KüL]) Let Kd,n be the simplicial complex on [n]
generated by the facets

{{i, i+ 1, . . . , i+ d− 1} : i = 1, 2, . . . , n},
where i + k means i + k − n if i + k > n. If n ≥ 2d − 1 then Kd,n is a homology manifold whose
boundary triangulates either S1 × Sd−3 or a non-orientable Sd−3-bundle over S1 depending on the
parity of d [KüL]. Since the interior faces of Kd,n are those containing one of {i, i + 1, . . . , i + d − 2}
for i = 1, 2, . . . , n, the simplicial complex Kd,n is 1-stacked and has the h′′-vector (1, n− d, 0, . . . , 0).
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Example 3.4 (Klee–Novik construction [KN]) Let X = {x1, . . . , xd} and Y = {y1, . . . , yd} be dis-
joint sets. For integers 0 ≤ i ≤ d − 2, let Bd,i be the simplicial complex on the vertex set X ∪ Y
generated by the facets

{{z1, . . . , zd} : zi ∈ {xi, yi} and #{k : {zk, zk+1} 6⊂ X and {zk, zk+1} 6⊂ Y } ≤ i}.

The simplicial complex Bd,i is a combinatorial manifold whose boundary triangulates Si × Sd−i−2 and
its h′′-vector is given by h′′k(Bd,i) =

(
d
k

)
for k ≤ i and h′′i+1(Bd,i) = 0 [KN, Proposition 5.1]. In

particular, these triangulated manifolds are i-stacked by Theorem 3.1.

Remark 3.5 If ∆ is an (r − 1)-stacked triangulated ball then ∆ has no missing r-faces. However, an
(r − 1)-stacked homology manifold with boundary could have missing r-faces. Indeed, the simplicial
complex K4,7 in Example 3.3 is 1-stacked but has a missing face {1, 4, 7}.

4 Stacked manifolds without boundary
In Sections 4 and 5, we study (r − 1)-stacked (d − 1)-manifolds without boundary with r ≤ d

2 . In this
section, we study these manifolds from combinatorial viewpoints.

Uniqueness of stacked manifolds
A homology d-manifold ∆ with boundary is said to be a (k-)homology d-ball if H̃k(∆;k) = 0 for all k
and ∂∆ is a (k-)homology (d− 1)-sphere. For a simplicial complex ∆ on [n], let

∆(r) = {F ⊂ [n] : skelr(F ) ⊂ ∆},

where skelr(F ) = {G ⊂ F : #G ≤ r + 1} is the r-skeleton of F . This simplicial complex can be
defined algebraically. For a homogeneous ideal I ⊂ S, let I≤k be the ideal generated by all elements in I
of degree ≤ k. Then it is easy to see that (I∆)≤r+1 = I∆(r).

For an (r−1)-stacked homology (d−1)-sphere ∆, it was shown by McMullen [Mc, Theorem 3.3] (for
polytopes) and by Bagchi and Datta [BD1, Proposition 2.10] (for triangulated spheres) that an (r − 1)-
stacked homology d-ball Σ satisfying ∂Σ = ∆ is unique. Moreover, the following result was shown in
[BD1, Corollary 3.6] (for polytopes) and in [MN, Lemma 2.1 and Theorem 2.3] (for homology spheres)
by a different approach.

Lemma 4.1 Let 1 ≤ r ≤ d+1
2 and ∆ an (r − 1)-stacked homology (d − 1)-sphere. If Σ is an (r − 1)-

stacked homology d-ball with ∂Σ = ∆ then Σ = ∆(r − 1).

Proof: Observe that Σ has no missing faces of dimension ≥ r (see the discussion before Corollary 3.2).
Then we have IΣ = (IΣ)≤r. Since Σ and ∆ have the same (d− r)-skeleton and r − 1 ≤ d− r, we have
(IΣ)≤r = (I∆)≤r. Hence

IΣ = (IΣ)≤r = (I∆)≤r = I∆(r−1),

which implies Σ = ∆(r − 1). 2

The following is an extension of Lemma 4.1.

Theorem 4.2 Let 1 ≤ r ≤ d
2 and ∆ an (r − 1)-stacked homology (d− 1)-manifold without boundary. If

Σ is an (r − 1)-stacked homology d-manifold with ∂Σ = ∆ then Σ = ∆(r).
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Proof: Since Σ is (r − 1)-stacked, by Corollary 3.2(ii), Σ has no missing faces of dimension ≥ r + 1,
namely, IΣ = (IΣ)≤r+1. Then the statement follows in the same way as in the proof of Lemma 4.1. 2

Remark 4.3 We cannot replace ∆(r) by ∆(r − 1) in Theorem 4.2 by the same reason as in Remark 3.5.
Similarly, the statement fails when r = d+1

2 .

Vanishing of missing faces
It was shown by Kalai [Ka2, Proposition 3.6] and Nagel [Na, Corollary 4.6] that if ∆ is an (r − 1)-
stacked homology (d − 1)-sphere and r ≤ d

2 then ∆ has no missing k-faces for r ≤ k ≤ d − r (they
write statements only for polytopes but this fact for homology spheres follows from Nagel’s proof since
an (r − 1)-stacked homology (d − 1)-sphere with r ≤ d

2 has the weak Lefschetz property and satisfies
hr−1 = hr). This fact can be generalized as follows.

Theorem 4.4 Let 1 ≤ r < d
2 and let ∆ be an (r − 1)-stacked homology (d − 1)-manifold without

boundary. Then

(i) βk(∆) = 0 for r ≤ k ≤ d− 1− r.

(ii) ∆ has no missing k-faces with r + 1 ≤ k ≤ d− r.

Proof: Let Σ be an (r − 1)-stacked homology d-manifold with ∂Σ = ∆. Since Σ and ∆ have the same
(d− r)-skeleton, we have βi(∆) = βi(Σ) for i < d− r and µj(I∆) = µj(IΣ) for j ≤ d− r + 1. Then
the statement follows from Corollary 3.2. 2

Remark 4.5 Lemma 4.1 and the above proof give another proof for the fact that if r ≤ d
2 and if ∆ is an

(r − 1)-stacked homology (d− 1)-sphere then ∆ has no missing k-faces for r ≤ k ≤ d− r.

Local criterion
Next, we discuss a local criterion of stackedness. We say that a homology d-manifold without boundary
is locally r-stacked if all its vertex links are r-stacked. It is clear from the definition that if a homology
manifold ∆ is r-stacked then it is locally r-stacked. It was shown by Kalai [Ka2, Proposition 3.5] that if
r < d

2 then the converse holds for the boundary of a simplicial d-polytope. This property can be extended
as follows:

Theorem 4.6 Let 1 ≤ r < d
2 . Then a homology (d− 1)-manifold without boundary is (r − 1)-stacked if

and only if it is locally (r − 1)-stacked.

Proof: The ‘only if’ part is obvious. The proof of the ‘if’ part is similar to that of [Mc, Theorem 5.3],
however, for space limit, it is omitted. 2

Remark 4.7 Theorem 4.6 fails for r = d
2 . Indeed, the join ∆ of boundaries of two r-simplices is a

(2r − 1)-sphere which is not (r − 1)-stacked but it is locally (r − 1)-stacked. Indeed, ∆ is not (r − 1)-
stacked since ∆(r− 1) is the power set of [n]. Also, ∆ is locally (r− 1)-stacked since, for every vertex v
of ∆, lk∆(v) is the boundary of the join of an (r − 1)-simplex and the boundary of an r-simplex.

Remark 4.8 Theorems 4.2 (for r < d
2 ), 4.4(ii) and 4.6 were also proved independently by Bagchi and

Datta [BD3, Theorem 2.19] with essentially the same method.
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5 New necessary condition for face numbers of manifolds
McMullen and Walkup [MW] conjectured that, for the boundary complex ∆ of a simplicial d-polytope,
one has hr−1(∆) ≤ hr(∆) for r ≤ d

2 and if equality holds for some r then ∆ is (r − 1)-stacked. This
conjecture is called the generalized lower bound conjecture (GLBC for short). The first part of the GLBC
was solved by Stanley [St1] in his proof of the necessity of the g-theorem and the second part of the
GLBC was recently proved in [MN]. Recall that a connected homology d-manifold ∆ without boundary
is said to be orientable if βd(∆) = 1. Motivated by the GLBC, Bagchi and Datta [BD2, Conjecture 1.6]
suggested the following conjecture.

Conjecture 5.1 (GLBC for triangulated manifolds) Let ∆ be a connected triangulated (d−1)-manifold
without boundary. Then

(i) hr(∆) ≥ hr−1(∆) +
(
d+1
r

)∑r
j=1(−1)r−jβj−1(∆) for r = 1, 2, . . . , bd2c.

(ii) if an equality holds for some r < d
2 in (i) then ∆ is locally (r − 1)-stacked.

Concerning part (i) of the conjecture, a similar conjecture was given by Swartz [Sw]. Moreover, it
was proved by Novik and Swartz that (i) holds for all homology manifolds all whose vertex links satisfy
certain algebraic property called the weak Lefschetz property. See [NS3, p. 270, Inequality (9)]. Also, the
conjecture is known to be true for orientable manifolds when r = 2 [NS1, Theorem 5.2].

Conjecture 5.1 suggests us to study the following invariant of simplicial complexes, which we call the
g̃-vector. For a simplicial complex ∆ of dimension d− 1, let

g̃r(∆) = hr(∆)− hr−1(∆)−
(
d+ 1

r

) r∑

j=1

(−1)r−jβj−1(∆)

for r = 0, 1, 2, . . . , bd2c, where g̃0(∆) = 1, and let g̃(∆) = (g̃0(∆), g̃1(∆), . . . , g̃b d2 c(∆)). Then Con-
jecture 5.1(i) asks if g̃k(∆) ≥ 0 for all k when ∆ is a connected triangulated manifold without boundary.
For an (r − 1)-stacked homology (d− 1)-manifold with r ≤ d

2 , its g̃-vector has the following simple but
interesting form.

Proposition 5.2 Let 1 ≤ r ≤ d
2 and let ∆ be an (r − 1)-stacked homology d-manifold with boundary.

Then g̃i(∂∆) = h′′i (∆) for i ≤ d
2 .

Proof: Since ∆ and ∂∆ have the same bd2c-skeleton, βk−1(∆) = βk−1(∂∆) for k ≤ d
2 , and, as shown in

the proof of Theorem 3.1,
gi(∂∆) = hi(∆)

for i ≤ d
2 . Subtracting

(
d+1
i

)∑i
j=1(−1)i−jβj−1(∆) from the above equation, we obtain the desired

equation. 2

Recall that a vector h = (h0, h1, . . . , ht) ∈ Zt+1 is said to be an M -vector if there is a standard graded
k-algebra A such that hk = dimkAk for k = 0, 1, . . . , t. Lemma 2.1(ii) shows that, in Proposition
5.2, g̃(∂∆) is not only a non-negative vector but also an M -vector. It is natural to ask if g̃(∂∆) is an
M -vector for any homology manifold without boundary. In this section, we prove that this property as
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well as Conjecture 5.1 hold for orientable homology manifolds all whose links satisfy a certain algebraic
condition described below.

We say that a homology (d − 1)-sphere ∆ on [n] has the weak Lefschetz property (WLP for short) if
there is an l.s.o.p. Θ of k[∆] = S/I∆ and a linear form w ∈ S1 such that the multiplication

× w : (S/(I∆ + (Θ)))i−1 → (S/(I∆ + (Θ)))i (7)

is injective for i ≤ d+1
2 and is surjective for i ≥ d+1

2 . Note that it is known that the boundary complex of
a simplicial polytope has the WLP over the rationals.

The following result is due to Swartz [Sw, Theorem 4.26]

Lemma 5.3 (Swartz) Let ∆ be a connected orientable homology (d− 1)-manifold without boundary on
the vertex set [n]. Suppose that all the vertex links of ∆ have the WLP. Then there is an l.s.o.p. Θ of k[∆]
and a linear form w such that the multiplication map

×w : (S/(I∆ + (Θ)))i−1 → (S/(I∆ + (Θ)))i

is surjective for all i ≥ d
2 + 1.

The main result of this section is the following.

Theorem 5.4 With the same assumptions and notation as in Lemma 5.3, let R = S/(I∆ + (Θ)) and
R′ = R/wR. Then

(i) there is an ideal J ⊂ R′ such that dimk(R′/J)i = g̃i(∆) for i ≤ d
2 . In particular, g̃(∆) is an

M -vector.

(ii) if g̃r(∆) = 0 for some r < d
2 then ∆ is locally (r − 1)-stacked.

Theorem 5.4(i) extends the result of Novik and Swartz [NS3] who proved the non-negativity of g̃-
vectors for homology manifolds all whose vertex links have the WLP, and Theorem 5.4(ii) proves that
Conjecture 5.1(ii) holds for these manifolds. In particular, Conjecture 5.1 holds for any rational orientable
homology manifold all whose vertex links are polytopal, namely, are the boundary complexes of simplicial
polytopes. It was conjectured that any homology sphere has the WLP. Thus, if this conjecture is true then
Conjecture 5.1 holds for all orientable homology manifolds.

The proof of Theorem 5.4, for space limit, is omitted.
The local criterion for stackedness and Theorem 5.4 imply the following criterion for stackedness.

Corollary 5.5 Let r < d
2 and let ∆ be a connected orientable homology (d−1)-manifold without bound-

ary. If all the vertex links of ∆ have the WLP then ∆ is (r − 1)-stacked if and only if g̃r(∆) = 0.

Proof: The ‘if’ part follows from Theorems 4.6 and 5.4. The ‘only if’ part follows from Theorem 3.1 and
Proposition 5.2. 2

We end this paper by a few questions.

Conjecture 5.6 With the same assumptions and notation as in Theorem 5.4, dimk(SocR′)r ≥
(
d+1
r

)
βr−1(∆)

for r ≤ d
2 .
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If the conjecture is true, it will give a necessary condition for h-vectors of triangulated manifolds
stronger than Theorem 5.4(i). Indeed, Conjecture 5.6 implies Theorem 5.4(i) since [NS2, Theorem 3.2]
implies

dimkR
′
r = dimkRr − dimk(R/Soc(R))r−1 = h′r − h′′r−1 = g̃r +

(
d+ 1

r

)
βr−1

for i ≤ d
2 . For (r− 1)-stacked homology (d− 1)-manifolds without boundary with r ≤ d

2 , the conjecture
follows from Lemma 2.1(ii) by taking (Θ, w) for ∆ to be a general l.s.o.p. of k[Σ], where Σ is the (r−1)-
stacked homology manifold with ∂Σ = ∆. The conjecture also holds for triangulations of the product of
spheres (under the WLP assumption) since the ideal J in Theorem 5.4 is concentrated in a single degree
in this case.

Question 5.7 Is it true that if ∆ is a homology (2k− 1)-manifold without boundary such that g̃k(∆) = 0
then ∆ is (k − 1)-stacked?

A similar question was raised by Novik–Swartz [NS1, Problem 5.3] when k = 2. However, we do not
have an answer even for this case.
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Abstract. An action on order ideals of posets considered by Fon-Der-Flaass is analyzed in the case of posets arising
from minuscule representations of complex simple Lie algebras. For these minuscule posets, it is shown that the
Fon-Der-Flaass action exhibits the cyclic sieving phenomenon, as defined by Reiner, Stanton, and White. A uniform
proof is given by investigation of a bijection due to Stembridge between order ideals of minuscule posets and fully
commutative Weyl group elements. This bijection is proven to be equivariant with respect to a conjugate of the
Fon-Der-Flaass action and an arbitrary Coxeter element.

If P is a minuscule poset, it is shown that the Fon-Der-Flaass action on order ideals of the Cartesian product P × [2]
also exhibits the cyclic sieving phenomenon, only the proof is by appeal to the classification of minuscule posets and
is not uniform.

Résumé. Une action sur des idéaux d’ordre d’ensembles partiellement ordonnés, qui ont été considérés par Fon-Der-
Flaass, est analysée dans le cas des ensembles ordonnés qui proviennent des représentations minuscules d’algèbres
de Lie simples complexes. À propos de ces ensembles ordonnés minuscules, il est démontré que l’action Fon-Der-
Flaass offre le phénomène du crible cyclique, tel que défini par Reiner, Stanton et White. Une preuve uniforme est
donnée par une étude d’une bijection due à Stembridge entre les idéaux d’ordre d’ensembles ordonnés minuscules et
les éléments complètement commutatifs du groupe de Weyl. Il est démontré que cette bijection est équivariante en ce
qui concerne un conjugué de l’action Fon-Der-Flaass et un élément de Coxeter arbitraire.

Si P est un ensemble ordonné minuscule, il est démontré que l’action Fon-Der-Flaass sur des idéaux d’ordre du
produit cartésien P × [2] manifeste le phénomène du crible cyclique aussi, mais la preuve de se fait est par appel à la
classification des ensembles ordonnés minuscules et n’est pas uniforme.

Keywords: order ideals, antichains, minuscule posets, minuscule representations, fully commutative elements, cyclic
sieving phenomenon

1 Introduction
The Fon-Der-Flaass action on order ideals of a poset has been the subject of extensive study since it was
introduced in its original form on hypergraphs in Duchet (1974). In this extended abstract of Rush and Shi
(2012), we identify a disparate collection of posets characterized by properties from representation theory
– the minuscule posets – that exhibits consistent behavior under the Fon-Der-Flaass action. We illustrate
the commonality via the cyclic sieving phenomenon of Reiner et al. (2004), which provides a unifying
framework for organizing combinatorial data on orbits arising from cyclic actions.

If P is a poset, and J(P ) is the set of order ideals of P , partially ordered by inclusion, the Fon-Der-
Flaass action Ψ maps an order ideal I ∈ J(P ) to the order ideal Ψ(I) whose maximal elements are the
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minimal elements of P \ I . Since Ψ is invertible, it generates a cyclic group 〈Ψ〉 acting on J(P ), but the
orbit structure is not immediately apparent.

In Reiner et al. (2004), Reiner, Stanton, and White observed many situations in which the orbit structure
of the action of a cyclic group 〈c〉 on a finite set X may be predicted by a polynomial X(q) ∈ Z[q].

Definition. The triple (X,X(q), 〈c〉) exhibits the cyclic sieving phenomenon if, for any integer d, the
number of elements x in X fixed by cd is obtained by evaluating X(q) at q = ζd, where n is the order of
c on X and ζ is any primitive nth root of unity.

In the case when X = J(P ) and c is the Fon-Der-Flaass action, the natural generating function to
consider is the rank-generating function for J(P ), which we denote by J(P ; q). Here the rank of an order
ideal I ∈ J(P ) is given by the cardinality |I| (so that J(P ; q) :=

∑
I∈J(P ) q

|I|).
The minuscule posets are a class of posets arising in the representation theory of Lie algebras that enjoy

some astonishing combinatorial properties. We give some background.
Let g be a complex simple Lie algebra with Weyl group W and weight lattice Λ. There is a natural

partial order on Λ called the root order in which one weight µ is considered to be smaller than another
weight ω if the difference ω − µ may be expressed as a positive linear combination of simple roots. If
λ ∈ Λ is dominant and the only weights occuring in the irreducible highest weight representation V λ are
the weights in the W -orbit Wλ, then λ is called minuscule, and the restriction of the root order to the set
of weights Wλ (which is called the weight poset) has two alternate descriptions:

• Let WJ be the maximal parabolic subgroup of W stabilizing λ, and let W J be the set of minimum-
length coset representatives for the parabolic quotient W/WJ . Then there is a natural bijection

W J −→ Wλ
w 7−→ w0wλ

(where w0 denotes the longest element of W ), and this map is an isomorphism of posets between
the strong Bruhat order on W restricted to W J and the root order on Wλ.

• Let P be the poset of join-irreducible elements of the root order on Wλ. Then P is called the
minuscule poset for λ, P is ranked, and there is an isomorphism of posets between the weight poset
and J(P ).

If P is minuscule, Proctor showed (Proctor (1984), Theorem 6) that P enjoys what Stanley calls the
Gaussian property (cf. Stanley (2012), Exercise 25): There exists a function f : P → Z such that, for all
positive integers m,

J(P × [m]; q) =
∏

p∈P

1− qm+f(p)+1

1− qf(p)+1
.

This may be verified case-by-case, but it follows uniformly from the standard monomial theory of
Lakshmibai, Musili, and Seshadri, as is shown in Proctor (1984). Furthermore, all Gaussian posets are
ranked, and if P is Gaussian, we may take f to be the rank function of P .

Thus, for all positive integers m, we are led to consider the triple (X,X(q), 〈Ψ〉), where X = J(P ×
[m]), X(q) = J(P × [m]; q), and P is any minuscule poset. We are at last ready to state the first two of
our main results, answering a question of Reiner.
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Theorem 1.1. Let P be a minuscule poset. If m = 1, (X,X(q), 〈Ψ〉) exhibits the cyclic sieving phe-
nomenon.

Theorem 1.2. Let P be a minuscule poset. If m = 2, (X,X(q), 〈Ψ〉) exhibits the cyclic sieving phe-
nomenon.

It turns out that the claim analogous to Theorems 1.1 and 1.2 is false for m = 3; computations per-
formed by Kevin Dilks(i) reveal that when m = 3 and P is the minuscule poset [3] × [3], the triple
(X,X(q), 〈Ψ〉) does not exhibit the cyclic sieving phenomenon. However, if P belongs to the third in-
finite family of minuscule posets (see the classification at the end of the introduction), the same triple
exhibits the cyclic sieving phenomenon for all positive integers m. This was proved in Rush and Shi
(2011) but is omitted here. The rest of this introduction is devoted to a discussion of Theorems 1.1 and
1.2 and a brief summary of our approach to their proofs.

It should be noted that several special cases of Theorem 1.1 already exist in the literature. When P
arises from a Lie algebra with root system of type A, for instance, Theorem 1.1 reduces to a result of
Stanley (2009) coupled with Theorem 1.1(b) in Reiner et al. (2004), and it is recorded as Theorem 6.1 in
Striker and Williams (2012). The case when the root system is of type B turns out to be handled almost
identically, and it is recorded as Corollary 6.3 in Striker and Williams (2012). That being said, our theorem
is a generalization of these results, and, in relating Theorem 1.1 to a known cyclic sieving phenomenon
for finite Coxeter groups (Theorem 1.6 in Reiner et al. (2004)), we expose the Fon-Der-Flaass action to
new algebraic lines of attack.

If P is a finite poset, it is shown in Cameron and Fon-Der-Flaass (1995) that the Fon-Der-Flaass action
Ψ may be expressed as a product of the involutive generators {tp}p∈P for a larger group acting on the
poset of order ideals J(P ). For all p ∈ P and I ∈ J(P ), tp(I) is obtained by toggling I at p, so that tp(I)
is either the symmetric difference I∆{p}, if this forms an order ideal, or just I , otherwise. In Striker and
Williams (2012), Striker and Williams named this group the toggle group.

On the other hand, there is a natural labeling of the elements of a minuscule poset P by the Coxeter
generators S = {s1, s2, . . . , sn} for the Weyl group W , which is given in Stembridge (1996). In partic-
ular, if P is a minuscule poset, there exists a labeling of P such that the linear extensions of the labeled
poset (which is called a minuscule heap) index the reduced words for the fully commutative element of
W representing the topmost coset w0WJ . This labeling is illustrated in Figure 2 and explained more
thoroughly in section 5. It has the following important properties.

First, it realizes the poset isomorphism J(P ) ∼= W J explicitly. Given an order ideal I ∈ J(P ) and a
linear extension (x1, x2, . . . , xt) of the partial order restricted to the elements of I , if the corresponding
sequence of labels is (i1, i2, . . . , it), define φ(I) to be sit · · · si2si1 . Then the map φ : J(P )→W J is an
order-preserving bijection.

Second, it indicates a correspondence between Coxeter elements in W and sequences of toggles in
G(P ): The choice of a linear ordering on the Coxeter generators S = (si1 , . . . , sin) yields a choice of the
following.

• An element t(i1,...,in) in the toggle group that executes the following sequence of toggles: first
toggle at all elements of P labeled by sin , in any order; then toggle at all elements of P labeled
by sin−1

, in any order;...; then toggle at all elements of P labeled by si2 , and, finally, toggle at all
elements of P labeled by si1 , and

(i) Computed using code in the computer algebra package Maple. The authors also thank Dilks for allowing them the use of his
code for subsequent computations.
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• A Coxeter element c = si1si2 · · · sin−1
sin in the Weyl group, which acts on cosets W/WJ by left

translation (i.e., c(wWJ) = cwWJ ), and thus also acts on W J .

The theorems that reduce Theorem 1.1 to the cyclic sieving result of Reiner et al. (2004) are as follows.

Theorem 1.3. For any minuscule poset P and any ordering of S = (si1 , . . . , sin), the actions Ψ and
t(i1,...,in) are conjugate in G(P ).

Theorem 1.4. For any minuscule poset P and any ordering of S = (si1 , . . . , sin), if
φ : J(P )→W J is the isomorphism described above, then the following diagram is commutative:

J(P )
φ−→ W J

t(i1,...,in) ↓ c ↓
J(P )

φ−→ W J .

To see that these theorems suffice to demonstrate Theorem 1.1, we quote Theorem 1.6 from Reiner
et al. (2004).

Theorem 1.5 (Reiner et al. (2004), Theorem 1.6). Let W be a finite Coxeter group; let S be the set of
Coxeter generators, and let J be a subset of S. LetW J be the set of minimum-length coset representatives,
and let W J(q) =

∑
w∈WJ ql(w), where l(w) denotes the length of w. If c ∈ W is a regular element in

the sense of Springer (1974), then (W J ,W J(q), 〈c〉) exhibits the cyclic sieving phenomenon.

In Theorem 1.5, if W J is a distributive lattice, then the length function l also serves as a rank function,
so W J(q) is the rank-generating function. Furthermore, if c is a Coxeter element of W , then c ∈ W is
regular (cf. Springer (1974)).

Overviews of the proofs of Theorem 1.3 and Theorem 1.4 are given in section 6; sections 2, 3, 4,
and 5 provide the requisite background. We did not manage to adapt the techniques developed in these
sections for the proof of Theorem 1.2, so we appealed to the classification of minuscule posets, from
which Theorem 1.2 follows after generating function calculations. Proofs (with details suppressed) may
be found in Rush and Shi (2012). Full proofs are available in Rush and Shi (2011).

We close the introduction with a description of the three infinite families and two exceptional cases of
minuscule posets and the root systems associated to the Lie algebras from which they arise. The following
facts are well-known (cf. for instance, Stembridge (1994)).

• For the root systems of the form An, there are n possible minuscule weights, which lead to n
associated minuscule posets, namely, all those posets of the form [j] × [n + 1 − j] such that 1 ≤
j ≤ n. Posets of this form are considered to comprise the first infinite family.

• For the root systems of the form Bn, there is 1 possible minuscule weight, which leads to 1 asso-
ciated minuscule poset, namely, [n] × [n]/S2. Posets of this form are considered to comprise the
second infinite family.

• For the root systems of the form Cn, there is 1 possible minuscule weight, which leads to 1 asso-
ciated minuscule poset, namely, [2n − 1]. Posets of this form already belong to the first infinite
family.
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• For the root systems of the form Dn, there are 3 possible minuscule weights, which, because two
of the minuscule weights lead to the same minuscule poset, only lead to 2 associated minuscule
posets, namely, [n− 1]× [n− 1]/S2 and Jn−3([2]× [2]). Posets of the latter form are considered
to comprise the third infinite family (it should be clear that posets of the former form already belong
to the second infinite family).

• For the root system E6, there are 2 possible minuscule weights, which, because both minuscule
weights lead to the same minuscule poset, only lead to 1 associated minuscule poset, namely,
J2([2]× [3]). This poset is called the first exceptional case.

• For the root system E7, there is 1 possible minuscule weight, which leads to 1 associated minuscule
poset, namely, J3([2]× [3]). This poset is called the second exceptional case.

No other root systems admit minuscule weights.

2 The Fon-Der-Flaass Action
In this section, we introduce and analyze the Fon-Der-Flaass action.

Let P = (X,<) be a partially ordered set, and let J(P ) be the set of order ideals of P , partially
ordered by inclusion. Following the notation of Cameron and Fon-Der-Flaass (1995), for all order ideals
I ∈ J(P ), let

Z(I) = {x ∈ I : y > x =⇒ y /∈ I},
and let

U(I) = {x /∈ I : y < x =⇒ y ∈ I}.
Then the Fon-Der-Flaass action, which we denote by Ψ, is defined as follows.

Definition 2.1. For all I ∈ J(P ), Ψ(I) is the unique order ideal satisfying Z(Ψ(I)) = U(I).

Remark 2.2. It is clear from Definition 2.1 that Ψ permutes the order ideals of P .

Fig. 1: An orbit of order ideals under the Fon-Der-Flaass action

This definition of the Fon-Der-Flaass action is global. We now give an equivalent definition that decom-
poses it into a product of local actions, which are more easily understood. Recall from the introduction
that for all p ∈ P and I ∈ J(P ), we let tp : J(P ) → J(P ) be the map defined by tp(I) = I \ {p} if
p ∈ Z(I), tp(I) = I ∪ {p} if p ∈ U(I), and tp(I) = I otherwise. The following theorem is equivalent to
Lemma 1 in Cameron and Fon-Der-Flaass (1995).

Theorem 2.3. LetP be a poset. For all linear extensions (p1, p2, . . . , pn) ofP and order ideals I ∈ J(P ),
Ψ(I) = tp1tp2 · · · tpn(I).
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The group G(P ) := 〈tp〉p∈P is named the toggle group in Striker and Williams (2012). Note that for
all x and y, the generators tx and ty commute unless x and y share a covering relation.

In the case that the poset P is ranked, it is natural to consider the linear extensions label the elements of
P by order of increasing rank. For the purposes of this paper, we shall say that P is ranked if there exists
an integer-valued function r on X (called the rank function) such that r(p) = 0 for all minimal elements
p ∈ X and, for all x, y ∈ X , if x covers y, then r(x)− r(y) = 1.

If P is a ranked poset, let the maximum value of r be R. For all 0 ≤ i ≤ R, let Pi = {p ∈ P : r(p) =
i}, and let ti =

∏
p∈Pi tp. We see that ti is always well-defined because, for all i, tx and ty commute for

all x, y ∈ Pi. By Theorem 2.3, Ψ = t0t1 · · · tR. Note that ti and tj commute for all |i − j| > 1. The
following theorem is also a result of Cameron and Fon-Der-Flaass (1995).

Theorem 2.4. For all permutations σ of {0, 1, . . . , R}, Ψσ := tσ(0)tσ(1) · · · tσ(R) is conjugate to Ψ in
G(P ).

Corollary 2.5. The action Ψσ has the same orbit structure as Ψ for all σ.

Let teven =
∏
i even ti, and let todd =

∏
i odd ti. It should be clear that teven and todd are well-defined, and

it follows from Theorem 2.4 that teventodd is conjugate to Ψ in G(P ), as noted in the second paragraph
of section 4 in Cameron and Fon-Der-Flaass (1995). This means that the action of toggling at all the
elements of odd rank, followed by toggling at all the elements of even rank, is conjugate to the Fon-Der-
Flaass action in the toggle group. As we shall see, this holds the key to demonstrating that the induced
action of every Coxeter element of W on J(P ) under φ is conjugate to the Fon-Der-Flaass action as
well. Striker and Williams made use of the same argument to obtain the conjugacy of promotion and
rowmotion (their name for the Fon-Der-Flaass action) in section 6 of Striker and Williams (2012), so it
should be no surprise that our induced actions reduce to promotion in types A and B. In this sense, our
proof of Theorem 1.1 may be considered to be a continuation of their work.

3 Minuscule Posets
In this section, we introduce the primary objects of study for this paper – the minuscule posets. We begin
with some notation, following Stembridge (1994). Let g be a complex simple Lie algebra; let h be a
Cartan subalgebra; choose a set Φ+ of positive roots α in h∗, and let ∆ = {α1, α2, . . . , αn} be the set
of simple roots. Let (·, ·) be the inner product on h∗, and, for each root α, let α∨ = 2α/(α, α) be the
corresponding coroot. Finally, let Λ = {λ ∈ h∗ : α ∈ Φ→ (λ, α∨) ∈ Z} be the weight lattice.

For all 1 ≤ i ≤ n, let si be the simple reflection corresponding to the simple root αi, and let W =
〈si〉1≤i≤n be the Weyl group of g. If s is conjugate to a simple reflection si in W , we refer to s as an
(abstract) reflection.

Let V be a finite-dimensional representation of g. For each λ ∈ Λ, let

Vλ = {v ∈ V : h ∈ h =⇒ hv = λ(h)v}

be the weight space corresponding to λ, and let ΛV be the (finite) set of weights λ such that Vλ is nonzero.
Recall that there is a standard partial order on Λ called the root order defined to be the transitive closure
of the relations µ < ω for all weights µ and ω such that ω − µ is a simple root.

Definition 3.1. The weight poset QV of the representation V is the restriction of the root order on Λ to
ΛV .
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If V is irreducible, QV has a unique maximal element, which is called the highest weight of V . This
leads to the following definition.

Definition 3.2. Let V be a nontrivial, irreducible, finite-dimensional representation of g. V is a minuscule
representation if the action of W on ΛV is transitive. In this case, the highest weight of V is called the
minuscule weight.

Theorem 3.3. If V is minuscule, the weight poset QV is a distributive lattice.

Definition 3.4. If V is minuscule, let PV be the poset of join-irreducible elements of the weight poset
QV , so that PV is the unique poset satisfying J(PV ) ∼= QV . Then PV is the minuscule poset of V , and
posets of this form comprise the minuscule posets.

Remark 3.5. If V is a minuscule representation and λ is the highest weight of V , we refer to PV as the
minuscule poset for λ.

4 Bruhat Posets
In this section, we develop the framework for the proofs of Theorems 1.3 and 1.4. We begin by discussing
the Bruhat posets. Then we establish the connection between these objects and the weight posets of
minuscule representations.

We continue with the notation of the previous section. Given a Weyl group W , we define a length
function l on the elements of W as follows. For all w ∈W , we let l(w) be the minimum length of a word
of the form si1si2 . . . si` such that w = si1si2 . . . si` and sij is a simple reflection for all 1 ≤ j ≤ `. This
allows us to introduce a well-known partial order on W , known as the (strong) Bruhat order, for which
l also serves as a rank function. The Bruhat order is defined to be the transitive closure of the relations
w <B sw for all Weyl group elements w and (abstract) reflections s satisfying l(w) < l(sw).

We are herein concerned not with the Bruhat order on W , but with the restrictions of the Bruhat order
to parabolic quotients of W , for these are the orders that give rise to the Bruhat posets.

Definition 4.1. If J is a subset of {1, 2, . . . , n}, then WJ := 〈si〉i∈J is the parabolic subgroup of W
generated by the corresponding simple reflections, and W J := W/WJ is the parabolic quotient.

It is well-known that each coset in W J has a unique representative of minimum length, so the quotient
W J may be regarded as the subset of W containing only the minimum-length coset representatives. This
fact facilitates the definition of an analogous partial order on W J .

Definition 4.2. The Bruhat order <B on the parabolic quotient W J is the restriction of the Bruhat order
on W to W J . Posets of the form (W J , <B) comprise the Bruhat posets.

We may also define the left (weak) Bruhat order on W to be the transitive closure of the relations
w <L sw for all Weyl group elements w and simple reflections s satisfying l(w) < l(sw). The analogous
partial order on W J is defined in precisely the same way: (W J , <L) is the restriction of (W,<L) to the
minimum-length coset representatives W J . While the left Bruhat order is not necessary to establish the
connection between the minuscule posets and the Bruhat posets, we introduce it here so that our work in
this section may be compatible with the theory of fully commutative elements developed in section 5 and
exploited in section 6.

We are now ready to state the following theorem, which appears as Proposition 4.1 in Proctor (1984).
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Theorem 4.3. Let V be a minuscule representation with minuscule weight λ, and let J = {i : siλ = λ}.
Then WJ is the stabilizer of λ in the Weyl group W , and the weight poset QV is isomorphic to the Bruhat
poset (W J , <B).

Definition 4.4. The parabolic quotient W J is minuscule if WJ is the stabilizer of a minuscule weight λ.

The assumption that g be simple implies that λ is a fundamental weight. Hence if λ = ωj , then
siλ = λ for all i 6= j. It follows that if W J is minuscule, J = {1, 2, . . . , n} \ {j}, so WJ is a maximal
parabolic subgroup of W . In general, a minuscule Bruhat poset is obtained precisely when the “missing”
element of J is the index of a fundamental weight for which there exists a representation of g in which
that fundamental weight is minuscule.

We note that Bruhat posets W J provide a natural setting for identifying instances of the cyclic sieving
phenomenon because they come equipped with a group action, namely that of W , and a rank-generating
function W J(q) :=

∑
w∈WJ ql(w), which is what motivated us to consider them in the first place. We

now turn our attention to the labeling of the minuscule poset PV and the construction of the isomorphism
φ : J(PV )→W J , which lie behind the proofs of Theorems 1.3 and 1.4.

5 Fully Commutative Elements
In this section we borrow from Stembridge’s theory of fully commutative elements of Weyl groups. In the
next section, we shall see how the theory enables us to characterize the relationship between the action of
the Weyl group on the elements of these lattices and the action of the toggle group on the order ideals of
the corresponding minuscule posets.

Definition 5.1. Let W be a Weyl group, and let S = {s1, s2, . . . , sn} be the set of Coxeter generators.
An element w ∈ W is fully commutative if every reduced word for w can be obtained from every other
by means of commuting braid relations only (i.e., via relations of the form sjsj′ = sj′sj for commuting
Coxeter generators sj and sj′ ).

Given a fully commutative element w, we can define a labeled poset Pw that generates all the reduced
words of w in the sense that putting labels in the place of poset elements gives a bijection between the
linear extensions of Pw and the reduced words of w.

Definition 5.2. Let si1si2 · · · si` be a reduced word for w. Let Pw = ({1, 2, . . . , `}, <) be a partially
ordered set, where the partial order on {1, 2, . . . , `} is defined to be the transitive closure of the relations
j > j′ for all j < j′ in integers such that sij and sij′ do not commute. Then Pw is the heap of w, and, for
all 1 ≤ j ≤ `, sij is the label of the heap element j ∈ Pw. An example is given in Figure 2.

Let L(Pw) := {π : π(1) ≥ π(2) ≥ . . . ≥ π(`)} be the set of reverse linear extensions of Pw, and let
L(Pw, w) be the set of labeled reverse linear extensions of Pw, i.e.,

L(Pw, w) := {siπ(1)
siπ(2)

· · · siπ(`)
: π ∈ L(Pw)}.

As alluded to above, the set L(Pw, w) is significant for the following reason.

Proposition 5.3 (Stembridge (1996), Proposition 2.2). L(Pw, w) is the set of reduced words for w in W .

It follows from Proposition 5.3 that, if w is fully commutative, the heaps of the reduced words for w are
all equivalent, so we may refer to the heap of w unambiguously. This is also noted in Stembridge (1996).
The crucial claim is the next theorem.
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s1

s2

s2

s3

s3

s4

Fig. 2: If W is the Weyl group arising from the root system A4, then the element w := s3s2s4s1s3s2 is fully
commutative, and the heap Pw is as displayed above.

Theorem 5.4. Let w ∈ W be fully commutative. Then J(Pw) ∼= {x ∈ W : x ≤L w} is an isomorphism
of posets.

We are now ready to define the bijection between J(Pw) and {x ∈ W : x ≤L w}. Given an order
ideal I ∈ J(Pw), let ρ be a linear extension of Pw such that ρ(j) ∈ I for all 1 ≤ j ≤ |I| and ρ(j) /∈ I
otherwise.

Theorem 5.5. The association

I 7−→ siρ(|I|) · · · siρ(2)siρ(1) .

defines a bijection
φ : J(Pw) −→ {x ∈W : x ≤L w}

Remark 5.6. The choice of the symbol φ to denote this map is deliberate, for when the heap Pw is
minuscule (see Definition 6.1), φ is the map described in the introduction.

The following theorem demonstrates the relevance of the theory of fully commutative elements to our
main results.

Theorem 5.7 (Stembridge (1996), Theorems 6.1 and 7.1). If W J is minuscule, then the following three
claims hold:

(i) If w ∈W J , w is fully commutative;

(ii) (W J , <L) is a distributive lattice;

(iii) (W J , <B) = (W J , <L).

6 The Main Results
In this section, we present an overview of our proofs of Theorems 1.3 and 1.4. We start with the following
definition and subsequent theorem.

Definition 6.1. IfW J is minuscule, andwJ0 is the longest element ofW J , then the heap PwJ0 is minuscule,
and heaps of this form comprise the minuscule heaps.

Theorem 6.2. Let V be a minuscule representation of a complex simple Lie algebra g with minuscule
weight λ and Weyl group W . If S = {s1, s2, . . . , sn} is the set of Coxeter generators and WJ is the
maximal parabolic subgroup stabilizing λ, then the following claims hold:
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(i) If wJ0 is the longest element of W J , then the poset {x ∈ W : x ≤L wJ0 } and the lattice (W J , <L)
are identical, and, furthermore, the minuscule heap PwJ0 and the minuscule poset PV are isomor-
phic as posets.

(ii) The isomorphism φ : J(PwJ0 ) → {x ∈ W : x ≤L wJ0 } ∼= (W J , <L) ∼= (W J , <B) defined in
Definition 5.5 satisfies the following property: For all 1 ≤ k ≤ n, the induced action of the Coxeter
generator sk on J(PwJ0 ) in the toggle group G(PwJ0 ) may be expressed in the form

∏

p∈P
wJ0

p is labeled by sk

tp.

Example 6.3. In the case when the root system is A4 and the minuscule weight is ω2, Figure 3 shows the
minuscule heap Ps3s2s4s1s3s2 (on the left) and the corresponding Bruhat poset (W J , <B) (on the right).
If I is the order ideal encircled by the solid line, then φ(I) is the coset representative encircled by the solid
line, and

∏
p∈Ps3s2s4s1s3s2 is labeled by s2 tp(I) is the order ideal encircled by the dotted line. Furthermore,

φ(
∏
p∈Ps3s2s4s1s3s2 is labeled by s2 tp(I)) = s2φ(I) is the coset representative encircled by the dotted line,

thus illustrating the statement (ii) in Theorem 6.2.

s1

s2

s2

s3

s3

s4

(a)

s2

e

s3s2

s4s3s2

s1s2

s1s3s2

s4s1s3s2s2s1s3s2

s2s4s1s3s2

s3s2s4s1s3s2

(b)

Fig. 3: The map φ sends the indicated order ideals to the indicated coset representatives.

We omit the proof of Theorem 6.2, but we will list the three crucial lemmas. For all 1 ≤ k ≤ n,
let Ck be the set of all heap elements labelled by sk, and let t′k be the toggle group element defined by
t′k =

∏
p∈Ck tp. From section 5, we know that Ck is totally ordered, and, by definition of PwJ0 , no two

elements of Ck share a covering relation, so it follows that t′k is well-defined for all k. The three lemmas
are as follows:

Lemma 6.4. The order ideal t′k(I) disagrees with I on at most one vertex of PwJ0 .

Lemma 6.5. There exists an element p0 ∈ P such that p0 ∈ Z(I) if and only if skw is not reduced. In
this case, if sil(skw)

· · · si2si1 is a reduced word for skw, then sksil(skw)
· · · si2si1 is a reduced word for

w, and φ(I \ {p0}) = sil(skw)
· · · si2si1 .
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Lemma 6.6. There exists an element p0 ∈ P such that p0 ∈ U(I) if and only if skw is reduced and
skw ∈ W J . In this case, if sil(w)

· · · si2si1 is a reduced word for w, then sksil(w)
· · · si2si1 is a reduced

word for skw, and φ(I ∪ {p0}) = sksil(w)
· · · si2si1 .

Theorem 1.4 is a direct consequence of Theorem 6.2. We proceed to our overview of the proof of
Theorem 1.3.

6.1 Proof Overview for Theorem 1.3
Let PV be a minuscule poset, and again label each element of PV by the label of the corresponding
element of PwJ0 . Theorem 6.2 embeds the Weyl group W as a subgroup of the toggle group G(PV ). In
light of Theorem 1.4, since the Coxeter elements are known to be pairwise conjugate in W , it suffices
to exhibit a particular ordering S = (si1 , si2 , . . . , sin) such that t(i1,i2,...,in) = t′i1t

′
i2
· · · t′in is conjugate

to Ψ in G(PV ). However, in section 2, we saw that teventodd is conjugate to Ψ in G(PV ). It suffices to
show that there exists an ordering (si1 , si2 , . . . , sin) such that the toggle group elements t′i1t

′
i2
· · · t′in and

teventodd are equal.
The crucial lemmas are the following:

Lemma 6.7 (Stanley (2012), Exercise 25(b)). If P is a minuscule poset, then P is a ranked poset.

Lemma 6.8 (Björner and Brenti (2005), Chapter 1, Exercise 4). If W is the Weyl group of a complex
simple Lie algebra g, then the Dynkin diagram of the associated root system is acyclic and therefore
bipartite.

Let r be the rank function for PV . From these lemmas, we note that if p, p′ ∈ PV and r(p) ≡ r(p′)
(mod 2), then tp and tp′ commute inG(PV ). Let Sodd be the set of all k such that sk is a simple reflection
and the rank of p is odd for all vertices p ∈ PwJ0 labelled by sk. Similarly, let Seven be the set of all k′ such
that sk′ is a simple reflection and the rank of p is even for all vertices p ∈ PwJ0 labelled by sk′ . It follows
that teventodd =

∏
k′∈Seven

t′k′
∏
k∈Sodd

t′k.
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Abstract. Generalizing the notion of a vexillary permutation, we introduce a filtration of S∞ by the number of
Edelman-Greene tableaux of a permutation, and show that each filtration level is characterized by avoiding a finite
set of patterns. In doing so, we show that if w is a permutation containing v as a pattern, then there is an injection
from the set of Edelman-Greene tableaux of v to the set of Edelman-Greene tableaux of w which respects inclusion
of shapes. We also consider the set of permutations whose Edelman-Greene tableaux have distinct shapes, and show
that it is closed under taking patterns.

Résumé. Généralisant la notion d’une permutation vexillaire, nous introduisons une filtration de S∞ par le nombre
de tableaux d’Edelman-Greene d’une permutation, et nous montrons que chaque niveau de la filtration se caractérise
par un ensemble fini des motifs exclus. Ce faisant, nous montrons que si w est une permutation qui inclut le motif v,
il existe une injection de l’ensemble des tableaux d’Edelman-Greene de v dans l’ensemble des tableaux d’Edelman-
Greene de w qui respecte l’inclusion de formes. Nous considérons aussi l’ensemble des permutations dont les tableaux
d’Edelman-Greene ont des formes distinctes, et nous montrons que c’est clos pour l’inclusion de motifs.

Keywords: Edelman-Greene correspondence, Stanley symmetric functions, Specht modules, pattern avoidance

1 Introduction
Stanley (1984) defined a symmetric function Fw depending on a permutation w, with the property that
the coefficient of x1 · · ·x` in Fw is the number of reduced words of w. Therefore if Fw =

∑
λ awλsλ is

written in terms of Schur functions, then

|Red(w)| =
∑

λ

awλf
λ, (1)

where fλ is the number of standard Young tableaux of shape λ and Red(w) the set of reduced words of
w.

Edelman and Greene (1987) gave an algorithm which realizes (1) bijectively and shows that the awλ
are nonnegative.

†The authors were supported by DMS-1101017 from the NSF.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Theorem 1.1 Given a permutation w, there is a set EG(w) of semistandard Young tableaux and a bijec-
tion

Red(w)↔ {(P,Q) : P ∈ EG(w), Q a standard tableau of shape shape(P )}. (2)

The tableauxEG(w) are those semistandard tableaux whose column word—gotten by reading up columns
starting with the leftmost—is a reduced word for w. The shapes of these tableaux precisely give the Schur
function expansion of Fw:

Fw =
∑

P∈EG(w)

sshape(P ). (3)

Stanley also characterized those w for which Fw is a single Schur function, or equivalently for which
|EG(w)| = 1. These are the vexillary permutations, those avoiding the pattern 2143. Our main results
can be viewed as generalizations of this characterization. The first main theorem shows that EG(w) is
well-behaved with respect to pattern containment.

Theorem 1.2 Let v, w be permutations with w containing v as a pattern. There is an injection ι :
EG(v) ↪→ EG(w) such that if P ∈ EG(v), then shape(P ) ⊆ shape(ι(P )). Moreover, if P , P ′ have the
same shape, so do ι(P ), ι(P ′).

An immediate corollary is that the sets {w ∈ ⋃n≥0 Sn : |EG(w)| ≤ k} respect pattern containment,
in the sense that if |EG(w)| ≤ k and w contains v, then |EG(v)| ≤ k. Our second main result is a sort of
converse.

Definition 1.3 Given a positive integer k, a permutation w ∈ Sn is k-vexillary if |EG(w)| ≤ k.

Theorem 1.4 For each integer k ≥ 1, there is a finite set Vk of permutations such that w is k-vexillary if
and only if w avoids all patterns in Vk.

Stembridge (2001) gives a criterion for the product of Schur functions sλsµ to be multiplicity-free,
i.e. a sum of distinct Schur functions, which Thomas and Yong (2010) generalize by answering the
analogous question for Schubert classes on Grassmannians. Call a permutation w multiplicity-free if Fw
is multiplicity-free. Theorem 1.2 shows that the set of multiplicity-free w is closed under patterns.

Theorem 1.5 If a permutation w contains the pattern v, and w is multiplicity-free, then so is v.

We have not been able to prove that the property of being multiplicity-free is equivalent to avoiding a
finite set of patterns. However, an explicit computation shows that if w in S12 is not multiplicity-free, then
w properly contains a pattern v which is not multiplicity-free.

Conjecture 1 A permutation w is multiplicity-free if and only if w avoids every non-multiplicity-free
pattern in Sm for m ≤ 11.

In Section 2, we recall the connection between Stanley symmetric functions and the representation
theory of the symmetric group, along with the Lascoux-Schützenberger recurrence for computing Stanley
symmetric functions. We also recall the definitions of pattern avoidance and containment. Section 3
introduces the notion of a James-Peel tree for a general diagram, following James and Peel (1979). In
Section 4, we specialize these ideas to permutation diagrams, with the Lascoux-Schützenberger tree as a
key tool, and prove Theorem 1.2. In Section 5 we analyze in more detail the relationship between |EG(w)|
and |EG(v)| for v a pattern in w, and prove Theorem 1.4. Section 6 is devoted to open problems.
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2 Background
2.1 Permutation patterns
We first recall the definitions of pattern avoidance and containment for permutations.

Definition 2.1 Let v, w be two permutations. We say w contains v ∈ Sm if there are i1 < · · · < im such
that v(j) < v(k) if and only if w(ij) < w(ik). If w does not contain v, it avoids v. Often we say that w
contains or avoids the pattern v.

Example 2.2 The permutation 2513764 contains the patterns 2143 (e.g. as the subsequence 2174) and
23154. It avoids 1234.

2.2 Specht modules
Our proof of Theorem 1.2 goes via the representation theory of Sn, specifically the interpretation of Fw
as the Frobenius character of a certain Specht module, which we discuss next.

Definition 2.3 A diagram is a finite subset of N× N.

We refer to the elements of a diagram as cells. The diagrams of greatest interest for us will be permu-
tation diagrams (sometimes called Rothe diagrams, from Rothe (1800)). Given w ∈ Sn, define

D(w) = {(i, w(j)) : 1 ≤ i < j ≤ n,w(i) > w(j)}. (4)

We’ll draw D(w) using matrix coordinates:

D(42153) =

◦ ◦ ◦ × ·
◦ × · · ·
× · · · ·
· · ◦ · ×
· · × · ·

Members of a diagram will be represented by ◦. We’ll often augment D(w) by adding × at the points
(i, w(i)).

A filling of a diagram D is a bijection T : D → {1, . . . , n}, where n = |D|. There is a natural left
action of Sn on fillings of D by permuting entries. The row group R(T ) of a filling T is the subgroup of
Sn consisting of permutations σ which act on T by permuting entries within their row; the column group
C(T ) is defined analogously. The Young symmetrizer of a filling T is an element of C[Sn], defined by

cT =
∑

p∈R(T )

∑

q∈C(T )

sgn(q)qp. (5)

Definition 2.4 Given a diagram D and a choice of filling T , the Specht module SD is the Sn-module
C[Sn]cT , where n = |D|. The Schur function sD of D is the Frobenius characteristic of SD.

The isomorphism type of SD is independent of the choice of T , and is also unaffected by permuting
rows or columns of D.
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Definition 2.5 If a diagram D is gotten from a diagram D′ by permuting rows and columns, say D and
D′ are equivalent, and write D ' D′. This includes inserting or deleting empty rows and columns.

Over C, the Specht modules of partition diagrams form complete sets of irreducible Sn-representations:
see Sagan (2001) or Fulton (1997). In general, it is an open problem to find a reasonable combinatorial
algorithm for decomposing SD into irreducibles. The Littlewood-Richardson rule handles the case where
D is a skew shape, and Reiner and Shimozono (1998) and Liu (2009) treat other classes of diagrams.

Definition 2.6 Given two diagrams D1, D2, where D1 ⊆ [r]× [c], define their product D1 ·D2 to be the
diagram

D1 ∪ {(i+ r, j + c) : (i, j) ∈ D2}.
One can check that sD1·D2

= sD1
sD2

. We will use this operation in Section 3.

2.3 Stanley symmetric functions
The Stanley symmetric function of a permutation w of length ` is

Fw =
∑

a∈Red(w)

∑

i

xi1xi2 · · ·xi` , (6)

where for each a ∈ Red(w), i runs over all integer sequences 1 ≤ i1 ≤ · · · ≤ i` such that ij < ij+1 if
aj > aj+1.

Write Dt for the transpose of D. For a permutation w, let 1m × w = 12 · · ·m(w(1) + m)(w(2) +
m) · · · . The results of Billey et al. (1993) show that Fw = limm→∞S1m×w−1 , where Sv is a Schubert
polynomial. Theorem 31 in Reiner and Shimozono (1995b) and Theorem 20 in Reiner and Shimozono
(1998) then imply the following result, which is also implicit in Kraśkiewicz (1995).

Theorem 2.7 For any permutation w, Fw = sD(w)t = sD(w−1),

Stanley symmetric functions can be decomposed into Schur functions using a recursion introduced in
Lascoux and Schützenberger (1985). Given a permutation w, let r be maximal with w(r) > w(r + 1).
Then let s > r be maximal with w(s) < w(r). Let tij denote the transposition (i j), and define

T (w) = {wtrstrj : `(wtrstrj) = `(w)}; (7)

or, if the set on the right-hand side is empty, set T (w) = T (1×w) where 1×w = 1(w(1)+1)(w(2)+1) · · ·
in one-line notation. The members of T (w) are called transitions of w. The Lascoux-Schützenberger tree
(L-S tree for short) is the finite rooted tree of permutations with root w where the children of a vertex v
are:

• None, if v is vexillary (avoids 2143).

• T (v) otherwise.

Monk’s rule for Schubert polynomials and the identity Fw = limm→∞S1m×w−1 lead to the recurrence
Fw =

∑
v∈T (w) Fv. This, together with the finiteness of the Lascoux-Schützenberger tree and Stanley’s

result that Fv is a Schur function exactly when v is vexillary, imply that

Fw =
∑

v

sshape(v)t , (8)



Permutation patterns, Stanley symmetric functions, and the Edelman-Greene correspondence 241

or equivalently
sD(w) =

∑

v

sshape(v), (9)

where v runs over the leaves of the Lascoux-Schützenberger tree, and shape(v) denotes the partition
whose shape is equivalent to D(v). Here we use the fact that D(v) is equivalent to a partition diagram if
and only if v is vexillary.

Remark 2.8 The reduced words of 1 × w are exactly those of w with all letters shifted up by 1, so the
same is true of the tableaux in EG(1× w) compared to the tableaux in EG(w). In particular, the shapes
are the same and Fw = F1×w. Since the Lascoux-Schützenberger tree is finite, there is some m such that
in constructing the tree for 1m × w, we never need to make the replacement of v by 1× v. Thus we will
ignore this possible step in what follows.

3 James-Peel moves
Let D be a diagram. Given two positive integers a, b, let Ra→bD be the diagram which contains a cell
(i, j) if and only if one of the following cases holds:

• i 6= a, b and (i, j) ∈ D.

• i = b, and either (a, j) ∈ D or (b, j) ∈ D.

• i = a, and (a, j), (b, j) ∈ D.

That is, Ra→bD is gotten by moving cells in row a to row b if the appropriate position is empty. Similarly,
we define Cc→dD by moving cells of D in column c to column d if possible.

The operators Ra→b and Cc→d were introduced in James and Peel (1979), so we will call them James-
Peel moves. The next theorem uses James-Peel moves to find irreducible factors inside SD, and can be
viewed as a generalization of Pieri’s rule.

Definition 3.1 A subset D′ of a diagram D is a subdiagram if it is the intersection of some rows and
columns with D. That is, there are sets X,Y ⊆ N such that D′ = (X × Y ) ∩D.

Let δp denote the partition (p− 1, p− 2, . . . , 1).

Theorem 3.2 Suppose D contains δp · (1) as a subdiagram in rows α(1) < · · · < α(p) and columns
β(1) < · · · < β(p). There is a filtration

0 =M0 ⊆M1 ⊆ · · · ⊆Mp = SD

of SD by S|D|-submodules such that for each 1 ≤ j ≤ p, there is a surjection

Mj/Mj−1 � SRα(p)→α(p−j+1)Cβ(p)→β(j)D.

The case p = 1 of Theorem 3.2 is Theorem 2.4 of James and Peel (1979). Theorem 3.2 is valid over
any field, but for convenience, we will work over C. In this case, complete irreducibility of Sn-modules
gives an inclusion

p⊕

j=1

SRα(p)→α(p−j+1)Cβ(p)→β(j)D ↪→ SD.
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Example 3.3 Take

D =
• ◦ • · ·
• ◦ · · ·
· ◦ · ◦ •

' D(4317256).

The subdiagram δ2 · (1) appears in rows 1, 2, 3 and columns 1, 3, 5, and is shaded in the picture above.
Then

R3→3C5→1D =
• ◦ • ·
• ◦ · ·
• ◦ · ◦

R3→2C5→3D =
• ◦ • ·
• ◦ • ◦
· ◦ · ·

R3→1C5→5D =
• ◦ • ◦ •
• ◦ · · ·
· ◦ · · ·

The second and third diagrams here are equivalent to the diagrams of the partitions (4, 3, 1) and
(5, 2, 1) respectively. Hence if D1 is the first diagram, Theorem 3.2 gives SD1 ⊕ S(4,3,1) ⊕ S(5,2,1) ↪→
SD. Another application of Theorem 3.2 to the subdiagram of D1 in rows 1, 3 and columns 3, 4 gives
S(4,2,2) ⊕ S(3,3,2) ↪→ SD1 .

In fact, both these inclusions are isomorphisms, as one can check with the Littlewood-Richardson rule
since D is equivalent to the skew shape (5, 3, 3)/(2, 1). Alternatively, one can compute the Edelman-
Greene tableaux of 4317256 and look at their (transposed) shapes:

1 2 4
2 3 5
3 6

1 2 4
2 3 5
3
6

1 2 4
2 3
3 5
6

1 2 4
2 3
3
5
6 .

Even without the conditions of Theorem 3.2, applying a James-Peel move always gives an inclusion of
Specht modules (over C).

Lemma 3.4 For any positive integers a, b, SRa→bD ↪→ SD and SCa→bD ↪→ SD.

James-Peel moves and Theorem 3.2 present one possible way to decompose a Specht module into
irreducibles. In general it is not known if an arbitrary Specht module can be decomposed by finding some
appropriate tree of James-Peel moves, as the surjections in Theorem 3.2 may be not be isomorphisms.
The way we prove Theorem 1.2 is to find such a tree for the case of D(w). The usefulness of James-
Peel moves for us comes from the fact that they are well-behaved with respect to subdiagram inclusion,
and pattern inclusion for permutations corresponds to subdiagram inclusion on the level of permutation
diagrams.

To be more precise about this, we make the following definition.

Definition 3.5 A James-Peel tree for a diagram D is a rooted tree T with vertices labeled by diagrams
and edges labeled by sequences of James-Peel moves, satisfying the following conditions:

• The root of T is D.

• If B is a child of A with a sequence JP of James-Peel moves labeling the edge A—B, then B =
JP(A).
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• If A has more than one child, these children arise as a result of applying Theorem 3.2 to A. That is,
A contains δp · (1) as a subdiagram in rows α(1) < · · · < α(p) and columns β(1) < · · · < β(p),
and each edge leading down fromA is labeledRα(p)→α(p−j+1)Cβ(p)→β(j) for some distinct values
1 ≤ j ≤ p (perhaps not all such j appear).

Theorem 3.2 and Lemma 3.4 immediately imply the following statement.

Lemma 3.6 If D has a James-Peel tree T with leaves A1, . . . , An, then
⊕

i S
Ai ↪→ SD.

Definition 3.7 A James-Peel tree T for D is complete if its leaves A1, . . . , An are equivalent to Ferrers
diagrams of partitions and SD '⊕i S

Ai .

In James and Peel (1979), an algorithm is given which constructs a complete James-Peel tree when D
is a skew shape. More generally, Reiner and Shimozono (1995a) construct a complete James-Peel tree for
any column-convex diagram: a diagram D for which (a, x), (b, x) ∈ D with a < b implies (i, x) ∈ D
for all a < i < b. In the next section we construct a complete James-Peel tree for the diagram of a
permutation, so it’s worth noting that neither of these classes of diagrams contains the other. For example,
D(37154826) is not equivalent to any column-convex or row-convex diagram, while the column-convex
diagram

◦ ◦ · ·
◦ · ◦ ·
◦ · · ◦

is not equivalent to the diagram of any permutation.
Notice that if w contains a pattern v, then D(v) is (up to reindexing) a subdiagram of D(w). Specifi-

cally, if v appears in positions i1, . . . , ik of w, then D(v) is the subdiagram of D(w) induced by the rows
i1, . . . , ik and columns w(i1), . . . , w(ik).

Let I(D) denote the multiset of partitions of n = |D| such that SD '⊕λ∈I(D) S
λ.

Lemma 3.8 Suppose D′ is a subdiagram of D and that D′ has a complete James-Peel tree. Then there
is an injection ι : I(D′) ↪→ I(D) such that if λ ∈ I(D′), then λ ⊆ ι(λ). Moreover, ι depends only on
shape, in the sense that if λ appears m times in I(D′), then ι(λ) appears at least m times in I(D′).

In particular, taking D = D(w)t and D′ = D(v)t for v a pattern in w, Lemma 3.8 together with the
equalities

sD(w−1) = Fw =
∑

P∈EG(w)

sshape(P ) (10)

will immediately imply Theorem 1.2 once we show that D(w) always has a complete James-Peel tree.
The main idea of the proof of Lemma 3.8 is to view the James-Peel tree T ′ for D′ as a James-Peel tree
T for D, via the inclusion D′ ⊆ D. One can write down an explicit formula for ι, although in general
there will be many possible choices.

Example 3.9 Take D = D(w)t where w = 4317256 as in Example 3.3, so Fw = sD(w)t = s332 +

s3311 + s3221 + s32111. Write wi = fl(w(1) · · · ŵ(i) · · ·w(n)). We give Fwi = sD(wi)t for several i,
and line up each term sλ in Fwi with the corresponding term sι(λ) in Fw, for a particular choice of ι, so
D′ = D(wi)t.
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Fw = s332 + s3311 + s3221 + s32111
Fw1 = s221 + s2111
Fw4 = s221
Fw5 = s32 + s311 + s221 + s2111

Note that if Fw is multiplicity-free, as in this example, an injection ι : I(D(v)t) ↪→ I(D(w)t) uniquely
defines an injection EG(v) ↪→ EG(w).

4 Transitions as James-Peel moves
Recall the following notation from Section 2.3. Given a permutation w, take r maximal with w(r) >
w(r + 1), then s > r maximal with w(s) < w(r). The set of transitions of w is T (w) = {wtrstrj :
`(wtrstrj) = `(w)}, or else T (1× w) if the set on the right is empty.

Upon taking diagrams of permutations, one finds that transitions correspond to certain sequences of
James-Peel moves.

Lemma 4.1 Given a permutation w, let r, s be as above and take v = wtrstrj ∈ T (w). Then

D(v) = Rr→jCw(s)→w(j)D(w) = Cw(s)→w(j)Rr→jD(w). (11)

Theorem 4.2 For a permutation w, the diagram D(w) has a complete James-Peel tree.

Proof sketch: If w has p transitions, then D(w) contains δp · (1) as a certain subdiagram. Lemma 4.1
shows that the diagrams arising from applying Theorem 3.2 to this subdiagram are, up to equivalence,
exactly the diagrams D(v) as v runs over T (w). This implies that replacing permutations by diagrams
in the Lascoux-Schützenberger tree and labeling edges with James-Peel moves according to Lemma 4.1
yields a James-Peel tree for D(w). This tree is complete because sD(w) =

∑
v sD(v) for v running over

the leaves of the L-S tree. 2

Lemma 3.8 and the discussion following it now imply Theorem 1.2.

Corollary 4.3 If a permutation w is k-vexillary and v is a pattern in w, then v is k-vexillary.

Remark 4.4 Theorem 1.2 shows the existence of an injection EG(v) ↪→ EG(w) which respects inclu-
sion of shapes for v a pattern contained in w, but an explicit map on tableaux is lacking. The Edelman-
Greene correspondence shows that this is equivalent to an injection Red(v) ↪→ Red(w) which is an
inclusion on the shapes of Edelman-Greene insertion tableaux. The characterization in Tenner (2006) of
vexillary permutations yields an explicit injection in the case where v is vexillary.

5 k-vexillary permutations
In this section we show that the property of k-vexillarity is characterized by avoiding a finite set of patterns
for any k. The key step is to remove some inessential moves from the James-Peel tree for D(w), namely
those which only permute rows or columns.

If D is an arbitrary diagram, and σ, τ are permutations, let (σ, τ)D be the diagram {(σ(i), τ(j)) :
(i, j) ∈ D}. Given a James-Peel tree T for D, let (σ, τ)T denote the James-Peel tree for (σ, τ)D gotten
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by replacing every James-Peel move Rx→y labeling an edge of T by Rσ(x)→σ(y), and every move Cx→y
by Cτ(x)→τ(y), and relabeling vertices accordingly. Whenever a move labeling an edge e of a James-Peel
tree just permutes rows or columns, we can eliminate that move from the tree at the cost of relabeling
rows and columns of James-Peel moves below e.

Definition 5.1 Given a James-Peel tree T of a diagram D, the reduced James-Peel tree red(T ) of D is
defined inductively as follows.

• If D has no children in T , then red(T ) = T .

• If D has just one child F , and D = (σ, τ)F for some σ, τ ∈ S∞, let T1 be the subtree of T below
F with root F . Then red(T ) = (σ, τ) red(T1).

• If D has at least two children F1, F2, . . . , Fp or D has one child F1 not equivalent to D, let Ti be
the subtree of T below Fi with root Fi. Then red(T ) is T with each Ti replaced by red(Ti).

Note that red(T ) is still a James-Peel tree for D. As equivalent diagrams have isomorphic Specht
modules, if T is complete then so is red(T ).
Definition 5.2 A rooted tree is bushy if every non-leaf vertex has at least two children.

If a James-Peel tree has a vertexAwith just one childB, butA andB are not equivalent, the tree cannot
be complete. This implies:

Lemma 5.3 If T is a complete James-Peel tree, then red(T ) is bushy.

A bushy tree cannot have too many more edges than leaves.

Lemma 5.4 The largest number of edges possible in a bushy tree with k leaves is 2k − 2.

Let JP (w) be the James-Peel tree forD(w) constructed in Theorem 4.2, andRJP (w) = red(JP (w)).
Suppose T is a subtree ofRJP (w) with rootD(w). LetR(T ) be the union of {a, b} over all movesRa→b
appearing in T , and C(T ) the union of {c, d} over all Cc→d appearing in T . Write R(T )∪w−1C(T ) =
{i1 < · · · < ir}, and define a permutation

wT = fl(w(i1) · · ·w(ir)).

Remark 5.5 In Section 2 we noted that, for convenience, w could be replaced by 1m × w to remove the
necessity of sometimes replacing v by 1 × v in the Lascoux-Schützenberger tree. The definition of wT
above is then an abuse of notation, since we are really taking a subsequence of 1m × w. However, rows
and columns 1, . . . ,m of D(w) are empty, so are not affected at all by the James-Peel moves in RJP (w)
or T . This means that the subsequence defining wT occurs entirely after the mth position of 1m × w, so
we are free to shift it down by m and consider it as a subsequence of w. This applies also to Theorems
5.8 and 5.9 below.

Each edge of JP (w) has a label RC for some row and column moves R,C. Some of these moves end
up being equivalences, and so are lost in RJP (w). Thus, RJP (w) has edges with labels of the form RC,
R, or C—in fact, each internal vertex always has one R-edge, one C-edge, and the remaining edges are
RC-edges. We are interested in controlling the number of letters inwT , which is at most |R(T )|+|C(T )|.
This motivates the next definition.
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Definition 5.6 A subtree T of RJP (w) with root D(w) is colorful if each non-leaf vertex of T has at
least the two children corresponding to its R-edge and its C-edge. Thus, colorful implies bushy.

Lemma 5.7 Say T is a subtree of RJP (w) rooted at D(w) with k leaves. Then k ≤ |EG(wT )| ≤
|EG(w)|. If T is colorful, then wT ∈ Sm for some m ≤ 4k − 4.

Proof sketch: Up to relabeling rows and columns to account for flattening, the tree T is a James-Peel tree
for D(wT ) (not necessarily complete), so k ≤ EG(wT ). Theorem 1.2 implies |EG(wT )| ≤ |EG(w)|.

If F is a vertex of T with p children, a careful count shows that the edge labels leading down from F
contribute at most p elements to each of |R(T )| and |C(T )|. Summing over all vertices leads to the result.
2

In particular, taking T = RJP (w) in Lemma 5.7 gives the following result.

Theorem 5.8 Any permutation w contains a pattern v ∈ Sm such that |EG(w)| = |EG(v)|, for some
m ≤ 4|EG(w)| − 4.

More generally, Lemma 5.7 lets us show that k-vexillarity is characterized by avoiding a finite set of
patterns.

Theorem 5.9 Say w is a permutation with |EG(w)| > k. Then w contains a pattern v ∈ Sm such that
|EG(v)| > k, for some m ≤ 4k.

Proof: By Lemma 5.7, it is enough to exhibit a colorful subtree of RJP (w) with k + 1 leaves. Such a
tree is not difficult to construct by choosing one edge at a time. 2

Corollary 5.10 A permutation w is k-vexillary if and only if it avoids all non-k-vexillary patterns in Sm
for 1 ≤ m ≤ 4k.

For k = 2, we can explicitly find all non-2-vexillary patterns in Sm for 1 ≤ m ≤ 8 and eliminate those
containing a smaller non-2-vexillary pattern to find a minimal list.

Theorem 5.11 A permutation w is 2-vexillary if and only if it avoids all of the following 35 patterns.

21543 231564 315264 5271436 26487153 54726183 64821537
32154 241365 426153 5276143 26581437 54762183 64872153
214365 241635 2547163 5472163 26587143 61832547 65821437
214635 312645 4265173 25476183 51736284 61837254 65827143
215364 314265 5173264 26481537 51763284 61873254 65872143

This process is also feasible for k = 3, in which case we need to look at non-3-vexillary patterns up
through S12. Here we find that the bound in Corollary 5.10 is not sharp.

Theorem 5.12 A permutation w is 3-vexillary if and only if it avoids a list of 91 patterns in S6 ∪S7 ∪S8.

Searching through all non-4-vexillary permutation in S16 is currently beyond our computational capa-
bilities. However, one does find that every non-4-vexillary permutation in S13 contains a proper non-4-
vexillary pattern.
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Conjecture 2 A permutation w is 4-vexillary if and only if it avoids a list of 2346 patterns in S6 ∪ S7 ∪
· · · ∪ S12.

Unless n is large compared to k, our pattern characterizations are less efficient for checking thatw ∈ Sn
is k-vexillary than the Lascoux-Schützenberger tree. On the other hand, pattern characterizations give an
easy way to compare theorems. As an example, the essential set Ess(w) of a permutation w is the set
of southeast corners of connected components of D(w). Fulton (1992) introduced the essential set and
showed that the rank conditions for the Schubert variety indexed by w need only be checked at cells in
the essential set. Making Ess(w) into a poset by (i1, j1) ≤ (i2, j2) if i1 ≥ i2 and j1 ≤ j2, Fulton also
showed that w is vexillary if and only if Ess(w) is a chain.

Similarly, one can check that the property that Ess(w) is a union of two chains is characterized by w
avoiding a specific set of patterns. All of these patterns turn out to be non-3-vexillary, and then Theorem
1.2 shows that if w is 3-vexillary, Ess(w) is a union of two chains.

6 Future work
We were led to Theorem 1.2 by trying to prove Lemma 3.8 for arbitrary diagrams and subdiagrams.
Lemma 3.8 holds when the subdiagram is (isomorphic to) a permutation diagram, a skew shape, or a
column-convex diagram, since these diagrams all admit complete James-Peel trees. The algorithm given
by Reiner and Shimozono in Reiner and Shimozono (1998) for decomposing Specht modules shows that
the conclusion of Lemma 3.8 also holds whenD is percent-avoiding andD′ = D∩{i : a ≤ i ≤ b}×{j :
c ≤ j ≤ d} for some a, b, c, d.

We have no simple characterizations of the lists of patterns arising from Corollary 5.10 and Theorems
5.11 and 5.12. One necessary condition for w to be non-k-vexillary but contain only k-vexillary patterns
is that every w(i) participates in some 2143 pattern. Otherwise, the ith row and w(i)th column of D(w)
are contained in or contain every other row and column, and so they do not participate in the James-Peel
moves of RJP (w). This is far from sufficient, however.

In Billey and Lam (1998), vexillary signed permutations of types B,C,D in the hyperoctahedral group
are defined as those whose Stanley symmetric function is equal to a single Schur P - or Q-function (P in
types B,D, and Q in type C), and it is shown that the vexillary signed permutations are again character-
ized by avoiding a finite set of patterns. Computer calculations show that Corollary 4.3 with k = 2 holds
in B9 for types B,C and in D8; moreover, the 2-vexillary patterns in B9 of types B,C are characterized
by avoiding sets of patterns in B3 ∪ · · · ∪ B8. The main obstacle to extending our proofs to these other
root systems is the apparent lack of an analogue of the Specht module of a diagram. In a recent preprint,
Anderson and Fulton (2012) give a different definition of vexillary permutations in types B,C,D, and
one might ask if there is a reasonable notion of k-vexillary in their setting.
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Rainbow supercharacters and a poset
analogue to q-binomial coefficients

Daniel Bragg and Nathaniel Thiem †

University of Colorado Boulder, USA

Abstract. This paper introduces a variation on the binomial coefficient that depends on a poset and interpolates
between q-binomials and 1-binomials: a total order gives the usual q-binomial, and a poset with no relations gives
the usual binomial coefficient. These coefficients arise naturally in the study of supercharacters of the finite groups of
unipotent upper-triangular matrices, whose representation theory is dictated by the combinatorics of set partitions. In
particular, we find a natural set of modules for these groups, whose characters have degrees given by q-binomials, and
whose decomposition in terms of supercharacters are given by poset binomial coefficients. This results in a non-trivial
family of formulas relating poset binomials to the usual q-binomials.

Résumé. Cet article présente une variation des coefficients binomiaux qui dépend d’un ordre partiel et qui interpole
entre les q-binômes et les 1-binômes: un ordre total donne les q-binômes habituelles, et un ordre partiel sans relations
donne les coefficients binomiaux habituelles. Ces coefficients apparaissent naturellement dans l’étude des supercar-
actères de groupes finis de matrices unipotentes, triangulaires supérieures, dont la représentation est dictée par la
théorie de la combinatoire des partitions d’ensembles. En particulier, nous trouvons un ensemble naturel de modules
pour ces groupes, dont les caractères ont des degrés donnés par les q-binômes, et dont les décompositions en termes
de supercaractères sont donnés par les coefficients binômiaux d’ordres partiels. Cela donne une famille non-trivial de
formules qui relient les binômes d’ordres partiels aux q-binômes habituelles.

Keywords: q-binomials, posets, supercharacters, set partitions

1 Introduction
The supercharacters of the finite groups of unipotent uppertriangular matrices Un have seen an increased
amount of attention in recent years. While the representation theory of these groups is well-known to be
wild, André [2] gave a way to coarsen our notion of an irreducible module in such a way the resulting
theory is much more tractable (this notion is generalized to arbitrary finite groups in [5]). More specifi-
cally, if cf(Un) is the space of class functions of Un, then André defines a subspace scf(Un) which retains
many of the nice properties enjoyed by cf(Un). Of computational importance is that while the dimension
of cf(Un) is unknown, the dimension of scf(Un) is the nth Bell number.
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At an American Institute of Mathematics workshop, the participants [1] showed that gluing all the
supercharacter theories together

scf =
⊕

n≥0
scf(Un)

gives a Hopf algebra isomorphic to the Hopf algebra of symmetric functions in noncommuting variables.
The space scf has two natural bases: one comes from the supercharacters themselves, and certain unions
of conjugacy classes (called superclasses) imposed by the supercharacters. The isomorphism in [1] relates
the superclass basis to the usual basis of monomial symmetric functions (given, for example, in [6]). While
other bases of scf have been studied (such as [3]), the supercharacter basis remains somewhat mysterious
in its relation to symmetric functions. One obstruction is that the coproduct – coming from the restriction
functor on representations – is not well-understood.

This paper studies the restriction functor on a particular family of supercharacters, which we call “rain-
bow” supercharacters. They correspond to set partitions of {1, 2, . . . , n} of the form {{1, n+2`}, {2, n+
2`− 1}, . . . , {`, `+ n+ 1}, {`+ 1}, . . . , {`+ n}} for some n, ` ∈ Z≥0, which we view as

• • • • • • • •
1 2 ` `+1 `+n `+n+1 n+2`−1 n+2`

· · · · · · · · ·

We are interested in computing the restriction of the corresponding supercharacter to the subgroup

Un ∼= U[l+1,l+n] =




Id` 0 0
0 Un 0
0 0 Id`


 ⊆ U2`+n. (1)

The restriction problem for these characters is already quite complicated. While there is a recursive
algorithm for computing the restriction [7], this algorithm does not give an obvious interpretation for the
coefficients.

The main result of this paper observes that these supercharacters in fact restrict to a space

Z≥0-span{ψ(n)
0 , ψ

(n)
1 , . . . , ψ(n)

n } ⊆ scf(Un),

spanned by a natural family of characters whose modules are easy to find. Furthermore, they have a
combinatorial decomposition in terms of supercharacters with coefficients given by a poset based gener-
alization of q-binomial coefficients. These two facts then give an easy way to compute the coefficients of
the restrictions of characters.

The methods from this paper seem to lend themselves to more general statements, and we hope these
results will extend to the general restriction problem.

2 Preliminaries
This section reviews our version of set partitions and the particular supercharacter theory that we will use
for our main results.
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2.1 Set partition combinatorics
A set partition λ of {1, 2, . . . , n} is a set of pairs i_j with 1 ≤ i < j ≤ n such that if i_j, k_l ∈ λ,
then i = k if and only if j = l. We typically refer to i_j as an arc of λ, i as the left endpoint of i_j
and j as the right endpoint of i_j. Let

Sn = {set partitions of {1, 2, . . . , n}}.

We typically view these set partitions diagrammatically as a family of arcs on a row of n nodes so that
if i_j ∈ λ, then there is an arc connecting the ith node to the jth node. For example,

λ = {1_5, 2_4, 4_6} ←→ •
1
•
2
•
3
•
4
•
5
•
6
.

We can obtain the more traditional version of set partitions as follows. For λ ∈ Sn, define the blocks
bl(λ) of λ to be the set of equivalence classes on {1, 2, . . . , n} given by the transitive closure of i ∼ j if
i_j ∈ λ. For example,

bl

(

•
1
•
2
•
3
•
4
•
5
•
6

)
= {{1, 5}, {2, 4, 6}, {3}}.

A crossing in a set-partition λ is a pair of arcs i_k, j_l ∈ λ such that i < j < k < l. A nesting in a
set partition λ is a pair of arcs i_l, j_k ∈ λ such that i < j < k < l. For λ, µ ∈ Sn, let

nstλµ = {(i_l, j_k) ∈ λ× µ | i < j < k < l}
crs(λ) = {(i_k, j_l) ∈ λ× λ | i < j < k < l}.

Define the set of noncrossing set-partitions to be

NCSn = {λ ∈ Sn | crs(λ) = ∅}.

Define a function
uncr : Sn −→ NCSn

where uncr(λ) is the unique set partition in NCSn that has the same left endpoints and the same right
endpoints as λ (in uncr(λ), the first right end-point from the left must be connected to the closest left
endpoint, etc.).

Remark 2.1 One can also obtain uncr(λ) from λ by iteratively uncrossing each crossing {i_k, j_l}
into a nesting {i_l, j_k}. Since this map changes neither the set of left endpoints nor the set of right
endpoints, the order in which we “resolve” the crossings does not matter.
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2.2 Supercharacters of Un

A supercharacter theory scf(G) of a finite group G is a subspace of the space of class functions cf(G) of
G such that scf(G) is a C-subalgebra under the two products

◦ : cf(G)⊗ cf(G) −→ cf(G)

χ⊗ ψ 7→
χ ◦ ψ : G→ C

g 7→ 1

|G|
∑

h∈G
χ(h)ψ(h−1g)

and
� : cf(G)⊗ cf(G) −→ cf(G)

χ⊗ ψ 7→ χ� ψ : G→ C
g 7→χ(g)ψ(g).

Remark 2.2 This definition gives a supercharacter theory as a special kind of S-ring. There is an alter-
nate definition by Diaconis–Isaacs [5] which stresses the partitions of G and Irr(G) that arise out of the
two distinguished bases, described below.

Every such a supercharacter theory has two distinguished bases (up to scalar multiples) given by

scf(G) = C-span{κA | A ∈ K}
= C-span{

∑

ψ∈B
ψ(1)ψ | B ∈ X},

where K is a partition of G, X is a partition of Irr(G), and for g ∈ G,

κA(g) =

{
1 if g ∈ A,
0, if g /∈ A

We typically call the blocks ofK superclasses. For each B ∈ X we choose constants cB ∈ Q>0 such that

χB = cB
∑

ψ∈B
ψ(1)ψ

is a character. The resulting χB are called supercharacters.
Let Un be the subgroup of unipotent upper-triangular matrices of the general linear group GLn(Fq)

over the finite field Fq with q elements, and let Tn ⊆ GLn(Fq) be the subgroup of diagonal matrices.
While there are many supercharacter theories of Un, we will focus on the supercharacter theory scf(Un)
obtained by the following superclasses. Let u, v ∈ Un be in the same superclass if there exist a, b ∈ Un
and t ∈ Tn such that

u = ta(v − Idn)bvt−1 + Idn.

Remark 2.3 This supercharacter theory is slightly coarser than the canonical supercharacter theory for
algebra groups given by [5], since we let Tn act by outer automorphisms on the usual algebra group
supercharacter theory.
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The dimension of scf(Un) turns out to be Bell number |Sn|. In fact, for every superclass of Un there
exists µ ∈ Sn and a distinguished element uµ in the superclass such that

(uµ)ij =

{
1, if i_j ∈ µ or i = j,
0, otherwise.

For each λ, µ ∈ Sn, the supercharacter corresponding to λ is given by

χλ(µ) = χλ(uµ) =





(q − 1)|λ−µ|qdim(λ)−|λ|(−1)|λ∩µ|

qnst
λ
µ

if i_l ∈ λ and i < j < l
implies i_j, j_l /∈ µ,

0 otherwise,
(2)

where
dim(λ) =

∑

i_j∈λ
j − i.

In particular, note that the trivial character 11 is the supercharacter associated with the empty partition
∅n ∈ Sn, and

χλ(1) = (q − 1)|λ|qdim(λ)−|λ|.

Our primary interest is in rainbow characters. That is, for `, n ∈ Z≥0, consider

χ{1_(2`+n),2_(2`+n−1),...,`_`+n+1},

and it follows from the character formula (2), that if Un is as in (1) and µ ∈ Sn, then

Res
U2`+n

Un
(χ{1_(2`+n),2_(2`+n−1),...,`_(`+n+1)})(µ) = q2(

`
2)+`(n−|µ|)(q − 1)`

= q2(
`
2)Res

U2`+n

Un
(χ`_(`+n+1) � · · · � χ`_(`+n+1)

︸ ︷︷ ︸
` terms

),

where � is the point-wise product on functions. We will therefore focus on the somewhat notationally
simpler restriction

Res
Un+2

Un
(χ1_(n+2) � · · · � χ1_(n+2)

︸ ︷︷ ︸
` terms

).

3 Poset q-Binomials
This section defines the analogue of q-binomials central to this paper. We then restrict our attention to the
particular family of posets arising from set partitions that is our focus in the next section.

3.1 A poset variation on q-binomial coefficients
Let P be a poset on n objects. Given a subset A ⊆ P , let

wt(A) =
∑

a∈A
wt(a), where wt(a) = #{b ∈ P | b �P a}.
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For n, k ∈ Z≥0, the P-binomial coefficient is
[
n

k

]

P
=
∑

S⊆P
|S|=k

qwt(S). (3)

Note that wt(a) can also be expressed in terms of the size of the upper ideal containing a.
These coefficients satisfy many recursive relations.

Proposition 3.1 Let a ∈ P , P ′ = P − {a} and A = {a′ | a′ ≺ a}. Then

[
n

k

]

P
=

k∑

j=0

(|A|
j

)
qj
(
qwt(b)

[
n− |A| − 1

k − j − 1

]

P′
+

[
n− |A| − 1

k − j

]

P′

)
.

However, perhaps the most useful one corresponds to removing some minimal element in the poset.

Corollary 3.2 Let b be a minimal element of a poset P . Let P ′ = P − {b}. Then
[
n

k

]

P
= qwt(b)

[
n− 1

k − 1

]

P′
+

[
n− 1

k

]

P′
.

Examples.

• If P is the poset with no relations on n elements, then
[
n

k

]

P
=
∑

S⊆P
|S|=k

q0 =

(
n

k

)
.

• If P is a total order (say 1 < 2 < · · · < n), then
[
n

k

]

P
=
∑

S⊆P
|S|=k

qwt(S) = q1+2+···+(k−1) ∑

1≤a1<a2<···<ak≤n
qn−a1−(k−1)+n−a2−(k−2)+···+n−ak−0 = q(

k
2)
[
n

k

]

q

.

• For the posets with nearly no relations we have
[
n

k

]

• • •
•

1 2 n−1

n

· · ·

=
∑

S⊆P
|S|=k,n∈S

qk−1 +
∑

S⊆P
|S|=k,n/∈S

qk = qk−1
((

n− 1

k − 1

)
+ q

(
n− 1

k

))
.

and
[
n

k

]

• • •
•

2 3 n

1

· · ·
=

∑

S⊆P
|S|=k,1∈S

qn−1 +
∑

S⊆P
|S|=k,1/∈S

q0 = qn−1
(
n− 1

k − 1

)
+

(
n− 1

k

)
.
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• However, note that in general
[
n
k

]
P 6=

[
n

n−k
]
P , though the coefficient sequences of the polynomial

of one is the reverse coefficient sequence of the other. That is, if

bP(n, k, r, s) =
∑

AtB={1,2,...,n}
|A|=k,|B|=n−k

rwt(A)swt(B),

then [
n

k

]

P
= bP(n, k, q, 1) and

[
n

n− k

]

P
= bP(n, k, 1, q).

3.1.1 Main example
Let λ ∈ NCSn. Since there are no crossings in λ, we can define a poset depending on λ based on whether
blocks are nested or not. Let P(λ) be the poset on bl(λ) given by a ≺ b if either

• |a| > 1 and there exist j, k ∈ a and i, l ∈ b such that i < j < k < l, or

• a = {j} and there exist i, k ∈ b such that i < j < k.

For example,

λ = •
1
•
2
•
3
•
4
•
5
•
6
•
7

gives P(λ) =

1_7

62_4_5

3

.

Note that for each λ ∈ NCSn the poset P(λ) is a forest where each connected component has a unique
maximal element. In fact, all such forests arise in this way (as n and λ vary).

We obtain a function

Sn uncr−→ NCSn P−→





forests where each
connected component has
a unique maximal element



 .

The following lemma describes a recursion on these binomial coefficients that correspond to small
changes in the arcs of the corresponding set partitions (in particular, it allows us to make arcs smaller).

Lemma 3.3 Fix 1 ≤ i < l − 1 < n. Let λ′ ∈ Sn be such that

λ = λ′ ∪ {i_l} ∈ Sn, µ = λ′ ∪ {i_(l − 1)} ∈ Sn, and ν = λ′ ∪ {i_(l − 1)_l} ∈ Sn.

Then for 0 ≤ k ≤ n− |λ|,

qnst
λ
λ

[
n− |λ|
k

]

P(uncr(λ))
= (q − 1)qnst

ν
ν

[
n− |ν|
k − 1

]

P(uncr(ν))
+ qnst

µ
µ

[
n− |µ|
k

]

P(uncr(µ))
.
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3.2 A related module for Un

Let
Uk×n =

⊔

A⊆{1,2,...,n}
|A|=k

{uA | u ∈ Un},

where uA is the submatrix of u obtained by taking only the rows indexed by A (to obtain a k×n matrix).
Note that

|Uk×n| =
[
n

k

]

T
= q(

k
2)
[
n

k

]

q

,

where T is a total order on n elements. Define

V k×n = C-span{v | v ∈ Uk×n},

which is a right module for Un under right multiplication.

Remark 3.1 These modules interpolate between the trivial module V 0×n and the regular module V n×n.

Proposition 3.4 For µ ∈ Sn, 0 ≤ k ≤ n, and u ∈ Un of superclass type µ

tr(V k×n, u) =

[
n− |µ|
k

]

T
.

For each 0 ≤ k ≤ n, there exists a injection

ιk : Uk×n −→ Un

given by ιk(u) is the unique matrix obtained by augmenting u with rows consisting of all zeroes except
for one 1. For example,

ι2

(
1 a b c d
0 0 1 e f

)
=




1 a b c d
0 1 0 0 0
0 0 1 e f
0 0 0 1 0
0 0 0 0 1



.

Let θ : u∗n −→ Un be the bijection given by

θ(γ)ij =





γ(eij) if 1 ≤ i < j < n,
1 if i = j,
0 otherwise,

where eij is the n× n matrix with a 1 in the (i, j) entry and zeroes elsewhere. Then the Un × Un-orbits
in u∗n partition Un via θ.

Let u∗n be the dual space to the Fq-vector space

un = Un − Idn.
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The superclasses of Un are parametrized by Un × Un-orbits in un. The supercharacters are parametrized
by (Un × Un) o Tn-orbits in u∗n, where the action is given by

(taγbt−1)(u− Idn) = γ(a−1t−1(u− Idn)tb−1), for a, b, u ∈ Un, t ∈ Tn and γ ∈ u∗n.

For λ ∈ Sn, let γλ ∈ u∗n be given by

γλ(u− Idn) =
∑

i_j∈λ
uij .

Then each γλ is in a different orbit of u∗n (and they therefore are orbit representatives).
For λ ∈ Sn with |λ| ≤ k, let

Uλk×n = {u ∈ Uk×n | θ−1(ιk(u)) ∈ UnγλUn}.

From our partition of Un given by

Un =
⊔

λ∈Sn
Idn + θ(UnγλUn),

we obtain a partition
Uk×n =

⊔

λ∈Sn
|λ|≤k

Uλk×n. (4)

The following lemma says how these cardinalities behave as we uncross partitions.

Lemma 3.5 Let {i _ l, j _ m} ∈ λ be a crossing with i < j < l < m and l − j maximal. Let
µ = (λ− {i_l, j_m}) ∪ {i_m, j_l}. Then

|Uλk×n| =
1

q
|Uµk×n| and qnst

λ
λ

[
n− |λ|
k − |λ|

]

P(uncr(λ))
χλ(1) =

1

q
qnst

µ
µ

[
n− |µ|
k − |µ|

]

P(uncr(µ))
χµ(1).

We can now give a representation theoretic interpretation for the P-binomials when P is a forest.

Proposition 3.6 For 0 ≤ k ≤ n and λ ∈ Sn with |λ| ≤ k,

|Uλk×n| = qnst
λ
λ

[
n− |λ|
k − |λ|

]

P(uncr(λ))
χλ(1).

Observing that the Uλk×n decompose Uk×n, we obtain the following corollary that will be a key step in
connecting the poset binomial coefficients to supercharacters.

Corollary 3.7 For 0 ≤ k ≤ n,

∑

λ∈Sn
qnst

λ
λ

[
n− |λ|
k − |λ|

]

P(uncr(λ))
χλ(1) =

[
n

k

]

T
,

where T is a total order on n elements.
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4 Decomposition in terms supercharacters of Un
Corollary 3.7 suggests a possible decomposition for the character of the module V k×n into supercharac-
ters. Let

ψ
(n)
k =

∑

λ∈Sn
qnst

λ
λ

[
n− |λ|
k − |λ|

]

P(uncr(λ))
χλ.

This section seeks to prove that

ψ
(n)
k (u) = tr(V k×n, u) for all u ∈ Un.

4.1 Main Theorem
The main result is to prove the following simple character formula for the ψ(n)

k .

Theorem 4.1 For 0 ≤ k ≤ n and µ ∈ Sn,

ψ
(n)
k (µ) =

[
n− |µ|
k

]

T
,

where T is a total order on n− |µ| elements.

Remark 4.1 It would be desirable to have some simple counting argument to prove Theorem 4.1. How-
ever, there seems to be some unpredictable cancellation that happens that makes this challenging. For
example, for n = 3 and k = 2, this theorem implies

(
3

2

)
+

(
2

1

)
(q − 1) +

(
2

1

)
(q − 1)− (q + 1)q + (q − 1)2 = q.

We outline the proof by stating three key lemmas, where the proof of the first lemma is the most
involved. The basic idea is to show that the ψ(n)

k (µ) are invariant under adjustments of the arcs in µ. We
are then able to reduce the problem to the case when µ = ∅, and then use Corollary 3.7.

Let
Jl = {λ ∈ Sn | l_(l + 1) ∈ λ}.

Define bijections

ϕRl : Sn − Jl −→ Sn − Jl and ϕLl : Sn − Jl −→ Sn − Jl (5)

by letting ϕRl (λ) (respectively ϕLl (λ)) be the set partition obtained from λ by applying the transposition
(l, l + 1) to all the right (respectively left) endpoints of the arcs in λ. Lemma 4.2 begins by showing that
the ψ(n)

k is invariant under small shifts on the arcs.

Lemma 4.2 Suppose 1 ≤ l ≤ n− 1 and 0 ≤ k ≤ n. For ν ∈ Sn − Jl,

ψ
(n)
k (ϕRl (ν)) = ψ

(n)
k (ν) = ψ

(n)
k (ϕLl (ν)).

Lemma 4.3 uses Lemma 4.2 to show that ψ(n)
k depends only on the number of arcs associated to a

superclass.
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Lemma 4.3 Suppose 0 ≤ k ≤ n and µ, ν ∈ Sn with |µ| = |ν|. Then

ψ
(n)
k (µ) = ψ

(n)
k (ν).

Lemma 4.4 gives a recurrence on ψ(n)
k in terms of ψ(n−1)

k . This allows us to reduce the theorem to
evaluating at the identity. Thus, Theorem 4.1 is proved by Corollary 3.7.

Lemma 4.4 Suppose ν ∈ Sn, µ ∈ Sn−1 such that |µ| = |ν| − 1. Then

ψ
(n)
k (ν) = ψ

(n−1)
k (µ).

4.2 Some consequences
We first obtain a family of combinatorial identities by applying (2) to Theorem 4.1. For λ ∈ Sn, let

cflt(λ) = {j_k | 1 ≤ j < k < l with j_l ∈ λ or i < j ≤ k ≤ n with i_k ∈ λ}.

Note that while the statement of the corollary seems to have negative powers of q, in fact, each summand
is a polynomial in q.

Corollary 4.5 For n, k,∈ Z≥0, µ ∈ Sn, and a total order T on {1, 2, . . . , n− |µ|},
∑

λ∈Sn
µ∩cflt(λ)=∅

(−1)|λ∩µ|
qnst

λ
λ+dim(λ)

qnst
λ
µ+|λ|

(q − 1)|λ−µ|
[
n− |λ|
k − |λ|

]

P(uncr(λ))
=

[
n− |µ|
k

]

T
.

At q = 1, this corollary is uninteresting but at q = 0 we obtain a sum over compositions of n.

Corollary 4.6 For n, k,∈ Z≥0,

∑

λ�n
(−1)n−`(λ)

(
`(λ)

`(λ)− n+ k

)
=

{
0 if k > 1,
1 if k ∈ {0, 1}.

However, our main motivation is representation theoretic. By using (2) and a result on q-derivatives of
generating functions of q-binomials [4], we obtain the following theorem.

Theorem 4.7

Res
Un+2

U[2,n+1]
(χ1_(n+2) � · · · � χ1_(n+2)

︸ ︷︷ ︸
k terms

) = (q − 1)k
k∑

j=0

( j−1∏

i=0

(qk−i − 1)

)
ψ
(n)
j ,

where U[2,n+1] is as in (1).

Since we have a decomposition of the ψ(n)
k in terms of supercharacters, we also obtain a formula for

the decomposition of the restriction in terms of supercharacters.

Corollary 4.8 For λ ∈ Sn,

Res
Un+2

U[2,n+1]
((χ1_(n+2))�k) = (q − 1)k

∑

λ∈Sn

(min(k,n)∑

j=|λ|
qnst

λ
λ

[
n− |λ|
j − |λ|

]

P(uncr(λ))

j−1∏

i=0

(qk−i − 1)

)
χλ.
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Relating Edelman-Greene insertion to the
Little map

Zachary Hamaker1 and Benjamin Young2

1Department of Mathematics, Dartmouth College, Hanover NH 03755, USA
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Abstract. The Little map and the Edelman-Greene insertion algorithm, a generalization of the Robinson-Schensted
correspondence, are both used for enumerating the reduced decompositions of an element of the symmetric group.
We show the Little map factors through Edelman-Greene insertion and establish new results about each map as a
consequence. In particular, we resolve some conjectures of Lam and Little.

Résumé. La correspondance de Little et l’algorithme d’Edelman-Greene généralisant la correspondance de Robinson-
Schensted sont utilisés pour l’énumération des décompositions réduites associées aux éléments du groupe symétrique.
Nous démontrons que la correspondance de Little peut être réduite à celle d’Edelman-Greene. En particulier, nous
obtenons de nouvelle réponses à quelques conjectures de Lam et Little.

Keywords: Young tableaux; reduced decompositions in the symmetric group; Edelman-Greene insertion; Lascoux-
Schützenberger tree; Knuth moves; Stanley symmetric functions

1 Introduction
1.1 Preliminaries
In this paper, we clarify the relationship between two algorithmic bijections, due respectively to Edelman
and Greene (1987) and to Little (2003), both of which deal with reduced decompositions in the symmetric
group, Sn. It is well known that Sn can be viewed as a Coxeter group with the presentation

Sn = 〈s1, s2, . . . , sn−1 | s2i = 1, sisj = sjsi for |i− j| ≥ 2, sisi+1si = si+1sisi+1〉

where wi can be viewed as the transposition (i i+1). Let σ = σ1σ2 . . . σn ∈ Sn. A reduced de-
composition or reduced expression of σ is a minimal-length sequence sw1

, sw2
, . . . , swm

such that σ =
sw1

sw2
. . . swm

. The word w = w1w2 . . . wm is called a reduced word of σ. It is convenient to refer
to a reduced decomposition by its corresponding reduced word and we will conflate the two often. The
set of all reduced decompositions of σ is denoted Red(σ). An inversion in σ is a pair (i, j) with i < j
and σi > σj . Let l(σ) be the number of inversions in σ. Since each transposition si either introduces or
removes an inversion, for w = w1 . . . wm a reduced word of σ, we see m = l(σ).

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The enumerative theory of reduced decompositions was first studied in Stanley (1984), where using
algebraic techniques it is shown for the reverse permutation σ = n . . . 21 that

|Red(σ)| =
(
n
2

)
!

(2n− 3)(2n− 5)2 . . . 5n−23n−2
. (1)

This is the same as the number of standard Young tableaux with the staircase shape λ = (n − 1, n −
2, . . . , 1). In addition, Stanley conjectured for arbitrary σ ∈ Sn that |Red(σ)| can be expressed as the
number of standard Young tableaux of various shapes (possibly with multiplicity). This conjecture was
resolved in Edelman and Greene (1987) using a generalization of the Robinson-Schensted insertion al-
gorithm, usually called Edelman-Greene insertion. Edelman-Greene insertion maps a reduced word w to
the pair of Young tableaux (P (w), Q(w)) where the entries of P (w) are row-and-column strict and Q(w)
is a standard Young tableau. The same map also provides a bijective proof of (1), as there is only one
possibility for P (w).

Algebraic techniques developed in Lascoux and Schützenberger (1985) can be used to compute the
exact multiplicity of each shape for given σ. A bijective realization of Lascoux and Schützenberger’s
techniques in this setting is demonstrated in Little (2003). Permutations with precisely one descent are
referred to as Grassmannian. There is a simple bijection between reduced words of a Grassmannian
permutation σ and standard Young tableaux of a shape determined by σ. The Little map works by applying
a sequence of modifications referred to as Little bumps to the reduced word w until the modified word’s
corresponding permutation is Grassmannian so that it can be mapped to a standard Young tableau denoted
LS(w).

1.2 Results
Since the Little map’s introduction, there has been speculation on its relationship to Edelman-Greene
insertion. In the appendix of Garsia (2002), written by Little, Conjecture 4.3.2 asserts that LS(w) = Q(w)
when the maps are restricted to reduced words which realize the reverse permutation. Similar comments
are made in Little (2003). We show the connection is much stronger than previously suspected: this
equality is true for every permutation.

Theorem 1.1 Let w be a reduced word. Then

Q(w) = LS(w).

The proof is based on an argument from canonical form. We define the column word, a reading word of
P (w) that plays nice with both Edelman-Greene insertion and Little bumps. We then show the statement’s
truth is invariant under Coxeter-Knuth moves, transformations that span the space of reduced words with
identical P (w).

Given Theorem 1.1, one might suspect the structure of the two maps is intimately related. Specifically,
Conjecture 2.5 of Lam (2010) proposes that Little bumps relate to Edelman-Greene insertion in a way that
is analogous to the role dual Knuth transformations play for the Robinson-Schensted-Knuth algorithm.

Let v and w be reduced words. We say v and w communicate if there exists a sequence of Little bumps
changing v to w. This is an equivalence relation as Little bumps are invertible.

Theorem 1.2 (Lam’s Conjecture) Let v and w be two reduced words. Then v and w communicate if
and only if Q(v) = Q(w).
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1.3 Structure of the paper
In the second section, we review those parts of Edelman and Greene (1987); Little (2003) which we need:
we define Edelman-Greene insertion and the Little map, as well as generalized Little bumps. Additionally,
we state some properties of these maps that are important to our work. The third section defines Coxeter-
Knuth transformations and studies their interaction with Little bumps and action on Q(w). We conclude
in the fourth section by proving our main results and resolving several conjectures of Little. Due to space
considerations, several proofs have been omitted. The curious reader may find these details in Hamaker
and Young (2012).

2 Two Maps
2.1 Edelman-Greene insertion
In order to define Edelman-Greene insertion, we must first define a rule for inserting a number into a
tableau. Let n ∈ N and T be a tableau with rows R1, R2, . . . , Rk where Ri = ri1 ≤ ri2 ≤ · · · ≤ rili . We
define the insertion rule for Edelman-Greene insertion, following Edelman and Greene (1987).

1. If n ≥ r1l1 or if Ri is empty, adjoin k to the end of Ri.

2. If n < r1l1 , let j be the smallest number such that n < r1j .

(a) If r1j = n+ 1 and r1j−1 = n, insert n+ 1 into T ′ = R2, . . . , Rk and leave R1 unchanged.

(b) Otherwise, replace r1j with n and insert it into T ′ = R2, . . . , Rk.

Aside from 2(a), this is the RSK insertion rule. For w = w1 . . . wm a word (not necessarily reduced), we
define EG(w) = (P (w), Q(w)) via the following sequence of tableaux (see Figure 1 for an example). We
obtain P1(w) by inserting wm into the empty tableau. Then Pj(w) is obtained by inserting wm−j+1 into
Pj−1(w). Note we are inserting the entries of w from right to left. At each step, one additional box is
added. In Q(w), the entry of each box records the time of the step in which it was added. From this, we
can conclude that Q(w) is a standard Young tableau. Note the fourth insertion in Figure 1 follows 2(a).
For w is a reduced word of some σ, it is shown that the entries of P (w) are strictly increasing across rows
and down columns in Edelman and Greene (1987). Additionally, we can recover σ from P (w) with no
additional information.

2.2 Grassmannian permutations
Recall a permutation σ is Grassmannian if it has exactly one descent. We can then write

σ = a1a2 . . . akb1b2 . . . bn−k

where {ai}ki=1 and {bj}n−kj=1 are increasing sequences with ak > b1. A word w is Grassmannian if it
is the reduced word of a Grassmannian permutation. From the Grassmannian word w = w1 . . . wm we
construct a tableau Tab(w) as follows. Index the columns of Tab(w) by b1, . . . , bn−k and the rows by
ak, ak−1, . . . , a1. Since all inversions in σ feature an ai and a bj , each wl in w represents the swap
between an ai and a bj . For wl, we enter m + 1 − l in the column indexed by ai and bj . If ai swaps
with bj , we see it must later swap with each smaller b. This shows entries are increasing across rows.
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Fig. 1: Edelman-Greene insertion for w = 4, 2, 1, 2, 3, 2, 4
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Likewise, if bj swaps with ai, it must later swap with each larger a so entries increase down columns.
From this, we can conclude that Tab(w) is a standard Young tableau whose shape is determined by σ. For
a given Grassmannian permutation σ, this map is a bijection as the process is easily reversed. Multiple
Grassmannian permutations may correspond to the same shape. However, they will only differ by some
fixed points at the beginning and end of the permutation.

2.3 Little bumps and the Little map
We now describe the method in Little (2003) for transforming an arbitrary reduced word into the re-
duced word of a Grassmannian permutation. Let w = w1 . . . wm be a reduced word and w(i) =
w1 . . . wi−1wi+1 . . . wm. We construct

w(i−) =

{
w1 . . . wi−1(wi − 1)wi+1 . . . wm if wi > 1

(w1 + 1) . . . (wi−1 + 1)wi(wi+1 + 1) . . . (wm + 1) if wi = 1

by decrementing wi by one or incrementing each other entry if wi = 1.
Let w be a reduced word so that w(i) is also reduced. Note w(i−) may not be reduced, as wi − 1 may

swap the same values as some wj with j 6= i. However, this is the only way w(i)− can fail to be reduced
as w(i) is reduced and we have added one additional swap. Removing wj from w(i−), we obtain a new
reduced word w(i−)(j). Repeating this process of decrementation, we can construct w(i−)(j−) and so on
until we are left with a reduced word v = v1 . . . vm. We refer to this process as a Little bump beginning
at position i and say v = w↑i, where i is the initial index the bump was started at. To see that this process
terminates, we refer to the following lemma.

Lemma 2.1 (Lemma 5, Little (2003)) Let w be a reduced word such that w(i) is reduced. Let i1, i2, . . .
be the sequence of indices decremented in w↑i. Then the entries of i1, i2, . . . are unique.

Since w is finite, we see the process terminates so that w↑i is well-defined. We highlight a property of
Little bumps observed in Little (2003), that they preserve the descent structure of w.

Corollary 2.2 Let w = w1 . . . wm and v = v1 . . . vm be a reduced words and ↑ be a Little bump such
that v = w↑. Then vi > vi+1 if and only if wi > wi+1 for all i.
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Fig. 2: The Little map for the reduced decomposition w4w2w1w2w3w2w4 of σ = 35241. The dashed crosses show
the modifications made by the next Little bump.
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Wiring diagram for w Wiring diagram for w↑7
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Wiring diagram for w↑7↑7 Tab(w↑7↑7) = LS(w)

Proof: Let wi > wi+1. As each wi is decremented at most once, we see vi ≥ vi+1, but vi 6= vi+1. Thus
vi > vi+1. By the same reasoning, if wi < wi+1, we see vi < vi+1. 2

Let w be a reduced word of σ ∈ Sn. We define the Little map LS(w).

1. If w is a Grassmannian word, then LS(w) = Tab(w)

2. If w is not a Grassmannian word, identify the swap location i of the last inversion (lexicographi-
cally) in σ and output LS(w↑i).

It is a corollary of work in Lascoux and Schützenberger (1985) and Little (2003) that LS terminates. We
then see that w 7→ LS(w) where LS(w) is a standard Young tableau. An example can be seen in Figure
2, where the word w is represented by its wiring diagram: an arrangement of horizontal, parallel wires
spaced one unit apart, labelled 1 through n on the left-hand side, in which the letter in the word w are
represented by crossings of wires.
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Fig. 3: The three types of Coxeter-Knuth moves acting on wiring diagrams.

(a) Type 1 (b) Type 2 (c) Type 3

3 The action of Coxeter-Knuth moves
3.1 Basics of Coxeter-Knuth moves
First introduced in Edelman and Greene (1987), Coxeter-Knuth moves are perhaps the most important tool
for studying Edelman-Greene insertion. They are modifications of the second and third Coxeter relations.
Let a < b < c and x be integers. The three Coxeter-Knuth moves are the modifications

1. acb↔ cab

2. bac↔ bca

3. x(x+ 1)x↔ (x+ 1)x(x+ 1)

applied to three consecutive entries of a reduced word. Let w = w1w2 . . . wm be a reduced word of σ and
αi denote a Coxeter-Knuth move on the entries wi−1wiwi+1. Since a < b < c, if αi is of type one or two
we have wαi a reduced word of σ as well by the second Coxeter relation. If αi is of type three then wαi is
a reduced word of σ by the third Coxeter relation. We say two reduced words v and w are Coxeter-Knuth
equivalent if there exists a sequence αi1 , αi2 , . . . , αik of Coxeter-Knuth moves such that

v = wαi1 . . . αik .

Note that two Coxeter-Knuth equivalent reduced words must correspond to reduced decompositions of
the same permutation. We can see their action on wiring diagrams in Figure 3.

Coxeter-Knuth moves play a role in the study of Edelman-Greene insertion analogous to that of Knuth
moves in the study of RSK insertion.

Theorem 3.1 (Theorem 6.24 in Edelman and Greene (1987)) Let v and w be a reduced words. Then
P (v) = P (w) if and only if v and w are Coxeter-Knuth equivalent.

3.2 The action of Coxeter-Knuth moves on Q(w)

In order to understand the relationships of Coxeter-Knuth moves and Little bumps, we must first under-
stand in greater detail how Coxeter-Knuth moves relate to Edelman-Greene insertion. From Theorem 3.1,
we understand how Coxeter-Knuth moves relate to P (w). We must also understand their action on Q(w).
For T a standard Young tableau with n entries, let Tti,j be the Young tableau obtained by swapping the
entries labeled n− i and n− j.
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Lemma 3.2 Let w = w1 . . . wm be a reduced word and α be a Coxeter-Knuth move on wi−1wiwi+1. If
α is a Coxeter-Knuth move of type one or three, then

Q(wα) = Q(w)ti−1,i.

If α is a Coxeter-Knuth move of type two, then αi acts on Q(w) as above or

Q(wα) = Q(w)ti,i+1.

The proof of Lemma 3.2 is based on and can be recovered with little additional effort from the argument
presented for Theorem 6.24 in Edelman and Greene (1987). We omit the proof for space considerations.

3.3 Coxeter-Knuth moves and Little bumps
We now set out to show that Coxeter-Knuth moves commute with Little bumps. This requires two results.
The first is that the order we perform a Coxeter-Knuth move α and a Little bump ↑ does not affect the
resulting reduced word.

Lemma 3.3 Let w = w1 . . . wm be a reduced word, α a Coxeter-Knuth move on wi−1wiwi+1, and ↑j,k
be a Little bump begun at the swap between the j and kth trajectories. Then

(wα)↑j,k = (w↑j,k)α.

Proof: Let v = w↑j,k and v′ = (wα)↑j,k. Recall from Lemma 2.1 and Corollary 2.2 thatwj−vj ∈ {0, 1}
and v has the same descent structure of w.

1. Let α be a Coxeter-Knuth move of the first type, i.e. wi−1wiwi+1 7→ wiwi−1wi+1 with wi+1

strictly between wi−1 and wi. Since a Little bump decrements an entry of w by at most one, one
can check that if wi+1 differs from wi or wi−1 by more than one, there is a Coxeter-Knuth move
of type one on vi−1vivi+1. In the event that they differ by exactly one and the smallest entry is
decremented, we see in Figure 4 that after the bump they differ by a Coxeter-Knuth move of the
third type.

2. Let α be a Coxeter-Knuth move of the second type, i.e. wi−1wiwi+1 7→ wi−1wi+1wi with wi−1
strictly between wi+1 and wi. Since a Little bump decrements an entry of w by at most one, one
can check that if wi−1 differs from wi or wi+1 by more than one, there is a Coxeter-Knuth move
of type two on vi−1vivi+1. In the event that they differ by exactly one and the smallest entry is
bumped, we see in Figure 4 that after the bump they differ by a Coxeter-Knuth move of the third
type.

3. Let α be a Coxeter-Knuth move of the third type. Note the middle entry cannot be bumped unless
all three entries are bumped. In the event fewer entries (but not zero) are bumped, we see in Figure 4
that there will be a Coxeter-Knuth move of the first or second type remaining.

We next show that the rest of the Little bump proceeds in the same manner once the crossings involved
in the Coxeter-Knuth move have been bumped. To see this, we need only observe that the last bumped
swap is between the same two trajectories. This can be verified readily by examining Figures 4.
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Fig. 4: Transitional bumps for Coxeter-Knuth moves of all three types.

↑

α

↑

↑

α

↑

↑

α

↑

↑

α

↑

The preceding argument assumes that the bumping path does not return to the crossings involved in the
Coxeter-Knuth move. It is possible that the bumping path passes through the crossings involved in the
Coxeter-Knuth path twice (but no more than that, by Lemma 2.1). However, the same argument applies,
showing that all three crossings are bumped regardless of whether the Coxeter-Knuth move is performed
before or after the bump.

2

We now show that the action of a Coxeter-Knuth move on Q(w) remains the same after applying a
Little bump. Combined with Lemma 3.3, this shows that the order in which Coxeter-Knuth moves and
Little bumps are performed on a reduced word w does not effect either the resulting reduced word or the
resulting recording tableau.

Lemma 3.4 Let w be a reduced word, α be a Coxeter-Knuth move and ↑ a Little bump. Then Q(wα) =
Q(w)ti,i+1 if and only if Q(w↑α) = Q(w↑)ti,i+1.

The proof of Lemma 3.4 reduces to a simple observation. The only problematic case is when α is a
Coxeter-Knuth move on wi−1wiwi+1 of type two that acts on Q(w) as ti,i+1. Here, the truncated word
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w|i = wiwi+1wi+2 . . . wn and wα|i = wi+1wiwi+2 . . . wn have the same insertion tableau. Therefore,
they are related by Coxeter-Knuth moves, and the action of this sequence of moves can be shown to be
preserved by Little bumps. We omit the details of this argument.

4 Proof of Results
4.1 The Grassmannian case
Before proving Theorem 1.1, we need to establish the base case wherew is a Grassmannian word. In order
to do so, we must understand which entries are exchanging places with each swap. For w = w1 . . . wm
a reduced word, we define σi = sw1

sw2
. . . swi

where σ0 is the identity permutation. The kth trajectory
of w is the sequence {σi(k)}mi=0. For w a Grassmannian word of σ = a1a2 . . . akb1b2 . . . bn−k, observe
that the jth column of Tab(w) lists the times for all swaps featuring bj . Since all such swaps increase the
value of bj , we can reconstruct its trajectory from the number and location of these swaps. Similarly, we
can reconstruct the trajectory of each ai from the k+1− ith row of Tab(w). We will find it convenient to
identify the kth trajectory of a Grassmannian word with the indices {i1, i2, . . . , itk} ⊂ [n] of the swaps
featuring k. Since insertion takes place from right to left, we label the entries such that i1 > i2 > · · · >
itk .

Lemma 4.1 Let w = w1 . . . wm be a reduced decomposition of a Grassmannian permutation σ. Then
Tab(w) = Q(w).

The proof of Lemma 4.1 follows by showing that for σ = a1a2 . . . an−kb1b2 . . . bk a Grassmannian
permutation with sole descent an−kb1, the trajectory of each bj will insert into the jth column. This is
shown inductively, as the trajectory of each bi will block off the trajectory of bi+1. The entries of bi+1

must then be inserted further to the right of entries in bi. A trajectory unobstructed will insert into a single
column, so we can conclude each trajectory will insert one at a time into its own column. We omit the
details of this argument.

4.2 The column reading word
The only ingredient missing from our argument is a canonical form that is invariant under Little bumps.

Definition 4.2 For T a Young tableau with columns C1, C2 . . . , Cm where Ci = ci1, c
i
2, . . . , c

i
k with cij

being the (j, i)th entry of T . We define the column reading word of T to be the word

τ(T ) = CmCm−1 . . . C1.

If T is row and column strict then P (τ(T )) = T and each column of Q(τ(T )) has consecutive entries.
For w a reduced word, we define τ(w) to be τ(P (w)). By the previous observation, w and τ(w) are
Coxeter-Knuth equivalent.

For example, the tableau in Figure 2 has columns 1245, 36 and 7, so its column word is 7361245. One
can think of the column reading word as closely related to the bottom-up reading word. Since insertion
takes place from right to left, the column reading word is in some sense its transpose.

Lemma 4.3 Let w be a reduced word and ↑ a Little bump on w. Then

Q(τ(w)) = Q(τ(w)↑).
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Proof: Let w be a reduced word, τ(w) = CmCm−1 . . . C1 and τ(w)↑ = DmDm−1 . . . D1 (note Dk is
not a priori a column of P (τ(w)↑)). Since τ(w) and τ(w)↑ have the same descent structure, we see C1

and D1 insert identically. As each entry of τ(w)↑ is decremented at most once and P (τ(w)) is row and
column strict, we see

dki ≤ cki ≤ dki + 1 ≤ dk+1
i ,

so dk+1
i will not bump any dkj with j ≤ i. Therefore, any entry of Dk will stay in the kth column of

P (τ(w)↑) for all k, that is the entries of the kth column of P (τ(w)↑) are Dk. Thus τ(w)↑ is a column
reading word with identical column sizes, so Q(τ(w)) = Q(τ(w)↑).

2

4.3 Proof of Theorem 1.1 and its corollaries
Combining Lemma 4.3 with Lemmas 3.3 and 3.4, we can conclude the following:

Theorem 4.4 Let w be a reduced word and ↑ be a Little bump on w. Then

Q(w) = Q(w↑).

Proof: Let w be a reduced word. There exists a sequence α1, α2, . . . , αk of Coxeter-Knuth moves such
that w = τ(w)α1 . . . αk. As Q(τ(w)) = Q(τ(w)↑) by Lemma 4.3, we compute

Q(w) = Q(τ(w)α1 . . . αk) = Q((τ(w)↑)α1 . . . αk) (2)
= Q((τ(w)α1 . . . αk)↑) = Q(w↑) (3)

where the third equality follows by Lemmas 3.3 and 3.4. 2

Proof of Theorem 1.1: Let w be a reduced word and ↑1, . . . , ↑k be the sequence of canonical Little
bumps. By Theorem 4.4 and Lemma 4.1, we see

Q(w) = Q(w↑1 . . . ↑k) = Tab(w↑1 . . . ↑k) = LS(w).

2

We now demonstrate several consequences, including Lam’s Conjecture. The first is Conjecture 11
from Little (2005), which first appeared as Conjecture 4.3.3 in the appendix of Garsia (2002).

Corollary 4.5 Let w be a reduced word and let ↑1, ↑2, . . . , ↑m be any sequence of Little bumps such that

v = w↑1 . . . ↑m
is a Grassmannian word. Then Tab(v) = LS(w).

This follows from Theorem 4.4. We can extend this result further. Let λ be a partition with w a
Grassmannian word of shape λ. The permutation σ associated to w can be characterized by the number
of initial fixed points. A Grassmannian permutation is minimal if it has no initial fixed points. Note
the minimal Grassmannian permutation of a given shape is unique in S∞. Recall two reduced words
communicate if there exists a sequence of Little bumps and inverse Little bumps changing one to the
other.
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Fig. 5: Removing a fixed point from the Grassmannian word w = 7523645 via the canonical sequence of bumps.
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Wiring diagram for w Wiring diagram for w↑7
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Wiring diagram for w↑7↑5 Wiring diagram for w↑7↑5↑1

Proof of Theorem 1.2: Let v and w be reduced words. Suppose first that v and w communicate. Then by
Theorem 4.4, we have that Q(v) = Q(w).

Conversely, suppose that Q(v) = Q(w). By applying the canonical sequence of Little bumps, w can
be changed to the Grassmannian word w′ and v to the Grassmannian word v′. Since Little bumps are
invertible, Q(w) = Q(w′) and Q(v) = Q(v′), we can conclude that v and w communicate if Grassman-
nian permutations of the same shape communicate. To show this, we demonstrate a sequence of Little
bumps that will remove a fixed point at the beginning of an arbitrary Grassmannian permutation. Let
σ = a1 . . . akb1 . . . bn−k be a Grassmannian permutation with akb1 its sole descent. Our sequence is
constructed by initiating a little bump at the last swap featuring each bj , beginning with b1. See Figure 5
for an example. Therefore, any Grassmannian permutation communicates with the minimal permutation
of that shape. From this, we can conclude any two Grassmannian permutations with the same shape
communicate.
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2

Additionally, we show how to embed Robinson-Schensted insertion and RSK in the Little map. In
doing so, we recover the main results of Little (2005) in a much simplified form. This embedding was
first predicted as Conjecture 4.3.1 in the appendix of Garsia (2002). For w a word, let ~w be the reverse of
w.

Theorem 4.6 Let σ = σ1 . . . σn ∈ Sn, so that w(σ) = (2σn−1) . . . (2σ1−1) is a reduced word, and let
RS(σ) = (P ′(σ), Q′(σ)) be the output of Robinson-Schensted insertion applied to σ. Upon applying the
transformation k 7→ k − 1/2 to the entries of LS(w), we obtain Q′(σ). We can obtain P ′(σ) by applying
the same transformation to LS(w(σ−1).

Proof: Since LS(w) = Q(w) and there are no special bumps, Edelman-Greene insertion will perform
the same insertion process on w as Robinson-Schensted insertion performs on σ. Therefore, upon ap-
plying the transformation k 7→ k − 1/2, we see LS(w(σ)) = Q(w(σ)) = Q′(σ). Since RS(σ−1) =
(Q′(σ), P ′(σ)) (see e.g. Stanley (2001)), we can obtain P ′(σ) by applying the same transformation to
LS(w(σ−1)).

2

We can embed RSK in Robinson-Schensted insertion (see Section 7 of Little (2005) for a description
of this process), so Theorem 4.6 recovers an embedding of RSK into the Little map as well.
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Spanning forests in regular planar maps
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Abstract. We address the enumeration of p-valent planar maps equipped with a spanning forest, with a weight z per
face and a weight u per component of the forest. Equivalently, we count regular maps equipped with a spanning tree,
with a weight z per face and a weight µ := u+ 1 per internally active edge, in the sense of Tutte. This enumeration
problem corresponds to the limit q → 0 of the q-state Potts model on the (dual) p-angulations.

Our approach is purely combinatorial. The generating function, denoted by F (z, u), is expressed in terms of a pair
of series defined by an implicit system involving doubly hypergeometric functions. We derive from this system that
F (z, u) is differentially algebraic, that is, satisfies a differential equation (in z) with polynomial coefficients in z and
u. This has recently been proved for the more general Potts model on 3-valent maps, but via a much more involved
and less combinatorial proof.

For u ≥ −1, we study the singularities of F (z, u) and the corresponding asymptotic behaviour of its nth coefficient.
For u > 0, we find the standard asymptotic behaviour of planar maps, with a subexponential factor n−5/2. At u = 0

we witness a phase transition with a factor n−3. When u ∈ [−1, 0), we obtain an extremely unusual behaviour in
n−3/(logn)2. To our knowledge, this is a new “universality class” of planar maps.

Keywords: Planar maps — Spanning forests — Exact and asymptotic enumeration

1 Introduction
A planar map is a proper embedding of a connected graph in the sphere. The enumeration of planar maps
has received a continuous attention since the early 1960s, first in combinatorics with the pioneering work
of Tutte, then in theoretical physics, where maps are considered as random surfaces modelling the effect
of quantum gravity, and more recently in probability theory. General planar maps have been studied, as
well as sub-families obtained by imposing constraints of higher connectivity or prescribing the degrees of
vertices or faces (e.g., triangulations). Precise definitions are given below.

Several robust enumeration methods have been designed, from Tutte’s recursive approach (e.g. [25]),
which leads to functional equations for generating functions of maps, to the beautiful bijections initiated
by Schaeffer [22] and further developed by physicists and combinatorics alike [5, 9], via a powerful
approach based on matrix integrals [15]. See for instance [8] for a more complete (though non-exhaustive)
bibliography.
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Beyond planar maps, which are now well understood, the attention has also focussed on two more
general objects: maps on higher genus surfaces, and maps equipped with an additional structure. The latter
question is particularly relevant in physics, where a surface on which nothing happens (“pure gravity”) is
of little interest. For instance, one has studied maps equipped with a polymer, with an Ising model, with
a proper coloring, with a loop model, with a spanning tree, percolation on planar maps... Due to the lack
of space, we cannot give the relevant bibliography here.

In particular, several papers have been devoted in the past 20 years to the study of the Potts model
on families of planar maps [1, 7, 14, 16, 18, 26]. In combinatorial terms, this means counting maps
equipped with a colouring in q colours, according to the size (the number of edges) and the number of
monochromatic edges (edges whose endpoints have the same colour). Up to a change of variables, this also
means counting maps weighted by their Tutte polynomial (a bivariate combinatorial invariant which has
numerous interesting specializations). It has recently been proved that the associated generating function
is differentially algebraic, that is, satisfies a (non-linear) differential equation (with respect to the size
variable) with polynomial coefficients [3, 4, 8]. This holds for general planar maps and for triangulations
(or dualy, for cubic maps).

The method that yields these differential equations is extremely involved, and does not shed much
light on the structure of q-coloured maps. Moreover, one has not been able, so far, to derive from these
equations the asymptotic behaviour of the number of coloured maps, nor the location of phase transitions
(see however [7] for recent progress in this direction).

The aim of this paper is to remedy these problems — so far for a one-variable specialization of the
Tutte polynomial, obtained by setting to 1 one of its variables, or by taking (in an adequate way) the limit
q → 0 in the Potts model. Combinatorially, we are simply counting maps (in this paper, p-valent maps)
equipped with a spanning forest. We call them forested maps (Figure 1). This problem has already been
studied in [12] via a random matrix approach (but with no explicit solution) and, in a special case, in [9],
which was in fact the starting point of the present paper. Our enumeration keeps track of the number of
faces (variable z) and the number of trees in the forest (minus one; variable u). The case u = 0 thus
corresponds to maps equipped with a spanning tree, solved a long time ago by Mullin [21].

We first obtain in Section 3, in a purely combinatorial manner, a system of functional equations defining
the associated generating function F (z, u). We then derive from this system that F (z, u) is differentially
algebraic in z, and give explicit differential equations for 3- and 4-valent maps (Section 4). Section 5
is a combinatorial interlude explaining why the series occurring in our system of equations still have
non-negative coefficients when u ∈ [−1, 0]. These results are needed in Section 6, which is devoted
to asymptotic results: when u > 0, forested maps follow the standard asymptotic behaviour of planar
maps (µnn−5/2) but then a phase transition occurs at u = 0, and a very unusual asymptotic behaviour in
µnn−3(log n)−2 holds when u ∈ [−1, 0). To our knowledge, this is the first time a class of planar maps
is shown to exhibit this behaviour. This proves in particular that F (z, u) is not D-finite, that is, does not

Fig. 1: A (quasi-cubic) forested map with 6 faces and 5 trees.
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satisfy any linear differential equation in z for u ∈ [−1, 0) (nor for a generic value of u). This contrasts
with the case u = 0, for which the generating function of maps equipped with a spanning forest is known
to be D-finite.

2 Preliminaries
2.1 Planar maps and trees
A planar map is a proper embedding of a connected graph (possibly with loops and multiple edges) in
the oriented sphere, considered up to continuous deformation. A face is a connected component of the
complement of the map. Each edge consists of two half-edges, each incident to an endpoint of the edge.
A corner is an ordered pair (e1, e2) of half-edges incident to the same vertex, such that e2 immediately
follows e1 in counterclockwise order. The degree of a vertex is the number of corners incident to it. A
vertex of degree p is called p-valent. One-valent vertices are also called leaves. A map is p-valent if all
its vertices are p-valent. A rooted map is a map with a marked corner (e1, e2), indicated by an arrow in
our figures. The root vertex is the vertex incident to the root. The root edge is the edge supporting e2.

A (plane) tree is a planar map with a unique face. A tree is p-valent if all non-leaf vertices have degree p.
A leaf-rooted (resp. corner-rooted) tree is a tree with a marked leaf (resp. corner). A corner-rooted and
two leaf-rooted trees appear in Figure 2(b). The number of p-valent leaf-rooted (resp. corner-rooted) trees
with k leaves is denoted by tk (resp. tck). These numbers are well-known [23, Thm. 5.3.10]: they are 0
unless k = (p− 2)`+ 2 with ` ≥ 1, and in this case,

tk =
((p− 1)`)!

`!((p− 2)`+ 1)!
and tck = p

((p− 1)`)!

(`− 1)!((p− 2)`+ 2)!
. (1)

These numbers should in principle be denoted tk,p and tck,p, but we consider p as a fixed integer (p ≥ 3).
Let M be a rooted planar map with vertex set V . A spanning forest of M is a graph F = (V, S)

where S is a subset of edges of M forming no cycle. Each tree of F is called a component, and the root
component is the tree containing the root vertex. We say that the pair (M,F ) is a forested map. Let us
denote by F (z, u) the generating function of rooted p-valent forested maps counted by faces (variable z)
and non-root components (variable u). For instance, when p = 3, the first terms of F (z, u) are

F (z, u) = (6 + 4u) z3 +
(
140 + 234u+ 144u2 + 32u3

)
z4 + · · · (2)

The term 6z3 means that there are 6 rooted cubic maps with 3 faces and a distinguished spanning tree.

2.2 Forest counting, the Tutte polynomial and related models
Let G = (V,E) be a graph with vertex set V and edge set E. The Tutte polynomial of G is the following
polynomial in two indeterminates (see e.g. [6]):

TG(µ, ν) :=
∑

S⊆E
(µ− 1)c(S)−c(G)(ν − 1)e(S)+c(S)−v(G), (3)

where the sum is over all spanning subgraphs of G (equivalently, over all subsets S of edges) and v(.),
e(.) and c(.) denote respectively the number of vertices, edges and connected components.
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When ν = 1, the only subgraphs that contribute to (3) are the forests. Hence the above defined gener-
ating function of forested maps can be written as

F (z, u) =
∑

M p−valent
zf(M) TM (u+ 1, 1). (4)

Even though this is not clear from (3), the Tutte polynomial TG(µ, ν) has non-negative coefficients
in µ and ν. This was proved combinatorially by Tutte [24], who showed that TG(µ, ν) counts spanning
trees of G according to two parameters, called internal and external activities (see [2] for an alternative
description). It follows thatF (z, µ−1) is also the generating function of p-valent planar mapsM equipped
with a spanning tree T , counted by the face number of M (by z) and the internal activity of T (by µ).

Using duality properties of the Tutte polynomial, and various combinatorial interpretations of TG(1, ν),
we can also describe F (z, u) in terms of the dual p-angulations equipped: either with a connected (span-
ning) subgraph; or with a recurrent configuration of the sandpile model [13, 20]; or with a q-state Potts
model, taken in the limit q → 0. Precise statements and details are given in the complete version of this
paper.

2.3 Formal power series
Let A = A(z) ∈ K[[z]] be a power series in one variable with coefficients in a field K. We say that
A is D-finite if it satisfies a (non-trivial) linear differential equation with coefficients in K[z] (the ring of
polynomials in z). More generally, it is D-algebraic if there exist a positive integer k and a non-trivial
polynomial P ∈ K[x, x0, . . . , xk] such that P

(
z,A, ∂A∂z , . . . ,

∂kA
∂zk

)
= 0.

A k-variate power series A = A(z1, . . . , zk) with coefficients in K is D-finite if its partial derivatives
(of all orders) span a finite dimensional vector space over K(z1, . . . , zk).

3 Generating functions for forested maps
In this section, we give a system of equations that defines the generating function F (z, u) of p-valent
forested maps. In fact, it gives an expression of the series zF ′z(z, u) that counts forested maps with a
marked face. We also give two simpler systems for two variants of F (z, u), not involving a derivative.

3.1 p-Valent maps
Theorem 3.1 Fix p ≥ 3. Let θ, φ1 and φ2 be the following doubly hypergeometric series:

θ(x, y) :=
∑

i≥0

∑

j≥0
tc2i+j

(
2i+ j

i, i, j

)
xiyj ,

φ1(x, y) :=
∑

i≥1

∑

j≥0
t2i+j

(
2i+ j − 1

i− 1, i, j

)
xiyj , φ2(x, y) :=

∑

i≥0

∑

j≥0
t2i+j+1

(
2i+ j

i, i, j

)
xiyj , (5)

where tk and tck are given by (1) and
(
a+b+c
a,b,c

)
denotes the trinomial coefficient (a+ b+ c)!/(a!b!c!).

There exists a unique pair (R,S) of series in z with constant term 0 and coefficients in Q[u] that satisfy

R = z + uφ1(R,S), (6)
S = uφ2(R,S). (7)
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The generating function F (z, u) of p-valent forested maps is characterized by F (0, u) = 0 and

F ′z(z, u) = θ(R,S). (8)

Remarks
1. These equations allow us to compute the first terms of the expansion of F (z, u) in z, for any p ≥ 3.
2. When p is even, then t2i+1 = 0 for all i and the series S vanishes, which greatly simplifies the system.
3. When u = 0, an even more drastic simplification occurs: not only S = 0, but also R = z, so that (8)
becomes an explicit expression of F ′, which we can readily integrate:

F (z, 0) =
∑

i≥0
tc2i

(
2i

i

)
zi+1

i+ 1
=
∑

`≥1

p((p− 1)`)!

(`− 1)!(1 + (p− 2)`/2)!(2 + (p− 2)`/2)!
z2+(p−2)`/2, (9)

where we require ` to be even if p is odd. This series counts p-valent maps equipped with a spanning tree,
and this expression was already proved by Mullin [21, Eq. (5.8)].

In order to prove Theorem 3.1, we first relate F (z, u) to the generating function of planar maps counted
by the distribution of their vertex degrees. More precisely, let M� ≡ M�(z, u; g1, g2, . . . ;h1, h2, . . .) be
the generating function of rooted planar maps with a marked face, where u counts non-root vertices, z
counts faces, gk counts non-root vertices of degree k and hk root vertices (!) of degree k.

Lemma 3.2 The series F (z, u) is related to M� through:

zF ′z(z, u) = M�(z, u; t1, t2, . . . ; t
c
1, t

c
2, . . .). (10)

Proof: Start from a p-valent forested map (M,F ) and contract each tree of F that is incident to k half-
edges (not in F ) into a k-valent vertex (Figure 2). This operation can be seen as an extension of Mullin’s
construction for maps equipped with a spanning tree [21]. It also appears in [12] and in [9, Appendix A],
where the authors study 4-valent forested maps such that the root edge is not in the forest.

To recover the forested map (M,F ) from the contracted map M ′, one has to remember, for the root
vertex ofM ′, from which corner-rooted tree it came, and for each non-root vertex, from which leaf-rooted
tree it came (the reason why a leaf-rooted, rather than corner-rooted tree suffices is related to the fact that
the rooting of M induces a total order on its half-edges). Each vertex of M ′ gives a connected component
of F . 2

(a) (b)

Fig. 2: (a) A 4-valent forested map with 9 faces and 2 non-root components. The arrow indicates the root. (b) The
same map, after contraction of the forest, with the collection of rooted trees that stems from (a).
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In a recent paper [11, Eq. (2.6)], Bouttier and Guitter have characterized the series M� by a system of
equations, established bijectively. Their system, specialized as in Lemma 3.2, gives Theorem 3.1. 2

Remark. In [11, Eq. (1.4)], the authors also give a complicated expression for the generating function
M ≡ M(g1, g2, . . . ;h1, h2, . . .) that counts rooted planar maps (no marked face) by the distribution of
degrees of non-root vertices and the degree of the root vertex. By the above argument, this yields a closed
form expression of the series F (z, u) itself. However, we have not been able to use this expression (for
instance to construct a differential equation for F ) without differentiating it first.

3.2 Two variants
A map is said to be quasi-p-valent if all its vertices have degree p, except one vertex that is a leaf. Such
maps exist only when p is odd (Figure 1). These maps are naturally rooted at their leaf. LetG(z, u) denote
the generating function of quasi-p-valent forested maps counted by faces (z) and non-root components (u).

By relating G(z, u) to the generating function of one-leg maps determined in [10], we obtain:

Proposition 3.3 The generating function of quasi-p-valent forested maps is

G(z, u) = (1 + ū)


zS − u

∑

i≥2

∑

j≥0
t2i+j−1

(
2i+ j − 2

i− 2, i, j

)
RiSj


 ,

where ū = 1/u, the series R and S are defined by (6–7), and the numbers tk by (1). Also,

G′z(z, u) = (1 + ū)S.

We finally consider p-valent forested maps such that the root edge is outside the forest. Let H(z, u)
denote the associated generating function. We can relate H(z, u) to the generating function of general
planar maps that has been determined in [10]. This yields the following proposition.

Proposition 3.4 The generating function H(z, u) of p-valent forested maps such that the root edge is
outside the forest is

H(z, u) = ūzR+ ūzS2 − ūz2

− 2S
∑

i≥2

∑

j≥0
t2i+j−1

(
2i+ j − 2

i− 2, i, j

)
RiSj −

∑

i≥3

∑

j≥0
t2i+j−2

(
2i+ j − 3

i− 3, i, j

)
RiSj

where ū = 1/u, the series R and S are defined by (6–7), and the numbers tk by (1).
When p is even, then S = 0 and the first double sum disappears. In this case, we also have a very

simple expression of H ′z(z, u):
H ′z(z, u) = 2ū(R− z).

4 Differential equations
The equations established in the previous section imply that series counting regular forested maps are
D-algebraic. We prove this and compute explicitly a few differential equations.
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Theorem 4.1 The generating function F (z, u) of p-valent forested maps is D-algebraic (with respect
to z). The same holds for the series G(z, u) and H(z, u) of Propositions 3.3 and 3.4.

Proof: We start from the expression of F ′ ≡ F ′z given in Theorem 3.1. We first observe that the doubly
hypergeometric series θ, φ1, φ2 are D-finite. This follows from the closure properties of D-finite multi-
variate series [19]. Then, by differentiating (6) and (7) with respect to z, we obtain rational expressions of
R′ and S′ in terms of u and the partial derivatives ∂φ`/∂x and ∂φ`/∂y, evaluated at (R,S) (for ` = 1, 2).

Let K be the field Q(u). Using (8) and the previous point, it is now easy to prove by induction that for
all k ≥ 1, there exists a rational expression of F (k)(z, u) in terms of

{
∂i+jφ`
∂xi∂yj

(R,S),
∂i+jθ

∂xi∂yj
(R,S)

}

i≥0,j≥0,`∈{1,2}

with coefficients in K. But since θ, φ1 and φ2 are D-finite, the above set of series spans a vector space
of finite dimension, say d, over Q(R,S). Therefore there exist d elements ϕ1, . . . , ϕd in this space, and
rational functions Ak ∈ K(x, y, x1, . . . , xd), such that F (k)(z, u) = Ak(R,S, ϕ1, . . . , ϕd) for all k ≥ 1.

Since the transcendence degree of K(R,S, ϕ1, . . . , ϕd) over K is (at most) d + 2, the d + 3 series
F ′, F ′′, . . . , F (d+3) are algebraically dependant over K. This implies that F ′ (and thus F ) is D-algebraic.

The proof is similar for the series G(z, u) and H(z, u). 2

4.1 The 4-valent case
We specialize the above argument to the case p = 4. As mentioned below Theorem 3.1, the series S
vanishes. The series F (z, u) is characterized by

F ′z = θ(R), R = z + uφ(R), (11)

with

θ(x) = 4
∑

i≥2

(3(i− 1))!

i!2(i− 2)!
xi and φ(x) =

∑

i≥2

(3(i− 1))!

i!(i− 1)!2
xi.

The series θ(x), φ(x) and their derivatives live in a 3-dimensional vector space over Q(x) spanned (for
instance) by 1, θ(x) and φ(x). This follows from the following equations, which are easily checked:

x(27x− 1)φ′′(x) + 6φ(x) + 6x = 0, 3θ(x) = 2(27x− 1)φ′(x)− 42φ(x) + 12x.

By the argument described above, we can then express F ′ and all its derivatives as rational functions of
u, R, φ(R) and θ(R). But since R = z + uφ(R), this means a rational function of u, z, R and θ(R). We
compute these expressions for F ′, F ′′ and F ′′′, eliminate R and θ(R) from these three equations, and this
gives a differential equation of order 2 and degree 7 satisfied by F ′:

9F ′2F ′′5u6+36F ′2F ′′3F ′′′ u5z+144F ′2F ′′4u5−12 (21 z−1)F ′ F ′′5u5+432F ′2F ′′2F ′′′ u4z−48 (24 z−1)F ′ F ′′3F ′′′ u4z

+864F ′2F ′′3u4−96 (27 z−2)F ′ F ′′4u4+4 (27 z−1)(15 z−1)F ′′5u4+1728F ′2F ′′ F ′′′ u3z−288 (21 z−2)F ′ F ′′2F ′′′ u3z

+10368F ′ F ′′′2u2z3+16 (27 z−1)(21 z−1)F ′′3F ′′′ u3z+2304F ′2F ′′2u3−288 (31 z−4)F ′ F ′′3u3

−64 (6uz−162 z2+33 z−1)F ′′4u3+2304F ′2F ′′′ u2z−2304 (6 z−1)F ′ F ′′ F ′′′ u2z

−192 (8uz−54 z2+29 z−1)F ′′2F ′′′ u2z−768 (2u+189 z−7)F ′′′2uz3+2304F ′2F ′′ u2−3072 (3 z−1)F ′ F ′′2u2

−192 (24uz−27 z2+55 z−2)F ′′3u2−1536 (21 z−2)F ′ F ′′′ uz−768 (12uz+81 z2+24 z−1)F ′′ F ′′′ uz+1536 (9 z+2)F ′ F ′′ u

−512 (39uz+81 z2+51 z−2)F ′′2u+36864F ′ z−1024 (12uz−162 z2+33 z−1)F ′′′ z−1024 (36uz+27 z−1)F ′′−24576 z=0.
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We do not know if F itself satisfies a differential equation of order 2. For the series H of Proposition 3.4
however, a similar approach gives an equation of order 2 and degree 3:

3 (u+ 1)u2H ′
2
H ′′ + 12u2zH ′H ′′ + 6 (u− 8)uH ′

2
+ 240H

+ 4 (6uz − 54 z + 1)H ′ + 4 (3uz2 + 30uH + 27 z2 − z)H ′′ + 24 z2 = 0.

4.2 The cubic case
The cubic case is heavier, since we now have to deal with series φ1 and φ2 in two variables. We obtain
for F ′(z, u) a differential equation of order 2 and degree 17. For the generating function G(z, u) of
quasi-cubic forested maps, the degree is only 5:

0 = (3u4zW ′
4 − u3(5Wu− uz + z)W ′

3
+ 4 (u+ 1)(5Wu− uz + z)2)W ′′

− 48u2z(u+ 1)W ′
3

+ 8u(u+ 1)(5Wu− uz + z)W ′
2

+ 4 (u− 1)(u+ 1)(5Wu− uz + z)W ′,

where G = (W + zū)/2. Introducing the series W is natural in the solution of the Potts model presented
in [4], where the above equation was first obtained. It makes the equation more compact.

5 Combinatorics of forested trees
As shown by (4), the series F (z, u) that counts p-valent forested maps has non-negative coefficients in
(1 + u). We say that it is (u + 1)-positive. More precisely, F (z, µ − 1) counts p-valent maps equipped
with a spanning tree weighted by its internal activity (by µ). This will lead us to study the asymptotic
behaviour of the coefficient of zn in F (z, u) not only for u ≥ 0, but for u ≥ −1. However, our main
tool, namely the singularity analysis of [17], is much easier when applied to series with non-negative
coefficients, and we will need to know that a few other series, related to F , are also (u+ 1)-positive. We
prove this thanks to a combinatorial argument that applies to several classes of forested trees.

5.1 Positivity in (1 + u)

Let T be a tree having at least one edge, and F a set of spanning forests of T . We define a property of F
that guarantees that the generating function AF (u) that counts forests of F by the number of components
is (u+ 1)-positive (after division by u).

Let F ∈ F , and let e be an edge of T . By flipping e in the forest F , we mean adding e to F if it is not
in F , and removing it from F otherwise. This gives a new forest F ′ on T . We say that e is flippable for
F if F ′ still belongs to F . We say that F is stable if for each F ∈ F (i) every edge of T not belonging to
F is flippable, and (ii) flipping a flippable edge gives a new forest with the same set of flippable edges.

Lemma 5.1 Assume F is stable. Then all elements of F have the same number, say f , of flippable edges,
and the generating function of forests of F , counted by components, is AF (u) = u(1 + u)f .

Proof: The stability ofF implies that the forest Fmax consisting of all edges of T belongs toF . Moreover,
we can obtain Fmax from any forest F of F by adding iteratively flippable edges. By Condition (ii), this
implies that any forest F of F has the same set of flippable edges as Fmax. It also means that, to construct
a forest F of F , it suffices to choose, for each flippable edge of Fmax, whether it belongs to F or not.
Since Fmax has a unique component, and since deleting an edge from a forest increases by 1 the number
of components, the expression of AF (u) follows. 2
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5.2 Enriched blossoming trees
Define R and S by (6–7), and S̃ by S̃ = uφ2(z, S̃), where φ2 is given by (5). We now give combinatorial
interpretations of these three series in terms of forested trees.

We consider leaf-rooted plane trees, which we draw hanging from their root as in Figure 3. A vertex
of degree d is seen as the parent of d− 1 children. A subtree consists of a vertex and all its descendants.
A blossoming tree is a leaf-rooted plane tree with two kinds of childless vertices: leaves, represented by
white arrows, and buds, represented by black arrows. The edges that carry leaves and buds, as well as
the root edge, are considered as half-edges. Each leaf is assigned a charge +1 while each bud is assigned
a charge −1. The charge of a subtree is the difference between the number of leaves and buds that it
contains.

Definition 5.2 Let p ≥ 3. A p-valent blossoming tree equipped with a spanning forest F is an enriched
R- (resp. S-) tree if (i) its total charge is 1 (resp. 0) and (ii) any subtree rooted at an edge not in F has
charge 0 or 1. It is an enriched S̃-tree if each component of F is incident to as many leaves as buds (in
this case it is also an enriched S-tree).

Proposition 5.3 The series R, S and S̃ count enriched R-, S- and S̃-trees by the number of leaves (z) and
the number of components in the forest (u).

Proof: The readers who are familiar with the R- and S-trees of [10] will recognize that our enriched R-
and S-trees are obtained from them by inflating each vertex of degree k into a (leaf rooted) p-valent tree
with k leaves. Thus (6–7) follows from [10] by specializing the indeterminate gk to tk.

For the other readers (and for the series S̃), the equations follow from a recursive decomposition of
enriched trees. For instance, an enriched R-tree is either reduced to a single leaf, or consists of a root
component (say, with k incident edges) in which each non-root incident edge is replaced either by a bud,
or an enriched R-tree, or an enriched S-tree. If there are i attached enriched R-trees, we must have i − 1
buds for the total charge to be 1, and j S-trees with k − 1 = 2i− 1 + j. This gives (6). 2

Proposition 5.4 Let T be a p-valent blossoming tree with charge 1 (resp. 0), having at least one edge,
and F the set of spanning forests of T that make it an enriched R- (resp. S-) tree. Then F is stable, in the
sense of Section 5.1. The same holds if T is a p-valent blossoming tree with charge 0, and F the set of
spanning forests of T that make it an enriched S̃-tree.

Proof: An edge is flippable if and only if the attached subtree has charge 0 or 1. 2

By combining this proposition with Lemma 5.1, and Proposition 5.3, we obtain:

Fig. 3: An enriched 5-valent R-tree. It has 10 leaves (white; charge +1) and 9 buds (black; charge -1).
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Corollary 5.5 The series ū(R− z), ūS and ūS̃ are (u+ 1)-positive.

6 Asymptotic results
Let p ≥ 3, and let F (z, u) =

∑
n fn(u)zn be the generating function of p-valent forested maps, given

by Theorem 3.1. That is, fn(u) counts p-valent forested maps with n faces by the number of non-root
components. As recalled in Section 2.2, fn(µ − 1) also counts p-valent maps with n faces equipped
with a spanning tree, with a weight µ on each internally active edge, or p-angulations equipped with a
recurrent sandpile configuration weighted (by µ) by its level [13, 20]. This explains why we will study
the asymptotic behaviour of fn(u) for any u ≥ −1.

Here, we first state our results for 4-valent maps and discuss the proof and its difficulties. The fact that
p is even simplifies the system of Theorem 3.1 and makes 4-valent maps the most tractable case. We then
briefly describe the (analogous) results obtained for cubic maps, with the new difficulties raised by the
system of two equations defining the series R and S.

Theorem 6.1 Let p = 4, and take u ∈ [−1,+∞). Let fn(u) be the coefficient of zn in F (z, u). There
exists a positive constant κu, depending on u only, such that

fn(u) ∼





κuρ
−n
u n−3(log n)−2 if u ∈ [−1, 0),

κuρ
−n
u n−3 if u = 0,

κuρ
−n
u n−5/2 if u > 0.

Moreover, the radius ρu of F (z, u) is an affine function of u when u ∈ [−1, 0]:

ρu =
1 + u

27
− u
√

3

12π
. (12)

For u > 0, the subexponential term n−5/2 is typical of rooted maps. The behaviour for negative values
of u is much more surprising. In fact, we prove that in this case, the singular behaviour of F ′z(z, u) at its
unique dominant singularity ρ ≡ ρu involves a term (1 − z/ρ)/ log(1 − z/ρ). Since this cannot be the
singular behaviour of a D-finite series [17, p. 520 and 582], we have the following corollary.

Corollary 6.2 For u ∈ [−1, 0), the generating function F (z, u) of 4-valent forested maps is D-algebraic,
but not D-finite. The same holds when u is an indeterminate.

Note also the simplicity of the radius for u ≤ 0. In particular, F (z,−1) counts 4-valent maps equipped
with a spanning tree having no internal activity, and this series has a transcendental radius

√
3/(12π).

Recall that F (z, 0) is explicit (see (9)). The estimate of fn(0) follows from Stirling’s formula.

Proof of Theorem 6.1 (sketched): Recall the equations (11) that define the series F (z, u). The key point
is to study the singular behaviour of the series R defined implicitly by (11). When u > 0, we are in
the smooth implicit function schema discussed for instance in [17, p. 467]: the series R(z, u) becomes
singular when 1 = uφ′(R), and this occurs before R reaches the radius 1/27 of φ and θ. It follows that
R, and also F ′z , have a square root singularity at ρ. One then proves that F ′z is analytic in a ∆-domain and
concludes, using singularity analysis, that nfn(u) ∼ κuρ

−n
u n−3/2. In brief, the singularities of φ and θ

are not felt when u > 0.
When u < 0 however, the conditions of the implicit function theorem do not fail, but R reaches at its

radius the singularity of φ, namely 1/27. Since φ(1/27) =
√

3/(12π)−1/27, Eq. (11) gives the value (12)
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of ρu. The singular behaviour of R now depends on the singular behaviour of φ, and is found to be in
(1−z/ρ)/ log(1−z/ρ). Similarly, we need to know the singular behaviour of θ to derive the behaviour of
F ′: it is found to behave likeR, and we conclude via singularity analysis that nfn ∼ κuρ−nu n−3(log n)−2.

Several ingredients make the case u < 0 significantly harder than the case u > 0: one of them is that
the series R has no longer non-negative coefficients (this is however partially alleviated by Corollary 5.5);
it is also harder to prove that R has a unique dominant singularity; finally, we obviously need to know the
singular behaviours of φ and θ (but these can be found in the literature). 2

We have also worked out the asymptotic behaviour of fn(u) in the cubic case (p = 3). This is harder
than the 4-valent case, since we now have to deal with a system of equations defining R and S (however,
φ1(x, y) and φ2(x, y) can be expressed in terms of hypergeometric functions of x/(1 − 4y)2, which
simplifies things a bit). Of course the case u < 0 is again harder than the case u > 0. Lemma 5.1 and
Corollary 5.5 are crucial in the study of this case. The results are the same as in Theorem 6.1, except that
the radius for negative u is now a quadratic (rather than affine) function of u, with ρ−1 = π2/384.
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Structure and enumeration of (3 + 1)-free
posets (extended abstract)
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LaCIM, Université du Québec à Montréal, 201 Président-Kennedy, Montréal QC H2X 3Y7, Canada

Abstract. A poset is (3 + 1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced
subposet. These posets are the subject of the (3 + 1)-free conjecture of Stanley and Stembridge. Recently, Lewis
and Zhang have enumerated graded (3+1)-free posets, but until now the general enumeration problem has remained
open. We enumerate all (3 + 1)-free posets by giving a decomposition into bipartite graphs, and obtain generating
functions for (3 + 1)-free posets with labelled or unlabelled vertices.

Résumé. Un poset sans (3 + 1) est un poset qui n’a pas de sous-poset induit formé de deux chaı̂nes disjointes de
longeur 3 et 1. Ces posets sont l’objet de la conjecture (3+1) de Stanley et Stembridge. Récemment, Lewis et Zhang
on énuméré les posets étagés sans (3 + 1), mais en général la question d’énumération est restée ouverte jusqu’à
maintenant. Nous énumérons tous les posets sans (3 + 1) en donnant une décomposition de ces posets en graphes
bipartis, et obtenons des fonctions génératrices qui les énumèrent, qu’ils soient étiquetés ou non.

Keywords: (3+1)-free posets, trace monoid, generating functions, chromatic symmetric function

1 Introduction
A poset P is (i + j)-free if it contains no induced subposet that is isomorphic to the poset consisting of
two disjoint chains of lengths i and j. In particular, P is (3 + 1)-free if there are no vertices a, b, c, d ∈ P
such that a < b < c and d is incomparable to a, b, and c.

Posets that are (3+1)-free play a role in the study of Stanley’s chromatic symmetric function [12, 13], a
symmetric function associated with a poset that generalizes the chromatic polynomial of a graph. Namely,
a well-known conjecture of Stanley and Stembridge [16] is that the chromatic symmetric function of a
(3 + 1)-free poset has positive coefficients in the basis of elementary symmetric functions. As evidence
toward this conjecture, Stanley [12] verified the conjecture for the class of 3-free posets, and Gasharov [5]
has shown the weaker result that the chromatic symmetric function of a (3+1)-free poset is Schur-positive.

To make more progress toward the Stanley–Stembridge conjecture, a better understanding of (3 + 1)-
free posets is needed. Reed and Skandera [9, 10] have given structural results and a characterization
of (3 + 1)-free posets in terms of their antiadjacency matrix. In addition, certain families of (3 + 1)-
free posets have been enumerated. For example, the number of (3 + 1)-and-(2 + 2)-free posets with n
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1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



286 Mathieu Guay-Paquet and Alejandro H. Morales and Eric Rowland

vertices is the nth Catalan number [15, Ex. 6.19(ddd)]; Atkinson, Sagan and Vatter [1] have enumerated
the permutations that avoid the patterns 2341 and 4123, which give rise to the (3 + 1)-free posets of
dimension two; and Lewis and Zhang [7] have made significant progress by enumerating graded (3 + 1)-
free posets in terms of bicoloured graphs(i) using a new structural decomposition. However, until now the
general enumeration problem for (3 + 1)-free posets remained open [14, Ex. 3.16(b)].

In this paper, we give generating functions for (3+1)-free posets with unlabelled and labelled vertices in
terms of the generating functions for bicoloured graphs with unlabelled and labelled vertices, respectively.
As in the graded case, the two problems are equally hard, although the enumeration problem for bicoloured
graphs has received more attention.

In the unlabelled case, let punl(n) be the number of (3 + 1)-free posets with n unlabelled vertices, and
let S(c, t) be the unique formal power series solution (in c and t) of the cubic equation

S(c, t) = 1 +
c

1 + c
S(c, t)2 + tS(c, t)3. (1)

We show that the ordinary generating function for unlabelled (3 + 1)-free posets is
∑

n≥0
punl(n)xn = S

(
x/(1− x), 1− 2x−Bunl(x)−1

)
, (2)

where Bunl(x) = 1 + 2x + 4x2 + 8x3 + 17x4 + · · · is the ordinary generating function for unlabelled
bicoloured graphs. Before our investigation, the On-Line Encyclopedia of Integer Sequences [11] had
22 terms in the entry [11, A049312] for the coefficients of Bunl(x), but only 7 terms in the entry [11,
A079146] for the numbers punl(n). Using (2), we have closed this gap; the numbers punl(n) for n =
0, 1, 2, . . . , 22 are

1, 1, 2, 5, 15, 49, 173, 639, 2469, 9997, 43109, 205092, 1153646, 8523086, 91156133,
1446766659, 32998508358, 1047766596136, 45632564217917, 2711308588849394,
219364550983697100, 24151476334929009951, 3618445112608409433287.

Similarly, in the labelled case, let plbl(n) be the number of (3 + 1)-free posets with n labelled vertices.
We show that the exponential generating function for labelled (3 + 1)-free posets is

∑

n≥0
plbl(n)

xn

n!
= S

(
ex − 1, 2e−x − 1−Blbl(x)−1

)
, (3)

whereBlbl(x) =
∑
n≥0

∑n
i=0

(
n
i

)
2i(n−i) x

n

n! is the exponential generating function for labelled bicoloured
graphs. Such bicoloured graphs are easy to count, but before our investigation the OEIS had only 9 terms
in the entry [11, A079145] for plbl(n). Using (3), arbitrarily many terms plbl(n) can be computed.

Our main tool is a new decomposition of (3 + 1)-free posets into parts (called clone sets and tangles).
This tangle decomposition is compatible with the automorphism group, in the sense that for a (3 + 1)-free
poset P , Aut(P ) breaks up as the direct product of the automorphism groups of its parts. The tangle
decomposition also generalizes a decomposition of Reed and Skandera [10] for (3 + 1)-and-(2 + 2)-free

(i) Throughout this paper, a bicoloured graph is a bipartite graphs with a specified ordered bipartition. For example, there are 2
bicoloured graphs with 1 vertex, 6 bicoloured graphs with 2 labelled vertices, and 4 bicoloured graphs with 2 unlabelled vertices.
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posets given by altitudes of vertices. In terms of generating functions, the restriction of our results to
(3 + 1)-and-(2 + 2)-free posets corresponds to the specialization t = 0 in (1). Indeed, one can see that
S(x/(1 − x), 0) satisfies the functional equation for the Catalan generating function, which is consistent
with the enumeration result stated earlier for (3 + 1)-and-(2 + 2)-free posets [15, Ex. 6.19(ddd)].

Remark 1.1. Using the tangle decomposition it is possible to quickly generate all (3 + 1)-free posets of a
given size up to isomorphism in a straightforward way (see Theorem 3.10). With this approach, we were
able to list all (3 + 1)-free posets on up to 11 vertices in a few minutes on modest hardware. Note that this
technique can accommodate the generation of interesting subclasses of (3 + 1)-free posets (e.g., (2 + 2)-
free, weakly graded, strongly graded, co-connected, fixed height) or constructing these posets from the
bottom up, level by level (which can help compute invariants like the chromatic symmetric function).

Remark 1.2. Comparing the list of numbers above with data provided by Joel Brewster Lewis for the
number of graded (3 + 1)-free posets [11, A222863, A222865], it appears that, asymptotically, almost
all (3 + 1)-free posets are graded. We prove this in the full version of this paper [6], building on the
asymptotic analysis of Lewis and Zhang for the graded (3 + 1)-free posets. In fact, almost all (3 + 1)-free
posets are 3-free, so their Hasse diagrams are bicoloured graphs.

OUTLINE. In Section 2, we describe the tangle decomposition of a (3 + 1)-free poset into clone sets and
tangles and use it to compute the poset’s automorphism group. In Section 3, we describe the relationships
between the different clone sets and tangles of a (3+1)-free poset as parts of a structure called the skeleton
and enumerate the possible skeleta. In Section 4, we enumerate tangles in terms of bicoloured graphs, and
as a result we obtain generating functions for (3 + 1)-free posets.

2 The tangle decomposition
Throughout the paper, we assume that P is a (3 + 1)-free poset. We write a ‖ b if vertices a and b in a
poset are incomparable. In this section, we describe the tangle decomposition of a (3 + 1)-free poset.

Given a vertex a ∈ P , we write Da = {x ∈ P : x < a} and Ua = {x ∈ P : x > a} for the (strict)
downset and upset of a. The set J (P ) of all downsets of P (that is, all downward closed subsets of P ,
not just those of the form Da for some a ∈ P ) forms a distributive lattice, and in particular a poset, under
set inclusion. Similarly, the set of upsets of P forms a poset under set inclusion, but it will be convenient
for us to consider instead the complements P \ Ua ∈ J (P ) of the upsets of vertices a ∈ P .

Definition 2.1. The view v(a) from a vertex a ∈ P is the pair (Da, P \ Ua) ∈ J (P ) × J (P ). If
v(a) = v(b), then we say a and b are clones and write a ≈ b.

Note that the set v(P ) of views of all vertices of P inherits a poset structure from the set J (P )×J (P ),
where v(a) ≤ v(b) if and only if Da ⊆ Db and Ua ⊇ Ub.

Also note that two vertices a, b ∈ P are clones precisely when they are interchangeable, in the sense
that the permutation of the vertices of P which only exchanges a and b is an automorphism of P .

Example 2.2. Figure 1 shows a (3 + 1)-free poset and its view poset. Since v(d) = v(e), we have d ≈ e.
Remark 2.3. The notion of clones is related to the notion of trimming of Lewis and Zhang [7]. Also,
Zhang [18] has used techniques involving clones and (2+2)-avoidance to prove enumeration results about
families of graded posets.

Definition 2.4. Let a, b ∈ P . We write a b if Da ‖ Db, and we write a b if Ua ‖ Ub.
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a b c

d e f g

h i

j

v(j) = ({abcdefgh}, {abcdefghij})
v(i) = ({abcdefg} , {abcdefghi} )
v(h) = ({abcde} , {abcdefghi} )
v(g) = ({ac} , {abcdefgh} )
v(f) = ({ab} , {abcdefgh} )
v(e) = ({a} , {abcdefg} )
v(d) = ({a} , {abcdefg} )
v(c) = ({} , {abcdef} )
v(b) = ({} , {abcde} )
v(a) = ({} , {abc} ) v(a)

v(b)

v(c)

v(d) = v(e)

v(f) v(g)

v(h)

v(i)

v(j)

Fig. 1: Left: the Hasse diagram of a (3 + 1)-free poset P with 10 vertices. Centre: the list of views of the vertices of
P . Right: the view poset v(P ).

The idea behind the notation is the following. If a b, then there is some vertex c ∈ Da \Db, so that
c < a and c 6< b, and there is some d ∈ Db \Da, so that d 6< a and d < b. Then, it can be checked that
a, b, c, d are distinct vertices, and that they are incomparable except for the two relations c < a and d < b.
Hence we have the following induced (2 + 2) subposet with a and b on the top:

a b

c d

b

Dually, if a b then there is an induced (2 + 2) subposet with a and b on the bottom.

Example 2.5. In Figure 1, we have f g and b c, but not a b, since Ub ⊆ Ua.

The following lemma records basic properties of the relations ≈, , and and their interactions.

Lemma 2.6. Let P be a (3 + 1)-free-poset, and let a, b, c be any vertices of P .

(i) If a ≈ b and b ≈ c, then a ≈ c.
(ii) If a b and b ≈ c, then a c.

(iii) If a b and b ≈ c, then a c.

(iv) If a b, then Ua = Ub.

(v) If a b, then Da = Db.

(vi) We have v(a) ‖ v(b) if and only if a b or a b.

(vii) It is not the case that both a b and b c.

Now, consider a graph Γ on the vertices of P with edge set {(a, b) : a b}. We say that a subset
A ⊆ P is the top of a tangle if |A| ≥ 2 andA, when viewed as a subset of V (Γ), is a connected component
of Γ. Analogously, a subset B ⊆ P is the bottom of a tangle if |B| ≥ 2 and B is a connected component
under the relation .

By conclusion (vii) of Theorem 2.6, if A is the top of a tangle and B is the bottom of a tangle, then
A ∩ B = ∅. Let us say that a top of a tangle A and a bottom of a tangle B are matched if there is an
induced (2 + 2) subposet whose top two vertices are in A, and whose bottom two vertices are in B.
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Proposition 2.7. In a (3+1)-free poset P , every top of a tangle is matched to a unique bottom of a tangle,
and every bottom of a tangle is matched to a unique top of a tangle. That is, there is a perfect matching
between tops of tangles and bottoms of tangles of P .

Theorem 2.7 justifies the terms ‘top of a tangle’ and ‘bottom of a tangle’ and the following definition.

Definition 2.8. A tangle is a matched pair T = (A,B) of a top of a tangle A and a bottom of a tangle B.

In other words, a tangle is a subposet of P that is connected by induced (2+2) subposets. In particular,
P is (2 + 2)-free exactly when it has no tangles.

Example 2.9. Very often, a two-level poset which is not connected consists of a single tangle. For
example, let P be the poset with vertices {a1, a2, a3, c1, c2} ∪ {b, d} and relations ai > cj , b > d. Then,
the connected components of P are {a1, a2, a3, c1, c2} and {b, d}. Every subset of the form {ai, b, cj , d}
forms an induced (2 + 2) subposet, so {a1, a2, a3, b} is the top of a tangle, {c1, c2, d} is the bottom of a
tangle, and the whole poset P is a single tangle.

Example 2.10. In the poset P of Figure 1, the connected component of f under is {f, g}, and the
connected component of b under is {b, c}. Therefore P contains the tangle T = ({f, g}, {b, c}). One
can check that in fact this is the only tangle of P .

Definition 2.11. Let T1 = (A1, B1), . . . , Ts = (As, Bs) be the tangles of P . A clone set is an equivalence
class, under ≈, of vertices in P \⋃sj=1(Aj ∪ Bj). We refer to tangles and clone sets as parts of P . The
set of parts is the tangle decomposition of P .

Example 2.12. The tangle decomposition of the poset in Figure 1 appears in Figure 2. It consists of six
parts—five clone sets and one tangle.

3

2

1

4

c1

c2

c3

t12

c4

c3

Fig. 2: Left: the Hasse diagram of the poset P from Figure 1. Centre: the tangle decomposition of P into its parts.
Right: a compatible listing of the parts. Clone sets are enclosed in circles, and tangles are enclosed in boxes.

The tangle decomposition provides a decomposition of a (3 + 1)-free poset from which the automor-
phism group, among other properties, can be computed. To show this, it will be useful to have a different
characterization of the tops of tangles, bottoms of tangles, and clone sets of P which gives a natural order-
ing of these subsets of P , as follows. A co-connected component of a poset Q is a connected component
of the incomparability graph of Q.

Proposition 2.13. Let v(P ) ⊆ J (P )×J (P ) be the poset of views of all vertices of the (3+1)-free poset
P . Then, there is a listing (S1, S2, . . . , Sk) of the co-connected components of v(P ) such that for every
x ∈ Si and every y ∈ Si+1, we have x < y. Moreover, the preimages v−1(Si) for i = 1, 2, . . . , k are
exactly the tops of tangles, bottoms of tangles, and clone sets of P .
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Let Aut(P ) be the automorphism group of the poset P . Any part Xi of P gives an induced subposet of
P , and we write Aut(Xi) for its automorphism group as a poset. In particular, if Xi is a clone set with k
vertices, then Aut(Xi) is the symmetric group on these k vertices; ifXi is a tangle, then it can be seen as a
bicoloured graph (with colour classes ‘top’ and ‘bottom’), and Aut(Xi) is the group of colour-preserving
automorphisms of this graph.

Theorem 2.14. Let P be a (3 + 1)-free poset, decomposed into its clone sets C1, C2, . . . , Cr and its
tangles T1, T2, . . . , Ts. Then, the automorphism group of P is

Aut(P ) =
r∏

i=1

Aut(Ci)×
s∏

j=1

Aut(Tj).

Note that the tangle decomposition of a (3+1)-free poset P into its parts generalizes the decomposition
considered by Reed and Skandera [10] of a (3 + 1)-and-(2 + 2)-free poset given by the altitude α(a) =
|Da| − |Ua| of the vertices a ∈ P , since the altitude α(a) is a function of the view v(a). Of course, even
in a (3 + 1)-free poset P with an induced (2 + 2) subposet, the altitude is well-defined, and it gives a finer
decomposition of P than the tangle decomposition. However, the altitude decomposition is too fine, as
the example in Figure 3 shows. Namely, there is an automorphism τ which swaps the two vertices with
altitude −1, the two vertices with altitude −2, and two of the three vertices with altitude 2, as illustrated.
But there is no automorphism which acts nontrivially on a single block of the altitude decomposition.

In contrast, for the tangle decomposition, every automorphism of the poset can be factored as a product
of automorphisms which only act nontrivially on a single part.

2 2 2

−1 −1 −2 −2

Fig. 3: A poset P consisting of a single tangle. The vertices are labelled by their altitude α, and the arrows describe
an automorphism τ of P .

3 Skeleta
Any finite poset P can be decomposed into levels as follows: take L1 to be the set of minimal vertices of
P , L2 to be the set of subminimal vertices (that is, the set of minimal vertices of P \ L1), and so on up to
the set Lh of sub(h−1)minimal vertices of P , where h is the height of P . We say that the level of a vertex
a ∈ P is `(a), where a ∈ L`(a).

If P is (3 + 1)-free, then the only interesting part of the poset structure occurs between adjacent levels,
as the following proposition shows.

Proposition 3.1 (Lewis and Zhang [7]). Let P be a (3 + 1)-free poset and a, b ∈ P be two vertices with
`(a) ≤ `(b)− 2. Then, we have a < b.

Note that the covering relations of P may include relations a < b for which `(a) = `(b) − 2. This
occurs in Figure 1, for example, where b < h, c < h, f < j, and g < j are covering relations.
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The following proposition gives a partial converse of Theorem 3.1.

Proposition 3.2 (Reed and Skandera [10]). Let P be a poset such that for any two vertices a, b ∈ P with
`(a) ≤ `(b)− 2, we have a < b. Then, P is (3 + 1)-free if and only if for any two vertices c, d ∈ P with
`(c) = `(d), we have Uc ⊆ Ud or Dc ⊆ Dd (and symmetrically, Uc ⊇ Ud or Dc ⊇ Dd).

Note that the vertices of a clone set Ci all have the same downset, so they are on the same level. Also,
any copy of the (2+2) poset must be contained in two adjacent levels, so any tangle Tj must be contained
in two adjacent levels. Thus, we can speak of the level of a clone set or the (adjacent) levels of a tangle.

By construction, the poset structure between two parts of P is fairly restricted. If Ci and Cj are distinct
clone sets, then Ci is either completely above, completely below, or completely incomparable with Cj
(meaning that every vertex of Ci has the same relationship with every vertex of Cj). If Ci is a clone set
and Tj is a tangle, then Ci can be

• completely above Tj ;
• completely above the bottom of Tj and incomparable with the top;
• completely below the top of Tj and incomparable with the bottom;
• completely below Tj ; or
• completely incomparable with Tj .

Similarly, there are only six possible ways for two tangles Ti and Tj to relate to each other. The following
theorem shows how all of these relationships between different parts of P can be put together.

Theorem 3.3. Let P be a (3 + 1)-free poset, decomposed into clone sets C1, . . . , Cr and tangles T1, . . . ,
Ts. Then, there exists a listing (X1, . . . , Xr+s) of the clone sets and the tangles of P such that, for any
two vertices a ∈ Xi and b ∈ Xj with i 6= j, we have a < b exactly when

(i) `(a) ≤ `(b)− 2; or

(ii) `(a) = `(b)− 1 and i < j.

Definition 3.4. A listing which satisfies the conditions of Theorem 3.3 is called a compatible listing.

Example 3.5. A compatible listing for the poset in Figure 1 is
(
{a}, {d, e}, {h}, ({f, g}, {b, c}), {j},

{i}
)
, as shown in Figure 2.

idea for Theorem 3.3. For each level, we can get a partial listing of the parts which intersect Li according
to their positions on the view poset v(P ). Then, the listing for Li and Li+1 can be interleaved in a unique
way to respect condition (ii), so it follows that all of them can be reconciled into a single compatible
listing.

Note that the listing (X1, X2, . . . , Xr+s) from Theorem 3.3 is not unique in general. In particular,
if (. . . , Xi, Xi+1, . . .) is a compatible listing, then the listing (. . . , Xi+1, Xi, . . .) obtained by swapping
the parts Xi and Xi+1 is compatible exactly when Xi and Xi+1 contain no vertices on the same or on
adjacent levels of P . We call such a swap valid.

Example 3.6. In Figure 2 we can swap the clone set {j} on level 4 with the tangle ({f, g}, {b, c}) on
levels 1 and 2 to obtain another compatible listing for the poset.

Therefore the natural setting for compatible listings is that of free partially commuting monoids [3],
also known as trace monoids [4].
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Definition 3.7. Let Σ be the countable alphabet

Σ = {c1, c2, . . . , ci, . . .} ∪ {t12, t23, . . . , ti i+1, . . .},
let Σ∗ be the free monoid generated by Σ, and let M be the free partially commuting monoid with
commutation relations

cicj = cjci, if |i− j| ≥ 2,

citj j+1 = tj j+1ci, if i ≤ j − 2 or i ≥ j + 3,

ti i+1tj j+1 = tj j+1ti i+1, if |i− j| ≥ 3.

Definition 3.8. If P is a (3 + 1)-free poset, then for each compatible listing (X1, X2, . . . , Xr+s) of its
clone sets and tangles, we can obtain a word in Σ∗ by replacing each clone set at level i by the letter ci and
each tangle straddling levels {i, i+ 1} by the letter ti i+1. It can be seen that any two compatible listings
for P are related by a sequence of valid swaps, so the set of these words is an equivalence class under the
commutation relations for M (see, e.g., [4, Chapter 1]), and the corresponding element of M is called the
skeleton of P .

Example 3.9. The two representatives in Σ∗ for the skeleton of the poset in Figure 2 are c1c2c3t12c4c3
and c1c2c3c4t12c3.

The point of a skeleton is that it exactly captures the relationships between different parts of P . More
precisely, two posets with the same skeleton and isomorphic parts are themselves isomorphic; conversely,
given a skeleton, any set of parts (with the right number of clone sets and tangles) can be plugged into
the skeleton. Together, Theorem 3.10, Theorem 3.11, and Theorem 3.12 below show this and give a
characterization of the elements of M which are skeleta.

Corollary 3.10. Let P be a (3 + 1)-free poset. Then, P is uniquely determined (up to isomorphism) by
its skeleton together with, for each letter ci or ti i+1 of the skeleton, the cardinality of the corresponding
clone set or the isomorphism class of the corresponding tangle.

Theorem 3.11. Let m be an element of the monoid M . Then, m is the skeleton of some (3 + 1)-free poset
if and only if

(i) every representative w ∈ Σ∗ for m starts with the letter c1 or t12; and

(ii) no representative w ∈ Σ∗ for m contains a factor of the form cici, i ≥ 1.

Note that condition (i) of Theorem 3.11 corresponds to the requirement that every vertex of P on level
Li+1 be greater than some vertex on the previous level Li, while condition (ii) forbids pairs of clone sets
that could be merged into a single clone set.

Theorem 3.12. Let m be an element of the monoid M . Then, there exists a representative w0 ∈ Σ∗ for
m for which every pair of consecutive letters is either

cicj for i ≥ j − 1; or

citj j+1 for i ≥ j − 1; or

ti i+1cj for i ≥ j − 2; or

ti i+1tj j+1 for i ≥ j − 2.

Furthermore,
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(i) this representative w0 is unique and is the lexicographically maximal representative for m with
respect to the total order {c1 < t12 < c2 < t23 < · · · } on Σ;

(ii) if w0 starts with c1 or t12, then every representative w ∈ Σ∗ for m starts with c1 or t12; and

(iii) ifw0 does not contain a factor of the form cici, i ≥ 1, then no representativew ∈ Σ∗ form contains
a factor of this form.

Example 3.13. Of the two representatives given in Theorem 3.9, c1c2c3c4t12c3 is lexicographically max-
imal.

Using this characterization of skeleta, we can enumerate them, and this will allow us to obtain generat-
ing functions for (3 + 1)-free posets.

Theorem 3.14. There is a bijection between skeleta of (3 + 1)-free posets and certain decorated Dyck
paths. (See Figure 4 for an example.)

Proof. Given the lexicographically maximal representative w0 for a skeleton, we can obtain a decorated
Dyck path that starts at (0, 0), ends at (2n, 0) for some n ≥ 0, and never goes below the x-axis as follows:
replace each letter ci by a (1, 1) step ending at height i, each letter ti i+1 by a (2, 2) step ending at height
i + 1, and add (1,−1) down steps as necessary. We call the result decorated since a (2, 2) step can be
seen as a pair of consecutive decorated (1, 1) steps. Since w0 not contain cici as a factor, the decorated
Dyck path obtained from w0 contains no sequence (1, 1), (1,−1), (1, 1) of consecutive undecorated steps

Consider the 26-vertex (3 + 1)-free poset P with 10 parts shown in the compatible listing below.
Only some of the comparability and incomparability relations between parts are drawn, but the others
can be determined from Theorem 3.3.

3

2

1

The word w0 = c1c2c3c1t12t12c3t23c3c1, shown below in a suggestive manner, is the lexicographi-
cally maximal representative for the skeleton of P .

3

2

1 c1

c2

c3

c1

t12 t12

c3
t23

c3

c1

The decorated Dyck path associated with w0 is the following.

3

2

1

Fig. 4: An example of the bijection given in Theorem 3.14.
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(up-down-up). Conversely, every decorated Dyck path avoiding this sequence can be obtained from a
skeleton.

Theorem 3.15. Let S(c, t) ∈ Q[[c, t]] be the ordinary generating function for skeleta with respect to the
number of clone sets and the number of tangles, that is, the formal power series

S(c, t) =
∑

r,s≥0
(# of distinct skeleta with r clone sets and s tangles) crts.

Then, S(c, t) is uniquely determined by the equation

S(c, t) = 1 +
c

1 + c
S(c, t)2 + tS(c, t)3. (4)

idea. See Figure 5.

{
S

}
= {ε} ∪

{
S1

}
∪
{

S2

}

{
S1

}
=

{
S

S

}
\
{

S1

}

{
S2

}
=





S
S

S





Fig. 5: Equations relating the sets counted by S(c, t), S1(c, t), and S2(c, t), where S1(c, t) and S2(c, t) are the
generating functions for decorated Dyck paths beginning with (1, 1) and (2, 2), respectively.

4 Enumeration
In this section, we carry out the enumeration of unlabelled and labelled (3 + 1)-free posets by reducing
it to the enumeration of unlabelled and labelled bicoloured graphs. Our approach is to consider such a
bicoloured graph as a (3 + 1)-free poset in the natural way (with colour classes ‘top’ and ‘bottom’) and
to apply the machinery of Section 3, as shown in the following lemma.

Lemma 4.1. The ordinary generating function for skeleta of bicoloured graphs is given by

∑

r1,r2,s≥0

(# of skeleta of bicoloured graphs with r1
clone sets on level 1, r2 clone sets on level
2, and s tangles

)
cr11 c

r2
2 t

s
12

=

(
1− c1

1 + c1
− c2

1 + c2
− t12

)−1
. (5)
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Now that we have an explicit expression for the generating function of skeleta of bicoloured graphs, we
can perform appropriate substitutions to get equations relating the generating functions for tangles and for
bicoloured graphs.

Theorem 4.2. Let Bunl(x, y) ∈ Q[[x, y]] be the ordinary generating function for unlabelled bicoloured
graphs, up to isomorphism. Then, the ordinary generating function for unlabelled tangles is

Tunl(x, y) = 1− x− y −Bunl(x, y)−1.

Proof. This follows from Theorem 4.1 by plugging in the values c1 = x/(1− x) and c2 = y/(1− y) for
the clone sets of unlabelled vertices and t = Tunl(x, y) for the tangles in (5).

Theorem 4.3. Let Blbl(x, y) ∈ Q[[x, y]] be the exponential generating function for labelled bicoloured
graphs, that is, the formal power series

Blbl(x, y) =
∑

i,j≥0
2ij

xiyj

i!j!
.

Then, the exponential generating function for labelled tangles is

Tlbl(x, y) = e−x + e−y − 1−Blbl(x, y)−1.

Proof. This follows from Theorem 4.1 by plugging in the values c1 = ex − 1 and c2 = ey − 1 for the
clone sets of labelled vertices and t = Tlbl(x, y) for the tangles in (5).

With these expressions for the generating functions Tunl(x, y) and Tlbl(x, y) in hand, the following
corollaries of Theorem 3.15 yield the equations (2) and (3) from the introduction.

Corollary 4.4. Let S(c, t) be the generating function of Theorem 3.15 for skeleta. Then, the ordinary
generating function for unlabelled (3 + 1)-free posets is

∑

n≥0
punl(n)xn = S

(
x/(1− x), Tunl(x, x)

)
.

Corollary 4.5. Let S(c, t) be the generating function of Theorem 3.15 for skeleta. Then, the exponential
generating function for labelled (3 + 1)-free posets is

∑

n≥0
plbl(n)

xn

n!
= S

(
ex − 1, Tlbl(x, x)

)
.

Remark 4.6. François Bergeron has pointed out to us that the results of this section can be generalized
to obtain the cycle index series (see [2]) for the species of (3 + 1)-free posets.
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Abstract We introduce a new basis of the non-commutative symmetric functions whose elements have Schur func-
tions as their commutative images. Dually, we build a basis of the quasi-symmetric functions which expand positively
in the fundamental quasi-symmetric functions and decompose Schur functions according to a signed combinatorial
formula.

Résumé. Nous introduisons une nouvelle base des fonctions symétriques non commutatives dont les images commu-
tatives sont des fonctions de Schur. Nous construisons la base duale des fonctions quasi-symétriques qui s’expriment
de façon positive en fonction de la base fondamental et décomposer les fonctions de Schur.

Keywords: non-commutative symmetric functions, quasi-symmetric functions, tableaux, Schur functions

1 Introduction
The Schur functions sλ are indexed by integer partitions and form an additive basis for the algebra of
symmetric functions Sym. Schur functions play an important role throughout mathematics, in particular
in algebraic geometry (as representatives of Schubert classes for the Grassmannian) and representation
theory (they are the characters of the irreducible representations of the general linear group). Another
important basis for Sym is the (complete) homogeneous symmetric functions hλ.

The algebras of non-commutative symmetric functions NSym and quasi-symmetric functions QSym
are dual Hopf algebras. These algebras have been of great importance to algebraic combinatorics. As
seen in [ABS], they are universal in the category of combinatorial Hopf algebras. They also represent
the Grothendieck rings for the projective and finite dimensional representation theory of the 0-Hecke
algebra [KT]. An important basis for NSym is formed by the (complete) homogeneous non-commutative
symmetric functions Hα, indexed by compositions. The forgetful map χ : NSym −→ Sym maps the
homogeneous non-commutative symmetric functions to their symmetric counterparts (see (1)).

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The main goal of this abstract is to define and outline the properties of a new basis, the immaculate
basis Sα of NSym, which emulates the role of the Schur functions. This new basis projects onto the
Schur basis under the forgetful map and it shares many of the same properties and constructions of the
classical basis of Schur functions of Sym. More specifically:

Bernstein operators. One way to construct Schur functions is by iterating the Bernstein row adding
operator, which acts on Schur functions by adding a row to the corresponding Ferrers shape. These op-
erators can be described in an algebraic way, which we deform in order to obtain a non-commutative
Bernstein operator. This deformed operator now acts on immaculate functions by adding a row to the cor-
responding composition. Thus, a repeated iteration of these operators will build the immaculate functions,
as in Definition 3.3.

Pieri rule. The product of a Schur function and a homogeneous symmetric function corresponding to a
partition with only one part can be expressed, via the classical Pieri rule, as a multiplicity-free sum over a
specific set of Schur functions. More specifically, this sum is over all ways to add a horizontal strip to the
original shape. In Theorem 3.5 we show that in a similar way, the product of an immaculate function and
a homogeneous non-commutative symmetric function corresponding to a composition with only one part
can be expressed as a multiplicity-free sum of immaculate functions. This sum is over all ways to add an
analog of a horizontal strip for composition shapes.

Immaculate tableaux and the immaculate Kostka matrix. By iterating the Pieri rule, one can obtain
an expansion of the homogeneous symmetric functions in terms of Schur functions, where each coefficient
is a Kostka number, or number of semistandard Young tableaux of a specified shape and content. In a
similar fashion, we introduce immaculate tableaux, and by iterating the immaculate Pieri rule, one obtains
an expansion of the homogeneous non-commutative functions in terms of the immaculate functions, where
each coefficient is the number of immaculate semistandard tableaux of a specified shape and content
(Theorem 3.10).

Positive expansion for ribbons. Another important basis of NSym is formed by ribbon noncommuta-
tive functions Rα. In Theorem 3.15 we expand the Ribbon functions positively in terms of immaculate
functions, indexed by certain descent sets on standard immaculate tableaux.

Moreover, the immaculate basis gives rise to a dual basis in the quasi-symmetric function algebra. The
dual immaculate basis also shares interesting properties with the Schur basis. In particular, by duality
arguments, one is able to express the dual immaculate basis in terms of other known bases of QSym.

Jacobi-Trudi determinant formula. The Schur functions can be expanded in terms of the homoge-
neous symmetric functions by the use of the Jacobi-Trudi determinant. By considering a non-commutative
version of this determinant, we expand the immaculate functions in terms of the homogeneous non-
commutative symmetric functions, thus obtaining a lifting of the Jacobi-Trudi formula in NSym, as in
Theorem 3.17.

Generating series of immaculate tableaux and monomial expansion. The most well known con-
struction for a Schur function is by its expression as a generating series over the set of semistandard
Young tableaux, and thus, as a positive sum of monomial (quasi-)symmetric functions. In Theorem 3.21
we express the dual immaculate functions as a generating series over the set of semistandard immaculate
tableaux, and thus, as a positive sum of monomial quasi-symmetric functions.

Positive fundamental expansion. The Schur functions can also be expressed as a positive sum of fun-
damental quasi-symmetric functions, by considering descents on standard Young tableaux. By a duality
argument, in Theorem 3.22, we express the dual immaculate functions as a positive sum of fundamental
quasi-symmetric functions, by considering descents on standard immaculate tableaux.
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Expansion of Schur functions. In Theorem 3.23, we show that the Schur functions expand in the dual
immaculate basis via signed combinatorics developed in [ELW].

Littlewood-Richardson rule. In the classical case, the product of two Schur functions can be ex-
pressed as a sum of Schur functions, where each coefficient is a Littlewood-Richardson number, namely,
the number of Yamanouchi tableaux of a certain skew shape. Although the product of any two immaculate
functions is not in general immaculate positive, we give a combinatorial formula for the coefficients in the
product of any immaculate function with an immaculate function corresponding to a partition as the pos-
itive sum of immaculate functions, where each coefficient counts the number of immaculate Yamanouchi
tableaux of a certain skew shape, thus obtaining an analogue of the Littlewood-Richardson rule (Theorem
3.25).

Murnaghan-Nakayama rule. The product of a Schur function and a power sum can be expressed
as a sum over Schur functions, over the set of shapes that are obtained by adding a ribbon to the original
Ferrers shape. In NSym, an analogue of the power sums basis Ψα, was defined in [GKLLRT]. In Theorem
3.27 we express the product of an immaculate function and a noncommutative power sum Ψn.

Indecomposable modules. There exists a collection of indecomposable modules for the 0-Hecke al-
gebra with the property that the module indexed by the composition α has the dual immaculate function
indexed by α as its characteristic. In the interest of space, we will not pursue this below, but refer the
reader to [BBSSZ2].

This text is an extended abstract of the preprints [BBSSZ1], [BBSSZ2] and [BBSSZ3], where complete
proofs can be found.

Remark 1.1 Although our basis of NSym is similar to the dual basis of quasi-symmetric Schur functions
of [HLMvW] (whose properties were developed in [BLvW]), they are in fact different bases.
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2 Background
2.1 Compositions and combinatorics
A partition of a non-negative integer n is a sequence λ = (λ1, λ2, . . . , λm) of non-negative integers
satisfying λ1 ≥ λ2 ≥ · · · ≥ λm, and is denoted λ ` n. Partitions are of particular importance to
algebraic combinatorics; among other things, partitions of n index a basis for the symmetric functions of
degree n, Symn, and the character ring for the representations of the symmetric group. These concepts
are intimately connected; we assume the reader is well versed in this area (see for instance [Sagan] for
background details).

A composition of a non-negative integer n is a list α = [α1, α2, . . . , αm] of positive integers which sum
to n, written α |= n. The entries αi of the composition are referred to as the parts of the composition. The



300 C. Berg and N. Bergeron and F. Saliola and L. Serrano and M. Zabrocki

size of the composition is the sum of the parts and will be denoted |α| := n. The length of the composition
is the number of parts and will be denoted `(α) := m. In this paper we study dual graded Hopf algebras
whose bases at level n are indexed by compositions of n.

Compositions of n correspond to subsets of {1, 2, . . . , n−1}. We will follow the convention of identify-
ing α = [α1, α2, . . . , αm] with the subsetD(α) = {α1, α1+α2, α1+α2+α3, . . . , α1+α2+· · ·+αm−1}.

If α and β are both compositions of n, say that α ≤ β in refinement order if D(β) ⊆ D(α). For
instance, [1, 1, 2, 1, 3, 2, 1, 4, 2] ≤ [4, 4, 2, 7], since D([1, 1, 2, 1, 3, 2, 1, 4, 2]) = {1, 2, 4, 5, 8, 10, 11, 15}
and D([4, 4, 2, 7]) = {4, 8, 10}.

We introduce a new notion which will arise in our Pieri rule (Theorem 3.5); we say that α ⊂i β if:

1. |β| = |α|+ i,

2. αj ≤ βj for all 1 ≤ j ≤ `(α),

3. `(β) ≤ `(α) + 1.

For a composition α = [α1, α2, . . . , α`] and a positive integer m, we let [m,α] denote the composition
[m,α1, α2, . . . , α`].

2.2 Schur functions and creation operators
We let hi and ei denote the complete homogeneous and elementary symmetric functions of degree i re-
spectively. We next define a Schur function indexed by an arbitrary sequence of integers. The resulting
family of symmetric functions indexed by partitions λ are the usual Schur basis of the symmetric func-
tions.

Definition 2.1 For an arbitrary integer tuple α = (α1, α2, . . . , α`) ∈ Z`, we define

sα := det




hα1 hα1+1 · · · hα1+`−1
hα2−1 hα2

· · · hα2+`−2
...

...
. . .

...
hα`−`+1 hα`−`+2 · · · hα`


 = det |hαi+j−i|1≤i,j≤`

where we use the convention that h0 = 1 and h−m = 0 for m > 0.

With this definition, switching two adjacent rows of the defining matrix has the effect of changing the
sign of the determinant. It is also equal to the Schur function indexed by a different integer tuple:

sα1,α2,...,αr,αr+1,...,α` = −sα1,α2,...,αr+1−1,αr+1,...,α` .

Proposition 2.2 If α is a composition of n with length equal to k, then sα = 0 if and only if there exists
i, j ∈ {1, 2, . . . , k} with i 6= j such that αi − i = αj − j. If sα 6= 0, then there is a unique permutation σ
such that (ασ1

+ 1− σ1, ασ2
+ 2− σ2, . . . , ασk + k − σk) is a partition. In this case,

sα = (−1)σsασ1+1−σ1,ασ2+2−σ2,...,ασk+k−σk .



Immaculate basis of the non-commutative symmetric functions 301

Sym is a self dual Hopf algebra. It has a pairing (the Hall scalar product) defined by

〈hλ,mµ〉 = 〈sλ, sµ〉 = δλ,µ .

An element f ∈ Sym gives rise to an operator f⊥ : Sym→ Sym according to the relation:

〈fg, h〉 = 〈g, f⊥h〉 for all g, h ∈ Sym .

We define a “creation” operator Bm : Symn → Symm+n by:

Bm :=
∑

i≥0
(−1)ihm+ie

⊥
i .

The following theorem, which states that creation operators construct Schur functions, will become one
of the motivations for our new basis of NSym (see Definition 3.3).

Theorem 2.3 (Bernstein [Ze, pg 69-70]) For all sequences of α ∈ Zm,

sα = Bα1Bα2 · · ·Bαm(1).

2.3 Non-commutative symmetric functions
The algebra NSym is a non-commutative analogue of Sym that arises by considering an algebra with one
non-commutative generator at each positive degree. In addition to the relationship with the symmetric
functions, this algebra has links to Solomon’s descent algebra in type A [MR], the algebra of quasi-
symmetric functions [MR], and representation theory of the type A Hecke algebra at q = 0 [KT], and
connections to the theory of combinatorial Hopf algebras [ABS]. While we will follow the foundational
results and definitions of references such as [GKLLRT, MR], we have chosen to use notation here which
is suggestive of analogous results in Sym.

We define NSym as the algebra with generators {H1, H2, . . . } and no relations. Each generator Hi

is defined to be of degree i, giving NSym the structure of a graded algebra. We let NSymn denote the
graded component of NSym of degree n. A basis for NSymn are the complete homogeneous functions
{Hα := Hα1Hα2 · · ·Hαm}α�n indexed by compositions of n. To make this convention consistent, some
formulas will use expressions that have H indexed by tuples of integers and we use the convention that
H0 = 1 and H−r = 0 for r > 0.

There exists a map (sometimes referred to as the forgetful map) which we shall also denote χ : NSym→
Sym defined by sending the basis element Hα to the complete homogeneous symmetric function

χ(Hα) := hα1
hα2
· · ·hα`(α)

∈ Sym (1)

and extend this map to all of NSym linearly.
Similar to the study of Sym and the ring of characters for the symmetric groups, the ring of non-

commutative symmetric functions of degree n is isomorphic to the Grothendieck ring of projective repre-
sentations of the 0-Hecke algebra. We refer the reader to [KT] for details. The element of NSym which
corresponds to the projective representation indexed by α is here denoted Rα. The collection of Rα are a
basis of NSym, usually called the ribbon basis of NSym. They are defined through their expansion in the
complete homogeneous basis:

Rα =
∑

β≥α
(−1)`(α)−`(β)Hβ , or equivalently, Hα =

∑

β≥α
Rβ .

NSym has a coproduct structure, which we will not explain in the interest of space.
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2.4 Quasi-symmetric functions
The algebra of quasi-symmetric functions, QSym, was introduced in [Ges] (see also subsequent references
such as [GR, Sta84]) and this algebra has become a useful tool for algebraic combinatorics since it is dual
to NSym as a Hopf algebra and contains Sym as a subalgebra.

As with the algebra NSym, the graded component QSymn is indexed by compositions of n. The
algebra is most readily realized within the ring of power series of bounded degree Q[[x1, x2, . . . ]], and the
monomial quasi-symmetric function indexed by a composition α is defined as

Mα =
∑

i1<i2<···<im
xα1
i1
xα2
i2
· · ·xαmim . (2)

QSym is defined as the algebra with the monomial quasi-symmetric functions as a basis.
We view Sym as a subalgebra of QSym. In fact, the quasi-symmetric monomial functions decompose

the usual monomial symmetric functions mλ ∈ Sym:

mλ =
∑

sort(α)=λ

Mα.

Similar to NSym, the algebra QSym is isomorphic to the Grothendieck ring of finite-dimensional rep-
resentations of the 0-Hecke algebra. The irreducible representations of the 0-Hecke algebra form a basis
for this ring, and under this isomorphism the irreducible representation indexed by α is identified with an
element of QSym, the fundamental quasi-symmetric function, denoted Fα. The Fα, for α |= n, form a
basis of QSymn, and are defined by their expansion in the monomial quasi-symmetric basis:

Fα =
∑

β≤α
Mβ .

2.5 Identities relating non-commutative / quasi-symmetric functions
The algebras QSym and NSym form graded dual Hopf algebras. The monomial basis of QSym is dual in
this context to the complete homogeneous basis of NSym, and the fundamental basis of QSym is dual to
the ribbon basis of NSym. NSym and QSym have a pairing 〈·, ·〉 : NSym×QSym → Q, defined under
this duality as either 〈Hα,Mβ〉 = δα,β , or 〈Rα, Fβ〉 = δα,β .

We will generalize the operation which is dual to multiplication by a quasi-symmetric function using
this pairing. For F,G ∈ QSym, let F⊥ be the operator which acts on elements H ∈ NSym according to
the relation 〈H,FG〉 = 〈F⊥H,G〉.

3 A new basis for NSym
We are now ready to introduce our new basis of NSym. These functions were discovered while playing
with a non-commutative analogue of the Jacobi-Trudi identity (see Theorem 3.17). They may also be
defined as the unique functions in NSym which satisfy a right-Pieri rule (see Theorem 3.5).

3.1 Non-commutative immaculate functions
Definition 3.1 We define the non-commutative Bernstein operators Bm as:

Bm =
∑

i≥0
(−1)iHm+iF

⊥
1i .
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Using the non-commutative Bernstein operators, we can inductively build functions using creation
operators similar to Bernstein’s formula (Theorem 2.3) for the Schur functions.

Remark 3.2 Under the identification of Sym inside QSym, the generator ei of Sym is precisely the func-
tion F1i appearing above.

Definition 3.3 For any α = (α1, α2, · · · , αm) ∈ Zm, the immaculate function Sα ∈ NSym is defined as
the composition of the operators

Sα = Bα1
Bα2
· · ·Bαm(1) .

Calculations in the next subsection will show that the elements {Sα}α|=n form a basis for NSymn.

Example 3.4 For a, b > 0, α = (a) has only one part, and Sa is just the complete homogeneous
generator Ha. If α = (a, b) consists of two parts, then Sab = Ba(Hb) = HaHb −Ha+1Hb−1.

3.2 The right-Pieri rule for the immaculate basis
Theorem 3.5 For a composition α, the Sα satisfy a multiplicity free right-Pieri rule for multiplication
by Hs:

SαHs =
∑

α⊂sβ
Sβ .

where the notation ⊂s is introduced in Section 2.1.

Remark 3.6 Products of the form HmSα do not have as nice an expression as SαHm because they
generally have negative signs in their expansion and there is no obvious containment of resulting compo-
sitions. For example,

H1S13 = S113 −S221 −S32 .

Example 3.7 The expansion of S23 multiplied on the right by H3 is done below.

=

S23 ∗ H3 = S233 +S242 +S251

+S26 +S332 +S341 +S35

+S431 +S44 +S53

3.3 Relationship to the classical bases of NSym
We will now develop some relations between the classical bases of NSym and the immaculate basis.



304 C. Berg and N. Bergeron and F. Saliola and L. Serrano and M. Zabrocki

3.3.1 Immaculate tableaux
Definition 3.8 Let α and β be compositions. An immaculate tableau of shape α and content β is a
labelling of the boxes of the diagram of α by positive integers in such a way that:

1. the number of boxes labelled by i is βi;

2. the sequence of entries in each row, from left to right, is weakly increasing;

3. the sequence of entries in the first column, from top to bottom, is strictly increasing.

An immaculate tableau is said to be standard if it has content 1|α|.
Let Kα,β denote the number of immaculate tableaux of shape α and content β.

We re-iterate that besides the first column, there is no relation on other columns of an immaculate
tableau. Standard immaculate tableaux of size n are in bijection with set partitions of {1, 2, . . . , n} by
ordering the parts in the partition by minimal elements, as was pointed out to us in a discussion with M.
Yip.

Example 3.9 There are five immaculate tableau of shape [4, 2, 3] and content [3, 1, 2, 3]:

1 1 1 3
2 3
4 4 4

1 1 1 3
2 4
3 4 4

1 1 1 4
2 3
3 4 4

1 1 1 4
2 4
3 3 4

1 1 1 2
3 3
4 4 4

3.3.2 Expansion of the homogeneous basis
Theorem 3.10 The complete homogeneous basis Hα has a positive, uni-triangular expansion in the im-
maculate basis. Specifically,

Hβ =
∑

α≥lexβ

Kα,βSα,

where Kα,β is the number of immaculate tableaux of shape α and content β.

Example 3.11 Continuing from Example 3.9, we see that H3123 = · · ·+ 5S423 + · · · .
Corollary 3.12 The {Sα : α � n} form a basis of NSymn.

3.3.3 Expansion of the ribbon basis
We will expand the ribbon functions in the immaculate basis. We first need the notion of a descent.

Definition 3.13 We say that a standard immaculate tableau T has a descent in position i if (i + 1) is in
a row strictly lower than i. The descent composition of T , D(T ), is the composition of the size of T that
corresponds to the subset containing all descent positions.

Example 3.14 The standard immaculate tableau below has descents in positions {2, 5, 11}. The descent
composition of S is then [2, 3, 6, 7].

S =

1 2 4 5 10 11
3 6 7 8 9

12 13 14 15 16 17 18
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Let Lα,β denote the number of standard immaculate tableaux of shape α and descent composition β.

Theorem 3.15 The ribbon function Rβ has a positive expansion in the immaculate basis. Specifically

Rβ =
∑

α≥`β
Lα,βSα.

Example 3.16 There are eight standard immaculate tableaux with descent composition [2, 2, 2], giving
the expansion of R222 into the immaculate basis.

1 2
3 4
5 6

1 2
3 4 6
5

1 2 4
3
5 6

1 2 4
3 6
5

1 2 6
3 4
5

R222 = S222 +S231 +S312 + 2S321

1 2 4
3 5 6

1 2 4 6
3
5

1 2 4 6
3 5

+S33 +S411 +S42

3.4 Jacobi-Trudi rule for NSym
Another compelling reason to study the immaculate functions is that they also have an expansion in the
Hα basis that makes them a clear analogue of the Jacobi-Trudi rule of Definition 2.1.

Theorem 3.17 For a composition α = [α1, α2, . . . , αm] :

Sα =
∑

σ∈Sm
(−1)σHα1+σ1−1,α2+σ2−2,...,αm+σm−m. (3)

Remark 3.18 This sum is a non-commutative analogue of the determinant of the following matrix:



Hα1
Hα1+1 · · · Hα1+`−1

Hα2−1 Hα2
· · · Hα2+`−2

...
...

. . .
...

Hα`−`+1 Hα`−`+2 · · · Hα`




where we have used the convention that H0 = 1 and H−m = 0 for m > 0. The non-commutative
analogue of the determinant corresponds to expanding this matrix about the first row and multiplying
those elements on the left.

Remark 3.19 One might ask why one would naturally expand about the first row rather than, say, the
first column or the last row. What we considered to be the natural analogue of expanding about the first
column however is not a basis; the matrix corresponding to α = (1, 2) would be 0 under this analogue.

Of course, the original reason for considering this definition is the property that they are a lift of the
symmetric function corresponding to the Jacobi-Trudi matrix.

Corollary 3.20 χ(Sα) = sα.
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3.5 The dual immaculate basis
Every basis Xα of NSymn gives rise to a basis Yβ of QSymn defined by duality; Yβ is the unique basis
satisfying 〈Xα, Yβ〉 = δα,β . The dual basis to the immaculate basis of NSym, denoted S∗α, have positive
expansions in the monomial and fundamental bases of QSym. Furthermore, they decompose the usual
Schur functions of Sym (see Theorem 3.23).

Theorem 3.21 The dual immaculate functions S∗α are monomial positive. Specifically they expand as

S∗α =
∑

β≤`α
Kα,βMβ .

Theorem 3.22 The dual immaculate functions S∗α are fundamental positive. Specifically they expand as

S∗α =
∑

β≤`α
Lα,βFβ .

Duality will also yield an explicit expansion of Schur functions into the dual immaculate basis.

Theorem 3.23 The Schur function sλ, with `(λ) = k expands into the dual immaculate basis as follows:

sλ =
∑

σ∈Sk
(−1)σS∗λσ1+1−σ1,λσ2+2−σ2,··· ,λσk+k−σk

where the sum is over permutations σ such that λσi + i− σi > 0 for all i ∈ {1, 2, . . . , k}.
Example 3.24 Let λ = (2, 2, 2, 1). Then sλ decomposes as:

s2221 = S∗2221 −S∗1321 −S∗2131 + S∗1141,

since only the permutations σ ∈ {1234, 2134, 1324, 2314} contribute to the sum in the expansion of s2221.
There are potentially 24 terms in this sum, but for the partition (2, 2, 2, 1) it is easy to reason that σ4 = 4
and σ1 < 3.

These combinatorics arise in the paper of Egge, Loehr and Warrington [ELW] when they describe how to
obtain a Schur expansion given a quasi-symmetric fundamental expansion. In their language, the terms in
this sum correspond to “special rim hook tableau”.

3.6 The Littlewood-Richardson rule for immaculate functions
We prove here that the product SαSλ expands positively in the immaculate basis, expanding the notion
of a Yamanouchi tableau. Recall that a Yamanouchi word is a word w such that every left prefix of w
contains at least as many occurrences of i as i + 1, for all i ≥ 1. The content of w is the composition
whose i-th part is the number of occurrences of i.

For partitions α and β with αi ≥ βi for all i, denote a skew composition shape α//β by the shape one
obtains by superimposing the bottom left boxes of α and β, and removing the boxes in β. We denote an
immaculate skew tableau of shape α//β as a filling of this shape, satisfying the rules in Definition 3.8.
We denote the reading word of a skew immaculate tableau T as the word obtained by reading its entries
from right to left in each row, starting from the top row and moving down.
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Theorem 3.25 For a composition α and a partition λ, the coefficients cβα,λ appearing in

SαSλ =
∑

β

cβα,λSβ ,

are non-negative integers. In particular, cβα,λ is the number of skew immaculate tableaux of shape α//β,
such that the reading word is a Yamanouchi word of content λ.

Example 3.26 We give an example with α = [1, 2] and λ = [2, 1].

1 1
2 = 1 1

2

1
1
2

1
1 2

1

1
2

1

1 2

S12 ∗ S21 = S1221 + S1311 + S132 + S2211 + S222

1
2

1

1
1

2
1 1

2

1
1 2

1 1
2

1 1

2

+ 2S231 + S141 + S24 + S33 + S321

3.7 The Murnaghan-Nakayama rule for immaculate functions
A non-commutative lifting Ψα of the power sum basis elements was given in [GKLLRT]. We now state
our version of the Murnaghan-Nakayama rule for immaculate functions.

Theorem 3.27 For a composition α and a positive integer k,

SαΨk =

`(α)∑

j=1

S[α1,α2,...,αj+k,...,α`(α)] +
k−1∑

j=0

S[α,0 · · · 0︸ ︷︷ ︸
j

,k]

In other words, the sum is over all ways to add k to one of the parts of the composition obtained by
padding α with k zeroes at the end.

Example 3.28 One may check that

S132Ψ3 = S432 + S162 + S135 + S1323 + S13203 + S132003.

Remark 3.29 The nicest form of the Murnaghan-Nakayama rule involves weak compositions (possibly
allowing zero as an entry) rather than compositions. There is a signed version of the rule which uses only
compositions. In the interest of space, we must omit this rule. It will appear in [BBSSZ3].
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Abstract. The goal of this paper is to introduce an algebraic structure on the space spanned by affine descent classes
of a Weyl group, by analogy and in relation to the structure carried by ordinary descent classes. The latter classes span
a subalgebra of the group algebra, Solomon’s descent algebra. We show that the former span a left module over this
algebra. The structure is obtained from geometric considerations involving hyperplane arrangements. We provide a
combinatorial model for the case of the symmetric group.

Résumé. Le but de cet article est d’introduire une structure algébrique sur l’espace engendré par les classes de de-
scente affines d’un groupe de Weyl, par rapport à l’ structure possédé par les classes de descente finies. Ces dernières
engendrent une sous-algèbre de l’algèbre de groupe, l’algèbre de Solomon. Nous montrons que les premières en-
gendrent un module à gauche sur cette algèbre. La structure est obtenue par moyens géométriques impliquant des
arrangements d’hyperplans. Un modèle combinatoire est fourni pour le cas du groupe symétrique.

Keywords: Weyl group, Coxeter complex, hyperplane arrangement, Tits product, Solomon’s descent algebra, Stein-
berg torus

1 Introduction
LetW be a finite Coxeter group with simple reflections S = {s1, . . . , sn} and corresponding simple roots
∆ = {α1, . . . , αn}. For w ∈W , let D(w) denote the set of right descents of w, i.e.,

D(w) = {1 ≤ i ≤ n : `(w) > `(wsi)} = {1 ≤ i ≤ n : wαi < 0}.

For any J ⊆ [n] := {1, 2, . . . , n}, let

xJ :=
∑

D(w)⊆J
w

denote the sum, in the group ring ZW , of all elements ofW whose descent set is contained in J . As J runs
over the subsets of [n], the elements xJ span a subring of ZW , denoted Sol(W ), and called Solomon’s
descent algebra (or ring).
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The descent algebra was introduced by Solomon [22] and has been the object of many subsequent
works including [2, 3, 4, 5, 7, 9, 12, 13, 15, 17, 20].

The purpose of this paper is to describe a certain left module over Solomon’s descent ring. This module
is defined in terms of affine descent sets, a notion introduced by Cellini [9], and further studied in [10, 11,
18]. This is reviewed next.

We assume that the finite Coxeter group W is irreducible and crystallographic [14]. In this case, there
is a unique highest root α̃ and a corresponding affine Coxeter group W̃ generated by W and the affine
reflection through this highest root (see Section 2.2). Let α0 = −α̃. By analogy with ordinary descent
sets, the affine descent set, D̃(w), of an element w ∈W , is defined as follows:

D̃(w) = {0 ≤ i ≤ n : wαi < 0}.

Thus, D(w) ⊆ D̃(w), and the only difference occurs when w does not take α0 to a positive root. Notice
that every element has at least one affine descent, and no element can have more than n affine descents.

We emphasize that although the construction of the affine descent module (in Section 3) relies heavily
on features of the affine group W̃ , the set D̃(w) is defined only for elements w of the finite Coxeter group
W , and not for general elements of W̃ .

For any proper nonempty subset J of [n] := {0, 1, . . . , n}, let

xJ :=
∑

D̃(w)⊆J

w.

While the elements xJ do not span a subring of ZW , we show that they span a left module over Sol(W ).
We remark that Cellini showed that the elements

∑
|J|=k xJ , as k runs from 1 to n, do span a subring (in

fact, a commutative nonunital subring) of ZW .
We follow the geometric approach of Tits (in his appendix to Solomon’s paper [22]), as developed

by Bidigare [6] and Brown [8, Section 4.8]. These works relate the algebraic structure of Sol(W ) to the
geometric structure of the Coxeter complex. Specifically, the elements xJ correspond toW -orbits of faces
in the Coxeter complex. Work of Dilks, Petersen, and Stembridge [10] shows that the xJ correspond to
W -orbits in the Steinberg torus, an object obtained by taking the quotient of the affine Coxeter complex
by the co-root lattice.

Here we show that the faces of the Coxeter complex act on the faces of the affine Coxeter complex, and
that this action passes through the quotient to an action on the Steinberg torus.

The action on affine faces admits a simple geometric description. An affine hyperplane arrangement
splits the ambient space into a set of faces. The hyperplane at infinity is similarly decomposed into a set
of faces. The latter set is a monoid under the Tits product and the former a right module over it. In the
case of the affine arrangement of W , the faces at infinity constitute the Coxeter complex, affine faces are
acted upon by co-root translations, and the quotient by this action is the set the faces of the Steinberg
torus. It follows that the set of faces of the Steinberg torus is a right module over the Coxeter complex.
The structure is equivariant with respect to the Weyl group, and we may consider the induced structure on
orbits. This results in the left module structure of affine descent classes over Solomon’s descent ring.

Section 2 describes these geometric aspects, providing background on both finite and affine Coxeter
complexes and how they can both be viewed inside the closure of the Tits cone. We discuss the Steinberg
torus as well, and give combinatorial models for faces of all these complexes in TypeAn−1. (For the affine
Coxeter complex and the Steinberg torus, this model appears to be new.) Section 3 relates the geometric
actions to the module structures.
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We thank the referees for pointing out the work of Moszkowski concerning modules over Solomon’s
descent algebra [16]. We plan to explore possible connections to this work and also to that of Saliola [19,
21] in the future. This extended abstract is a condensed version of a longer article; many details and most
of the proofs have been omitted.

2 Products of faces in the Tits cone
LetW be a finite Coxeter group with a crystallographic root system Φ embedded in a real Euclidean space
V with inner product 〈· , ·〉. (SoW is a Weyl group.) For any root β ∈ Φ, letHβ := {λ ∈ V : 〈λ, β〉 = 0}
be the hyperplane orthogonal to β and let sβ denote the orthogonal reflection through Hβ . If we fix a set
of simple roots ∆ = {α1, . . . , αn} ⊂ Φ, then S = {s1, . . . , sn} denotes the corresponding set of simple
reflections.

Having fixed a choice of simple roots, every root β either belongs to the nonnegative span of the
simple roots and is designated positive, or else belongs to the nonpositive span of the simple roots and is
designated negative. We write β > 0 or β < 0 accordingly. Let Π = {β ∈ Φ : β > 0} denote the set of
positive roots.

2.1 The finite Coxeter complex
The set of hyperplanes H(Φ) := {Hβ : β ∈ Π} is the Coxeter arrangement associated to Φ (we take
β > 0 for convenience since Hβ = H−β). A face F of the arrangement is any subset of V obtained
by choosing, for each β ∈ Π, either the hyperplane Hβ or one of the open half-spaces it bounds, and
intersecting all these sets. A face F is determined by its sign vector:

σ(F ) = (σβ(F ))β∈Π,

where if λ is any point in F , σβ(F ) = +,−, or 0, according to whether 〈λ, β〉 is positive, negative, or
zero. Let Σ be the set of faces ofH(Φ).

We partially order Σ by inclusion of the face closures, i.e., F ≤ G⇔ F ⊆ G. This partial order gives
Σ a structure isomorphic to the Coxeter complex of W , defined abstractly as the set of cosets of parabolic
subgroups of W , ordered by reverse inclusion.

There is a monoid structure on the faces of the Coxeter arrangement, given geometrically as follows.
For two faces F and G in Σ, their product FG is the first face of Σ entered upon traveling a small positive
distance on a straight line from a point of F to a point in G. See Figure 1. This product is associative and
admits the following characterization in terms of sign vectors [1, Proposition 2.82]:

σβ(FG) =

{
σβ(F ) if σβ(F ) 6= 0,

σβ(G) if σβ(F ) = 0.
(1)

An alternative characterization of the faces of the Coxeter complex is given in terms of the action of the
group W on Σ. The choice of simple roots ∆ is equivalent to designating a dominant chamber, namely:

C∅ := {λ ∈ V : 〈λ, α〉 > 0 for all α ∈ ∆}.

This is the unique face with sign vector (+,+, . . .). The closure of the dominant chamber is a fundamental
domain for the action of W on V , and thus every face has the form wCJ , where w ∈W , J ⊆ [n], and

CJ := {λ ∈ V : 〈λ, αj〉 = 0 for j ∈ J, 〈λ, αj〉 > 0 for j ∈ [n]− J}.

The set J is uniquely determined by the face, but in general the element w is not.
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The rays (1-dimensional faces) have the form wCJ where J = [n]−{j} for some j. If we assign color
j to all such rays, we obtain a balanced coloring of Σ; i.e., every maximal face (chamber) has exactly one
vertex (extreme ray) of each color. We see that in general a face wCJ has color set Jc = [n]− J .

For a positive root β and λ ∈ CJ , we have 〈wλ, β〉 = 〈λ,w−1β〉, so we can characterize sign vectors
as follows:

σβ(wCJ) =





0 if w−1β ∈ Span{αj : j ∈ J}
+ if w−1β ∈ Π− Span{αj : j ∈ J}
− if − w−1β ∈ Π− Span{αj : j ∈ J}.

In particular, notice that if wαi = −β < 0, i.e., if i is a descent of w, then w−1β = −αi and we
have 〈λ,−αi〉 ≤ 0. Thus the descents of w are encoded among the zeroes and minus signs of σ(wCJ).
Conversely, if σwαi(wCJ) = +, then i cannot be a descent of w.

As seen from (1), the product of a face F with a chamber C always results in another chamber (none
of the entries are zero), the Tits projection of F onto C.

In particular, we can characterize projections onto the fundamental chamber as follows. Since the
fundamental chamber has sign vector σ(C∅) = (+,+, . . .), Equation (1) gives:

σβ(FC∅) =

{
σβ(F ) if σβ(F ) 6= 0,

+ if σβ(F ) = 0.

Let wF denote the unique element of W such that wFC∅ = FC∅. Since + signs cannot correspond to
descents, we have the following.

Proposition 2.1 For any face F of Σ, D(wF ) ⊆ col(F ). Moreover, for any w ∈ W and any J with
D(w) ⊆ J ⊆ [n], there is a J-colored face F such that w = wF .

There is a well-known combinatorial model for the Coxeter complex of Type An−1; see Figure 1. The
faces are encoded with set compositions of [n], i.e., set partitions with a linear order on the set of blocks.
The partial order on faces is given by refinement. The product of two faces is given by refining the first
set composition according to the second. For example, 3567|4|12 · 26|35|17|4 = 6|35|7|4|2|1, where the
blocks are separated by bars and the set of blocks is ordered from left to right.

123

13|2

2|13

3|12 12|3

23|1

1|23 1|2|3

2|1|3

3|1|2

3|2|1

1|3|2

2|3|1

•

•

Fig. 1: The product of faces in the Coxeter arrangement of type A2: 12|3 · 23|1 = 2|1|3.

The color of a face corresponds to the positions of the vertical bars, and the element wF is the per-
mutation obtained by writing the elements of the blocks in increasing order and removing the bars. For
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example, if F = 3|4|156|2, col(F ) = {1, 2, 5}, and wF = 341562. Since the elements of the blocks are
written in increasing order, descents can only occur between blocks, i.e., in the locations of the bars.

2.2 The affine Coxeter complex
The affine Weyl group W̃ is generated by reflections sβ,k through the affine hyperplanes

Hβ,k := {λ ∈ V : 〈λ, β〉 = k} (β ∈ Φ, k ∈ Z).

Alternatively, one may construct W̃ as the semidirect product W n ZΦ∨, where ZΦ∨ denotes the lattice
generated by all co-roots β∨ = 2β/〈β, β〉 (β ∈ Φ). The action of W̃ on V extends the action of W by
linear reflections and the action of ZΦ∨ by translations.

Suppose from now on that Φ is irreducible. Then it has a unique highest root α̃, and it is well-known
that W̃ is generated by S̃ := S ∪ {sα̃,1} and that (W̃ , S̃) is an irreducible Coxeter system.

The affine Coxeter arrangement is

H̃(Φ) := {Hβ,k : β ∈ Π, k ∈ Z}.

The set of faces of H̃(Φ) is isomorphic to the affine Coxeter complex of W̃ . We denote it by Σ̃.
A face can again be encoded by a sign vector that records whether the face is “above”, “below”, or “on”

a particular hyperplane. (That the sign vector is now infinite is not a problem. See [1, Section 2.7].) We
have σ(F ), for F a nonempty face in Σ̃, given by

σ(F ) = (σβ,k(F ))β∈Π,k∈Z, (2)

where σβ,k(F ) is +,−, or 0, according to whether 〈λ, β〉 − k is positive, negative, or zero. Notice,
however, that for a given positive root β, we have a unique j such that

(. . . , σβ,−1(F ), σβ,0(F ), σβ,1(F ), . . .) = (. . . ,+,+, σβ,j(F ),−,−, . . .),
where σβ,j(F ) is either + or 0. Therefore, for each β we need no more than the pair (j, σβ,j). Thus, let
us write instead

σ(F ) = ( (kβ(F ), σβ(F )) )β∈Π, (3)

where for any point λ of F , kβ(F ) = j means j ≤ 〈λ, β〉 < j + 1, and σβ(F ) = 0 or + according to
whether 〈λ, β〉 is equal to or greater than j. We refer to (2) as the expanded sign vector of F and (3) as
the compact sign vector of F .

The product of two faces of Σ̃ is defined exactly as in the finite case. However, we can do more via the
Tits cone.

2.3 The Tits cone
The Tits cone is a collection of polyhedral cones. We can explicitly realize this cone by embedding V in a
vector space of one dimension higher and taking the cone over Σ̃ by a point not in V . The finite Coxeter
complex Σ is the boundary of the cone. That is, once linearized by taking the cone point to be the origin,
all parallel hyperplanes in H̃ converge to a common hyperplane in the space parallel to V and containing
the cone point. See Figures 2 and 3.

The faces of Σ can thus be endowed with an expanded sign vector as follows. If F ∈ Σ, σβ,k(F ) =

σβ(F ) for all k. The Tits cone shows us how to extend our geometric product to a product of a face F ∈ Σ̃
with a face G ∈ Σ. In terms of expanded sign vectors we have the following.
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• • • • •

•

· · · · · ·Σ̃:

Σ:

Fig. 2: The Tits cone, with Σ̃ in the interior, Σ on the boundary.

Proposition 2.2 Let F ∈ Σ̃ and G ∈ Σ̃ ∪ Σ.

σβ,k(FG) =

{
σβ,k(F ) if σβ,k(F ) 6= 0,

σβ,k(G) if σβ,k(F ) = 0.
(4)

This product is associative, i.e., F (G1G2) = (FG1)G2 for all F ∈ Σ̃, G2 ∈ Σ, and G1 in either Σ̃
or Σ. The fact that the hyperplane arrangement is infinite is not a problem, since the geometric definition
requires only that each face has only a finite number of faces in a small enough neighborhood. Note how-
ever that the reverse product, from G ∈ Σ to F ∈ Σ̃ is ill-defined. Every (full-dimensional) neighborhood
of G contains infinitely many hyperplanes, so there is no “first” face to enter in walking toward F .

It is clear from this characterization that both the set C̃ of alcoves (maximal simplices in Σ̃) and the set
C of chambers take faces of Σ̃ to alcoves, since both types of products do not leave any 0 entries in the
sign vector.

We now interpret the faces of Σ̃ in terms of W̃ acting on V . The action of W̃ on alcoves is simply
transitive, and the fundamental alcove

A∅ := C∅ ∩ {λ ∈ V : 〈λ, α̃〉 < 1}

is tied to the choice of S̃ in the sense that the W̃ -stabilizer of every point in the closure ofA∅ (a fundamen-
tal domain) is generated by a proper subset of S̃. The compact sign vector of A∅ is ((0,+), (0,+), . . .)).

We index the faces of A∅ by subsets of [n] so that the J-th face is

AJ :=

{
CJ ∩ {λ ∈ V : 〈λ, α̃〉 < 1} if 0 /∈ J,

CJ\{0} ∩ {λ ∈ V : 〈λ, α̃〉 = 1} if 0 ∈ J .

Note that AJ is the empty face (or the cone point in the Tits cone) when J = [n].
Since the closure of A∅ is a fundamental domain for the action of W̃ , each face in this complex has the

form µ + wAJ (µ ∈ ZΦ∨, w ∈ W , J ⊆ [n]). Note that the vertices of Σ̃ are of the form µ + wA{j}c ,
where Jc := [n]− J . If we assign color j to each of the vertices µ+wA{j}c , then the vertices of the cell
µ+ wAJ are assigned color-set Jc (without repetitions), so this coloring is balanced.

2.4 Translational invariance and the Steinberg torus
Translations are identified with 0-colored vertices, and in terms of compact sign vectors, we find

kβ(µ+ wAJ) = kβ(µ) + kβ(wAJ) and σβ(µ+ wAJ) = σβ(wAJ). (5)
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Fig. 3: The product of an affine face with a face at infinity is translation invariant. Elements of the co-root lattice
ZΦ∨ are indicated with stars.

Thus for a face F we see that σβ is completely determined by wAJ , while kβ is almost entirely controlled
by µ, since kβ(wAJ) can only be −1, 0, or 1.

In particular, since products with faces at infinity only change signs from 0 to +, we see that products
with faces of Σ are translation invariant. See Figure 3.

Proposition 2.3 Let F ∈ Σ̃, G ∈ Σ, and µ ∈ ZΦ∨. Then (µ+ F )G = µ+ FG.

As mentioned, the product of a face F ∈ Σ̃ with a chamber C ∈ Σ is an alcove, µ + wA∅, which
we may again refer to as the Tits projection of F onto C. By Proposition 2.3, it suffices to characterize
projections for faces wAJ , i.e., with µ = 0.

Just as with faces wCJ in Σ, we find that for i > 0, if αi = w−1β and (kβ(wAJ), σβ(wAJ) = (0,+),
we know i is not an ordinary descent of w.

If 0 ∈ J , we also have

(kβ(wAJ), σβ(wAJ)) =

{
(1, 0) if w−1β = α̃

(−1, 0) if w−1β = −α̃.

Thus, if wα0 = −β < 0, i.e., if 0 is an affine descent of w, then w−1β = −α0 = α̃, and we get

0 < 〈λ,w−1β〉 = 〈λ, α̃〉 ≤ 1.

Therefore if kβ(wAJ) = −1 we know 0 is not an affine descent of w.
For F ∈ Σ̃, let wF denote the unique element of W such that µF + wFA∅ = FC∅. While µF is

uniquely determined by this projection, its exact nature does not concern us as much as wF . Equation (4)
shows that all zeroes in the expanded sign vector become +, and following our analysis of affine descents
above allows us to generalize Proposition 2.1.

Proposition 2.4 For any face F of Σ̃, we have D̃(wF ) ⊆ col(F ). Moreover, for any w ∈ W , and any J
with D̃(w) ⊆ J ⊆ [n], there is a J-colored face F such that w = wF .
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Fig. 4: (a) A spin necklace; (b) another spin necklace; (c) the product of a spin necklace and a set composition.

As the translation subgroup of W̃ , the co-root lattice ZΦ∨ acts as a group of color-preserving automor-
phisms of Σ̃. Letting T denote the n-torus V/ZΦ∨, it follows that the image of Σ̃ under the projection
π : V → T is a balanced Boolean complex,

Σ := Σ̃/ZΦ∨.

Following [10], we refer to Σ as the Steinberg torus.
An alternative construction of the Steinberg torus is given by identifying maximal opposite faces of the

W -invariant convex polytope

PΦ = {λ ∈ V : −1 ≤ 〈λ, β〉 ≤ 1 for all β ∈ Φ}.

This polytope is the union of the closures of the alcoves wA∅ (w ∈W ). Note that there is a bijection with
maximal faces: w ↔ wA∅ + ZΦ∨ for each w ∈W . Let C denote the set of maximal faces of Σ.

Since products of faces of Σ̃ with faces of Σ are translation invariant (Proposition 2.3), we have a well-
defined product FG with F ∈ Σ and G ∈ Σ. We remark, however, that products of two faces of Σ̃ are
not translation invariant, and so the projection π does not give a well-defined product of faces of Σ.

We can describe faces of Σ̃(An−1) and Σ(An−1) in terms of a combinatorial model similar to set
compositions, which we call labeled spin necklaces. These objects encode both the color of the face F
and the representativewF a straightforward way. (For Σ̃(An−1) there is some mild bookkeeping involving
the co-root µF which we will not describe here.)

First, recall the affine descent set of a permutation w ∈ W = Sn is the set of cyclic descents, i.e., the
descent in 0 occurs when wn > w1. For example, D̃(78345612) = {2, 6} while D̃(134625) = {0, 4}.

A spin necklace consists of a cyclically ordered set partition (B1, . . . , Bk) of [n], together with labeled
edges (e1, . . . , ek), with ei joining Bi to Bi+1 clockwise (and indices modulo k). The labels are the
elements of the color set written in increasing order and the block Bi consists of the elements between
positions ei−1 + 1 and ei in wF (read cyclically). Note that the difference of consecutive edge labels is
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the size of the intermediate block: ei − ei−1 ≡ |Bi| mod n. If F is such that wF = 78345612 and
col(F ) = {2, 3, 5, 6}, its spin necklace is shown in Figure 4 (a).

This restriction on the edge labels, along with the fact that D̃(wF ) ⊆ col(F ), allows us to uniquely
recover F from a given spin necklace, e.g., the necklace in Figure 4 (b) haswF = 26384571 and col(F ) =
{2, 4, 6, 7}.

The partial order on faces corresponds to refinement of spin necklaces. The product of a face F in Σ̃
or in Σ with a face G in Σ is similar to the case of two faces of Σ. The only difference between taking
F ∈ Σ̃ versus F ∈ Σ is that in the former case µ may change if 0 /∈ col(F ). We omit the details of this
change, and describe only the change in the spin necklaces.

Proposition 2.5 Let F be a face of Σ̃(An−1) or Σ(An−1) with spin necklace ((e1, B1), . . . , (ek, Bk)).
Let G = C1| · · · |Cl be a face of Σ(An−1). Then the spin necklace in the product of F and G has its
blocks given by all pairwise intersections of the blocks, Bi,j = Bi ∩ Cj , with edge labels ei,j such that
ei,1 = ei and ei,j+1 = ei,j + |Bi,j |.

For example, see Figure 4 (c).

3 Modules over Solomon’s descent ring
Let ZΣ denote the monoid ring of Σ and consider the subring (ZΣ)W of W -invariants. Bidigare [6]
showed that the latter is anti-isomorphic to Solomon’s descent ring. We follow here the proof of this fact
by Brown [8, Section 9.6], and obtain counterparts for Σ̃ and Σ.

The product given in Equation (1) gives the set Σ the structure of a monoid. The product in (4) turns
the set Σ̃ into a right Σ-module.

From the translational invariance of Proposition 2.3, it follows that the Steinberg torus Σ is a quotient
right Σ-module of Σ̃. The projection π : Σ̃→ Σ is thus a morphism of right Σ-modules.

The Weyl group W acts on both ZΦ∨ and Σ̃, and these actions and the action of ZΦ∨ on Σ̃ are related
by the semilinearity condition

w · (µ+ F ) = w · µ+ w · F (6)

for w ∈ W , µ ∈ ZΦ∨, and F ∈ Σ̃. It follows that W acts on Σ and that π is a morphism of left
W -modules.

The Weyl group W also acts on the monoid Σ and we have

w · (FG) = (w · F )(w ·G) (7)

for w ∈W , G in Σ and F in either Σ, Σ̃, or Σ.
We linearize the sets Σ̃ and Σ, obtaining abelian groups ZΣ̃ and ZΣ. We emphasize that ZΣ̃ consists of

finite linear combinations of elements of W̃ . For this reason, 0 is the only element of ZΣ̃ invariant under
the action of W̃ . We consider the action ofW on the groups ZΣ̃ and ZΣ, and the corresponding subgroups
of W -invariant elements. It follows from (7) that (ZΣ̃)W is a right module over the ring (ZΣ)W , and also
that the map π : Σ̃→ Σ restricts to a morphism of right (ZΣ)W -modules π : (ZΣ̃)W → (ZΣ)W .

The set of chambers C is a two-sided ideal of the monoid Σ. The right action of Σ on C is trivial:
CF = C for every C ∈ C and F ∈ Σ. The product of a face of Σ (or a face of Σ̃, or of Σ) and a chamber
of Σ is a chamber of Σ (or an alcove of Σ̃, or a maximal face of Σ). This gives rise to three maps

ZΣ→ EndZ(ZC) ZΣ̃→ HomZ(ZC,ZC̃) ZΣ→ HomZ(ZC,ZC) (8)
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denoted in every case by Φ and given by Φ(F )(C) := FC (and extended by Z-linearity).
The abelian group EndZ(ZC) is a ring under composition, while both HomZ(ZC,ZC̃) and HomZ(ZC,ZC)

are right EndZ(ZC)-modules in the same manner. Associativity for the product of Σ (or for the right ac-
tion of Σ on Σ̃, or on Σ) translates into the fact that Φ(FG) = Φ(F ) ◦ Φ(G) for G ∈ Σ and F in either
Σ, Σ̃, or Σ. This says that the first map in (8) is a morphism of rings, while the other two maps are mor-
phisms of right Σ-modules, where HomZ(ZC,ZC̃) and HomZ(ZC,ZC) are viewed as right ZΣ-modules
by restriction via Φ : ZΣ→ EndZ(ZC).

The sets C, C̃, and C are stable under the action ofW , and hence the groups EndZ(ZC), HomZ(ZC,ZC̃),
and HomZ(ZC,ZC) are acted upon by W from the left. The action is (w · f)(C) = w · f(w−1 · C) for
w ∈ W , C ∈ C, and f in either EndZ(ZC), HomZ(ZC,ZC̃), or HomZ(ZC,ZC). Equation (7) implies
that Φ(w · F ) = w · Φ(F ) for w ∈ W and F in either Σ, Σ̃, or Σ. It follows that each map Φ restricts as
follows:

(ZΣ)W → EndZ(ZC)W , (ZΣ̃)W → HomZ(ZC,ZC̃)W , (ZΣ)W → HomZ(ZC,ZC)W .
These maps are still denoted by Φ. The first one is a morphism of rings and the other two are morphisms
of right (ZΣ)W -modules.

Since the action of W on C is free and transitive, we have isomorphims

EndZ(ZC)W = EndZW (ZC) ∼= ZC, HomZ(ZC,ZC̃)W = HomZW (ZC,ZC̃) ∼= ZC̃,

HomZ(ZC,ZC)W = HomZW (ZC,ZC) ∼= ZC,
given in every case by f 7→ f(C∅), where C∅ is the fundamental chamber of Σ.

We may further identify C with W by means of w ↔ w · C∅, where C∅ is the fundamental chamber of
Σ. Consider the composite isomorphism of abelian groups

EndZW (ZC) ∼= ZW. (9)

A group element u ∈W corresponds to the endomorphism f such that f(C∅) = u·C∅. If another element
v ∈ W corresponds to the endomorphism g, then (f ◦ g)(C∅) = f(v · C∅) = v · f(C∅) = vu · C∅, so
f ◦ g corresponds to vu. Therefore, the isomorphism of rings (9) reverses products.

Similarly, we have C̃ ∼= W̃ and C ∼= W via the actions of these groups on the fundamental alcoves of
these complexes. This gives rise to isomorphisms of right EndZW (ZC)-modules

HomZW (ZC,ZC̃) ∼= ZW̃ and HomZW (ZC,ZC) ∼= ZW

where now ZW̃ and ZW are first viewed as left ZW -modules by multiplication, and then as right
EndZW (ZC)-modules via the antimorphism (9).

Composing the maps Φ with the preceding isomorphisms we obtain three maps

(ZΣ)W → ZW, (ZΣ̃)W → ZW̃ , (ZΣ)W → ZW, (10)

denoted in every case by Ψ and given by Ψ (
∑
F aF F ) =

∑
F aF FC∅, where in each case

∑
F aF F

stands for a W -invariant element of ZΣ, ZΣ̃, or ZΣ.
The first map in (10) is an anti-morphism of rings and the other two are morphisms of right (ZΣ)W -

modules, where ZW̃ and ZW are first viewed as left ZW -modules by multiplication, and then as right
(ZΣ)W -modules via the antimorphism Ψ : (ZΣ)W → ZW .
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The actions of W on Σ, Σ̃ and Σ are color-preserving. Therefore (ZΣ)W is a free abelian group with
basis

σJ :=
∑

F∈ΣJ

F,

where J runs over the subsets of [n]. Similarly, (ZΣ̃)W and (ZΣ)W are free abelian groups with bases

σ̃J,µ :=
∑

F∈Σ̃J,µ

F and σJ :=
∑

F∈ΣJ

F,

where for J ⊆ [n] and µ ∈ ZΦ∨, we let Σ̃J,µ denote the set of faces in the orbit of µ + AJc and ΣJ
denotes the set of J-colored faces of Σ.

For each J ⊆ [n], define elements xJ ∈ ZW by

xJ :=
∑

w∈W :D(w)⊆J
w.

Similarly, for µ ∈ ZΦ∨ and J ⊆ [n], define x̃J,µ ∈ ZW̃ and xJ ∈ ZW by

x̃J,µ :=
∑

w∈W : D̃(w)⊆J

(w,w · µ), and xJ :=
∑

w∈W : D̃(w)⊆J

w.

As J varies, the sets {w ∈W : D(w) = J} and {w ∈W : D̃(w) = J} are disjoint. Therefore, each set
{xJ}, {x̃J,µ}, and {xJ} is linearly independent.

Proposition 3.1 The maps Ψ behave as follows:

Ψ(σJ) = xJ , Ψ(σ̃J,µ) = x̃J,µ, Ψ(σJ) = xJ .

In particular, Ψ is injective in every case.

Defining Sol(W ) = Span{xJ : J ⊆ [n]}, S̃ol(W ) = Span{x̃J,µ : J ⊆ [n], µ ∈ ZΦ∨}, and
Sol(W ) = {xJ : J ⊆ [n]}, we have our main result.

Theorem 3.2 The map Ψ gives the followings anti-isomorphisms:

(ZΣ)W → Sol(W ), (ZΣ̃)W → S̃ol(W ), and (ZΣ)W → Sol(W ).

In particular, S̃ol(W ) and Sol(W ) are left Sol(W )-modules.
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Abstract. We propose a new approach to study the Kronecker coefficients by using the Schur–Weyl duality between
the symmetric group and the partition algebra.

Résumé. Nous proposons une nouvelle approche pour l’étude des coéfficients de Kronecker via la dualité entre le
groupe symétrique et l’algèbre des partitions.

Keywords: Kronecker coefficients, tensor product, partition algebra, representations of the symmetric group

1 Introduction
A fundamental problem in the representation theory of the symmetric group is to describe the coeffi-
cients in the decomposition of the tensor product of two Specht modules. These coefficients are known
in the literature as the Kronecker coefficients. Finding a formula or combinatorial interpretation for these
coefficients has been described by Richard Stanley as ‘one of the main problems in the combinatorial rep-
resentation theory of the symmetric group’. This question has received the attention of Littlewood [Lit58],
James [JK81, Chapter 2.9], Lascoux [Las80], Thibon [Thi91], Garsia and Remmel [GR85], Kleshchev
and Bessenrodt [BK99] amongst others and yet a combinatorial solution has remained beyond reach for
over a hundred years.

Murnaghan discovered an amazing limiting phenomenon satisfied by the Kronecker coefficients; as
we increase the length of the first row of the indexing partitions the sequence of Kronecker coefficients
obtained stabilises. The limits of these sequences are known as the reduced Kronecker coefficients.

The novel idea of this paper is to study the Kronecker and reduced coefficients through the Schur–Weyl
duality between the symmetric group, Sn, and the partition algebra, Pr(n). The key observation being
that the tensor product of Specht modules corresponds to the restriction of simple modules in Pr(n) to
a Young subalgebra. The combinatorics underlying the representation theory of both objects is based on
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partitions. The duality results in a Schur functor, F : Sn-mod → Pr(n)-mod, which acts by first row
removal on the partitions labelling the simple modules. We exploit this functor along with the following
three key facts concerning the representation theory of the partition algebra: (a) it is semisimple for
large n (b) it has a stratification by symmetric groups (c) its non-semisimple representation theory is well
developed.

Using our method we explain the limiting phenomenon of tensor products and bounds on stability, we
also re-interpret the Kronecker and reduced Kronecker coefficients and the passage between the two in
terms of the representation theory of the partition algebra. One should note that our proofs are surprisingly
elementary.

The paper is organised as follows. In Sections 2 and 3 we recall the combinatorics underlying the
representation theories of the symmetric group and partition algebra. In Section 4 we show how to pass
the Kronecker problem through Schur–Weyl duality and phrase it as a question concerning the partition
algebra. We then summarise results concerning the Kronecker and reduced Kronecker coefficients that
have a natural interpretation (and very elementary proofs) in this setting. Section 5 contains an extended
example.

2 Symmetric group combinatorics
The combinatorics underlying the representation theory of the symmetric group, Sn, is based on parti-
tions. A partition λ of n, denoted λ ` n, is defined to be a weakly decreasing sequence λ = (λ1, λ2, . . . , λ`)
of non-negative integers such that the sum |λ| = λ1 + λ2 + · · ·+ λ` equals n. The length of a partition is
the number of nonzero parts, we denote this by `(λ). We let Λn denote the set of all partitions of n.

With a partition, λ, is associated its Young diagram, which is the set of nodes

[λ] =
{

(i, j) ∈ Z2
>0 | j ≤ λi

}
.

Given a node specified by i, j ≥ 1, we say the node has content j − i. We let ct(λi) denote the content of
the last node in the ith row of [λ], that is ct(λi) = λi − i.

Over the complex numbers, the irreducible Specht modules, S(λ), of Sn are indexed by the partitions,
λ, of n. An explicit construction of these modules is given in [JK81].

2.1 The classical Littlewood–Richardson rule

The Littlewood–Richardson rule is a combinatorial description of the coefficients in the restriction of a
Specht module to a Young subgroup of the symmetric group. Through Schur–Weyl duality, the rule also
computes the coefficients in the decomposition of a tensor product of two simple modules of GLn(C).

The following is a simple restatement of this rule as it appears in [JK81, Section 2.8.13].

Theorem 2.1.1 (The Littlewood–Richardson Coefficients) For λ ` r1, µ ` r2 and ν ` r1 + r2,

S(ν)↓Sr1+r2

Sr1
×Sr2

∼=
⊕

λ`r1,µ`r2
cνλ,µS(λ) � S(µ)

where the cνλ,µ are the Littlewood–Richardson coefficients.
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The Littlewood–Richardson rule calculates the coefficients, cνλ,µ, by counting tableaux, see [Mac95,
Chapter I.9]. By transitivity of induction we have that the Littlewood–Richardson rule determines the
structure of the restriction of a Specht module to any Young subgroup. Of particular importance in this
paper is the three-part case

S(ν)↓Sr1+r2+r3

Sr1
×Sr2

×Sr3

∼=
⊕

λ`r1,
µ`r2,ν`r3


 ∑

ξ`r1+r2

cξλ,µc
ν
ξ,η


S(λ) � S(µ) � S(η).

We therefore set cνλ,µ,η =
∑
ξ c
ξ
λ,µc

ν
ξ,η .

2.2 Tensor products of Specht modules of the symmetric group
In this section we define the Kronecker coefficients and the reduced Kronecker coefficients as well as set
some notation. Let λ and µ be two partitions of n, then

S(λ)⊗ S(µ) =
⊕

ν`n
gνλ,µS(ν),

the coefficients gνλ,µ are known as the Kronecker coefficients. These coefficients satisfy an amazing sta-
bility property illustrated in the following example.

Example 2.2.1 We have the following tensor products of Specht modules:

S(12)⊗ S(12) = S(2)

S(2, 1)⊗ S(2, 1) = S(3)⊕ S(2, 1)⊕ S(13)

S(3, 1)⊗ S(3, 1) = S(4)⊕ S(3, 1)⊕ S(2, 12)⊕ S(22)

at which point the product stabilises, i.e. for all n ≥ 4, we have

S(n− 1, 1)⊗ S(n− 1, 1) = S(n)⊕ S(n− 1, 1)⊕ S(n− 2, 12)⊕ S(n− 2, 2).

Let λ = (λ1, λ2, . . . , λ`) be a partition and n be an integer, define λ[n] = (n− |λ|, λ1, λ2, . . . , λ`). Note
that all partitions of n can be written in this form.

For λ[n], µ[n], ν[n] ∈ Λn we let

g
ν[n]

λ[n],µ[n]
= dimC(HomSn

(S(λ[n])⊗ S(µ[n]),S(ν[n]))),

denote the multiplicity of S(ν[n]) in the tensor product S(λ[n])⊗S(µ[n]). Murnaghan showed (see [Mur38,
Mur55]) that if we allow the first parts of the partitions to increase in length then we obtain a limiting
behaviour as follows. For λ[N ], µ[N ], ν[N ] ∈ ΛN and N sufficiently large we have that

g
ν[N+k]

λ[N+k],µ[N+k]
= gνλ,µ

for all k ≥ 1; the integers gνλ,µ are called the reduced Kronecker coefficients. Bounds for this stability
have been given in [Bri93, Val99, Kly04, BOR11].

Remark 2.2.2 The reduced Kronecker coefficients are also the structural constants for a linear basis for
the polynomials in countably many variables known as the character polynomials, see [Mac95].
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3 The partition algebra
The partition algebra was originally defined by Martin in [Mar91]. All the results in this section are due
to Martin and his collaborators, see [Mar96] and references therein.

3.1 Definitions
For r ∈ Z>0, δ ∈ C, we let Pr(δ) denote the complex vector space with basis given by all set-partitions
of {1, 2, . . . , r, 1̄, 2̄, . . . , r̄}. A part of a set-partition is called a block. For example,

d = {{1, 2, 4, 2̄, 5̄}, {3}, {5, 6, 7, 3̄, 4̄, 6̄, 7̄}, {8, 8̄}, {1̄}},
is a set-partition (for r = 8) with 5 blocks.

A set-partition can be represented uniquely by an (r, r)-partition diagram consisting of a frame with
r distinguished points on the northern and southern boundaries, which we call vertices. We number the
northern vertices from left to right by 1, 2, . . . , r and the southern vertices similarly by 1̄, 2̄, . . . , r̄. Any
block in a set-partition is of the form A ∪ B where A = {i1 < i2 < . . . < ip} and B = {j̄1 < j̄2 <
. . . < j̄q} (and A or B could be empty). We draw this block by putting an arc joining each pair (il, il+1)
and (j̄l, j̄l+1) and if A and B are non-empty we draw a strand from i1 to j̄1, that is we draw a single
propagating line on the leftmost vertices of the block. Blocks containing a northern and a southern vertex
will be called propagating blocks; all other blocks will be called non-propagating blocks. For d as in the
example above, the partition diagram of d is given by:

We can generalise this definition to (r,m)-partition diagrams as diagrams representing set-partitions of
{1, . . . , r, 1̄, . . . , m̄} in the obvious way.

We define the product x · y of two diagrams x and y using the concatenation of x above y, where we
identify the southern vertices of x with the northern vertices of y. If there are t connected components
consisting only of middle vertices, then the product is set equal to δt times the diagram with the middle
components removed. Extending this by linearity defines a multiplication on Pr(δ).
Assumption: We assume throughout the paper that δ 6= 0.
The following elements of the partition algebra will be of importance.

si,j =

j

j

i

i

el =
1

δ

l

l

In particular, note that er corresponds to the set-partition {1, 1̄}{2, 2̄} · · · {r − 1, r − 1}{r}{r̄}.

3.2 Filtration by propagating blocks and standard modules
Fix δ ∈ C× and write Pr = Pr(δ). Note that the multiplication in Pr cannot increase the number
of propagating blocks. More precisely, if x, respectively y, is a partition diagram with px, respectively
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py , propagating blocks then x · y is equal to δtz for some t ≥ 0 and some partition diagram z with
pz ≤ min{px, py}. This gives a filtration of the algebra Pr by the number of propagating blocks. This
filtration can be realised using the idempotents el. We have

C ∼= Pre1Pr ⊂ . . . ⊂ Prer−1Pr ⊂ PrerPr ⊂ Pr.

It is easy to see that
erPrer ∼= Pr−1 (3.2.1)

and that this generalises to Pr−l ∼= er−l+1Prer−l+1 for 1 ≤ l ≤ r. We also have

Pr/(PrerPr) ∼= CSr. (3.2.2)

Using equation (3.2.2), we get that any CSr-module can be inflated to a Pr-module. We also get from
equations (3.2.1) and (3.2.2), by induction, that the simple Pr-modules are indexed by the set Λ≤r =⋃

0≤i≤r Λi.
For any ν ∈ Λ≤r with ν ` r − l, we define a Pr-module, ∆r(ν), by

∆r(ν) = Prer−l+1 ⊗Pr−l
S(ν),

where the action of Pr is given by left multiplication. (Note that we have identified Pr−l with
er−l+1Prer−l+1 using the isomorphism given in equation (3.2.1).)

For δ 6∈ {0, 1, . . . , 2r − 2} the algebra Pr(δ) is semisimple and the set {∆r(ν) : ν ∈ Λ≤r} forms a
complete set of non-isomorphic simple modules.

In general, the algebra Pr(δ) is quasi-hereditary with respect to the partial order on Λ≤r given by λ < µ
if |λ| > |µ| (see [Mar96]). The modules ∆r(ν) are the standard modules, each of which has a simple
head Lr(ν), and the set {Lr(ν) : ν ∈ Λ≤r} forms a complete set of non-isomorphic simple modules.

3.3 Non-semisimple representation theory of the partition algebra

We assume that δ = n ∈ Z>0 (as otherwise the algebra is semisimple).

Definition 3.3.1 Let λ and µ be partitions. We say that (µ, λ) is an n-pair, and write µ ↪→n λ, if µ ⊂ λ
and the Young diagram of λ differs from the Young diagram of µ by a horizontal row of boxes of which
the last (rightmost) one has content n− |µ|.

Example 3.3.2 For example, ((2, 1), (4, 1)) is a 6-pair. We have that 6−|µ| = 3 and the Young diagrams
(with contents) are as follows:

0 1
-1

⊂ 0 1 2 3
-1

note that they differ by 2 3 .

Recall that the set of simple (or standard) modules for Pr(n) are labelled by the set Λ≤r. This set splits
into Pr(n)-blocks. The set of labels in each block forms a maximal chain of n-pairs

λ(0) ↪→n λ
(1) ↪→n λ

(2) ↪→n . . . ↪→n λ
(t).
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Moreover, for 1 ≤ i ≤ t we have that λ(i)/λ(i−1) consists of a strip of boxes in the ith row. Now we have
an exact sequence of Pr(n)-modules

0→ ∆r(λ
(t))→ . . .→ ∆r(λ

(2))→ ∆r(λ
(1))→ ∆r(λ

(0))→ Lr(λ
(0))→ 0

with the image of each homomorphism being simple. Each standard module ∆r(λ
(i)) (for 0 ≤ i ≤ t− 1)

has Loewy structure
Lr(λ

(i))
Lr(λ

(i+1))

and so in the Grothendieck group we have

[Lr(λ
(i))] =

t∑

j=i

(−1)j−i[∆r(λ
(j))]. (3.3.1)

Note that each block is totally ordered by the size of the partitions.

Proposition 3.3.3 Let ν ∈ Λ≤r and assume that ν[n] is a partition. Then we have that (i) ν is the minimal
element in its Pr(n)-block, and (ii) ν is the unique element in its block if and only if n+ 1− ν1 > r.

Proof: (i) Observe that for ν[n] to be a partition we must have n − |ν| ≥ ν1. This implies that ct(ν1) =
ν1 − 1 ≤ n− |ν| − 1. So we have ν ↪→n µ for some partition µ with µ/ν being a single strip in the first
row. Thus we have ν = ν(0) and µ = ν(1).
(ii) Now as ν(1)/ν is a single strip in the first row with last box having content n − |ν|, we have that
|ν(1)/ν| = n− |ν|+ 1− ν1 and thus |ν(1)| = n+ 1− ν1. Thus if n+ 1− ν1 > r then ν(1) /∈ Λ≤r and
we have that ν is the only partition in its Pr(n)-block. 2

4 Schur–Weyl duality
Classical Schur–Weyl duality is the relationship between the general linear and symmetric groups over
tensor space. To be more specific, let Vn be an n-dimensional complex vector space and let V ⊗rn denote
its rth tensor power.

We have that the symmetric group Sr acts on the right by permuting the factors. The general linear
group, GLn, acts on the left by matrix multiplication on each factor. These two actions commute and
moreover GLn and Sr are full mutual centralisers in End(V ⊗rn ).

The partition algebra, Pr(n), plays the role of the symmetric group, Sr, when we restrict the action of
GLn to the subgroup of permutation matrices, Sn.

4.1 Schur-Weyl duality between Sn and Pr(n)

Let Vn denote an n-dimensional complex space. Then Sn acts on Vn via the permutation matrices.

σ · vi = vσ(i) for σ ∈ Sn. (4.1.1)
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Notice that we are simply restricting the GLn action in the classical Schur-Weyl duality to the permutation
matrices. Thus, Sn acts diagonally on the basis of simple tensors of V ⊗rn as follows

σ · (vi1 ⊗ vi2 ⊗ · · · ⊗ vir ) = vσ(i1) ⊗ vσ(i2) ⊗ · · · ⊗ vσ(ir).

For each (r, r)-partition diagram d and each integer sequence i1 . . . , ir, i1̄, . . . , ir̄ with 1 ≤ ij , ij̄ ≤ n,
define

φr,n(d)i1,...,iri1̄,...,ir̄
=

{
1 if it = is whenever vertices t and s are connected in d
0 otherwise.

(4.1.2)

A partition diagram d ∈ Pr(n) acts on the basis of simple tensors of V ⊗rn as follows

Φr,n(d)(vi1 ⊗ vi2 ⊗ · · · ⊗ vir ) =
∑

i1̄,...ir̄

φr,n(d)i1,...,iri1̄,...,ir̄
vi1̄ ⊗ vi2̄ ⊗ · · · ⊗ vir̄ .

Theorem 4.1.1 (Jones [Jon94]) Sn and Pr(n) generate the full centralisers of each other in End(V ⊗rn ).

(a) Pr(n) generates EndSn
(V ⊗rn ), and when n ≥ 2r, Pr(n) ∼= EndSn

(V ⊗rn ).

(b) Sn generates EndSn
(V ⊗rn ).

We will denote Er(n) = EndSn(V ⊗rn ).

Theorem 4.1.2 ([Mar96] see also [HR05]) We have a decomposition of V ⊗rn as a (Sn, Pr(n))-bimodule

V ⊗rn =
⊕

S(λ[n])⊗ Lr(λ)

where the sum is over all partitions λ[n] of n such that |λ| ≤ r.

Using [GW98, Theorem 9.2.2] we have, for λ[n], µ[n], ν[n] ` n with λ ` r and µ ` s,
HomSn

(S(ν[n]),S(λ[n])⊗ S(µ[n])) (4.1.3)

∼=
{

HomEr(n)⊗Es(n)(Lr(λ) � Ls(µ), Lr+s(ν)↓Er(n)⊗Es(n)) if ν ∈ Λ≤r+s
0 otherwise.

4.2 Kronecker product via the partition algebra
Going back to the formula in (4.1.3) we need to consider Lr+s(ν)↓Er(n)⊗Es(n). Now Lr+s(ν) is a simple
Pr+s(n)-module annihilated by ker Φr+s,n and hence also by ker Φr,n⊗ker Φs,n. ThusLr+s(ν)↓Pr(s)⊗Ps(n)

is semisimple and has the same simple factors as Lr+s(ν)↓Er(s)⊗Es(n).
Now combining (4.1.3) with (3.3.1) we have the following result.

Theorem 4.2.1 Let λ[n], µ[n], ν[n] ` n with λ ` r and µ ` s. Then we have

g
ν[n]

λ[n],µ[n]
=





t∑
i=0

(−1)i[∆r+s(ν
(i))↓Pr(n)⊗Ps(n): Lr(λ) � Ls(µ)] if ν ∈ Λ≤(r+s)

0 otherwise

where ν = ν(0) ↪→n ν
(1) ↪→n . . . ↪→ ν(t) is the Pr+s(n)-block of ν.
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For sufficiently large values of n the partition algebra is semisimple. Therefore Theorem 4.2.1 reproves
the limiting behaviour of tensor products observed by Murnaghan. It also offers the following concrete
representation theoretic interpretation of the gνλ,µ.

Corollary 4.2.2 Let λ ` r and µ ` s and suppose |ν| ≤ r + s. Then we have

gνλ,µ = [∆r+s(ν)↓Pr(n)⊗Ps(n): Lr(λ) � Ls(µ)].

Using the semisimplicity criterion for the partition algebra given in Section 3.2 and Proposition 3.3.3
we immediately obtain

Corollary 4.2.3 We have that gνλ,µ = g
ν[n]

λ[n],µ[n]
if either |λ|+ |µ| ≤ n+1

2 , or |λ|+ |µ| < n+ 1− ν1.

The second part of Corollary 4.2.3 is a new proof of Brion’s bound [Bri93] for the stability of the
Kronecker coefficients using the partition algebra.

By constructing an explicit filtration of the restriction of a standard module to a Young subalgebra of
the partition algebra and identifying the corresponding subquotients we obtain

Theorem 4.2.4 Write m = r + s and let ν ` m − l, λ ` r − lr and µ ` s − ls for some non-negative
integers l, lr, ls. Then ∆m(ν)↓Pr⊗Ps

has a filtration by standard modules with multiplicities given by

[∆m(ν)↓Pr⊗Ps : ∆r(λ) � ∆s(µ)] =
∑

l1,l2
l1+2l2=l−lr−ls

∑

α`r−lr−l1−l2
β`s−ls−l1−l2

π,ρ,σ`l1
γ`l2

cνα,β,πc
λ
α,γ,ρc

µ
β,γ,σg

π
ρ,σ.

By Corollary 4.2.2, we recover the formula for the reduced coefficients given in terms of Littlewood–
Richardson coefficients and Kronecker coefficients in [BOR11, Lemma 2.1]

Corollary 4.2.5 Let λ, µ, ν be any partitions with |λ| = r, |µ| = s and |ν| = r + s− l. Then we have

gνλ,µ =
∑

l1,l2
l=l1+2l2

∑

α`r−l1−l2
β`s−l1−l2

∑

π,ρ,σ`l1
γ`l2

cνα,β,πc
λ
α,γ,ρc

µ
β,γ,σg

π
ρ,σ

Remark 4.2.6 We also recover the Murnaghan–Littlewood Theorem, namely, for partitions λ, µ, ν with
|λ|+ |µ| = |ν| we have that gνλ,µ = cνλ,µ.

4.3 Passing between the Kronecker and reduced Kronecker coefficients

In [BOR11] a formula is given for passing between the Kronecker and reduced Kronecker coefficients.
We shall now interpret this formula in the Grothendieck group of the partition algebra by showing that it
coincides with the formula in Theorem 4.2.1.

Let ν[n] be a partition of n. We make the convention that ν0 = n − |ν| is the 0th row of ν[n]. For
i ∈ Z≥0 define ν†i[n] to be the partition obtained from ν[n] by adding 1 to its first i− 1 rows and erasing its

ith row. In particular we have ν†0[n] = ν.
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Theorem 4.3.1 (Theorem 1.1 of [BOR11]) Let λ[n], µ[n], ν[n] ` n. Then

g
ν[n]

λ[n],µ[n]
=

l∑

i=0

(−1)ig
ν†i
[n]

λ,µ

where l = `(λ[n])`(µ[n])− 1.

Relating this to the partition algebra, we have the following.

Proposition 4.3.2 Let ν[n] ` n and let ν = ν(0) ↪→n ν
(1) ↪→n . . . be a chain of n-pairs. Then for all

i ≥ 0 we have
ν†i[n] = ν(i)

Proof: The i = 0 case is clear from the definitions. We proceed by induction. Assume that

ν†i[n] = ν(i).

Then (ν(i))1 = n− |ν|+ 1, (ν(i))j = νj−1 + 1 for j ≤ i, and (ν(i))j = νj for j > i. Therefore

|ν(i)| = n− |ν|+ 1 +
∑

j 6=i
νj + i− 1 = n− νi + i

We have that ν(i+1)/ν(i) is a skew partition consisting of a strip in the (i+ 1)th row. By definition of an
n-pair the content, ct(ν

(i+1)
i+1 ), of the last node is n− |ν(i)|. Therefore

ct(ν
(i+1)
i+1 ) := ν

(i+1)
i+1 − (i+ 1) = n− (n− νi + i) = νi − i

and ν(i+1)
i+1 = νi + 1, therefore ν†(i+1)

[n] = ν(i+1).
2

In Theorem 4.2.1, t is chosen so that |ν(t)| ≤ |λ|+ |µ| and |ν(t+1)| > |λ|+ |µ|. So Theorem 4.2.1 and
4.3.1 seem to give a different number of terms in the sum. For example consider

g
(2)
(12),(12) = 1 g

(12)
(12),(12) = 0

these are given as a sum of one, respectively two terms in Theorem 4.2.1, both cases have four terms in
Theorem 4.3.1. Now consider

λ[n] = µ[n] = ν[n] = (10, 10, 10)

then `(λ[n])`(µ[n]) = 9. We have ν†8[n] = (113, 15) with |ν†8[n]| = 38. But r+ s = 40, so we have two more
terms in Theorem 4.2.1, corresponding to ν(9) = (113, 16) and ν(10) = (113, 17). However, we can show
that in fact the two theorems give the same sum.

First assume that `(λ[n])`(µ[n])− 1 > t, then for all i > t we have

ḡ
ν†i
[n]

λ,µ = 0
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as |ν†i[n]| > |λ|+ |µ|. And so the two sums coincide.

Now assume that `(λ[n])`(µ[n])− 1 < t. Then for all i > `(λ[n])`(µ[n])− 1, we have

i ≥ `(λ[n])`(µ[n]) ≥ |λ[n] ∩ (µ[n])
′|.

where (µ[n])
′ denotes the conjugate partition of µ[n]. (To see this observe that the Young diagram of

λ[n] ∩ (µ[n])
′ fits in a rectangle of size `(λ[n])× `(µ[n])). Now we have

`(ν(i)) ≥ i ≥ |λ[n] ∩ (µ[n])
′|.

But this implies that ḡν
(i)

λ,µ = 0 by [Dvi93].

5 Example
In this section, we shall compute the tensor square of the Specht module, S(n− 1, 1) for n ≥ 2, labelled
by the first non-trivial hook, via the partition algebra. We have that

HomSn
(S(ν[n]),S(n− 1, 1)⊗ S(n− 1, 1)) ∼= HomP1(n)⊗P1(n)(L1(1)⊗ L1(1), L2(ν)↓P2(n)

P1(n)⊗P1(n))

if ν ∈ Λ≤2 and zero otherwise. Therefore, it is enough to consider the restriction of simple modules from
P2(n) to the Young subalgebra P1(n)⊗ P1(n).

The partition algebra P2(n) is a 15-dimensional algebra with basis:

and multiplication defined by concatenation. For example:

= , = n

There are four standard modules corresponding to the partitions of degree less than or equal to 2; these
are obtained by inflating the Specht modules from the symmetric groups of degree 0, 1, 2. These modules
have bases:

∆2(2) = SpanC

{
+

}
∆2(12) = SpanC

{
−

}

∆2(1) = SpanC

{
, ,

}
∆2(∅) = SpanC

{
,

}

The action of P2(n) is given by concatenation. If the resulting diagram has fewer propagating lines than
the original, we set the product equal to zero. The algebra P1(n)⊗P1(n) is the 4-dimensional subalgebra
spanned by the diagrams with no lines crossing an imagined vertical wall down the centre of the diagram.
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The restriction of the standard modules to this subalgebra is as follows:

∆2(2)↓P1⊗P1
∼= ∆1(1) � ∆1(1), ∆2(12)↓P1⊗P1

∼= ∆1(1) � ∆1(1),

∆2(1)↓P1⊗P1
∼= ∆1(1) � ∆1(1)⊕∆1(∅) � ∆1(1)⊕∆1(1) � ∆1(∅),

∆2(∅)↓P1⊗P1
∼= ∆1(1) � ∆1(1)⊕∆1(∅) � ∆1(∅).

In particular, note that ḡν(1),(1) = [∆2(ν)↓P1⊗P1
: ∆1(1) � ∆1(1)] = 1 for ν = ∅, 1, 12, 2.

The partition algebra P2(n) is semisimple for n > 2. For ν = ∅, (1), (12) or (2) we have that ν[n] =
(n), (n − 1, 1), (n − 2, 12), or (n − 2, 2) and ν[n] is a partition for n ≥ 0, 2, 3, 4 respectively. Therefore
the Kronecker coefficients

g
ν[n]

(n−1,1),(n−1,1)

stabilise for n ≥ 4 and are non-zero for n ≥ 4 if and only ν[n] is one of the partitions above.
Now consider the case n = 2. Neither ν = (12), nor (2) correspond to partitions of 2, we therefore

consider ν = ∅ and (1). We have that (1) ⊂ (2) is the unique 2-pair of partitions of degree less than or
equal to 2 (see Section 3.3). Therefore the only standard P2(2)-module which is not simple is ∆2(1) and
we have an exact sequence

0→ L2(2)→ ∆2(1)→ L2(1)→ 0.

Thus in the Grothendieck group we have that [L2(1)] = [∆2(1)] − [∆2(2)]. Therefore we have that
[L2(1)↓P1(2)⊗P1(2): L1(1) � L1(1)] = 0. We conclude that g(12)

(12),(12) = 0 and g(2)
(12),(12) = 1 as expected.
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Pλ(t)

Gγ(t)

sµ mν

Fα Mβ

t = 1t = 0

Sym

QSym

Fig. 1: Prism of bases and transitions.

1 Introduction
The ring of symmetric functions Sym and the ring of quasisymmetric functions QSym both play important
roles in algebra and combinatorics. Much of the combinatorial richness arising from these rings stems
from their various distinguished bases and the relationships between these bases. The goal of this paper
is to present explicit, combinatorial descriptions of several such transition matrices relating to the Hall-
Littlewood polynomials. Figure 1 illustrates the bases discussed.

In the top triangle in Figure 1 are included two classical bases for the ring of symmetric functions:
the Schur functions sµ and the monomial symmetric functions mν . The sµ and mν are closely related
to a third, one-parameter family of symmetric functions Pλ(x; t), known as Hall-Littlewood polynomials.
More specifically, Pλ equals sλ at t = 0, and it equalsmλ at t = 1. The Pλ arose out of a problem studied
by P. Hall. Hall had used his eponymous algebra (isomorphic to the algebra of symmetric functions) to
encode the structure of finite abelian p-groups. However, at the time there was no known explicit basis of
symmetric functions with the same structure constants as that of the natural basis for Hall’s algebra. D. E.
Littlewood [11] solved this problem in 1961 with his introduction of the Pλ(x; t).

The bottom triangle of Figure 1 consists of quasisymmetric analogues of the above bases. In the context
of quasisymmetric functions, the monomial quasisymmetric functions, Mβ , are a very natural analogue
of the mν . Moreover, there do exist quasisymmetric Schur functions [6]. However, for reasons described
in the next paragraph, we anchor the lower-left portion of the bottom triangle in Figure 1 by Gessel’s
fundamental quasisymmetric functions, denoted here by Fα. By defining an action of the Hecke algebra
on polynomials which leaves the quasisymmetric functions invariant, Hivert [7] has constructed the qua-
sisymmetric Hall-Littlewood polynomials Gγ(x; t). (See also work of Lascoux, Novelli, and Thibon [8]
for constructions of quasisymmetric and noncommutative symmetric functions with extra parameters.)
Similarly to what happens in the top triangle, specialization of the Gγ at t = 0 (which corresponds to the
southwest-pointing arrow in Figure 1) yields Fγ , while specialization at t = 1 yields Mγ .

We now motivate our choice of the Fα as the desired quasisymmetric analogue of the Schur functions.
The Schur functions are the prototypical example of a symmetric function with combinatorial expansions
in terms of both a collection of semistandard objects (i.e., semistandard Young tableaux) and of stan-
dard objects (i.e., standard Young tableaux). The first case is that of the classical expansion in terms
of monomials weighted by the Kostka numbers. The second expansion (due to Gessel [3]) expresses
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the Schur functions in terms of fundamental quasisymmetric functions Fα. This expansion, which fol-
lows from the technique of standardization, is indicated by the vertical line connecting sµ and Fα in
Figure 1. Such standardizations have been used recently to give F -expansions of various symmetric
functions including plethysms of Schur functions [14], the modified Macdonald polynomials [4, 5], the
Lascoux-Leclerc-Thibon (LLT) polynomials [10], and (conjecturally) the image of a Schur function under
the Bergeron-Garsia nabla operator [13].

Given Hivert’s construction, the following question arises. Is there an expansion of the Pλ in terms of
the Gγ which would interpolate between the F -expansion of the sλ at t = 0 and the M -expansion of the
mµ at t = 1? The main purpose of this paper is to provide such an expansion, and also to provide other
change-of-basis matrices between different bases of the Hall algebra and the algebra of quasisymmetric
functions, as explained below. In terms of Figure 1, we provide the middle vertical edge as well as the
two downward directed edges in the bottom face (namely, from Gγ(t) to both Fα and Mβ).
G-expansion of the P Basis. In Theorem 5.6 we give an explicit combinatorial expansion of the

Hall-Littlewood polynomials Pλ(x; t) in terms of the Hivert quasisymmetric Hall-Littlewood polynomials
Gγ(x; t). This provides the desired t-interpolation between Gessel’s F -expansion of Schur polynomials
(i.e., t = 0) and the obvious expansion of mλ’s into Mα’s (i.e., t = 1).
F -expansion of the P Basis. One of the main tools for our calculations is the definition of a new

class of tableaux, called starred tableaux. With these, we give in Theorem 4.1 a combinatorial expansion
of the skew Hall-Littlewood polynomials Pλ/µ(x; t) in terms of the fundamental quasisymmetric func-
tions Fα. A minor variation to our method gives a corresponding expansion for the dual Hall-Littlewood
polynomials Qλ/µ.
G-expansion of the F and M Bases. In Theorems 5.1 and 5.3 we give explicit combinatorial expan-

sions for the Fα and the Mβ in terms of the Gγ . These are inverse matrices to those found in [7].
The structure of this extended abstract is as follows. The bases discussed are defined in §2 while the

known transition matrices are summarized in §3. The expansions of the Hall-Littlewood polynomials in
terms of the Fα and Gγ(x; t) are presented in §4 and §5, respectively.

This text is an extended abstract of the preprint [12], where complete proofs can be found. Furthermore,
in [12] we give explicit combinatorial expansions for the peak quasisymmetric functions Kα and the
quasisymmetric Schur functions Sβ in terms of the Gγ .

2 Review of Symmetric and Quasisymmetric Bases
This section reviews the definitions of the symmetric and quasisymmetric functions appearing in Figure 1.
Logically, the precise definitions of the various bases are not needed in this paper, as the expansions found
in §4 and §5 are derived from the known transition matrices of §3. However, the material of this section is
included for completeness.

2.1 Compositions and Partitions
Given n ∈ N, a composition of n is a sequence α = (α1, α2, . . . , αk) of positive integers (called parts)
with α1+· · ·+αk = n. Define the length `(α) to be the number of parts of α, and the size |α| to be the sum
of its parts. For example, the composition α = (2, 4, 1) has `(α) = 3 and |α| = 7. We may abbreviate
the notation, writing α as 241, when no confusion can arise. Let Compn be the set of compositions of n,
and let Comp be the set of all compositions. A composition λ = (λ1, λ2, . . . , λk) ∈ Compn is called a
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partition of n iff λ1 ≥ λ2 ≥ · · · ≥ λk. We write Parn for the set of partitions of n and Par for the set of
all partitions.

For n ∈ N+, there are 2n−1 compositions of n and 2n−1 subsets of [n − 1] = {1, 2, . . . , n − 1}. One
can define natural bijections between these sets of objects as follows. Given α ∈ Compn as above, let

sub(α) = {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + · · ·+ αk−1} ⊆ [n− 1].

The inverse bijection sends any subset T = {t1 < t2 < · · · < tm} ⊆ [n− 1] to

comp(T ) = (t1, t2 − t1, t3 − t2, . . . , tm − tm−1, n− tm) ∈ Compn .

Given α, β ∈ Compn, we say β is finer than α, denoted β � α, iff sub(α) ⊆ sub(β). Informally, β
is finer than α if we can chop up some of the parts of α into smaller pieces (without reordering anything)
and obtain β. For example, (1, 1, 1, 1) � (1, 2, 1) � (3, 1) � (4).

2.2 Symmetric Polynomials
LetK be a field of characteristic zero, and let SN denote the symmetric group onN letters. A polynomial
f ∈ K[x1, . . . , xN ] is called symmetric iff

f(xw(1), xw(2), . . . , xw(N)) = f(x1, x2, . . . , xN ) for all w ∈ SN .

Write SymN for the ring of symmetric polynomials in N variables. For each n ≥ 0, let Symn
N be the

subspace of SymN consisting of zero and the homogeneous polynomials of degree n. For N ≥ n, bases
of the vector space Symn

N are naturally indexed by partitions of n.
Given λ ∈ Parn of length k ≤ N , the monomial symmetric polynomial mλ(x1, . . . , xN ) is the sum

of all distinct monomials that can be obtained by permuting subscripts in xλ1
1 xλ2

2 · · ·xλkk . For N ≥ n,
{mλ(x1, . . . , xN ) : λ ∈ Parn} is readily seen to be a basis of Symn

N .
Now suppose N ≥ n and ν ∈ Parn is a partition with distinct parts. If necessary, we append parts of

size zero to the end of ν to make ν have length N . The monomial antisymmetric polynomial indexed by ν
in N variables is

aν(x1, . . . , xN ) =
∑

w∈SN

N∏

i=1

sgn(w)xνiw(i) = det ||xνji ||1≤i,j≤N .

Letting δN = (N − 1, N − 2, . . . , 2, 1, 0), aδN (x1, . . . , xN ) =
∏

1≤i<j≤N (xi − xj) is the Vandermonde
determinant. Given λ ∈ Parn, the Schur symmetric polynomial indexed by λ in N variables is

sλ(x1, . . . , xN ) =
aλ+δN (x1, . . . , xN )

aδN (x1, . . . , xN )
.

It can be shown that this rational function is both a polynomial and symmetric. Moreover {sλ : λ ∈ Parn}
is a basis of Symn

N [15, §I.3, p. 40].
For the rest of the paper, let t be an indeterminate, and let K be any field containing Q(t) as a subfield.

Following [15, §III.1, pp. 204–7], we define the Hall-Littlewood symmetric polynomials as follows. Fix
λ ∈ Parn and N ≥ n. Extend λ to have length N by appending parts of size zero if needed. Define

Rλ(x1, . . . , xN ; t) =

∑
w∈SN sgn(w)xλ1

w(1) · · ·x
λN
w(N)

∏
1≤i<j≤N (xw(i) − txw(j))∏

1≤i<j≤N (xi − xj)
.



Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomials 337

Define [m]t = 1+t+t2+· · ·+tm−1, [0]t = 0, [m]!t =
∏m
i=1[i]t, and [0]!t = 1. Given that λ hasm0 parts

equal to 0, m1 parts equal to 1, and so on, it can be shown that Rλ is divisible by [m0]!t[m1]!t · · · [mN ]!t.
We then define the Hall-Littlewood polynomial

Pλ(x1, . . . , xN ; t) =
Rλ(x1, . . . , xN ; t)

[m0]!t[m1]!t · · · [mN ]!t
.

It can be shown [15, §III.2, p. 209] that for N ≥ n, the set {Pλ(x1, . . . , xN ; t) : λ ∈ Parn} is a basis for
Symn

N . Moreover, setting t = 0 in Pλ gives sλ, whereas setting t = 1 in Pλ gives mλ. Thus, the Hall-
Littlewood basis “interpolates” between the Schur basis and the monomial basis. One can define Schur
polynomials and Hall-Littlewood polynomials more concretely by giving combinatorial descriptions of
their expansions in terms of monomial symmetric polynomials. See §3.1 below.

2.3 Quasisymmetric Polynomials
A polynomial f ∈ K[x1, . . . , xN ] is called quasisymmetric iff for every composition α = (α1, . . . , αk)
with at most N parts and every 1 ≤ i1 < i2 < · · · < ik ≤ N , the monomials xα1

1 xα2
2 · · ·xαkk and

xα1
i1
xα2
i2
· · ·xαkik have the same coefficient in f . Write QSymN for the ring of quasisymmetric polynomials

in N variables. For each n ≥ 0, let QSymn
N be the subspace of QSymN consisting of zero and the

homogeneous polynomials of degree n. For N ≥ n, linear bases of QSymn
N are naturally indexed by

compositions of n. Symmetric polynomials are quasisymmetric, so Symn
N is a subspace of QSymn

N .
For α ∈ Compn of length k ≤ N , the monomial quasisymmetric polynomial Mα(x1, . . . , xN ) is

the sum of all monomials xα1
i1
xα2
i2
· · ·xαkik for which 1 ≤ i1 < i2 < · · · < ik ≤ N . For N ≥ n,

{Mα(x1, . . . , xN ) : α ∈ Compn} is readily seen to be a basis of QSymn
N .

For α ∈ Compn of length at most N , define Gessel’s fundamental quasisymmetric polynomial [3] by

Fα(x1, . . . , xN ) =
∑

xw1xw2 · · ·xwn ,

where we sum over all subscript sequences w = w1w2 · · ·wn such that 1 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ N
and for all j ∈ sub(α), wj < wj+1. In other words, strict increases in the subscripts are required in
the “breaks” between parts of the composition α. A routine inclusion-exclusion argument shows that
for N ≥ n, {Fα(x1, . . . , xN ) : α ∈ Compn} is a basis of QSymn

N . Note that some authors index
fundamental quasisymmetric polynomials by pairs n, T where T ⊆ [n− 1]. Additionally, various letters
(F , L, Q, etc.) have been used to denote these polynomials.

As in the symmetric case, we would like to have quasisymmetric Hall-Littlewood polynomials (de-
pending on a parameter t) that interpolate between Fα (when t = 0) and Mα (when t = 1). We sketch
the definition of one such family of polynomials, introduced and studied by Hivert [7]. Quasisymmetric
functions arise as the invariants of a certain action of Sn on polynomials. From this action, one can de-
fine divided difference operators in a degenerate Hecke algebra Hn(0) which can then be lifted to Hn(q).
Hivert’s quasisymmetric Hall-Littlewood polynomials thereby arise from a corresponding t-analogue �ω
of the Weyl symmetrizer. For a composition α of length k ≤ N , define

Gα(x1, . . . , xN ; t) =
1

[k]!t[N − k]!t
�ω (xα1

1 · · ·xαkk ).

As in the case of symmetric Hall-Littlewood polynomials, there is a more concrete combinatorial defini-
tion of Gα giving its expansion into monomials. We discuss this definition in §3.2.
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3 Known Transition Matrices
In the theory of symmetric and quasisymmetric polynomials, much combinatorial information is encoded
in the transition matrices between various bases. Given two bases B = {Bλ : λ ∈ Parn} and C = {Cλ :
λ ∈ Parn} of Symn

N , the transition matrixM(B,C) is the unique matrix (with entries in K and rows
and columns indexed by partitions of n) such that

Bλ =
∑

µ∈Parn
M(B,C)λ,µCµ.

Given a third basisD, it follows readily thatM(B,D) =M(B,C)M(C,D) andM(C,B) =M(B,C)−1.
We define M(B,C) similarly if B and C are bases of QSymn

N , but here the rows and columns of the
matrix are indexed by compositions of n. Finally, if B is a basis of Symn

N and C is a basis of QSymn
N ,

thenM(B,C) is a rectangular matrix expressing each Bλ as a K-linear combination of the Cα’s.
This section gives formulas for previously known matrices associated to some of the edges in Figure 1.

3.1 M(s,m),M(s, P ), andM(P,m)

The expansion of Schur polynomials into monomials uses semistandard tableaux. For later work, we will
also need tableaux of skew shape. Suppose λ, µ ∈ Par satisfy µ ⊆ λ, i.e., µi ≤ λi for all i. Define the
skew diagram

λ/µ = {(i, j) ∈ N+ × N+ : 1 ≤ i ≤ `(λ), µi < j ≤ λi}.
We will draw skew diagrams using the English convention where the longest rows are at the top. For
N ∈ N+, a semistandard tableau (SSYT) of shape λ/µ with entries in [N ] = {1, 2, . . . , N} is a function
T : λ/µ → [N ] that is weakly increasing along rows and strictly increasing down columns. Writing
n = |λ/µ|, a standard tableau (SYT) of shape λ/µ is a bijection S : λ/µ→ [n] that is also a SSYT. Let
SSYTN (λ/µ) be the set of all SSYT of shape λ/µ with entries in [N ], and let SYT(λ/µ) be the set of all
SYT of shape λ/µ. For any T ∈ SSYTN (λ/µ), the content monomial xT is defined to be

∏
c∈λ/µ xT (c).

The skew Schur polynomial in N variables can now be defined as

sλ/µ(x1, . . . , xN ) =
∑

T∈SSYTN (λ/µ)

xT .

The ordinary Schur polynomial sλ is obtained by taking µ = (0). For λ, ν ∈ Parn and N ≥ n, it follows
thatM(s,m)λ,ν is the Kostka number Kλ,ν , namely the number of SSYT of shape λ and content ν.

Lascoux and Schützenberger [9] first discovered a combinatorial formula for the t-Kostka matrixM(s, P )
involving the famous charge statistic. Given a permutation w = w1w2 · · ·wn of [n], let IDes(w) be the
set of k < n such that k + 1 appears to the left of k in w, and let chg(w) =

∑
k∈IDes(w)(n− k).

Next, let v be a word of partition content (i.e., for all k ≥ 1, the number of (k + 1)’s in v is no greater
than the number of k’s). Extract one or more permutations from v as follows. Scan v from left to right
marking the first 1, then the first 2 after that, etc., returning to the beginning of v when the right end
is reached. Do this until the largest symbol has been marked. Remove the marked symbols from v (in
the order they appear) to get the first permutation. Continue to extract permutations in this way until all
symbols of v have been used, and let chg(v) be the sum of the charges of the associated permutations.
Finally, given a SSYT T of partition content, let w(T ) be the word obtained by reading symbols row by
row from top to bottom, reading each row from right to left. Then define chg(T ) = chg(w(T )).
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Theorem 3.1 [9] For all λ, µ ∈ Parn, M(s, P )λ,µ =
∑
tchg(T ) summed over all T ∈ SSYTn(λ) of

content µ.

Macdonald [15, §III.5, p. 229] gives a formula for the monomial expansion of skew Hall-Littlewood
polynomials Pλ/µ(x1, . . . , xN ; t), which yieldsM(P,m) andM(P,M) by taking µ = (0). We intro-
duce the following combinatorial model for Macdonald’s formula.

Let λ/µ be a skew shape with N ≥ `(λ). For T ∈ SSYTN (λ/µ), define the set of special cells as

Sp(T ) = {(i, j) ∈ λ/µ : j > 1 and for all u with (u, j − 1) ∈ λ/µ, T ((u, j − 1)) 6= T ((i, j))}.
Define the weight of a special cell (i, j) to be

wt((i, j)) = |{(u, j − 1) ∈ λ/µ : u ≥ i and T ((u, j − 1)) < T ((i, j))}|
+|{(u, j − 1) ∈ µ/(0) : u ≥ i}|.

In other words, a cell c with entry v = T (c) is special for T iff c is not in column 1 and there are no v’s in
the column of T just left of c’s column. In this case, the weight of c is the number of cells weakly below c
in the column just left of c that either have entries less than v or are part of the diagram for µ. Now define
the set of starred semistandard tableaux

SSYT∗N (λ/µ) = {(T,E) : T ∈ SSYTN (λ/µ) and E ⊆ Sp(T )}.
A starred tableau T ∗ = (T,E) has sign sgn(T ∗) = (−1)|E|, t-weight tstat(T ∗) =

∑
c∈E wt(c), x-

weight xT
∗
= xT , and overall weight sgn(T ∗)ttstat(T

∗)xT
∗
.

For T ∈ SSYTN (λ/µ), Macdonald defines ψT (t) =
∏
c∈Sp(T )(1− twt(c)). Then Macdonald’s mono-

mial expansion of the skew Hall-Littlewood polynomials is

Pλ/µ(x1, . . . , xN ; t) =
∑

T∈SSYTN (λ/µ)

ψT (t)x
T .

Expanding the product in ψT (t) using the distributive law, we get
∑
E⊆Sp(T )

∏
c∈E(−twt(c)). Comparing

to the overall weight of starred tableaux, we find that

Pλ/µ(x1, . . . , xN ; t) =
∑

T∗∈SSYT∗N (λ/µ)

sgn(T ∗)ttstat(T
∗)xT

∗
. (1)

Example 3.2 Let λ = (8, 6, 5, 4), µ = (0), N ≥ 8, and

T =

1 1 1 2 2 4 5 5
2 2 3 3 6 8
3 3 4 4 7
5 5 5 5

T ∗ =

1 1 1 2∗ 2 4∗ 5 5
2 2 3 3 6 8∗

3 3 4 4 7
5 5 5 5

.

In T, the special cells are indicated by the underlined entries. Specifically,

Sp(T ) = {(1, 4), (1, 6), (1, 7), (2, 5), (2, 6), (3, 3), (3, 5)}.
These special cells have respective weights 1, 1, 1, 3, 2, 1, 2. So T contributes the term (1 − t)4(1 −
t2)2(1 − t3)xT to Pλ. A typical starred tableau is T ∗ = (T, {(1, 4), (1, 6), (2, 6)}). The overall weight
of the object T ∗ is (−1)3t1+1+2x31x

4
2x

4
3x

3
4x

6
5x6x7x8 = −t4xT .
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3.2 M(s, F ),M(G,F ), andM(G,M)

The fundamental quasisymmetric expansion of Schur polynomials is a sum over standard tableaux, rather
than semistandard tableaux. Given λ ∈ Parn and S ∈ SYT(λ), define the descent set Des(S) to be
the set of k < n such that k + 1 appears in a lower row of S than k. Define the descent composition
Des′(S) = comp(Des(S)) to be the composition associated to this subset of [n−1]. Gessel first proved [3]
that for N ≥ n = |λ|,

sλ(x1, . . . , xN ) =
∑

S∈SYT(λ)

FDes′(S)(x1, . . . , xN ). (2)

In other words,M(s, F )λ,α is the number of standard tableaux with shape λ and descent set sub(α).
Let α, β ∈ Compn with β finer than α. Say `(α) = k and `(β) = m. By definition, there exist indices

0 = i0 < i1 < · · · < ik = m such that αj = βij−1+1+ · · ·+βij for 1 ≤ j ≤ k. The refining composition
Bre(β, α) = (i1 − i0, i2 − i1, . . . , ik − ik−1) records the number of parts of β derived from each part
of α. Define s(α, β) =

∑k
j=1 j(ij − ij−1 − 1). Note that in the notation Bre(β, α) from [7], the finer

composition is listed first, but in the function s (and g, ξ defined in §5.1), we list the finer composition
second. This ordering is more convenient when working with transition matrices.

Theorem 3.3 [7, Theorem 6.6] For all N ≥ n and α ∈ Compn,

Gα(x1, . . . , xN ; t) =
∑

β�α
(−1)`(β)−`(α)ts(α,β)Fβ(x1, . . . , xN ).

In other words,M(G,F )α,β = (−1)`(β)−`(α)ts(α,β) if β � α and 0 otherwise.

Example 3.4 Take β = (1, 2, 2, 1, 4, 3, 1, 2, 1, 1) and α = (5, 5, 3, 1, 4). Then Bre(β, α) = (3, 2, 1, 1, 3)
and s(α, β) = 1 · 2 + 2 · 1 + 3 · 0 + 4 · 0 + 5 · 2 = 14. SoM(G,F )α,β = (−1)5t14.

Using M(G,M) = M(G,F )M(F,M), one can prove the following result giving the monomial
expansion of Hivert’s quasisymmetric Hall-Littlewood polynomials.

Theorem 3.5 [7, eq. (105)] For all α ∈ Compn and N ≥ n,

Gα(x1, . . . , xN ; t) =
∑

β�α
Mβ(x1, . . . , xN ; t)

`(Bre(β,α))∏

i=1

(1− ti)Bre(β,α)i−1.

4 F -expansion of Skew Hall-Littlewood Polynomials
Recall from §3.1 the combinatorial formula (1) for the monomial expansion of the skew Hall-Littlewood
polynomials Pλ/µ(x1, . . . , xN ; t). This section converts this formula to an expansion of these polynomials
in terms of the fundamental quasisymmetric basis. In particular, this provides a combinatorial interpre-
tation for the entries of M(P, F ). We remark that one can also obtain M(P, F ) = M(P, s)M(s, F )
by combining Carbonara’s combinatorial formula forM(P, s) in terms of special tournaments [1] with
Gessel’s formula (2) forM(s, F ). However, this produces a quite complicated interpretation for the co-
efficients in M(P, F ) as signed combinations of standard tableaux and special tournaments. The new
interpretation developed below is much simpler.
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To state our result, we need a few more definitions. Given a skew diagram λ/µ with n cells, let
SYT∗(λ/µ) be the set of starred standard tableaux S∗ = (S,E) such that S is a standard tableau of shape
λ/µ. In this case, observe that Sp(S) consists of all cells in the diagram not in column 1. So E can be an
arbitrary subset of cells of λ/µ not in column 1. Define the ascent set of S∗, denoted Asc(S∗), to be the
set of all k < n such that either (a) k + 1 appears in S in a lower row than k, or (b) there exist u, i, j with
S((u, j − 1)) = k, S((i, j)) = k + 1, and (i, j) ∈ E. The second alternative says that k + 1 appears in a
cell of E located in the next column after the column containing k. Define Asc′(S∗) = comp(Asc(S∗))
to be the associated composition.

Theorem 4.1 For all skew shapes λ/µ with n ≤ N cells,

Pλ/µ(x1, . . . , xN ; t) =
∑

S∗∈SYT∗(λ/µ)

sgn(S∗)ttstat(S
∗)FAsc′(S∗)(x1, . . . , xN ).

We derive a similar formula for the skew Hall-Littlewood polynomials Qλ/µ in [12].

Example 4.2 Using Theorem 4.1, we can make the following calculation. Each term corresponds to the
starred standard tableau shown below it:

P21(t) = F21 − tF111 + F12 − t2F111.

1 2
3

1 2∗

3
1 3
2

1 3∗

2

Remark 4.3 Carbonara [1] expressed the entries of the inverse t-Kostka matrix M(P, s) as signed,
weighted sums of special tournament matrices. An alternative description can be obtained by following
M(P, F ) by the projection from QSym to Sym given in [2]. The entry ofM(P, s)λ,µ is again described
as a sum of signed, weighted objects. However, in this description the objects are pairs (S∗, T ) where
S∗ ∈ SYT∗(λ) and T is a “flat special rim-hook tableau” of shape µ and content Asc′(S∗).

In addition to working for skew Hall-Littlewood polynomials, this new description may have computa-
tional advantages. For n = 4, there are 37 special tournament matrices that contribute to the calculation
ofM(P, s). However, only 23 pairs (S∗, T ) are now needed. We note that these pairs do not correspond
to a subclass of special tournament matrices in any simple way. Carbonara’s description computes the
valueM(P, s)4,22 = 0 via the fact that there are no special tournament matrices with parameters λ = (4)
and µ = (2, 2). There are two such pairs (S∗, T ), albeit of opposite sign and equal weight.

5 New Transition Matrices involving the Hivert G-basis
This section discusses combinatorial formulas for the transition matricesM(F,G),M(M,G), andM(P,G).

5.1 M(F,G)

Let α, β ∈ Compn with β finer than α. Define ξα,β(j) to be j if βj and βj+1 are formed from the same
part of α and 0 otherwise. Set g(α, β) =

∑`(β)−1
j=1 ξα,β(j).

Theorem 5.1 For all α, β ∈ Compn,

M(F,G)α,β =

{
tg(α,β), if β � α;
0, otherwise.
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The idea of the proof is to show that M(G,F )M(F,G) = I , where M(F,G) is defined above and
M(G,F ) is defined in Theorem 3.3. Equivalently, we must show that for all compositions β � α,

∑

γ: β�γ�α
(−1)`(γ)−`(α)ts(α,γ)tg(γ,β)

is 1 for β = α and 0 otherwise. We prove this in [12] using a sign-reversing involution that cancels all
negative objects.

Example 5.2 Using Theorem 5.1, we calculate F3 = G3 + tG21 + tG12 + t3G111, F21 = G21 + tG111,
F12 = G12 + t2G111, and F111 = G111.

5.2 M(M,G)

Theorem 5.3 For all α, β ∈ Compn with β � α,

M(M,G)α,β = (−1)`(β)−`(α)
∏

j: ξα,β(j)=j

(1− tj).

For other α, β,M(M,G)α,β = 0.

The idea of the proof is to useM(M,G) =M(M,F )M(F,G) to see that the α, β-entry ofM(M,G)
is

(−1)`(β)−`(α)
∑

γ:β�γ�α
(−1)`(γ)−`(β)tg(γ,β).

We then use a counting argument to rewrite the sum as the product
∏
j:ξα,β(j)=j

(1− tj).
Example 5.4 Consider α = 22 and β = 1111. Then ξα,β(1) = 1, ξα,β(2) = 0 and ξα,β(3) = 3. So
M(M,G)α,β = (−1)2(1− t)(1− t3).
Example 5.5 We calculate M3 = G3 − (1 − t)G21 − (1 − t)G12 + (1 − t)(1 − t2)G111, M21 =
G21 − (1− t)G111, M12 = G12 − (1− t2)G111, and M111 = G111.

5.3 M(P,G)

By multiplyingM(P, F ) (as given in §4) andM(F,G) (as given in §5.1), we obtain the formula

M(P,G)λ,β =
∑

S∗=(S,E)∈SYT∗(λ)
Asc′(S∗)�β

(−1)|E|ttstat(S∗)+g(Asc′(S∗),β). (3)

However, this can be simplified. In order to do so, we introduce some new notation.
For S ∈ SYT(λ), define Sp(S) and wt(c) as in §3.1. For E ⊆ Sp(S), define Asc(S∗) = Asc((S,E))

as in §4. We define the following subset of Sp(S):

Esp(S) = {c ∈ Sp(S) : Asc((S, {c})) 6= Asc((S, ∅))}.

For each j ∈ sub(β), let nj = nj(β) be the number of elements of sub(β) that are at most j. Let
cj = cj(S) be the unique cell of S in which j appears. Let n′j = nj if j ∈ sub(β) \ Des(S) and 0
otherwise. Recall Des(S) was defined in §3.2.
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Theorem 5.6 For all λ ∈ Parn and β ∈ Compn,

M(P,G)λ,β =
∑

S∈SYT(λ)
Des(S)⊆sub(β)

∏

j∈sub(β):
cj+1∈Esp(S)

(tnj − twt(cj+1))
∏

j:cj+1∈Sp(S)\Esp(S)

tn
′
j (1− twt(cj+1)). (4)

The idea of the proof is to group together summands in (3) indexed by the starred tableaux S∗ = (S,E)
with the same underlying standard tableau S. A careful case analysis leads to the sum of products in (4).

Remark 5.7 If nj = wt(cj+1) for some j ∈ sub(β) with cj+1 ∈ Esp(S), then S can be omitted from the
sum in (4).

Example 5.8 Let λ = 32 and β = 1211. Note that sub(β) = {1, 3, 4} and so n1 = 1, n3 = 2, and
n4 = 3. In Table 1 we list the five elements of SYT(32) (referred to from left to right as S1, . . . , S5)
along with pertinent data. The row labeled

∏
1 (resp.

∏
2) gives the contributions from the first (resp.

second) product in (4). Since Des(S2),Des(S3) 6⊆ sub(β),
∏

1 and
∏

2 have been left blank for these
two tableaux. (For reference, the corresponding products for these tableaux are (t− t) · t2(1− t)(1− t)
and (t− t)(t2− t)(t3− t2) · 1, respectively.) Note that Remark 5.7 applies to S1 with j = nj = 1. So the
only contributions are from the last two columns and we find that

M(P,G)32,1211 = (t2 − t)(1− t) + (t3 − t2)(1− t) = −t4 + t3 + t2 − t.

Tab. 1: Computation ofM(P,G)32,1211.

S 1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

Des(S) {3} {2, 4} {2} {1, 4} {1, 3}
Sp(S) {c2, c3, c5} {c2, c4, c5} {c2, c4, c5} {c3, c4, c5} {c3, c4, c5}
Esp(S) {c2, c3, c5} {c2} {c2, c4, c5} {c3, c4} {c3, c5}∏

1 (t− t)(t3 − t) (t2 − t) (t3 − t2)∏
2 1 (1− t) (1− t)
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Type A molecules are Kazhdan-Lusztig

Michael Chmutov
Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church St., Ann Arbor, MI 48109

Abstract. Let (W,S) be a Coxeter system. A W -graph is an encoding of a representation of the corresponding
Iwahori-Hecke algebra. Especially important examples include the W -graph corresponding to the action of the
Iwahori-Hecke algebra on the Kazhdan-Lusztig basis as well as this graph’s strongly connected components (cells).
In 2008, Stembridge identified some common features of the Kazhdan-Lusztig graphs (“admissibility”) and gave
combinatorial rules for detecting admissible W -graphs. He conjectured, and checked up to n = 9, that all admissible
An-cells are Kazhdan-Lusztig cells. The current paper provides a possible first step toward a proof of the conjecture.
More concretely, we prove that the connected subgraphs of An-cells consisting of simple (i.e. directed both ways)
edges do fit into the Kazhdan-Lusztig cells.

Résumé. Soit (W,S) un système de Coxeter. Un W -graphe est un objet qui décrit certaines représentations de
l’algèbre de Iwahori-Hecke. Des exemples particulièrement importants sont les W -graphes correspondant à l’action
de l’algèbre de Iwahori-Hecke sur la base de Kazhdan-Lusztig ainsi que ses composantes fortement connexes (cel-
lules). En 2008, Stembridge a identifié quelques caractéristiques communes des graphes de Kazhdan-Lusztig et a
donné une caractérisation combinatoire de tous ces W -graphes. Il a conjecturé, et a vérifié jusqu’à n = 9, que toutes
ces An-cellules sont des cellules de Kazhdan-Lusztig. Le présent article fournit la premirè étape d’une démonstration
possible de cette conjecture. Plus concrètement, nous montrons que les sous-graphes connexes de An-cellules com-
posés d’arêtes s’insèrent dans les cellules de Kazhdan-Lusztig.

Keywords: Iwahori-Hecke algebra, W -graphs, W -molecules, dual equivalence graphs, Kazhdan-Lusztig cells

1 Introduction
Let (W,S) be a Coxeter system. AW -graph is a graph with additional structure that encodes a representa-
tion of the corresponding Iwahori-Hecke algebra. Kazhdan and Lusztig (1979) introduced such graphs for
the regular representation, and showed that the strongly connected components (called “cells”) also yield
representations. Stembridge identified several common features of the Kazhdan-Lusztig graphs, namely,
they are bipartite, (nearly) edge-symmetric, and their edge weights are non-negative integers (collectively
he called these properties “admissibility”). He proceeded to describe, via four combinatorial rules, when
an admissible graph is a W -graph (Stembridge (2008a)). One hopes that the characterization will allow
one to construct the Kazhdan-Lusztig cells without having to compute Kazhdan-Lusztig polynomials (a
notoriously difficult task). A piece of evidence suggesting that the definition of a general admissible W -
cell approximates a Kazhdan-Lusztig cell is a more recent result of Stembridge that there are only finitely
many admissible W -cells for each W (Stembridge (2012)).

There are no known examples of admissible An-cells besides the Kazhdan-Lusztig cells (Stembridge
experimentally checked it up to n = 9). A possible strategy of proof is as follows:

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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1. AnAn-cell is a strongly connected directed graph. Consider the subgraphs which are connected via
two-sided edges (of course these are strongly connected on their own, but a cell may contain several
of them). The subgraphs satisfy combinatorial rules slightly weaker than those satisfied by a cell; a
graph satisfying these rules is called a molecule. The first step is to show that any An-molecule is
Kazhdan-Lusztig, i.e. it appears in the Kazhdan-Lusztig graph.

2. It is known that a Kazhdan-Lusztig An-cell is connected via two-sided edges, and these edges are
well understood (they are called dual Knuth moves). The second step is to prove that no cell may
have multiple molecules. The fact that no two Kazhdan-Lusztig An molecules may be connected
inside a cell has been experimentally checked for n 6 12 (Stembridge (2011)).

3. The last part is to prove that there can be only one An-graph with a given underlying molecule. For
Kazhdan-Lusztig molecules this has been checked for n 6 13 (Stembridge (2011)).

In this paper we complete the first part of the above program, namely, we prove that any An-molecule
is Kazhdan-Lusztig. Together with the above computations, this result implies that all An-cells up to
n = 12 are Kazhdan-Lusztig. The main ingredient of the proof is the axiomatization of graphs on tableaux
generated by dual Knuth moves (Assaf (2008)). Five of the axioms follow easily from the molecules
axioms, but the last one presents a challenge.

The paper is structured as follows. Section 2 introducesW -molecules. Section 3 discusses Assaf’s dual
equivalence graphs and relates them to molecules. The last section contains an outline of the proof of the
main theorem that the simple part of a type A molecule is a dual equivalence graph.

2 Molecules
This section summarizes the required W -molecules terminology as described by Stembridge (2008a,b).

Let (W,S) be a simply-laced Coxeter system. A significant part of this section extends to multiply-
laced types; see the above two papers. The papers are mostly concerned with W -graphs, i.e. graphs
that encode certain representations of the corresponding Iwahori-Hecke algebra. It turns out that the
simple (i.e. directed both ways) edges of these graphs are much easier to understand than other edges.
For example, there is a very explicit description of them for the case of cells arising in the Kazhdan-
Luztig W -graph (we will give it in Section 3.1). Thus we consider subgraphs connected by simple edges.
These subgraphs are not W -graphs (i.e. they do not encode representations), but they satisfy certain
combinatorial rules which are slightly weaker than Stembridge’s W -graph rules. We begin this paper by
formalizing the definitions and presenting the rules.

2.1 Definitions
An (admissible) S-labeled graph is a tupleG = (V,m, τ), where V is a set (vertices),m : V ×V → Z>0,
and τ : V → 2S such that

1. as a directed graph (with edges given by pairs of vertices with non-zero m value), G is bipartite,

2. if τ(u) ⊆ τ(v) then m(u, v) = 0,

3. if τ(u) and τ(v) are incomparable, then m(u, v) = m(v, u).
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The function τ is referred to as the τ -invariant.
By a simple edge we mean a pair of vertices (v1, v2) such that neither m(v1, v2) nor m(v2, v1) are 0

(in the graphs that we consider both weights will be 1). By an arc v1 → v2 we mean a pair of vertices
(v1, v2) such that m(v1, v2) 6= 0, but m(v2, v1) = 0. Notice if u → v is an arc, then τ(u) ⊃ τ(v). If
(u, v) is a simple edge then τ(u) and τ(v) are incomparable, and m(u, v) = m(v, u).

A simple edge (u, v) activates a bond i − j in the Coxeter graph if precisely one of τ(u) and τ(v)
contains i, and precisely the other one contains j.

For distinct i, j ∈ S, a path u→ v1 → v2 → · · · → vr−1 → v in G is alternating of type (i, j) if

• i, j ∈ τ(u) and i, j /∈ τ(v),

• i ∈ τ(vk), j /∈ τ(vk) for odd k,

• i /∈ τ(vk), j ∈ τ(vk) for even k.

Let Nr
ij(G;u, v) denote the weighted count of such paths:

Nr
ij(G;u, v) :=

∑

v1,...,vr−1

m(u, v1)m(v1, v2) . . .m(vr−1, v).

Definition 2.1 An S-labeled graph is called a molecular graph if it satisfies

(SR) If (u, v) is a simple edge then m(u, v) = m(v, u) = 1.

(CR) If u→ v is an edge, i.e. m(u, v) 6= 0, then every i ∈ τ(u)\τ(v) is bonded to every j ∈ τ(v)\τ(u).

(BR) Suppose i − j is a bond in the Coxeter graph of (W,S). Any vertex u with i ∈ τ(u) and j /∈ τ(u)
is adjacent to precisely one edge which activates i− j.

(LPR2) For any i, j ∈ S for any u, v ∈ V with i, j ∈ τ(u), i, j /∈ τ(v) and τ(v) \ τ(u) 6= ∅, we have

N2
ij(G;u, v) = N2

ji(G;u, v).

(LPR3) Let k, i, j, l ∈ S be a copy of A4 in the Coxeter graph: k − i − j − l. For any u, v ∈ V with
i, j ∈ τ(u), i, j /∈ τ(v), k, l /∈ τ(u), k, l ∈ τ(v), we have

N3
ij(G;u, v) = N3

ji(G;u, v).

The rules are called, respectively, simplicity rule, compatibility rule, bonding rule, and local polygon
rules.

Definition 2.2 A molecular graph is called a molecule if there is a path of simple edges between any pair
of vertices.

Example 2.3 It is easy to classify all the S4 molecules. Because of admissibility, a vertex whose τ -
invariant is ∅ cannot be connected to any other vertex by a simple edge. Similarly for a vertex whose
τ -invariant is {1, 2, 3}.

Suppose we have a vertex v1 whose τ -invariant is {1}. By BR, it is connected by a simple edge to a
vertex v2 whose τ -invariant contains 2, but not 1. By CR, 3 /∈ τ(v2), and hence τ(v2) = {2}. By BR, v2
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is connected by a simple edge to a vertex v3 whose τ -invariant contains 3, but not 2. We already know
v3 6= v1. By BR, τ(v3) = {3}. There are no other simple edges possible, and this is a complete molecule.
The same analysis works for v1 having τ -invariants of {3}, {1, 2}, {2, 3}.

Suppose we have a vertex v1 whose τ -invariant is {2}. By BR, it is connected by a simple edge to a
vertex v2 whose τ -invariant contains 1, but not 2. The case of τ(v2) = {1} was described above, so the
only choice is τ(v2) = {1, 3}. This yields a complete molecule. The same argument works for v1 having
τ -invariant of {1, 3}.

This completes the classification:

123

132 2 31

231312

Example 2.4 It takes some more work to classify the S5 molecules (see the paper of Stembridge (2008a))

2313 24 134124

1

1

1

1

2 13 14 24 3

23

1312 24 34

14

1 2 3 4

123 124 134 234

1234

The simple part of a molecule is the graph formed by erasing all the arcs. We usually view it as an
undirected graph. A morphism of molecules ϕ : M → N is a map between the vertex sets which

1. is a graph morphism of the simple parts,

2. preserves τ -invariants.

Notice that a morphism does not need to respect arcs, aside from ones whose weights are determined by
the local polygon rules from the simple edges.

2.2 Restriction
Let J ⊆ S and let WJ be the corresponding parabolic subgroup.

Let M = (V,m, τ) be a W -molecular graph. The WJ -restriction of M is N = (V,m′, τ ′), with

1. for all v ∈ V , τ ′(v) = τ(v) ∩ J ,

2. for all u, v ∈ V ,

m′(u, v) =

{
0, if τ ′(u) ⊆ τ ′(v),
m(u, v), otherwise.
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The WJ -restriction of M is a WJ -molecular graph. A WJ -submolecule of M is a WJ -molecule (i.e.
component connected by simple edges) of the WJ -restriction of M . There is a natural inclusion map of a
WJ -submolecule into the original molecular graph. Sometimes, abusing notation, we refer to the image
of this map as a WJ -submolecule. The sense in which we use the word should be clear from the context.

3 Dual equivalence graphs
This section summarizes the relevant definitions and results of Assaf (2008); they are restated and slightly
specialized to make the similarity with W -molecules more apparent.

Fix n ∈ Z>0. Let (W,S) be a Coxeter system of type An. Identify S in a natural way with {1, . . . , n}.
Define ai to be the edge of the Coxeter graph (throughout the paper we will refer to these edges as bonds)
which links i and i + 1. Then B := {a1, . . . , an−1} is the set of all edges of the Coxeter graph. For
examples with small n we will use the notation a, b, c, . . . instead.

Definition 3.1 A signed colored graph of type n + 1 is a tuple (V,E, τ, β), where (V,E) is a finite
undirected simple graph, τ : V → 2S , and β : E → 2B .

Denote by Ei the set of edges with label i (i.e. such that the corresponding value of β contains i); we
call these i-colored edges. This is a slight reindexing from Assaf’s original definition; in the original Ei
was the set of edges whose label contains i− 1.

3.1 “Standard” dual equivalence graphs
We start by constructing a family, indexed by partitions, of signed colored graphs.

Let λ be a partition of n + 1. Let SY T (λ) be the set of standard Young tableaux of shape λ. The left
descent set of a tableau T is

τ(T ) := {1 6 i 6 n : i is located in a higher row than i+ 1 in T}.

The left descent sets are shown in red in Example 3.2.
The set of vertices of our graph is V := SY T (λ).
By a diagonal of a tableau we mean a NW − SE diagonal. A dual Knuth move is the exchange of

i and i + 1 in a standard tableau, provided that either i − 1 or i + 2 lies (necessarily strictly) between
the diagonals containing i and i + 1. This corresponds to dual Knuth moves on the symmetric group
via the “content reading word” (reading each diagonal from top to bottom, and concatenating in order of
increasing height of the diagonals). The set of edges of our graph is the set of pairs of tableaux related by
a dual Knuth move:

E := {(T,U) : T and U are related by a dual Knuth move}.

A dual Knuth move between tableaux T and U activates the bond ai if i lies in precisely one of τ(T )

and τ(U), and i+ 1 lies precisely in the other. Denote this condition by T
ai− U . For (T,U) ∈ E, let

β(T,U) := {ai ∈ B : T
ai− U}.

The graph Gλ := (V,E, τ, β) is a signed colored graph of type n+ 1.
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Example 3.2 Two standard dual equivalence graphs (corresponding to the shapes 311 and 32).

2

a cb

1 2 3 4

1

3

1

2

3

1 2 3

2

4 5

2

4

3 5

4

3

1 5

431

2

5

1

3

5

2 4 321

4

5

1

3

2

4

5 1

2 4

3 5 1

2 5

3 4 1 2 4

5 54

b b

ca

c a

ab c a bc

12 13

23

14

24 34

3241413

The values of τ are shown in red.

3.2 Axiomatics
A vertex w of a signed colored graph is said to admit an i-neighbor if precisely one of i and i+ 1 lies in
τ(w).

Definition 3.3 A dual equivalence graph of type n + 1 is a signed colored graph (V,E, τ, β) such that
for any 1 6 i < n:

1. For w ∈ V , w admits an i-neighbor if and only if there exists x ∈ V which is connected to w by an
edge of color i. In this case x must be unique

2. Suppose (w, x) is an edge of color i. Then i ∈ τ(w) iff i /∈ τ(x), i + 1 ∈ τ(w) iff i + 1 /∈ τ(x),
and if h < i− 1 or h > i+ 2 then h ∈ τ(w) iff h ∈ τ(x).

In other words, going along an i colored edge switches i and i + 1 in the τ value, and does not
affect anything except i− 1, i, i+ 1, and i+ 2.

3. Suppose (w, x) is an edge of color i. If i− 1 ∈ τ(w)∆τ(x) then (i− 1 ∈ τ(w) iff i+ 1 ∈ τ(w)),
where ∆ is the symmetric difference. If i+ 2 ∈ τ(w)∆τ(x) then (i+ 2 ∈ τ(w) iff i ∈ τ(w)).

4. If i < n − 2, consider the subgraph on all the vertices and edges labeled ai or ai+1. Each of its
connected components has the form:

i+1i +1 i
aa

i
a a

.
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If i < n− 3, consider the subgraph on all the vertices and edges labeled ai, ai+1, or ai+2. Each of
its connected components has the form:

a

a a

a
i +2 i +1 i

i i+1 i +2 i

i +1

i +2

i +1

i+2i+1

i
a a a a

a
a

i i +2

a a a a a

.

5. Suppose (w, x) ∈ Ei, (x, y) ∈ Ej , and |i− j| > 3. Then there exists v ∈ V such that (w, v) ∈
Ej , (v, y) ∈ Ei.

6. Consider a connected component of the subgraph on all the vertices and edges of colors 6 i. If we
erase all the i-colored edges it breaks down into several components. Any two these were connected
by an i-colored edge.

A weak dual equivalence graph is a signed colored graph satisfying 1− 5 of the above.

Proposition 3.4 The graph Gλ (the standard dual equivalence graph) is actually a dual equivalence
graph. Moreover, {Gλ}λ is a complete collection of isomorphism class representatives of dual equiva-
lence graphs.

Proof: The references are to the paper of Assaf (2008). The first statement is Proposition 3.5. The second
is a combination of Theorem 3.9 and Proposition 3.11. 2

3.3 Restriction

Suppose G is a signed colored graph of type n+ 1. For 0 6 k < n+ 1, a (k+ 1)-restriction of G consists
of the same vertex set V , the edges colored 6 k− 1, the τ function post-composed with intersection with
{1, . . . , k}, and the β function post-composed with restriction to {a1, . . . , ak−1} (see Example 3.5). The
(k+ 1)-restriction of G is a signed colored graph of type k+ 1. The property of being a dual equivalence
graph (or a weak dual equivalence graph) is preserved by restriction. By a (k + 1)-component of G
we mean either the connected component of the restriction, or the induced subgraph of G on vertices
corresponding to such connected component. It should be clear from the context which of these we are
talking about.

The n-components of Gλ are obtained by fixing the position of n+ 1 in the tableau. Such a component
is isomorphic to Gµ, where µ if formed from λ by erasing the outer corner which contained n+ 1. Here
is what it looks like on the above examples:
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Example 3.5

3

a b

1 2 3
1
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1 2

1

3

1

2

3

1 2 3
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5 1

2 4

3 5 1

2 5

3 4 1 2 4

5 54

b b

a

a

ab a b

12 13

23

132

The condition of being a weak dual equivalence graph is already quite powerful. The following lemma
is relevant to us. It essentially says that a weak dual equivalence graph with a nice restriction property is
necessarily a cover of a dual equivalence graph.

Lemma 3.6 Suppose G is a weak dual equivalence graph of type n + 1. Suppose moreover that each
n-component is a dual equivalence graph. Then there is a surjective morphism ϕ : G → Gλ for some
partition λ of n+ 1, which restricts to an isomorphism on the n-components.

Let C ∼= Gµ be an n-component. Then for any partition ν 6= µ of n with ν ⊂ λ, there exists a unique
n-component D ∼= Gµ with which is connected to C by an (n−1)-colored edge. Also, two n-components
which are both isomorphic to Gµ are not connected by an (n− 1)-colored edge.

Proof: The references are again to the paper of Assaf (2008). The existence of the morphism is shown in
Theorem 3.14. Its surjectivity follows by Remark 3.8. The fact that it restricts to an isomorphism on the n-
components follows from the proof of Theorem 3.14. The covering properties from the second paragraph
are shown in Corollary 3.15, though the last one is not explicitly mentioned. 2

3.4 Molecules and dual equivalence graphs
Proposition 3.7 The simple part of anAn molecule, with β(u, v) = {bonds activated by the edge (u, v)}
is a weak dual equivalence graph.

Proof: Axioms (1), (2), (3) follow directly from SR, BR, and CR. The S4 and S5 molecules have been
computed by Stembridge (2008a) (see Examples 2.3 and 2.4). This shows that (4) is satisfied. The axiom
(5) is a weaker version of the local polygon rule. 2

Consider the graph Gλ from section 3.1. It is clear that (viewed as a weighted directed graph with all
edges pointing both ways and having weight 1) it is an admissible S-labeled graph for theAn root system.
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It is well known that it forms the simple part of an An-molecule (the left Kazhdan-Lusztig cell) which we
call Gλ.

Definition 3.8 An An molecule is a Kazhdan-Lusztig molecule if it is isomorphic to Gλ, i.e. if its simple
part is a dual equivalence graph.

4 Main theorem
In this section we show that any An molecule is Kazhdan-Lusztig. The proof will proceed by induction
on n, so the preliminary results will start with an An molecule whose An−1 submolecules are Kazhdan-
Lusztig.

The first of these results states that if two such An−1 molecules are connected by a simple edge, then
the connecting An−2 submolecules are isomorphic and there is a “cabling” of edges (possibly arcs) of
weight 1 between these An−2 molecules:

n−1

A

A

A

n

n−1

.

Lemma 4.1 Let M be an An molecule whose An−1 submolecules are Kazhdan-Lusztig. Suppose A and
B are two such submolecules which are joined by a simple edge (in M ), namely there exist x ∈ A, y ∈ B
such that the edge x − y is simple. Let A′ (resp. B′) be the An−2 submolecule of M containing x (resp.
y). Then there is an isomorphism ψ between A′ and B′ such that ψ(x) = y. Moreover, if n ∈ τ(x) then
m(z → ψ(z)) = 1 for all z ∈ A′.

The second preliminary result shows that if, out of three An−1 submolecules, two pairs (satisfying
some conditions) are connected by simple edges, then the third pair is also connected by a simple edge:

B

?

C

A

.

The conditions will later be removed to show that any pair of An−1 submolecules of an An molecule is
connected by a simple edge.

Lemma 4.2 Let M be an An-molecule whose An−1 submolecules are Kazhdan-Lusztig. By Proposition
3.6, there is a surjective morphism ϕ : M → Gλ for some partition λ of n + 1. Let A,B,C be An−1
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submolecules of M such that A and B are both connected to C by simple edges. Then A ∼= Gµ, B ∼= Gν ,
C ∼= Gη , for some partitions formed by deleting outer corners of λ. The three partitions have to be
different by Proposition 3.6. Suppose moreover that the deleted corner for η was the highest of the three,
namely:

µ
ν

η

Then A and B are connected by a simple edge.

We can now finish the proof of the theorem.

Theorem 4.3 Any An molecule is Kazhdan-Lusztig.

Proof: We know that the simple part of an An molecule is a weak dual equivalence graph. It remains to
show that it satisfies the axiom (6), namely that any two An−1 submolecules are connected by a simple
edge.

Proceed by induction on n, the case n = 1 being trivial. Let M be an An molecule. By inductive
assumption, all An−1 molecules are Kazhdan-Lusztig. So, according to 3.6 there is a covering M → Gλ,
for some partition λ of n+ 1.

Choose two of these An−1 submolecules, A and Z. Choose a path of simple edges between them which
goes through the fewest number of molecules. If it does not go through other molecules, then we are done.
Suppose that is not so. Let A, B, C be the first three molecules on the path (it may happen that Z = C).
The partitions µ, ν, η corresponding to A,B, and C are formed by removing an outer corner of λ; they
are all distinct by Proposition 3.6.

Again using Proposition 3.6, consider the following string of An−1 submolecules connected by simple
edges: A−B − C −A′ −B′, with A ∼= A′, B ∼= B′, and some of these possibly equalities. Out of µ, ν,
and η choose the partition which is formed by removing the highest box of λ. In the above string, choose
a copy of the corresponding An−1 submolecule with submolecules attached on both sides (for example, if
λ \ µ was highest of the three, then we should choose A′). Then the triple consisting of this submolecule
and the two adjacent ones satisfies the condition of the Lemma 4.2 (in the example, it would be the triple
C −A′ −B′). Applying it we get that A′ = A, and B′ = B. But then A is connected to C, contradicting
our assumption that the path went through a minimal number of molecules.

So any two An−1 molecules are connected by an edge, finishing the proof. 2
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Cyclic Sieving of Increasing Tableaux and
Small Schröder Paths
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Abstract. An increasing tableau is a semistandard tableau with strictly increasing rows and columns. It is well known
that the Catalan numbers enumerate both rectangular standard Young tableaux of two rows and also Dyck paths. We
generalize this to a bijection between rectangular 2-row increasing tableaux and small Schröder paths. Using the
jeu de taquin for increasing tableaux of [Thomas–Yong ’09], we then present a new instance of the cyclic sieving
phenomenon of [Reiner–Stanton–White ’04].

Résumé. Un tableau croissant est un tableau semi-standard avec les lignes et les colonnes croissantes au sens strict.
Il est bien connu que les nombres de Catalan énumèrent les tableaux de Young standard rectangulaires de deux lignes
et aussi les chemins de Dyck. Nous généralisons ceci pour une bijection entre tableaux croissants rectangulaires á 2
lignes et petits chemins de Schröder. Utilisant le jeu de taquin de [Thomas–Yong ’09] pour tableaux croissants, nous
présentons ensuite une nouvelle instance du phénomène du crible cyclique de [Reiner–Stanton–White ’04].

Keywords: increasing tableaux, cyclic sieving phenomenon, K-promotion, Schröder path, Schröder number, non-
crossing partition

1 Introduction
An increasing tableau is a semistandard tableau such that all rows and columns are strictly increasing and
the set of entries is an initial segment of Z>0. For λ a partition of N , we write |λ| = N . We denote by
Inck(λ) the set of increasing tableaux of shape λ with maximum value |λ|−k. Similarly SYT(λ) denotes
standard Young tableaux of shape λ. Notice Inc0(λ) = SYT(λ). We routinely identify a partition λ with
its Young diagram; hence for us the notations SYT(m× n) and SYT(nm) are equivalent.

A small Schröder path is a planar path from the origin to (n, 0) that is constructed from three types of
line segment: upsteps by (1, 1), downsteps by (1,−1), and horizontal steps by (2, 0), so that the path never
falls below the horizontal axis and no horizontal step lies on the axis. The nth small Schröder number is
defined to be the number of such paths. A Dyck path is a small Schröder path without horizontal steps.

Our first result is an extension of the classical fact that Catalan numbers enumerate both Dyck paths
and rectangular standard Young tableaux of two rows, SYT(2× n). For T ∈ Inck(2× n), let maj(T ) be
the sum of all i in row 1 such that i+ 1 appears in row 2.
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Theorem 1.1 There are explicit bijections between Inck(2× n), small Schröder paths with k horizontal
steps, and SYT(n− k, n− k, 1k). This implies the identity

∑

T∈Inck(2×n)
qmaj(T ) = qn+

1
2 (k

2+k)

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q
. (1)

In particular, the total number of increasing tableaux of shape 2× n is the nth small Schröder number.

The “flag-shaped” standard Young tableaux of Theorem 1.1 were previously considered by R. Stanley
[Sta96] in relation to polygon dissections.

Suppose X is a finite set, Cn = 〈c〉 a cyclic group acting on X , and f ∈ Z[q] a polynomial. The triple
(X, Cn, f) has the cyclic sieving phenomenon [RSW04] if for all m, the number of elements of X fixed
by cm is f(ζm), where ζ is any primitive nth root of unity. D. White [Whi07] discovered a cyclic sieving
for 2 × n standard Young tableaux. For this, he used a q-analogue of the hook-length formula (that is, a
q-analogue of the Catalan numbers) and a group action by jeu de taquin promotion. B. Rhoades [Rho10,
Theorem 1.3] generalized this result from SYT(2×n) to SYT(m×n). Our main result is a generalization
of D. White’s result in another direction, from SYT(2× n) = Inc0(2× n) to Inck(2× n).

We first define K-promotion for increasing tableaux. Define the SE-neighbors of a box to be the (at
most two) boxes immediately below it or right of it. Let T be an increasing tableau with maximum
entry M . Delete the entry 1 from T , leaving an empty box. Repeatedly perform the following operation
simultaneously on all empty boxes until no empty box has a SE-neighbor: Label each empty box by the
minimal label of its SE-neighbors and then remove that label from the SE-neighbor(s) in which it appears.
If an empty box has no SE-neighbors, it remains unchanged. We illustrate the local changes in Figure 1.

i
j

7→ i
j

j
i

7→ i j i
i

7→ i
i
7→ i

i

Fig. 1: Local changes during K-promotion for i < j.

Notice that the number of empty boxes may change during this process. Finally we obtain the K-
promotion P(T ) by labeling all empty boxes by M + 1 and then subtracting one from every label. Figure
2 shows a full example of K-promotion.

1 2 4
3 4 5

7→ 2 4
3 4 5

7→ 2 4
3 4 5

7→ 2 4
3 5

7→ 2 4 5
3 5

7→ 1 3 4
2 4 5

Fig. 2: K-promotion.

Our definition of K-promotion is analogous to that of ordinary promotion, but uses the K-jeu de taquin
of H. Thomas–A. Yong [TY09] in place of ordinary jeu de taquin. (The ‘K’ reflects their original develop-
ment of K-jeu de taquin in application to K-theoretic Schubert calculus.) Observe that on standard Young
tableaux, promotion and K-promotion coincide.

We will need:
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Theorem 1.2 For all n and k, there is an action of the cyclic group C2n−k on T ∈ Inck(2× n), where a
generator acts by K-promotion.

In the case k = 0, Theorem 1.2 is implicit in work of M.-P. Schützenberger (cf. [Hai92, Sta09]). We
provide two combinatorial proofs of Theorem 1.2, which we believe provide different insights. Finally
we construct the following cyclic sieving.

Theorem 1.3 For all n and k, the triple
(
Inck(2 × n), C2n−k, f

)
has the cyclic sieving phenomenon,

where

f(q) :=

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q

is the q-enumerator from Theorem 1.1.

Our proof of Theorem 1.3 is elementary. In contrast, all proofs [Rho10, Pur12] of B. Rhoades’ theorem
for standard Young tableaux use representation theory or geometry. (Also [PPR09], where the authors
give new proofs of the 2- and 3-row cases of B. Rhoades’ result, uses representation theory.) It is natural
to ask also for such proofs of Theorem 1.3. For k > 0, Theorem 1.2 does not generalize in the obvious
way to tableaux of more than 3 rows. We do not know a common generalization of our Theorem 1.3 and
B. Rhoades’ theorem.

This note is an extended abstract of [Pec12]. Here we omit or sketch most of the proofs. The organiza-
tion is as follows. In Section 2, we prove Theorem 1.1. We include an additional bijection (to be used in
Section 4) between Inck(2 × n) and certain noncrossing partitions that we interpret as generalized non-
crossing matchings. In Section 3, we develop a strengthening of Theorem 1.2 through combinatorics of
small Schröder paths. We also provide a counterexample to the analogous statement for 4-row increasing
tableaux. In Section 4, we use noncrossing partitions to give a second proof of Theorem 1.2 and to prove
Theorem 1.3.

2 Bijections and Enumeration
Proposition 2.1 There is an explicit bijection between Inck(2× n) and SYT(n− k, n− k, 1k).

Proof: Let T ∈ Inck(2 × n). The following algorithm produces a corresponding S ∈ SYT(n − k, n −
k, 1k). Observe that every value in {1, . . . , 2n− k} appears in T either once or twice. Let A be the set of
numbers that appear twice. Let B be the set of numbers that appear in the second row immediately right
of an element of A. Note |A| = |B| = k.

Let T ′ be the tableau of shape (n− k, n− k) formed by deleting all elements of A from the first row of
T and all elements of B from the second. The standard Young tableau S is given by appending B to the
first column. An example is shown in Figure 3.

This algorithm is reversible. Given the standard Young tableau S of shape (n − k, n − k, 1k), let B
be the set of entries below the first two rows. By inserting B into the second row of S while maintaining
increasingness, we reconstruct the second row of T . Let A be the set of elements immediately left of
an element of B in this reconstructed row. By inserting A into the first row of S while maintaining
increasingness, we reconstruct the first row of T . 2
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Corollary 2.2 For all n and k,

∑

T∈Inck(2×n)
qmaj(T ) = qn+

1
2 (k

2+k)

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q
.

2

Proof of Theorem 1.1: The bijection between Inck(2 × n) and SYT(n − k, n − k, 1k) is given by
Proposition 2.1. The q-enumeration (1) is exactly Corollary 2.2.

We now give a bijection between Inck(2 × n) and small Schröder paths with k horizontal steps. Let
T ∈ Inck(2 × n). For each integer j from 1 to 2n − k, we create one segment of a small Schröder path
PT . If j appears only in the first row, then the jth segment of PT is an upstep. If j appears only in the
second row of T , the jth segment of PT is a downstep. If j appears in both rows of T , the jth segment of
PT is horizontal. It is clear that the tableau T can be reconstructed from the small Schröder path PT , so
this operation gives a bijection. Thus increasing tableaux of shape (n, n) are counted by small Schröder
numbers. 2

1 2 4 5 6
2 3 6 7 8

(a) Increasing tableau T

1 4 5
2 6 8
3
7

(b) “Flag-shaped”
standard Young tableau

0 1 1 0 1 2 2 1 0

(c) Small Schröder path and its
height word

7

81

2

3

4 5

6

(d) Noncrossing partition

a

b

c d

e

f

(e) Polygon dissection

Fig. 3: A rectangular increasing tableau T ∈ Inc2(5, 5) with its corresponding standard Young tableau of
shape (3, 3, 1, 1), small Schröder path, noncrossing partition of {1, . . . , 8} with all blocks of size at least
two, and heptagon dissection.

The following bijection will play an important role in our proof of Theorem 1.3 in Section 4. A partition
of {1, . . . , N} is noncrossing if the convex hulls of the blocks are pairwise disjoint when the values
1, . . . , N are equally spaced around a circle with 1 in the upper left and values increasing counterclockwise
(cf. Figure 3(D)).
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Proposition 2.3 There is an explicit bijection between Inck(2× n) and noncrossing partitions of 2n− k
into n− k blocks all of size at least 2.

Proof: Let T ∈ Inck(2 × n). For each i in the second row of T , let si be the largest number in the first
row that is less than i and that is not sj for some j < i. Form a partition of 2n− k by declaring, for every
i, that i and si are in the same block. We see this partition has n− k blocks by observing that the largest
elements of the blocks are precisely the numbers in the second row of T that do not also appear in the first
row. Clearly there are no singleton blocks.

If the partition were not noncrossing, there would exist some elements a < b < c < d with a, c in a
block B and b, d in a distinct block B′. Observe that b must appear in the first row of T and c must appear
in the second row of T (not necessarily exclusively). We may assume c to be the least element of B that
is greater than b. We may then assume b to be the greatest element of B′ that is less than c. Now consider
sc, which must exist since c appears in the second row of T . By definition, sc is the largest number in the
first row that is less than c and that is not sj for some j < c. By assumption, b appears in the first row, is
less than c, and is not sj for any j < c; hence sc ≥ b. Since however b and c lie in distinct blocks, sc 6= b,
whence b < sc < c. This is impossible, since we took c to be the least element of B greater than b. Thus
the partition is necessarily noncrossing.

To reconstruct the increasing tableau, read the partition from 1 to 2n − k. Place the smallest elements
of blocks in only the first row, place the largest elements of blocks in only the second row, and place
intermediate elements in both rows. 2

The set Inck(2 × n) is also in bijection with (n + 2)-gon dissections by n − k − 1 diagonals. We do
not describe this bijection, as it is well known (cf. [Sta96]) and will not be used except in Section 4 for
comparison with previous results. The existence of a connection between increasing tableaux and polygon
dissections was first suggested in [TY11]. An example of all these bijections is shown in Figure 3.

Remark 2.1 A noncrossing matching is a noncrossing partition with all blocks of size two. Like Dyck
paths, polygon triangulations, and 2-row rectangular standard Young tableaux, noncrossing matchings are
enumerated by the Catalan numbers. Since increasing tableaux were developed as a K-theoretic analogue
of standard Young tableaux, it is tempting also to regard small Schröder paths, polygon dissections, and
noncrossing partitions without singletons as K-theory analogues of Dyck paths, polygon triangulations,
and noncrossing matchings, respectively. In particular, by analogy with [PPR09], it is tempting to think
of noncrossing partitions without singletons as “K-webs” for sl2, although their representation-theoretic
significance is unknown.

3 K-Promotion and K-Evacuation
In this section, we prove Theorem 1.2. Let max(T ) denote the largest entry in a tableau T . For a
rectangular tableau T , we write rot(T ) for the tableau formed by rotating 180 degrees and reversing
the alphabet, so that label x becomes max(T ) + 1 − x. We define K-evacuation E as in [TY09, §4] by
analogy with evacuation for standard Young tableaux, using K-jeu de taquin in place of ordinary jeu de
taquin. Define dual K-evacuation E∗ by E∗ := rot ◦ E ◦ rot. (This definition of E∗ only makes sense for
rectangular tableaux. For a tableau T of general shape λ, in place of applying rot, one should dualize λ
(thought of as a poset) and reverse the alphabet. We will not make any essential use of this more general
definition.)
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Towards Theorem 1.2, we first develop basic combinatorics of the above operators that are well-known
in the standard Young tableau case (cf. [Sta09]). From these results, we observe that Theorem 1.2 follows
from the claim that rot(T ) = E(T ) for every T ∈ Inck(2 × n). We first saw this approach in [Whi10]
for the standard Young tableau case, although similar ideas appear in [Hai92, Sta09, . . . ]; we are not sure
where it first appeared.

Finally, beginning at Lemma 3.3, we prove that for T ∈ Inck(2 × n), rot(T ) = E(T ). Here the
situation is more subtle than in the standard case. (For example, we will show that the claim is not
generally true for T a rectangular increasing tableau with more than 3 rows.) We proceed by careful
analysis of how rot, E , E∗, and P act on the corresponding small Schröder paths.

Remark 3.1 It is not hard to see that K-promotion is reversible, and hence permutes the set of increasing
tableaux.

Lemma 3.1 K-evacuation and dual K-evacuation are involutions,P◦E = E◦P−1, and for any increasing
tableau T , (E∗ ◦ E)(T ) = Pmax(T )(T ).

Before proving Lemma 3.1, we briefly recall the K-theory growth diagrams of [TY09, §2, 4], which
extend the standard Young tableau growth diagrams of S. Fomin (cf. [Sta99, Appendix 1]). We will write
[T ]j for the subtableau of T formed by deleting all entries > j. For T ∈ Inck(λ), consider the sequence
of Young diagrams (shape([T ]j))0≤j≤|λ|−k. Note that this sequence of diagrams uniquely encodes T .
We draw this sequence of Young diagrams horizontally from left to right. Below this sequence, we draw,
in successive rows, the sequences of Young diagrams associated to Pi(T ) for 1 ≤ i ≤ |λ|−k. Hence each
row encodes the K-promotion of the row above it. We offset each row one space to the right. We will refer
to this entire array as the K-theory growth diagram for T . (There are other K-theory growth diagrams for
T that one might consider, but this is the only one we will need.) Figure 4 shows an example.

∅

∅

∅

∅

∅

∅

∅

∅

∅

Fig. 4: The K-theory growth diagram for the tableau T of Figure 3(A).



Cyclic Sieving of Increasing Tableaux 363

We will write Y Dij for the Young diagram shape([Pi−1(T )]j−i). This indexing is nothing more than
imposing “matrix-style” or “English” coordinates on the K-theory growth diagram. For example in Figure
4, Y D58 denotes , the Young diagram in the fifth row from the top and the eighth column from the left.

Remark 3.2 [TY09, Proposition 2.2] In any 2 × 2 square
λ µ
ν ξ

of Young diagrams in a K-theory

growth diagram, ξ is uniquely and explicitly determined by λ, µ and ν. Similarly λ is uniquely and

explicitly determined by µ, ν and ξ. Furthermore these rules are symmetric, in the sense that if
λ µ
ν ξ

and
ξ µ
ν ρ

are both 2× 2 squares of Young diagrams in K-theory growth diagrams, then λ = ρ.

Proof of Lemma 3.1: Fix a tableau T ∈ Inck(λ). All of these facts are proven as in the standard case
(cf. [Sta09, §5]), except one uses K-theory growth diagrams instead of ordinary growth diagrams. The
proof that K-evacuation is an involution appears in greater detail as [TY09, Theorem 4.1]. For rectangular
shapes, the fact that dual K-evacuation is an involution follows from the fact that K-evacuation is, since
E∗ = rot ◦ E ◦ rot.

Essentially by definition, the central column (the column containing the rightmost ∅) of the K-theory
growth diagram for T encodes the K-evacuation of the first row as well as the dual K-evacuation of the
last row. The first row encodes T and the last row encodes P |λ|−k(T ). Hence E(T ) = E∗(P |λ|−k(T )).

By the symmetry mentioned in Remark 3.2, one observes that the first row encodes the K-evacuation of
the central column and that the last row encodes the dual K-evacuation of the central column. This yields
E(E(T )) = T and E∗(E∗(P |λ|−k(T ))) = P |λ|−k(T ), showing that K-evacuation and dual K-evacuation
are involutions. Combining the above observations, yields (E∗ ◦ E)(T ) = P |λ|−k(T ).

Finally to show P ◦E = E ◦P−1, it is easiest to append an extra ∅ to the lower-right of the diagonal line
of ∅s that appears in the K-theory growth diagram. This extra ∅ lies in the column just right of the central
one. This column now encodes the K-evacuation of the second row. Hence by the symmetry mentioned
in Remark 3.2, the K-promotion of this column is encoded by the central column. Thus if S = P(T ), the
central column encodes P(E(S)). But certainly P−1(S) = T is encoded by the first row, and we have
already observed that the central column encodes E(T ). Therefore P(E(S)) = E(P−1(S)). 2

Let er(T ) be the least positive integer such that (E∗ ◦ E)er(T )(T ) = T . We call this number the
evacuation rank of T . Similarly we define the promotion rank pr(T ) to be the least positive integer such
that Ppr(T )(T ) = T .

Corollary 3.2 Let T be a increasing tableau. Then er(T ) divides pr(T ), pr(T ) divides max(T ) · er(T ),
and the following are equivalent:

(a) E(T ) = E∗(T ),

(b) er(T ) = 1,

(c) pr(T ) divides max(T ).

Moreover if T is rectangular and E(T ) = rot(T ), then E(T ) = E∗(T ). 2
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Thus to prove Theorem 1.2, it suffices to show that E(T ) = rot(T ) for every T ∈ Inck(2 × n). We
use the bijection between Inck(2 × n) and small Schröder paths from Theorem 1.1. These paths are
themselves in bijection with the sequence of their node heights, which we call the height word. Figure
3(C) shows an example. For T ∈ Inck(2 × n), we write PT for the corresponding small Schröder path
and ST for the corresponding height word.

Lemma 3.3 For T ∈ Inck(2×n), the ith letter of the height word ST is the difference between the lengths
of the first and second rows of the Young diagram shape([T ]i−1). 2

Lemma 3.4 Let T ∈ Inck(2× n). Then Prot(T ) is the reflection of PT across a vertical line and Srot(T )

is the word formed by reversing ST . 2

Lemma 3.5 Let T ∈ Inck(2× n) and M = 2n− k. Let xi denote the (M + 2− i)th letter of the height
word SPi−1(T ). Then SE(T ) = xM+1xM . . . x1.

Proof: By consideration of the K-theory growth diagram for T . 2

Lemma 3.6 Let T ∈ Inck(2× n).

(a) The word ST may be written in exactly one way as 0w10w3 or 0w11w20w3, where w1 is a sequence
of strictly positive integers that ends in 1 and contains no consecutive 1s, w2 is a (possibly empty)
sequence of strictly positive integers, and w3 is a (possibly empty) sequence of nonnegative integers.

(b) Let w−1 be the sequence formed by decrementing each letter of w1 by 1. Similarly, let w+
3 be formed

by incrementing each letter of w3 by 1.

If ST is of the form 0w10w3, then SP(T ) = w−1 1w+
3 0. If ST is of the form 0w11w20w3, then

SP(T ) = w−1 1w21w+
3 0. 2

For T ∈ Inck(2×n), take the first 2n− k+ 1 columns of the K-theory growth diagram for T . Replace
each Young diagram in the resulting array by the difference between the lengths of its first and second
rows. Figure 5 shows an example. We write aij for the number corresponding to the Young diagram
Y Dij . By Lemma 3.3, we see that the ith row of this array of nonnegative integers is exactly the first
2n − k + 2 − i letters of SPi−1(T ). Therefore we will refer to this array as the height growth diagram
for T , and denote it by hgd(T ). Observe that the rightmost column of hgd(T ) corresponds to the central
column of the K-theory growth diagram for T .

Lemma 3.7 In hgd(T ) for T ∈ Inck(2× n), we have for all j that a1j = aj,2n−k+1.

Proof: By induction on the length of the height word. 2

Corollary 3.8 In the notation of Lemma 3.5, ST = x1x2 . . . xM+1. 2

Proposition 3.9 Let T ∈ Inck(2× n). Then E(T ) = rot(T ).

Proof: By Corollary 3.8, ST = x1x2 . . . x2n−k+1. Hence Srot(T ) = x2n−k+1x2n−k . . . x1, by Lemma
3.4. However Lemma 3.5 says that also SE(T ) = x2n−k+1x2n−k . . . x1. By the bijective correspondence
between tableaux and height words, this yields E(T ) = rot(T ). 2
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0 1 1 0 1 2 2 1 0
0 1 1 2 3 3 2 1

0 1 2 3 3 2 1
0 1 2 2 1 0

0 1 1 0 1
0 1 1 2

0 1 2
0 1

0

Fig. 5: The height growth diagram hgd(T ) for the tableau T shown in Figure 3(A). The ith row shows
the first 10− i letters of SPi−1(T ). Lemma 3.7 says that row 1 is the same as column 9, read from top to
bottom.

This completes our first proof of Theorem 1.2. We will obtain an alternate proof in Section 4. We now
show a counterexample to the obvious generalization of Theorem 1.2 to increasing tableaux of more than
two rows.

Example 3.10 If T is the increasing tableau

1 2 4 7
3 5 6 8
5 7 8 10
7 9 10 11

, then P11(T ) =

1 2 4 7
3 4 6 8
5 6 8 10
7 9 10 11

. (The underscores

mark entries that differ between the two tableaux.) It can be verified that the promotion rank of this
tableau is 33.

Computer checks of small examples (including all with at most seven columns) did not identify such a
counterexample for T a 3-row rectangular increasing tableau.

4 Cyclic Sieving

Proof of Theorem 1.3: Recall we defined

f(q) :=

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q

to be the q-enumerator for Inck(2 × n) obtained in Theorem 1.1. Our strategy (modeled throughout on
[RSW04, §7]) is to explicitly evaluate f at roots of unity and compare the result with a count of increasing
tableaux. To count tableaux, we use the bijection with noncrossing partitions given in Proposition 2.3.
We will find that the symmetries of these partitions more transparently encode the promotion ranks of the
corresponding tableaux.
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Lemma 4.1 Let ζ be any primitive dth root of unity, for d dividing 2n− k. Then

f(ζ) =





( 2n−k
d )!

( k
d )!(

n−k
d )!(n−k

d −1)!nd
, if d|n

( 2n−k
d )!

( k+2
d −1)!(

n−k−1
d )!(n−k−1

d )!n+1
d

, if d|n+ 1

0, otherwise.

Proof: By explicit evaluation, as in [RSW04, §7]. 2

We will write π for the bijection of Proposition 2.3 from Inck(2×n) to noncrossing partitions of 2n−k
into n− k blocks all of size at least 2. In a noncrossing partition, there is at most one block whose convex
hull contains the center of the disk; we call such a block the central block. For Π a noncrossing partition
of N , we writeR(Π) for the noncrossing partition given by rotating Π clockwise by 2π/N .

Lemma 4.2 For any T ∈ Inck(2× n), π(P(T )) = R(π(T )). 2

It remains now to count noncrossing partitions of 2n − k into n − k blocks all of size at least 2 that
are invariant under rotation by 2π/d, and to show that we obtain the formula of Lemma 4.1. It is easy to
show for such a partition Π that d|n+ 1 if and only if Π has a central block and that d|n if and only if Π
has no central block.

Arrange the numbers 1, 2, . . . , n,−1, . . . ,−n counterclockwise at equally spaced points around a cir-
cle. Consider a partition of these points such that, for every block B, the set formed by negating all
elements of B is also a block. If the convex hulls of the blocks are pairwise nonintersecting, we call
such a partition a noncrossing Bn-partition or type-B noncrossing partition (cf. [Rei97]). There is an
obvious bijection between noncrossing partitions of 2n− k that are invariant under rotation by 2π/d and
noncrossing B(2n−k)/d-partitions. The needed enumerations of type-B noncrossing partitions may be
obtained from work of C. Athanasiadis, V. Reiner, and C. Savvidou [AR04, AS12]. 2

Lemma 4.2 yields a second proof of Theorem 1.2. We observe that under the reformulation of Lemma
4.2, Theorem 1.3 bears a striking similarity to Theorem 7.2 of [RSW04] which gives a cyclic sieving on
the set of all noncrossing partitions of 2n−k into n−k parts with respect to the same cyclic group action.

Additionally, under the correspondence mentioned in Section 2 between Inck(2 × n) and dissections
of an (n+ 2)-gon with n− k − 1 diagonals, Theorem 1.3 bears a strong resemblance to Theorem 7.1 of
[RSW04], which gives a cyclic sieving on the same set with the same q-enumerator, but with respect to an
action by Cn+2 instead of C2n−k. S.-P. Eu–T.-S. Fu [EF08] reinterpret the Cn+2-action as the action of a
Coxeter element on the k-faces of an associahedron. We do not know such an interpretation of our action
by C2n−k. In [RSW04], the authors note many similarities between their Theorems 7.1 and 7.2 and ask
for a unified proof. It would be very satisfying if such a proof could also account for our Theorem 1.3.
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Schubert polynomials and k-Schur functions
(Extended abstract)
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Abstract. The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type A
by a Schur function can be understood from the multiplication in the space of dual k-Schur functions. Using earlier
work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs.
Schur side, we study the r-Bruhat order given by Bergeron-Sottile, along with certain operators associated to this
order. On the other side, we connect this poset with a graph on dual k-Schur functions given by studying the affine
grassmannian order of Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual
k-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem.

Résumé. Le but principal de cet article est de montrer que la multiplication d’un polynôme de Schubert de type
fini A par une fonction de Schur peut être comprise à partir de la multiplication dans l’espace dual des fonctions k-
Schur. Les travaux antérieurs par le second auteur, nous permet de coder ces deux problèmes au moyen de fonctions
quasisymétriques. Du côté Schubert vs Schur, nous étudions l’ordre partiel r-Bruhat donné par Bergeron-Sottile,
ainsi que certains opérateurs associés à cet ordre. Nous donnons une relation entre l’ordre r-Bruhat et le graphe
de Bruhat sur les fonctions k-Schur dualles données par l’étude de l’ordre affine grassmannienne de Lam-Lapointe-
Morse-Shimozono. En outre, nous définissons des opérateurs associés a ce graphe qui sont analogues à ceux donnés
pour le problème Schubert vs Schur.

Keywords: Schubert polynomials, k-Schur functions, affine grassmannian, r-Bruhat order, strong order.

1 Introduction
A fundamental problem in algebraic combinatorics is to find combinatorial rules for certain properties
of a given combinatorial Hopf algebra. The problem of providing a combinatorial rule for the structure
constants of a particular basis is an instance of this situation. The classical example is the Littlewood-
Richardson rule which describes the multiplication and comultiplication of Schur functions within the
space of symmetric functions.

Providing a rule for this kind of problems is in general very hard and many such problems are still
unsolved. In particular, this paper will consider: the multiplication of Schubert polynomials, and the
multiplication and comultiplication of k-Schur functions.

†Partially supported by NSERC

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Schubert polynomials are known to multiply positively since their structure constants enumerate flags
in suitable triple intersections of Schubert varieties. However, there is no positive combinatorial rule to
construct these constants in general. Nevertheless, since Schur polynomials correspond to grassmannian
varieties which are a special class of flag varieties, we have that the Littlewood-Richardson rule is a special
case of this particular problem. Even if we consider a slightly larger class of Schubert polynomials,
namely, multiplication of a Schubert polynomial by a Schur function, we find that for several years there
was no solution for finding a positive rule for these structure constants. Fortunately, in [6] new identities
were deduced, more tools were developed and the use of techniques along the way of [2, 5, 7–9] gave
as a result a combinatorial rule for this problem [3], which we will refer later as Schubert vs. Schur.
Also in [3], using the work of [12], we deduce, independently of [11], a combinatorial proof that the
Gromov-Witten invariants are positive.

Let us turn our attention now to k-Schur functions and their duals. In [14], one definition is shown to be
related to the homology of the affine grassmannian of the affine coxeter group Ãk+1. More precisely, the
k-Schur functions are shown to be the Schubert polynomials for the affine grassmannian and, as such, the
structure constants of their multiplication must be positive integers. The space of k-Schur functions span
a graded Hopf algebra, and its graded dual describes the cohomology of the affine grassmannian. Thus,
the comultiplication structure is also given by positive integer constants. Also, the structure constants
of k-Schur functions include, as a special case, the structure of the small quantum cohomology and in
particular, as mentioned above, the Gromov-Witten invariants [18].

In a series of two papers we plan to give a positive rule (along the lines of [3]) for the multiplication
of dual k-Schur with a Schur function and relate this to the Schubert vs Schur problem. This is done
by an in-depth study of the affine strong Bruhat graph. In order to achieve this we need to adapt the
tools we have in [3, 5, 7–9] and create new ones. In this paper we start our study the strong Bruhat graph
restricted to affine grassmannian permutations (see [15]). Given two such permutations u, v let K[u,v] be
the quasisymmetric function associated to them, constructed as in [5]. The coefficient dvu,λ of a Schur

function Sλ in K[u,v] is the same as the coefficient of the dual k-Schur S∗(k)
v in the product SλS

∗(k)
u . In

this way we recover certain structure constants of the multiplication of dual k-Schur functions since when
λ ⊆ (cr) and c+r = k+1 we have that Sλ = S

(k)∗
w for somew affine grassmannian. We also consider an

explicit combinatorial embedding of the Schubert vs. Schur problem into the dual k-Schur problem. This
is done by inclusion of the chains of the grassmannian-Bruhat order into the affine strong Bruhat graph.
We remark that in [13], Knutson, Lam and Speyer show that the Schubert vs. Schur problem reduces
geometrically to the dual k-Schur problem. Here we focus on the positive combinatorial aspect of the
problems.

The paper is organized as follows. In Sections 2 and 3 we recall some background about Schu-
bert polynomials and k-Schur functions, respectively. In Section 4 we study the affine strong Bruhat
graph and introduce the main relations satisfied by saturated chains in this order. Also,we introduce the
quasi-symmetric function K[u,v]. Finally, Section 5 is dedicated to the inclusion of the chains of the
grassmannian-Bruhat order.

2 Schubert Polynomials
We recall a few results from [5, 7–9]. Let u ∈ S∞ :=

⋃
n≥0 Sn be an infinite permutation where all but

a finite number of positive integers are fixed. Non-affine Schubert polynomials Su are indexed by such
permutations [19,20]. These polynomials form a homogenuous basis of the polynomial ring Z[x1, x2, . . .]
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in countably many variables. The coefficients cwu,v in SuSv =
∑
v c

w
u,vSw, are known to be positive.

As shown in example 6.2 of [5] (see also [9]), we can encode some of the coefficients above with a
quasisymmetric function as follows. Let `(w) be the length of a permutation w ∈ S∞. We define the
r-Bruhat order <r by its covers. Given permutations u,w ∈ S∞, we say that ulr w if `(u) + 1 = `(w)
and u−1w = (i, j), where (i, j) is a reflection with i ≤ r < j. When u lr w, we write wu−1 = (a, b)
with a < b and label the cover ulr w in the r-Bruhat order with the integer b.

We enumerate chains in the r-Bruhat order according to the descents in their sequence of labels of the
edges. More precisely, we use the descent Pieri operator

x.Hk :=
∑

ω

end(ω), (2.1)

where the sum is over all chains ω of length k in the r-Bruhat order starting at x ∈ S∞, ω : x
b1−→

x1
b2−→ · · · bk−→ xk =: end(ω) , with no descents, that is b1 ≤ b2 ≤ · · · ≤ bk. Let 〈·, ·〉 be the

bilinear form on ZS∞ induced by the Kronecker delta function on the elements of S∞. Given u ≤r w,
let n = `(w)− `(u) be the rank of the interval [u,w]r and let

K[u,w]r =
∑

α|=n
〈u.Hα1

...Hαk
, w〉Mα (2.2)

summing over all compositions α = (α1, . . . , αk) of n, where Mα is the monomial quasisymmetric
function indexed by α (see [1, 5]). Now, given a saturated chain ω in the interval [u,w]r with labels
b1, b2, . . . , bn, we let D(ω) = (d1, d2, . . . , ds) denote the unique composition of n such that bi > bi+1

exactly in position i ∈ {d1, d1 +d2, . . . , d1 +d2 + · · ·+ds−1}. The chain ω contributes to the coefficient
of Mα if and only if α ≤ D(ω) under refinement. We thus have

K[u,w]r =
∑

ω∈[u,w]r

FD(ω). (2.3)

where Fβ denotes the fundamental quasisymmetric function for a composition β.
The descent Pieri operators on this labelled poset are symmetric as Hm models the action of the Schur

polynomial hm(x1, . . . , xr) on the basis of Schubert classes (indexed by S∞) in the cohomology of the
flag manifold SL(n,C)/B. The quasisymmetric function K[u,w]r is then a symmetric function and we
can expand it in terms of Schur functions Sλ.

Proposition 2.1 ( [9])
K[u,w]r =

∑

λ

cwu,(λ,r) Sλ (2.4)

where cwu,(λ,r) is the coefficient of the Schubert polynomial Sw in the product Su · Sλ(x1, . . . , xr).

Geometry shows that these coefficients cwu,(λ,k) are non-negative. To our knowledge, the work in [3] is
the first combinatorial proof of this fact.
Let us recall the combinatorial analysis in [8] to study chains in the r-Bruhat order. By definition, a
saturated chain in [u,w]r of the form ω : u = u0

b1−→ u1
b2−→ · · · bn−→ un = w , is completely

characterized by the sequence of transpositions (a1, b1), (a2, b2), . . . (an, bn) where (ai, bi)ui−1 = ui.
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Let uab : ZS∞ −→ ZS∞ denote the operator such that uabu = (a b)u if u lr (a, b)u, and uabu = 0
otherwise. We have shown in [8] that these operators satisfy the following relations:

(1) ubcucduac ≡ ubduabubc, if a < b < c < d,
(2) uacucdubc ≡ ubcuabubd, if a < b < c < d,
(3) uabucd ≡ ucduab, if b < c or a < c < d < b,
(4) uacubd ≡ ubduac ≡ 0, if a ≤ b < c ≤ d,
(5) ubcuabubc ≡ uabubcuab ≡ 0, if a < b < c.

(2.5)

The 0 in relations (4) and (5) means that no chain in any r-Bruhat order can contain such a sequence of
transpositions. On the other hand, relations (1), (2) and (3) are complete and transitively connect any two
chains in a given interval [u,w]r. It is also important to notice that the relations are independent of r. This
is a fact noticed in [6]: a nonempty interval [u,w]r in the r-Bruhat order is isomorphic to a nonempty
interval [x, y]r′ in a r′-Bruhat order as long as wu−1 = yx−1. This implies several identities among the
structure constants.

When we write a sequence of operators uanbn · · ·ua2b2ua1b1 , if nonzero, it corresponds to a unique
chain in some nonempty interval [u,w]r for some r and w−1u = (an, bn) · · · (a1, b1). To compute the
quasisymmetric function K[u,w]r as in equation (2.3), it suffices to generate one chain in [u,w]r and we
can obtain the other ones using relations (1), (2) and (3) above.

Given any ζ ∈ S∞ we produce a chain in a nonempty interval [u,w]r as follows. Let up(ζ) = {a :
ζ−1(a) < a}. This is a finite set and we can set r = |up(ζ)|. To construct w, we sort the elements in
up(ζ) = {i1 < i2 < · · · < ir} and its complement upc(ζ) = Z>0 \ up(ζ) = {j1 < j2 < . . .}. Next, we
put w = [i1, i2, . . . , ir, j1, j2, . . .] ∈ S∞ and then we let u = ζ−1w. Notice that u,w and r constructed
this way depend on ζ. From [6,8], we have that [u,w]r is non-empty and now we want to construct a chain
in [u,w]r. This is done recursively as follows: let a1 = u(i1) where i1 = max{i ≤ r : u(i) < w(i)}
and b1 = u(j1) where j1 = min{j > r : u(j) > u(i1) ≥ w(j)} then uanbn · · ·ua2b2ua1b1 is a chain in
[u,w]r for any chain uanbn · · ·ua2b2 in [(a1, b1)u,w]r.

Example 2.2 Consider ζ = [3, 6, 2, 5, 4, 1, ...] where all other values are fixed. We have that up(ζ) =
{3, 5, 6} and upc(ζ) = {1, 2, 4, ...}. In this case, r = 3,w = [3, 5, 6, 1, 2, 4, ...] and u = [1, 4, 2, 6, 3, 5, ...].
The recursive procedure above produces the chain u23u12u45u26 in [u, v]3. We get all other chains by
using the relations (2.5): u23u12u45u26, u23u12u26u45, u23u45u12u26, u45u23u12u26, u45u13u36u23,
u13u45u36u23, u13u36u45u23, u13u36u23u45. The interval and the quasisymmetric function obtained
in this case is

142635

152634 143625 146235

153624 146325 246135 156234

156324 346125 256134

356124
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K[u,w]3 = F13 + 2F121 + 2F22 + F112

+ F31 + F211

= S31 + S22 + S211.
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Notice that the functionsK[u,w]r encode the nonzero connected components of the given interval under
the relations (2.5). In Section 5 we will show that the connected components of the chains for the r-
Bruhat order where r is arbitrary, embed as a connected component of the corresponding theory for the
0-grassmannian in the affine strong Bruhat graph governing the multiplication of dual k-Schur functions.

3 k-Schur Functions and affine Grassmannians.
The k-Schur functions were originally defined combinatorially in terms of k-atoms, and conjecturally
provide a positive decomposition of the Macdonald polynomials [16]. These functions have several defi-
nitions and it is conjectural that they are equivalent (see [15]). In this paper we will adopt the definition
given by the k-Pieri rule and k-tableaus (see [15,17]) since this gives us a relation with the homology and
cohomology of the affine grassmannians and therefore, we get positivity in their structure constants.

The affine symmetric group W is generated by reflections si for i ∈ {0, 1, . . . , k}, subject to the
relations: s2

i = 1; sisi+1si = si+1sisi+1; sisj = sjsi if i−j 6= ±1, where i−j and i+1 are understood
to be taken modulo k + 1. Let w ∈ W and denote its length by `(w), given by the minimal number of
generators needed to write a reduced expression for w. We letW0 denote the parabolic subgroup obtained
from W by removing the generator s0. This is naturally isomorphic to the symmetric group Sk+1. For
more details on affine symmetric group see [10].

Let u ∈W be an affine permutation. This permutation can be represented using window notation. That
is, u can be seen as a bijection from Z to Z, so that if ui is the image of the integer i under u, then it can
be seen as a sequence:

u = · · · |u−k · · · u−1 u0 |u1 u2 · · · uk+1|︸ ︷︷ ︸
main window

uk+2 uk+3 · · · u2k+2| · · ·

Moreover, u satisfies the property that ui+k+1 = ui + k + 1 for all i, and the sum of the entries in the
main window u1 + u2 + · · · + uk+1 =

(
k+2

2

)
. Notice that in view of the first property, u is completely

determined by the entries in the main window. In this notation, the generator u = si is the permutation
such that ui+m(k+1) = i + 1 + m(k + 1) and ui+1+m(k+1) = i + m(k + 1) for all m, and uj = j
for all other values. The multiplication uw of permutations u,w in W is the usual composition given by
(uw)i = uwi . In view of this, the parabolic subgroupW0 corresponds to the u ∈W such that the numbers
{1, 2, . . . , k + 1} appear in the main window. We will put ī = −i and by convention, we consider 0 to be
negative.

Now, let W 0 denote the set of minimal length coset representatives of W/W0. In this paper we take
right coset representatives, although left coset representatives could be taken also. The set of permutations
in W 0 are the affine grassmannian permutations of W , or 0-grassmannians for short.

In this paper, any k-Schur function S(k)
u will be indexed by some u ∈ W 0, although k-bounded parti-

tions or k + 1-cores could be used instead of elements in W 0. A permutation u ∈ W is 0-grassmannian
if the numbers 1, 2, . . . , k + 1 appear from left to right in the sequence u.

3.1 k-Schur functions.
Given u ∈ W , we say that u lw usi is a cover for the weak order if `(usi) = `(u) + 1 and we label
this cover by i. The weak order on W is the transitive closure of these covers. The Pieri rule for k-Schur
functions is described by certain chains in the weak order ofW restricted toW 0 (see [14,15,17]). On the
other hand, this same rule is satisfied by the Schubert grassmannian for the affine symmetric group [14].
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Here, we describe the Pieri rule as follows. A saturated chain ω of length m in the weak order with end
point end(ω), gives us a sequence of labels (i1, i2, . . . , im). We say that the sequence (i1, i2, . . . , im) is
cyclically increasing if i1, i2, . . . , im lies clockwise on a clock with hours 0, 1, . . . , k and min

{
j : 0 ≤

j ≤ k; j /∈ {i1, i2, . . . , im}
}

lies between im and i1. In particular we must have 1 ≤ m ≤ k. Now,
to express the Pieri rule, we first remark that for 1 ≤ m ≤ k, the homogeneous symmetric function
hm corresponds to the k-Schur S(k)

v(m) where v(m) is a 0-grassmannian whose main window is given by
|2 · · · m 0̄ m+ 1 · · · k k + 2|. Then,

S(k)
u hm :=

∑

ω cyclically increasing

S
(k)
end(ω), (3.1)

where ω has length exactly m.
Iterating equation (3.1) one can easily see that

hλ =
∑

u

Kλ,uS
(k)
u (3.2)

is a triangular relation [17]. One way to define k-Schur functions is to start with equation (3.1) as a rule,
and define them as follows. The k-Schur functions are the unique symmetric funtions S(k)

u obtained by
inverting the matrix [Kλ,u] from (3.2) above.

It is clear that we can define a Pieri operator like equation (2.1) using the notion of a cyclically increas-
ing chain. Using equation (2.2), this allows us to define a function K[u,w]w for any interval in the weak
order of W .

Example 3.1 Let k = 2 and u = |0̄ 2 4|. We consider the interval [u,w]w in the weak order where
w = |3̄ 4 5|. This interval is a single chain u = |0̄ 2 4| 1−→ |2 0̄ 4| 2−→ |2 4 0̄| 0−→ |3̄ 4 5| = w .
In this case, we have that 〈u.H1H1H1, w〉 = 〈u.H2H1, w〉 = 〈u.H1H2, w〉 = 1 are the only nonzero
entries in (2.2) and we get K[u,w]w = M111 +M21 +M12 = F12 + F21 − F111 = S21 − S111.

This small example shows some of the behavior of the (quasi)symmetric function K[u,w]w for the weak
order of W . In general, it is not F -positive nor Schur positive. Although, these functions contain some
information about the structure constants, it is not enough to fully understand them combinatorially, in
particular, these functions lack some of the properties needed to use the theory developed in [2]. These
functions were first defined in [5] in terms of the M -basis, but the definition given there in terms of the
F -basis is wrong. Later on, Postnikov rediscovered them in [22] with more combinatorics involved, even
though their combinatorial expansion in terms of Schur functions is still open.

3.2 Dual k-Schur functions.
Let Λ = Z[h1, h2, . . . ] be the Hopf algebra of symmetric functions (see [21]). The space of k-Schur
functions Λ(k) can be seen as a Hopf subalgebra of Λ spanned by Z[h1, h2, . . . , hk] where hi is the
homogeneous symmetric function of degree i. The space Λ is a self dual Hopf algebra where the Schur
functions Sλ form a self dual basis under the pairing 〈hλ,mµ〉 = δλ,µ where themλ denote the monomial
symmetric functions. Then, we have the inclusion Λ(k) ↪→ Λ, which turns into a projection Λ →→ Λ(k)

when passing to the dual space, where Λ(k) = Λ∗(k) is the graded dual of Λ(k). It can be checked that
the kernel of this projection is the linear span of {mλ : λ1 > k}, hence Λ(k) ∼= Λ

/
〈mλ : λ1 > k〉 .
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The graded dual basis to S(k)
u will be denoted here by S

(k)
u = S

(k)∗
u which are also known as the affine

Stanley symmetric functions. The multiplication of the dual k-Schur S(k)
u is described in terms of the

affine Bruhat graph.

4 Affine Bruhat Graph
Let ta,b be the transposition in W such that for all m ∈ Z, permutes a + m(k + 1) and b + m(k + 1)
where b− a ≤ k. The affine Bruhat order is given by its covering relation. Namely, for u ∈ W , we have
ul uta,b is a cover in the affine Bruhat order if `(uta,b) = `(u) + 1.

Proposition 4.1 (see [10]) For u ∈ W and b − a ≤ k, we have that u l uta,b is a cover in the Bruhat
order if and only if u(a) < u(b) and for all a < i < b we have u(i) < u(a) or u(i) > u(b).

The affine 0-Bruhat order l0 arises as a suborder of the Bruhat order. For u ∈W , a covering ul0uta,b
is encoded by transposition ta,b satisfying proposition 4.1 and also u(a) ≤ 0 < u(b). A transposition ta′,b′
satisfying the same conditions as ta,b gives the same affine Bruhat covering relation as long as a′ ≡ a,
b′ ≡ b modulo k+ 1. In view of this, we introduce a multigraph instead of a graph for the affine 0-Bruhat
order, since we want to keep track of the distinct a, b such that u l0 uta,b is an affine 0-Bruhat covering
for a given u.

We then define the following operators in a similar way to the ones defined in Section 2. For any b−a ≤
k+1, let tab : ZW −→ ZW be the operator on the right such that utab = uta,b if uluta,b and u(a) ≤
0 < u(b), and utab = 0 otherwise. Remark now that if utab 6= 0, then utab = uta′,b′ 6= 0 for only finitely
many values of m with a′ = a+m(k + 1) and b′ = b+m(k + 1).

The affine 0-Bruhat graph is the directed multigraph with vertices W and a labeled edge u b−→ utab
for every uta,b 6= 0. We denote by [u,w] the set of paths from u to w. Remark that all such paths will
have the same length, namely `(w)− `(u).

Example 4.2 We give below the interval [|6̄ 8 3 1̄ 4 13|, |8 6̄ 2̄ 9 13 1̄|] in the affine 0-Bruhat graph:

···8̄ 1|12 2 3̄ 7̄ 2̄ 7 |6̄ 8 3 1̄ 4 13|︸ ︷︷ ︸
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In this example we see that there are three arrows from u = |6̄ 8 3 1̄ 4 13| to w = |8 6̄ 3 1̄ 4 13|, given by
ut5̄4̄ = ut12 = ut78 = w and labeled 4̄, 2, 8, respectively. Also, we have that ut11 10 = 0. The shaded
area of the graph represents the embedding of the interval in Example 2.2 as explain in the next sections.

For u ∈ W 0 such that utab = w, we have that w ∈ W 0 (see [15, Prop. 2.6]). In view of this nice
behaviour we will restrict the affine 0-Bruhat graph to permutations in W 0.

4.1 Multiplication dual k-Schur.

For dual k-Schur functions S(k)
u , the analogue of the Pieri formula (3.1) is given by

S(k)
u hm :=

∑

uta1b1
···tambm

6=0

b1<b2<...<bm

S
(k)
uta1b1

···tambm
, (4.1)

where the sum is over all increasing paths b1 < b2 < · · · < bm starting at u [15].
Since the Pieri formula is encoded by increasing chains in the affine 0-Bruhat graph restricted to W 0,

we can define Pieri operators similar to equation (2.1) using increasing chains. This allows us to define
the functions K[u,w] for any interval in the affine 0-Bruhat graph restricted to W 0. In contrast with the
weak order, where we had cyclically increasing chains, any chain ω ∈ [u,w] has a well defined notion
of descent. More precisely, for ω = ta1b1ta2b2 · · · tambm we have D(ω) = (d1, d2, . . . , ds) denotes the
unique composition of n such that bi > bi+1 exactly in position i ∈ {d1, d1+d2, . . . , d1+d2+· · ·+ds−1}.
As in equation (2.3) we have

K[u,w] =
∑

ω∈[u,v]

FD(ω) (4.2)

and in this case K[u,w] is F -positive. Following [5], we have

Theorem 4.3
K[u,w] =

∑

λ

cwu,λ Sλ (4.3)

where cwu,λ is the coefficient of the dual k-Schur function S
(k)
w in the product S(k)

u · Sλ.

Example 4.4 Considering the interval [u,w] = [|6̄ 8 3 1̄ 4 13|, |8 6̄ 2̄ 9 13 1̄|] we have in example 4.2. The
total number of chains is 240. In this case K[u,w] = 9F1111 + 30F112 + 51F121 + 30F13 + 30F211 +
51F22 + 30F31 + 9F4 , is symmetric and the expansion in term of Schur functions is positive K[u,w] =
9S4 + 30S31 + 21S22 + 30S211 + 9S1111 . The reader is encouraged to use SAGE and see that the
coefficients are indeed the structure constants we claim in Theorem 4.3.

4.2 Relations of the operators tab.
The purpose of this section is to understand some of the relations satisfied by the tab operators restricted
to W 0, similar to the work done with Schubert polynomials in [3, 8]. The main theorem of this section
presents the needed relations among these operators.

These relations depend on the following data. For tab we need to consider a, b, a, b where a and b are
the residue modulo k+ 1 of a and b respectively. Remark that a 6= b since b−a < k+ 1. For u ∈W 0 we
have that, if non-zero, utab and utabtcd are both in W 0. The different relations satisfied by the operators
tab and tcd depend on the relation among a, b, c, d. We present some of them next.
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(A) tabtcd ≡ tcdtab if a, b, c, d are distinct.

(B1) tabtcd ≡ tcdtab ≡ 0 if (a < c < b < d) or (b = c and d− a > k + 1).

(B2) tabtcd ≡ 0 if (a = c and b ≤ d) or (b = d and c ≤ a).

There are more possible zeros than what we present in (B), but we will satisfy ourselves with these ones
for now. It will be more important to identify them in the second part of this work. Now if the numbers
a, b, c, d are not distinct, then we must have b = c or d = a. If b = c, then d− a ≤ k + 1 in view of (B).
Similarly if d = a then b− c ≤ k + 1.

(C1) tabtbd = tabtb−k−1,a if d− a = k + 1,

(C2) tabtbd and tbdtab if d− a < k + 1.

Now we look at the cases tabtcd where a, b, c, d are distinct but some equalities occur between a, b
and c, d. By symmetry of the relation we will assume that b < d which (excluding (B)) implies that
a < b < c < d.

(D) tabtcd = td−k−1,ctb−k−1,a if b = c, d = a and (b− a) + (d− c) = k + 1.

All the relations above are local. This means that if tabtcd = tc′d′ta′b′ , then |a′ − a|, |b′ − b|, |c′ − c|
and |d′−d| are strictly less than k+ 1. For example in (D) we have |b−k−1−a|, |a− b|, |d−k−1− c|
and |c− d| which are strictly less than k + 1.

We now consider some more relations of length three:

(E1) tbctcdtac ≡ tbdtabtbc if a < b < c < d,

(E2) tactcdtbc ≡ tbctabtbd if a < b < c < d.

also we have

(F) tbctabtbc ≡ tabtbctab ≡ 0 if a < b < c and c− a < k + 1.

Theorem 4.5 The relations (A)–(F) above describe relations between t-operators in the Strong Bruhat
graph. (The proof is done case by case.)

Remark 4.6 If we consider the permutation u we can derive more relations of length 2. Let r = (b −
a) + (d− c):

(X1) utabtcd = utd,c+rtb−r,a if r < k + 1, d = a, u(c) ≤ 0 and u(d) ≤ 0,

(X2) utabtcd = utcdtb−r,b if r < k + 1, d = a and u(d) > 0,

(X3) utabtcd = utd−r,dtab if r < k + 1, b = c and u(a+ r) ≤ 0,

(X4) utabtcd = utd−r,ctb,a+r if r < k + 1, b = c, u(b) > 0 and u(a+ r) > 0,

(X5) utabtcd = utcdta,b+c−d if b = d, b− a > d− c and u(d− b+ a) > 0,

(X6) utabtcd = utc,d−b+ata,b if b = d, b− a < d− c and u(a) ≤ 0.

In the (X) relations, the conditions we impose on u are minimal to assure that both sides of the equality
are non-zero. These conditions are not given by the definition of the operators tab. For example in (X1),
the left hand side is non-zero regardless of the value of u(d) but to guarantee that the right hand side is
non-zero, we must have u(d) ≤ 0. This shows that as operators tabtcd 6= td,c+rtb−r,a.
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5 Schubert vs Schur Imbedded Inside Dual k-Schur
When comparing the relations (2.5) and the ones given in Section 4.2 we see that it may be possible to
find a homomorphism from the Schubert vs Schur operators uab to the Dual k-Schur operators ta′b′ . Such
a homomorphism vanishes on many chains and this is the expected behavior.

Example 5.1 If we compare Example 2.2 and Example 4.2, the map uab 7→ ta−3,b−3 is a homomorphism
that preserves all the chains from the first interval to the second one.

Now, given a non-empty interval [x, y]r in the r-Bruhat order, we want to find integers k, s and an
explicit interval [u, v] in the strong 0-Bruhat graph such that the homomorphism uab 7→ ta−s,b−s maps
the non-zero chains of [x, y]r to non-zero chains of [u, v]. In fact, we only need to assume that we have a
non-zero operator uanbn · · ·ua1b1 and obtain the other ones using the corresponding relations. Then, the
interval [x, y]r is isomorphic to the one described in Section 2.
For this purpose, let ζ = (an, bn) · · · (a1, b1), up(ζ) = {i1 < i2 < · · · < ir} and upc(ζ) = {j1 < j2 <
· · · }, then r = |up(ζ)|. As in Section 2 we have that [x, y]r is nonempty for y = [i1, i2, . . . , ir, j1, j2, . . .]
and x = ζ−1y.

Let k be such that α = x(α) = y(α) for all α > k + 1. Such a k exists since x and y have finitely
many non-fixed points. Put xα = x(α) and take the permutation [x1, x2, . . . , xk+1]. Now, we consider
the positions α1 < · · · < α` < r < β1 < · · · < βt < k + 1 for which there are descents before and after
r. In other words, where xαi

> xαi+1
and xβj

> xβj+1
for 1 ≤ i ≤ ` − 1 and 1 ≤ j ≤ t − 1. This

defines segments 1, 2, . . . , α1; · · · α`+1, . . . , r; r+1, . . . , β1; · · · βt+1, . . . , k+1.We want
to construct a 0-grassmannian in the k + 1-affine permutation group W with this information such that
in some adjacent k + 1 positions we have a permutation that has the same patterns as x−1. The reason
we want to look at the inverse permutation x−1 is because the u operators act on the left whereas the t
operators act on the right.
For this purpose, we first place the values 1, 2, . . . , k + 1 on the Z-axis as follows.

1, 2, . . . , k − βt + 1 in positions xβt+1 − t(k+1), . . . , xk+1 − t(k+1)
· · ·

k − β1 + 2, . . . , k − r + 1 in positions xr+1, . . . , xβ1

k − r + 2, . . . , k − α` + 1 in positions xα`+1 + (k+1), . . . , xr + (k+1)
· · ·

k − α1 + 2, . . . , k + 1 in positions x1 + (`+1)(k+1), . . . , xα1 + (`+1)(k+1)

This construction places the values 1, 2, . . . , k + 1 on the Z-axis from left to right in distinct positions
modulo k + 1. We build a permutation u′ of Z defining it with the relation u′i+m(k+1) = u′i +m(k + 1).

This may not be a permutation in W as the sum u′1 + u′2 + · · · + u′k+1 may not be
(
k+2

2

)
, but a simple

shift gives us the desired result, as shown in the next lemma (proof ommited) which will be followed by
an example to make this construction clearer.

Lemma 5.2 Any permutation u′ of Z such that u′i+m(k+1) = u′i+m(k+1) and the values 1, 2, . . . , k+1

are in distinct positions modulo k + 1 satisfies u′1 + u′2 + · · ·+ u′k+1 =
(
k+2

2

)
− s(k + 1) for some s.

Notice that each time we shift the values of u′ by 1, like vi = u′i+1 we get that v1 + v2 + · · ·+ vk+1 =

u′1 + u′2 + · · ·u′k+1 + (k + 1) =
(
k+2

2

)
+ (1 − s)(k + 1). Hence, if u′ is as above and if the entries
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1, 2, . . . , k + 1 appear from left to right in u′, then by defining the permutation u by ui = u′i+s, we get a
0-affine permutation in W 0.

Example 5.3 Let us take the permutation from Example 2.2. Let ζ = [3, 6, 2, 5, 4, 1, ...] where all other
values are fixed. We can choose k + 1 = 6. We have that up(ζ) = {3, 5, 6} and upc(ζ) = {1, 2, 4, ...}.
In this case, r = 3, y = [3, 5, 6, 1, 2, 4, ...] and x = [1, 4, 2, 6, 3, 5, ...]. The descents in the permutation x
are in positions α = 2 and β = 4 so that ` = t = 1 and α < r < β. With the procedure above, we get
1 = u′(x5−6) = u′(−3), 2 = u′(x6−6) = u′(−1); 3 = u′(x4) = u′(6); 4 = u′(x3 +6) = u′(8); 5 =
u′(x1 + 12) = u′(13), 6 = u′(x2 + 12) = u′(16). Once we determine the values in the positions above,
all other values of u′ are determined as follows

u′ = · · · |13 8̄ 1 12 2 3̄ |7̄ 2̄ 7 6̄ 8 3|︸ ︷︷ ︸
main

1̄ 4 13 0̄ 14 9|5 10 19 6 20| · · ·

the sum of the entries in the main window of u′ is 3 =
(

7
2

)
− 3(6), hence s = 3. We see that the entries of

u′ in the main window [7̄ 2̄ 7 6̄ 8 3] are in the same relative order as x−1 = [1 3 5 2 6 4]. We also see that
the smallest r = 3 entries of the main window of u′ are ≤ 0 and the remaining ones are positive. Now we
get u by shifting the positions of u′ by s:

u = · · · 13 8̄ 1|12 2 3̄ 7̄ 2̄ 7 |6̄ 8 3 1̄ 4 13|︸ ︷︷ ︸
main

0̄ 14 9 5 10 19|6 20 · · ·

We remark that by construction, the entries [u1−s, u2−s, . . . , uk+1−s] are the same as [u′1, u
′
2, . . . , u

′
k+1]

which in turn are in the same relative order as in x−1. Therefore, from the previous paragraph we see that
the smallest r entries in [u1−s′ , u2−s′ , . . . , uk+1−s′ ] are ≤ 0 and the other entries in that window are pos-
itive. This implies that if x is covered by a non-zero permutation given by uabx where x−1

a ≤ r < x−1
b ,

then we have uta−s,b−s is a cover in the 0-Bruhat graph. Recursively, we get that

Theorem 5.4 Let [x, y]r be a non-empty interval [x, y]r in the r-Bruhat order and let u and s be as above.
For any maximal chain uanbn · · ·ua1b1 in the interval [x, y]r we have that the chain ta1−s,b1−s · · · tan−s,bn−s
is a non-zero maximal chain in the 0-affine Bruhat graph in [u, uta1−s,b1−s · · · tan−s,bn−s].

This theorem shows our main claim, namely the fact that the Schubert vs Schur problem is imbedded in
the dual k-Schur problem. In the second part of our program [4] we will construct dual Knuth operators on
the intervals [u,w]. Under the morphism above, connected components of certain dual equivalent graphs
obtained in [3] are mapped to connected components of the dual equivalent graph of [u,w]. This shows
in a stronger sense the imbedding above and explains the difficulty of the two problems. This allows us to
conclude that solving the dual k-Schur problem is harder than the problem of Schubert vs Schur.
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Gog, Magog and Schützenberger II: left
trapezoids

Philippe Biane, Hayat Cheballah
Institut Gaspard-Monge, université Paris-Est Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454,
Marne-la-Vallée cedex 2, France

Abstract. We are interested in finding an explicit bijection between two families of combinatorial objects: Gog
and Magog triangles. These two families are particular classes of Gelfand-Tsetlin triangles and are respectively in
bijection with alternating sign matrices (ASM) and totally symmetric self complementary plane partitions (TSSCPP).
For this purpose, we introduce left Gog and GOGAm trapezoids. We conjecture that these two families of trapezoids
are equienumerated and we give an explicit bijection between the trapezoids with one or two diagonals.

Résumé. Nous nous intéressons ici à trouver une bijection explicite entre deux familles d’objets combinatoires: les
triangles Gog et Magog. Ces deux familles d’objets sont des classes particulières des triangles de Gelfand-Tsetlin
et sont respectivement en bijection avec les matrices à signes alternants (ASMs) et les partitions planes totalement
symétriques auto-complémentaires (TSSCPPs). Pour ce faire, nous introduisons les Gog et les GOGAm trapèzes
gauches. Nous conjecturons que ces deux familles de trapèzes sont équipotents et nous donnons une bijection explicite
entre ces trapèzes à une et deux lignes.

Keywords: Gog, Magog triangles and trapezoids, Schützenberger Involution, alternating sign matrices, totally sym-
metric self complementary plane partitions

1 Introduction
This paper is a sequel to [1], to which we refer for more on the background of the Gog-Magog problem
(see also [2] and [3] for a thorough discussion). It is a well known open problem in bijective combi-
natorics to find a bijection between alternating sign matrices and totally symmetric self complementary
plane partitions. One can reformulate the problem using so-called Gog and Magog triangles, which are
particular species of Gelfand-Tsetlin triangles. In particular, Gog triangles are in simple bijection with
alternating sign matrices of the same size, while Magog triangles are in bijection with totally symmetric
self complementary plane partitions. In [4], Mills, Robbins and Rumsey introduced trapezoids in this
problem by cutting out k diagonals on the right (with the conventions used in the present paper) of a
triangle of size n, and conjectured that Gog and Magog trapezoids of the same size are equienumerated.
Zeilberger [7] proved this conjecture, but no explicit bijection is known, except for k = 1 (which is a
relatively easy problem) and for k = 2, this bijection being the main result of [1]. In this last paper a new
class of triangles and trapezoids was introduced, called GOGAm triangles (or trapezoids), which are in
bijection with the Magog triangles by the Schützenberger involution acting on Gelfand-Tsetlin triangles.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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In this paper we introduce a new class of trapezoids by cutting diagonals of Gog and GOGAm triangles
on the left instead of the right. We conjecture that the left Gog and GOGAm trapezoids of the same shape
are equienumerated, and give a bijective proof of this for trapezoids composed of one or two diagonals.
Furthermore we show that our bijection is compatible with the previous bijection between right trapezoids.
It turns out that the bijection we obtain for left trapezoids is much simpler than the one of [1] for right
trapezoids.Finally we can also consider rectangles (intersections of left and right trapezoids). For such
rectangles we also conjecture that Gog and GOGAm are equienumerated.

Our results are presented in this paper as follows. In section 2 we give some elementary definitions
about Gelfand-Tsetlin triangles, Gog and GOGAm triangles, and then define left and right Gog and
GOGAm trapezoids and describe their minimal completion. Section 3 is devoted to the formulation of a
conjecture on the existence of a bijection between Gog and GOGAm trapezoids of the same size. We end
this paper by section 4 where we give a bijection between (n, 2) left Gog and GOGAm trapezoids and we
show how its work on an example. Finally, we consider another combinatorial object; rectangles.

2 Basic definitions
We start by giving definitions of our main objects of study. We refer to [1] for more details.

2.1 Gelfand-Tsetlin triangles
Definition 2.1 A Gelfand-Tsetlin triangle of size n is a triangular array X = (Xi,j)n>i>j>1 of positive
integers

Xn,1 Xn,2 · · · · · · Xn,n−1 Xn,n

Xn−1,1 Xn−1,2 · · · . .
.

Xn−1,n−1
. . . . .

.
. .
.

. . . . .
.

. .
.

X2,1 X2,2

X1,1

(1)

such that
Xi+1,j 6 Xi,j 6 Xi+1,j+1 for n− 1 > i > j > 1. (2)

The set of all Gelfand-Tsetlin triangles of size n is a poset for the order such that X 6 Y if and
only if Xij 6 Yij for all i, j. It is also a lattice for this order, the infimum and supremum being taken
entrywise: max(X,Y )ij = max(Xij , Yij).

2.2 Gog triangles and trapezoids
Definition 2.2 A Gog triangle of size n is a Gelfand-Tsetlin triangle such that

1. its rows are strictly increasing;

Xi,j < Xi,j+1, j < i 6 n− 1 (3)
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2. and such that
Xn,j = j, 1 6 j 6 n. (4)

Here is an example of Gog triangle of size n = 5.

1 2 3 4 5

1 3 4 5

1 4 5

2 4

3

(5)

It is immediate to check that the set of Gog triangles of size n is a sublattice of the Gelfand-Tsetlin
triangles.

Definition 2.3 A (n, k) right Gog trapezoid (for k 6 n) is an array of positive integersX = (Xi,j)n>i>j>1;i−j6k−1
formed from the k rightmost SW-NE diagonals of some Gog triangle of size n.

Below is a (5, 2) right Gog trapezoid.

4 5

4 5

3 4

1 3

2

(6)

Definition 2.4 A (n, k) left Gog trapezoid (for k 6 n) is an array of positive integersX = (Xi,j)n>i>j>1;k>j
formed from the k leftmost NW-SE diagonals of a Gog triangle of size n.

A more direct way of checking that a left Gelfand-Tsetlin trapezoid is a left Gog trapezoid is to verify that
its rows are strictly increasing and that its SW-NE diagonals are bounded by 1, 2, . . . , n as it is shown in
the figure below which represents a (5, 2) left Gog trapezoid.

1 2

1 3

2 3

2 4

4

6
1

6
2

6
3

6
4

6
5

(7)
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There is a simple involution X → X̃ on Gog triangles given by

X̃i,j = n+ 1−Xi,i+1−j (8)

which exchanges left and right trapezoids of the same size. This involution corresponds to a vertical
symmetry of associated ASMs.

2.2.1 Minimal completion
Since the set of Gog triangles is a lattice, given a left (resp. a right) Gog trapezoid, there exists a smallest
Gog triangle from which it can be extracted. We call this Gog triangle the canonical completion of the left
(resp. the right) Gog trapezoid. Their explicit value is computed in the next Proposition.

Proposition 2.5

1. Let X be a (n, k) right Gog trapezoid, then its canonical completion satisfies

Xij = j for i > j + k. (9)

2. Let X be a (n, k) left Gog trapezoid, then its canonical completion satisfies

Xi,j = max(Xi,k + j − k,Xi−1,k + j − k − 1, . . . , Xi−j+k,k) for j > k. (10)

Proof: The first case (right trapezoids) is trivial, the formula for the second case (left trapezoids) is easily
proved by induction on j − k. 2

For example, the completion of the (5, 2) left Gog trapezoid in (7)

1 2 3 4 5

1 3 4 5

2 3 4

2 4

4

(11)

Remark that the supplementary entries of the canonical completion of a left Gog trapezoid depend only
on its rightmost NW-SE diagonal.

The right trapezoids defined above coincide (modulo easy reindexations) with those of Mills, Robbins,
Rumsey [4], and Zeilberger [7]. They are in obvious bijection with the ones in [1] (actually the Gog
trapezoids of [1] are the canonical completions of the right Gog trapezoids defined above).

2.3 GOGAm triangles and trapezoids
Definition 2.6 A GOGAm triangle of size n is a Gelfand-Tsetlin triangle such that Xnn 6 n and, for
all 1 6 k 6 n− 1, and all n = j0 > j1 > j2 . . . > jn−k > 1, one has

(
n−k−1∑

i=0

Xji+i,ji −Xji+1+i,ji+1

)
+Xjn−k+n−k,jn−k

6 k (12)
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It is shown in [1] that GOGAm triangles are exactly the Gelfand-Tsetlin triangles obtained by applying
the Schützenberger involution to Magog triangles. It follows that the problem of finding an explicit bi-
jection between Gog and Magog triangles can be reduced to that of finding an explicit bijection between
Gog and GOGAm triangles. In the sequel, Magog triangles will not be considered anymore.

Definition 2.7 A (n, k) right GOGAm trapezoid (for k 6 n) is an array of positive integers
X = (xi,j)n>i>j>1;i−j6k−1 formed from the k rightmost SW-NE diagonals of a GOGAm triangle of size
n.

Below is a (5, 2) right GOGAm trapezoid.

2 4

2 4

2 4

1 4

3

(13)

Definition 2.8 A (n, k) left GOGAm trapezoid (for k 6 n) is an array of positive integers
X = (xi,j)n>i>j>1;k>j formed from the k leftmost NW-SE diagonals of a GOGAm trapezoid of size n.

Below is a (5, 2) left GOGAm trapezoid.

1 1

1 2

1 2

2 3

3

(14)

2.3.1 Minimal completion
The set of GOGAm triangles is not a sublattice of the Gelfand-Tsetlin triangles, nevertheless, given a right
(resp. a left) GOGAm trapezoid, we shall see that there exists a smallest GOGAm triangle which extends
it. We call this GOGAm triangle the canonical completion of the left (resp. the right) GOGAm trapezoid.

Proposition 2.9

1. Let X be a (n, k) right GOGAm trapezoid, then its canonical completion is given by

Xij = 1 for n > i > j + k. (15)
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2. Let X be a (n, k) left GOGAm trapezoid, then its canonical completion is given by

Xi,j = Xi−j+k,k for n > i > j > k (16)

in other words, the added entries are constant on SW-NE diagonals

Proof: In both cases, the completion above is the smallest Gelfand-Tsetlin triangle containing the trape-
zoid, therefore it is enough to check that if X is a (n, k) right or left GOGAm trapezoid, then its com-
pletion, as indicated in the proposition 2.9, is a GOGAm triangle. The claim follows from the following
lemma.

Lemma 2.10 Let X be a GOGAm triangle.

i) The triangle obtained fromX by replacing the entries on the upper left triangle (Xij , n > i > j+k)
by 1 is a GOGAm triangle.

ii) Let n > m > k > 1. If X is constant on each partial SW-NE diagonal (Xi+l,k+l;n − i > l > 0)
for i > m+1 then the triangle obtained fromX by replacing the entries (Xm+l,k+l;n−m > l > 1)
by Xm,k is a GOGAm triangle.

Proof: It is easily seen that the above replacements give a Gelfand-Tsetlin triangle. Both proofs then
follow by inspection of the formula (12), which shows that, upon making the above replacements, the
quantity on the left cannot increase. 2

End of proof of Proposition 2.9. The case of right GOGAm triangles is dealt with by part i) of the pre-
ceding Lemma. The case of left trapezoids follows by replacing successively the SW-NE partial diagonals
as in part ii) of the Lemma. 2

For example, the completion of the (5, 2) left GOGAm trapezoid in (14) is as follows.

1 1 2 2 3

1 2 2 3

1 2 3

2 3

3

(17)

3 Results and conjectures
Theorem 3.1 (Zeilberger [7]) For all k 6 n, the (n, k) right Gog and GOGAm trapezoids are equienu-
merated

Actually Zeilberger proves this theorem for Gog and Magog trapezoids, but composing by the Schützenberger
involution yields the above result. In [1] a bijective proof is given for (n, 1) and (n, 2) right trapezoids.

Conjecture 3.2 For all k 6 n, the (n, k) left Gog and GOGAm trapezoids are equienumerated.
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In the next section we will give a bijective proof of this conjecture for (n, 1) and (n, 2) trapezoids.
Remark that the right and left Gog trapezoids of shape (n, k) are equienumerated (in fact a simple

bijection between them was given above).
If we consider left GOGAm trapezoids as GOGAm triangles, using the canonical completion, then we

can take their image by the Schützenberger involution and obtain a subset of the Magog triangles, for
each (n, k). It seems however that this subset does not have a simple direct characterization. This shows
that GOGAm triangles and trapezoids are a useful tool in the bijection problem between Gog and Magog
triangles.

4 Bijections between Gog and GOGAm left trapezoids
4.1 (n, 1) left trapezoids
The sets of (n, 1) left Gog trapezoids and of (n, 1) left GOGAm trapezoids coincide with the set of
sequences Xn,1, . . . , X1,1 satisfying Xj,1 6 n − j + 1 (note that these sets are counted by Catalan
numbers). Therefore the identity map provides a trivial bijection between these two sets.

4.2 (n, 2) left trapezoids
In order to treat the (n, 2) left trapezoids we will recall some definitions from [1].

4.2.1 Inversions
Definition 4.1 An inversion in a Gelfand-Tsetlin triangle is a pair (i, j) such that Xi,j = Xi+1,j .

For example, the Gog triangle in (18) contains three inversions, (2, 2), (3, 1), (4, 1), the respective
equalities being in red on this picture.

1 2 3 4 5

1 3 4 5

1 4 5

2 4

3

(18)

Definition 4.2 Let X = (Xi,j)n>i>j>1 be a Gog triangle and let (i, j) be such that 1 6 j 6 i 6 n.
An inversion (k, l) covers (i, j) if i = k + p and j = l + p for some p with 1 6 p 6 n− k.

The entries (i, j) covered by an inversion are depicted with ” + ” on the following picture.

◦ + + ◦ +

◦ + ◦ +

◦ ◦ +

◦ ◦
◦

(19)
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4.2.2 Standard procedure
The basic idea for our bijection is that for any inversion in the Gog triangle we should subtract 1 to the
entries covered by this inversion, scanning the inversions along the successive NW-SE diagonals, starting
from the rightmost diagonal, and scanning each diagonals from NW to SE. We call this the standard
procedure. This procedure does not always yield a Gelfand-Tsetlin triangle, but one can check that it does
so if one starts from a Gog triangle corresponding to a permutation matrix in the correspondance between
alternating sign matrices and Gog triangles. Actually the triangle obtained is also a GOGAm triangle.

Although we will not use it below, it is informative to make the following remark.

Proposition 4.3 Let X be the canonical completion of a left (n, k) Gog trapezoid. The triangle Y ob-
tained by applying the standard procedure to the n−k+1 rightmost NW-SE diagonals ofX is a Gelfand-
Tsetlin triangle such that Yi+l,k+l = Xi,k for n− i > l > 1.

Proof: The Proposition is proved easily by induction on the number n− k + 1. 2

For example, applied to the (5, 2) left Gog trapezoid in (7), this yields

1 2 3 3 4

1 3 3 4

2 3 4

2 4

4

(20)

Like in [1] the bijection between left Gog and GOGAm trapezoids will be obtained by a modification
of the Standard Procedure.

4.2.3 Characterization of (n, 2) GOGAm trapezoids
The family of inequalities (12) simplifies in the case of (n, 2) GOGAm trapezoids, indeed if we identify
such a trapezoid with its canonical completion, then most of the terms in the left hand side are zero, so
that these inequalities reduce to

Xi,2 6 n− i+ 2 (21)
Xi,2 −Xi−1,1 +Xi,1 6 n− i+ 1 (22)

Remark that, since −Xi−1,1 +Xi,1 6 0, the inequality (22) follows from (21) unless Xi−1,1 = Xi,1.

4.2.4 From Gog to GOGAm
Let X be a (n, 2) left Gog trapezoid. We shall construct a (n, 2) left GOGAm trapezoid Y by scanning
the inversions in the leftmost NW-SE diagonal of X , starting from NW. Let us denote by n > i1 > . . . >
ik > 1 these inversions, so that Xi,1 = Xi+1,1 if and only if i ∈ {i1, . . . , ik}. We also put i0 = n. We
will construct a sequence of (n, 2) left Gelfand-Tsetlin trapezoids X = Y (0), Y (1), Y (2), . . . , Y (k) = Y .
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Let us assume that we have constructed the trapezoids up to Y (l), that Y (l) 6 X , that Y (l)
ij = Xij

for i 6 il, and that inequalities (21) and (22) are satisfied by Y (l) for i > il+1. This is the case for l = 0.

Let m be the largest integer such that Y (l)
m,2 = Y

(l)
il+1+1,2. We put

Y
(l+1)
i,1 = Y

(l)
i,1 for n > i > m and il+1 > i

Y
(l+1)
i,1 = Y

(l)
i+1,1 for m− 1 > i > il+1

Y
(l+1)
i,2 = Y

(l)
i,2 for n > i > m+ 1 and il+1 > i

Y
(l+1)
i,2 = Y

(l)
i,2 − 1 for m > i > il+1 + 1.

From the definition of m, and the fact that X is a Gog trapezoid, we see that this new triangle is a
Gelfand-Tsetlin triangle, that Y (l+1) 6 X , and that Y (l+1)

ij = Xij for i 6 il+1. Let us now check that the
trapezoid Y (l+1) satisfies the inequalities (21) and (22) for i > il+1 + 1. The first series of inequalities,
for i > il+1+1, follow from the fact that Y (l) 6 X . For the second series, they are satisfied for i > m+1
since this is the case for Y (l). For m > i > il+1 + 1, observe that

Y
(l+1)
i,2 − Y (l+1)

i+1,1 + Y
(l+1)
i+1,1 6 Y

(l+1)
i,2 = Y

(l+1)
m,2 = Y

(k)
m,2 − 1 6 n−m+ 1

by (21) for Y (l), from which (22) follows.
This proves that Y (l+1) again satisfies the induction hypothesis. Finally Y = Y (k) is a GOGAm

triangle: indeed inequalities (21) follow again from Y (l+1) 6 X , and (22) for i 6 ik follow from the fact
that there are no inversions in this range. It follows that the above algorithm provides a map from (n, 2)
left Gog trapezoids to (n, 2) left GOGAm trapezoids.Observe that the number of inversions in the leftmost
diagonal of Y is the same as for X , but the positions of these inversions are not the same in general.

4.2.5 Inverse map
We now describe the inverse map, from GOGAm left trapezoids to Gog left trapezoids.

We start from an (n, 2) GOGAm left trapezoid Y , and construct a sequence
Y = Y (k), Y (k−1), Y (k−2), . . . , Y (0) = X of intermediate Gelfand-Tsetlin trapezoids.
Let n − 1 > ι1 > ι2 . . . > ιk > 1 be the inversions of the leftmost diagonal of Y , and let ιk+1 = 0.
Assume that Y (l) has been constructed and that Y (l)

ij = Yij for i− j > ιl+1. This is the case for l = k.

Let p be the smallest integer such that Y (l)
il+1,2 = Y

(l)
p,2 . We put

Y
(l−1)
i,1 = Y

(l)
i,1 for n > i > ιl + 1 and p > i

Y
(l−1)
i,1 = Y

(l)
i−1,1 for ιl > i > p

Y
(l−1)
i,2 = Y

(l)
i,2 for n > i > ιl + 2 and p− 1 > i

Y
(l−1)
i,2 = X

(l)
i,2 − 1 for ιl + 1 > i > p.

It is immediate to check that ifX is an (n, 2) left Gog trapezoid, and Y is its image by the first algorithm
then the above algorithm applied to Y yields X back, actually the sequence Y (l) is the same. Therefore
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in order to prove the bijection we only need to show that if Y is a (n, 2) left GOGAm trapezoid then the
algorithm is well defined and X is a Gog left trapezoid. This is a bit cumbersome, but not difficult, and
very similar to the opposite case, so we leave this task to the reader.

4.2.6 A statistic

Observe that in our bijection the value of the bottom entry X1,1 is unchanged when we go from Gog to
GOGAm trapezoids. The same was true of the bijection in [1] for right trapezoids. Actually we make the
following conjecture, which extends Conjecture 3.2 above.

Conjecture 4.4 For each n, k, l the (n, k) left Gog and GOGAm trapezoids with bottom entry X1,1 = l
are equienumerated.

4.3 An example

In this section we work out an example of the algorithm from the Gog trapezoid X to the GOGAm
trapezoid Y by showing the successive trapezoids Y (k). At each step we indicate the inversion in green,
as well as the entry covered by this inversion in shaded green, and the values of the parameters il, p. The
algorithm also runs backwards to yield the GOGAm→Gog bijection.

1

1

1

2

3

3

3

2

2

4

4

4

4

X = Y (0)

i1 = 6

m = 7

1

1

1

2

3

3

3

1

2

4

4

4

4

Y (2)

i2 = 5

m = 6
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1

1

1

2

3

3

3

1

1

4

4

4

4

Y (2)

i3 = 2

m = 5

1

1

1

1

2

3

3

1

1

3

3

3

4

Y (3)

i4 = 1

m = 2

1

1

1

1

2

3

3

1

1

3

3

3

3

Y (4) = Y

4.4 Rectangles
Definition 4.5 For (n, k, l) satisfying k + l 6 n + 1, a (n, k, l) Gog rectangle is an array of positive
integers X = (xi,j)n>i>j>1;k>j;j+l>i+1 formed from the intersection of the k leftmost NW-SE diagonals
and the l rightmost SW-NE diagonals of a Gog triangle of size n.

Definition 4.6 For (n, k, l) satisfying k+ l 6 n+1, a (n, k, l) GOGAm rectangle is an array of positive
integers X = (xi,j)n>i>j>1;k>j;j+l>i+1 formed from the intersection of the k leftmost NW-SE diagonals
and the l rightmost SW-NE diagonals of a GOGAm triangle of size n.

Similarly to the case of trapezoids, one can check that a (n, k, l) Gog (resp. GOGAm) rectangle has a
canonical (i.e. minimal) completion as a (n, k) left trapezoid, or as a (n, l) right trapezoid, and finally as
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a triangle of size n.

Conjecture 4.7 For any (n, k, l) satisfying k + l 6 n + 1 the (n, k, l) Gog and GOGAm rectangles are
equienumerated.

As in the case of trapezoids, there is also a refined version of the conjecture with the statistic X11

preserved.
One can check, using standard completions, that our bijections, in [1] and in the present paper, restrict

to bijections for rectangles of size (n, k, 2) or (n, 2, l). Furthermore, in the case of (n, 2, 2) rectangles,
the bijections coming from left and right trapezoids are the same.
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Abstract. Just as the power series of log(1+X) is the analytical substitutional inverse of the series of exp(X)−1, the
(virtual) combinatorial species, Lg(1 +X), is the combinatorial substitutional inverse of the combinatorial species,
E(X) − 1, of non-empty finite sets. This combinatorial logarithm, Lg(1 +X), has been introduced by A. Joyal in
1986 by making use of an iterative scheme. Given a species F (X) (with F (0) = 1), one of its main applications
is to express the species, F c(X), of connected F -structures through the formula F c = Lg(F ) = Lg(1 + F+) where
F+ denotes the species of non-empty F -structures. Since its creation, equivalent descriptions of the combinatorial
logarithm have been given by other combinatorialists (G. L., I. Gessel, J. Li), but its exact decomposition into irre-
ducible components (molecular expansion) remained unclear. The main goal of the present work is to fill this gap by
computing explicitly the molecular expansion of the combinatorial logarithm and of−Lg(1−X), a “ cousin ” of the
tensorial species, Lie(X), of free Lie algebras.

Résumé. Tout comme la série de puissances de log(1 + X) est l’inverse substitutionnel analytique de la série de
exp(X) − 1, l’espèce de structures (virtuelle) Lg(1 + X), est l’inverse substitutionnel combinatoire de l’espèce,
E(X)−1, des ensembles finis non vides. Ce logarithme combinatoire, Lg(1+X), a été introduit par A. Joyal en 1986
en faisant appel à un schéma itératif. Étant donnée une espèce F (X) (telle que F (0) = 1), l’une de ses principales
applications est d’exprimer l’espèce, F c(X), des F -structures connexes par la formule F c = Lg(F ) = Lg(1 + F+)

où F+ désigne l’espèce des F -structures non vides. Depuis sa création, des descriptions équivalentes du logarithme
combinatoire ont été formulées par d’autres combinatoriciens (G. L., I, Gessel, J. Li), mais sa décomposition exacte
en composantes irréductibles (développement moléculaire) est demeurée obscure. Le but principal du présent travail
est de combler cette lacune en calculant explicitement le développement moléculaire du logarithme combinatoire et
de −Lg(1−X), un “ cousin ” de l’espèce tensorielle, Lie(X), des algèbres de Lie libres.

Keywords: combinatorial species, combinatorial logarithm, molecular expansion, generating functions

1 Introduction
1.1 Counting connected structures
Since simple graphs are assemblies of connected simple graphs, it is well known that the exponential
generating series, G(x), which counts simple graphs, satisfies G(x) = exp(Gc(x)), where Gc(x) is the
exponential generating series of connected simple graphs. Now, taking the (analytical) logarithm of both

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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sides of this equation gives,

Gc(x) = log(G(x)) = log
∑

n≥0

2n(n−1)/2xn/n!, (1.1)

from which connected simple graphs can be counted exactly, recursively or asymptotically. More gener-
ally, the analogous formula,

F c(x) = log(F (x)), (1.2)

holds for the exponential generating series of any species of structures, F and F c, for which F -structures
are assemblies of F c-structures. That is, for which the combinatorial equation,

F (X) = E ◦ F c(X), (1.3)

holds, where ◦ denotes the substitution of species, E is the species of finite sets (E stands for ensembles,
in French) and X is the species of singletons (that is, one-element sets). Taking the cycle index series of
both members of (1.3) yields, ZF = ZE ◦ZF c , where ◦ now denotes the classical plethystic substitution.
Since ZE = exp

∑
1
kpk, this can be written explicitly as(i)

ZF (p1, p2, p3, . . . ) = exp
∑

k≥1

1

k
ZF c(pk, p2k, p3k, · · · ). (1.4)

Taking the logarithm of both sides of (1.4) and using Möbius inversion gives (see [BLL98]) the following
refinement of (1.2),

ZF c(p1, p2, p3, . . . ) =
∑

k≥1

µ(k)

k
logZF (pk, p2k, p3k, · · · ), (1.5)

where µ denotes the classical Möbius function. As a consequence, the (ordinary) generating series, F̃ c(x),
which counts unlabeled F c-structures is obtained via the substitutions, pi := xi, i = 1, 2, . . . , in (1.5).
All of this is classical in Pólya theory in the context of combinatorial species. For an introduction to
species, the reader can consult the basic paper of A. Joyal [Joy81] or the book [BLL98] by Bergeron,
Labelle, and Leroux.

1.2 Solving the combinatorial equation F = E ◦ F c for the species F c

In 1986, Joyal [Joy86] went a step further by solving the combinatorial equation (1.3) for the species F c

in terms of the species F , thereby refining simultaneously both (1.2) and (1.5). He proceeded along the
following lines. Let 1 denote the species of the empty set. We have E = 1 +E+, where E+ is the species
of non empty finite sets and F = 1 + F+, where F+ is the species of F -structures on non empty finite
sets(ii). Combinatorial equation (1.3) is then equivalent to

F+(X) = E+ ◦ F c(X). (1.6)

(i) The variables pk stand for the power sums and are often denoted by xk in the theory of combinatorial species.
(ii) Since an empty assembly of F c-structures is the empty set.
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Now, E+ = X + E≥2, where E≥2 is the species of finite sets having at least 2 elements. By his implicit
species theorem (see [Joy81]), Joyal concluded that E+ has a substitutional inverse, E<−1>

+ , in the realm
of virtual species (that is, formal differences of species). By adapting the Newton interpolation formula
to species (using a special “ difference operator ” δ), he also gave the following combinatorial formula for
this substitutional inverse,

E<−1>
+ (X) =

∑

n≥0

(−1)nWn(X) =
∑

n: even

Wn(X)−
∑

n: odd

Wn(X), (1.7)

where Wn = Wn(X) are species defined by the recursive scheme,

W0 = X, Wn = δWn−1 = Wn−1 ◦ E+ −Wn−1, n ≥ 1. (1.8)

Hence, aWn-structure, on a finite set U , is a strictly increasing sequence, 0̂ = R0 < R1 < · · · < Rn = 1̂,
in the lattice of equivalence relations on U , where 0̂ and 1̂ respectively denote the finest and the coarsest
equivalence relation on U . Applying E<−1>

+ to (1.6) and using (1.7) finally gives,

F c(X) = E<−1>
+ ◦ F+(X) =

∑

n≥0

(−1)nWn(F+(X)). (1.9)

In the present paper, we use the notation, Lg(1 +X), to denote E<−1>
+ (X) and call it the combinatorial

logarithm(iii), by analogy with the fact that, in analysis, the power series of log(1+X) is the substitutional
inverse of that of exp(X)− 1. Summarizing, we have,

Lg(1 +X) =
def

E<−1>
+ (X) and F c = Lg(1 + F+) = Lg(F ). (1.10)

Note that (1.10) associates a virtual species F c to any species F for which F (0) = 1, even in the case
where F does not possess connected structures. For this reason, Lg(1 + X) = (1 + X)c is sometimes
called, by abuse of language, the virtual species of “ connected ” (1+X)-structures. Although very useful
and conceptually elegant, it turns out that the species

∑
n: evenWn and

∑
n: oddWn in Joyal’s expression

for the combinatorial logarithm have plenty of subspecies in common. That is,

Lg(1 +X) =
∑

n: even

Wn −
∑

n: odd

Wn, (1.11)

is not a completely reduced expression as a difference of species. Other equivalent − but still not com-
pletely reduced − expressions for the combinatorial logarithm have been given using special classes of
graphs. For example, Gessel and Li in [GL11], found formula (1.12a), where Qc is the species of con-
nected co-point-determining graphs and Pc

≥2 is that of connected point-determining graphs having at
least two vertices. Later, J. Li [Li12] found the further reduced formula (1.12b), where T c is the species
of connected co-point-determining cographs and Sc

≥2 is that of connected point-determining cographs
having at least two vertices.

a) Lg(1 +X) = Qc − Pc
≥2, b) Lg(1 +X) = T c − Sc

≥2. (1.12)

Our main goal is to give a completely reduced expression for the combinatorial logarithm. In Section 2,
we describe the irreducible components of F c = Lg(F ) and, in particular, of Lg(1+X) and−Lg(1−X),
together with their exact multiplicities. Section 3 contains a compact table for the combinatorial logarithm
up to degree 10.
(iii) Joyal uses the notation log(1+X) for the combinatorial logarithm, but we use it for the analytical logarithm in the present text.
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2 Explicit molecular expansions
2.1 Molecular expansions in general
We first recall the general notions of molecular and atomic species. A species M is molecular if M 6= 0
and any two M -structures are isomorphic. Equivalently, M is irreducible under the combinatorial sum.
A molecular species A is atomic if A 6= 1 and is irreducible over the combinatorial product. Y. N. Yeh
proved in [Yeh86] that every molecular species can be written in a unique way (up to isomorphism) as a
commutative finite product of atomic species. The sets M of all molecular species and A of all atomic
species (up to isomorphism) are countable and we have, up to degree three,

M = {1, X,E2, X
2, E3, C3, XE2, X

3, . . .}, A = {X,E2, E3, C3, . . .}, (2.1)

where Xn is the species of linear orderings of length n, Cn is the species of oriented n-cycles, and
En is the species of n-sets. Note that M is the free commutative monoid (under combinatorial prod-
uct) generated by A. Moreover, each molecular species, M , is completely determined by the stabi-
lizer H = Stab(s) ≤ Sn of anyone of its structures, say s on [n], where n is the degree of M and
[n] = {1, 2, . . . , n}. We write M = Xn/H = linear orderings of length n modulo H. In particular,
we have Xn = Xn/{1}, En = Xn/Sn, Cn = Xn/〈(1 2 ... n)〉. Two molecular species, Xn/H
and Xm/K, are isomorphic (and we write, Xn/H = Xm/K) if and only if n = m and H and K are
conjugate in Sn. Let now F be any species, not necessarily molecular. Then, one can always write F as
a (countable) linear combination with nonnegative integer coefficients of molecular species,

F =
∑

M∈M
fMM ∈ N[[A]], (2.2)

where fM denotes the number of subspecies of F that are isomorphic to M . The coefficient fM is
called the multiplicity of M in F . Summation (2.2) is unique and is called the molecular expansion
of F . This expansion is very strong since it is a common refinement of the classical generating series,
F (x), F̃ (x), ZF (p1, p2, p3, . . . ), associated to the species F . For an example of molecular expansion,
consider the well-known species T = T (X) of rooted trees, defined by the combinatorial functional
equation T = XE(T ). Up to degree 6, we have (see the book [BLL98] by Bergeron, Labelle, and
Leroux, for example),

T = X +X2 +XE2 +X3 +XE3 + 2X4 +X2E2 +XE4 + 3X3E2 +X·(E2 ◦X2) + 3X5

+X2E3 +X2E4 + 6X4E2 + 2X2·(E2 ◦X2) + 3X3E3 +X2E2
2 +XE5 + 6X6 + · · · .

(2.3)
Note that the species, E2 ◦ X2, which occurs in this expansion is atomic. The usual combinatorial op-
erations (sum, product, composition, differentiation, etc), as well as molecular expansions, have been
extended by Joyal and Yeh ([Joy85], [Yeh86]) to virtual species, that is formal differences

Φ = F −G, (2.4)

of (ordinary) species F and G. The molecular expansion of Φ is defined by,

Φ =
∑

M∈M
φMM =

∑

M∈M
(fM − gM )M ∈ Z[[A]], (2.5)
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where
∑
M∈M fMM and

∑
M∈M gMM are the molecular expansions of F andG, respectively(iv). Every

virtual species, Φ, can be represented in the form (2.4) in an infinite number of way, just as−5 = 0− 5 =
1 − 6 = 2 − 7 = · · · , in the context of the ring, Z, of integers. The less F and G have subspecies in
common, the more representation (2.5) is said to be reduced. It is always possible to canonically choose
F and G in such a way that they have no subspecies in common (i.e., are “ stranger ” species, to use a
terminology taken from the theory of signed measures). The corresponding representation is denoted,

Φ = Φ+ − Φ−, (2.6)

and is called the (completely) reduced form of the virtual species Φ. The species Φ+ (resp., Φ−) is called
the positive (resp., negative) part of Φ and the coefficients φM in (2.5) satisfy φM > 0 if M appears in
Φ+ and φM < 0 if M appears in Φ− (otherwise, φM = 0). Note that Φ+ and Φ− are characterized by
the fact that no molecular species appears in both of their molecular expansions.

2.2 The explicit expansions of Lg(1 +X) and of −Lg(1−X)

Let us start by taking a closer look at the Joyal species, Wn, defined by (1.8). It is easy to see that,

Wn =
∑

0≤k≤n
(−1)k

(
n

k

)
E<n−k>+ , (2.7)

where E<i>+ denotes the i-fold iterate of E+ under ◦ (with E<0>
+ = X). Using the expansion formulas,

E+ = E − 1 = X + E2 + E3 + · · · , E(mA+ nB + · · · ) = E(A)mE(B)n · · · , (2.8)

massive simplification and cancellation of terms occur in (2.7) and (1.11), and we have, up to degree 6,
the molecular expansions,

Lg(1 +X)+ = X +XE2 +XE3 + E2 ◦ E2 +X3E2 +XE4 + E2E3 +X3E3

+ 2X2E2
2 +XE5 + E2E4 + E3 ◦ E2 + E2 ◦ E3 + · · · ,

(2.9)

Lg(1 +X)− = E2 + E3 +X2E2 + E4 +X2E3 +XE2
2 + E5 +X4E2 +X2E4

+ 2XE2E3 + E2 · (E2 ◦ E2) + E6 + E2 ◦ (XE2) + · · · , (2.10)

Of course, the molecular species that appear in Lg(1 +X)+ and Lg(1 +X)− are all set-like (that is, they
are build from theEn’s using only products and substitutions), but their exact nature and multiplicities are
far from being obvious. In fact, these “ surviving ” molecular species are strictly included in the class of
set-like molecular species, since, for example, the set-like molecular species,X ·(E2◦E2), neither appears
in (2.9) nor in (2.10). We will exhibit their exact form and describe their multiplicities explicitly, using
special kinds of integer partitions together with an arithmetical function related to the Möbius function. To
do so, we will need to work in the more general setting, Q[[A]], of rational species, that is, of countably
summable linear combinations of molecular species with rational coefficients(v). All usual combinatorial
(iv) As a ring, Z[[A]] is the completion (under countable summability) of the family, B(Sn)n≥0, of the Burnside rings of virtual

set-like representations of the symmetric groups, Sn, n ≥ 0.
(v) More general settings are also possible, for example, C[[A]], but Q[[A]] is sufficient here.
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operations have been extended to this ring by A. Joyal in [Joy85] and Y.-N. Yeh in [Yeh86]. Since the
classical ring, Q[[X]], of power series in X “ sits ” in Q[[A]], both kinds (analytical and combinatorial)
of exponentials and logarithms are special cases of rational species, with molecular expansions:

exp(X) =
∑

n≥0

1

n!
Xn ∈ Q[[A]], log(1 +X) =

∑

n≥1

(−1)n−1

n
Xn ∈ Q[[A]].

E(X) =
∑

n≥0

En(X) ∈ N[[A]], Lg(1 +X) =
∑

M

ωMM(X) ∈ Z[[A]],
(2.11)

where the coefficients ωM ∈ Z are to be determined explicitely. We need to introduce some preliminary
definitions, lemmas and notation. For technical reasons, in this paper, a partition of an integer n ≥ 0
will be a weakly increasing(vi) sequence λ = (λ1 ≤ λ2 ≤ · · · ≤ λr) of positive integers such that
λ1 + λ2 + · · ·+ λr = n. We write λ ` n. The number λi is called the i-th part of λ and r = #λ, is the
number of parts of λ. As usual, mj = mj(λ), j = 1, . . . , n denotes the multiplicity of part j in λ; that is,
mj(λ) = card{i : λi = j}. The expression 1m12m23m3 · · ·nmn is called the type of λ and n = |λ| is
called the size of λ. It turns out to be useful to freely use the abuse of notation of identifying a partition
with its type; so that,

λ = (λ1, λ2, · · · , λr) = 1m12m2 · · ·nmn , mj = mj(λ), j = 1, . . . , n. (2.12)

Moreover, if λ ` n and d ≥ 1, we denote by λk the partition of kn defined by

λk = 1km12km2 · · ·nkmn ` kn, mj = mj(λ), j = 1, . . . , n. (2.13)

So that λk ` kn have the same parts as λ, but each individual part of λ occurs k times in λk. For example,
(1, 1, 1, 4, 4, 4, 4, 4, 4, 5, 5, 5) = (1, 4, 4, 5)3 ` 42 and (2, 4, 4, 7) = (2, 4, 4, 7)1 ` 17.

Definition 2.1 A partition λ ` n is called,
• primary, if gcd (m1(λ),m2(λ), . . . ,mn(λ)) = 1; • fat, if it has a part λi > 1. Equivalently, λ 6= 1n;
• non-repeating, if λ 6= mk with m ≥ 1, k > 1.

Lemma 2.2 Every non-empty partition λ can be written in the form λ = τk, where τ is a primary
partition. Moreover, λ is fat (resp., non-repeating) if and only if τ is fat (resp., non-repeating). 2

Borrowing notational conventions from the theory of symmetric functions, we now associate a set-like
molecular species, Eλ = Eλ(X), of degree n, to every partition λ ` n, by the combinatorial products,

Eλ =
def

Eλ1
Eλ2
· · ·Eλk = Xm1Em2

2 · · ·Emnn , (E1 = X). (2.14)

Note that, Eλ = Xn/Sλ = Xn/Sλ1,λ2,...,λk , where Sλ denotes the Young subgroup of Sn of type λ.
Also, if α ` m,β ` n, thenEα ◦Eβ = Xm/Sα ◦Xn/Sβ = Xmn/Sα oSβ , where o is the wreath product.

Lemma 2.3 Every molecular species, M 6= 1, can be written canonically in exactly one of the two forms,

M = P k or M = (Eτ ◦Q)k, (2.15)

where τ is a primary fat partition, P,Q are molecular and k ≥ 1.
(vi) Instead of weakly decreasing, contrarily to the usual practice in the theory of partitions.
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Proof: Let M = Aα1
1 Aα2

2 · · · be the atomic factorization of M , take k = gcd (α1, α2, . . .) and consider
the molecular species P = A

α1/k
1 A

α2/k
2 · · · . Clearly, we canonically have M = P k. Now, if P is not of

the form Eτ ◦ Q, with |τ | > 1, then we are done. On the contrary, if P = Eτ ◦ Q, with |τ | > 1, then
τ must be fat since if τ = 1s, s > 1, then M = P k = (E1s ◦ Q)k = (Qs)k = Qsk, contradicting the
fact that k = gcd (α1, α2, . . .), since sk > k. Moreover, τ must be primary, since if τ = φs, s > 1, then
M = P k = (Eφs ◦Q)k = ((Eφ ◦Q)s)k = (Eφ ◦Q)sk, which is again a contradiction. 2

Finally, we need the following special function π defined on the set, P+, of non empty partitions and the
“ Möbius-like ” arithmetical function, ν, defined on the set, N+, of positive integers.

Definition 2.4 The function, π : P+ → Q, is defined, for λ = 1m12m2 · · ·nmn ` n by,

π(λ) =
(−1)#λ−1

#λ

(
#λ

m1, . . . ,mn

)
. (2.16)

In particular, for λ = 1n, π(1n) reduces to the number-theoretic multiplicative function,

θ : N+ → Q, n 7→ (−1)n−1

n
. (2.17)

Definition 2.5 The function, ν : N+ → Q, is the inverse of θ under the Dirichlet (?) convolution(vii).
Explicitly,

ν(n) =

{
1
2µ(i)/i, if n = 2ki, i odd, k ≥ 1,
µ(i)/i, otherwise.

(2.18)

We are now ready to state and prove our main result from which each individual coefficient of the molec-
ular expansion of the combinatorial logarithm, Lg(F ), of a species, F , can be computed from the coef-
ficients of the molecular expansion of its analytical logarithm, log(F ). This analytical logarithm is very
easy to expand, since we have, in view of (2.11),

log(F ) = log(1 + F+) =
∑

n≥1

(−1)n

n
(F+)n. (2.19)

The expansions of Lg(1 +X) and −Lg(1−X) will then follow as special cases (Corollaries 2.7 – 2.8).

Theorem 2.6 Consider a species, F = 1 + F+, with molecular expansion F = 1 +
∑
M 6=1 fMM ,

together with the molecular expansions of its two kinds of logarithms,

Lg(F ) =
∑

M 6=1

gMM, log(F ) =
∑

M 6=1

hMM. (2.20)

Then the coefficients gM can be computed from the coefficients hM via the recursive scheme,

gM = hM −
∑

Eλ◦N=M
|λ|>1

π(λ)gN . (2.21)

(vii) (f ? g)(n) =
∑

d|n f(d)g(n/d).
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More precisely, if M is written in the canonical form (2.15), then

gM =

{
ν(k) ? hPk , if M = P k,
ν(k) ?

(
h(Eτ◦Q)k − π(τk)gQ

)
, if M = (Eτ ◦Q)k,

(2.22)

where (?) denotes Dirichlet convolution.

Proof: Consider the special rational species, X̂ , of pseudo-singletons, that we introduced in [Lab90] as
the analytical logarithm of the species, E, of finite sets. Expanding, we have explicitly (see [Lab08], for
more detail),

X̂ =
def

log(E) = log(1 + E+) =
∑

k≥1

(−1)k−1

k
(E1 + E2 + E3 + · · · )k

= P1 +
1

2
P2 +

1

3
P3 + · · ·+ 1

n
Pn + · · · ∈ Q[[A]],

(2.23)

where Pn = Pn(X) are virtual species that are “ combinatorial liftings ” of the classical power sums
symmetric functions(viii), pn, and can be computed by the “ Newton like ” combinatorial recursive scheme,

P1 = X, Pn = nEn − E1Pn−1 − E2Pn−2 − · · · − En−1P1, n ≥ 2. (2.24)

Taking analytical exponential, exp, of (2.23) gives alternate expressions for the species of finite sets:

E = exp(X̂) = eX̂ = exp


∑

n≥1

1

n
Pn


 . (2.25)

Expanding (2.23) and using (2.16), we get the molecular expansion,

1

n
Pn =

∑

λ`n
π(λ)Eλ. (2.26)

Now, a basic property of Pn is that it behaves linearly (see [Lab08]) under substitution(ix):

Pn ◦ (aA+ bB + · · · ) = aPn ◦A+ bPn ◦B + · · · , a, b, . . . ∈ Q, A,B, . . . ∈ Q[[A]]. (2.27)

Of course, such a linear behavior is far from being true in general. In particular, it is far from being true
for Eλ. Nevertheless, thanks to (2.26)− (2.27), we have,

(∑

λ`n
π(λ)Eλ

)
◦ (aA+ bB + · · · ) =

∑

λ`n
π(λ)(aEλ ◦A+ bEλ ◦B + · · · ). (2.28)

(viii) In fact, at the level of linear representations, the cycle index series of Pn is pn. That is, ZPn = pn.
(ix) They even behave plethystic linearly under substitution: for weight variables, s, t, . . . , we have, Pn(asF + btG + · · · ) =
asnPn(F ) + btnPn(G) + · · · .
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This last equation is crucial in the next steps of the present proof. By (2.25), we have,

exp



(∑

n

1

k
Pk

)
◦


∑

N 6=1

gNN




 = E(

∑

N 6=1

gNN) = E(Lg(F )) = F = 1 +
∑

M 6=1

fMM. (2.29)

Taking log, using (2.26) and linearity property (2.28), gives,
∑

k,N
λ`k

π(λ)gNEλ ◦N = log(F ) =
∑

M 6=1

hMM. (2.30)

Extracting the coefficient of M on the leftmost and rightmost sides of (2.30), we can write,
∑

Eλ◦N=M

π(λ)gN = hM , (2.31)

which is equivalent to the recursive scheme (2.21), since π(1) = 1 and E1 ◦N = X ◦N = N. Finally,
consider the canonical form (2.15) of M . If M = P k, then Eλ ◦ N = M , with |λ| > 1, if and only if
λ = 1d, N = P k/d, with 1 < d|k. So that, (2.21) takes the form,

gPk = hPk −
∑

1<d|k
π(1d)gPk/d = hPk + π(1)gPk − θ(k) ? gPk , (2.32)

which reduces to θ(k) ? gPk = hPk . This is equivalent to gPk = ν(k) ? hPk . On the other hand, if
M = (Eτ ◦ Q)k, where τ is a primary fat partition, then Eλ ◦ N = M , with |λ| > 1, if and only if
λ = 1d, N = (Eτ ◦Q)k/d, with 1 < d|k, or λ = τk, N = Q. This time, (2.21) takes the form,

g(Eτ◦Q)k = h(Eτ◦Q)k − π(τk)gQ −
∑

1<d|k
π(1d)g(Eτ◦Q)k/d

= h(Eτ◦Q)k − π(τk)gQ + g(Eτ◦Q)k − θ(k) ? g(Eτ◦Q)k .

(2.33)

This reduces to θ(k) ? g(Eτ◦Q)k = h(Eτ◦Q)k − π(τk)gQ, which proves (2.22). 2

Corollary 2.7 The molecular expansion of the combinatorial logarithm is explicitly given by,

Lg(1 +X) =
∑

M

ωMM, (2.34)

where each molecular component, M , is of the form of a finite composition,

M = Eφ(1) ◦ Eφ(2) ◦ · · · ◦ Eφ(s) , s ≥ 0, (2.35)

in which each φ(i) is a non-repeating fat partition. The coefficients, ωM ∈ Z\{0}, and their sign,
sgn(ωM ), are given by,

ωM = c(φ(1)) · · · c(φ(s)), sgn(ωM ) = (−1)#φ(1)+···+#φ(s)

, (2.36)

where each factor, for non-repeating fat φ = τk with primary non-repeating fat τ , is given by,

c(φ) = c(τk) = −ν(k) ? π(τk) = −
∑

d|k
ν(k/d)π(τd). (2.37)
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Proof: Take F = 1 + X in Theorem 2.6. Then gM = ωM and, from (2.11), hM = θ(k) = (−1)k−1

k ,
if M = Xk and 0, otherwise. Hence, by (2.22), ωXk = ν(k) ? θ(k) = 1, if k = 1; 0, otherwise. If
M = (Eτ ◦ Q)k = Eτk ◦ Q, with τ primary fat, then, by (2.22), ωE

τk
◦Q = ν(k) ? (0 − π(τk)ωQ) =

−ν(k) ? π(τk)ωQ = c(τk)ωQ. In particular, if τk = mk, with 1 < m ∈ N, then ωE
mk
◦Q = ν(k) ? (0−

π(mk)ωQ) = −ν(k) ? θ(k)ωQ = −ωQ if k = 1; 0, otherwise. Summarizing, let φ = τk, be fat, then,
ωEφ◦Q = c(φ)ωQ, where c(φ) is defined by (2.37). Moreover, if φ = mk, with k > 1, i.e., when φ is
repeating, then ωEφ◦Q = 0. This means that the molecular species that can contribute to Lg(1 + X) are
of the form X or of the form Eφ ◦ Q, where φ is non-repeating fat and Q also contribute to Lg(1 + X).
This implies that formula (2.36) for ωM holds, since, in this case, ωEφ◦Q = c(φ)ωQ. The sign of ωM
follows from the fact that the leading term in (2.37) corresponds to d = k and its sign is (−1)#φ. 2

The virtual species,−Lg(1−X) = Lg 1
(1−X) , of “ connected ” linear orders, is a “ cousin” of the tensorial

species, Lie(X), of free Lie algebras (see A. Joyal in [Joy86] and C. Reutenauer in [Reu86]).

Corollary 2.8 The following molecular expansion holds,

−Lg(1−X) =
∑

M

`MM, (2.38)

where each molecular component, M , is of the form of a finite composition,

M = Eφ(1) ◦ Eφ(2) ◦ · · · ◦ Eφ(s) ◦X2j , s ≥ 0, j ≥ 0, (2.39)

in which each φ(i) is a non-repeating fat partition. The coefficients, `M ∈ Z\{0}, and their sign, sgn(`M ),
are given by,

`M = c(φ(1)) · · · c(φ(s)), sgn(`M ) = (−1)
∑s
i=1 #φ(i)

. (2.40)

Proof: Take F = 1−X in Theorem 2.6 and argue as in the proof of Corollary 2.7. A simpler proof is to
use 1

1−X = (1 +X)(1 +X2)(1 +X4) · · · (1 +X2j ) · · · and apply Corollary 2.7, to obtain,

−Lg(1−X) = Lg

(
1

1−X

)
=
∑

j≥0

Lg(1 +X2j ) =
∑

M 6=1,j≥0

ωMM(X2j ). (2.41)

2

Of course, from (1.5), we have the underlying cycle index series,

ZLg(1+X) =
∑

k≥1

µ(k)

k
log(1 + pk), Z−Lg(1−X) = −

∑

k≥1

µ(k)

k
log(1− pk). (2.42)

Many other applications of Theorem 2.6 are possible. But, due to lack of space, we conclude with a Table,
obtained using Maple, which gives the explicit molecular expansion of the combinatorial logarithm up to
degree 10. Much more extended tables are easily obtained.
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3 Compact table for the combinatorial logarithm up to degree 10
Note that for s = 0 in (2.35), the sequence, φ(1), . . . , φ(s), of non-repeating fat partitions is empty. So that
the corresponding s-fold composition is a 0-fold composition, hence is equal to X , which is the neutral
element under composition. Moreover, the corresponding product (2.36) being empty, is equal to 1. This
is coherent with the fact that the molecular expansion of Lg(1 +X) starts with X (see (2.9)). Moreover,
if M = Eφ(1) ◦ · · · ◦ Eφ(s) , is a molecular component in (2.34) then, for any permutation, σ ∈ Ss,
Mσ = Eφ(σ(1)) ◦ · · · ◦Eφ(σ(s)) , is also a molecular component and the coefficients are equal: ωM = ωMσ .
Table 1, below(x), gives the molecular expansion (2.34) up to degree 10 and uses this fact to compact its
size. The following convention is used, for s > 1 and M = Eφ(1) ◦ · · · ◦ Eφ(s) :

M =
def

∑

N∈Λ

N, Λ = {Mσ : σ ∈ Ss}. (3.1)

Acknowledgements. The authors would like to thank Jérôme Tremblay for his LATEXand Maple help.

n Compact form for the terms of degree n in the combinatorial logarithm Lg(1 +X)

0 0

1 X

2 −E2

3 −E3 + E1,2

4 −E4 + E1,3 − E12,2 + E2 ◦ E2

5 −E5 + E1,4 + E2,3 − E12,3 − E1,22 + E13,2

6 −E6 + E1,5 + E2,4 − E12,4 − 2E1,2,3 + E13,3 + 2E12,22 − E14,2 + E2 ◦ E3 − E2 ◦ E1,2

7 −E7 + E1,6 + E2,5 + E3,4 − E12,5 − 2E1,2,4 − E1,32 − E22,3 + E13,4 + 3E12,2,3 + E1,23

−E14,3 − 2E13,22 + E15,2

8 −E8 + E1,7 + E2,6 + E3,5 − E12,6 − 2E1,2,5 − 2E1,3,4 − E22,4 − E2,32 + E13,5 + 3E12,2,4

+2E12,32 + 3E1,22,3 − E14,4 − 4E13,2,3 − 2E12,23 + E15,3 + 2E14,22 − E16,2 + E2 ◦ E4

−E2 ◦ E1,3 + E2 ◦ E12,2 − E2 ◦ E2 ◦ E2

9 −E9 + E1,8 + E2,7 + E3,6 + E4,5 − E12,7 − 2E1,2,6 − 2E1,3,5 − E1,42 − E22,5 − 2E2,3,4

+E13,6 + 3E12,2,5 + 3E12,3,4 + 3E1,22,4 + 3E1,2,32 + E23,3 − E14,5 − 4E13,2,4 − 2E13,32

−6E12,22,3 − E1,24 + E15,4 + 5E14,2,3 + 3E13,23 − E16,3 − 3E15,22 + E17,2 + E3 ◦ E3

−E3 ◦ E1,2 + E1,2 ◦ E1,2

10 −E10 + E1,9 + E2,8 + E3,7 + E4,6 − E12,8 − 2E1,2,7 − 2E1,3,6 − 2E1,4,5 − E22,6 − 2E2,3,5

−E2,42 − E32,4 + E13,7 + 3E12,2,6 + 3E12,3,5 + 2E12,42 + 3E1,22,5 + 6E1,2,3,4 + E1,33

+E23,4 + 2E22,32 − E14,6 − 4E13,2,5 − 4E13,3,4 − 6E12,22,4 − 6E12,2,32 − 4E1,23,3 + E15,5

+5E14,2,4 + 2E14,32 + 10E13,22,3 + 2E12,24 − E16,4 − 6E15,2,3 − 5E14,23 + E17,3 + 4E16,22

−E18,2 + E2 ◦ E5 − E2 ◦ E1,4 − E2 ◦ E2,3 + E2 ◦ E12,3 + E2 ◦ E1,22 − E2 ◦ E13,2

Tab. 1: Compact form for the terms of degree n in the combinatorial logarithm, for 0 ≤ n ≤ 10.

(x) Made using the Maple package combinat together with the define(’linear’) command.
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On the Spectra of Simplicial Rook Graphs
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Abstract. The simplicial rook graph SR(d, n) is the graph whose vertices are the lattice points in the nth dilate of
the standard simplex in Rd, with two vertices adjacent if they differ in exactly two coordinates. We prove that the
adjacency and Laplacian matrices of SR(3, n) have integral spectra for every n. We conjecture that SR(d, n) is
integral for all d and n, and give a geometric construction of almost all eigenvectors in terms of characteristic vectors
of lattice permutohedra. For n ≤

(
d
2

)
, we give an explicit construction of smallest-weight eigenvectors in terms of

rook placements on Ferrers diagrams. The number of these eigenvectors appears to satisfy a Mahonian distribution.

Resumé. Le graphe des tours simplicials SR(d, n) est le graphe dont les sommets sont les points du réseau dans
le nième dilation du simplexe standard dans Rd; deux sommets sont adjacents s’ils différent dans exactement deux
coordonnées. Nous montrons que tous les valeurs propres des matrices d’adjacence et laplacienne de SR(3, n)

sont entiers, pour tous les n. Nous conjecturons que les valeurs propres sont entiers pour tous d et n, et donnons une
construction géometrique de presque tous les vecteurs propres en termes des vecteurs caractéristiques de permutoèdres
treillis. Pour n ≤

(
d
2

)
, nous donnons une construction explicite des vecteurs propres de plus petits poids en termes des

placements des tours sur diagrammes de Ferrers. Le nombre de ces vecteurs propres semble satisfaire une distribution
Mahonian.

Keywords: simplicial rook graph, adjacency matrix, Laplacian matrix, spectral graph theory

1 Introduction
Let d and n be nonnegative integers. The simplicial rook graph SR(d, n) is the graph with vertices

V (d, n) :=

{
x = (x1, . . . , xd) : 0 ≤ xi ≤ n,

d∑

i=1

xi = n

}

with two vertices adjacent if they agree in all but two coordinates. This graph has N =
(
n+d−1
d−1

)
vertices

and is regular of degree δ = (d − 1)n. Geometrically, let ∆d−1 denote the standard simplex in Rd (i.e.,
the convex hull of the standard basis vectors e1, . . . , ed) and let n∆d−1 denote its nth dilate (i.e., the
convex hull of ne1, . . . , ned). Then V (d, n) is the set of lattice points in n∆d−1, with two points adjacent
if their difference is a multiple of ei − ej for some i, j. Thus the independence number of SR(d, n) is

†Supported in part by a Simons Foundation Collaboration Grant and by National Security Agency grant H98230-12-1-0274.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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the maximum number of nonattacking rooks that can be placed on a simplicial chessboard with n + 1
“squares” on each side. For d = 3, this independence number is b(2n + 3)/3c Blackburn et al. (2011);
Nivasch and Lev (2005).
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Fig. 1: The graph SR(3, 3).

As far as we can tell, the class of simplicial rook graphs has not been studied before. For some small
values of the parameters, SR(d, n) is a well-known graph: SR(2, n) and SR(d, 1) are complete of orders
n + 1 and d respectively; SR(3, 2) is isomorphic to the octahedron; and SR(d, 2) is isomorphic to the
Johnson graph J(d + 1, 2). On the other hand, simplicial rook graphs are not in general strongly regular
or distance-regular, nor are they line graphs or noncomplete extended p-sums (in the sense of (Cvetković
et al., 1988, p. 55)). They are also not to be confused with the simplicial grid graph, in which two vertices
are adjacent only if their difference vector is exactly ei−ej (as opposed to some scalar multiple) nor with
the triangular graph Tn, which is the line graph of Kn (Brouwer and Haemers, 2012, p.23), (Godsil and
Royle, 2001, §10.1).

Let G be a simple graph on vertices [n] = {1, . . . , n}. The adjacency matrix A = A(G) is the
n × n symmetric matrix whose (i, j) entry is 1 if ij is an edge, 0 otherwise. The Laplacian matrix is
L = L(G) = D − A, where D is the diagonal matrix whose (i, i) entry is the degree of vertex i. The
graph G is said to be integral (resp. Laplacian integral) if all eigenvalues of A (resp. L) are integers. If G
is regular of degree δ, then these conditions are equivalent, since every eigenvector ofA with eigenvalue λ
is an eigenvector of L with eigenvalue δ − λ.

We can now state our main theorem.

Theorem 1.1 For every n ≥ 1, the simplicial rook graph SR(3, n) is integral and Laplacian integral,
with eigenvalues as follows:

If n = 2m + 1 is odd:
Eigenvalue of A Eigenvalue of L Multiplicity Eigenvector

−3 4m+ 5 = 2n+ 3
(
2m
2

)
Ha,b,c

−2,−1, . . . ,m− 3 3m+ 5 . . . , 4m+ 4 3 Pk
m− 1 3m+ 3 2 R

m, . . . , 2m− 1 = n− 2 2m+ 3 . . . , 3m+ 2 3 Qk

4m+ 2 = 2n 0 1 J
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If n = 2m is even:
Eigenvalue of A Eigenvalue of L Multiplicity Eigenvector

−3 4m+ 3 = 2n+ 3
(
2m−1

2

)
Ha,b,c

−2,−1, . . . ,m− 4 3m+ 4, . . . , 4m+ 2 3 Pk
m− 3 3m+ 3 2 R

m− 1, . . . , 2m− 2 = n− 2 2m+ 2, . . . , 3m+ 1 3 Qk

4m = 2n 0 1 J

Integrality and Laplacian integrality typically arise from tightly controlled combinatorial structure in
special families of graphs, including complete graphs, complete bipartite graphs and hypercubes (classi-
cal; see, e.g., (Stanley, 1999, §5.6)), Johnson graphs Krebs and Shaheen (2008), Kneser graphs Lovász
(1979) and threshold graphs Merris (1994). (General references on graph eigenvalues and related topics
include Balińska et al. (2002); Brouwer and Haemers (2012); Cvetković et al. (1988); Godsil and Royle
(2001).) For simplicial rook graphs, lattice geometry provides this combinatorial structure. To prove
Theorem 1.1, we construct a basis of R(n+2

2 ) consisting of eigenvectors of A(SR(3, n)), as indicated in
the tables above. The basis vectors Ha,b,c for the largest eigenspace are signed characteristic vectors for
hexagons centered at lattice points in the interior of n∆3 (see Figure 2). The other eigenvectors Pk,R,Qk

can be expressed as certain sums of characteristic vectors of lattice lines.
Theorem 1.1, together with Kirchhoff’s matrix-tree theorem (Godsil and Royle, 2001, Lemma 13.2.4)

implies the following formula for the number of spanning trees of SR(d, n).

Corollary 1.2 The number of spanning trees of SR(3, n) is




32(2n+ 3)(
n−1
2 )

2n+2∏
a=n+2

a3

3(n+ 1)2(n+ 2)(3n+ 5)3
if n is odd,

32(2n+ 3)(
n−1
2 )

2n+2∏
a=n+2

a3

3(n+ 1)(n+ 2)2(3n+ 4)3
if n is even.

Based on experimental evidence gathered using Sage Stein et al. (2012), we make the following con-
jecture:

Conjecture 1.3 The graph SR(d, n) is integral for all d and n.

We discuss the case of arbitrary d in Section 3. The construction of hexagon vectors generalizes as
follows: for each permutohedron whose vertices are lattice points in n∆d−1, its signed characteristic
vector is an eigenvector of eigenvalue −

(
d
2

)
(Proposition 3.1). This is in fact the smallest eigenvalue of

SR(d, n) when n ≥
(
d
2

)
. Moreover, these eigenvectors are linearly independent and, for fixed d, account

for “almost all” of the spectrum as n→∞, in the sense that

lim
n→∞

dim (span of permutohedron eigenvectors)
|V (d, n)| = 1.

When n <
(
d
2

)
, the simplex n∆d−1 is too small to contain any lattice permutohedra. On the other hand,

the signed characteristic vectors of partial permutohedra (i.e., intersections of lattice permutohedra with
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SR(d, n)) are eigenvectors with eigenvalue −n. Experimental evidence indicates that this is in fact the
smallest eigenvalue of A(d, n), and that these partial permutohedra form a basis for the corresponding
eigenspace. Unexpectedly, its dimension appears to be the Mahonian number M(d, n) of permutations in
Sd with exactly n inversions (sequence #A008302 in Sloane (2012)). We construct a family of eigenvec-
tors by placing rooks (ordinary rooks, not simplicial rooks!) on Ferrers boards.

The reader is referred to Martin and Wagner (2012) for the full version of this article, including proofs
of all results. The authors thank Cristi Stoica for bringing their attention to references Nivasch and Lev
(2005) and Blackburn et al. (2011), and Noam Elkies and several other members of the MathOverflow
community for a stimulating discussion. The open-source software package Sage Stein et al. (2012) was
a valuable tool in carrying out this research.

2 Proof of the Main Theorem
We begin by reviewing some basic algebraic graph theory; for a general reference, see, e.g., Godsil and
Royle (2001). LetG = (V,E) be a simple undirected graph withN vertices. The adjacency matrixA(G)
is the N × N matrix whose (i, j) entry is 1 if vertices i and j are adjacent, 0 otherwise. The Laplacian
matrix is L(G) = D(G) − A(G), where D(G) is the diagonal matrix of vertex degrees. These are both
real symmetric matrices, so they are diagonalizable, with real eigenvalues, and eigenspaces with different
eigenvalues are orthogonal (Godsil and Royle, 2001, §8.4).

Proposition 2.1 The graph SR(d, n) has N =
(
n+d−1
d−1

)
vertices and is regular of degree (d − 1)n. In

particular, its adjacency and Laplacian matrices have the same eigenvectors.

Proof: Counting vertices is the classic “stars-and-bars” problem (with n stars and d − 1 bars). For each
x ∈ V (d, n) and each pair of coordinates i, j, there are xi + xj other vertices that agree with x in all
coordinates but i and j. Therefore, the degree of x is

∑
1≤i<j≤n(xi+xj) = (d−1)

∑n
i=1 xi = (d−1)n.

2

In the rest of this section, we focus exclusively on the case d = 3, and regard n as fixed. We fix
N :=

(
n+2
2

)
, the number of vertices of SR(3, n), and abbreviate A = A(3, n). The matrix A acts on

the vector space RN with standard basis {eijk : (i, j, k) ∈ V (3, n)}. We will sometimes consider the
standard basis vectors as ordered lexicographically, for the purpose of showing that a collection of vectors
is linearly independent.

2.1 Hexagon vectors
Let (a, b, c) ∈ V (3, n) with a, b, c > 0. The corresponding hexagon vector is defined as

Ha,b,c := ea−1,b,c+1 − ea,b−1,c+1 + ea+1,b−1,c − ea+1,b,c−1 + ea,b+1,c−1 − ea−1,b+1,c.

Geometrically, this is the characteristic vector, with alternating signs, of a regular lattice hexagon centered
at the lattice point (a, b, c) in the interior of n∆2 (see Figure 2).

It is not hard to check that the vectors Ha,b,c are linearly independent, and each is an eigenvector of
A(d, n) with eigenvalue −3. The number of possible “centers” (a, b, c) is

(
n−2
3

)
, so there are still 3n

eigenvectors to determine (since 3n is the number of vertices of SR(d, n) with at least one coordinate
zero).
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Fig. 2: (left) The graph SR(3, 3). (center) The vector X1 and the lattice line it supports. (right) H1,1,1.

Define
Xi :=

∑

j+k=n−i
eijk, Yj :=

∑

i+k=n−j
eijk, Zk :=

∑

i+j=n−k
eijk.

These vectors Xi,Yj ,Zk are the characteristic vectors of lattice lines in n∆2; see Figure 2. It can be
checked that they span a vector space W of dimension 3n, and that each one is orthogonal to every
hexagon eigenvector. Therefore W is the span of all the other eigenvectors. Moreover, the symmetric
group S3 acts on SR(3, n) (hence on each of its eigenspaces) by permuting the coordinates of vertices.

Theorem 2.2 The eigenvectors of A(d, n) are as follows.

• Let J =
∑n
i=0 Xi =

∑n
i=0 Yi =

∑n
i=0 Zi. Then J is an eigenvector with eigenvalue 2n.

• Let m = bn/2c and R := Xm −Ym −Xm+1 + Ym+1. Then the S3-orbit of R is an eigenspace
with dimension 2 and eigenvalue (n− 6)/2 if n is even, or (n− 3)/2 if n is odd.

• For each k with 0 ≤ k ≤ bn−32 c, let

Pk := −(n− 2k − 1)(n− 2k − 2)Zn−k +
n−k−1∑

i=k+1

[
2(i− k − 1)Zi + (2i− n)(Xi + Yi)

]
.

Then the S3-orbit of Pk is an eigenspace with dimension 3 and eigenvalue k − 2.

• For each k with 0 ≤ k ≤ bn−22 c, let

Qk = (n− 2k + 1)(n− 2k + 2)Zk +
n−k∑

j=k

[
(2j − n)(Xj + Yj)− 2(n− j − k + 1)Zj

]
.

Then the S3-orbit of Pk is an eigenspace with dimension 3 and eigenvalue n− k − 2.

We omit the proof, which is a more or less direct calculation, requiring the action of A(d, n) on the
vectors Xi,Yj ,Zk and several summation identities.
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3 Simplicial rook graphs in arbitrary dimension
We now consider the graph SR(d, n) for arbitrary d and n, with adjacency matrix A = A(d, n). Re-
call that SR(d, n) has N :=

(
n+d−1
d−1

)
vertices and is regular of degree (d − 1)n. If two vertices

a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ V (d, n) differ only in their ith and jth positions (and are therefore
adjacent), we write a ∼

i,j
b.

Let Sd be the symmetric group of order d, and let Ad ⊂ Sd be the alternating subgroup. Let ε be the
sign function

ε(σ) =

{
1 for σ ∈ Ad,

−1 for σ 6∈ Ad.

Let τij ∈ Sd denote the transposition of i and j. Note that Sd = Ad ∪ Adτij for each i, j.
In analogy to the vectors X,Y,Z used in the d = 3 case, define

X(i,j)
α = eα +

∑

β: β∼
i,j
α

eβ . (3.1)

That is, X(i,j)
α is the characteristic vector of the lattice line through α in direction ei− ej . In particular, if

α ∼
i,j
β, then X

(i,j)
α = X

(i,j)
β . Moreover, the column of A indexed by α is

Aeα = −
(
d

2

)
eα +

∑

1≤i<j≤d
X(i,j)
α . (3.2)

since eα itself appears in each summand X
(i,j)
α .

3.1 Permutohedron vectors
We now generalize the construction of hexagon vectors to arbitrary dimension. The idea is that for each
point p in the interior of n∆d−1 and sufficiently far away from its boundary, there is a lattice permutohe-
dron centered at p, all of whose points are vertices of SR(d, n) (see Figure 3), and the signed characteristic
vector of this permutohedron is an eigenvector of A(d, n).

Specifically, let w = ((1− d)/2, (3− d)/2, . . . , (d− 3)/2, (d− 1)/2) ∈ Rd. Let p ∈ Zd (if d is odd)
or (Z + 1

2 )d (if d is even). Then
Hp =

∑

σ∈Sd

ε(σ)ep+σ(w)

is the signed characteristic vector of the smallest lattice permutohedron with center p; we call Hp a
permutohedron vector.

Proposition 3.1 Fix d, n ∈ N, and let p, w,Hp be as above.

1. If {p+σ(w) : σ ∈ Sd} are distinct vertices of SR(d, n), then Hp is an eigenvector of A(d, n) with
eigenvalue −

(
d
2

)
.

2. The set of all such eigenvectors Hp is linearly independent, and its cardinality is
(n− (d−1)(d−2)

2
d−1

)
.
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Fig. 3: A permutohedron vector (n = 6, d = 4).

This result says that we can construct a large eigenspace by fitting many congruent permutohedra into
the dilated simplex. In fact, the permutohedron eigenvectors account for “almost all” of the eigenvectors
in the following sense: if Hd,n ⊆ RN is the linear span of the eigenvectors constructed in Prop. 3.1, then
for each fixed d, we have

lim
n→∞

dimHd,n
|V (d, n)| = lim

n→∞

(n− (d−1)(d−2)
2

d−1
)

(
n+d−1
d−1

) = 1. (3.3)

The characteristic vectors of lattice lines in Rd can be shown to be orthogonal to Hd,n. We conjecture
that those characteristic vectors in fact span the orthogonal complement. We have verified this statement
computationally for d = 4 and n ≤ 11, and for d = 5 and n = 7, 8, 9. We do not have a proof of the
general statement; part of the difficulty is that it is not clear what subset of the X(i,j)

α ought to form a basis
(in contrast to the case d = 3).

Proposition 3.2 Suppose that d ≥ 1 and n ≥
(
d
2

)
. Then the smallest eigenvalue of SR(d, n) is −

(
d
2

)
.

We omit the short proof, whose main idea was suggested to the authors by Noam Elkies. The smallest
eigenvalue is significant in spectral graph theory; for instance, it is related to the independence num-
ber (Godsil and Royle, 2001, Lemma 9.6.2).

3.2 The small-n case and Mahonian numbers
When n <

(
d
2

)
, there are no permutohedron vectors — the simplex n∆d−1 is too small to contain any

lattice permutohedra.
Experimental evidence indicates that the smallest eigenvalue of SR(d, n) is −n, and moreover that

the multiplicity of this eigenvalue equals the number M(d, n) of permutations in Sd with exactly n
inversions. The numbers M(d, n) are well known in combinatorics as the Mahonian numbers, or as the
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coefficients of the q-factorial polynomials; see (Sloane, 2012, sequence #A008302). In the rest of this
section, we construct M(d, n) linearly independent eigenvectors of eigenvalue −n; however, we do not
know how to rule out the possibility of additional eigenvectors of equal or smaller eigenvalue

We review some basics of rook theory; for a general reference, see, e.g., Butler et al. (2012). For
a sequence of positive integers c = (c1, . . . , cd), the skyline board Sky(c) consists of a sequence of d
columns, with the ith column containing ci squares. A rook placement on Sky(c) consists of a choice of
one square in each column. A rook placement is proper if all d squares belong to different rows.

An inversion of a permutation π = (π1, . . . , πd) ∈ Sd is a pair i, j such that i < j and πi > πj . Let
Sd,n denote the set of permutations of [d] with exactly n inversions.

Definition 3.3 Let π ∈ Sd,n. The inversion word of π is a = a(π) = (a1, . . . , ad), where

ai = #{j ∈ [d] : i < j and πi > πj}.

Note that a is a weak composition of n with d parts, hence a vertex of SR(d, n). A permutation σ ∈ Sd,n

is π-admissible if σ is a proper skyline rook placement on Sky(a1 + 1, . . . , ad + d); that is, if

x(σ) = a(π) + w − σ(w) = a(π) + id−σ

is a lattice point in n∆d−1. Note that the coordinates of x(σ) sum to n, so admissibility means that its
coordinates are all nonnegative. The set of all π-admissible permutations is denoted Adm(π); that is,

Adm(π) = {σ ∈ Sd : ai − σi + i ≥ 0 ∀i = 1, . . . , d}.

The corresponding partial permutohedron is

Parp(π) = {x(σ) : σ ∈ Adm(π)}.

That is, Parp(π) is the set of permutations corresponding to lattice points in the intersection of n∆d−1

with the standard permutohedron centered at a(π) + w. The partial permutohedron vector is the signed
characteristic vector of Parp(π), that is,

Fπ =
∑

σ∈Parp(π)
ε(σ)ex(σ).

Example 3.4 Let d = 4 and π = 3142 ∈ Sd. Then π has n = 3 inversions, namely 12, 14, 34. Its
inversion word is accordingly a = (2, 0, 1, 0). The π-admissible permutations are the proper skyline
rook placements on Sky(2 + 1, 0 + 2, 1 + 3, 0 + 4) = Sky(3, 2, 4, 4), namely 1234, 1243, 2134, 2143,
3124, 3142, 3214, 3241 (see Figure 4). The corresponding lattice points x(σ) can be read off from
the rook placements by counting the number of empty squares above each rook, obtaining respectively
2010, 2001, 1110, 1101, 0120, 0102, 0030, 0003; these are the neighbors of a in Parp(π). Thus Fπ =
e2010 − e2001 − e1110 + e1101 − e0120 + e0102 + e0030 − e0003; see Figure 5.

Theorem 3.5 Let π ∈ Sd,n and A = A(d, n). Then Fπ is an eigenvector of A with eigenvalue −n.
Moreover, for every pair d, n with n <

(
d
2

)
, the set {Fπ : π ∈ Sd,n} is linearly independent. In particular,

the dimension of the (−n)-eigenspace of A is at least the Mahonian number M(d, n).
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Fig. 4: Rook placements on the skyline board Sky(3, 2, 4, 4).

Fig. 5: The partial permutohedron Parp(3142) in SR(4, 3).

Proof: We include the proof in order to illustrate the connections to (non-simplicial) rook theory. First,
linear independence follows from the observation that the lexicographically leading term of Fπ is ea(π),
and these terms are different for all π ∈ Sd,n.

Second, let σ ∈ Adm(π). Then the coefficient of ex(σ) in Fπ is ε(σ) ∈ {1,−1}. We will show that
the coefficient of ex(σ) in AFπ is −nε(σ), i.e., that

ε(σ)
∑

ρ

ε(ρ) = −n, (3.4)

the sum over all ρ such that ρ ∼ σ and ρ ∈ Parp(π). (Here and subsequently, ∼ denotes adjacency in
SR(d, n).) Each such rook placement ρ is obtained by multiplying σ by the transposition (i j), that is, by
choosing a rook at (i, σi), choosing a second rook at (j, σj) with σj > σi, and replacing these two rooks
with rooks in positions (i, σj) and (j, σi). For each choice of i, there are (ai + i) − σi possible j’s, and∑
i(ai + i− σi) = n. Moreover, the sign of each such ρ is opposite to that of σ, proving (3.4).
Third, let y = (y1, . . . , yd) ∈ V (d, n) \ Parp(π). Then the coefficient of ex(σ) in Fπ is 0. We show

that the coefficient of ex(σ) in AFπ is also 0, i.e., that
∑

σ∈N
ε(σ) = 0. (3.5)

where N = {ρ : x(ρ) ∼ y} ∩ Parp(π). In order to prove this, we construct a sign-reversing involution



414 Jeremy L. Martin and Jennifer D. Wagner

on N . Let a = a(π) and let b = (b1, . . . , bd) = (a1 + 1 − y1, a2 + 2 − y2, . . . , ad + d − yd). Note that
bi ≤ ai + i for every i; therefore, we can regard b as a rook placement on Sky(a1 + 1, . . . , ad + d). (It
is possible that bi ≤ 0 for one or more i; we will consider that case shortly.) To say that y 6∈ Fπ is to
say that b is not a proper π-skyline rook placement; on the other hand, we have

∑
bi =

(
d+1
2

)
(as would

be the case if b were proper). Hence the elements of N are the proper π-skyline rook skyline placements
obtained from b by moving one rook up and one other rook down, necessarily by the same number of
squares. Let b(i ↑ q, j ↓ r) denote the rook placement obtained by moving the ith rook up to row q and
the jth rook down to row r.

We now consider the various possible ways in which b can fail to be proper.
Case 1: bi ≤ 0 for two or more i. In this caseN = ∅, because moving only one rook up cannot produce

a proper π-skyline rook placement.
Case 2: bi ≤ 0 for exactly one i. The other rooks in b cannot all be at different heights, because that

would imply that
∑
bi ≤ 0 + (2 + · · ·+ d) <

(
d+1
2

)
. Therefore, either N = ∅, or else bj = bk for some

j, k and there are rooks at all heights except q and r for some q, r < bj = bk.
Then b(i ↑ q, j ↓ r) is proper if and only if b(i ↑ q, k ↓ r) is proper, and likewise b(i ↑ r, j ↓ q) is

proper if and only if b(i ↑ r, k ↓ q) is proper. Each of these pairs is related by the transposition (j k), so
we have the desired sign-reversing involution on N .

Case 3: bi ≥ 1 for all i. Then the reason that b is not proper must be that some row has no rooks and
some row has more than one rook. There are several subcases:

Case 3a: For some q 6= r, there are two rooks at height q, no rooks at height r, and one rook at every
other height. But this is impossible because then

∑
bi =

(
d+1
2

)
+ q − r 6=

(
d+1
2

)
.

Case 3b: There are four or more rooks at height q, or three at height q and two or more at height r. In
both cases N = ∅.

Case 3c: We have bi = bj = bk; no rooks at heights q or r for some q < r; and one rook at every other
height. Then

N ⊆
{
b(i ↑ r, j ↓ q), b(j ↑ r, i ↓ q), b(k ↑ r, i ↓ q),
b(i ↑ r, k ↓ q), b(j ↑ r, k ↓ q), b(k ↑ r, j ↓ q).

}

For each column of the table above, its two rook placements are related by a transposition (e.g., (j k) for
the first column) and either both or neither of those rook placements are proper (e.g., for the first column,
depending on whether or not bi ≤ r). Therefore, we have the desired sign-reversing involution on N .

Case 3d: We have bi = bj = q; bk = b` = r, and one rook at every other height except heights s and t.
Now the desired sign-reversing involution on N is toggling the rook that gets moved down; for instance,
b(j ↑ s, k ↓ t) is proper if and only if b(j ↑ s, ` ↓ t) is proper.

This completes the proof of (3.5), which together with (3.4) completes the proof that Fπ is an eigen-
vector of A(d, n) with eigenvalue −n. 2

Conjecture 3.6 If n ≤
(
d
2

)
, then in fact τ(SR(d, n)) = −n, and the dimension of the corresponding

eigenspace is the Mahonian number M(d, n).

We have verified this conjecture, using Sage, for all d ≤ 6. It is not clear in general how to rule out the
possibility of a smaller eigenvalue, or of additional (−n)-eigenvectors linearly independent of the Fπ .

The proof of Theorem 3.5 implies that every partial permutohedron Parp(π) induces an n-regular
subgraph of SR(d, n). Another experimental observation is the following:

Conjecture 3.7 For every π ∈ Sd,n, the induced subgraph SR(d, n)|Parp(π) is Laplacian integral.
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We have verified this conjecture, using Sage, for all permutations of length d ≤ 6. We do not know what
the eigenvalues are, but these graphs are not in general strongly regular (as evidenced by the observation
that they have more than 3 distinct eigenvalues).

4 Corollaries, alternate methods, and further directions
4.1 The independence number
The independence number of SR(d, n) can be interpreted as the maximum number of nonattacking
“rooks” that can be placed on a simplicial chessboard of side length n + 1. By (Godsil and Royle,
2001, Lemma 9.6.2), the independence number α(G) of a δ-regular graph G on N vertices is at most
−τN/(δ − τ), where τ is the smallest eigenvalue of A(G). For d = 3 and n ≥ 3, we have τ = −3,
which implies that the independence number α(SR(d, n)) is at most 3(n+ 2)(n+ 1)/(4n+ 6). This is
of course a weaker result (except for a few small values of n) than the exact value b(3n+ 3)/2c obtained
in Nivasch and Lev (2005) and Blackburn et al. (2011).

Question 4.1 What is the independence number of SR(d, n)? That is, how many nonattacking rooks can
be placed on a simplicial chessboard?

Proposition 3.2 implies the upper bound

α(SR(d, n)) ≤ d(d+ 1)

(2n+ d)(d− 1)

(
n+ d− 1

d− 1

)

for n ≥
(
d
2

)
, but this bound is not sharp (for example, the bound for SR(4, 6) is α ≤ 21, but computation

indicates that α = 16).
The theory of interlacing and equitable partitions Haemers (1995), (Godsil and Royle, 2001, chapter 9)

may be useful in describing the spectrum of SR(d, n). Briefly, given a graph G, one constructs a square
matrix P whose columns and rows correspond to orbits of vertices under the action of the automorphism
group of G; under suitable conditions, every eigenvalue of P is also an eigenvalue of A(G). When
G = SR(n, d), the spectrum of P (G) appears to be a proper subset of that of A(G); on the other hand,
in all cases we have checked computationally (d = 4, n ≤ 30; d = 5, n ≤ 25), the matrices P (SR(n, d))
have integral spectra, which is consistent with Conjecture 1.3.

Question 4.2 Is SR(d, n) determined up to isomorphism by its spectrum?

References
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Interpolation, box splines, and lattice points in
zonotopes

Matthias Lenz†

Mathematical Institute, 24–29 St Giles’, Oxford, OX1 3LB, United Kingdom

Abstract. Given a finite list of vectors X ⊆ Rd, one can define the box spline BX . Box splines are piecewise
polynomial functions that are used in approximation theory. They are also interesting from a combinatorial point of
view and many of their properties solely depend on the structure of the matroid defined by the list X . The support
of the box spline is the zonotope Z(X). We show that if the list X is totally unimodular, any real-valued function
defined on the set of lattice points in the interior of Z(X) can be extended to a function on Z(X) of the form p(D)BX

in a unique way, where p(D) is a differential operator that is contained in the so-called internal P-space. This was
conjectured by Olga Holtz and Amos Ron. We also point out connections between this interpolation problem and
matroid theory, including a deletion-contraction decomposition.

Résumé. Étant donné une liste finie de vecteurs X ⊆ Rd, on peut définir la box spline BX . Les box splines sont
des fonctions continues par morceaux qui sont utilisées en théorie de l’approximation. Elles sont aussi intéressantes
d’un point de vue combinatoire et beaucoup de leurs propriétés dépendent uniquement de la structure du matroı̈de
défini par la liste X . Le support de la box spline est le zonotope Z(X). Si la liste X est totalement unimodu-
laire, nous démontrons que toute fonction à valeurs réelles définie sur l’ensemble des points du réseau à l’intérieur
de Z(X) peut être étendue à une fonction sur Z(X) de la forme p(D)BX de manière unique, où p(D) est un
opérateur différentiel qui est contenu dans l’espace appelé P-interne. Cela a été conjecturé par Olga Holtz et Amos
Ron. Nous indiquons aussi des relations entre ce problème d’interpolation et la théorie des matroı̈des, en plus d’une
décomposition suppressions-contractions.

Keywords: matroid, zonotope, lattice points, interpolation, box spline

1 Introduction
Given a set Θ = {u1, . . . , uk} of k distinct points on the real line and a function f : Θ → R, it is well-
known that there exists a unique polynomial pf in the space of univariate polynomials of degree at most
k − 1 s. t. pf (ui) = f(ui) for i = 1, . . . , k.

If Θ is contained in Rd for an integer d ≥ 2, the situation becomes more difficult. Not all of the
properties of the univariate case can be preserved simultaneously. The minimal number mΘ s. t. for every

†The author was supported by an ERC starting grant awarded to Olga Holtz and subsequently by a Junior Research Fellowship
of Merton College (University of Oxford).
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f : Θ → R there exists a polynomial pf ∈ R[x1, . . . , xd] of total degree at most mΘ that satisfies
pf (ui) = f(ui) depends on the geometric configuration of the points in Θ. Furthermore, the interpolating
polynomial pf of degree at most mΘ is in general not uniquely determined. This is only possible if the
dimension of the space of polynomials of degree at most mΘ happens to be equal to k.

Uniqueness is possible if we choose the interpolating polynomials from a special space. Carl de Boor
and Amos Ron introduced the least solution to the polynomial interpolation problem. For an arbitrary
finite point set Θ ⊆ Rd, they construct a space of multivariate polynomials Π(Θ) that has dimension |Θ|
and that contains a unique polynomial interpolating polynomial pf for every function f : Θ→ R [12, 13].

In this paper, we construct a space that contains unique interpolating functions for the special case
where Θ is the set of lattice points in the interior of a zonotope. The space is of a very special nature:
it is obtained by applying certain differential operators to the box spline. This is interesting because
it connects various algebraic and combinatorial structures with interpolation and approximation theory.
More information on multivariate polynomial interpolation can be found in the survey paper [17].

We use the following setup: U denotes a d-dimensional real vector space and Λ ⊆ U a lattice. Let
X = (x1, . . . , xN ) ⊆ Λ be a finite list of vectors that spans U . We assume that X is totally unimodular
with respect to Λ, i. e. every basis for U that can be selected from X is also a lattice basis. The symmetric
algebra over U is denoted by Sym(U). We fix a basis s1, . . . , sd for the lattice. This makes it possible to
identify Λ with Zd, U with Rd, Sym(U) with the polynomial ring R[s1, . . . , sd], and X with a (d × N)
matrix. ThenX is totally unimodular if and only if every non-singular square submatrix of this matrix has
determinant 1 or −1. A base-free setup is however more convenient when working with quotient vector
spaces.

The zonotope Z(X) is defined as

Z(X) :=

{
N∑

i=1

λixi : 0 ≤ λi ≤ 1

}
. (1)

We denote its set of interior lattice points by Z−(X) := int(Z(X)) ∩ Λ. The box spline BX : U → R is
a piecewise polynomial function that is supported on the zonotope Z(X). It is defined by

BX(u) :=
1√

det(XXT )
volN−d

{
(λ1, . . . , λN ) ∈ [0, 1]N :

N∑

i=1

λixi = u

}
. (2)

For examples, see Figure 1 and Example 10. A good reference for box splines and their applications in
approximation theory is [11]. Our terminology is closer to [14, Chapter 7], where splines are studied from
an algebraic point of view.

A vector u ∈ U defines a linear form px ∈ Sym(U). For a sublist Y ⊆ X , we define pY :=
∏
y∈Y py .

For example, if Y = ((1, 0), (1, 2)), then pY = s2
1 + 2s1s2. Now we define the

central P-space P(X) := span{pY : rk(X \ Y ) = rk(X)} (3)

and the internal P-space P−(X) :=
⋂

x∈X
P(X \ x). (4)

The space P−(X) was introduced in [18] where it was also shown that the dimension of this space is
equal to |Z−(X)|. The space P(X) first appeared in approximation theory [1, 10, 16]. Later, spaces of
this type and generalisations were also studied by authors in other fields, e. g. [2, 4, 19, 22, 24, 26, 29].
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We will let the elements of P−(X) act as differential operators on the box spline. For p ∈ P−(X) ⊆
Sym(U) ∼= R[s1, . . . , sr], we write p(D) to denote the differential operator obtained from p by replacing
the variable si by ∂

∂si
.

The following proposition ensures that the box spline is sufficiently smooth so that the derivatives that
appear in the Main Theorem actually exist.

Proposition 1. Let X ⊆ Λ ⊆ U ∼= Rd be a list of vectors that is totally unimodular and let p ∈ P−(X).
Then p(D)BX is a continuous function.

Now we are ready to state the Main Theorem. It was conjectured by Olga Holtz and Amos Ron [18,
Conjecture 1.8].

Theorem 2 (Main Theorem). Let X ⊆ Λ ⊆ U ∼= Rd be a list of vectors that is totally unimodular. Let f
be a real valued function on Z−(X), the set of interior lattice points of the zonotope defined by X .

Then there exists a unique polynomial p ∈ P−(X) ⊆ R[s1, . . . , sd], s. t. p(D)BX equals f on Z−(X).

Here, p(D) denotes the differential operator obtained from p by replacing the variable si by ∂
∂si

and
BX denotes to the box spline defined by X .

Remark 3. Total unimodularity of the listX is a crucial requirement in Theorem 2. Namely, the dimension
of P−(X) and |Z−(X)| agree if and only if X is totally unimodular. Note that if one vector in X is
multiplied by an integer λ ≥ 2, |Z−(X)| increases while P−(X) stays the same.

Total unimodularity also enables us to make a simple deletion-contraction proof: it implies that Λ/x is
a lattice for all x ∈ X . In general, quotients of lattices may contain torsion elements.

Remark 4. We have mentioned above that dim(P−(X)) = |Z−(X)| holds. This is a consequence of a
deep connection between the spaces P−(X) and P(X) and matroid theory. The Hilbert series of these
two spaces are evaluations of the Tutte polynomial of the matroid defined by X [2]. One can deduce that
the Hilbert series of the internal space is equal to the h-polynomial of the broken-circuit complex [5] of
the matroid M∗(X) that is dual to the matroid defined by X and the Hilbert series of the central space
equals the h-polynomial of the matroid complex of M∗(X). The Ehrhart polynomial of a zonotope that
is defined by a totally unimodular matrix is also an evaluation of the Tutte polynomial (see e. g. [30]). In
summary, for a totally unimodular matrix X

dimP−(X) = |Z−(X)| = TX(0, 1) and dimP(X) = vol(Z(X)) = TX(1, 1) (5)

holds, where TX denotes the Tutte polynomial of the matroid defined by X .
It is also interesting to know that the Ehrhart polynomial of an arbitrary zonotope defined by an integer

matrix is an evaluation of the arithmetic Tutte polynomial [6, 7].

The full-length version of this extended abstract that includes all proof is available on the arXiv [23].
Various related papers have been presented at FPSAC in recent years (e. g. [2, 21, 27]).

Organisation of this extended abstract. In Section 2 we will discuss some basic properties of splines.
Section 3 is devoted to the one-dimensional case. In Section 4 we will recall the wall-crossing formula for
splines that can be used to prove Proposition 1. In Section 5 we will define deletion and contraction and
in Section 6 we will state a deletion-contraction decomposition of our interpolation problem that implies
the Main Theorem.
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1
s2

s1

s2

s1

s2 − s1 + 1

s1 − s2 + 1

2− s1

2− s2

Figure 1: A very simple two-dimensional example. Here, X = ((1, 0), (0, 1), (1, 1)), P−(X) = R, and there is
only one interior lattice point in Z(X).

2 Splines
In this section we will introduce the multivariate spline and discuss some basic properties of splines.
Proofs of the results that we mention here can be found in [14, Chapter 7] and some also in [11].

If the convex hull of the vectors in X does not contain 0, we define the multivariate spline (or truncated
power) TX : U → R by

TX(u) :=
1√

det(XXT )
volN−d{(λ1, . . . , λN ) ∈ RN≥0 :

N∑

i=1

λixi = u}. (6)

The support of TX is the cone cone(X) :=
{∑N

i=1 λixi : λi ≥ 0
}

.
Sometimes it is useful to think of the two splines BX and TX as distributions. In particular, one can

then define the splines for lists X ⊆ U that do not span U .
Remark 5. Let X ⊆ U ∼= Rr be a finite list of vectors. The multivariate spline TX and the box spline BX
are distributions that are characterised by the formulae

∫

U

ϕ(u)BX(u) du =

∫ 1

0

· · ·
∫ 1

0

ϕ

(
N∑

i=1

λixi

)
dλ1 · · · dλN (7)

and
∫

U

ϕ(u)TX(u) du =

∫ ∞

0

· · ·
∫ ∞

0

ϕ

(
N∑

i=1

λixi

)
dλ1 · · · dλN . (8)

where ϕ denotes a test function.
Remark 6. Convolutions of splines are again splines. In particular,

TX = Tx1
∗ · · · ∗ TxN and BX = Bx1

∗ · · · ∗Bxn . (9)

For x ∈ X , differentiation of the two splines in direction x is particularly easy:

DxTX = TX\x (10)
and DxBX = ∇xBX\x := BX\x −BX\x(· − x). (11)
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Remark 7. For a basis C ⊆ U ,

BC =
χZ(C)

|det(C)| and TC =
χcone(C)

|det(C)| , (12)

where χA : U → {0, 1} denotes the indicator function of the set A ⊆ U . In conjunction with (9), (12)
provides a simple recursive method to calculate the splines.
Remark 8. The box spline can easily be obtained from the multivariate spline. Namely,

BX(u) =
∑

S⊆X
(−1)|S|TX (u− aS) , (13)

where aS :=
∑
a∈S a.

3 Cardinal B-splines
In this section we will discuss the one-dimensional case of Theorem 2. This case can be used as base case
for the inductive proof of the Main Theorem.

Let XN := (1, . . . , 1︸ ︷︷ ︸
N times

) ⊆ Z ⊆ R1. WLOG every totally unimodular list of vectors in R1 can be written

in this way.
One can easily calculate the corresponding box splines (cf. Remark 7):

BXN+1
(u) =

∫ 1

0

BXN (u− τ) dτ =
N+1∑

j=0

(−1)j

N !

(
N + 1

j

)
(u− j)N+ , (14)

where (u− j)N+ := max(u− j, 0)N . The functions BXN+1
are called cardinal B-splines in the literature

(e. g. [9]).
Note that Z−(XN+1) = {1, 2, . . . , N},

PXN+1
= span{1, s, . . . , sN}, and P−(XN+1) = span{1, s, . . . , sN−1}.

Hence, in the one-dimensional case, Theorem 2 is equivalent to the following proposition.

Proposition 9. Let N ∈ N. For every function f : {1, . . . , N} → R, there exist uniquely determined
numbers λ1, . . . , λN ∈ R s. t.

N∑

i=1

λiD
i−1
x BXN+1

(j) = f(j) for j = 1, . . . , N. (15)

For N ∈ N, we consider the matrix (N ×N)-matrix MN whose entries are given by

mN
ij = Di−1

x BXN+1
(j). (16)

Proposition 9 is equivalent to MN having full rank. Here are a few simple examples (see also Figure 2).
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Figure 2: The cardinal B-splines B2, B3, and B4.

Example 10.

BX2(s) = s− 2(s− 1)+ + (s− 2)+ (17)

BX3(s) =
1

2

(
s2 − 3(s− 1)2

+ + 3(s− 2)2
+ − (s− 3)2

+

)
(18)

BX4(s) =
1

6

(
s3 − 4(s− 1)3

+ + 6(s− 2)3
+ − 4(s− 3)3

+ + (s− 4)3
+

)
(19)

M2 =
(
1
)

M3 =

(
1
2

1
2

1 −1

)
M4 =




1
6

4
6

1
6

1
2 0 − 1

2
1 −2 1




4 Smoothness and wall-crossing
In this section we will discuss the proof of Proposition 1. First, we will mention some results on the
structure of the multivariate spline TX that can be used in the proof. The Wall-Crossing Theorem describes
the behaviour of TX when we pass from one region of polynomiality to another.

Definition 11. A tope is a connected component of the complement of

HX := {span(Y ) : Y ⊆ X, rk(Y ) = rk(X)− 1} ⊆ U (20)

The following theorem is a consequence of Lemma 3.3 and Proposition 3.7 in [15].

Theorem 12. Let X ⊆ U ∼= Rd be a list of vectors N that spans U and whose convex hull does not
contain 0.

Then TX agrees with a homogeneous polynomial fτ of degree N − d on every tope τ .

Given a hyperplane H and a tope τ which does not intersect H (but its closure may do so), we partition
X \ H into two sets AτH and BτH . The set AτH contains the vectors that lie on the same side of H as τ
and BτH contains the vectors that lie on the other side. Note that the convex hull of (AτH ,−BτH) does not
contain 0. Hence, we can define the multivariate spline

T τX\H := (−1)|B
τ
H |T(AτH ,−BτH). (21)

Now we are ready to state the wall-crossing formula as in [15, Theorem 4.10]. Related results are in
[8, 28].
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Theorem 13 (Wall-crossing for multivariate splines). Let τ1 and τ2 be two topes whose closures have an
r − 1 dimensional intersection τ12 that spans a hyperplane H . Then there exists a uniquely determined
distribution fτ12 that is supported on H s. t. the difference of the local pieces of TX in τ1 and τ2 is equal
to the polynomial

T τ1X − T τ2X = (T τ1X\H − T
−τ1
X\H) ∗ fτ12 . (22)

Proof of Proposition 1 (sketch): Let u ∈ U . If u ∈ U \ HX , there is nothing to prove: by Theorem 12,
TX is polynomial in a neighbourhood of u and hence smooth. If u ∈ HX , u is contained in the closure of
at least two topes. We have to show that the derivatives of the polynomial pieces in the topes agree on u.
This can be done using the wall-crossing formula.

Remark 14. Holtz and Ron conjectured that P−(X) is spanned by polynomials pY where Y runs over all
sublists of X s. t. X \ (Y ∪ x) has full rank for all x ∈ X [18, Conjecture 6.1]. By formula (11), this
would have implied Proposition 1. However, this conjecture has recently been disproved [3].

5 Deletion and contraction
In this section we will introduce the operations deletion and contraction which will can be used in an
inductive proof of the Main Theorem. We will also state two lemmas about deletion and contraction for
box splines and zonotopes.

Let x ∈ X . We call the list X \ x the deletion of x. The image of X \ x under the canonical projection
πx : U → U/ span(x) =: U/x is called the contraction of x. It is denoted by X/x.

The projection πx induces a map Sym(πx) : Sym(U)→ Sym(U/x). If we identify Sym(U) with the
polynomial ring R[s1, . . . , sr] and x = sr, then Sym(πx) is the map from R[s1, . . . , sr] to R[s1, . . . , sr−1]
that sends sr to zero and s1, . . . , sr−1 to themselves. The space P(X/x) is contained in the symmetric
algebra Sym(U/x).

Since X is totally unimodular, Λ/x ⊆ U/x is a lattice for every x ∈ X and X/x is totally unimodular
with respect to this lattice.

The following two lemmas describe the behaviour zonotopes and box splines under deletion and con-
traction. See Figure 3 for an illustration of the first lemma.

Lemma 15. The following map is a bijection:

Z−(X) \ Z−(X \ x)→ Z−(X/x) (23)
z 7→ z̄. (24)

Lemma 16. Let x ∈ X , u ∈ U , and ū = u+ span(x) the coset of u in X/x. Then

BX/x(ū) =

∫

R
BX\x(u+ τx) dτ =

∑

λ∈Z
BX(u+ λx). (25)

6 Exact sequences
In this section we will state a result involving deletion and contraction that implies the Main Theorem.
We start with a simple observation.
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Figure 3: Deletion and contraction for a zonotope and a function defined on the interior lattice points of the zonotope.

Remark 17. If X contains a coloop, i. e. an element x s. t. rk(X \ x) < rk(X), then Z−(X) = ∅ and
P−(X) = {0}. Hence, Theorem 2 is trivially satisfied.

We will consider the set Ξ(X) := {f : Λ→ R : supp(f) ⊆ Z−(X)} and the map

γX : P−(X)→ Ξ(X)

p 7→
[

Λ 3 z 7→ p(D)BX(z)
] (26)

Note that the Main Theorem is equivalent to γX being an isomorphism.

Proposition 18. Let d ≥ 2 and let Λ ⊆ U ∼= Rd be a lattice. Let X ⊆ Λ be a finite list of vectors
that spans U and that is totally unimodular with respect to Λ. Let x ∈ X be a non-zero element s. t.
rk(X \ x) = rk(X).

Then the following diagram of real vector spaces is commutative, the rows are exact and the vertical
maps are isomorphisms:

0 // P−(X \ x)
·px //

γX\x

��

P−(X)
Sym(πx)//

γX

��

P−(X/x) //

γX/x

��

0

0 // Ξ(X \ x)
∇x // Ξ(X)

Σx // Ξ(X/x) // 0

(27)

where ∇x(f)(z) := f(z)− f(z − x), (28)

Σx(f)(z̄) :=
∑

x∈z̄∩Λ

f(x) =
∑

λ∈Z
f(λx+ z) for some z ∈ z̄. (29)

7 Outlook
In a forthcoming paper the Main Theorem will be made more explicit. Namely, in [25] polynomials
fz ∈ P−(X) will be constructed for all z ∈ Z−(X) s. t. fz(D)BX equals one on z and vanishes elsewhere
on Z−(X). The construction of these polynomials involves Todd operators.

A variant of the Khovanskii-Pukhlikov formula [20] that relates the volume and the number of integer
points in a smooth polytope is obtained as a corollary.
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volution du polynôme de Tutte des matroı̈des, formule publiée par Kook, Reiner et Stanton (1999). Cette contribution
FPSAC est un résumé étendu.
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1 Introduction
The interplay between algebraic combinatorics and quantum field theory (QFT) has become more and
more present within the spectrum of Combinatorial Physics (spectrum represented by many other subjects,
such as the combinatorics of quantum mechanics, of statistical physics or of integrable systems - see, for
example, Blasiak and Flajolet (2011), Blasiak et al. (2010), the review article Di Francesco (2012), the
Habilitation Tanasa (2012) and references within).

One of the most known results lying at this frontier between algebraic combinatorics and QFT is the
celebrated Hopf algebra Connes and Kreimer (2000), describing the combinatorics of renormalization
in QFT. It is worth emphasizing that the coproduct of this type of Hopf algebra is based on a selec-
tion/contraction rule (one has on the coproduct left hand side (lhs) some selection of a subpart of the
entity the coproduct acts on, while on the coproduct right hand side (rhs) one has the result of the con-
traction of the selected subpart). This type of rule (appearing in other situations in Mathematical Physics,
see also Tanasa and Vignes-Tourneret (2008); Tanasa and Kreimer (2012); Markopoulou (2003); Tanasa
(2010)) is manifestly distinct from the selection/deletion one, largely studied in algebraic combinatorics
(see, for example, Duchamp et al. (2011) and references within).

In this paper, we use characters of the matroid Hopf algebra introduced in Schmitt (1994) to prove the
universality property of the Tutte polynomial for matroids. We use a Combinatorial Physics approach,
namely we use a renormalization group-like differential equation to prove the respective recipe theorem.
Our method also allows to give a new proof of a matroid Tutte polynomial convolution formula given in
Kook et al. (1999). This approach generalizes the one given in Krajewski and Martinetti (2011) for the
universality of the Tutte polynomial for graphs. Moreover, the demonstrations we give here allow us to
also have proofs of the graph results conjectured in Krajewski and Martinetti (2011).

The paper is structured as follows. In the following section we briefly present the renormalization group
flow equation and show that equations of such type have already been successfully used in combinatorics.
The third section defines matroids, as well the Tutte polynomial for matroids and the matroid Hopf algebra
defined in Schmitt (1994). The following section defines some particular infinitesimal characters of this
Hopf algebra as well as their exponential - proven, later on, to be non-trivially related to the Tutte polyno-
mial for matroids. The fifth section uses all this tools to give a new proof of the matroid Tutte polynomial
convolution formula given in Kook et al. (1999) and of the recipe theorem for the Tutte polynomial of
matroids.

2 Renormalization group in quantum field theory - a glimpse
A QFT model (for a general introduction to QFT and not just an introduction, see for example the book
Zinn-Justin (2002)) is defined by means of a functional integral of the exponential of an action S which,
from a mathematical point of view, is a functional of the fields of the model. For the Φ4 scalar model -
the simplest QFT model - there is only one type of field, which we denote by Φ(x). From a mathematical
point of view, for an Euclidean QFT scalar model, the field Φ(x) is a function, Φ : RD → K, where D is
usually taken equal to 4 (the dimension of the space) and K ∈ {R,C} (real, respectively complex fields).

The quantities computed in QFT are generally divergent. One thus has to consider a real, positive,
cut-off Λ - the flowing parameter. This leads to a family of cut-off dependent actions, family denoted by
SΛ. The derivation Λ∂SΛ

∂Λ gives the renormalization group equation.
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The quadratic part of the action - the propagator of the model - can be written in the following way

CΛ,Λ0
(p, q) = δ(p− q)

∫ 1
Λ

1
Λ0

dαe−αp
2

, (2.1)

with p and q living in the Fourier transformed space RD and Λ0 a second real, positive cut-off. In
perturbative QFT, one has to consider Feynman graphs, and to associate to each such a graph a Feynman
integral (further related to quantities actually measured in physical experiments). The contribution of an
edge of such a Feynman graph to its associated Feynman integral is given by an integral such as (2.1).

One can then get (see Polchinski (1984)) the Polchinski flow equation

Λ
∂SΛ

∂Λ
=

∫

R2D

1

2
dDpdDqΛ

∂CΛ,Λ0

∂Λ

(
δ2S

δΦ̃(p)δΦ̃(q)
− δS

δΦ̃(p)

δS

δΦ̃(q)

)
, (2.2)

where Φ̃ represents the Fourier transform of the function Φ. The first term in the right hand side (rhs) of
the equation above corresponds to the derivation of a propagator associated to a bridge in the respective
Feynman graph. The second term corresponds to an edge which is not a bridge and is part of some circuit
in the graph. One can see this diagrammatically in Fig. 1.

Fig. 1: Diagrammatic representation of the flow equation.

This equation can then be used to prove perturbative renormalizability in QFT. Let us also stress here,
that an equation of this type is also used to prove a result of E. M. Wright which expresses the generating
function of connected graphs under certain conditions (fixed excess). To get this generating functional
(see, for example, Proposition II.6 the book Flajolet and Sedgewick (2008)), one needs to consider
contributions of two types of edges (first contribution when the edge is a bridge and a second one when
not - see again Fig. 1).

As already announced in the Introduction, we will use such an equation to prove the universality of the
matroid Tutte polynomial (see section 5).

3 Matroids: the Tutte polynomial and the Hopf algebra
In this section we recall the definition and some properties of the Tutte polynomial for matroids as well
as of the matroid Hopf algebra defined in Schmitt (1994).

Following the book Oxley (1992), one has the following definitions:

Definition 3.1 A matroid M is a pair (E, I) consisting of a finite set E and a collection of subsets of E
satisfying:

(I1) I is non-empty.
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(I2) Every subset of every member of I is also in I.

(I3) If X and Y are in I and |X| = |Y |+ 1, then there is an element x in X − Y such that Y ∪ {x} is
in I.

The set E is the ground set of the matroid and the members of I are the independent sets of the matroid.

One can associate matroid to graphs - graphic matroids. Nevertheless, not all matroids are graphic
matroids.

Let E be an n−element set and let I be the collection of subsets of E with at most r elements, 0 ≤
r ≤ n. One can check that (E, I) is a matroid; it is called the uniform matroid Ur,n.

Remark 3.2 If one takes n = 1, there are only two matroids, namely U0,1 and U1,1 and both of these
matroids are graphic matroids. The graphs these two matroids correspond to are the graphs with one edge
of Fig. 2 and Fig. 3. In the first case, the edge is a loop (in graph theoretical terminology) or a tadpole

Fig. 2: The graph corresponding to the matroid U0,1.

Fig. 3: The graph corresponding to the matroid U1,1.

(in QFT language). In the second case, the edge represents a bridge (in graph theoretical terminology)
or a 1-particle-reducible line (in QFT terminology) - the number of connected components of the graphs
increases by 1 if one deletes the respective edge. In matroid terminology, these two particular cases
correspond to a loop and respectively to a coloop (see Definitions 3.6 and respectively 3.7 below).

Definition 3.3 The collection of maximal independent sets of a matroid are called bases. The collection
of minimal dependent sets of a matroid are called circuits.

Let M = (E, I) be a matroid and let B = {B} be the collection of bases of M . Let B? = {E − B :
B ∈ B}. Then B? is the collection of bases of a matroid M? on E. The matroid M∗ is called the dual of
M .

Definition 3.4 Let M = (E, I) be a matroid. The rank r(A) of A ⊂ E is defined as the cardinal of a
maximal independent set in A.

r(A) = max{|B| s.t. B ∈ I, B ⊂ A} . (3.1)

Definition 3.5 Let M = (E, I) be a matroid with a ground set E. The nullity function is given by

n(M) = |E| − r(M) . (3.2)

Definition 3.6 Let M = (E, I) be a matroid. The element e ∈ E. is a loop iff {e} is the circuit.



Renormalization group-like proof of the universality of the Tutte polynomial for matroids 431

Definition 3.7 Let M = (E, I) be a matroid. The element e ∈ E is a coloop iff, for any basis B, e ∈ B .

Let us now define two basic operations on matroids. Let M be a matroid (E, I) and T be a subset of
E. Let I ′ = {I ⊆ E − T : I ∈ I}. One can check that (E − T, I ′) is a matroid. We denote this matroid
by M\T - the deletion of T from M . The contraction of T from M , M/T , is given by the formula:
M/T = (M?\T )?.

Let us also recall the following results:

Lemma 3.8 Let M be a matroid (E, I) and T be a subset of E. One has

M |T = M\E−T . (3.3)

Lemma 3.9 If e is a coloop of a matroid M = (E, I), then M/e = M\e.
Lemma 3.10 Let M = (E, I) be a matroid and T ⊆ E, then, for all X ⊆ E − T ,

rM/T (X) = rM (X ∪ T )− rM (T ) . (3.4)

Let us now define the Tutte polynomial for matroids:

Definition 3.11 Let M = (E, I) be a matroid. The Tutte polynomial is given by the following formula:

TM (x, y) =
∑

A⊆E
(x− 1)r(E)−r(A)(y − 1)n(A). (3.5)

The sum is computed over all subset of the matroid’s ground set.

Definition 3.12 Let ψ be the matroid duality map, that is a map associating to any matroid M its dual,
ψ(M) = M?.

It is worth stressing here that one can define the dual of any matroid; this is not the case for graphs,
where only the dual of planar graph can be defined.

Let us recall, from Brylawsky and Oxley (1992) that

TM (x, y) = TM?(y, x). (3.6)

In Schmitt (1994), as a particularization of a more general construction of incidence Hopf algebras, the
following result was proved:

Proposition 3.13 IfM is a minor-closed family of matroids then k(M̃) is a coalgebra, with coproduct
∆ and counit ε determined by

∆(M) =
∑

A⊆E
M |A⊗M/A (3.7)

and ε(M) =

{
1, if E = ∅,
0 otherwise ,

for all M = (E, I) ∈ M. If, furthermore, the familyM is closed under

formation of direct sums, then k(M̃) is a Hopf algebra, with product induced by direct sum.

We refer to this Hopf algebra as the matroid Hopf algebra. We follow Crapo and Schmitt (2005) and,
by a slight abuse of notation, we denote in the same way a matroid and its isomorphic class, since the
distinction will be clear from the context (as it is already in Proposition 3.13).

We denote the unit of this Hopf algebra by 1 (the empty matroid, or U0,0).
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4 Characters of matroid Hopf algebra
Let us give the following definitions:

Definition 4.1 Let f, g be two mappings in Hom(M,M). The convolution product of f and g is given
by the following formula

f ∗ g = m ◦ (f ⊗ g) ◦∆, (4.1)

where m denotes the Hopf algebra multiplication, given here by direct sum (see above).

Definition 4.2 A matroid Hopf algebra character f is an algebra morphism from the matroid Hopf alge-
bra into a fixed commutative ring K, such that

f(M1 ⊕M2) = f(M1)f(M2), f(1) = 1K. (4.2)

Definition 4.3 A matroid Hopf algebra infinitesimal character g is an algebra morphism from the ma-
troid Hopf algebra into a fixed commutative ring K, such that

g(M1 ⊕M2) = f(M1)ε(M2) + ε(M1)g(M2). (4.3)

Since we work in a Hopf algebra where the non-trivial part of the coproduct is nilpotent, we can also
define an exponential map by the following expression

exp∗(δ) = ε+ δ +
1

2
δ ∗ δ + . . . (4.4)

where δ is an infinitesimal character.
As already stated above (see Remark 3.2), there are only two matroids with unit cardinal ground set,

U0,1 and U1,1. We now define two maps δloop and δcoloop.

δloop(M) =

{
1K if M = U0,1,

0K otherwise .
(4.5)

δcoloop(M) =

{
1K if M = U1,1,

0K otherwise .
(4.6)

One can directly check that these maps are infinitesimal characters of the matroid Hopf algebra defined
above.

One then has:

Lemma 4.4 Let M = (E, I) be a matroid. One has

exp∗{aδcoloop + bδloop}(M) = ar(M)bn(M). (4.7)
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Proof: Using the definition (4.4), the lhs of the identity (4.7) above writes:
( ∞∑

k=0

(aδcoloop + bδloop)k

k!

)
(M). (4.8)

All the terms in the sum above vanish, except the one for whom k is equal to |E|. Using the definition
(4.1) of the convolution product, this term writes

1

k!




k∑

i=0

ak−ibi
∑

i1,...,in
j1,...,jm

i1+···+in=k−i
j1+···+jm=i

δ
⊗(i1)
coloop ⊗ δ

⊗(j1)
loop ⊗ · · · ⊗ δ

⊗(in)
coloop ⊗ δ

⊗(jm)
loop





∑

(i)

M (1) ⊗ · · · ⊗M (k)


 ,(4.9)

where we have used the notation ∆(k−1)(M) =
∑

(i)M
(1) ⊗ · · · ⊗M (k). Using the definitions (4.5)

and respectively (4.6) of the infinitesimal characters δloop and respectively δcoloop, implies that the sub-
matroids M (j) (j = 1, . . . , k) are equal to U0,1 or U1,1.

Using the definition of the nullity and of the rank of a matroid concludes the proof. 2

We now define the following map:

α(x, y, s,M) := exp∗s{δcoloop + (y − 1)δloop} ∗ exp∗s{(x− 1)δcoloop + δloop}(M). (4.10)

One then has:

Proposition 4.5 The map (4.10) is a character.

Proof: The proof can be done by a direct check. On a more general basis, this is a consequence of the
fact that δloop and δcoloop are infinitesimal characters and the space of infinitesimal characters is a vector
space; thus s{δcoloop + (y − 1)δloop} and s{(x − 1)δcoloop + δloop} are infinitesimal characters. Since,
exp∗(h) is a character when h is an infinitesimal character and since the convolution of two characters is
a character, one gets that α is a character. 2

Let us define a map
ϕa,b(M) 7−→ ar(M)bn(M)M . (4.11)

Lemma 4.6 The map ϕa,b is a bialgebra automorphism.

Proof: One can directly check that the map ϕa,b is an algebra automorphism. Let us now check that this
map is also a coalgebra automorphism. Using Lemma 3.8 and Lemma 3.10,

r(M |T ) + r(M/T ) = r(M). (4.12)

Thus, using the definitions of the map ϕa,b of the matroid coproduct, one has:

∆ ◦ ϕa,b(M) =
∑

T⊆E
(ar(M |T )bn(M |T )M |T )⊗ (ar(M/T )bn(M/T )M/T ). (4.13)



434 G. Duchamp, N. Hoang-Nghia, T. Krajewski and A. Tanasa

Using again the definition of the map ϕa,b leads to

∆ ◦ ϕa,b(M) = (ϕa,b ⊗ ϕa,b) ◦∆(M), (4.14)

which concludes the proof. 2

5 Proof of the universality of the Tutte polynomial for matroids
Let M = (E, I) be a matroid. One has:

α(x, y, s,M) = exp∗ (s(δcoloop + (y − 1)δloop)) ∗ exp∗ (s(−δcoloop + δloop))

∗ exp∗ (s(δcoloop − δloop)) ∗ exp∗ (s((x− 1)δcoloop + δloop)) . (5.1)

Proposition 5.1 Let M = (E, I) be a matroid. The character α is related to the Tutte polynomial of
matroids by the following identity:

α(x, y, s,M) = s|E|TM (x, y) . (5.2)

Proof: Using the definition (4.1) of the convolution product in the definition (4.10) of the character α,
one has the following identity:

α(x, y, s,M) =
∑

A⊆E
exp∗s{δcoloop + (y − 1)δloop}(M |A) exp∗s{(x− 1)δcoloop + δloop}(M/A).

(5.3)

We can now apply Lemma 4.4 on each of the two terms in the rhs of equation (5.3) above. This leads to
the result. 2

Using (3.6) and the Proposition 5.1, one has:

Corollary 5.2 One has:

α(x, y, s,M) = α(y, x, s,M?). (5.4)

This allows to give a different proof of a matroid Tutte polynomial convolution identity, which was
shown in Kook et al. (1999). One has:

Corollary 5.3 (Theorem 1 of Kook et al. (1999)) The Tutte polynomial satisfies

TM (x, y) =
∑

A⊂E
TM |A(0, y)TM/A(x, 0). (5.5)

Proof: Taking s = 1, this is as a direct consequence of identity (5.1), and of Proposition 5.1. 2

Let us now define:

[f, g]∗ := f ∗ g − g ∗ f. (5.6)

Using the definition (4.10) of the Hopf algebra character α, one can directly prove the following result:
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Proposition 5.4 The character α is the solution of the differential equation:

dα

ds
= xα ∗ δcoloop + yδloop ∗ α+ [δcoloop, α]∗ − [δloop, α]∗ . (5.7)

It is the fact that the matroid Tutte polynomial is a solution of the differential equation (5.7) that will
be used now to prove the universality of the matroid Tutte polynomial. In order to do that, we take a four-
variable matroid polynomial QM (x, y, a, b) satisfying a multiplicative law and which has the following
properties:

• if e is a coloop, then
QM (x, y, a, b) = xQM\e(x, y, a, b) , (5.8)

• if e is a loop, then
QM (x, y, a, b) = yQM/e(x, y, a, b) (5.9)

• if e is a nonseparating point, then

QM (x, y, a, b) = aQM\e(x, y, a, b) + bQM/e(x, y, a, b). (5.10)

Remark 5.5 Note that, when one deals with the same problem in the case of graphs, a supplementary
multiplicative condition for the case of one-point joint of two graphs (i. e. identifying a vertex of the first
graph and a vertex of the second graph into a single vertex of the resulting graph) is required (see, for
example, Ellis-Monaghan and Merino (2010) or Sokal (2005)).

We now define the map:

β(x, y, a, b, s,M) := s|E|QM (x, y, a, b). (5.11)

One then directly check (using the definition (5.11) above and the multiplicative property of the polyno-
mial Q) that this map is again a matroid Hopf algebra character.

Proposition 5.6 The character (5.11) satisfies the following differential equation:

dβ

ds
(M) = (xβ ∗ δcoloop + yδloop ∗ β + b[δcoloop, β]∗ − a[δloop, β]∗) (M). (5.12)

Proof: Applying the definition (4.1) of the convolution product, the rhs of equation (5.12) above writes

= (x− b)
∑

A⊆E
β(M |A)δcoloop(M/A) + (y − a)

∑

A⊆E
δloop(M |A)β(M/A)

+ b
∑

A⊆E
δcoloop(M |A)β(M/A) + a

∑

A⊆E
β(M |A)δloop(M/A). (5.13)

Using the definitions (4.5) and respectively (4.6) of the infinitesimal characters δloop and respectively
δcoloop, constraints the sums on the subsets A above. The rhs of (5.12) becomes:

(x− b)∑A,M/A=U1,1
β(M |A) + (y − a)

∑
A,M |A=U0,1

β(M/A)

+b
∑
A,M |A=U1,1

β(M/A) + a
∑
A,M/A=U0,1

β(M |A) (5.14)
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We now apply the definition of the Hopf algebra character β; one obtains:

s|E|−1[(x− b)∑A,M/A=U1,1
Q(x, y, a, b,M |A) + (y − a)

∑
A,M |A=U0,1

Q(x, y, a, b,M/A)

+b
∑
A,M |A=U1,1

Q(x, y, a, b,M/A) + a
∑
A,M/A=U0,1

Q(x, y, a, b,M |A)]. (5.15)

We can now directly analyze the four particular cases M/A = U1,1, M/A = U0,1, M |A = U1,1 and
M |A = U0,1:

• If M/A = U1,1, we can denote the ground set of M/A by {e}. Note that e is a coloop. From the
Lemma 3.8, one hasM |A = M\E−A = M\e. One then hasQ(x, y, a, b,M) = xQ(x, y, a, b,M |A).

• IfM |A = U0,1, thenA = {e} and e is a loop ofM . Thus, one hasQ(x, y, a, b,M) = yQ(x, y, a, b,M/A)

• If M |A = U1,1, then A = {e}. One has to distinguish between two subcases:

– e is a coloop of M . Then, by Lemma 3.9, M/e = M\e. Thus, one has Q(x, y, a, b,M) =
xQ(x, y, a, b,M |A).

– e is a nonseparating point of M .

• If M/A = U0,1, one can denote the ground set of M/A by {e}. There are again two subcases to be
considered:

– e is a loop of M , one has that M |A = M\(E−A) = M\{e} = M/e. Then one has
Q(x, y, a, b,M) = yQ(x, y, a, b,M |A).

– e is a nonseparating point of M , then one has M |A = M\(E−A) = M\{e}
We now insert all of this in equation (5.15); this leads to three types of sums over some element e of the
ground set E, e being a loop, a coloop or a nonseparating point:

s|E|−1[
∑

e∈E:e is a coloop

Q(x, y, a, b,M) +
∑

e∈E:e is a loop

Q(x, y, a, b,M) +
∑

e∈E:e is a regular element

Q(x, y, a, b,M)]

(5.16)

This rewrites as

|E|s|E|−1Q(x, y, a, b,M) =
dβ

ds
(M), (5.17)

which completes the proof. 2

We can now state the main result of this paper, the recipe theorem specifying how to recover the matroid
polynomial Q as an evaluation of the Tutte polynomial TM :

Theorem 5.7 One has:
Q(x, y, a, b,M) = an(M)br(M)TM (

x

b
,
y

a
). (5.18)

Proof: The proof is a direct consequence of Propositions 5.1, 5.4 and 5.6 and of Lemma 4.6. This
comes from the fact that one can apply the automorphism φ defined in (4.11) to the differential equation
(5.12). One then obtains the differential equation (5.7) with modified parameters x/b and y/a. Finally,
the solution of this differential equation is (trivially) related to the matroid Tutte polynomial TM (see
Proposition 5.1) and this concludes the proof. 2
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6 Conclusions
We have thus proved in this paper the universality of the matroid Tutte polynomial using differential
equations of the same type as the Polchinski flow equation used in renormalization proofs in QFT. This
analogy comes from the fact we differentiate with respect to two distinct type of edges of the graphs (see
section 2). The role of these two types of graph edges is played in the matroid case studied here by the
loop and the coloop type of elements in the matroid ground set.

As already announced in the Introduction, the matroid proofs given in this paper allow to prove the cor-
responding results for graphs. These graphs results were already conjectured in Krajewski and Martinetti
(2011).

Let us end this paper by indicating as a possible direction for future work the investigation of the
existence of a polynomial realization of matroid Hopf algebras. This objective appears as particularly
interesting because polynomial realizations of Hopf algebras substantially simplify the coproduct coas-
sociativity check (see, for example, the online version of the talk Thibon (2012)). Such an example of
polynomial realizations for the Hopf algebra of trees Connes and Kreimer (1998) (amongst other com-
binatorial Hopf algebras) was given in Foissy et al. (2010). Let us also mention that the task of finding
polynomial realizations for matroid Hopf algebras appears to us to be close to the one of finding polyno-
mial realizations for graph Hopf algebras, since both these algebraic combinatorial structures are based
on the selection/contraction rule stated in the Introduction.
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Abstract. The (q, r)-Eulerian polynomials are the (maj−exc, fix, exc) enumerative polynomials of permutations.
Using Shareshian and Wachs’ exponential generating function of these Eulerian polynomials, Chung and Graham
proved two symmetrical q-Eulerian identities and asked for bijective proofs. We provide such proofs using Foata
and Han’s three-variable statistic (inv−lec, pix, lec). We also prove a new recurrence formula for the (q, r)-Eulerian
polynomials and study a q-analogue of Chung and Graham’s restricted Eulerian polynomials. In particular, we obtain
a symmetrical identity for these restricted q-Eulerian polynomials with a combinatorial proof.

Résumé. Les (q, r)-polynômes Eulériens sont les polynomômes énumératives des permutations par rapport au poids
(maj−exc, fix, exc). En utilisant la fonction génératrice de ces polynômes Eulériens due à Shareshien et Wachs,
Chung et Graham ont démontré deux identités symétriques q-Eulériennes et demandé des preuves bijectives. Nous
donnons de telles preuves en utilisant les statistiques trivariées (inv−lec, pix, lec) de Foata et Han. Nous démontrons
aussi une nouvelle récurrence pour ces (q, r)-polynômes Eulériens et étudions un q-analogue des polynômes Eulériens
restreints de Chung et Graham. En particulier, nous obtenons une identité symétrique pour ces q-polynômes Eulériens
restreints avec une preuve combinatoire.

Keywords: Eulerian numbers; symmetrical Eulerian identities; hook factorization; descents; admissible inversions

1 Introduction
The Eulerian polynomials An(t) :=

∑n
k=0An,kt

k are defined by the exponential generating function

∑

n≥0

An(t)
zn

n!
=

(1− t)ez
ezt − tez . (1)

The coefficients An,k are called Eulerian numbers. The Eulerian numbers arise in a variety of contexts
in mathematics. Let Sn denote the set of permutations of [n] := {1, 2, . . . , n}. For each π ∈ Sn, a
value i, 1 ≤ i ≤ n − 1, is an excedance (resp. descent) of π if π(i) > i (resp. π(i) > π(i + 1)).
Denote by exc(π) and des(π) the number of excedances and descents of π, respectively. It is well-
known that the Eulerian number An,k counts permutations in Sn with k descents (or k excedances), that
is An(t) =

∑
π∈Sn t

desπ =
∑
π∈Sn t

excπ . The reader is referred to [7] for some leisurely historical
introductions of Eulerian polynomials and Eulerian numbers.

Several q-analogs of Eulerian polynomials with combinatorial meanings have been studied in the lit-
erature (see [2, 6, 16, 20]). Recall that the major index, maj(π), of a permutation π ∈ Sn is the sum of

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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all the descents of π, i.e., maj(π) :=
∑
π(i)>π(i+1) i. An element i ∈ [n] is a fixed point of π ∈ Sn if

π(i) = i and we denote by fix(π) the number of fixed points of π. Define the (q, r)-Eulerian polynomials
An(t, r, q) by the following extension of (1):

∑

n≥0

An(t, r, q)
zn

(q; q)n
=

(1− t)e(rz; q)
e(tz; q)− te(z; q) , (2)

where (q; q)n :=
∏n
i=1(1−qi) and e(z; q) is the q-exponential function defined by e(z; q) :=

∑
n≥0

zn

(q;q)n
.

The following interpretation for An(t, r, q) was given by Shareshian and Wachs [16, 18]:

An(t, r, q) :=
∑

π∈Sn
texcπrfixπq(maj−exc)π. (3)

These polynomials have attracted the attention of several authors (cf.[8, 9, 10, 11, 13, 14, 17]).
Let An(t, q) = An(t, 1, q). Define the q-Eulerian numbers An,k(q) and the fixed point q-Eulerian

numbers A(j)
n,k(q):

An(t, q) =
∑

k

An,k(q)tk and An(t, r, q) =
∑

j,k

A
(j)
n,k(q)rjtk.

By (3), we have the following interpretations

An,k(q) =
∑

π∈Sn
excπ=k

q(maj−exc)π and A
(j)
n,k(q) =

∑

π∈Sn
excπ=k
fixπ=j

q(maj−exc)π. (4)

Recall that the q-binomial coefficients
[
n
k

]
q

are defined by
[
n
k

]
q

:= (q;q)n
(q;q)n−k(q;q)k

for 0 ≤ k ≤ n, and[
n
k

]
q

= 0 if k < 0 or k > n.
Answering a question of Chung et al. [5], Han et al. [13] found and proved the following symmetrical

q-Eulerian identity:
∑

k≥1

[
a+ b

k

]

q

Ak,a−1(q) =
∑

k≥1

[
a+ b

k

]

q

Ak,b−1(q), (5)

where a, b are integers with a, b ≥ 1. Besides a generating function proof using (2), a bijective proof of (5)
was also given in [13]. Recently, through analytical arguments, Chung and Graham [4] derived from (2)
the following two further symmetrical q-Eulerian identities:

∑

k≥1

(−1)k
[
a+ b

k

]

q

q(
a+b−k

2 )Ak,a(q) =
∑

k≥1

(−1)k
[
a+ b

k

]

q

q(
a+b−k

2 )Ak,b(q), (6)

∑

k≥1

[
a+ b+ j + 1

k

]

q

A
(j)
k,a(q) =

∑

k≥1

[
a+ b+ j + 1

k

]

q

A
(j)
k,b(q), (7)

where a, b, j are integers with a, b ≥ 1 and j ≥ 0, and asked for bijective proofs. Our first aim is to
provide such proofs using another interpretation of An(t, r, q) introduced by Foata and Han [9], which
was already shown to be successful in the bijective proof of (5) in [13].
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Next, for 1 ≤ j ≤ n, we shall define the restricted q-Eulerian polynomial B(j)
n (t, q) by the exponential

generating function:

∑

n≥j
B(j)
n (t, q)

zn−1

(q; q)n−1
=

(
Aj−1(t, q)(qz)j−1

(q; q)j−1

)
e(tz; q)− te(tz; q)
e(tz; q)− te(z; q) . (8)

and the restricted q-Eulerian number B(j)
n,k(q) by B(j)

n (t, q) =
∑
k B

(j)
n,k(q)tk. We find the following

generalized symmetrical identity for the restricted q-Eulerian polynomials.

Theorem 1 Let a, b, j be integers with a, b ≥ 1 and j ≥ 2. Then

∑

k≥1

[
a+ b+ 1

k − 1

]

q

B
(j)
k,a(q) =

∑

k≥1

[
a+ b+ 1

k − 1

]

q

B
(j)
k,b(q). (9)

When q = 1, the above identity was proved by Chung and Graham [4], who also asked for a bijective
proof. We shall give a bijective proof and an analytical proof of (9), the latter leads to a new recurrence
formula for An(t, r, q).

Theorem 2 The (q, r)-Eulerian polynomials satisfy the following recurrence formula:

An+1(t, r, q) = rAn(t, r, q) + tAn(t, q) + t
n−1∑

j=1

[
n

j

]

q

qjAj(t, r, q)An−j(t, q) (10)

for n ≥ 1 and A1(t, r, q) = r.

This paper is organized as follows. In section 2, we review some preliminaries about the three-variable
statistic (inv, pix, lec) and give the bijective proofs of (6) and (7). In section 3, we first prove Theorem 2
and then define a new statistic called “rix”, which together with descents and admissible inversions (a
statistic on permutations which appears in the context of poset topology [16]) gives another interpretation
of An(t, r, q). In section 4, we give two combinatorial interpretations of B(j)

n,k(q) and two proofs of
Theorem 1.

2 Bijective proofs of (6) and (7)
2.1 Preliminaries
A word w = w1w2 . . . wm on N is called a hook if w1 > w2 and either m = 2, or m ≥ 3 and w2 < w3 <
. . . < wm. As shown in [12], each permutation π = π1π2 . . . πn admits a unique factorization, called its
hook factorization, pτ1τ2...τr, where p is an increasing word and each factor τ1, τ2, . . . , τk is a hook. To
derive the hook factorization of a permutation, one can start from the right and factor out each hook step
by step. Denote by inv(w) the numbers of inversions of a word w = w1w2 . . . wm, i.e., the number of
pairs (wi, wj) such that i < j and wi > wj . Then we define

lec(π) :=
∑

1≤i≤k
inv(τi) and pix(π) := length of the factor p.
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For example, the hook factorization of π = 1 3 4 14 12 2 5 11 15 8 6 7 13 9 10 is

1 3 4 14 | 12 2 5 11 15 | 8 6 7 | 13 9 10.

Hence p = 1 3 4 14, τ1 = 12 2 5 11 15, τ2 = 8 6 7, τ3 = 13 9 10, pix(π) = 4 and

lec(π) = inv(12 2 5 11 15) + inv(8 6 7) + inv(13 9 10) = 7.

Let A0,A1, ...,Ar be a series of sets on N. Denote by inv(A0,A1, ...,Ar) the number of pairs (k, l)
such that k ∈ Ai, l ∈ Aj , k > l and i < j. We usually write cont(A) to denote the set of all letters
in a word A. So we have (inv − lec)π = inv(cont(p), cont(τ1), . . . , cont(τr)) if pτ1τ2...τr is the hook
factorization of π.

From Foata and Han [9, Theorem 1.4], we derive the following combinatorial interpretations of the
(q, r)-Eulerian polynomials

An(t, r, q) =
∑

π∈Sn
tlecπrpixπq(inv−lec)π. (11)

Therefore
An,k(q) =

∑

π∈Sn
lecπ=k

q(inv−lec)π and A
(j)
n,k(q) =

∑

π∈Sn
lecπ=k
pixπ=j

q(inv−lec)π. (12)

It is known [19, Proposition 1.3.17] that the q-binomial coefficient has the interpretation
[
n

k

]

q

=
∑

(A,B)

qinv(A,B), (13)

where the sum is over all ordered partitions (A,B) of [n] such that |A| = k.
We will give bijective proofs of (6) and (7) using the interpretations in (12) and (13).

Remark 1 In [9], a bijection on Sn that carries the triplet (fix, exc,maj) to (pix, lec, inv) was constructed
without being specified. This bijection consists of two steps. The first step (see [9, section 6]) uses the word
analogue of Kim-Zeng’s decomposition and an updated version of Gessel-Reutenauer standardization to
construct a bijection on Sn that transforms the triplet (fix, exc,maj) to (pix, lec, imaj), where imaj(π) :=
maj(π−1) for each permutation π. The second step (see [9, section 7]) uses Foata’s second fundamental
transformation to carry the triplet (pix, lec, imaj) to (pix, lec, inv). In view of this bijection, one can
construct bijective proofs of (5), (6) and (7) using the original interpretations in (4), through the bijective
proof of (5) in [13] and our bijective proofs,.

To construct our bijective proofs, we need two elementary transformations from [13] that we recall
now. Let τ be a hook with inv(τ) = k and cont(τ) = {x1, . . . , xm}, where x1 < . . . < xm. Define

d(τ) = xm−k+1x1 . . . xm−kxm−k+2 . . . xm. (14)

Clearly, d(τ) is the unique hook with cont(d(τ)) = cont(τ) and satisfying inv(d(τ)) = m − k =
|cont(τ)| − inv(τ). Let τ be a hook or an increasing word with inv(τ) = k and cont(τ) = {x1, . . . , xm},
where x1 < . . . < xm. Define

d′(τ) = xm−kx1 . . . xm−k−1xm−k+1 . . . xm. (15)

It is not difficult to see that, d′(τ) is the unique hook (when k < m − 1) or increasing word (when
k = m− 1) with cont(d(τ)) = cont(τ) and satisfying inv(d(τ)) = m− k − 1 = |cont(τ)| − 1− inv(τ).
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2.2 Bijective proof of (6)
Let Sn(k) = {π ∈ Sn : pix(π) = k} and Dn = Sn(0). We first notice that the left-hand side of (6) has
the following interpretation:

∑

π∈Dn
lecπ=a

q(inv−lec)π =
∑

k≥1

(−1)n−k
[
n

k

]

q

q(
n−k

2 )Ak,a(q). (16)

This interpretation follows immediately from [18, Corollary 4.4] and (11). Note that one can also give a
direct combinatorial proof similarly as in [21].

Now, by (16), the symmetrical identity (6) is equivalent to the j = 0 case of the following Lemma.

Lemma 1 For 0 ≤ j ≤ n, there is an involution v 7→ u on Sn(j) satisfying

lec(u) = n− j − lec(v) and (inv− lec)u = (inv− lec)v.

Proof: Let v = pτ1τ2 . . . τr be the hook factorization of v ∈ Sn(j), where p is an increasing word and
each factor τ1, τ2, . . . , τr is a hook. We define u = pd(τ1) . . . d(τr), where d is defined in (14). It is easy
to check that this mapping is an involution on Sn(j) with the desired properties. 2

By (12), Lemma 1 gives a simple bijective proof of the following known [4, 18] symmetric property of
the fixed point q-Eulerian numbers.

Corollary 1 For n, k, j ≥ 0,
A

(j)
n,k(q) = A

(j)
n,n−j−k(q). (17)

2.3 Bijective proof of (7)
Recall [13] that, for a fixed positive integer n, a two-pix-permutation of [n] is a sequence of words

v = (p1, τ1, τ2, . . . , τr−1, τr, p2) (18)

satisfying the following conditions:

(C1) p1 and p2 are two increasing words, possibly empty;

(C2) τ1, . . . , τr are hooks for some positive integer r;

(C3) The concatenation p1τ1τ2 . . . τr−1τrp2 of all components of v is a permutation of [n].

We also extend the two statistics to the two-pix-permutations by

lec(v) =
∑

1≤i≤r
inv(τi) and inv(v) = inv(p1τ1τ2 . . . τr−1τrp2).

It follows that

(inv− lec)v = inv(cont(p1), cont(τ1), cont(τ2), . . . , cont(τr), cont(p2)). (19)

LetWn(j) denote the set of all two-pix-permutations with |p1| = j.
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Lemma 2 Let a, j be fixed nonnegative integers. Then

∑

v∈Wn(j)
lecv=a

q(inv−lec)v =
∑

k≥1

[
n

k

]

q

A
(j)
k,a(q). (20)

Proof: By the hook factorization, the two-pix-permutation in (18) is in bijection with the pair (σ, p2),
where σ = p1τ1τ2 . . . τr−1τr is a permutation on [n] \ cont(p2) and p2 is an increasing word. Thus, by
(12), (13) and (19), the generating function of all two-pix-permutations v of [n] with |p1| = j such that
lec(v) = a and |p2| = n− k with respect to the weight q(inv−lec)v is

[
n

n−k
]
q
A

(j)
k,a(q). 2

Lemma 3 Let j be a fixed nonnegative integer. Then there is an involution v 7→ u onWn(j) satisfying

lec(v) = n− j − 1− lec(u), and (inv− lec)v = (inv− lec)u.

Proof: We give an explicit construction of the bijection using the involutions d and d′ defined in (14)
and (15).

Let v = (p1, τ1, τ2, . . . , τr−1, τr, p2) be a two-pix-permutation of [n] with |p1| = j. If p2 6= ∅, then

u = (p1, d(τ1), d(τ2), . . . , d(τr−1), d(τr), d
′(p2)),

otherwise,
u = (p1, d(τ1), d(τ2), . . . , d(τr−1), d′(τr)).

As d and d′ are involutions, this mapping is an involution onWn(j).
Since we have lec(d(τi)) = |cont(τi)| − lec(τi) for 1 ≤ i ≤ r and lec(d′(p2)) = |cont(p2)| − 1 in the

case p2 6= ∅, it follows that lec(u) =
∑r
i=1 |cont(τi)| + |cont(p2)| − 1 − lec(v) = n − j − 1 − lec(v).

The above identity is also valid when p2 = ∅.
Finally it follows from (19) that (inv− lec)u = (inv− lec)v. This finishes the proof of the lemma. 2

Combining Lemmas 2 and 3 we obtain a bijective proof of (7).

3 A new recurrence formula for the (q, r)-Eulerian polynomials
The Eulerian differential operator δx involved here is defined by

δx(f(x)) :=
f(x)− f(qx)

x
,

for any f(x) ∈ Q[q][[x]] in the ring of formal power series in x over Q[q] (instead of the traditional
(f(x)− f(qx))/((1− q)x), see [3]). A proof of Theorem 2 can be obtained by applying δz to both sides
of (2), which is straightforward and is omitted.

Remark 2 A different recurrence formula for An(t, r, q) was obtained in [18, Corollary 4.3]. Eq. (10)
is similar to two recurrence formulas in the literature: one for the (inv, des)-q-Eulerian polynomials
in [15, Corollary 2.22] (see also [3]) and the other one for the (maj, des)-q-Eulerian polynomials in [15,
Corollary 3.6].
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We shall give another interpretation of An(t, r, q) in the following.
Let π ∈ Sn. Recall that an inversion of π is a pair (π(i), π(j)) such that 1 ≤ i < j ≤ n and

π(i) > π(j). An admissible inversion of π is an inversion (π(i), π(j)) that satisfies either

• 1 < i and π(i− 1) < π(i) or

• there is some l such that i < l < j and π(i) < π(l).

We write ai(π) the number of admissible inversions of π. Define the statistic aid(π) := ai(π) + des(π).
For example, if π = 42153 then there are 5 inversions, but only (4, 3) and (5, 3) are admissible. So
inv(π) = 5, ai(π) = 2 and aid(π) = 2 + 3 = 5. The statistics ai and aid were first studied by Shareshian
and Wachs [16] in the context of Poset Topology. Here we follow the definitions in [14]. The curious result
that the pairs (aid, des) and (maj, exc) are equidistributed on Sn was proved in [14] using techniques of
Rees products and lexicographic shellability.

LetW be the set of all the words on N. We define a new statistic, denoted by “rix”, onW recursively.
Let W = w1w2 · · ·wn be a word in W and wi be the rightmost maximum element of W . We define
rix(W ) by (with convention that rix(∅) = 0)

rix(W ) :=





0, if i = 1 6= n,
1 + rix(w1 · · ·wn−1), if i = n,

rix(wi+1wi+2 · · ·wn), if 1 < i < n.

For example, we have rix(1 5 2 4 3 3 5) = 1 + rix(1 5 2 4 3 3) = 1 + rix(2 4 3 3) = 1 + rix(3 3) =
2 + rix(3) = 3. As every permutation can be viewed as a word on N, this statistic is well-defined on
permutations.

For 1 ≤ j ≤ n, we write S
(j)
n the set of permutations π ∈ Sn with π(j) = n. We define

Bn(t, r, q) :=
∑

π∈Sn
tdesπrrixπqaiπ

and its restricted version by
B(j)
n (t, r, q) :=

∑

π∈S(j)
n

tdesπrrixπqaiπ. (21)

Theorem 3 We have the following interpretation for (q, r)-Eulerian polynomials:

An(t, r, q) =
∑

π∈Sn
tdesπrrixπqaiπ. (22)

Proof: We will show that Bn(t, r, q) satisfies the same recurrence formula and initial condition as
An(t, r, q). For n ≥ 1, it is clear from the definition of Bn(t, r, q) that

Bn+1(t, r, q) =
∑

1≤j≤n+1

B
(j)
n+1(t, r, q). (23)
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It is easy to see that

B
(1)
n+1(t, r, q) = tBn(t, 1, q) and B

(n+1)
n+1 (t, r, q) = rBn(t, r, q). (24)

We then consider B(j)
n+1(t, r, q) for the case of 1 < j < n+ 1.

For a set X , we denote by
(
X
m

)
the m-element subsets of X and SX the set of permutations of X . Let

W(n, j) be the set of all triples (W,π1, π2) such that W ∈
(

[n]
j

)
and π1 ∈ SW , π2 ∈ S[n]\W . It is not

difficult to see that the mapping π 7→ (W,π1, π2) defined by

• W = {π(i) : 1 ≤ i ≤ j − 1},
• π1 = π(1)π(2) · · ·π(j − 1) and π2 = π(j + 1)π(j + 2) · · ·π(n)

is a bijection between S
(j)
n andW(n− 1, j − 1) and satisfies

des(π) = des(π1) + des(π2) + 1, rix(π) = rix(π2)

and
ai(π) = ai(π1) + ai(π2) + inv(W, [n− 1] \W ) + n− j.

Thus, for 1 < j < n+ 1, we have

B
(j)
n+1(t, r, q) =

∑

π∈S(j)
n+1

tdesπrrixπqaiπ

= tqn+1−j ∑

(W,π1,π2)∈W(n,j−1)

qinv(W,[n]\W )qai(π1)tdes(π1)rrix(π2)qai(π2)tdes(π2)

= tqn+1−j ∑

W∈( [n]
j−1)

qinv(W,[n]\W )
∑

π∈SW
qai(π1)tdes(π1)

∑

π2∈S[n]\W

rrix(π2)qai(π2)tdes(π2)

= tqn+1−j
[

n

j − 1

]

q

Bj−1(t, 1, q)Bn+1−j(t, r, q), (25)

where we apply (13) to the last equality. Substituting (24) and (25) into (23) we obtain

Bn+1(t, r, q) = rBn(t, r, q) + tBn(t, 1, q) + t
n−1∑

j=1

[
n

j

]

q

qjBj(t, r, q)Bn−j(t, 1, q).

By Theorem 2, Bn(t, r, q) and An(t, r, q) satisfy the same recurrence formula and initial condition, thus
Bn(t, r, q) = An(t, r, q). This finishes the proof of the theorem. 2

Corollary 2 The three triplets (rix, des, aid), (fix, exc,maj) and (pix, lec, inv) are equidistributed on Sn.

Remark 3 At the Permutation Patterns 2012 conference, Alexander Burstein [1] gave a direct bijection
on Sn that transforms the triple (rix, des, aid) to (pix, lec, inv). The new statistic “rix” was introduced
independently therein under the name “aix”. Actually, the definitions of both are slightly different, but
they are the same up to an easy transformation. It would be very interesting to find a similar bijective
proof of the equidistribution of (rix, des, aid) and (fix, exc,maj).
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4 A symmetrical identity for restricted q-Eulerian polynomials
4.1 An interpretation of B(j)

n,k(q) and a proof of Theorem 1

It follows from (2) and (8) that B(1)
1,0(q) = 1 and B(1)

n,k(q) = An−1,k−1(q) for n ≥ 2. For 2 ≤ j ≤ n,

we have the following interpretation for B(j)
n,k(q), which shows that B(j)

n,k(q) is really a q-analogue of the

restricted Eulerian number studied in [4] and defined to be the number of permutations in S
(j)
n with k

descents.

Lemma 4 For 2 ≤ j ≤ n, B(j)
n,k(q) =

∑
π∈S(j)

n
des(π)=k

qai(π)+2j−n−1.

Proof: When j ≥ 2, by the recurrence relation (25), one can compute without difficulty that the expo-
nential generating function

∑
n≥j q

2j−n−1B
(j)
n (t, 1, q) zn−1

(q;q)n−1
is exactly the right side of (8) using (2)

and (22), which would finish the proof of the lemma. 2

Lemma 5 For 1 < j < n, we have

B
(j)
n,k(q) = B

(j)
n,n−1−k(q).

Proof: We first construct an involution f : π 7→ π′ on Sn satisfying

ai(π) = ai(π′) and des(π) = n− 1− des(π′). (26)

For n = 1, define f(id) = id. For n ≥ 2, suppose that π = π1 · · ·πn is a permutation of {π1, · · · , πn}
and πj is the maximum element in {π1, · · · , πn}. We construct f recursively as follows

f(π) =





f(π2π3 · · ·πn)π1, if j = 1,
πn f(π1π2 · · ·πn−1), if j = n,

f(π1π2 · · ·πj−1)πj f(πj+1πj+2 · · ·πn), otherwise.

For example, if π = 3 2 5 7 6 4 1, then f(π) = f(3 2 5) 7 f(6 4 1) = 5 f(3 2)7 f(4 1) 6 = 5 2 3 7 1 4 6.
Clearly, ai(π) = 7 = ai(π′) and des(π) = 4 = 7 − 1 − des(π′). It is not difficult to see that f is an
involution. We can show that f satisfies (26) by induction on n, which is routine and left to the reader.

For each π = π1 · · ·πj−1 nπj+1 · · ·πn in S
(j)
n , we then define g(π) = f(π1 · · ·πj−1)n f(πj+1 · · ·πn).

As f is an involution, g is an involution on S
(j)
n . It follows from (26) that ai(g(π)) = ai(π) and

des(π) = n− 1− des(g(π)), which completes the proof in view of Lemma 4. 2

Remark 4 Supposing that π = π1 · · ·πn is a permutation of {π1, · · · , πn} and πj is the maximum
element in {π1, · · · , πn}, we modify f to f ′ as follows:

f ′(π) =





f ′(π2π3 · · ·πn)π1, if j = 1,
π, if j = n,

f ′(π1π2 · · ·πj−1)πj f
′(πj+1πj+2 · · ·πn), otherwise.

The reader is invited to check that f ′ would provide another bijective proof of Corollary 1 using (des, rix, ai).

Through some similar analytical arguments as [4, Theorem 2] starting with the generating function (8)
and using Lemma 4 and 5 we can get a proof of Theorem 1. The details are omitted.
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4.2 Another interpretation of B(j)
n,k(q) and a bijective proof of Theorem 1

Let S̄(j)
n := {π ∈ Sn : π(j + 1) = 1} for 1 ≤ j < n and S̄

(n)
n := {π′�1 : π′ ∈ S[n]\{1}}. The “�”

in π = π1π2 · · ·πn−1�1 ∈ S̄
(n)
n means that the n-th position of π is empty and the hook factorization

of π is defined to be pτ1 · · · τr�1, where pτ1 · · · τr is the hook factorization of π1 · · ·πn−1 and “�1” is
viewed as a hook. We also define lec(π1π2 · · ·πn−1�1) =

∑r
i=1 lec(τi) and inv(π1π2 · · ·πn−1�1) =

inv(π1π2 · · ·πn−11). For example, S̄(3)
3 = {32�1, 23�1} with lec(32�1) = 1, lec(23�1) = 0 and

inv(32�1) = 3, inv(23�1) = 2.

Lemma 6 Let B(j)
n,k(q) be defined by (8). Then B(j)

n,k(q) =
∑

π∈S̄(j)
n

lec(π)=k

q(inv−lec)π.

Proof: Let B̄(j)
n (t, q) :=

∑
π∈S̄(j)

n
q(inv−lec)πtlecπ . We recall that, to derive the hook factorization of

a permutation, one can start from the right and factor out each hook step by step. Therefore, the hook
factorization of π = π1 · · ·πj−1πj1πj+2 · · ·πn in π ∈ S̄

(j)
n is pτ1 · · · τsτ ′1 · · · τ ′r, where pτ1 · · · τs and

τ ′1 · · · τ ′r are hook factorizations of π1 · · ·πj−1 and πj1πj+2 · · ·πn, respectively. When n > j, it is not
difficult to see that

lec(πj1πj+2 · · ·πn) = 1 + lec(πjπj+2 · · ·πn)

and
(inv− lec)(πj1πj+2 · · ·πn) = (inv− lec)(πjπj+2 · · ·πn).

Thus by (13), we have

B̄(j)
n (t, q) = Aj−1(t, q)qj−1

[
n− 1

j − 1

]

q

tAn−j(t, q) (27)

for n > j. Clearly, B̄(j)
j (t, q) = Aj−1(t, q)qj−1. So by (2), the exponential generating function

∑
n≥j B̄

(j)
n (t, q) zn−1

(q;q)n−1
is the right side of (8). This finishes the proof of the lemma. 2

Remark 5 This interpretation can also be deduced directly from the interpretation in Lemma 4 using
Burstein’s bijection [1].

For X ⊂ [n] with |X| = m and 1 ∈ X , we can define S̄
(j)
X for 1 ≤ j ≤ m similarly as S̄(j)

m like this:

S̄
(j)
X := {π ∈ SX : π(j + 1) = 1} for 1 ≤ j < m and S̄(m)

X := {π′�1 : π′ ∈ SX\{1}}.

For 1 ≤ j ≤ n, we define a j-restricted two-pix-permutation of [n] to be a pair v = (π, p2) such that
p2 (possibly empty) is an increasing words on [n] and π ∈ S̄

(j)
X with X = [n] \ {cont(p2)}. Similarly,

we define lec(v) = lec(π) and inv(v) = inv(π) + inv(cont(π), cont(p2)). LetW(j)
n denote the set of all

j-restricted two-pix-permutations of [n].

Lemma 7 Let a, j be positive integers. Then

∑

v∈W(j)
n

lecv=a

q(inv−lec)v =
∑

k≥1

[
n− 1

k − 1

]

q

B
(j)
k,a(q). (28)
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Proof: It follows from Lemma 6 and some similar arguments as in the proof of Lemma 2. 2

Lemma 8 Let 2 ≤ j ≤ n. Then there is an involution v 7→ u onW(j)
n satisfying

lec(v) = n− 2− lec(u), and (inv− lec)v = (inv− lec)u. (29)

Proof: Suppose v = (π, p2) ∈ W(j)
n and π = τ0τ1 · · · τr is the hook factorization of π such that τ0 is a

hook or an increasing word and τi (1 ≤ i ≤ r) are hooks. We also assume that p2 = x1 · · ·xl if p2 is not
empty. Note that 1 /∈ cont(τ0) since j 6= 1. We will use the involutions d and d′ defined in (14) and (15).
There are several cases to be considered:

(i) τr = �1. Then

u =

{
(d′(τ0)d(τ1) · · · d(τr−1)xl1x1x2 · · ·xl−1, ∅), if p2 6= ∅;
(d′(τ0)d(τ1) · · · d(τr−1)�1, ∅), otherwise.

(ii) τr = ys1y1 · · · ys−1. Then

u =





(d′(τ0)d(τ1) · · · d(τr−1)d(τr)d
′(p2), ∅), if p2 6= ∅;

(d′(τ0)d(τ1) · · · d(τr−1)�1, y1 · · · ys), if p2 = ∅ and ys > ys−1;

(d′(τ0)d(τ1) · · · d(τr−1)d′(τr), ∅), otherwise.

(iii) 1 /∈ cont(τr). Then

u =





(d′(τ0)d(τ1) · · · d(τr−1)d(τr)d
′(p2), ∅), if p2 6= ∅;

(d′(τ0)d(τ1) · · · d(τr−1), d′(τr)), if p2 = ∅ and lec(τr) = |τr| − 1;

(d′(τ0)d(τ1) · · · d(τr−1)d′(τr), ∅), otherwise.

First of all, one can check that u ∈ W(j)
n . Secondly, as d, d′ are involutions, the above mapping is an

involution. Finally, this involution satisfies (29) in all cases. This completes the proof of the lemma. 2

Combining Lemmas 7 and 8 we obtain a bijective proof of Theorem 1.
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On a Classification of Smooth Fano Polytopes

Benjamin Assarf and Michael Joswig and Andreas Paffenholz †‡

TU Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany

Abstract. The d-dimensional simplicial, terminal, and reflexive polytopes with at least 3d − 2 vertices are classified. In
particular, it turns out that all of them are smooth Fano polytopes. This improves previous results of Casagrande (2006)
and Øbro (2008). Smooth Fano polytopes play a role in algebraic geometry and mathematical physics. This text is an
extended abstract of Assarf et al. (2012).

Résumé. Nous classifions les polytopes simpliciaux, terminaux et réflexifs de dimension d avec au moins 3d−2 sommets.
En particulier, tous ces polytopes se trouvent être des polytopes de Fano lisses. Nous améliorons des résultats antérieurs
de Casagrande (2006) et d’Øbro (2008). Les polytopes de Fano lisses apparaissent en géométrie algébrique et en physique
mathématique. Ce texte est un résumé étendu de Assarf et al. (2012).

Keywords: toric Fano varieties, lattice polytopes, terminal polytopes, smooth polytopes

1 Introduction
A lattice polytope P is a convex polytope whose vertices lie in a lattice N contained in the vector space Rd.
Fixing a basis of N describes an isomorphism to Zd. Throughout this paper, we restrict our attention to the
standard latticeN = Zd. A d-dimensional lattice polytope P ⊂ Rd is called reflexive if it contains the origin 0
as an interior point and its polar polytope is a lattice polytope in the dual lattice M := Hom(N,Z) ∼= Zd. A
lattice polytope P is terminal if 0 and the vertices are the only lattice points in P ∩Zd. It is simplicial if each
face is a simplex. We say that P is a smooth Fano polytope if P ⊆ Rd is simplicial with 0 in the interior and
the vertices of each facet form a lattice basis of Zd.

In algebraic geometry, reflexive polytopes correspond to Gorenstein toric Fano varieties. The toric variety
XP of a polytope P is determined by the face fan of P , that is, the fan spanned by all faces of P ; see (Ewald,
1996) or (Cox et al., 2011) for details. The toric variety XP is Q-factorial (some multiple of a Weil divisor is
Cartier) if and only if the polytope P is simplicial. In this case the Picard number of X equals n− d, where
n is the number of vertices of P . The polytope P is smooth if and only if the variety XP is a manifold (that
is, it has no singularities). Note that the notions detailed above are not entirely standardized in the literature.
For example, our definitions agree with (Nill, 2005), but disagree with (Kreuzer and Nill, 2009).

Our main result is a classification of those simplicial, terminal, and reflexive lattice polytopes with at least
3d − 2 vertices. We show that such a polytope is lattice equivalent to a direct sum of del Pezzo polytopes,
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Geometry and Number Theory” of the German Research Council (DFG)
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pseudo del Pezzo polytopes, or a (possibly skew) bipyramid over (pseudo) del Pezzo polytopes. In particular,
a simplicial, terminal, and reflexive polytope with at least 3d − 2 vertices is necessarily smooth Fano. The
precise statement can be found in Theorem 2 below.

This extends results of Casagrande who proved that the number of a d-dimensional simplicial, terminal,
and reflexive lattice polytopes does not exceed 3d; she also showed that, up to lattice equivalence, only one
type exists which attains this bound (and the dimension d is even) (Casagrande, 2006). Moreover, our result
also extends Øbro’s classification of all polytopes of the named kind with 3d− 1 vertices (Øbro, 2008). Our
proof employs techniques similar to those used by (Øbro, 2008) and (Nill and Øbro, 2010), but requires more
organization since a greater variety of possibilities occurs. Translated into the language of toric varieties our
main result establishes that any d-dimensional terminal Q-factorial Gorenstein toric Fano variety with Picard
number at least 2d− 2 decomposes as a (possibly trivial) toric fiber bundle with known fiber and base space;
the precise statement is Corollary 4. As a key benefit of our systematic approach a certain general pattern
emerges, and we state this as Conjecture 3 below. Like our main result this conjecture also admits a direct
translation to toric varieties.

The interest in structural results of this type originates in applications of algebraic geometry to mathemat-
ical physics. For instance, (Batyrev and Borisov, 1996) use reflexive polytopes to construct pairs of mirror
symmetric Calabi-Yau manifolds. Up to unimodular equivalence, there exists only a finite number of such
polytopes in each dimension, and they have been classified up to dimension 4, see (Batyrev, 1991), (Kreuzer
and Skarke, 1997, 2002). Smooth reflexive polytopes have been classified up to dimension 8 by (Øbro, 2007);
see (Brown and Kasprzyk, 2009–2012) for data. By enhancing Øbro’s implementation within the polymake
framework (Gawrilow and Joswig, 2000) this classification was extended to dimension 9 (Lorenz and Paffen-
holz, 2008); from that site the data is available in polymake format.

In this extended abstract we will only summarize the essential ideas for the proofs. In addition, we will
detail the 6-dimensional case. For full proofs we refer to the paper (Assarf et al., 2012).

2 Lattice Polytopes
A polytope P ⊂ Rd is a lattice polytope if its vertex set Vert(P ) is contained in Zd (more generally, contained
in some lattice N ⊆ Rd). See (Ewald, 1996) for background on lattice polytopes. P is called reflexive, if
P contains the origin in its interior and its dual P ∗ is a lattice polytope in the dual lattice. P is terminal if
P ∩N = Vert(P ) ∪ {0}. More generally, P is canonical if the origin is the only interior lattice point in P .
Two lattice polytopes are lattice equivalent if one can be mapped to the other by a transformation in GLdZ
followed by a lattice translation.

We start out with listing all possible types of 2-dimensional terminal and reflexive lattice polytopes in
Figure 1. Up to lattice equivalence five cases occur which we denote as P6, P5, P4a, P4b, and P3, respectively;
one hexagon, one pentagon, two quadrangles, and a triangle; see (Ewald, 1996, Thm. 8.2). All of them are
smooth Fano polytopes, that is, the origin lies in the interior and the vertex set of each facet forms a lattice
basis. The only 1-dimensional reflexive polytope is the interval [−1, 1].

Let P ⊂ Rd and Q ⊂ Re be polytopes with the origin in their respective relative interiors. The polytope

P ⊕Q = conv(P ∪Q) ⊂ Rd+e

is the direct sum of P and Q. This construction also goes by the name “linear join” of P and Q. Clearly,
forming direct sums is commutative and associative. Notice that the polar polytope (P ⊕Q)∗ = P ∗ ×Q∗ is
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(a) P6 (b) P5 (c) P4a (d) P4b (e) P3

Figure 1: The 2-dimensional reflexive and terminal lattice polytopes

the direct product. An important special case is the proper bipyramid [−1, 1] ⊕ Q over Q. More generally,
we consider the possibly skew bipyramids

BP(Q, v,w) := conv(({0} ×Q) ∪ {w, v − w}) ,

where v ∈ Q∩Ze is a lattice point inQ and w is orthogonal to the affine hull ofQ with |w| = 1. In particular,
choosing v = 0 recovers the proper bipyramid. The relevance of these constructions for simplicial, terminal,
and reflexive polytopes stems from the following lemma; see also (Ewald, 1996, §V.7.7) and Figure 2 below.
The reader can find the simple proof in (Assarf et al., 2012, Lemmas 2,3,4).

Lemma 1 Let P ⊂ Rd and Q ⊂ Re both be lattice polytopes. Then the direct sum P ⊕ Q ⊂ Rd+e is
simplicial, terminal, or reflexive if and only if P and Q are.

In particular, this applies to the case that P = [−1, 1]⊕Q is a proper bipyramid over a (d−1)-dimensional
lattice polytope Q. More generally, P is a simplicial, terminal, or reflexive skew bipyramid if and only if Q
has the corresponding property.

The latter case of the lemma occurs frequently in the classification. Let e1, e2, . . . , ed be the standard basis
of Zd in Rd. Here and throughout we abbreviate 1 = (1, 1, . . . , 1). For even d the d-polytopes

DP(d) = conv{±e1,±e2, . . . ,±ed,±1} ⊂ Rd

with 2d+2 vertices form a 1-parameter family of smooth Fano polytopes; see (Ewald, 1996, §V.8.3). They are
usually called del Pezzo polytopes. If −1 is not a vertex the resulting polytopes are sometimes called pseudo
del Pezzo. Notice that the 2-dimensional del Pezzo polytope DP(2) is lattice equivalent to the hexagon P6

shown in Figure 1, and the 2-dimensional pseudo del Pezzo polytope is lattice equivalent to the pentagon P5.
While the definition of DP(d) also makes sense in odd dimensions, the polytopes obtained are not simplicial.

For centrally symmetric smooth Fano polytopes (Voskresenskiı̆ and Klyachko, 1984) provide a classifica-
tion result. They showed that every centrally symmetric smooth Fano polytope can be written as a sum of line
segments and del Pezzo polytopes. This was later generalized to simplicial and reflexive pseudo-symmetric
polytopes by (Ewald, 1988, 1996) in the smooth case, and by (Nill, 2006, Thm. 0.1) in the general case. A
polytope is pseudo-symmetric if there exists a facet F , such that −F = {−v | v ∈ F} is also a facet. They
proved that any pseudo-symmetric simplicial and reflexive polytope is lattice equivalent to a direct sum of a
(possibly trivial) cross polytope, del Pezzo polytopes, and pseudo del Pezzo polytopes.

A direct sum of d intervals [−1, 1] ⊕ [−1, 1] ⊕ · · · ⊕ [−1, 1] is the same as the regular cross polytope
conv{±e1,±e2, . . . ,±ed}. The direct sum of several intervals with a polytope Q is the same as an iterated
proper bipyramid over Q. Casagrande showed that any simplicial and reflexive d-polytope P has at most 3d
vertices, and if it does have exactly 3d vertices then d is even, and P is a centrally symmetric smooth Fano
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e3

e1

−e1

e2

(a) Proper bipyramid over P6

e3

e1

e3−e1

e2

(b) Skew bipyramid over P6

Figure 2: The smooth Fano 3-polytopes with 3d− 1 = 8 vertices. Combinatorially, both are bipyramids over P6.

polytope (Casagrande, 2006, Thm. 3). Thus, in this case P is lattice equivalent to a direct sum of d2 copies of
P6
∼= DP(2).

Øbro classified the simplicial, terminal, and reflexive d-polytopes with 3d− 1 vertices (Øbro, 2008). Up to
lattice equivalence, there is the interval [−1, 1] in dimension 1 and the pentagon P5 in dimension 2. Forming
suitable direct sums and (skew) bipyramids gives more smooth Fano d-polytopes with 3d− 1 vertices via

P5 ⊕ P⊕( d
2−1)

6 for even d, and BP(P
⊕( d−1

2 )
6 , v, ed) for odd d and v ∈ Zd−1 ∩ P⊕( d−1

2 )
6 .

Note that, up to lattice isomorphism, there are only two choices for v, either 0, which gives a proper bipyramid,
or some vertex, which results in a skew bipyramid. The 3-dimensional cases are shown in Figure 2. Up to
lattice equivalence, these are the only d-dimensional simplicial, terminal, and reflexive polytopes with 3d− 1
vertices (Øbro, 2008, Thm. 1). It turns out that all these polytopes are smooth Fano. Our main result is the
following classification, which is a summary of (Assarf et al., 2012, Thm. 7).

Theorem 2 For even d ≥ 6 there are three combinatorial types of d-dimensional simplicial, terminal, and
reflexive polytopes with 3d − 2 vertices. These three cases split into eleven types up to lattice equivalence.
For odd d ≥ 5 there is only one combinatorial type that splits into five types up to lattice equivalence.

For d = 1 there is one combinatorial type, for d = 2 there is one combinatorial type with two different
lattice realizations, for d = 3 there is one combinatorial type with 4 different lattice realizations, and, finally,
for d = 4 there are three combinatorial types with ten different lattice realizations; see (Batyrev, 1999).

We list the types explicitly. To this end we label the vertices of P5 by v1, v2, . . . , v5 and those of P6 with
w1, w2, . . . , w6 in clockwise order. For P5, let v1 be the unique vertex such that −v1 6∈ P5. For even d ≥ 4
the three combinatorial types are

P⊕2
5 ⊕ P⊕( d

2−2)
6 , DP(4)⊕ P⊕( d

2−2)
6 , and BP(BP(P

⊕ d−2
2

6 , x, a), y, b) ,

for a lattice point x of P⊕
d−2
2

6 , a lattice point y of BP(P
⊕ d−2

2
6 , x, a) and transversal vectors a, b. The last case

splits, up to lattice equivalence, into eight types if d = 4 and nine if d ≥ 6. The relevant choices of x, y are

(0, 0) , (0, c) , (0, w1) , (w1, w1) , (w1, w2) , (w1, w3) , (w1, w4) , and (w1, c)

for d = 4, where all wi are vertices of some copy of P6; here c denotes one of the two apices of the bipyramid

BP(P
⊕ d−2

2
6 , x, a). For d ≥ 6 we can additionally choose two vertices in different copies of P6. It is a key step
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in our proof to recognize these (proper or skew) bipyramids. The fact that the group of lattice automorphisms
of P6, which is isomorphic to the dihedral group of order 12, acts sharply transitively on adjacent pairs of
vertices then entails the classification up to lattice equivalence. For odd d ≥ 5 the one combinatorial type is

BP(P5 ⊕ P⊕
d−3
2

6 , x, a) for some lattice point x ∈ P5 ⊕ P⊕
d−3
2

6 . The five different lattice isomorphism types
are realized by choosing x in {0, v1, v2, v3, w1}.

We do believe that the list of the classifications obtained so far follows a pattern.

Conjecture 3 Let P be a d-dimensional smooth Fano polytope with n vertices such that n ≥ 3d − k for

k ≤ d
3 . If d is even then P is lattice equivalent to Q⊕ P⊕( d−3k

2 )
6 where Q is a 3k-dimensional smooth Fano

polytope with n − 3d + 9k ≥ 8k vertices. If d is odd then P is lattice equivalent to Q ⊕ P⊕( d−3k−1
2 )

6 where
Q is a (3k+1)-dimensional smooth Fano polytope with n− 3d+ 9k − 3 ≥ 8k − 3 vertices.

This conjecture is best possible in the following sense: The k-fold direct sum of skew bipyramids over P6

yields a smooth Fano polytope of dimension d = 3k with 8k = 3d− k vertices, but it has no copy of P6 as a
direct summand. However, it does contain P⊕k6 as a subpolytope of dimension 2k = 2

3d.
If the conjecture above holds the full classification of the smooth Fano polytopes of dimension at most nine

Lorenz and Paffenholz (2008) would automatically yield a complete description of all d-dimensional smooth
Fano polytopes with at least 3d− 3 vertices.

3 Toric Varieties
Reading a lattice point a ∈ Zd as the exponent vector of the monomial za = za11 za22 . . . zadd in the Laurent
polynomial ring C[z±1

1 , z±1
2 , . . . , z±dd ] provides an isomorphism from the additive group of Zd to the multi-

plicative group of Laurent monomials. This way the maximal spectrum Xσ of a lattice cone σ becomes an
affine toric variety. If Σ is a fan of lattice cones, gluing the duals of the cones along common faces yields a
(projective) toric variety XΣ. This complex algebraic variety admits a natural action of the embedded dense
torus corresponding to the (dual of) the trivial cone {0} which is contained in each cone of Σ. If P ∈ Rd is a
lattice polytope containing the origin, then the face fan

Σ(P ) = {pos(F ) |F face of P}

is such a fan of lattice cones. We denote the associated toric variety by XP = XΣ(P ). The face fan of a
polytope is isomorphic to the normal fan of its polar. Two lattice polytopes P and Q are lattice equivalent if
and only if XP and XQ are isomorphic as toric varieties.

Let P be a full-dimensional lattice polytope containing the origin as an interior point. Then the toric variety
XP is smooth if and only if P is smooth in the sense of the definition given above, that is, the vertices of
each facet of P are required form a lattice basis. A smooth compact projective toric variety XP is a toric
Fano variety if its anticanonical divisor is very ample. This holds if and only if P is a smooth Fano polytope;
see (Ewald, 1996, §VII.8.5).

We now describe the toric varieties arising from the polytopes listed in our Theorem 2. For the list of two-
dimensional toric Fano varieties we use the same notation as in Figure 1; see (Ewald, 1996, §VII.8.7). The
toric variety XP3 is the complex projective plane P2. The toric variety XP4a is isomorphic to a direct product
P1×P1 of lines, and XP4b

is the smooth Hirzebruch surfaceH1. The toric variety XP5 is a blow-up of P2 at
two points or, equivalently, a blow-up of P1 × P1 at one torus invariant point. The toric varieties associated
with the del Pezzo polytopes DP(d) are called del Pezzo varieties; notice that this notion also occurs with a
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different meaning in the literature. The toric variety XP6
is a del Pezzo surface or, equivalently, a blow-up of

P2 at three non-collinear torus invariant points.
Two polytope constructions play a role in our classification, direct sums and (skew) bipyramids. We want

to translate them into the language of toric varieties. Let P ⊂ Rd andQ ⊂ Re both be full-dimensional lattice
polytopes containing the origin. Then the toric variety XP⊕Q is isomorphic to the direct product XP ×XQ.
In particular, for P = [−1, 1] we have that the toric variety

X[−1,1]⊕Q = P1 ×XQ

over the regular bipyramid over Q is a direct product with the projective line P1
∼= X[−1,1]. More generally,

the toric variety of a skew bipyramid over Q is a toric fiber bundle with base space P1 and generic fiber XQ;
see (Ewald, 1996, §VI.6.7). An example is the smooth Hirzebruch surfaceH1

∼= XP4b
, which is a (projective)

line bundle over P1.
In order to translate Theorem 2 to toric varieties we need a few more definitions. For the sake of brevity

we explain these in polytopal terms and refer to (Ewald, 1996) for the details. A toric variety XP associated
with a canonical lattice d-polytope P is Q-factorial (or quasi-smooth) if P is simplicial; see (Ewald, 1996,
§VI.3.9). In this case the Picard number equals n − d where n is the number of vertices of P ; see (Ewald,
1996, §VII.2.17). We call this toric variety a 2-stage fiber bundle over Z ifX is a fiber bundle with base space
Y such that Y itself is a fiber bundle with base space Z. The following is now a corollary of Theorem 2.

Corollary 4 LetX be d-dimensional terminal Q-factorial Gorenstein toric Fano variety with Picard number
2d− 2. We assume d ≥ 4.

If d is even, then X is isomorphic to

i. a 2-stage toric fiber bundle such that the base spaces of both stages are projective lines and the generic
fiber of the second stage is the direct product of d−2

2 copies of the del Pezzo surface XP6
, or

ii. the direct product of two copies of XP5 and d
2 − 2 copies of XP6 or

iii. the direct product of the del Pezzo fourfold XDP(4) and d
2 − 2 copies of XP6

.

If d is odd then X is isomorphic to

iv. a toric fiber bundle over a projective line with generic fiber isomorphic to the direct product of XP5
and

d−3
2 copies of XP6

.

All fiber bundles in the preceding result may or may not be trivial. Classifying the polytopes in Theorem 2 up
to lattice equivalence is tantamount to classifying the associated toric varieties up to toric isomorphism. As
detailed above there is one type for d = 1, two types for d = 2, 3, ten for d = 4, five for any odd dimension
d ≥ 5 and eleven types for even dimensions d ≥ 6. For d = 6 this is explained in detail in Section 5 below.
In dimensions up to and including 4 this is known from work of Batyrev (1991, 1999).

4 Special Facets and η-Vectors
In this section we will describe our major technical tools. This follows the approach of Øbro (2008). Let
P ⊂ Rd be a reflexive lattice d-polytope with vertex set Vert(P ). In particular, the origin 0 is an interior
point. We let vP :=

∑
v∈Vert(P ) v be the vertex sum of P . As P is a lattice polytope vP is a lattice point.
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ecc(P ) 2 1 1 0 0 0 0

η1 d d d d d d d
η0 d d d− 1 d d d− 1 d− 2
η−1 d− 2 d− 3 d− 1 d− 3 d− 4 d− 2 d
η−2 0 1 0 0 2 1 0
η−3 0 0 0 1 0 0 0

Table 1: List of possible η-vectors of simplicial, terminal, and reflexive d-polytopes with 3d− 2 vertices, where ecc(P )
denotes the eccentricity of P . Marked with a gray background are the η-vectors, which do not occur.

Now, a facet F of P is called special if the face cone posF spanned by F contains vP . Since the fan Σ(P )
generated by the face cones is complete, a special facet always exists. However, it is not necessarily unique.
For instance, if P is centrally symmetric, we have vP = 0, and each facet is special.

Since P is reflexive, for each facet F of P the primitive outer facet normal vector uF satisfies 〈uF , x〉 ≤ 1
for all points x ∈ P and the set {x ∈ Rd | 〈uF , x〉 = 1} is the affine hull of F . We define

H(F, k) :=
{
x ∈ Rd

∣∣ 〈uF , x〉 = k
}
, V (F, k) := H(F, k) ∩Vert(P ) , and ηFk := |V (F, k)|

for any integer k ≤ 1. The sequence of numbers ηF = (ηF1 , η
F
0 , η

F
−1, . . . ) is the η-vector of P with respect

to F (we usually omit F in the notation). We omit any trailing zeros so that η has finite length. We have

Vert(P ) =
⋃

k≤1

V (F, k) ⊆
⋃

k≤1

H(F, k) .

Thus ηF1 + ηF0 + ηF−1 + · · · = |Vert(P )| is the number of vertices of P . If a vertex v is contained in V (F, k)
we call the number k the level of v with respect to F . As P is simplicial we have η1 = d for any facet F .
Furthermore, one can show that for any facet F any vertex on level 0 is contained in a facet adjacent to F .
Looking at a special facet and evaluating

0 ≤ 〈uF , vP 〉 = 〈uF ,
∑

k≤1

∑

v∈V (F,k)

v〉 =
∑

k≤1

∑

v∈V (F,k)

〈uF , v〉 = d+
∑

k≤−1

∑

v∈V (F,k)

〈uF , v〉 (1)

shows that there can only be at most dmany vertices below level 0. Thus, P has at most 3d vertices, implying
the upper bound of (Casagrande, 2006). This allows to deduce a list of potential η-vectors from (1). Now we
assume that P has exactly 3d − 2 vertices. A priori, the potential cases are listed in Table 1. The maximum
level of vP is 2. Our classification shows that not all of the η-vectors listed actually occur. Some can be ruled
out by a direct argument, some only a posteriori. Those that do not occur are marked in gray in the table.

Our overall proof strategy is as follows. It turns out that the level of vP is the same for each special facet.
Hence, this is an invariant of the polytope, which we call the eccentricity ecc(P ). We look at the three possible
cases separately. We choose a special facet F of P . As a refinement, we consider separate cases according to
the η-vector of F . A key is the observation, that we can, up to lattice equivalence, restrict the possible choices
for vertices in levels 1, 0, and −1 of F . This is summarized in the proposition below; see (Assarf et al.,
2012, Prop. 32). Given this initial distribution of the vertices we want to determine the remaining vertices.
Sometimes this turns out to be quite difficult. In this cases we switch to a special neighboring facet with a
different η-vector which is easier to analyze or already have been analyzed. With opp(F ) we denote the set
of all vertices which lie in a facet adjacent to F but which are not vertices of F itself.
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Proposition 5 Let P be a d-dimensional simplicial, terminal, and reflexive polytope such that F is a special
facet. Up to lattice equivalence, we can assume that F = conv{e1, e2, . . . , ed} and there is a map φ :
Vert(F )→ Vert(F ) ∪ {0} such that:

i. if ηF0 = d, then

V (F, 0) = {φ(e1)− e1, φ(e2)− e2, . . . , φ(ed)− ed}
V (F,−1) ⊆ {−e1, −e2, . . . , −ed} .

ii. If ηF0 = d− 1 and opp(F ) = V (F, 0), then, for a, b ∈ [d] \ {1, 2} not necessarily distinct,

V (F, 0) = {−e1 − e2 + ea + eb, φ(e3)− e3, . . . , φ(ed)− ed}
V (F,−1) ⊆ {−e1, −e2, . . . , −ed} ∪ {−e1 − e2 + es | s ∈ [d]}

iii. If ηF0 = d− 1 and opp(F ) 6= V (F, 0), then

V (F, 0) = {φ(e2)− e2, φ(e3)− e3, . . . , φ(ed)− ed}
V (F,−1) ⊆ {−e1, −e2, . . . , −ed} ∪ {−2e1 − er + es + et | r, s, t ∈ [d] pairwise distinct , r 6= 1} .

The first case above occurs in (Øbro, 2008). This result allows us to control most of the vertices of a
simplicial, terminal, and reflexive polytope if η0 is given. In this way an approach to the classification is by
examining choices for the vertices on the levels k for k ≤ −2.

5 The Classification Explained in Dimension Six
In this section we will explicitly list the 6-dimensional simplicial, terminal, and reflexive polytopes with
exactly 3 · 6 − 2 = 16 vertices. This is the smallest even dimension in which all eleven types up to lattice
equivalence arise. This list in dimension 6 is already subsumed in the classifications (Brown and Kasprzyk,
2009–2012) and (Lorenz and Paffenholz, 2008); and we will refer to the latter. Here we will organize the
polytopes in a way such that it fits the line of arguments in (Assarf et al., 2012). Additional comments are
meant to give the reader an idea about the organization of our proof.

Throughout let P be a d-dimensional simplicial, terminal, and reflexive polytope with 3d − 2 vertices
such that F is a special facet. The vertex sum vP lies on level 0, 1 or 2 with respect to F . Throughout we
assume that d is even and d ≥ 4. It turns out that each such polytope P contains a copy of the hexagon P6

as a subpolytope, albeit not necessarily as a direct summand. So we normalized the examples in a way that
P6 always lies in in the coordinate subspace lin{e1, e2}. This way the differences among the examples are
particularly easy to spot.

5.1 Polytopes of Eccentricity 2

The classification becomes more involved the more symmetric P is. The most eccentric case occurs if the
vertex sum lies on level 2, and this is the easiest. Table 1 tells us that there is only one kind of η-vector,
namely ηF = (d, d, d − 2). What makes this case simpler than others is that we immediately have η0 = d,
which forces that the vertices on F form a lattice basis, and the vertices on level 0 can be determined (Øbro,
2008). In this case the partial description of the vertices in Proposition 5 is already good enough to get the

full picture with little extra effort. It turns out that P is lattice equivalent to P⊕2
5 ⊕ P

⊕ d
2−2

6 or to a skew
bipyramid over a (d− 1)-dimensional smooth Fano polytope with 3(d− 1)− 1 = 3d− 4 vertices.



On a Classification of Smooth Fano Polytopes 459

Example 6 For d = 6 the first case is P ∼= P6 ⊕ P5 ⊕ P5 such that vP = e3 + e5. Here and in the examples
below, we list the vertices sorted by level.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4),±(e5 − e6)

−e1,−e2,−e4,−e6

In the database (Lorenz and Paffenholz, 2008) this occurs as F.6D.6552. The polytope has 24 special
facets.

If the polytope P is not of the type above then, for d = 6, the polytope P is a double skew bipyramid over
P6 ⊕ P6. Four more cases arise depending on the relative positions of the apices of the two bipyramids. To
form a skew bipyramid we need to pick a vertex of the base. Since the group of lattice automorphisms of P6

acts transitively on the vertices, we may assume that the first skew bipyramid is BP(P⊕2
6 , e1, e5). The three

distinct relative positions of two vertices of P6 lead to the next three cases.

Example 7 For d = 6 the second type is given by BP(BP(P⊕2
6 , e1, e5), e1, e6) such that vP = 2e1.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4), e1 − e5, e1 − e6

−e1,−e2,−e3,−e4

In the database this occurs as F.6D.5346. The polytope has 48 special facets.

Example 8 For d = 6 the third type is given by BP(BP(P⊕2
6 , e1, e5), e2, e6) such that vP = e1 + e2.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4), e1 − e5, e2 − e6

−e1,−e2,−e3,−e4

In the database this occurs as F.6D.5680. The polytope has 24 special facets.

Example 9 For d = 6 the fourth type is given by BP(BP(P⊕2
6 , e1, e5), e3, e6) such that vP = e1 + e3.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4), e1 − e5, e3 − e6

−e1,−e2,−e3,−e4

In the database this occurs as F.6D.5553. The polytope has 16 special facets.

The final case in this section differs from the above in that the base vertex of the second skew bipyramid is an
apex of the first stage.

Example 10 For d = 6 the fifth type is given by BP(BP(P⊕2
6 , e1, e5), e5, e6) such that vP = e1 + e5.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4), e1 − e5, e5 − e6

−e1,−e2,−e3,−e4

In the database this occurs as F.6D.5685. The polytope has 24 special facets.
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5.2 Polytopes of Eccentricity 1

If the vertex sum lies on level one, then the situation is still somewhat benign. Our proof strategy is to first
consider polytopes P with a special facet that have η-vector (d, d, d− 3, 1). In (Assarf et al., 2012, Prop. 36)
we show that in this case P , again, must be a skew bipyramid. Notice, however, that our classification shows
a posteriori that this case does not occur. Table 1 then says that the only choice left is η = (d, d− 1, d− 1).
In this situation (Assarf et al., 2012, Prop. 39) shows that, once more, P is a double bipyramid.

In the first two cases the first stage is a proper bipyramid. For the second stage then the base vertex can
either be in the base of the first stage or an apex.

Example 11 For d = 6 the sixth type is given by BP(BP(P⊕2
6 , 0, e5), e1, e6) such that vP = e1.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4), e1 − e6

−e1,−e2,−e3,−e4,−e5

In the database this occurs as F.6D.5711. The polytope has 48 special facets.

Example 12 For d = 6 the seventh type is given by BP(BP(P⊕2
6 , 0, e5), e5, e6) such that vP = e5.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4), e5 − e6

−e1,−e2,−e3,−e4,−e5

In the database this occurs as F.6D.6558. The polytope has 72 special facets.

For vP ∈ H(F, 1) there is only one choice of a double bipyramid where both stages are skew.

Example 13 For d = 6 the eighth type is given by BP(BP(P⊕2
6 , e2, e5), e1 − e2, e6) such that vP = e1.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4), e2 − e5, e1 − e2 − e6

−e1,−e2,−e3,−e4

In the database this occurs as F.6D.5702. The polytope has 48 special facets.

5.3 Polytopes of Eccentricity 0

If the vertex sum of P is zero all facets are special. The easy subcase occurs when all η-vectors of P are
of type (d, d − 2, d). We show that in this case P is centrally symmetric (Assarf et al., 2012, Prop. 40).
Extending arguments of (Nill, 2006, Thm. 0.1) we show that such a polytope is lattice equivalent to a double

proper bipyramid over P⊕
d−2
2

6 or DP(4)⊕ P⊕
d
2−2

6 .

Example 14 If d = 6 the ninth type occurs for P ∼= P6 ⊕DP(4).

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 + e4 − e5 − e6)

−e1,−e2,−e3,−e4,−e5,−e6
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In the database this occurs as F.6D.3154. All 180 facets are special, and all of them have the same η-vector
(6, 4, 6).

Example 15 If d = 6 the tenth case is the direct sum of two hexagons P6 and two line segments. In our
notation, this means that P ∼= BP(BP(P⊕2

6 , 0, e5), 0, e6).

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4)

−e1,−e2,−e3,−e4,−e5,−e6

In the database this occurs as F.6D.6765. All 144 facets are special, and all of them have the same η-vector
(6, 4, 6).

It remains to discuss the situation where vP = 0 but P is not centrally symmetric. This is by far the most
complicated case in our proof. It contributes to this complexity that we need to discuss four candidates of
η-vectors. First, η = (6, 6, 3, 0, 1) is excluded (Assarf et al., 2012, Prop. 4). Second, η = (6, 6, 2, 2) is
essentially reduced to a bipyramid (Assarf et al., 2012, Lem. 43) (but this case does not exist a posteriori).
So this leaves two more η-vectors. Surprisingly, they lead to the same polytopes.

Example 16 If d = 6 the final eleventh type occurs for P ∼= BP(BP(P⊕2
6 , e1, e5),−e1, e6). Up to lattice

equivalence this is the only case in which vP = 0 but P is not centrally symmetric.

e1, e2, e3, e4, e5, e6

±(e1 − e2),±(e3 − e4), e1 − e5

−e1,−e2,−e3,−e4

−e1 − e6

In the database this occurs as F.6D.5713. All 144 facets are special, where 96 of them have the η-vector
(6, 5, 4, 1) and the other 48 the η-vector reads (6, 4, 6). For instance, the facet which is induced by 〈1, x〉 = 1
has the η-vector (6, 5, 4, 1), and the facet induced by 〈1− 2e1 − 2e6, x〉 = 1 has the η-vector (6, 4, 6).
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Counting smaller trees in the Tamari order
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sur-Marne, 77454 Marne-la-Vallée cedex 2, France

Abstract. We introduce new combinatorial objects, the interval-posets, that encode intervals of the Tamari lattice.
We then find a combinatorial interpretation of the bilinear form that appears in the functional equation of Tamari
intervals described by Chapoton. Thus, we retrieve this functional equation and prove that the polynomial recursively
computed from the bilinear form on each tree T counts the number of trees smaller than T in the Tamari order.

Résumé. Nous introduisons un nouvel objet, les intervalles-posets, pour encoder les intervalles de Tamari. Nous
donnons ainsi une interprétation combinatoire à la forme bilinéaire qui apparaı̂t dans l’équation fonctionnelle des
intervalles de Tamari que donne Chapoton. De cette façon, nous retrouvons d’une nouvelle manière cette équation
fonctionnelle et prouvons que le polynôme calculé récursivement à partir de la forme bilinéaire pour chaque arbre T

compte le nombre d’arbres plus petits que T dans l’ordre de Tamari.

Keywords: binary trees, Tamari lattice, Tamari intervals

1 Introduction
The combinatorics of planar binary trees has already being linked with interesting algebraic properties.
Loday and Ronco first introduced the PBT Hopf Algebra based on these objects [9]. It was re-built by
Hivert, Novelli and Thibon [7] through the introduction of the sylvester monoid. The structure of PBT
involves a very nice object which is linked to both algebra and classical algorithmics: the Tamari lattice.

This order on binary trees is based on the right rotation operation (see Figure 1), commonly used
in sorting algorithms through binary search trees. The lattice itself first appeared in the context of the
associahedron [8]. As its vertices are counted by Catalan numbers, the covering relations can be described
by many combinatorial objects [10], two common ones being planar binary trees and Dyck paths. Recently
Chapoton gave a formula for the number of intervals [4]:

In =
2(4n+ 1)!

(n+ 1)!(3n+ 2)!
, (1)

where In is the number of intervals of the Tamari lattice of binary trees of size n. This formula was very
recently generalized to a new set of lattices, the m-Tamari lattices [3].

It has been known since Björner and Wachs [2] that linear extensions of a certain labelling of binary
trees correspond to intervals of the weak order on permutations. This was more explicitly described in [7]
with sylvester classes. The elements of the basis P of PBT are defined as a sum on a sylvester class of

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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elements of FQSym. The PBT algebra also admits two other bases H and E which actually correspond
to respectively initial and final intervals of the Tamari order. They can be indexed by plane forests and,
with a well chosen labelling, their linear extensions are intervals of the weak order on permutations cor-
responding to a union of sylvester classes. In this paper, we introduce a more general object, the Tamari
interval-poset, which encodes a general interval of the Tamari lattice and whose linear extensions are ex-
actly the corresponding sylvester classes (and so an interval of the weak order). This new object has nice
combinatorial properties and allows to perform computations on Tamari intervals.

Thereby, we give a new proof of the formula of Chapoton (1). This proof is based on the study of a
bilinear form that already appeared in [4] but was not explored yet. It leads to the definition of a new
family of polynomials:

Definition 1.1 Let T be a binary tree, the polynomial BT (x) is recursively defined by

B∅ := 1 (2)

BT (x) := xBL(x)
xBR(x)− BR(1)

x− 1
(3)

where L and R are respectively the left and right subtrees of T . We call BT (x) the Tamari polynomial of
T and the Tamari polynomials are the set of all polynomials obtained by this process.

This family of polynomials is yet unexplored in this context but a different computation made by Chapo-
ton [5] on rooted trees seems to give a bivariate version. Our approach on Tamari interval-posets allows
us to prove the following theorem:

Theorem 1.2 Let T be a binary tree. Its Tamari polynomial BT (x) counts the trees smaller than T in the
Tamari order according to the number of nodes on their left border. In particular, BT (1) is the number of
trees smaller than T .

Symmetrically, if B̃T is defined by exchanging the role of left and right children in Definition 1.1, then
it counts the number of trees greater than T according to the number of nodes on their right border.

This theorem will be proven in Section 3.2. In Section 2, we recall some definitions and properties of
the Tamari lattice and introduce the notion of interval-poset to encode a Tamari interval. In Section 3,
we show the implicit bilinear form that appears in the functional equation of the generating functions of
Tamari intervals. We then explain how interval-posets can be used to give a combinatorial interpretation of
this bilinear form and thereby give a new proof of the functional equation. Theorem 1.2 follows naturally.
In Section 4, we give two independent contexts in which our problem can be generalized: flows of rooted
trees and m-Tamari intervals.

2 Definitions of Tamari interval-posets
2.1 Binary trees and Tamari order
A binary tree is recursively defined by being either the empty tree (∅) or a pair of binary trees, respectively
called left and right subtrees, grafted on an internal node. If a tree T is composed of a root node x with A
and B as respectively left and right subtrees, we write T = x(A,B). The number of nodes of a tree T is
called the size of T . The Tamari order is an order on trees of a given size using the rotation operation.
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Definition 2.1 Let y be a node of T with a non-empty left subtree x. The right rotation of T on y is a local
rewriting which follows Figure 1, that is replacing y(x(A,B), C) by x(A, y(B,C)) (note that A, B, or
C might be empty).

x

y

A B

C →

x

yA

B C

Figure 1: Right rotation on a binary tree.

The Tamari order is the transitive and reflexive closure of the right rotation: a tree T ′ is greater than
a tree T if T ′ can be obtained by applying a sequence of right rotations on T . It is actually a lattice [8],
see Figure 2 for some examples. One of the purposes of this article is to define combinatorial objects that
correspond to Tamari intervals.
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Figure 2: Tamari lattices of size 3 and 4.

The Tamari lattice is a quotient of the weak order on permutations [7]. To understand the relation
between the two orders, we need the notion of binary search tree.

Definition 2.2 A binary search tree is a labelled binary tree where for each node of label k, any label in
his left (resp. right) subtree is lower than or equal to (resp. greater than) k.

Figure 3 shows an example of a binary search tree. For a given binary tree T of size n, there is a unique
labelling of T with 1, . . . , n such that T is a binary search tree. Such a labelled tree can then be seen as a
poset. For example, the tree

1
2

3
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is the poset where 1 and 3 are smaller than 2. We write 1 ≺ 2 and 3 ≺ 2. A linear extension of this
poset is a permutation where if a ≺ b in the poset, then the number a is before b in the permutation. The
linear extensions of the tree above are 132 and 312. The sets of permutations corresponding to the linear
extensions of the binary trees of size n form a partition of Sn and more precisely, each set is an interval
of the right weak order on permutations called a sylvester class and the Tamari order is a lattice on these
classes [7]. See Figures 3 for examples of sylvester classes.

1

2

3

4

5

13254

31254 13524

31524 15324

35124 51324

53124

123

213132

231312

321

1
2

3

1
2

3

1
2

3

1

2
3

1
2

3

Figure 3: On the left: a binary search tree and its corresponding sylvester class, and on the right: the sylvester classes
of the weak order of size 3, with the corresponding binary search trees.

2.2 Construction of interval-posets

We now introduce more general objects, called the interval-poset, that are in bijection with the intervals
of the Tamari order. Let us first recall two bijections between binary search trees and forests of planar
trees. A binary search tree T is a poset containing two kinds of relations: when a is in the left subtree of
b, we have an increasing relation a < b and a ≺T b and when b is in the right subtree of a, we have a
decreasing relation b > a and b ≺T a. The two bijections we define consist in keeping only increasing
(resp. decreasing) relations of the poset.

Definition 2.3 The increasing forest(i) (noted F≤) of a binary search tree T is a forest poset on the nodes
of T containing only increasing relations and such that:

a ≺F≤(T ) b⇔ a < b and a ≺T b. (4)

It is equivalent to the following construction:

• if a node labelled x has a left son labelled y in T then the node x has a son y in F ;

• if a node labelled x has a right son labelled y in T then the node x has a brother y in F .

(i) Note that what we call increasing means increasing labels from the leaf to the root and not from the root to the leaf as it is often
the case.
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In the same way, one can define the decreasing forest (noted F≥) by switching the roles of the right and
left son in the previous construction or, in terms of posets:

b ≺F≥(F ) a⇔ a < b and b ≺T a. (5)

tree T F≤(T ) F≥(T )

1

2

3

4

5

6

7

8

9

10

1

2

3 4

5

6

7

8

9 10

1

2 3

4

5

6 7

8 9

10

Figure 4: A tree with its corresponding increasing and decreasing forests.

In Figure 4, we can see a tree T with its decreasing and increasing forests. The linear extensions of the
decreasing and increasing forests are actually initial and final intervals of the weak order.

Proposition 2.4 The linear extensions of the increasing forest of a tree T is the union of the linear ex-
tensions of all trees lower than or equal to T (initial interval) and the linear extensions of the decreasing
forest of T is the union of the linear extensions of all trees greater than or equal to T (final interval).

Proof (sketch): We just need to recall that σ ≤ µ in the weak order means that coinv(σ) ⊆ coinv(µ),
where coinv(σ) := {(σ(i), σ(j)); i < j, σ(i) > σ(j)}. It is then easy to see that the linear extension with
maximal (resp. minimal) number of co-inversions is the same for T than for F≤ (resp. F≥). Conversely,
if the co-inversions of a permutation µ are included in the co-inversions of the maximal linear extension
of a tree for the weak order, then µ is a linear extension of F≤. The same reasoning can be made for F≥.
2

T Max(ExtL(T )) F≤(T )

1

2

3

4

5

6

7

8

9

10

11

11 10 8 9 7 5 3 4 1 2 6

1

2

3

4 5

6 7

8

9 10 11

Figure 5: A tree with the maximum of its sylvester class and its increasing forest.

An example of this construction can be found in Figure 4 and another example of an increasing forest
is given in Figure 5 with its maximal linear extension. If two trees T and T ′ are such that T ≤ T ′,



468 Grégory Chatel , Viviane Pons

then F≥(T ) and F≤(T ′) share some linear extensions (by Proposition 2.4). More precisely, we have
ExtL(F≥(T )) ∩ ExtL(F≤(T ′)) = [Min(ExtL(T )),Max(ExtL(T ′))]. This set corresponds exactly
to the linear extensions of the trees of the interval [T, T ′] in the Tamari order. It is then natural to construct
a poset that would contain relations of both F≥(T ) and F≤(T ′), see Figure 6 for an example. We give a
characterization of these posets.

Definition 2.5 An interval-poset P is a poset such that the following conditions hold:

• a ≺P c implies that for all a < b < c, we have b ≺P c,

• c ≺P a implies that for all a < b < c, we have b ≺P a.

T T ′ F≥(T ) F≤(T ′) F≥(T ) ∩ F≤(T ′)

1

2

3

4

1

2

3

4

1

2

3 4 1

2

3 4 1

2

3 4

Figure 6: Two trees T and T ′, their decreasing and increasing forest and the interval-poset [T, T ′]. The linear
extensions of the interval-poset correspond to the interval [2134, 4231] of the weak order and 2134 (resp. 4231) is
the minimal (resp. maximal) linear extension of T (resp. T ′).

Proposition 2.6 The interval-posets are exactly the posets whose linear extensions correspond to Tamari
intervals for the weak order.

Indeed, it is easy to see that from an interval-poset, one can build F≤ (resp. F≥) by only considering the
increasing relations (resp. decreasing relations). Conditions of Definition 2.5 are necessary and sufficient
to obtain well-defined increasing (resp. decreasing) forests that correspond to proper binary search trees.

2.3 Combinatorial properties of interval-posets
Many operations on intervals can be easily done on interval-posets, all with trivial proofs.

Proposition 2.7 (i) The intersection between two intervals I1 and I2 is given by the interval-poset I3
containing all relations of I1 and I2. If I3 is a valid poset (there is no cycle in the union of I1 and
I2), then it is a valid interval-poset, otherwise the intersection is empty.

(ii) An interval I1 := [T1, T
′
1] is contained into an interval I2 := [T2, T

′
2], i.e., T1 ≥ T2 and T ′1 ≤ T ′2,

if and only if all relations of the interval-poset I1 are satisfied by the interval-poset I2.

(iii) If I1 := [T1, T
′
1] is an interval, then I2 = [T2, T

′
1], T2 ≥ T1, if and only if all relations of the

interval-poset I1 are satisfied by I2 and all new relations of I2 are decreasing. Symmetrically,
I3 = [T1, T3], T3 ≤ T ′1, if and only if all relations of the interval-poset I1 are satisfied by I3 and all
new relations of I3 are increasing.
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3 Tamari polynomials
3.1 Bilinear form and enumeration
Let φ(y) be the generating function of Tamari intervals,

φ(y) = 1 + y + 3y2 + 13y3 + 68y4 + . . . . (6)

where y counts the number of nodes in the trees or equivalently the number of vertices in the interval-
posets. In [4], Chapoton gives a refined version of φ with a parameter x that counts the number of nodes
on the left border of the smaller tree of the interval,

Φ(x, y) = 1 + xy + (x+ 2x2)y2 + (3x+ 5x2 + 5x3)y3 + . . . . (7)

We know that an interval-poset I of [T, T ′] is formed by two forest posets of respectively decreasing
relations of T and increasing relations of T ′. The number of nodes in the left border of T can then be seen
as the number of trees in F≥(T ), i.e., the poset formed by the decreasing relations of I . This way, one
can interpret the refined generating function (7) directly on interval-posets. In [4, formula (6)], Chapoton
gives a functional equation on Φ:(ii)

Φ(x, y) = xyΦ(x, y)
xΦ(x, y)− Φ(1, y)

x− 1
+ 1. (8)

The generating function Φ is then the solution of

Φ = B(Φ,Φ) + 1 (9)

where B is the bilinear form

B(f, g) = xyf(x, y)
xg(x, y)− g(1, y)

x− 1
. (10)

By expanding (9), one obtains

Φ = 1 +B(1, 1) +B(B(1, 1), 1) +B(1, B(1, 1)) + . . . (11)

=
∑

T

BT , (12)

sum over all binary trees T , with BT recursively defined by B∅ := 1 and BT := B(BL,BR) where L and
R are respectively the left and right children of T . Using a combinatorial interpretation of B, we actually
prove that BT counts the number of trees smaller than T in the Tamari order. We also obtain a new way
of generating intervals and thus prove in a new way that the generating function of the interval satisfies
the functional equation (8). Let us define an operation on interval-posets:

Definition 3.1 Let I1 and I2 be two interval-posets of respective sizes k1 and k2. Then B(I1, I2) is the
formal sum of all interval-posets of size k1 + k2 + 1 where,

(ii) Our equation is slightly different from the one of [4, formula (6)]. Indeed, the definition of the degree of x differs by one and in
our case Φ also counts the interval of size 0.
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(i) the relations between vertices 1, . . . , k1 are exactly the ones from I1,

(ii) the relations between k1 + 2, . . . , k1 + k2 + 1 are exactly the ones from I2 shifted by k1 + 1,

(iii) we have i ≺ k1 + 1 for all i ≤ k1,

(iv) there is no relation k1 + 1 ≺ j for all j > k1 + 1.

We call this operation the composition of intervals and extend it by bilinearity to all linear sums of inter-
vals.

B(

1 2

3

,
2

1 3

) =

1 2

3

4

5

6

7

+ 1 2

3

4

5

6

7

+ 1 2

3

4

5

6

7

Figure 7: Composition of interval-posets: the three terms of the sum are obtained by adding respectively no, 1, and 2
decreasing relations between the second poset and the vertex 4. For the last term, two decreasing relations have been
added: 5 ≺ 4 and 6 ≺ 4, the 5 ≺ 4 relation has been dashed as it is implicit through transitivity.

The sum we obtain by composing interval-posets actually corresponds to all possible ways of adding
decreasing relations between the second poset and the new vertex k1 + 1, as seen on Figure 7. Especially,
there is no relations between vertices 1, . . . , k1 and k1 + 2, . . . , k1 + k2 + 1. Indeed, condition (iii) makes
it impossible to have any relation j ≺ i with i < k1 + 1 < j as this would imply by Definition 2.5 that
k1 + 1 ≺ i. And condition (iv) makes it impossible to have i ≺ j as this would imply k1 + 1 ≺ j.

Proposition 3.2 Let I1 and I2 be two interval-posets. Let P be the linear function that associates with
an interval-poset its monomial xtreesysize where the power of y is the number of vertices and the power
of x the number of trees obtained by keeping only decreasing relations. Then

P(B(I1, I2)) = B(P(I1),P(I2)). (13)

As an example, in Figure 7, P(I1) = P(I2) = x2y3. And we have P(B(I1, I2)) = x5y7 + x4y7 +
x3y7 = B(x2y3, x2y3).

Proof: If I1 and I2 are two interval-posets of size respectively k1 and k2, we have by definition that all
interval-posets of B(I1, I2) are of size k1 + k2 + 1. Thus the power of y is the same in B(P(I1),P(I2))
and in P(B(I1, I2)) and we only have to consider the polynomial in x.

Let us assume that I1 and I2 contain respectively n and m trees formed by decreasing relations. The n
trees of I1 are kept unchanged on all terms of the result as no decreasing relation is added to the vertices
1, . . . , k1. Now, we call v1 < · · · < vm the root vertices of the trees of I2 shifted by k1 + 1. By
construction, k1 + 1 < v1, and this new vertex can either become a new root or a root to some of the
previous trees. If we have vj ≺ k1 + 1, by definition of an interval-poset, we also have vi ≺ k1 + 1 for
all i < j. The m trees of I2 can then be replaced by either m + 1,m, . . . , 2, or 1 trees, which mean the
monomial xm of P(I2) becomes x+ x2 + · · ·+ xm+1 in the composition. So,
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P(B(I1, I2)) = y(xnyk1)yk2x
xm+1 − 1

x− 1
(14)

= B(P(I1),P(I2)). (15)

2

To prove now that the generating function of the intervals is the solution of the bilinear equation (9),
we only need the following proposition.

Proposition 3.3 Let I be an interval-poset, then, there is exactly one pair of intervals I1 and I2 such that
I appears in the composition B(I1, I2).

Proof: Let I be an interval-poset of size n and let k be the vertex of I with maximal label such that
i ≺ k for all i < k. The vertex 1 satisfies this property, so one can always find such a vertex. We prove
that I only appears in the composition of I1 by I2, where I1 is formed by the vertices and relations of
1, . . . , k − 1 and I2 is formed by the re-normalized vertices and relations of k + 1, . . . , n. Note that one
or both of these intervals can be of size 0.

Conditions (i), (ii), and (iii) of Definition 3.1 are clearly satisfied by construction. If condition (iv) is
not satisfied, it means that we have a relation k ≺ j with j > k. Then, by definition of an interval-poset,
we also have ` ≺ j for all k < l < j and by definition of k, we have i ≺ k ≺ j for all i < k, so for all
i < j, we have i ≺ j. This is not possible as k has been chosen to be maximal among vertices with this
property.

This proves that I appears in the composition of I1 by I2. Now, if I appears in B(I ′1, I
′
2), the vertex

k′ = |I ′1| + 1 is by definition the vertex where for all i < k′, we have i ≺ k′ and for all j > k′, we have
k′ ⊀ j, this is exactly the definition of k. So k′ = k which makes I ′1 = I1 and I ′2 = I2. 2

3.2 Main result
This composition operation on intervals is an analogue of the usual composition of binary trees that adds
a root node to two given binary trees. In our case, a tree T is replaced by a sum of intervals [T ′, T ].

Proposition 3.4 Let T := k(T1, T2) be a binary tree and S :=
∑
T ′≤T [T ′, T ]. Then, if S1 :=

∑
T ′1≤T1

[T ′1, T1]

and S2 :=
∑
T ′2≤T2

[T ′2, T2], we have S = B(S1, S2).

With this new proposition, Theorem 1.2 would be fully proven by induction on the size of the tree. The
initial case is trivial, and then if we assume that P(S1) = BT1

(x) and P(S2) = BT2
(x), Proposition 3.2

tells us that P(B(S1, S2)) = B(BT1 ,BT2).

Proof: Let T be a binary tree of size n. The initial interval T = [T0, T ], is given by the increasing
bijection of Definition 2.3, it is a poset containing only increasing relations. By Proposition 2.7, (iii), the
sum of all intervals [T ′, T ] is given by all possible ways of adding decreasing edges to the poset T .

The increasing poset T can be formed recursively from the increasing posets T1 and T2 of the subtrees
T1 and T2 as shown in Figure 8. The new vertex k = |T1|+ 1 is placed so that i ≺ k for all i ∈ T1 and the
vertices of T2 are just shifted by k. Now, let I be an interval of the sum S, I contains the poset T and some
extra decreasing relations. Let I1 and I2 be the subposets formed respectively by vertices 1, . . . , k − 1,
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and k + 1, . . . , n. By construction, the posets I1 and I2 contain respectively the forest posets T1 and T2
and some extra decreasing relations. This means that I1 appears in S1 and I2 appears in S2. And we have
that I appears in B(I1, I2). Indeed, conditions (i) and (ii) of Definition 3.1 are true by construction and
conditions (iii) and (iv) are true because the increasing relations of I are exactly the ones of T .

Binary tree Increasing forest poset

k

T1 T2

k

T1

T2

6

2

1 4

3 5

7

9

8 10

6

2 4 5

1 3

7 9 10

8

Figure 8: The recursive construction of T from T1 and T2.

Conversely, if I1 and I2 are two elements of respectively S1 and S2, their increasing relations are
exactly the ones from respectively T1 and T2 which makes all interval-posets I of B(I1, I2) an element of
S. Indeed, by definition of the composition, the increasing relations of I are exactly the ones of T . 2

For a given tree T (with increasing poset T ), the coefficient of the monomial with maximal degree in
x in BT is always 1. It corresponds to the minimal tree of the Tamari order, or to the interval with no
decreasing relations, i.e., T . The interval with the maximal number of decreasing relations corresponds
to [T, T ]. An example of BT and of the computation of smaller trees is presented in Figure 9.

4 Final comments
4.1 Bivariate polynomials

In some very recent work [5], Chapoton computed some bivariate polynomials that seem to be similar to
the ones we study. By computing the first polynomials of [5, formula (7)], one notices [6] that for b = 1
and t = 1 − 1/x is equal to BT (x), where T is a binary tree with no left subtree. The non planar rooted
tree corresponding to T is the non planar version of the tree given by the decreasing bijection of Definition
4, i.e., transforming left children of a node into its brothers.

A b parameter can be also be added to our formula. For an interval [T ′, T ], it is either the number of
nodes in T ′ which have a right subtree, or in the interval-poset the number of nodes x with a relation
y ≺ x and y > x. By a generalization of the linear function P , one can associate a monomial in b, x, and
y with each interval-poset. The bilinear form now reads:

B(f, g) = y

(
xbf

xg − gx=1

x− 1
− bxfg + xfg

)
, (16)
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Figure 9: Example of the computation of BT and list of all smaller trees with associated intervals

where f and g are polynomials in x, b, and y. Proposition 3.2 still holds, since a node with a de-
creasing relation is added in all terms of the composition but one. As an example, in Figure 7, one
has B(y3x2b, y3x2b) = y7(x5b2 + x4b3 + x3b3).

With this definition of the parameter b, the bivariate polynomials BT (x, b) where T has no left subtree
seem to be exactly the ones computed by Chapoton in [5] when taken on t = 1−1/x. This correspondence
and its meaning in terms of algebra and combinatorics should be explored in some future work.

4.2 m-Tamari
The Tamari lattice on binary trees can also be described in terms of Dyck paths. A Dyck path is a path on
the grid formed by north and east steps, starting at (0, 0) and ending at (n, n) and never going under the
diagonal. One obtains a Dyck path from a binary tree by reading it in postfix order and writing a north
step for each empty tree (also called leaf) and an east step for each node, and by ignoring the first leaf. As
an example, the binary tree of Figure 9 gives the following path: N,N,E,E,N,E,N,N,E,N,E,E.
The rotation consists in switching an east step e (immediately followed by a north step) with the shortest
translated Dyck path starting right after e. One can now consider paths that end in (mn, n) and stay above
the line x = my, called m-ballot paths and the same rotation operation will also give a lattice [1].

It is called the m-Tamari lattice, a formula counting the number of intervals was conjectured in [1] and
was proven recently in [3]. The authors use a functional equation that is a direct generalization of (9).
Let Φm(x, y) be the generating function of intervals of the m-Tamari lattice where y is the size n and x a
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statistic called number of contacts, then [3, formula (3)] reads

Φm(x, y) = x+Bm(Φ,Φ, . . . ,Φ), (17)

where Bm is a m-linear form defined by

Bm(f1, . . . , fm) := xyf1∆(f2∆(. . .∆(fm)) . . . ), (18)

∆(g) :=
g(x, y)− g(1, y)

x− 1
. (19)

Expanding (8), we obtain a sum of m-ary trees. A process is described in [3] to associate a m-ballot
path with a m-ary tree: the tree is read in prefix order, from the right to the left and each leaf (resp. node)
is coded by an east (resp. north) step. Note that this process is not consistent with the classical bijection
between Dyck path and binary trees: a different definition of the rotation is given which slightly changes
the Tamari lattice and could be generalized to m-Tamari. However, by computer exploration, one notices
that the analog of Theorem 1.2 seems to hold: for a given Dyck path, the polynomials obtained by the
postfix and prefix tree interpretations of the path are equal. More generally, given a m-ballot path D, let
T be the m-ary tree obtained by a prefix reading. Then the polynomial Bm,T of T where Bm is applied
to the nodes and x to the leafs counts the number of m-ballot paths lower than D in the m-Tamari order.
We shall prove this result in future work.
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PreLie-decorated hypertrees
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Abstract. Weighted hypertrees have been used by C. Jensen, J. McCammond, and J. Meier to compute some Euler
characteristics in group theory. We link them to decorated hypertrees and 2-coloured rooted trees. After the enu-
meration of pointed and non-pointed types of decorated hypertrees, we compute the character for the action of the
symmetric group on these hypertrees.

Résumé. Des hyperarbres pondérés ont été utilisés en théorie des groupes, par C. Jensen, J. McCammond et J. Meier
pour calculer des caractéristiques d’Euler. Nous relions ces hyperarbres pondérés à des hyperarbres décorés, puis à
des arbres enracinés 2-colorés. Après énumération des hyperarbres décorés pointés et non pointés, nous déterminons
le caractère de l’action du groupe symétrique sur les hyperarbres.

Keywords: Enumerative combinatorics, Species, Hypertrees, Symmetric group action

1 Introduction
Hypergraphs are generalizations of graphs introduced by C. Berge in his book [Ber89] during the 1980’s.
Like graphs, they are defined by their vertices and edges, but the edges can contain more than two vertices.
Hypertrees are hypergraphs in which there is one and only one walk between every pair of vertices. Several
studies on hypertrees have been led such as the computation of the number of hypertrees on n vertices
by L. Kalikow in [Kal99] and by W. D. Smith and D. Warme in [War98]. In the article [JMM07], C.
Jensen, J. McCammond and J. Meier have used weighted hypertrees to compute the Euler characteristic
of a subgroup of the automorphism group of a free product. The weight used was (e− 1)e−2 for an edge
of cardinality e.

Thanks to operad theory, we also know a vector space of dimension (n − 1)n−2. This vector space is
the component of arity n − 1 of the PreLie operad introduced by F. Chapoton and M. Livernet in their
paper [CL01]. A basis of this vector space is the set of rooted trees on n − 1 vertices. These results lead
to the following question: is there a combinatorial interpretation in terms of rooted trees of the weighted
hypertrees used by C. Jensen, J. McCammond and J. Meier ?

In this paper, we present a combinatorial interpretation of weighted hypertrees used in [JMM07] in
terms of hypertrees decorated by P̂reLie, which are hypertrees in which vertices in every edges form a
rooted tree. To enumerate them, we establish a bijection of species between the species of decorated
hollow hypertrees and the species of 2-coloured rooted trees. In Section 2, we enumerate pointed and
non-pointed versions of decorated hypertrees, which give back the result of C. Jensen, J. McCammond

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Figure 1: An example of hypergraph on {1, 2, 3, 4, 5, 6, 7}.

and J. Meier in [JMM07]. We then compute the action of the symmetric group on decorated hypertrees in
Section 3, which is remarkable because the associated cycle index series is quite simple.

We use the language of species for which the book of F. Bergeron, G. Labelle and P. Leroux [BLL98]
is a good reference. Note that we write species for linear species. This paper is an extended abstract
of [Oge12]: we refer to the long version for a generalization of this construction and enumeration of
decorated hypertrees to any species or linear species.

2 Description and relations of the decorated hypertrees
In this section, we introduce a type of decorated hypertrees, decorated by P̂reLie and give functional
equations satisfied by these.

2.1 From hypergraphs to rooted and pointed hypertrees
We first recall the definition of hypergraphs and hypertrees.

Definition 2.1 A hypergraph (on a set V ) is an ordered pair (V,E) where V is a finite set and E is a
collection of parts of V of cardinality at least two. The elements of V are called vertices and those of E
are called edges.

Definition 2.2 Let H = (V,E) be a hypergraph, v and w two vertices of H . A walk from v to w in H
is an alternating sequence of vertices and edges (v = v1, e1, v2, . . . , en, vn+1 = w) where for all i in
{1, . . . , n+ 1}, vi ∈ V , ei ∈ E and for all i in {1, . . . , n}, {vi, vi+1} ⊆ ei.

Example 2.3 On the hypergraph of the example of Figure 1, there are several walks from 4 to 2: (4, A, 7, B, 6, C, 2)
and (4, A, 7, B, 6, C, 1, D, 2).

In this article, we are interested in a special type of hypergraphs: hypertrees.

Definition 2.4 A hypertree is a non empty hypergraph H such that, given any vertices v and w in H ,

• there exists a walk from v to w in H with distinct edges ei, i.e. H is connected,

• and this walk is unique, i.e. H has no cycles.

The pair H = (V,E) is called hypertree on V . If V is the set {1, . . . , n}, then H is called a hypertree
on n vertices.

We now recall rooted and pointed variations of hypertrees.

Definition 2.5 • A rooted hypertree is a hypertree H together with a vertex s of H . The hypertree H
is said to be rooted at s and s is called the root of H .
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Figure 2: (Left) A hypertree on nine vertices, rooted at 1. (Middle) A hypertree on seven vertices, pointed at edge
{1, 2, 3, 4} and rooted at 3. (Right) A hollow hypertree on eight vertices. The hollow edge is the edge {1, 2, 3, 4}.

• An edge-pointed hypertree is a hypertree H together with an edge e of H . The hypertree H is said
to be pointed at e.

• An edge-pointed rooted hypertree is a hypertree H on at least two vertices, together with an edge a
of H and a vertex v of a. The hypertree H is said to be pointed at a and rooted at s.

• A hollow hypertree on n vertices is a hypertree on n+1 vertices on the set {#, 1, . . . , n}, such that
the vertex labelled by #, called the gap, belongs to one and only one edge.

2.2 On the linear species P̂reLie and the operad PreLie

An operad is a species with an operadic composition. It means that it is a functor F from the category
of finite sets and bijections to the category of vector spaces, with a family of composition ◦i : F ([n]) ×
F ([m]) 7→ F ([n +m − 1]), for all integers n and m, satisfying some axioms that we will not describe
here, as they will not be needed in this paper.

The basic definitions on species can be found in the book [BLL98]. We can define the following
operations on species:

Definition 2.6 Let F and G be two species. We define the following operations on species:

• F ′(I) = F (I t {•}), (differentiation)

• (F +G)(I) = F (I) +G(I), (addition)

• (F ×G)(I) =∑I1tI2=I F (I1)×G(I2), (product)

• (F ◦G)(I) =⊕π∈P(I) F (π)×
∏
J∈π G(J), (substitution) where P(I) runs on the set of partitions

of I .

With each species F , we can associate a generating series of the dimension of F ([n]) and a cycle index
series, which gives the character for the action of the symmetric group Sn on the set of vertices [n] of
the hypertree, such that operations on species can be translated in terms of operations on generating series
and cycle index series.

The operad PreLie associates to any finite sets I the vector space whose basis is the set of rooted trees
with vertex set I . This operad is described in the paper by F. Chapoton and M. Livernet [CL01]. In the
article [Cha05], F. Chapoton proves that PreLie is anticyclic. It means that the action of the symmetric
group Sn on the vector space PreLie([n]) obtained by permutations of vertices can be extended into an
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action of Sn+1 on PreLie([n]). This implies the existence of a species P̂reLie whose differential is the
species PreLie.

2.3 Definitions of decorated hypertrees
From a hypertree, we can define what we call a decorated hypertree. It consists in decorating the edges
of the hypertree by the linear species P̂reLie.

Definition 2.7 Given a species S, a decorated (edge-pointed) hypertree is obtained from a (edge-pointed)
hypertree H by choosing for every edge e of H an element of P̂reLie(Ve), where Ve is the set of vertices
in the edge e.

The map which associates to a finite set I the set of decorated (resp. edge-pointed) hypertrees on I is a
species, denoted byH

P̂reLie
(resp. Ha

P̂reLie
).

We now give definitions for rooted or hollow versions of decorated hypertrees.

Definition 2.8 A decorated rooted (resp. edge-pointed rooted, resp. hollow) hypertree is obtained from
a rooted (resp. edge-pointed rooted, resp. hollow) hypertree H by choosing for every edge e of H an
element of P̂reLie(Ve), where Ve is the set of vertices in the edge e.

In rooted or hollow hypertrees, there is one distinguished vertex in every edge. Therefore, using the
definition of the differential of a species, we obtain the following equivalent definition:

Definition 2.9 Let us consider a rooted (resp. edge-pointed rooted, resp. hollow) hypertree H . Given
an edge e of H , there is one vertex of e which is the nearest from the root (resp. the gap) of H in e:
let us call it the petiole pe of e. Then, a decorated rooted (resp. rooted edge-pointed, resp. hollow)
hypertree is obtained from the hypertree H by choosing for every edge e of H an element in the vector
space PreLie(Ve − {pe}), where the set Ve is the set of vertices of e. It means that edges of decorated
hypertrees contain a vertex (or a gap) and a rooted tree.

The map which associates to a finite set I the set of decorated rooted (resp. edge-pointed rooted, resp.
hollow) hypertrees on I is a species, called the decorated rooted (resp. edge-pointed rooted, resp. hollow)
hypertree species and denoted byHp

P̂reLie
(resp. Hpa

P̂reLie
, resp. Hc

P̂reLie
).

2.4 Relations

2.4.1 Dissymetry principle
The reader may consult the book [BLL98, Chapter 2.3] for a deeper explanation on the dissymmetry
principle. In a general way, a dissymmetry principle is the use of a natural center to obtain the expression
of a non pointed species in terms of pointed species. An example of this principle is the use of the center
of a tree to express unrooted trees in terms of rooted trees.

We will consider the following weight on any hypertree (pointed or not, rooted or not, hollow or not):

Definition 2.10 The weight of a hypertree H with edge set E is given by:

Wt(H) = t#E−1.

The expression of the hypertree species in terms of pointed and rooted hypertrees species is the follow-
ing:
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Figure 3: An example of an edge-pointed rooted hypertree with edges decorated by P̂reLie. The root of the hypertree
is in a white square, the roots of trees from the decoration are in two circles whereas the other vertices are in one circle.
The grey rectangles are the non-pointed edges of the hypertrees and the blue dotted rectangle is the pointed one.

Proposition 2.11 ([Oge13]) The species of hypertrees and the one of rooted hypertrees are related by:

H+Hpa = Hp +Ha. (1)

This bijection links hypertrees with k edges with hypertrees with k edges, and therefore it preserves the
weight on hypertrees. Pointing a vertex or an edge of a hypertree and then decorating its edges is just the
same as decorating its edges and then pointing a vertex or an edge. Therefore, the decoration of edges is
compatible with the previous Proposition 2.11 and we obtain:

Proposition 2.12 (Dissymmetry principle for decorated hypertrees) Given a species S, the following
relation holds:

H
P̂reLie

+Hpa
P̂reLie

= Hp
P̂reLie

+Ha
P̂reLie

. (2)

Thanks to this proposition, the study of decorated hypertrees is obtained with the study of pointed and
rooted decorated hypertrees.

2.4.2 Functional equations
To study pointed and rooted decorated hypertrees, we decompose them into smaller pointed and rooted
hypertrees to obtain relations between the different species. The previous species are related by the fol-
lowing proposition, where X is the species of singleton, which associates to every singleton s itself and
the empty set otherwise, and Comm is the species of non-empty sets, which associates to every non-empty
set S the set {S} and the empty set otherwise:

Theorem 2.13 The speciesH
P̂reLie

,Hp
P̂reLie

,Ha
P̂reLie

,Hpa
P̂reLie

andHc
P̂reLie

satisfy:

Hp
P̂reLie

= X ×H′
P̂reLie

, (3)

tHp
P̂reLie

= X +X × Comm ◦
(
t×Hc

P̂reLie

)
, (4)

Hc
P̂reLie

= PreLie ◦tHp
P̂reLie

, (5)
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Ha
P̂reLie

= P̂reLie ◦ tHp
P̂reLie

, (6)

Hpa
P̂reLie

= Hc
P̂reLie

× tHp
P̂reLie

=
X

t
×
(
X(1 + Comm) ◦ tHc

P̂reLie

)
. (7)

Proof: If we multiply the series by t, the power of t corresponds to the number of edges in the associated
hypertrees.

• The first relation is due to the general relation between a species and a pointed species.

• The second one is obtained from a decomposition of a rooted hypertree. If there is only one vertex,
we keep the label of it and it gives X , the number of edges is 0. Otherwise, we separate the label of
the root: it gives X . A hypertree with a gap contained in different edges remains. Separating these
edges, we obtain a non-empty set of hollow hypertrees with edges decorated by P̂reLie. There is the
same number of edges in the set of hollow hypertrees as in the rooted hypertree. This operation is a
bijection of species because a vertex alone is a rooted decorated hypertree and taking a non-empty
forest of hollow decorated hypertrees and linking them by their gap on which we put a label gives a
rooted decorated hypertree.

• The third relation is obtained by pointing the vertices in the hollow edge and breaking the edge: we
obtain a non-empty forest of rooted decorated hypertrees. As we break an edge, there is one edge
less in the forest of rooted hypertrees than in the hollow hypertree: it corresponds to a division by
t. The set of roots is a rooted tree and induces this structure on the set of hypertrees: we obtain a
rooted tree whose vertices are rooted decorated hypertrees. As this operation is reversible and does
not depend on the labels of the hollow hypertree, this is a bijection of species.

• The fourth relation is obtained by pointing the vertices in the pointed edge and breaking it: we
obtain a non-empty forest of at least two rooted decorated hypertrees. As we break an edge, there
is one edge less in the forest of rooted hypertrees than in the edge-pointed hypertree: it corresponds
to a division by t. The set of roots is a P̂reLie-structure and induces this structure on the set of
tree: we obtain a P̂reLie-structure in which all elements are rooted decorated hypertrees. As this
operation is reversible and does not depend on the labels of the hollow hypertree, this is a bijection
of species.

• The last relation is obtained by separating the pointed edge from the other edges containing the root
and putting a gap in the pointed edge instead of the root: the connected component of the pointed
edge gives a decorated hollow hypertree and the connected component containing the root gives a
rooted decorated hypertree. There is the same number of edges in the edge-pointed rooted hypertree
as in the union of the hollow and the rooted hypertree.

2

Corollary 2.14 Using the equations (4) and (5) of the previous proposition, we obtain:

tHp
P̂reLie

= X +X × Comm ◦
(
t× PreLie ◦tHp

P̂reLie

)
(8)
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Figure 4: (Left) An example of 2-coloured rooted tree. The edges of E1 are dashed whereas the edges of E0 are
plain. (Right) The hollow hypertree with edges decorated by P̂reLie associated to this 2-coloured rooted tree.

and
Hc

P̂reLie
= PreLie ◦

(
X +X × Comm ◦(t×Hc

P̂reLie
)
)
. (9)

These equations enables us to compute recursively the generating series and the cycle index series of
all decorated hypertrees and rooted and pointed decorated hypertrees. Nevertheless, we can obtain closed
formulas thanks to a bijection with 2-coloured rooted trees.

3 Computation of generating series and cycle index series of dec-
orated hypertrees

3.1 Link with 2-coloured rooted trees and computation of generating series
We now draw the link between trees whose edges can be either plain (0) or dashed (1) and decorated
hollow hypertrees.

Definition 3.1 A 2-coloured rooted tree is a rooted tree (V,E), where V is the set of vertices and E ⊆
V × V is the set of edges, together with a map ϕ from E to {0, 1}. It is equivalent to the data of a tree
(V,E) and a decomposition E0 ∪ E1 of E, with E0 ∩ E1 = ∅. We consider the weight t#E1 on this set.

Theorem 3.2 1. The species of hollow hypertrees decorated by P̂reLie is isomorphic to the species
of 2-coloured rooted trees.

2. The species of rooted hypertrees decorated by P̂reLie is isomorphic to the species of 2-coloured
rooted trees such that the edges adjacent to the root are all dashed, up to a coefficient 1

t to respect
the weight.

3. The species of rooted edge-pointed hypertrees decorated by P̂reLie is isomorphic to the species of
2-coloured rooted trees such that all the edges adjacent to the root but one are dashed.
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This theorem enables us to compute explicitly the generating series and cycle index series for decorated
hypertrees. Hence this is the key point to establish the link between P̂reLie-decorated hypertrees and C.
Jensen, J. McCammond and J. Meier’s weighted hypertrees.

Proof:

1. A hollow hypertree with edges decorated by P̂reLie is a hollow hypertree in which, for all edges e,
the vertices of e different from the gap or the petiole form a rooted tree.

Let us consider a hollow hypertree H decorated by P̂reLie on vertex set V . We call E0, the set of
edges between elements of V in the rooted trees obtained from the decoration by P̂reLie. The graph
(V,E0) is then a forest of trees obtained by deleting the edges of the hypertree H and forgetting the
roots. For any edge e of H , we write re for the root of the rooted tree in e and pe for the petiole
of e. Let E1 be the set of edges between re and pe for all edges e of H . By definition of the
sets, the intersection of E0 with E1 is empty. Moreover, to every path in H corresponds a path in
(V,E0 ∪E1). As H is a hypertree, the graph (V,E0 ∪E1) is a tree T . We root that tree in the root
r of the tree in the hollow edge of H: T is then a 2-coloured tree rooted in r.

Conversely, let T = (V,E0∪E1) be a 2-coloured rooted tree. The graph (V,E0) is a forest of trees:
we can root these trees in their closest vertex from the root. Let us call T1, . . . , Tn this forest, where
T1 is the tree rooted in the root of T . For all i between 2 and n, there is one vertex of V linked
with a vertex of Ti in T and closer than the root of Ti from the root of T : we call this vertex pi.
Then, we consider the hypergraph whose set of vertices is V , with edges containing the vertices of
T1 or the vertices of a Ti and pi for all i between 2 and n. Adding the edges of every Ti, we obtain
a hypergraph decorated by P̂reLie. Moreover, paths in T and in the hypergraph are the same: the
hypergraph is then a hypertree.

As there is a bijection between the elements of E1 and the edges of the hypertree different from the
hollow one, the weight is preserved.

2. Let us consider a rooted hypertree H decorated by P̂reLie on vertex set V .

If the cardinality of V is 1, then H is a 2-coloured rooted tree on one vertex. Otherwise, putting
a gap in the edges containing the root r, deleting the root and separating the edges linked by the
root, we obtain a forest of hollow hypertrees decorated by P̂reLie. According to the first point, the
species of hollow decorated hypertrees is in bijection with the species of 2-coloured rooted trees:
the species of decorated rooted hypertrees is then in bijection with the species of a vertex r and
a forest of 2-coloured trees. Linking the vertex r to the roots of the 2-coloured trees by dashed
edges give the result. To preserve the weight, we must insert the factor 1

t in front of the species of
2-coloured trees.

3. A rooted edge-pointed hypertree is a rooted hypertree on at least two vertices with one edge adjacent
to the root distinguished. We then distinguished one edge in the corresponding 2-coloured trees by
changing it from dashed to plain. The weight is then preserved.

2

Applying the results of Theorem 3.2, we obtain the following proposition, which establish the link
between P̂reLie-decorated hypertrees and J. McCammond and J. Meier’s weighted hypertrees:
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Corollary 3.3 The generating series of the species of hollow hypertrees decorated by P̂reLie is given by:

Sc
P̂reLie

= x+
∑

n≥2
(tn+ n)n−1

xn

n!
.

The generating series of the species of rooted hypertrees decorated by the linear species P̂reLie is given
by:

Sp
P̂reLie

=
x

t
+
∑

n≥2
n(tn+ n− 1)n−2

xn

n!
.

The generating series of the species of hypertrees decorated by P̂reLie is given by:

S
P̂reLie

= x+
∑

n≥2
(tn+ n− 1)n−2

xn

n!
.

The generating series of the species of rooted edge-pointed hypertrees decorated by P̂reLie is given by:

Spa
P̂reLie

= x+
∑

n≥2
n(n+ tn− 1)n−3(n− 1)(1 + 2t)

xn

n!
.

The generating series of the species of edge-pointed hypertrees decorated by P̂reLie is given by:

Sa
P̂reLie

= x+
∑

n≥2
(n+ tn− 1)n−3(n− 1)(1 + tn)

xn

n!
.

We recover the result of C. Jensen, J. McCammond and J. Meier for weighted hypertrees and rooted
weighted hypertrees in [JMM07, Theorem 3.9] and in [JMM07, Theorem 3.11]

Proof:

• According to Theorem 3.2, we have to count 2-coloured rooted trees on n vertices. There are nn−1

rooted trees on n vertices. To obtain 2-coloured rooted trees from rooted trees, we establish a
bijection between the set of edge, of cardinality n− 1, and the set {0, 1}, according to the set Ei to
which the edge belongs.

• Let us count the number Np
n of 2-coloured rooted trees such that the edges adjacent to the root are

all dashed. There are n ways to choose the root. Cutting the root, we obtain a forest of j trees on
n− 1 vertices. We use the classical formula for the number of forests of j trees on n− 1 vertices,
which can be found in the book of M. Aigner and G. Ziegler [AZ04]. We obtain:

Np
n = n×

n−1∑

j=1

(
n− 2

j − 1

)
× ((n− 1)(1 + t))

n−1−j × tj .

Re-indexing, we obtain the result.

• We apply the first equation of Proposition 2.13.
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• We count in the same way as for the second point 2-coloured rooted trees such that all the edges
adjacent to the root but one are dashed:

Npa
n = n×

n−1∑

j=1

(
n− 2

j − 1

)
× ((n− 1)(1 + t))

n−1−j × j × tj−1.

• We apply the dissymetry principle of Proposition 2.12.

2

3.2 Computation of cycle index series of hypertrees decorated by P̂reLie

We denote the cycle index series of usual species in the same way as the species itself. We compute the
cycle index series of hypertrees decorated by P̂reLie. We do not write the argument of the cycle index
series (t, p1, p2, . . .) in this subsection.

We are now interested in the action of the symmetric group on the set of decorated hypertrees, which is
given by cycle index series:

Proposition 3.4 The cycle index series of hollow hypertrees decorated by P̂reLie is given by:

Zc
P̂reLie

=
1

1 + t
PreLie ◦(1 + t)p1. (10)

Proof: By Theorem 3.2, the cycle index series of hollow hypertrees decorated by P̂reLie is given by the
cycle index series of 2-coloured rooted trees. 2

Let us define the following expressions, for λ a partition of an integer n, written λ ` n:

fk(λ) =
∑

l|k
lλl

and
Pk(λ) =

((
(1 + tk)fk(λ)− 1

)λk − kλk(tk + 1)×
(
(1 + tk)fk(λ)− 1

)λk−1
)
.

We obtain the following expression for the cycle index series of hypertrees decorated by P̂reLie:

Proposition 3.5 The cycle index series of rooted hypertrees decorated by P̂reLie is given by:

Zp
P̂reLie

=
∑

n≥1

∑

λ`n,λ1 6=0

λ1(λ1t+ λ1 − 1)λ1−2
∏

k≥2
Pk(λ)×

pλ
zλ
. (11)

The cycle index series of edge-pointed rooted hypertrees decorated by P̂reLie is given by:

Zpa
P̂reLie

=
∑

n≥1

∑

λ`n,λ1 6=0

λ1(λ1 − 1)(2t+ 1)(λ1 + λ1t− 1)λ1−3
∏

k≥2
Pk(λ)×

pλ
zλ
. (12)
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The cycle index series of edge-pointed hypertrees decorated by P̂reLie is given by:

Za
P̂reLie

=
∑

n≥1

∑

λ`n,λ1 6=0

(λ1 − 1)(1 + λ1t)(λ1 + λ1t− 1)λ1−3
∏

k≥2
Pk(λ)×

pλ
zλ
. (13)

The cycle index series of hypertrees decorated by P̂reLie is given by:

Z
P̂reLie

=
∑

n≥1

∑

λ`n,λ1 6=0

(λ1t+ λ1 − 1)λ1−2
∏

k≥2
Pk(λ)×

pλ
zλ
. (14)

This proposition is proven in the paper [Oge12].
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Adinkras for Mathematicians

Yan X Zhang†
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Abstract. Adinkras are graphical tools created for the study of supersymmetry representations. Besides having in-
herent interest for physicists, the study of adinkras has already shown connections with coding theory and Clifford
algebras. Furthermore, adinkras offer many natural and accessible mathematical problems of combinatorial nature.
We present the foundations for a mathematical audience, make new connections to other fields (homological algebra,
poset theory, and polytopes), and solve some of these problems. Original results include the enumeration of all hyper-
cube adinkras through dimension 5, the enumeration of odd dashings of adinkras for any dimension, and a connection
between rankings and the chromatic polynomial for certain graphs.

Résumé.

Les adinkras sont des dessins qui sont utilisés pour étudier les représentations des theories supersymmetriques. Outre
leur intérêt en physique, les adinkras sont aussi utiles en connection avec la theory des codes et les algebres de
Clifford. De plus, le adinkras offrent beaucoup de problèmes de nature combinatoires qui sont à la fois naturels et
accessible. Nous présentons une introduction pour une audience de mathématiciens, présentons de nouvelles con-
nections avec d’autre domaines (algèbres homologiques, ensembles partiellement ordonn és, polytopes), et resolvont
certains problèmes. Parmi les résultats nouveaux, nous énumérons les adinkras de l’hypercube de dimension inférieur
ou égal a 5, nous énumérons les odd dashings en toute dimension, et établissons une relation entre les rankings et le
polynôme chromatique pour certains graphes.

Keywords: supersymmetry, representation theory, Clifford algebras, codes, topology

1 Introduction
In a series of papers, starting with Faux and Gates Jr (2005) and most recently Doran et al. (2011), dif-
ferent subsets of the “DFGHILM collaboration” (Doran, Faux, Gates, Hübsch, Iga, Landweber, Miller)
have built and extended the machinery of adinkras. Following the ubiquitous spirit of visual diagrams
in physics, adinkras are combinatorial objects that encode information about the representation theory
of supersymmetry algebras. Adinkras have many intricate links with other fields such as graph theory,
Clifford theory, and coding theory. Each of these connections provide many problems that can be com-
pactly communicated to a (non-specialist) mathematician. In this paper, which is an extended abstract for
a longer article (Zhang (2011)) and more recent results (mostly from Klein and Zhang), we extract and
study some of these mathematical problems.

†Supported by an NSF Graduate Fellowship
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In short, adinkras are chromotopologies (a class of edge-colored bipartite graphs) with two additional
structures, a dashing condition on the edges and a ranking condition on the vertices. We redevelop the
foundations in a self-contained manner in Sections 2, and an optional discussion of the relevant physics
in Section 3.

Using this setup, we look at the two aforementioned conditions separately in Sections 5 and 6, making
original connection with different areas of mathematics. In Section 5 we use homological algebra to
study dashings; our main result is the enumeration of odd dashings for any chromotopology. In Section 6,
we use the theory of posets to put a lattice structure on the set of all rankings of any bipartite graph
(including chromotopologies) and count hypercube rankings up through dimension 5. We discuss the
generalization of rankings in Section 7, including a useful definition of discrete Lipschitz functions, a
formula for rankings involving the chromatic polynomial, and a connection with the theory of polytopes.

We wish that these purely combinatorial discussions will equip the readers with a visual model that
allows them to appreciate (or to solve!) the original representation-theoretic problems in the physics
literature. We revisit these questions in Section 8, where we give our concluding remarks.

2 Definitions
In this section, we deviate from the original literature, yielding slightly cleaner and more general mathe-
matics, but the core ideas are the same.

For a graphG, we useE(G) to denote the edges ofG and V (G) to denote the vertices ofG. We assume
basic notions of posets and lattices, as in Stanley (1997). In this paper, we think of each Hasse diagram
for a poset as a directed graph, with x→ y an edge if y covers x. Thus it makes sense to call the maximal
elements (i.e. those x with no y > x) sinks and the minimal elements sources. A ranked poset (this is
sometimes also called a graded poset, though there subtly different uses of that name so we avoid it) is a
poset A equipped with a rank function h : A→ Z such that for all x covering y we have h(x) = h(y)+1.
There is a unique rank function h0 among these such that 0 is the lowest value in the range of h0, so it
makes sense to define the rank of an element v as h0(v). The largest element in the range of h0 is then
the length of the longest chain in A; we call it the height of A.

000

010

101

111

100 001

110 011

h = 0

h = 1

h = 2

h = 3

Fig. 1: An adinkra. We can take {000, 011, 101, 110} to be either bosons or fermions.

An n-dimensional adinkra topology, or topology for short, is a finite, simple, connected, and bipartite
graph A such that A is n-regular (every vertex has exactly n incident edges). We call the two sets in
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the bipartition of V (A) bosons and fermions, though the actual choice is mostly arbitrary and we do not
consider it part of the data. A chromotopology of dimension n is a topology A such that the edges are
colored by n colors, which are elements of the set [n] = {1, 2, . . . , n} unless denoted otherwise, such that
every vertex is incident to exactly one edge of each color, and for any distinct i and j, the edges in E(A)
with colors i and j form a disjoint union of 4-cycles.

An adinkra is a chromotopology A with two additional properties:

1. ranked: we give A the additional structure of a ranked poset, with rank function hA (though we
will usually just write h). In this paper, we will usually represent ranks via vertical placement, with
higher h corresponding to being higher on the page.

2. dashed: we add an odd dashing A, which is a choice of making each edge of A either dashed or
solid, such that every 2-colored 4-cycle contains an odd number of dashes.

An example of an adinkra is in Figure 1. Note that any chromotopology A can be ranked as follows:
take one choice of bipartition of V (A) into bosons and fermions. Assign the rank function h to take values
0 on all bosons and 1 on all fermions, forming a height-2 poset. Call such a ranked chromotopology a
valise (see Figure 2). Thus, a chromotopology can be made into an adinkra if and only if it can be dashed.
Call such chromotopologies adinkraizable.

111

101

010

000110 011

100 001

Fig. 2: A valise with topology I3.

3 Motivation
We have neither the space nor the qualification to give a comprehensive review, so we encourage interested
readers to explore the original physics literature. The reader is already equipped to understand most of
the rest of the paper without needing to read this section.

The physical motivation for adinkras is to understand off-shell representations of the N -extended
Poincaré superalgebra in the 1-dimensional worldline. There is no need to understand what all of these
terms mean (the author certainly does not) to appreciate the rest of the discussion; we now give a simpli-
fied translation.

We consider the algebra po1|N generated byN+1 operatorsQ1, Q2, . . . , QN (the supersymmetry gen-
erators) and H = i∂t (the Hamiltonian), such that {QI , QJ} = 2δIJH and [QI , H] = 0. Since H is
basically a time derivative, it lowers the engineering dimension (physics units) of any function f by a sin-
gle unit of time. Consider functions (equipped with engineering dimensions) {φ1, . . . , φm} (the bosonic
fields or bosons) and {ψ1, . . . , ψm} (the fermionic fields or fermions), collectively called the component
fields. We want to understand representations of po1|N acting on the infinite basis {HkφI , H

kψJ | k ∈
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N; I, J ≤ m}. This is a long-open problem and seems intractible, so we restrict our attention to one where
the QI act as permutations (up to a scalar) on the basis: for any boson φ and any QI , QIφ = ±(−iH)sψ,
where s ∈ {0, 1}, the sign, and the fermion ψ depends on φ and I . We enforce a similar requirement
for fermions. We call the representations corresponding to these types of actions adinkraic representa-
tions. For each of these representations, we associate an adinkra via the following correspondence with
the definitions in Section 2.

adinkras representations
vertex bipartition bosonic/fermionic bipartition

rank function (refines bipartition) partition of component fields by engineering dimension
edge with color I QI action without the sign or powers of (−iH)

dashing of an edge sign in QI action
change of rank by an edge powers of (−iH) in QI action

To summarize: an adinkra encodes a representation of po1|N . An adinkraic representation is a repre-
sentation of po1|N that can be encoded into an adinkra.

When the poset structure of our adinkraA is a boolean lattice, we get what Doran et al. (2008a) calls the
exterior supermultiplet, which coincides with the classical notion of the superfield introduced in Salam
and Strathdee (1974). When A is a valise, we get Doran et al. (2008a)’s Clifford supermultiplet.

4 Topologies and Chromotopologies
In this section, we study chromotopologies and adinkraizable chromotopologies. Our approach is more
general than the relevant sections of Doran et al. (2008a) and Doran et al. (2008b) and we obtain the main
classification results of those papers as a special case, though all the main ideas, including the pleasant
connections to codes and Clifford algebras, are already done in the original work.

We now give a quick review of codes (there are many references, including Huffman and Pless (2003)).
An n-bitstring is a vector in Zn2 , which we usually write as b1b2 · · · bn, bi ∈ Z2. We distinguish two
n-bitstrings

−→
1n = 11 . . . 1 and

−→
0n = 00 . . . 0, and when n is clear from context we suppress the subscript

n. The number of 1’s in a bitstring v is called the weight of the string, which we denote by wt(v). An
(n, k)-linear binary code, or code for short, is a k-dimensional subspace of Zn2 . A code is even if all its
bitstrings have weight divisible by 2 and doubly even if all its bitstrings have weight divisible by 4.

Define the n-dimensional hypercube to be the graph with 2n vertices labeled by the n-bitstrings. If two
vertices differ at the i-th bit i, color the edge between them by i. This graph is a chromotopology, so we
call it the n-cubical chromotopology Inc . Our earlier example in Figure 1 had the chromotopology I3c . The
hypercube is the main running example in this paper. We denote the underlying (colorless) graph of Inc as
In.

For a code L, we now construct an edge-colored graph Inc /L, which which we call the quotient of Inc by
L. Let V (Inc /L) be the set of the equivalence classes of Zn2/L and define pL(v) as the image of v under
the quotient Zn2/L. Let there be an edge pL(v, w) in Inc /Lwith color i between pL(v) and pL(w) in In/L
if there is at least one edge with color i of the form (v′, w′) in Zn2 , with v′ ∈ p−1L (v) and w′ ∈ p−1L (w). It
can be checked that Inc /L is a n-regular graph.

Proposition 4.1 The following hold for A = Inc /L, where L is a code.
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1. A is a simple graph if and only if L has has no bitstrings of weight 1 or 2.

2. A can be ranked if and only if A is bipartite, which is true if and only if L is an even code.

3. A can be dashed if and only if L is a code with the following two conditions: first, all bitstrings
must have weight 0 or 1 (mod 4); second, for any two bitstrings w1 and w2, we have (w1 · w2) +
wt(w1) wt(w2) = 0 (mod 2), where the first term is the dot product in Zn2 .

Proof idea: The first two parts are routine. The third can be proven by a translation of the dashing
condition into relations in the multiplicative group of the signed monomials of the Clifford algebra Cl(n).
2

These results give the following classifications, the second part being equivalent to a combination of
(Doran et al., 2008a, Theorem 4.1) and (Doran et al., 2008b, Section 3.1):

Theorem 4.2 Chromotopologies are in bijection with quotients Inc /L where L is an even code with no
bitstring of weight 2. Adinkraizable chromotopologies are in bijection with such quotients where L is a
doubly even code.

Thanks to Theorem 4.2, we can assume that any chromotopology A we discuss comes from some
(n, k)-codeL(A) = L. IfL is an (n, k)-code, we say that the correspondingA is an (n, k)-chromotopology.
An (n, 0)-chromotopology is exactly the n-cubical chromotopology, corresponding to the trivial code
{−→0 }. The first non-cubical chromotopology, shown in Figure 3, is the result of quotienting the 4-cubical
topology by the code L = {0000, 1111}, the smallest non-trivial doubly-even code. It has the topology
of the bipartite graph K4,4.

A

CB D E

H’ G’ F’ HGF

D’E’ C’ B’

A’

A

CB D E

HGF

Fig. 3: The topologies I4 and I4/{0000, 1111}. Labels with the same letter are sent to the same vertex.

Before moving on, we introduce a helpful notion for later sections. Say that a color i decomposes a
chromotopology A into A0 and A1, or A = A0 qi A1, if removing all edges with color i creates two
disjoint chromotopologies A0 and A1, which are labeled and colored in a natural fashion. Whenever
A = A0 qi A1, A0 and A1 are (n − 1, k) chromotopologies with isomorphic topologies. Our definition
was inspired by observations in Doran et al. (2008b), where certain adinkras were called 1-decomposable.
See Figure 4 for an example.
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000

010

101

111

001 100

011 110

00

01

10

11

00 10

01 11

Fig. 4: The color 3 decomposes a ranked chromotopology A.

5 Dashing
Given an adinkraizable chromotopologyA, define o(A) to be the set of odd dashings ofA. In this section,
we introduce several seemingly unrelated ideas and combine them to count |o(A)| for any adinkraizable
chromotopology.

First, let an even dashing be a way to dash E(A) such that every 2-colored 4-cycle contains an even
number of dashed edges, and let e(A) be the set of even dashings. The odd dashings form a torsor for the
even dashings:

Lemma 5.1 For any adinkraizable chromotopology A, we have |o(A)| = |e(A)|.

Proof idea: Let l = |E(A)|. We may consider a dashing (with no parity constraints) of A as a vector in
Zl2, where each coordinate corresponds to an edge and is assigned 1 for a dashed edge and 0 for a solid
edge. The obvious way to add dashings make all dashings form a vector space V of dimension l. Observe
that e(A) is a subspace of V , and that o(A) is a coset in V of e(A) and must then have the same cardinality
as e(A) given that at least one odd dashing exists. Since A is adinkraizable by definition, we are done. 2

Dashings (of both sorts) behave extremely well under decompositions. In fact, if A = A0 qi A1, then
each even (resp. odd) dashing of the induced graph of A0 and each of the arbitrary choices of dashing
the i-colored edges extends to exactly one even (resp. odd) dashing of A. Using this and an inductive
argument, we obtain:

Proposition 5.2 The number of even (or odd) dashings of Inc is

|e(Inc )| = |o(Inc )| = 22
n−1.

We now borrow a concept from Douglas et al. (2010), which defines the vertex switch at a vertex v of
a dashed chromotopology A as the operation that sends all dashed edges incident to v to solid edges, and
vice-versa (this is in turn inspired by the theory of two-graphs). A vertex switch preserves odd dashings
(in fact, parity in all 4-cycles), so the odd dashings of A can be split into orbits under vertex switches,
which we will call the labeled switching classes (or LSCs) of A.

Proposition 5.3 In an adinkraizable (n, k)-chromotopology, each LSC has 22
n−k−1 dashings.
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Fig. 5: Before and after a vertex switch at the outlined vertex.

We need a final observation. In Section 4, Inc plays the role of a universal cover, in the sense that its
everything else comes from their quotients. We make this intuition rigorous with homological algebra.
Over Z2, construct the following 2-dimensional complex X(A) from a chromotopology A. Let C0 be
formal sums of elements of V (A) andC1 be formal sums of elements ofE(A). For each 2-colored 4-cycle
C of A, create a 2-cell with C as its boundary as a generator in C2, the boundary maps {di : Ci → Ci−1}
are the natural choices (we do not worry about orientations since we are using Z2), giving homology
groups Hi = Hi(X(A)).

Proposition 5.4 LetA be an (n, k)-adinkraizable chromotopology with code L. ThenX(A) = X(Inc )/L
as a quotient complex, where L acts freely onX(Inc ). We have thatX(Inc ) is a simply-connected covering
space of X(A), with L the group of deck transformations.

Finally, we combine all our ideas to generalize Theorem 5.2.

Theorem 5.5 The number of even (or odd) dashings of an adinkraizable (n, k)-chromotopology A is

|e(A)| = |o(A)| = 22
n−k+k−1.

Proof idea: The even dashings are exactly the orthogonal complement of the boundaries in C1 (by the
usual inner product), which works out to have Z2-dimension equalling dim(H1) + dim(C0)− dim(H0).
However, note that dim(C0)− dim(H0) = 2n−k − 1, which is exactly the dimension of the vector space
of the vertex switchings for a particular LSC from Proposition 5.3. Dividing, we get that the dimension of
switching classes is precisely dim(H1). By Proposition 5.4, π1(X(A)) = L, the quotient group, which in
this case is the vector space Zk2 . Since π1 is abelian, H1 = Zk2 also. These dimensions basically complete
the proof. 2

It is remarkable that this enumeration is dependent only on the dimension k of the code and not the
code itself, a fact that was not obvious to us through elementary methods.

6 Ranking
Fix a chromotopology A. Call the set of all ranked chromotopologies with the same chromotopology as
A the rank family R(A) and the elements of R(A) rankings of A. Figure 6 shows R(I2c ). In this section,
we give some original structural results using the language of posets and lattices. Then, we count the
rankings for Inc with n ≤ 5 with the help of decomposition.
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Fig. 6: The rank family of I2.

The main structural theorem for rankings is the following theorem. Let D(v, w) be the graph distance
function between v and w:

Theorem 6.1 ((Doran et al., 2007, Theorem 4.1)) Fix a chromotopologyA. Let S ⊂ V (A) and hS : S →
Z be such that hS takes only odd values on bosons and only even values on fermions, or vice-versa, and
for every distinct s1 and s2 in S, we have D(s1, s2) > |hS(s1) − hS(s2)|. Then, there exists a unique
ranking of A, corresponding to the rank function h, such that h agrees with hS on S and A’s set of sinks
is exactly S.

In other words, any ranking of A is determined by a set of sinks and their relative ranks (an analogous
statement is true for sources). We can think of such a choice as the following: pick some nodes as
sinks and “pin” them at acceptable relative ranks, and let the other nodes naturally “hang” down. Thus,
Theorem 6.1 is also called the “Hanging Gardens” Theorem. Figure 7 shows an example.

Fig. 7: Left: I3. Right: Hanging Gardens on I3 applied to the two outlined vertices.

In particular, note that we can pick the set of sinks to contain only a single element, which defines a
unique ranking. Thus, for any vertex v of a chromotopology A, by Theorem 6.1 we can get a ranking Av

which “hangs” from its only sink v. We now discuss our original results.
We introduce two operators on R(A). Given a ranking B in R(A) (with rank function h) and a sink s,

we define Ds, the vertex lowering on s, to change h(s) to h(s) − 2 while keeping everything else in B
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unchanged (visually, we have “flipped” s down two ranks and its edges with it). We define Us, the vertex
raising on s, to be the analogous operation for s a source. We call both of these operators vertex flipping
operators. In Doran et al. (2007), it is shown that any two rankings with the same chromotopology A can
be obtained from each other via a sequence of vertex-raising or vertex-lowering operations, so R(A) has
the structure of a connected graph. We can say more about R(A).

Fig. 8: The rank family poset for Pv(I
2), where next to each node is a corresponding ranking. The

rankings are presented as miniature posets, with the black dots corresponding to v.

Theorem 6.2 For a chromotopology A and any vertex v of A, there exists a finite distributive symmetric
ranked lattice Pv(A) with vertex set R(A). Each covering relation in Pv(A) corresponds to vertex-
flipping on some vertex w 6= v.

Proof idea: Construct Pv(A), as a ranked poset, in the following way: on the bottom rank 0 put Av as the
unique element. Once we finish constructing rank i, from any choice of element B on rank i and a source
w ∈ V (B)\{v}, apply Uw to obtain a ranking C and place it on rank i + 1 such that C covers B. The
lattice structure comes from constructing an auxiliary poset Ev(A), showing Pv(A) is the poset of order
ideals of Ev(A), and appealing to the fundamental theorem of finite distributive lattices. 2

The authors of Doran et al. (2007) noted that the rank family is reminiscent of a Verma module. Extend
the Us to act on formal sums in R[R(A)] and define U(A) to be the algebra generated by all Us∈A. The
image of Av under the action of U(A)/Uv is R[R(A)], so we can consider Av as a lowest-weight vector.
If we allowed Uv we would get repetitions as there would be a nontrivial product of Us that would act as
the identity on Av .

Finally, we want to count the cardinality of R(In). With the help of decomposition and some opti-
mizations, we computed |R(In)| with a computer program for n ≤ 5. We include the results in Table 1
along with the counts of dashings and adinkras. Finding the answer for n = 6 seems intractible with an
algorithm that is at least linear in the number of solutions. For chromotopologies other than R(In), we
can still perform similar computations with the help of decomposition. However, doing a case-by-case
analysis for different chromotopologies seems uninteresting without unifying principles.
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n dashings rankings adinkras
1 2 2 4
2 8 6 48
3 128 38 4864
4 32768 990 32440320
5 2147483648 395094 848457904422912

Tab. 1: Enumeration of dashings, rankings, and adinkras with chromotopology Inc .

7 Generalizing Rankings and Discrete Lipschitz Functions
Rankings are easy to generalize directly to bipartite graphs since they do not rely on any other aspects
of a chromotopology. Theorems 6.1 and 6.2 both hold for bipartite graphs as stated. In Klein and Zhang
we study this generalization, obtaining exact enumerations for R(G) for special families of graphs and
constructing a (complicated) generating function whose constant term equals R(G). However, our most
interesting result is the following:

Theorem 7.1 (Klein and Zhang) If the cycle space ofG is generated by 4-cycles, then |R(G)| = (1/3)χA(3),
where χA is the chromatic polynomial of G.

Many families of graphs satisfy the conditions needed for Theorem 7.1, such as trees, hypercubes
(but not their quotients!), and grid graphs. The main strategic advantage, however, is that Theorem 7.1
allows us to borrow techniques from the theory of Tutte/chromatic polynomials. Interestingly, the most
promising tools come from statistical mechanics, a branch of physics quite distant from supersymmetry.
In particular, the results found by Salas and Sokal in a series of papers (most relevantly Salas and Sokal
(2009)) give data that supports our own calculations of R(G) using the transfer-matrix method.

Finally, given a graph G with n vertices, consider the pairs of hyperplanes in Rn created by |xi−xj | =
±1 for (i, j) ∈ E(G). Now, if we fix any xi = 0, we get an (n−1)-dimensional polytope PG. The integral
points PG ∩ Zn are exactly the functions f : V (G) → Z such that |f(i) − f(j)| ≤ 1 for (i, j) ∈ E(G).
It seems natural to call these integral functions discrete Lipschitz functions; almost identical definitions
have occurred in other places, including Jiang and Chen (2011), where they were used to study the No
Free Lunch Theorem. There are two seemingly unrelated connections between PG and R(G):

Theorem 7.2 (Klein and Zhang) The following hold for a bipartite graph G:

1. The vertices of PG are in bijection with the elements of R(G).

2. We have |PG×I ∩ Z2n−1| = 2|R(G)|.

Besides contributing to this and potential further results about counting rankings, PG and discrete Lips-
chitz functions seem very natural objects to study on their own: PG is the dual polytope to a root polytope
defined via the graph G, which has been studied in Mészáros (2011). Christian Stump and Vincent Pilaud
(Pilaud and Stump) observed that PG is a special instance of Lam and Postnikov’s alcoved polytopes
found in Lam and Postnikov (2007). Finally, exploring the Ehrhart theory of PG may be worthwhile.
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8 Concluding Remarks
Adinkras are beautiful objects that have given us some very natural mathematical problems where much
remain to be done. For sake of brevity, several promising new directions and results have been omitted
from this extended abstract. Besides generalizing rankings, we have also started generalizing dashings
to arbitrary graphs, finding some similarities with the study of Pfaffian graphs. Recently, the authors of
the original literature have used homological techniques to obtain an independent set of results from our
own (see Doran et al. (2011)). In a different application of topology, we have obtained a promising notion
of Stiefel-Whitney classes for a code and studied the conditions under which they vanish, to emulate
obstruction-theoretic interpretations of Stiefel-Whitney classes.

Finally, while we have focused on the mathematics, many potential applications of adinkras to physics
are not completely explored. We end with a sketch of the longer discussion in Zhang (2011).

• One may wish to ask which adinkraic representations are irreducible. In the valise case, this is
well-understood (see Doran et al. (2008b)) with an elegant answer: irreducible valise adinkraic
representations correspond to maximal doubly-even codes. However, there is currently no efficient
method for other rankings.

• Even asking what it means for two adinkras to be isomorphic is a subtle question; while it seems to
be completely intuitive for the authors of the literature (see Gates et al. (2009) and Douglas et al.
(2010)), Zhang (2011) may be the first formal discussion. A natural continuation of this question is
how to tell if two adinkras capture isomorphic adinkraic representations, which is not yet completely
understood (but known for irreducible representations).

• It would be good to have a theory of adinkras as building blocks of more complex representations
and representations of higher dimensions. For example, by direct sums, tensors, and other opera-
tions familiar to the Lie algebras setting, it is possible to construct many more representations (see
Doran et al. (2008b)), a technique that has been extended to higher dimensions in Hubsch (2011).
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A Hopf-power Markov chain on compositions
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Abstract. In a recent paper, Diaconis, Ram and I constructed Markov chains using the coproduct-then-product map
of a combinatorial Hopf algebra. We presented an algorithm for diagonalising a large class of these “Hopf-power
chains”, including the Gilbert-Shannon-Reeds model of riffle-shuffling of a deck of cards and a rock-breaking model.

A very restrictive condition from that paper is removed in my thesis, and this extended abstract focuses on one
application of the improved theory. Here, I use a new technique of lumping Hopf-power chains to show that the
Hopf-power chain on the algebra of quasisymmetric functions is the induced chain on descent sets under riffle-
shuffling. Moreover, I relate its right and left eigenfunctions to Garsia-Reutenauer idempotents and ribbon characters
respectively, from which I recover an analogous result of Diaconis and Fulman (2012) concerning the number of
descents under riffle-shuffling.

Résumé. Dans un récent article avec Diaconis et Ram, nous avons construit des chaı̂nes de Markov en utilisant une
composition du coproduit et produit d’une algébre de Hopf combinatoire. Nous avons présenté un algorithme pour
diagonaliser une large classe de ces “chaı̂nes de Hopf puissance”, en particulier nous avons diagonalisé le modèle
de Gilbert-Shannon-Reeds de mélange de cartes en “riffle shuffle” (couper en deux, puis intercaler) et un modèle de
cassage de pierres.

Dans mon travail de thèse, nous supprimons une condition très restrictive de cet article, et ce papier se concentre sur
une application de cette amélioration. Nous utilisons ici une nouvelle technique de projection de chaı̂nes de Hopf
puissance pour montrer que la chaı̂ne de Hopf puissance sur l’algèbre des fonctions quasi-symétriques est la chaı̂ne
de Markov induite sur les ensembles des descentes dans le “riffle shuffling”. De plus, nous faisons le lien entre les
fonctions propres à droite et à gauche et respectivement les idempotents de Garsia-Reutenauer et les caractères en
rubans, ce qui nous permet de retrouver un résultat analogue à Diaconis et Fulman (2012) concernant le nombre de
descentes dans le “riffle shuffling”.

Keywords: Quasisymmetric functions, riffle shuffling, descent set, combinatorial Hopf algebras

1 Introduction
The Hopf algebra is a ubiquitous structure in mathematics - having originated in algebraic topology to de-
scribe the cohomology ofH-spaces, it generalises the group ring in representation theory, and is equivalent
to a group scheme in algebraic geometry. Joni and Rota (1979) first introduced Hopf algebras to combina-
torics to encode the breaking (coproduct) and assembling (product) of combinatorial objects; since then,
many examples of the combinatorial Hopf algebra have been developed, for example in Schmitt (1993),
and the theory extended in Aguiar and Mahajan (2010).

It is natural to wonder what happens to a combinatorial object after many iterates of breaking and
reassembling. Diaconis et al. (2012) examined this question by building a Markov chain out of the
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coproduct-then-product operator on the corresponding combinatorial Hopf algebra. Their main exam-
ples of these Hopf-power chains were inverse shuffling (from the free associative algebra, with states
indexed by its usual word basis) and rock-breaking (from the algebra of symmetric functions, with states
indexed by the elementary symmetric functions {eλ}). The advantage of reformulating these familiar
Markov chains as Hopf-power chains is to leverage from theorems concerning arbitrary Hopf algebras.
In particular, the Eulerian idempotent theory of Patras (1993) and Reutenauer (1986), which holds for
any commutative or cocommutative graded Hopf algebra (over a field of characteristic zero), allows the
explicit construction of a left and right eigenbasis of the chain in two rather restrictive circumstances:
when the states of the chain form a polynomial basis, or when the underlying Hopf algebra is cocom-
mutative and the states form a free basis. These expressions can aid in estimating convergence rates and
probabilities of being in certain subsets of the state space - see (Diaconis et al., 2012, Cor. 4.10, Sec. 2.1)
respectively for an example and an extensive list of applications.

The thesis of Pang (in preparation) greatly relaxes the condition that the basis of states be polynomial or
free, instead requiring simply that no state of degree greater than 1 is primitive. Thus this extension can, for
instance, construct and analyse Markov chains on parking functions and binary trees via the Hopf algebras
of Hivert et al. (2008), or use the bases with parameters of Lascoux et al. (2011) to deform familiar
chains. The example in the present paper has as its states the non-polynomial basis {FI} of fundamental
quasisymmetric functions. The new idea of interpreting Hopf algebra morphisms as a lumping of the
corresponding Hopf-power chains shows that (Theorem 3.2) this chain on compositions is the induced
chain on descent sets under riffle-shuffling. This descent set chain was briefly studied by (Diaconis and
Fulman, 2009, Th. 3.2), who gave an upper bound of log n for the mixing time (n is the number of cards
in the deck). Their emphasis was on the induced chain on the number of descents under riffle-shuffling,
for which they proved a mixing time of 1

2 log n .
Extending the ideas of (Diaconis et al., 2012, Sec. 3.5) yields an explicit algorithm for a full right

eigenbasis {fI} and left eigenbasis {gI} of this descent set chain, both indexed by compositions of n,
where n is the number of cards in the deck. This paper will concentrate on the fI , gI when the parts
of I are ordered non-increasing, for which the unwieldly general formula simplifies neatly. This subset
of “partition eigenfunctions” completely determine the behaviour of the chain if the starting deck has all
cards in increasing order, and they have some surprising interpretations:

• (Theorem 4.2) fI(J) is the coefficient of any permutation with descent set J in the Garsia-Reutenauer
idempotent (of the descent algebra) corresponding to I;

• (Theorem 4.8) gI(J) is the value of the ribbon character (of the symmetric group) corresponding to
J on any permutation of cycle type I .

Summing these over partitions of fixed length then recovers the analogous discoveries of Diaconis and
Fulman (2012) regarding the Markov chain of the number of descents under riffle-shuffling, see Corollar-
ies 4.7 and 4.12.

We remark that the idea of using quasisymmetric functions to analyse descents under riffle-shuffling
is not new: Novelli and Thibon (2012) exploited the dual algebra Sym, of noncommutative symmetric
functions, to streamline the results of Diaconis and Fulman (2012); (Hersh and Hsiao, 2009, Sec. 7)
specialises their theory of walks on quasisymmetric functions to diagonalise the induced chain of riffle-
shuffling on the idescent set {i|i + 1 occurs earlier than i}. (They phrase their chain as the descent set
under left-multiplication of a certain quasisymmetric function whose right-multiplication describes riffle-
shuffling; associating the permutation σ with the word σ−1(1) . . . σ−1(n) instead of σ(1) . . . σ(n) then
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exchanges left and right and interprets their chain as the idescent set under shuffling. This results in
a genuinely different chain from the one examined in this paper, see the remark in Section 4.1. The
remark in (Zhao, 2009, Sec. 2.2) gives further details on the two conventions to notate decks of cards as
permutations; to avoid this confusion, this paper will use words instead of permutations.)

This paper is organised as follows. Section 2 collects together the notation necessary to describe the
eigenbasis. Section 3 shows that the Hopf-power chain on quasisymmetric functions is the induced chain
on descent sets under riffle-shuffling of distinct cards. Section 4 is devoted to the eigenfunctions.

2 Notation regarding compositions
A composition I is a list of positive integers

(
i1, i2, . . . , il(I)

)
. Each ij is a part of I . The sum i1 +

· · · + il(I) is denoted |I|, and l(I) is the number of parts in I . So |(3, 5, 2, 1)| = 11, l((3, 5, 2, 1)) = 4.
Forgetting the ordering of the parts of I gives a multiset λ(I) :=

{
i1, . . . , il(I)

}
. Clearly λ(I) = λ(I ′) if

and only if I ′ has the same parts as I , but in a different order. I is a partition if its parts are non-increasing,
that is, i1 ≥ i2 ≥ · · · ≥ il(I).

The diagram of I is a string of |I| dots with a division after the first i1 dots, another division after
the next i2 dots, etc.. The ribbon shape of I is a skew-shape (in the sense of tableaux) with i1 boxes in
the bottom row, i2 boxes in the second-to-bottom row, etc., so that the rightmost square of each row is
directly below the leftmost square of the row above. Hence this skew shape contains no 2-by-2 square.
The diagram and ribbon shape of (3, 5, 2, 1) are shown below.

· · ·| · · · · · | · ·|·

Given compositions I, J with |I| = |J |, (Gelfand et al., 1995, Sec. 4.8) defines the decomposition of

J relative to I as the l(I)-tuple of compositions
(
JI1 , . . . , J

I
l(I)

)
such that |JIr | = ir and each l(JIr ) is

minimal such that the concatenation JI1 . . . J
I
l(I) refines J . Pictorially, the diagrams of JI1 , . . . , J

I
l(I) are

obtained by “splitting” the diagram of J at the points specified by the divisions in the diagram of I . For
example, if I = (4, 4, 3) and J = (3, 5, 2, 1), then JI1 = (3, 1), JI2 = (4), JI3 = (2, 1).

A composition I is Lyndon if the word i1 . . . il(I) is lexicographically strictly smaller than its cyclic
rearrangements. For example, (1, 1, 2, 1, 2) is Lyndon, but (2, 3, 2, 3) and (3, 5, 2, 1) are not. As described
by (Lothaire, 1997, Th. 5.1.5, Prop. 5.1.6), the Lyndon factorisation I(1) . . . I(k) of I is obtained by taking
I(k) to be the lexicographically smallest tail of I , then I(k−1) is the lexicographically smallest tail of I
with I(k) removed, and so on. Hence, if I = (3, 5, 2, 1), then k(I) = 3 since the Lyndon factors are
I(1) = (3, 5), I(2) = (2), I(3) = (1). The factors I(r) are important in the general formulae for the full
eigenbasis, but this paper will only involve k(I), the number of Lyndon factors in I . If I is a partition,
then each part of I is a singleton Lyndon factor, which is why the corresponding eigenfunctions have
much simpler expressions. In this case, k(I) = l(I).

3 The Markov chain on descent sets under shuffling
The purpose of this section is to prove that the coproduct-then-product operator on the algebra of qua-
sisymmetric functions encodes the changes in descent set of a deck of distinct cards under riffle-shuffling.
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Sections 3.1 and 3.2 review background on the shuffle algebra and the algebra of quasisymmetric func-
tions respectively. Section 3.3 defines the all-important Hopf morphism from the shuffle algebra toQSym
to relate the two Hopf-power chains, and explains how to lump other Hopf-power chains by the same rea-
soning. This allows the ideas of (Diaconis et al., 2012, Sec. 3.5) to give explicit expressions for the
eigenbasis, as shown in Section 4.

3.1 The Shuffle algebra and riffle-shuffling
The shuffle algebra S, as defined by Ree (1958), is spanned by words of the form w = w1 . . . wn, where
eachwi ∈ N. Thewi need not be distinct. S is multigraded: deg(w) = (|{i : wi = 1}|, |{i : wi = 2}|, . . . ).
In other words, the kth component of deg(w) is the number of times the letter k appears in w. The shuffle
algebra also admits a coarser grading: |w| is the number of letters in w. For example, deg(12231) =
(2, 2, 1), |12231| = 5.

The product of two words w and w′, denoted m(w ⊗ w′), is the sum of all possible interleavings of
their letters, with multiplicity. For example,

m(13⊗ 52) = 1352 + 1532 + 1523 + 5132 + 5123 + 5213;

m(12⊗ 231) = 2(12231) + 12321 + 12312 + 21231 + 21321 + 21312 + 2(23112) + 23121.

Iterating this gives the a-fold product:

m[a] : S⊗a → S, m[1] := ι, m[a] := m(m[a−1] ⊗ ι), (1)

where ι denotes the identity map. Note that m = m[2]. (Reutenauer, 1993, Sec. 1.5) showed that
deconcatenation is a compatible coproduct. For example,

∆(316) = ∅ ⊗ 316 + 3⊗ 16 + 31⊗ 6 + 316⊗ ∅.

(Here, ∅ denotes the empty word, which is the unit of S.) The a-fold coproduct is given inductively by:

∆[a] : S → S⊗a, ∆[1] := ι, ∆[a] := (∆[a−1] ⊗ ι)∆, (2)

so again ∆ = ∆[2]. As an example,

∆[3](316) = ∅ ⊗ ∅ ⊗ 316 + ∅ ⊗ 3⊗ 16 + 3⊗ ∅ ⊗ 16 + ∅ ⊗ 31⊗ 6 + 3⊗ 1⊗ 6.

+31⊗ ∅ ⊗ 6 + ∅ ⊗ 316⊗ ∅+ 3⊗ 16⊗ ∅+ 31⊗ 6⊗ ∅+ 316⊗ ∅ ⊗ ∅

Letting the word w1 . . . wn represent a deck of cards in the order w1, w2, . . . , wn from top to bottom,
the Hopf-square map Ψ2 := m∆ represents a Gilbert-Shannon-Reeds shuffle: cut the deck binomially
with parameter 1

2 , then drop the cards one by one from either pile, where the chance of dropping from a
pile is proportional to the number of cards currently in the pile. Precisely,

Ψ2(w) = m∆(w) =
∑

w′

2|w|K2(w,w′)w′,

where K2(w,w′) is the chance of a GSR shuffle applied to w resulting in w′. In other words, the matrix
for the operator 2−nΨ2, with respect to the basis of words with n letters, transposes to give the transition
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matrix of the GSR shuffle. Analogously, the ath Hopf-power, Ψa := m[a]∆[a], describes the a-shuffle
of Bayer and Diaconis (1992), where the cards are cut into a piles multinomially (with parameter 1

a ) and
then dropped proportional to pile size as before.

The descent set of a wordw = w1 . . . wn is defined to beD(w) = {j ∈ {1, 2, . . . , |w| − 1}|wj > wj+1}.
It is more convenient in this paper to consider the associated composition of D(w). Hence a word w has
descent composition DC(w) = I if ij is the number of letters between the j − 1th and jth descent,
i.e. if wi1+···+ij > wi1+···+ij+1 for all j, and wr ≤ wr+1 for all r 6= i1 + · · · + ij . For example,
D(3521) = {2, 3} and DC(3521) = (2, 1, 1). Note that no information is lost in passing from D(w) to
DC(w), as the divisions in the diagram of DC(w) indicate the positions of descents in w.

3.2 The algebra of quasisymmetric functions
The algebra QSym of quasisymmetric functions was first introduced by Gessel (1984) to study P -
partitions. It is a subalgebra of the algebra of polynomials in infinitely many commuting variables
{x1, x2, . . . }. Gessel defined two bases of QSym, both indexed by compositions. The monomial qua-
sisymmetric function MI associated to a composition I =

(
i1, . . . , il(I)

)
is

MI =
∑

j1<···<jl(I)
xi1j1 . . . x

il(I)
jl(I)

,

and the fundamental quasisymmetric function FI associated to I is

FI =
∑

J≥I
MJ

where the sum runs over all partitions J refining I . QSym inherits a grading and a commutative product
from the algebra of polynomials, so deg(MI) = deg(FI) = |I|. Malvenuto and Reutenauer (1995)
extended this to a Hopf algebra structure by defining the following coproduct:

∆(MI) =

l(I)∑

j=0

M(i1,i2,...,ij) ⊗M(ij+1,...,il(I)).

Equations (1) and (2) define an a-fold product and a-fold coproduct on QSym.

3.3 Lumping riffle-shuffling by descent set
The algebraic relationship between the two Hopf algebras above is:

Theorem 3.1 There is a morphism of Hopf algebras θ : S → QSym such that, if w is a word with
distinct letters, then θ(w) = FDC(w).

Proof (sketch): The linear function ζ : S → R defined by

ζ(w) =

{
1 if w1 < w2 < · · · < wn

0 otherwise,

is an algebra homomorphism; now apply the universal construction of (Aguiar et al., 2006, Th. 4.1). 2

As θ is a Hopf morphism, it commutes with the ath Hopf-power map Ψa. The probability interpretation
of this is:
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Theorem 3.2 The descent set process of a deck of n distinct cards under a-shuffling is a Markov chain,
whose transition matrix K̄a,n is the transpose of the matrix for the rescaled Hopf-power map a−nΨa on
QSym, with respect to the basis {FI | |I| = n}.

Proof: Let Ka,n be the transition matrix for a-shuffling on a deck of n distinct cards. Then, for any w
with n distinct letters,

a−nΨa(w) =
∑

w′

Ka,n(w,w′)w′.

Apply θ of Theorem 3.1 to both sides, remembering that θ and Ψa commute:

a−nΨa(θ(w)) =
∑

w′

Ka,n(w,w′)θ(w′).

As all words involved have distinct letters, Theorem 3.1 yields

a−nΨa(FDC(w)) =
∑

w′

Ka,n(w,w′)FDC(w′) =
∑

J


 ∑

w′:DC(w′)=J

Ka,n(w,w′)


FJ . (3)

The left hand side of this equation depends only on DC(w), so the same is true of the coefficients∑
w′:DC(w′)=J Ka,n(w,w′) on the right. These are the probabilities that, after an a-shuffle, a deck in

orderw now has descent composition J . Hence the descent set process under shuffling is indeed a Markov
chain, and Equation 3 gives the transition probabilities as the (I, J)-entry of the transpose of the matrix
for a−nΨa. 2

Remark. This straightforward argument applies verbatim to lump Hopf-power Markov chains on other
graded Hopf algebras. Let θ : H → H′ be a morphism of graded Hopf algebras mapping a basis Bν of
the degree ν subspace Hν of H onto a basis B′ν′ of some degree ν′ subspace H′ν′ of H′. (θ : Hν → H′ν′

must be surjective, but need not be injective - several elements of Bν may have the same image inH′ν′ , as
long as the distinct images are linearly independent.) Then the Hopf-power walk on Bν lumps via θ to the
Hopf-power walk on B′ν′ .

4 Explicit formulae for eigenfunctions
Section 4.1 gives the eigenvalues of the descent set chain and their multiplicities. Sections 4.2 and 4.3
detail formulae for the right and left “partition eigenfunctions” respectively, explain how to recover the
results of Diaconis and Fulman (2012), and sketch the ideas behind the proofs of the full eigenbases. This
strategy also diagonalises Hopf-power chains on a large class of commutative cofree combinatorial Hopf
algebras. These eigenfunctions are useful for a variety of probabilistic tasks, as (Diaconis et al., 2012,
Sec. 2.1) explains.

4.1 Multiplicity of eigenvalues
As is the case for previously analysed Hopf-power Markov chains, all eigenvalues of this descent set chain
are powers of the Hopf-power exponent a. The full eigenbasis algorithm shows that fI has eigenvalue
ak(I)−|I|, where k(I) is the number of Lyndon factors in I . A standard generating function argument then
rephrases this as:
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Theorem 4.1 The eigenvalues of the ath Hopf-power Markov chain on compositions of n are 1, a−1, a−2, . . . , a−n+1.
The multiplicity of the eigenvalue a−n+k is the coefficient of xnyk in

∏
i

(
1− yxi

)−di , where di is the
number of Lyndon compositions I with |I| = i.

Remark. The idescent set chain of (Hersh and Hsiao, 2009, Sec. 7) has the same eigenvalues, but there
each composition I corresponds to an eigenfunction of eigenvalue a−n+l(I), so the multiplicity of a−n+k

in the idescent set chain is the number of compositions of n with length k. This difference in eigenvalue
multiplicity suggests the two chains have different convergence rates.

4.2 Right eigenfunctions
All functions fI in the right eigenbasis are essentially built from the function

f(J) :=
1

|J |
(−1)l(J)−1

( |J|−1
l(J)−1

) .

Note that f(J) depends only on |J | and l(J) − 1, which are respectively the number of dots and the
number of divisions in the diagram of J .

Theorem 4.2 below gives an explicit formula for the right eigenfunctions fI corresponding to a partition
I (when I is not a partition, the sum becomes weighted), and relates them to the orthogonal idempotents
EI of the descent algebra. These idempotents refine the more familiar Eulerian idempotent, and were
first defined by (Garsia and Reutenauer, 1989, Sec. 3) to classify indecomposable representations of the
descent algebra.

Theorem 4.2 Let I be a partition with |I| = n. With f as defined above, the function

fI(J) :=
1

l(I)!

∑

I′:λ(I′)=λ(I)

l(I′)∏

r=1

f
(
JI

′
r

)
=

1

l(I)!i1 . . . il(I)

∑

I′:λ(I′)=λ(I)

l(I′)∏

r=1

(−1)
l
(
JI′
r

)
−1

( |JI′
r |−1

l(JI′
r )−1

)

is a right eigenfunction of eigenvalue a−n+l(I) of the ath Hopf-power Markov chain on compositions. The
numbers fI(J) are the coefficients in the Garsia-Reutenauer idempotent EI :

EI =
∑

σ∈Sn

fI(DC(σ))σ.

Observe that f itself is a right eigenfunction, that corresponding to the partition with single part. Its
eigenvalue is a−n+1, the smallest possible.

Example 4.3 Here’s how to apply the algorithm above to calculate f(4,4,3)((3, 5, 2, 1)). The I ′ in the
sum are the rearrangements of (4, 4, 3), which are (4, 4, 3), (4, 3, 4) and (3, 4, 4). The decompositions of
(3, 5, 2, 1) with respect to these three I ′ are:

(· · ·|·, · · ··, · · |·) (· · ·|·, · · ·, ·| · ·|·) (· · ·, · · ··, ·| · ·|·),

so

f(4,4,3)((3, 5, 2, 1)) =
1

3!

(
−1

4
(

3
1

) 1

4

−1

3
(

2
1

) +
−1

4
(

3
1

) 1

3

1

4
(

3
2

) +
1

3

1

4

1

4
(

3
2

)
)

=
7

5184
.
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As f((1)) = 1, one may omit all r with |JI′r | = 1 from the product in the expression for fI . This
simplifies the calculation of f(i1,1,1,...,1)(J) to “pulling a window” of length i1 across the diagram of J
and summing the values of f on each position of the window.

Example 4.4 Take i1 = 2, then in the window of length 2, there is either a division or no division. Since
f((2)) = 1

2 and f((1, 1)) = − 1
2 , f(2,1,1,...,1)(J) is the sum of 1

2 for every non-division and − 1
2 for every

division, divided by (n− 1)!, i.e.,

f(2,1,1,...,1)(J) =
1

(n− 1)!

( |J | − 1

2
− (l(J)− 1)

)
.

By Theorem 4.1, this is the unique right eigenfunction of eigenvalue 1
a , the largest eigenvalue after 1. Its

lift to the shuffle algebra is the “normalised number of descents” eigenfunction, as discussed in (Diaconis
et al., 2012, Ex. 5.8).

Example 4.5 When i1 = 3, calculations of f(J) for J with |J | = 3 show that

f(3,1,1,...,1)(J) =
1

3(n− 2)!

(
# (2 consecutive non-divisions) + # (2 consecutive divisions)

−1

2
#(division followed by non-division) − 1

2
#(non-division followed by division)

)
.

The associated eigenvalue is 1
a2 . Since divisions correspond to descents in the shuffle algebra, and non-

divisions to ascents, f(3,1,1,...,1) lifts to the shuffle algebra as

f̃(3,1,1,...,1)(w) =
1

3(n− 2)!

(
# straights − 1

2
# troughs − 1

2
# peaks

)

=
1

2(n− 2)!

(
# straights − n− 2

3

)

since # straights + # troughs + # peaks = n − 2. (Here, a straight is two consecutive ascents or two
consecutive descents.) This “normalised number of straights” eigenfunction is 1

2(n−2)!f− in the notation
of (Diaconis et al., 2012, Prop.5.10). The full eigenbasis formula shows that the normalised number of
peaks and of troughs are also eigenfunctions. Consequently:

Proposition 4.6 The expected number of straights (resp. peaks, troughs) after l shuffles, starting from a
deck with x straights (resp. peaks, troughs), is

(1− 4−l)
n− 2

3
+ 4−lx.

The story is similar for larger i1: f(i1,1,1,...,1) is the weighted enumeration of “patterns” of length i1,
where pattern J has weight f(J)

(n−i1+1)! . Each of these lifts to an eigenfunction on the shuffle algebra, that
is a weighted enumeration of up-down-patterns of length i1.

Corollary 4.7 (Diaconis and Fulman, 2012, Cor. 3.2) Let fi(j) be the coefficient of any permutation with
j descents in the ith Eulerian idempoten. Then {fi} is a right eigenbasis for the Markov chain on the
number of descents under riffle-shuffling.
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Proof: The key is that the Garsia-Reutenauer idempotents for partitions of a fixed length sum to the
corresponding Eulerian idempotent:

ei =
∑

l(I)=i

EI =
∑

σ∈Sn

∑

l(I)=i

fI(DC(σ))σ.

Since the coefficient of a permutation in the Eulerian idempotent depends only on its number of descents,
the function

∑
l(I)=i fI(J) depends only on l(J), and it is a right eigenfunction of eigenvalue a−n+i. By

the eigenfunction theory of lumped chains, as in (Levin et al., 2009, Lem. 12.8.i), this descends to a right
eigenfunction

j →
∑

l(I)=i

fI(J) for any J of length j

on the induced chain on the number of descents, which is the required fi. 2

The full right eigenbasis {fI} comes from applying (Diaconis et al., 2012, Th. 3.16) to Sym, the
graded dual of QSym. The eigenfunctions are most naturally expressed in terms of {ΦI}, the noncom-
mutative power sum of the second kind; one then uses the explicit change-of-basis matrices of (Gelfand
et al., 1995, Sec. 4) to rewrite this in terms of the dual basis to {FI}, which is {RI}, the noncommutative
ribbon symmetric functions.

4.3 Left eigenfunctions
The left eigenfunctions gI for I a partition are most concisely defined using some representation theory
of the symmetric group Sn, although their calculation is completely combinatorial. Each composition J
may be associated to a representation of Sn via its ribbon shape J ; denote by χJ the character of this
representation.

Theorem 4.8 Let I be a partition with |I| = n. Define gI(J) := χJ(I), the character of Sn associated
to the ribbon shape J evaluated at a permutation with cycle type I . Then gI is a left eigenfunction of the
ath Hopf-power Markov chain on compositions with eigenvalue a−n+l(I).

(Ceccherini-Silberstein et al., 2010, Rem. 3.5.18) explains how to calculate χJ(I) graphically: find all
possible ways of filling the ribbon shape of J with i1 copies of 1, i2 copies of 2, etc., such that all copies
of each integer are in adjacent cells, and all rows and columns are weakly increasing; then sum over these
fillings, weighted by (−1)Σ(lr−1), where lr is the number of rows containing r. (For general compositions
I , the left eigenfunction gI(J) is a weighted sum over coloured fillings of the ribbon shape of J subject
to complex restrictions, and does not have a neat expression in terms of characters.)

Example 4.9 Calculating g(4,4,3)((3, 5, 2, 1)) requires filling the ribbon shape of (3, 5, 2, 1) with four
copies of 1, four copies of 2 and three copies of 3, subject to the constraints in explained above. Observe
that the top square cannot be 1, because then the top four squares must all contain 1, and the fifth square
from the top must be equal to or smaller than these. Similarly, the top square cannot be 3, because then
the top three squares are all 3s, but the fourth must be equal or larger. Hence 2 must fill the top square,
and the only legal way to complete this is

2
2 2

1 1 1 1 2
3 3 3
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so
g(4,4,3)((3, 5, 2, 1)) = (−1)(0+2+0) = 1.

Example 4.10 There is only one way to fill any given ribbon shape with n copies of 1, so

g(n)(J) = (−1)l(J)−1.

Next, take I = (1, 1, . . . , 1). Then g(1,1,...,1) is χJ evaluated on the identity permutation. A theorem of
Foulkes (1980), described in Kerber and Thürlings (1984), translates this to:

Corollary 4.11 The stationary distribution for the ath Hopf-power Markov chain on compositions is

g(1,1,...,1)(J) =
1

n!
|{w| |w| = n, deg(w) = (1, 1, . . . , 1), DC(w) = J}| .

In other words, the stationary probability of J is the proportion of words with letters are 1, 2, . . . , n (each
appearing exactly once) whose descent composition is J . 2

This also follows from the stationary distribution of riffle-shuffling being the uniform distribution.

Corollary 4.12 (Diaconis and Fulman, 2012, Th. 2.1) Let gi(j) be the value of the jth Foulkes character
of the symmetric group on any permutation with i cycles. Then {gi} is a left eigenbasis for the Markov
chain on the number of descents under riffle-shuffling.

Proof: Each gI determines a left eigenfunction for the number of descents chain, by summing the values
of gI over all compositions lumping to the same state, see (Barr and Thomas, 1977, Th. 2) for details. So

j →
∑

l(J)=j

gI(J) =
∑

l(J)=j

χJ(I)

is an eigenfunction of eigenvalue a−n+l(I), and this sum of ribbon characters is by definition the jth
Foulkes character. 2

The full left eigenbasis is given by essentially applying (Diaconis et al., 2012, Th. 3.15) to products
of {PI |I is Lyndon}, where {PI} is the power sum analogue as defined by (Malvenuto and Reutenauer,
1995, Eq. 2.12), as their Corollary 2.2 states that {PI |I is Lyndon} freely generates QSym.
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Singularity analysis via the iterated kernel
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Abstract We provide exact and asymptotic counting formulas for five singular lattice path models in the quarter plane.
Furthermore, we prove that these models have a non D-finite generating function.

Résumé Nous présentons des résultats énumératives pour les cinq modèles de marches dans le quart de plan dites
“singulière”. Nous prouvons que ces modéles sont non-holonome.

Keywords: Lattice path enumeration, D-finite, generating function, singularities

1 Introduction
The study of lattice path models restricted to the quarter plane has led to some useful innovations in
enumeration, including applications of boundary value methods [8, 9, 12], powerful and widely applicable
variants of the kernel method [5, 7, 14] and some original computer algebra approaches [3]. In addition
to purely enumerative results, there are also results on asymptotic enumeration and the nature of the
generating function: either rational, algebraic, transcendental D-finite(i), or other.

A key observation of Bousquet-Mélou and Mishna was that lattice path models with small steps re-
stricted to the quarter plane appeared to be naturally partitioned according to the nature of their generating
functions: specifically, they conjectured a test for whether or not the generating function of a given model
would satisfy algebraic or linear differential equations. This property is often correlated to other, more
combinatorial, qualities of a model. Of the 79 non-isomorphic models, 23 are well studied with D-finite
generating functions, 51 are highly suspected to be non D-finite – Bostan et al. proved the excursion
(walks returning to the origin) generating functions are not D-finite [4], and Kurkova and Raschel proved
that the trivariate generating functions marking endpoint [12] are not D-finite. The remaining 5 models are
called singular, and resist both these strategies. Two of these models had been previously considered [14],
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D-finite if and only if its analytic continuation is D-finite.
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where their univariate generating functions were proven to be non D-finite. We apply this strategy, a rel-
atively direct application of the iterated kernel method, a technique modelled on the work of Janse van
Rensburg et al. in [10], and Bousquet-Mélou and Petkovsec [6] to the final 3 models.

Specifically, the present work proves that the remaining cases are not D-finite (and we note a small
correction to the cases already proven). From the method, it is straightforward to determine explicit
generating function expressions and asymptotic counting information, in the process identifying many
potential singularities for each generating function. In each case, we show that the number of singularities
is infinite, and far enough away from the dominating pole that they do not affect the first order asymptotics.
The key difficulty here, as was the case in [14], is the justification that these singularities are true poles
and are not somehow canceled by some quirk of the expression. This is significant because a D-finite
function has a finite number of singularities, and so such a demonstration is a proof of non D-finiteness of
the generating function. In the course of our proofs we revisit some older theorems on polynomials that a
reader faced with a similar problem may find useful.

In summary, for each of the five singular models we take a unified approach to prove formulas for
asymptotic enumeration and determine an explicit expression for the generating function, information
which cannot be determined using other known methods. In addition, we prove that the (univariate)
counting generating functions are not D-finite. This extended abstract presents the main results, and we
we refer the reader to [13] for a completed manuscript.

1.1 The family of singular models
A lattice path model is defined by a set of vectors – the allowable directions in which one can move
along the lattice of non-negative integers. We are particularly interested in models which permit only
“small” steps, that is, the steps are contained in {0,+1,−1}2. We use the notation NW ≡ (−1, 1), N ≡
(0, 1), NE ≡ (1, 1), etc. The family of singular models consists of the following five models, each given
with two different representations:

A = = {NW,NE, SE} B = = {NW,N,E, SE} C = = {NW,N,NE,E, SE}

D = = {NW,N, SE} E = = {NW,N,NE, SE}

Models A and D are the two models considered by Mishna and Rechnitzer, and their strategy, known
as the iterated kernel method, applies to all of these models. Note that the present work corrects an
error found in [14], which does not substantially change the the stated results but which does imply some
additional manipulation for the proof.

For each model S ∈ {A,B, C,D, E} we address the following:

¬ What is the number Sn of walks of length n in the model?

 How does Sn grow asymptotically when n is large?

® Is the generating function S(t) =
∑
n Snt

n D-finite?

The next section describes how to obtain generating function expressions. This is followed by the
asymptotic analysis and non D-finiteness proofs for the symmetric models. We conclude with a summary
of the analysis of the asymmetric models.
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2 An explicit expression for the generating function
2.1 The functional equation and its kernel
Our central mathematical object is the multivariate generating function Sx,y(t) =

∑
i,j,n sij(n)xiyjtn,

where sij(n) counts the number of walks of length n ending at the point (i, j) with steps from S.
(Throughout, S is our generic step set.) Our goal is to determine properties of S(t) ≡ S1,1(t), the
generating function for the number of walks in the plane.

For each of the five step sets, we associate a polynomial called the kernel; for the step set S, define

KS(x, y) = xy − txy
∑

(i,j)∈S
xiyj .

As we restrict ourselves to small steps, the inventory of the steps has the following form
∑

(i,j)∈S
xiyj = xP1(y) + P0(y) +

1

x
P−1(y) = yQ1(x) +Q0(x) +

1

y
Q−1(x). (1)

Thus, KS(x, y) can be regarded as a quadratic in y (respectively x) whose coefficients contain t, x and
the Qi(y) (resp. t, y, and Pi(x)):

KS(x, y) = −txQ1(x) y2 + (x− xtQ0(x)) y − xtQ−1(x). (2)

When the model is clear, we omit the subscript S. One common property of the singular models is that
they contain the stepsNW and SE, and at least one other step – this prevents degeneracy in the quadratic.

Each model admits a functional equation for Sx,y(t). We apply the common decomposition that a walk
is either the empty walk, or a shorter walk followed by a single step. Taking into account the restrictions
on walk location, as well as the fact that substituting x = 0 (respectively y = 0) into the function Sx,y(t)
gives the generating function of walks ending on the y-axis (respectively x-axis), we obtain, as many
others have before us, the functional equation

K(x, y)Sx,y(t) = xy +K(x, 0)Sx,0(t) +K(0, y)S0,y(t). (3)

We are interested in the solutions to the kernel equation of the form:

K(x, Y+(x; t)) = K(x, Y−(x; t)) = K(X+(y; t), y) = K(X−(y; t), y) = 0, (4)

and these algebraic functions are easily determined since the kernel is a quadratic:

Y±(x; t) =
(1− tQ0(x))∓

√
(Q0(x)2 − 4Q1(x)Q−1(x)) t2 − 2Q0(x)t+ 1

2tQ1(x)
(5)

X±(y; t) =
(1− tP0(y))∓

√
(P0(y)2 − 4P1(y)P−1(y)) t2 − 2P0(y)t+ 1

2tP1(y)
. (6)

There are other function pairs which annihilate the kernel, as we shall see. Remark that the boundary value
method begins as we have, with the functional equation (3), but ultimately uses a different parametrization
to represent the roots of the kernel, and from there a very different means to get access to the generating
function.

The generating function has a natural expression in terms of iterated compositions of the Y and X ,
hence the name iterated kernel method.
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2.2 What makes this family special?
Consider the lowest order terms of the roots of the kernel as a power series in t. They are

Y+ = P−1(x)t+O(t2) and Y− =
1

tP1(x)
− P0(x)

P1(x)
+O(t),

where Pr(x) =
∑

(i,r)∈S x
i. Of the 56 (conjectured) non D-finite models only 5 models, precisely the

singular family we are studying, have a lowest order term with a positive power in x and t, implying that
the infinite sum obtained by the iterated kernel method converges. This prevents the method from being
applied to a broader range of models in this context.

2.3 Fast enumeration
Using the series expressions (8) and (9) below, we can generate the firstN terms of S1,0(t) and S1,1(t) for
each model with Õ

(
N3
)

bit-complexity (where the notation Õ(·) suppresses logarithmic factors), which
is an order of magnitude faster than the Õ

(
N4
)

bit-complexity of the naive generation algorithm. The
key lies in utilizing a linear recurrence for 1/Yn that the iterated kernel method generates for each model
(see Table 1). The cost of generating S1,0(t) and S1,1(t) is then dominated by the inversion of the 1/Yn,
which have summands whose bit-size grows linearly, giving the cubic complexity.

Thus, although the generating function is not D-finite, and hence the coefficients do not satisfy a nice
fixed length linear recurrence, we are able to generate the terms in a relatively efficient manner.

3 Symmetric models: A,B, C
3.1 An explicit generating function expression
We focus first on the three models A, B and C, as these models are symmetric about the line x = y. As
such, these models benefit from the relation Sx,0 = S0,x, and Equation (3) can be rewritten as

K(x, y)Sx,y(t) = xy +K(0, y)S0,y(t) +K(0, x)S0,x(t). (7)

Our iterates satisfy Yn+1(x) = Y+(Yn(x)), Y0(x) = x, and consequently, K(Yn, Yn+1) = 0 for
all n by substituting x = Yn(x) into the kernel relation K(x, Y+(x)) = 0. Thus, when we make this
substitution into Equation (7) we find for each n:

0 = Yn(x)Yn+1(x) +K(0, Yn+1(x))S0,Yn+1(x)(t) +K(0, Yn(x))S0,Yn(x)(t).

We can determine an expression for K(0, x)S0,x(t) by taking an alternating sum of these equations since
all of the K(0, Yn(x))S0,Yn(x)(t) terms are canceled for n > 0 in a telescoping sum:

0 =

∞∑

n=0

(−1)n
(
Yn(x)Yn+1(x) +K(0, Yn+1(x))S0,Yn+1(x)(t) +K(0, Yn)S0,Yn(x)(t)

)

= K(0, x)S0,x(t) +

∞∑

n=0

(−1)nYn(x)Yn+1(x).
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We rearrange this and evaluate at x = 1 to express the counting generating function for walks returning
to the axis:

S0,1(t) =
1

t

∞∑

n=0

(−1)nYn(1)Yn+1(1), (8)

as K(0, 1) = −t for each case considered here. This converges as a power series because in each of these
cases Yn(x) = O(tn).

Furthermore, substituting x = 1 and y = 1 into Equation (7) gives the full counting generating function

S(t) =
1− 2tS0,1(t)

1− t|S| =
1

1− t|S|

(
1− 2

∑

n

(−1)nYn(1)Yn+1(1)

)
. (9)

We address the robustness of this expression as a complex function in Theorem 2, after we are able to
determine an explicit expression for Yn(1) as a rational function of Y1(1).

3.2 Asymptotic Enumeration
In each of these cases, the singularity at 1

|S| is dominant.

Theorem 1 For each model S in {A,B, C}, the sum R(t) :=
∑
n(−1)nYn(1)Yn+1(1) is convergent at

t = 1
|S| . The radius of convergence is bounded below by t = 1

p0+2
√
p1p−1

where pi = Pi(1) = |{(i, r) :

−1 ≤ r ≤ 1, (i, r) ∈ S}|. The dominant singularity for each model S in {A,B, C} is a simple pole at σ,
where 1

σ = |S|, the number of permitted directions in the model. As a consequence, the number of walks
Sn = [tn]S(t) grows asymptotically like

Sn ∼ κS
(

1

σ

)n
+O

((
p0 + 2

√
p1p−1

)n)
,

where each κS is the constant R(σ), which can be calculated to arbitrary precision using Equation (8).

The strategy is to relate the quarter-plane problem to a half-plane problem, which has an explicit general
solution given in [1]. We use the expressions that we find for the generating functions to demonstrate the
convergence; the results are summarized below.

Model Asymptotic estimate for number of walks of length n

A An ∼ κA3n +O
((

2
√

2
)n)

κA = 0.17317888 . . .

B Bn ∼ κB4n +O
((

1 + 2
√

2
)n)

κB = 0.15194581 . . .

C Cn ∼ κC5n +O
((

1 + 2
√

3
)n)

κC = 0.38220125 . . .

3.3 Towards the Non D-Finiteness of A(t), B(t) and C(t)

The set of D-finite functions are closed under algebraic substitution. Thus, to prove that the generating
functions A(t), B(t) and C(t) are not D-finite, it is equivalent to consider these functions evaluated at
t = q/(1 + q2). These turn out to be easier to analyze as the transformation concentrates the singularities
around the unit circle. As such, we shall re-interpret the notation we have introduced this far to be
functions of q directly.
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(b) Step set B
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(c) Step set C

Fig. 1: Plots of the singularities of Y20(1)|t= q

1+q2
for the three symmetric models.

For each model the Yn(1) terms contribute singularities. A quick glance at an example is very sug-
gestive – see Figure 1 for the singularities of Y20(1) in the q-plane for the three different models. The
main difficulty is proving that there is no cancellation; that is, that the singularities in the figure are indeed
present in the generating function. To prove this we follow these steps:

Step 1 Determine an explicit expression for Yn(1);

Step 2 Determine a polynomial σn(q) whose set of roots contains the poles of Yn(1);

Step 3 Determine a region where there are roots of σn(q) that are truly poles of Yn(1);

Step 4 Show that there is no point ρ in that region that is a root of both σn(q) and σk(q) for different n
and k;

Step 5 Demonstrate that S1,0(q/(1 + q2)) has an infinite number of singularities and consequently, it is
not D-finite. It follows that S(t) is not D-finite, by closure under algebraic substitution and the
expression in Equation (9).

3.3.1 Step 1: An explicit expression for Yn

In this section we find an explicit, non-iterated expression for the functions Yn. We follow the method
of [14] very closely, with the exception that we make the variable substitution earlier in the process. As
such, we repeat, that we view all functions as functions of q in this section. From the variable substitution
t = q/(1 + q2) in Equation (3), we re-solve the kernel to ensure control over the choice of the branch in
the solution. Here are the kernels:

KA(x, y) = −q(x2 + 1) y2 + x(1 + q2) y − qx2

KB(x, y) = −q(x+ 1) y2 + x(−qx+ 1 + q2) y − qx2

KC(x, y) = −q(1 + x+ x2) y2 + x(−qx+ 1 + q2) y − qx2.

We denote this generically as K(x, y) = a2y
2 + a1y+ a0, adapting the ai to each particular model. Each

is solved as before to get our initial solutions to K(x, Y (x)) = 0. Great care is taken here to ensure that
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the branch as written remains analytic at 0:

Y A±1(x; q) =
x

2q(1 + x2)
·
(

1 + q2 ∓
√

1− 2(2x2 + 1)q2 + q4
)

Y B±1(x; q) =
x

2q(1 + x)
·
(

1− qx+ q2 ∓
√
q4 − 2q3x+ (x2 − 4x− 2)q2 − 2qx+ 1

)

Y C±1(x; q) =
x

2q(1 + x+ x2)
·
(

1− qx+ q2 ∓
√
q4 − 2q3x− (3x2 + 4x+ 2)q2 − 2qx+ 1

)
.

We define the sequence of iterates {Yn(x)}(n) as before: Yn+1(x) = Y+(Yn(x); q), Y1(x) = Y+(x; q).
For each of these models, examining the coefficients of y in the kernel implies

1

Y−(x; q)
+

1

Y+(x; q)
=
Y−(x; q) + Y+(x; q)

Y−(x; q) · Y+(x; q)
=
−a1/a2

a0/a2
= −a1

a2
. (10)

The iterates compose nicely, since for each model Y− (Y+(x)) = Y+ (Y−(x)) = x.

It turns out to be easier to work with the reciprocal of Yn, so we define Y n = 1
Yn(1) , and view this

as a function of q. Equation (10) then converts into a recurrence after the substitution x = Yn−1(x).
Specifically, this gives a linear recurrence for the reciprocal function, 1

Yn(x) ; we are interested in these
evaluated at x = 1, and the resulting recurrences and their solutions in terms of Y 1 are summarized
below:

S Recurrence Y
S

n(q)

A Y n = (q + 1
q )Y n−1 − Y n−2

(q2−q2n)+q(q2n−1)Y 1

qn(q2−1)

B, C Y n = (q + 1
q )Y n−1 − Y n−2 − 1

q(q−1)(q2n−1)Y
B,C
1 +(q−qn)(2qn+1−qn+q2−2q)
qn(q+1)(q−1)2

Tab. 1: The recurrences and their solutions for models A, B, and C.

Following the same procedure as above, we obtain a generic expression for S1,0(t), the generating
function for the number of walks which return to the axis for model S, which can be applied to all three
symmetric walks:

S1,0

(
q

1 + q2

)
= (q + 1/q)

∞∑

n=0

(−1)nY Sn (1)Y Sn+1(1; q). (11)

Our careful choice of branches now implies that this is a formal power series. (Remark, this was not
the case in [14].) Our expression is robust – an application of the ratio test implies the sum converges
everywhere, except possibly on the unit circle and at the poles of the Yn.

Proposition 2 For S ∈ {A,B, C} the sum (q+1/q)

∞∑

n=0

(−1)nY Sn (1)Y Sn+1(1) is convergent for all q ∈ C

with |q| 6= 1, except possibly at the set of points defined by the singularities of the Y Sn (1) for all n.
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3.3.2 Step 2: The singularities of Y S
n (1)

In order to argue about the singularities, we find a family of polynomials σn(q) that the roots of Y n
satisfy. The polynomials in Table 2 are obtained by manipulating the explicit expressions given above.
Unfortunately, extraneous roots are introduced during the algebraic manipulation when an equation is
squared to remove the square root present. In fact, the extraneous roots are exactly those which correspond
to a negative sign in front of the square root. If one defines Y −1 = Y − and Y −n = Y −1 ◦ Y −(n−1) for
n > 1, then using the argument above one can check that Y −n satisfies the same recurrence relation as
Y n, up to a reversal of the sign in front of the square root. Thus, we see that the set of roots of σn(q) is
simply the union of the sets of roots of Y n and Y −n.

S σn(q)

A αn(q) = q4n + q2n+2 − 4q2n + q2n−2 + 1

B βn(q) =
(
q2n−1 + (q3 − 2q2 − 2q + 1)qn−2 + 1

) (
q2n+1 + (q3 − 2q2 − 2q + 1)qn−1 + 1

)

C γn(q) = q2(1 + q2 − q)(1 + q4n) + q(q2 − 3q + 1)(q + 1)2(qn + q3n)

+q2n(1− q2 − 4q + 14q3 − 4q5 − q4 + q6)

Tab. 2: The singularities of Y S
n in the q-plane satisfy the polynomial σn(q)

Furthermore, we can show that these roots are dense around the unit circle using the results of Beraha,
Kahane, and Weiss – specifically, a weakened statement of the Main Theorem of [2].

Corollary 3 The roots of the families of polynomials {αn(q)}, {βn(q)}, and {γn(q)} are dense around
the unit circle.

In addition, we can show that αn(q) and γn(q) have no roots on the unit circle, except possibly q = ±1,
and if q is a root of βn(q) on the unit circle not equal to 1 then

arg q ∈
[
π − arccos

(√
2− 1

2

)
, π

)⋃[
−π,−π + arccos

(√
2− 1

2

))
≈ [2.7, 3.1) ∪ [−2.7,−3.1).

This is complimented by the fact that Rouche’s Theorem implies the roots converge to the unit circle as n
approaches infinity.

3.3.3 Step 3: Verify that Yn(1) has some singularities
At this point we have not yet completely established that the Yn(1) actually have singularities. Theoreti-
cally, it is possible that all the roots were added in our manipulations to determine σn(q) for the different
models. As we mentioned above, the roots of σn(q) are either singularities of Yn(1) or singularities of
Y−n(1). Thus, we prove Lemma 4 which describes at least some region where we are certain to find roots
of Y n. Experimentally, it seems that the roots are evenly partitioned so that roots outside the unit circle
belong to Y n and those inside the unit circle belong to Y −n, but we do not prove this.

Lemma 4 If arg(q) ∈ (−π/2,−3π/8) ∪ (3π/8, π/2) then Y
S

n = Y
S

−n|q 7→1/q for all n, for S ∈
{A,B,C}. Consequently (using Corollary 3), for an infinite number of n each of Y An , Y

B
n , and Y Cn

admit at least one singularity in the complex q-plane in that region.

The proof requires only basic manipulations of the formulas. Thus, we can ensure an infinite source of
potential singularities for these generating functions.
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3.3.4 Step 4: The singularities are distinct
We characterize the roots which are shared between Yn and Yk for the three models.

For each of the three models we find the roots of the numerators of our explicit expressions in Table 1
as quadratics in qn. This determines functions r1(q) and r2(q), independent of n, such that qnc = r1(qc)
or qnc = r2(qc) at any pole qc of Yn. Furthermore, suppose qc is also a pole of Yk for k 6= n so that
qkc = r1(qc) or qkc = r2(qc). It is immediate that if qkc = r1(qc) = qnc or qkc = r2(qc) = qnc then qc
must be on the unit circle. Otherwise, we may assume without loss of generality that qnc = r1(qc) and
qkc = r2(qc). Each model can be considered separately to prove the following result:

Proposition 5 For modelsA and C, if qc is a pole of Yn which lies off the unit circle then it is not a pole of
Yk for k 6= n. For model B, if qc is a pole of Yn off the unit circle then it is not a pole of Yk for |k−n| > 1.

3.3.5 Step 5: The generating function is not D-finite
Now we tie up all the arguments.

Theorem 6 The generating functions A(t), B(t), and C(t) of walks in the quarter plane with steps from
A, B, and C, respectively, are not D-finite.

Proof: As argued above, it is sufficient to prove the non D-finiteness of S1,0(t) evaluated at t = q/(1+q2)
for each model. In Lemma 4 we have shown that Y An (1), Y Bn (1), and Y Cn (1) admit singularities off the
unit circle for an infinite number of n. One can show that the singularities are not canceled in the two
summands of (11) containing Y An and Y Cn (respectively the four summands containing Y Bn−1, Y Bn , and
Y Bn+1) so that, as they lie off the unit circle where the remaining summands are analytic by Proposition 5,
they give an infinite number of singularities of A1,0, B1,0, and C1,0. 2

4 Asymmetric models
The asymmetric models are not substantially different, but when we iterate, we have more functions to
keep track of, and eventually cancel. Aside from some irritating bookkeeping, there is no main obstacle
to following the strategy of the symmetric models.

4.1 An explicit generating function expression
To obtain the generating function expressions we follow the same path as in the symmetric case: we
generate a sequence of equations, each which annihilates the kernel. This opens up the possibility of a
telescoping sum expression from which we can find an expression for the generating function of walks
returning to the axis in terms of iterates of two functions. An explicit expression for these iterates is
obtained by solving some very simple recurrences. We complete these steps for the asymmetric models
in this section.

As before, we begin with the main functional equation (3), make the substitution t = q/(1 + q2), and
re-arrange to get the kernel equations:

(
xy(1 + q2)− qy2 − qxy2 − qx2

)
Dx,y(t) = xy(1 + q2)− qx2Dx,0(t)− qy2D0,y(t)

(
xy(1 + q2)− qy2 − qxy2 − qx2y2 − qx2

)
Ex,y(t) = xy(1 + q2)− qx2Ex,0(t)− qy2E0,y(t),

with kernels KD(x, y) = −q(1 + x)y2 + (q2 + 1)xy − qx2

KE(x, y) = −q(1 + x+ x2)y2 + (1 + q2)xy − qx2.
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As there is no longer an x = y symmetry, we solve the kernels as functions of both x and y; that is, we
find Y (x) satisfying K(x, Y (x)) = 0 and also X(y) satisfying K(X(y), y) = 0. We have some choice
over how we split the solutions over different branches. One such choice of branches is:

XD
±(y; q) =

y

2q
·
(
1− qy + q2 ∓

√
q4 − 2q3y + (y2 − 2)q2 − 2qy + 1

)

Y D
±(x; q) =

x

2q(1 + x)
·
(
1 + q2 ∓

√
q4 − 4q2x− 2q2 + 1

)
.

XE
±(y; q) =

y

2q(1 + y2)
·
(
1− qy + q2 ∓

√
q4 − 2q3y − (3y2 + 2)q2 − 2qy + 1

)

Y E
±(x; q) =

x

2q(1 + x+ x2)
·
(
1 + q2 ∓

√
q4 − 2(2x2 + 2x+ 1)q2 + 1

)
.

Next, as we described in the introductory summary, we repeatedly alternate the substitution of the X and
Y and create two related sequences of functions:

χn(x) = X+(Y+(χn−1(x); q); q), χ0(x) = x and Υn(y) = Y+(X+(Υn−1(x); q); q), Υ0(y) = y.

Simple substitutions yield the kernel relations K(χn(x), Y+(χn(x))) = K(X+(Υ(y)),Υ(y)) = 0,
amongst others. As before, we generate an infinite list of relations by substituting x = χn(x), y =
Y+(χn(x)), and then a second infinite list using the substitutions x = X+(Υ(y)), y = Υ(y). Again,
we form a telescoping sum, and after some manipulation this results in an expression for the generating
functions returning to the axis. For S ∈ {D,E} we have:

Sx,0

(
q

1 + q2

)
=

q

1 + q2

∑

n≥0

χn(x) · (Y+(χn(x))− Y+(χn−1(x)))︸ ︷︷ ︸
∆L(x;q)

(12)

S0,y

(
q

1 + q2

)
=

q

1 + q2

∑

n≥0

X+(Υn(y)) · (Υn(y)−Υn+1(y))︸ ︷︷ ︸
∆R(y;q)

. (13)

The two models have identical structure in their generating function, and differ only in their respective
functions X1 and Y1. Our greatest challenge at this point is keeping track of the various parts:

χ′0(x) = Y1(x), χ′n(x) = Y1 (χn(x)) , Υ′n(y) = X1 (Υn(y)) , Υ′0(y; q) = X1(y)

∆L,0 = χ′0(x), ∆L,n(x) = χ′n(x)− χ′n−1(x), ∆R,0 = Υ0(y), ∆R,n(y) = Υn(y)−Υn+1(y)

For each model, we isolate the left and right hand sides: LSx (q) = qx2Sx,0(q/(1 + q2)) and RSy (q) =
qy2S0,y(q/(1 + q2)) so that

KS(x, y)Sx,y(q/(1 + q2)) = xy(1 + q2)− LSx (q)−RSy (q).

Similar to previous cases, we can use the coefficients ofKS(x, y) and the two identities Y±1 (X∓1(y)) =
y and X±1 (Y∓1(x)) = x to form the paired up recurrences for the multiplicative inverses of these func-
tions. Here we use the notation that F = 1

F :

χ±n = (q + 1/q)χ′±(n−1) − χ±(n−1) − 1, χ′±n = (q + 1/q)χ′±n − χ±(n−1)

Υ±n = (q + 1/q)Υ′
S

±(n−1) −Υ
S

±(n−1), Υ′
S

±n = (q + 1/q)Υ
S

±n −Υ′
S

±(n−1) − 1.
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These recurrences are easily solved, as before, as closed form expressions. Again, we can verify that we
have suitable expressions for the analytic continuation of the generating functions for D and E . These
expressions are well suited to exact enumeration, as in the symmetric case, and they also yield asymptotic
enumeration formulas.

Theorem 7 (Mishna and Rechnitzer [14]; Proposition 16) IfDn denotes the number of walks with steps

from D staying in the positive quarter plane, then Dn ∼ κD 3n
√
n

(1 + o(1)) where 0 < κD ≤
√

3
π .

Theorem 8 The function E(t) has a simple singularity at t = 1/4, where it has a residue of value
κE ∈

[
122
525 ,

7
10

]
. The number, En, of walks taking steps in E and staying in the positive quarter plane

grows asymptotically as En = κE · 4n +O
(
(1 + 2

√
2)n
)
.

Computational evidence given by calculating the series for E1,0(1/4) and E0,1(1/4) to a large number
of terms implies that the value of the growth constant is approximately 0.2636, which is consistent with
the growth of computationally generated values of En for large n.

4.2 The generating functions D(t) and E(t) are not D-finite
The additional sums that arise in our expressions for D(t) and E(t) do not change our fundamental
strategy, demonstrating an infinite set of singularities, but here we actually have a simpler argument in
hand. In both cases the series L1(q) has an infinite source of singularities on the imaginary axis, at each
of which R1(q) is analytic.

Lemma 9 Both of the functions χDn (q) and χEn (q) have a root on the imaginary axis between i and 2i,
when n is even.

Proof: First, we show that the roots of χDn (q) satisfy the polynomial

ωDn =
(
q4n+2 + q2n+4 − 4q2n+2 + q2n + q2

)2

and that the roots of χEn (q) satisfy the polynomial

ωEn = q2
(
q4 − q2 + 1

) (
q8n + 1

)
+2q2(q4−4q2 +1)

(
q6n + q2n

)
+(q8−10q6 +24q4−10q2 +1)q4n.

The rest is straightforward manipulation as in [14]. 2

A sampling of these singularities is given in Figure 2.

1 1.125 1.25

(a) Step set D
1 1.125 1.25

(b) Step set E

Fig. 2: The modulus of the purely imaginary singularities of D(t) and E(t), coming from χ2n for n = 1, . . . , 100.

Theorem 10 Neither the generating function D(t) nor the generating function E(t) for walks in the
quarter plane with steps from D and E , respectively, are D-finite.
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5 Conclusion
This work addresses a family of lattice path models that have resisted other powerful approaches. There
should also be other models, with larger step sizes or in higher dimensions, to which this method may be
suitable. We intend to seek them out and to try to apply this method, ideally automating as much as is
possible. Finally, we are always in a search to understand the combinatorial nature of D-finite functions.
Are there properties inherent to these classes from which we should be able immediately to predict the
nature of the generating function? Where does the intuition lie?
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Overview
This extended abstract concerns the following question:

Does there exist a root-system uniform and manifestly nonnegative combinatorial rule for
Schubert calculus?

We elaborate on this problem and suggest an approach to it. Let G be a complex reductive Lie group.
Fix a choice B of a Borel subgroup and maximal torus T , and let W be its Weyl group: W ∼= NG(T )/T .
Write Φ = Φ+ ∪ Φ− to be the partition of roots into positives and negatives, and let ∆ be the base
of simple roots. Let ΩG = (Φ+,≺) denote the canonical poset structure on Φ+. Suppose ∆P =
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The Schubert varieties in G/P are XwWP
= B−wP/P where wWP ∈ W/WP . Suppose w is the

minimal length coset representative of wWP ; w’s inversion set λ sits inside ΛG/P . Let us write Xλ :=

XwWP
. Call λ a root-theoretic Young diagram (RYD). Let YG/P be the set of RYDs for G/P .

The cohomology ring H?(G/P,Q) has a Z-additive basis of Schubert classes σλ. Let Cν
λ,µ

(G/P )

denote the Schubert structure constants for G/P , i.e.,

σλ · σµ =
∑

ν

Cν
λ,µ

(G/P )σν .

When G/P is the Grassmannian Grk(Cn), Cν
λ,µ

:= Cν
λ,µ

(Grk(Cn)) is computed by the Littlewood-
Richardson rule.

Ideally, there is a generalization that computes any Cν
λ,µ

(G/P ) in a cancellation-free fashion, but only
in terms of the associated root datum (cancellative formulas are known, see, e.g., [Kn03]). Actually,
often the main question is phrased presuming the existence of a rule. However, in that case, what is the
qualitative nature of such a putative rule? Is it too much to expect a “counting rule” like the Littelmann
path model? Should one instead search for a “patchwork” of counting rules and nonnegative recursions
through different G/P ’s for varying G’s? How can one classify special cases? Why are some special
cases of the problem seemingly harder than others? Finally, if one believes that such a rule does not exist,
what are concrete and/or falsifiable reasons for that belief?

Our thesis is that RYDs provide a simple but uniform combinatorial perspective to discuss such ques-
tions mathematically, make precise comparisons, and to measure progress towards a rule (uniform or
otherwise).

For instance, from this perspective, Grassmannians are special because they sit in the family of G/P ’s
for which the above root-system setup is especially graphical:

(I) ΛG/P is a planar poset;

(II) the RYDs are lower order ideals (and in fact classical Young diagrams, thus explaining our nomen-
clature);

(III) Bruhat order is containment of RYDs.

These properties also hold for all cominuscule G/P ’s. Together with earlier work of R. Proctor [Pr06],
they help demonstrate existence for (co)minuscule Schubert calculus [ThYo09].

Right now, using RYDs is the only known way to solve the existence problem for (co)minuscule G/P .
Conversely, it is only for (co)minuscule G/P ’s that there is a uniform rule. Given this condition, it is
therefore sensible to use RYDs to study other families.

We assert the key next case is the family of (co)adjoint G/P ’s. One reason is that this family extends
the (co)minuscule G/P ’s, see, e.g., [LaMuSe79]. However, in terms of RYDs, it is important that for
(co)adjoint varieties, none of the properties (I), (II) or (III) hold in general. Also important is that the
failures of these properties are quantifiably mild (see Fact 0.1 below).

We obtain positive Schubert calculus rules in the classical (co)adjoint types. These rules have signif-
icant (but far from complete) uniformity. Our rules are sufficiently simple to admit nonzeroness criteria
extending a simple case of the Horn inequalities, and also to completely classify what numbers occur as
structure constants.
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Additional complexity of OG(2, 2n) comes from the nonplanarity of ΛOG(2,2n). To our best knowl-
edge, we give the first complete formula for any G/P with such nonplanarity — and what we find is
that it has “patchwork” features for which we have no broad explanation. It first separates out the cases
covered by the Pieri rule of [BuKrTa09]. Perhaps surprisingly, it is these “Pieri cases” that would bring
unappetizing complications to our rule. Yet, even after removing these cases, the rule exhibits a depen-
dency on the parity of n. This is traceable to the fact that ΛQ2n−4 is a subposet of ΛOG(2,2n) and that the
even-dimensional quadric Q2n−4 has this dependency as well [ThYo09].

It seems plausible to us that the patchwork features of OG(2, 2n) are unavoidable if maintaining uni-
formity with the other (co)adjoint and (co)minuscule varieties. That is, we would infer that our results in
this special case challenge the existence of a root-system uniform “counting” rule. Now, there are specific
reasons to doubt this interpretation. First, in [ChPe11], RYDs are used to generalize [ThYo09]. Their
extension uniformly covers a subset of the Schubert problems in each of the (co)adjoint varieties — but
precisely those that are most “cominuscule-like”. Second, the “flattening trick” used for the OG(2, 2n)
problem is patently non-uniform. However, this step is what allows us to make comparisons with the other
(co)adjoint formulas. Third, there are alternative and known uniform models such as “chains in Bruhat
order”, see, e.g., [BerSot98]. However, we reiterate that these alternative approaches are not known to
resolve the (co)minuscule case, which from our perspective is the simpler problem.

Definition of (co)adjoint varieties
The following definition is standard. Fix a representation ρ : G → GL(V ) for some finite dimensional
complex vector space V . The group G acts on P(V ) through the projection π : V \ {0} → P(V ). If
~v is a highest weight vector of ρ, then π(G · v) ⊆ P(V ) is a homogeneous projective variety, see, e.g.,
[FuHa04, Section 23.3]. This variety is adjoint if ρ is the adjoint representation of G. Adjoint varieties
have a root-system theoretic classification, see, e.g., [ChPe11] and the references therein. Then a variety
is coadjoint if it is adjoint for the dual root system.

Call the highest root of ΛG/P the adjoint root. If λ uses it we say λ is on and we write λ = 〈λ|•〉;
otherwise we say λ is off and we write λ = 〈λ|◦〉, where λ comprises the roots of ΛG/P \ {adjoint root}
used by λ. We state some facts that are easily checked for the setting of our theorems; cf., [ChPe11,
Section 2].

Fact 0.1 If G/P is adjoint then:

(i) |ΛG/P | is odd

(ii) If λ = 〈λ|◦〉 then |λ| < 1
2 |ΛG/P |

(iii) If λ = 〈λ|•〉 then |λ| > 1
2 |ΛG/P |

(iv) λ is a lower order ideal in the poset ΛG/P \ {adjoint root}

For example, point (iv) explains in what sense the failure of (II) above is “mild”.

Warmup with the “(line,hyperplane)” flag variety Fl1,n−1;n

We begin with a simple case of the adjoint varieties, G/P = Fl1,n−1;n. This is the two step partial flag
variety {〈0〉 ⊂ F1 ⊂ Fn−1 ⊂ Cn} where F1 and Fn−1 have dimensions 1 and n − 1 respectively. It
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has dimension |ΛG/P | = 2n − 3. All two-step flag manifolds have been solved, in a different way, by
I. Coskun [Co09]. However, our approach will naturally extend to other (co)adjoint cases.
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ΛFl1,n−1;n , ΩGLn and a shape (for n = 7)

We denote the shapes λ by 〈λ1, λ2| • /◦〉, where 0 ≤ λ1, λ2 ≤ |ΛG/P |−1

2 and •/◦ indicates if λ is on or
off.

We will need some reusable definitions. For any ν = (ν1, ν2) ∈ Z2 let ν? = (ν1 − 1, ν2) and
ν? = (ν1, ν2 − 1). Fix λ and µ and define

Aλ,µ(ν) =





0 if λ and µ are on
σ〈ν|•〉 if exactly one of λ or µ is on
σ〈ν|◦〉 if |λ|+ |µ| < 1

2 |ΛG/P |
σ〈ν?|•〉 + σ〈ν?|•〉 otherwise.

Set σ〈ν|•/◦〉, σ〈ν?|•〉 or σ〈ν?|•〉 to be zero if ν, ν? or ν? are not in
[
0,
|ΛG/P |−1

2

]
×
[
0,
|ΛG/P |−1

2

]
.

The “otherwise” case of the definition of Aλ,µ(ν) is what we call “adjoint jumping”: a nonadjoint root
from ν has “jumped” to become the adjoint root. Understanding how this occurs in each type is a key idea
needed in the (co)adjoint cases. This reflects the additional complexity coming from the failure of (II).

Proposition 0.2 σλ · σµ = Aλ,µ(λ+ µ) ∈ H?(Fl1,n−1;n,Q).

Example 0.3 For n = 5, the rule gives σ〈2,0|◦〉 · σ〈1,2|◦〉 = A〈2,0|◦〉,〈1,2|◦〉(3, 2) = σ〈2,2|•〉 + σ〈3,1|•〉.
Pictorially:
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Corollary 0.4
{
Cν
λ,µ

(Fl1,n−1;n)
}

= {0, 1}.

In the style of Horn type theorems (see, e.g., [Fu00b]), we give a polytopal characterization of when
Cν
λ,µ

(Fl1,n−1;n) 6= 0. Identify

λ = 〈λ1, λ2|◦〉 with (λ1, λ2, 0) ∈ Z3 and λ = 〈λ1, λ2|•〉 with (λ1, λ2, 1) ∈ Z3. (1)



Root-theoretic Young Diagrams, Schubert Calculus and Adjoint Varieties 527

Corollary 0.5 Assume λ = (λ1, λ2), µ = (µ1, µ2), ν = (ν1, ν2) ∈ Z2 ∩
[
0,
|ΛG/P |−1

2

]
×
[
0,
|ΛG/P |−1

2

]

and λ3, µ3, ν3 ∈ {0, 1}. Then Cν
λ,µ

(Fl1,n−1;n) 6= 0 if and only if:

|ν| = |λ|+ |µ|
ν1 ≤ λ1 + µ1

ν2 ≤ λ2 + µ2

λ3 + µ3 ≤ ν3

Main theorem for odd orthogonal Grassmannians OG(2, 2n+1) and Lagrangian
Grassmannians LG(2, 2n)

For the type Bn root system, the adjoint variety G/P = OG(2, 2n+ 1) is the space of isotropic 2-planes
with respect to a non-degenerate symmetric bilinear form on C2n+1. It has dimension |ΛG/P | = 4n− 5.
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ΛOG(2,2n+1), ΩSO2n+1
and a shape (for n = 4)

The coadjoint partner to OG(2, 2n + 1) in the Cn root system is the variety LG(2, 2n) of isotropic
2-planes with respect to a non-degenerate skew-symmetric bilinear form on C2n. Currently, we study the
coadjoint variety with RYDs for its adjoint partner. This is analogous to [ThYo09]. We denote the shapes
λ by 〈λ|•/◦〉, where λ is a partition in 2×

( |ΛG/P |−1

2

)
.

Say σ〈ν|•/◦〉, σ〈ν?|•〉 or σ〈ν?|•〉 is zero if ν, ν? or ν? is not a partition in 2×
( |ΛG/P |−1

2

)
. Define sh(ν)

to be the number of short roots used by ν. The short roots of ΛOG(2,2n+1) consist of the middle pair of
the nonadjoint roots.

Theorem 0.6

σλ · σµ =
∑

ν⊆
(
|ΛG/P |+1

2 ,
|ΛG/P |−1

2

)
Cνλ,µAλ,µ(ν) ∈ H?(LG(2, 2n),Q).

In H?(OG(2, 2n+ 1)), multiply each coefficient by 2sh(ν)−sh(λ)−sh(µ).

Example 0.7 In H?(LG(2, 8),Q), we compute σ〈3,1|◦〉 · σ〈3,2|◦〉 = 2σ〈5,3|•〉 + σ〈4,4|•〉:

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦•

• • •
×

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦• •

• • •
=

2
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦• • •

• • • • •

•
+

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦• • • •

• • • •

•
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Similarly, in H?(OG(2, 9),Q), we compute σ〈2,1|◦〉 · σ〈3,2|◦〉 = σ〈5,2|•〉 + 4σ〈4,3|•〉. 2

Corollary 0.8
{
Cν
λ,µ

(LG(2, 2n))
}

= {0, 1, 2} and
{
Cν
λ,µ

(OG(2, 2n+ 1))
}

= {0, 1, 2, 4, 8}.

As with the case of Fl1,n−1;n, one can describe the nonzero structure constants in terms of a polytope.
To do so we make the identification (1).

Corollary 0.9 Assume λ = (λ1, λ2), µ = (µ1, µ2), ν = (ν1, ν2) ⊂ 2 ×
( |ΛG/P |−1

2

)
are partitions and

λ3, µ3, ν3 ∈ {0, 1}. Then Cν
λ,µ

(LG(2, 2n)) 6= 0 and Cν
λ,µ

(OG(2, 2n+ 1)) 6= 0 if and only if:

|ν| = |λ|+ |µ|
ν1 ≤ λ1 + µ1

ν2 ≤ λ1 + µ2 (2)
ν2 ≤ λ2 + µ1

λ3 + µ3 ≤ ν3

Main theorem for even orthogonal Grassmannians OG(2, 2n)

The adjoint variety G/P = OG(2, 2n) is the space of isotropic 2-planes with respect to a non-degenerate
symmetric bilinear form on C2n. It has dimension |ΛG/P | = 4n− 7.
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ΛOG(2,2n), ΩSO2n
(C) and a shape (for n = 5)

Here ΛG/P is not planar. Consider:

ΛOG(2,12) =
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
�

�

�

�
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

Describe a shape λ = 〈λ|•/◦〉 in ΛG/P as a triple 〈λ(1), λ(2)|•/◦〉, where λ(1) (respectively, λ(2)) is

the Young diagram, in French notation, for the “bottom” (respectively, “top”) 2×
( |ΛG/P |−1

4

)
rectangle.

For example,

↔
〈

,
∣∣∣•
〉

• • • •

◦ ◦ ◦ ◦• • •
�

�

�

�
◦ ◦ ◦ ◦ ◦• •

◦ ◦ ◦ ◦• •

Define π(λ) = λ(1) + λ(2) := (λ1, λ2); the result is a partition inside the 2×
( |ΛG/P |−1

2

)
rectangle.
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Consider an auxiliary poset Λ′OG(2,2n), a “planarization” of ΛOG(2,2n):

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
�

�

�

�
• • • • •

• • • • 7→
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

• • • •
ΛOG(2,2n) Λ′OG(2,2n)

In the above figure, we have marked the roots of the “top layer” for emphasis.
Shapes of Λ′OG(2,2n) are κ = 〈κ|•/◦〉 where κ is a partition contained in a 2 ×

( |ΛG/P |−1

2

)
rectangle

and •/◦ indicates use of the adjoint root in Λ′OG(2,2n). Extend π to a map Π : YOG(2,2n) → Y′OG(2,2n)

by defining Π(λ) = 〈π(λ)|•〉 if λ is on, and Π(λ) = 〈π(λ)|◦〉 otherwise.
For κ ∈ Y′OG(2,2n), let fsh(κ) be the number of fake short roots used by κ, i.e., the number of roots

in the (n − 2)-th column used by κ. The one exception is that we need fsh(〈n − 2, n − 2|◦〉) = 1. For
ν ∈ YOG(2,2n), let fsh(ν) denote fsh(Π(ν)).

The map Π is either 1 : 1 or 2 : 1. In the former case, we identify κ and Π−1(κ). In the latter case,
Π−1(κ) = {κ↑, κ↓} and we call κ ambiguous. Call κ↑ and κ↓ charged. If κ is on (respectively, off),
let κ↓ be the shape such that the second part (respectively, first part) of the Young diagram (π−1(κ))(2) is
zero; let κ↑ be the other one. Thus in Example 0.11 below, λ is up and µ is down. Two charged shapes λ
and µ match if their arrows match and are opposite otherwise. Let

ηλ,µ =





2 if λ, µ are charged and match and n is even;
2 if λ, µ are charged and opposite and n is odd;
1 if λ or µ are not charged;
0 otherwise

Say σ〈ν|•/◦〉, σ〈ν?|•〉 or σ〈ν?|•〉 is zero if ν, ν? or ν? is not a partition in 2×
( |ΛG/P |−1

2

)
.

Theorem 0.10 If either π(λ) or π(µ) equals (j, 0) (for some 0 ≤ j ≤ |ΛG/P |−1

2 ) then the Schubert
expansion of σλ · σµ ∈ H?(OG(2, 2n),Q) is obtained by the Pieri rule of [BuKrTa09].

Otherwise, compute

σΠ(λ) · σΠ(µ) =
∑

ν⊆
(
|ΛG/P |+1

2 ,
|ΛG/P |−1

2

)
Cνπ(λ),π(µ)Aλ,µ(ν). (3)

(i) Replace any term σκ that has κ1 =
|ΛG/P |−1

2 by ηλ,µσκ

(ii) Next, replace each σκ by 2fsh(κ)−fsh(λ)−fsh(µ)σκ

(iii) Finally, for any ambiguous κ replace σκ by 1
2 (σκ↑ + σκ↓)

The result is a provably integral, and manifestly nonnegative, Schubert basis expansion, which equals
σλ · σµ ∈ H?(OG(2, 2n),Q).
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Integrality is not manifest because of (ii) and (iii); however, it is easy to prove. Rule (i) extends a
parity dependency for even-dimensional quadrics, described in [ThYo09]. The point is that the “double
tailed diamond” which is ΛQ2n−4 sits as a “side” of ΛOG(2,2n). Rule (ii) is analogous to our rule for
OG(2, 2n+ 1). Rule (iii) describes how to “disambiguate”.

Example 0.11 We wish to compute σλ · σµ ∈ H?(OG(2, 12)) where:

λ =
◦ ◦ ◦ ◦• • •

◦ ◦ ◦ ◦•
�

�

�

�
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦• µ =
◦ ◦ ◦ ◦• • • •

◦ ◦ ◦ ◦• •
�

�

�

�
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦◦

Both of these shapes are charged. Here π(λ) = (4, 1) and π(µ) = (4, 2).

The ν ⊆
( |ΛG/P |+1

2 ,
|ΛG/P |−1

2

)
= (9, 8) such that Cνπ(λ),π(µ) = 1 are (8, 3), (7, 4) and (6, 5). All

other ν have Cνπ(λ),π(µ) = 0. Thus we compute

σΠ(λ) · σΠ(µ) = Aλ,µ(8, 3) + Aλ,µ(7, 4) + Aλ,µ(6, 5)

= (〈7, 3|•〉+ 〈8, 2|•〉) + (〈6, 4|•〉+ 〈7, 3|•〉) + (〈5, 5|•〉+ 〈6, 4|•〉)
= 〈8, 2|•〉+ 2〈7, 3|•〉+ 2〈6, 4|•〉+ 〈5, 5|•〉
7→ 0〈8, 2|•〉+ 2〈7, 3|•〉+ 2〈6, 4|•〉+ 〈5, 5|•〉 (by (i) and ηλ,µ = 0)

7→ 〈7, 3|•〉+ 2〈6, 4|•〉+ 〈5, 5|•〉 (by (ii) and fsh(λ) = fsh(µ) = 1)

Finally, (iii) applies to the ambiguous shape 〈6, 4|•〉. Hence we conclude:

σλ · σµ = 〈7, 3|•〉+ (〈6, 4|•〉↑ + 〈6, 4|•〉↓) + 〈5, 5|•〉.

Each step is nonnegative and integral, in agreement with our theorem. 2

Corollary 0.12
{
Cν
λ,µ

(OG(2, 2n))
}

= {0, 1, 2, 4, 8}.

We make the following identifications; cf. (1):

Π(λ) = 〈λ1, λ2|◦〉 with (λ1, λ2, 0) ∈ Z3 and Π(λ) = 〈λ1, λ2|•〉 with (λ1, λ2, 1) ∈ Z3.

As with the other cases, we can give a criterion for nonzeroness:

Corollary 0.13 If either π(λ) or π(µ) equals (j, 0) (for some 0 ≤ j ≤ |ΛG/P |−1

2 ) then nonzeroness of
Cν
λ,µ

(OG(2, 2n)) is determined by the Pieri rule of [BuKrTa09].

If ν1 =
|ΛG/P |−1

2 then Cν
λ,µ
6= 0 if and only if ηλ,µ 6= 0 and the inequalities (2) hold.

Otherwise, assume (λ1, λ2), (µ1, µ2), (ν1, ν2) ⊂ 2 ×
( |ΛG/P |−1

2

)
are partitions and λ3, µ3, ν3 ∈

{0, 1}. Then Cν
λ,µ

(OG(2, 2n)) 6= 0 if and only if the inequalities (2) hold.
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Concluding remarks
In [SeYo13+] we prove that our rules define an associative ring and agree with known Pieri rules [PrRa96,
BuKrTa09]. This implies the claimed results. The remaining cases of classical type are easy.

We will also computationally analyze (co)adjoint Schubert calculus in all the exceptional Lie types.
This is achieved by using the cohomology ring presentation of [ChPe11]. In this manner, we can extend
the shortroots relationship between cominuscule/adjoint varieties with their minuscule/coadjoint “part-
ners”, give information about which numbers appear, and describe which structure constants are nonzero.

In [Se13+], RYDs are used to give a new rule for the Belkale-Kumar coefficients in type A (after
[KnPu11]). This rule explains why these Schubert problems are special, from the perspective of RYDs.

RYDs can also be applied to the study of Kazhdan-Lusztig polynomials; see [WoYo13+].
The “adjoint jumping” that is encoded by “otherwise” case of the operator Aλ,µ appears more generally.

A small example: in type An−1 we may take G/P = Fl2,4;5. The parabolic subgroup is associated to
roots 2 and 4 of the Dynkin diagram of A4. Thus, ΛFl2,4;5

is the overlay of ΛGr2(C5) and ΛGr4(C5). This
is depicted below, where one naturally splits ΛFl2,4;5

into the three regions “L”, “R” and “T ”.

◦
◦
◦
◦

◦
◦
◦

◦
◦
◦�

�
��

@
@@

�@
@

@
@
@

L R

T

Schubert classes in H?(Fl2,4;5,Q) are indexed by inversion sets λ consisting of (ordinary) Young
diagrams sitting in each region. However, not all such collections of Young diagrams are inversion sets
for some permutation. In this example, consider a root β in the top region, and look at the “hook” of roots
α ∈ ΛFl2,4;5

that appear diagonally southwest and southeast of β and in region L or R (but not T ). A
condition just like the one for adjoint varieties appears: β must be used if strictly more than half of these
roots α are used by λ. Also β cannot be used if strictly less than half of the roots α are used.

Example 0.14 σ12|45|3 · σ34|12|5 = σ35|14|2 + σ34|25|1 + σ45|12|3 ∈ H?(Fl2,4;5,Q). Pictorially:
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Although λ and µ use no roots in region T , any ν that appears must use roots in that region. 2

Clearly, ΛGLn/P is planar for any GLn/P . Thus the complexity of this case comes (in part) from
finding the analogue of “adjoint jumping”. Also, planarity suggests that as a whole, type A Schubert
problems are easier than type D problems. If nothing else, this agrees with practical experience.
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Poset vectors and generalized permutohedra
(extended abstract)

Dorian Croitoru1 and Suho Oh2 and Alexander Postnikov3
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Abstract. We show that given a poset P and and a subposet Q, the integer points obtained by restricting linear
extensions of P to Q can be explained via integer lattice points of a generalized permutohedron.

Résumé. Nous montrons que, étant donné un poset P et un subposet Q, les points entiers obtenus en restreignant les
extensions linéaires de P à Q peuvent être expliqués par les points entiers d’un permutohedron généralisé.

Keywords: Poset, linear extension, associahedron, generalized permutohedra, polytope, integer lattice points

1 Introduction
Let λ = (λ1, . . . , λn) be a partition with at most n parts. The Young diagram of shape λ is the set

Dλ = {(i, j) ∈ N2|1 ≤ j ≤ n, 1 ≤ i ≤ λj}.

A Standard Young tableau is a bijective map T : Dλ → {1, . . . , |Dλ|} which is increasing along rows
and down columns, i.e. T (i, j) < T (i, j + 1) and T (i, j) < T (i+ 1, j) Stanley (2000). Standard Young
tableaus of λ = (2, 2, 1) is given in Figure 1. In each tableau, the entries at boxes (1, 2) and (2, 2) are
colored with red. The pairs we get from each tableau, are exactly the integer lattice points of a pentagon
in the right image of Figure 1. Then one could naturally ask the following question : If we choose some
arbitrary boxes inside a Young diagram, and collect the integer vectors we get from the chosen boxes for
each standard Young diagram, are they the integer lattice points of some polytope?

Such questions were studied for diagonal boxes of shifted Young diagrams by the first author and the
third author in Postnikov (2009) and Croitoru (2008). Let λ = (λ1, . . . , λn) be a partition with at most n
parts. The shifted Young diagram of shape λ is the set

SDλ = {(i, j) ∈ N2|1 ≤ j ≤ n, j ≤ i ≤ n+ λj}.

We think of SDλ as a collection of boxes with n+ 1− i−λi boxes in row i, such that the leftmost box
of the i-th row is also in the i-th column. A shifted standard Young tableau is a bijective map T : SDλ →
1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Fig. 1: Example of standard Young tableaus of λ = (2, 2, 1), and pairs of entries that occur at (1, 2) and (2, 2) inside
the tableaus.

1 2 3 6 7

4 5 8

9 10

11

Fig. 2: Example of a shifted standard Young tableau, which has diagonal vector (1, 4, 9).

{1, . . . , |SDλ|}which is increasing along rows and down columns, i.e. T (i, j) < T (i, j+1) and T (i, j) <
T (i+ 1, j). The diagonal vector of such a tableau T is Diag(T ) = (T (1, 1), T (2, 2), . . . , T (n, n)).

Figure 2 is a shifted standard Young tableau for n = 3, λ = (3, 1, 1). In Postnikov (2009), the third
author showed that when λ = (0, . . . , 0), the diagonal vectors of SD∅ are in bijection with lattice points
of (n− 1)-dimensional associahedron Assn−1. Extending this result, the first author, in Croitoru (2008),
showed that the diagonal vectors of SDλ in general, are in bijection with lattice points of a certain defor-
mation of the associahedron.

In this paper, we generalize the previous question for Young diagrams and the previous results for
shifted Young diagrams, by looking at an arbitrary poset P in general. More precisely, given an arbitrary
poset P , a linear extension is an order preserving bijection σ : P → [|P |], where [n] is defined to be the
set of integers {1, . . . , n}. Let Q be a subposet of P and label the elements of Q by q1, . . . , q|Q|, such that
if qi < qj in Q, then i < j. We call a vector (σ(q1), σ(q2), . . . , σ(q|Q|)) obtained in such manner as the
(P,Q)-subposet vector.

Figure 3 is a poset P with 10 elements. The elements of Q are colored red. We label the elements of Q
by q1, q2, q3 by starting from the lowest element going up. Then the (P,Q)-subposet vector we get in this
case is (1, 5, 7).

When we are only dealing with the linear extensions of P (when P = Q), the connection between
linear extensions of posets and generalized permutohedra has been studied in Postnikov et al. (2008) and
Morton et al. (2009). In particular, when Q is a chain, we will show that the (P,Q)-subposet vectors are
in bijection with a certain deformation of the associahedron (generalized permutohedron). In the general
case, we will show that the set of (P,Q)-subposet vectors can be thought as lattice points of a non-convex
polytope, obtained by gluing the generalized permutohedra. In section 2, we will go over the basics of
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Fig. 3: Example of poset P and a subposet Q, where elements of Q are colored red.

generalized permutohedra, using generalized permutohedra language. In section 3, we will study the case
when Q is a chain. In section 4, we will go over the general case when Q is a general subposet of P . In
section 5, we give a nice combinatorial method to describe the vertices of the constructed polytope. In
this extended abstract, all proofs except the proof of the main theorem will be omitted.

2 Generalized Permutohedron
In this section, we will give an introduction to the associahedron using generalized permutohedra lan-
guage from Postnikov (2009).

Associahedron, also known as the Stasheff polytope, first appeared in the work of Stasheff (1963).
Given n letters, think of inserting opening and closing parentheses so that each opening parenthesis is
matched to a closing parentheses. Then the associahedron is the convex polytope in which each vertex
corresponds to a way of correctly inserting the parentheses, and the edges correspond to single application
of the associativity rule. But since we will be working with the integer lattice points of certain realization
of an associahedron, we are going to be using a different definition using generalized permutohedra.

The permutohedron is the polytope obtained by the convex hull of vertices which are formed by per-
muting the coordinates of the vector (1, 2, . . . , n). Hence the vertices correspond to each permutation of
Sn, and the edges correspond to applying a transposition. The generalized permutohedra, which was
introduced in Postnikov (2009), are polytopes that can be obtained by moving vertices of the usual per-
mutohedron so that directions of all edges are preserved. It happens that for a certain class of generalized
permutohedra, we can construct them using Minkowski sum of certain simplices.

Let ∆[n] = ConvexHull(e1, . . . , en) be the standard coordinate simplex in Rn. For a subset I ⊂ [n],
let ∆I = ConvexHull(ei|i ∈ I) denote the face of ∆[n]. When I = (I1, . . . , It) where Ii’s are subsets
of [n], we denote GI to be the Minkowski sum of ∆Ii ’s. In other words, we have:

GI := ∆I1 + · · ·+ ∆It .

Since the Ii’s do not have to be distinct, we could re-write the above sum as

GI := c1∆I1 + · · ·+ cm∆Im ,

where ci counts the number of times Ii occurs among I.
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For convenience, unless otherwise stated, whenever we use the word generalized permutohedra, we
will be referring to the class of polytopes that can be obtained via the construction above. Below are well
known cases of generalized permutohedra. For more details, check Section 8 of Postnikov (2009).

Permutohedron : If we set I to consist of all possible nonempty subsets of [n], then GI is combina-
torially equivalent to the usual permutohedron obtained by permuting the entries of point (1, . . . , n).

Associahedron : If we set I to consist of all possible intervals of [n] (so that [i, j] := {i, i+ 1, . . . , j}
is in I for all pairs i < j), then GI is combinatorially equivalent to the associahedron.

In this paper, we will mainly be dealing with generalized permutohedra, that can be obtained from the
associahedron by deforming the facets.

+ + + =

Fig. 4: The permutohedron G({1,2},{1,3},{2,3},{1,2,3}).

Figure 4 shows an example of a permutohedron constructed by summing up all subsets of [3]. The terms
∆{1},∆{2},∆{3} are omitted since summing points just corresponds to the translation of the polytope.

+ =

Fig. 5: A deformed associahedron G({1,2},{1,2,3}).

Figure 12 shows an example of an associahedron constructed by summing ∆{1,2},∆{2,3} and ∆{1,2,3}.
Figure 5 shows an example of a deformed associahedron constructed by summing ∆{1,2} and ∆{1,2,3}.
One can notice that the polytope in Figure 5 can be obtained from the polytope in Figure 4 or the polytope
in Figure 12 by moving around the facets.

Lemma 2.1 (Postnikov (2009) Proposition 6.3) LetGI be a generalized permutohedron given by c1∆I1+
· · · + cm∆Im , where all ci’s are positive integers. Then this polytope has the form {(t1, . . . , tn) ∈
Rn|∑ ti = z[n],

∑
i∈I ti ≤ zI ,∀I}, where zI :=

∑
Ij∩I 6=∅ cj .

The above lemma allows us to obtain the defining hyperplanes of a generalized permutohedron. For
example, if we look at ∆{1,2} + ∆{1,2,3}, then this polytope is the collection of points (t1, t2, t3) in R3

such that:

• t1 + t2 + t3 = 2,

• t1 + t2 ≤ 2, t1 + t3 ≤ 2, t2 + t3 ≤ 2 and

• t1 ≤ 2, t2 ≤ 2, t3 ≤ 1.
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3 When Q is a chain
Our goal in this section is to study the (P,Q)-subposet vectors when Q is a chain of P . More precisely,
we will show that there is a bijection between (P,Q)-subposet vectors and integer lattice points of a
certain generalized permutohedron constructed from the pair (P,Q). Given a (P,Q)-subposet vector
(c1, . . . , cr), we are going to look at the vector (c1, c2 − c1, . . . , cr − cr−1, |P | − cr). We define MP,Q to
be the collection of such vectors.

Let us denote the elements of Q as q1, . . . , qr such that q1 < · · · < qr in P .

Remark 3.1 We are going to add a minimal element 0̂ and a maximal element 1̂ to P . This does not
change the structure of MP,Q or (P,Q)-subposet vectors, since all linear extensions would assign same
numbers to 0̂ and 1̂. We will denote 0̂ and 1̂ as q0 and qr+1 for technical convenience.

The following is another way to think of vectors of MP,Q. An order ideal of P is a subset I of P
such that if x ∈ I and y ≤ x, then y ∈ I . Now given a linear extension σ : P → [|P |], we define the
order ideals Ji to be the collection of elements p ∈ P such that σ(p) ≤ σ(qi) for 0 ≤ i ≤ r + 1. If we
define Ii to be Ji \ Ji−1 for 1 ≤ i ≤ r + 1, then (|I1|, . . . , |Ir+1|) is an element of MP,Q. Also, any
element (c1, . . . , cr+1) ofMP,Q would actually come from some linear extension σ and its corresponding
sequence of order ideals J0 ⊂ J1 ⊂ · · · ⊂ Jr+1.

We define the subset Bi,i as:
B1,1 := {p ∈ P |q0 ≤ p ≤ q1},

Bi,i := {p ∈ P |qi−1 < p ≤ qi}, i 6= 1.

For i < j, we define the set Bi,j as:

Bi,j := {p ∈ P |qi−1 < p < qj , qi 6< p, p 6< qj−1}.

Then we get a decomposition of P into Bi,j’s for 1 ≤ i ≤ j ≤ r + 1. Let us define the generalized
permutohedron NP,Q as:

NP,Q :=
∑

1≤i≤j≤r+1

|Bi,j |∆[i,j].

Lemma 3.2 Every integer lattice point of NP,Q is a member of MP,Q.

Proof: Let p = (p1, . . . , pr+1) be an integer lattice point of NP,Q. By proposition 14.12 of Postnikov
(2009), p is the sum of p[i,j]’s, where each p[i,j] is an integer lattice point of |Bi,j |∆[i,j]. Each p[i,j] can
be expressed as

∑
k∈[i,j] bi,j,kek, where bi,j,k’s are nonnegative integers such that

∑
k bi,j,k = |Bi,j |. We

then decompose the set Bi,j into Bi,j,k’s such that:

1. for any c and d such that i ≤ c < d ≤ j, all elements of Bi,j,c are smaller than any element of
Bi,j,d in P and,

2. cardinality of each Bi,j,k is given by bi,j,k.

Since p[i,j] =
∑
k∈[i,j] bi,j,kek, we have p =

∑
k

∑
i,j bi,j,kek. This tells us that pk =

∑
i,j bi,j,k

for all k from 1 to r + 1. We define the set Ik to be the union of Bi,j,k’s for all possible i and j’s. If
{0̂} ⊂ I1 ⊂ I1 ∪ I2 ⊂ · · · ⊂ I1 ∪ · · · ∪ Ir+1 = P is a chain of order ideals, then we know that
p = (|I1|, . . . , |Ir|, |Ir+1|) is a member of MP,Q, due to the argument just after Remark 3.1.
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So we need to show that there is some way to decompose P into Bi,j,k’s such that I1, I1 ∪ I2, . . . , I1 ∪
· · · ∪ Ir+1 are order ideals of P . In other words, for any pair (x, y) such that x ∈ Ik and y ∈ Ik′ for
k > k′, we must have x 6< y in P .

For the sake of contradiction, let us assume we do have elements x ∈ Bi,j,k and y ∈ Bi′,j′,k′ such that
k > k′ but x < y in P . Let us call such pair (x, y) an inversion. Looking at all inversion pairs, construct
a collection C by collecting all (x, y)’s such that k − k′ is minimal. And among the pairs of C, find a pair
(x, y) such that there does not lie a z such that (z, x) ∈ C or (y, z) ∈ C. Now let us show that we can
switch x and y : to put x in Bi,j,k′ and y in Bi′,j′,k without introducing any new inversions.

We first need to show that k, k′ ∈ [i, j] ∩ [i′, j′]. The fact that x ∈ Bi,j,k, y ∈ Bi′,j′,k′ tells us that:

• qi−1 < x ≤ qj ,

• qi′−1 < y ≤ qj′ ,

• k ∈ [i, j] and

• k′ ∈ [i′, j′].

We also get qi−1 ≤ qi′−1 and qj ≤ qj′ from x < y and the definition of Bi,j and Bi′,j′ . Hence we have
i ≤ i′ and j ≤ j′. Then k > k′ allows us to conclude that k, k′ ∈ [i′, j′] ∩ [i, j].

Next, we are going to show that this switch does not introduce any new inversions. Assume for the sake
of contradiction that we get a new inversion (z, x) (The proof for (y, z) case is also similar and will be
omitted). Since (z, x) wasn’t an inversion before the switch, we have z < x and z has to be in some Ik′′
where k ≥ k′′ > k′. But since z < x implies z < y, the minimality of k − k′ tells us that k′′ = k. This
implies (z, y) ∈ C, which contradicts the condition for our choice of (x, y).

By repeating the switching process, we can get I1, . . . , Ir+1 such that I1, I1 ∪ I2, . . . , I1 ∪ · · · ∪ Ir+1

are all order ideals. This switching process does not change the cardinality of any Ii for 1 ≤ i ≤ r + 1,
so |Ii| = pi for all 1 ≤ i ≤ r + 1. Hence we get the desired result that p ∈MP,Q.

2

Theorem 3.3 The collection MP,Q is exactly the set of integer lattice points of the generalized permuto-
hedron NP,Q.

Since each (P,Q)-subposet vector (c1, . . . , cr) corresponds to a point (c1, c2−c1, . . . , cr−cr−1, |P |−
cr) of MP,Q, the above theorem allows us to conclude that:

Corollary 3.4 When P is a poset and Q is a chain in P , the collection of (P,Q)-subposet vectors are in
bijection with integer lattice points of the generalized permutohedron NP,Q.

Actually, we can say a bit more about (P,Q)-subposet vectors. Let us define ∆′I to be the simplex
obtained by sending each point (x1, · · · , xr+1) of a simplex ∆I in Rr+1 to (x1, x1+x2, . . . , x1+· · ·+xr)
in Rr. In other words,

• if r + 1 6∈ I , then ∆′I is the convex hull of e1 + · · ·+ ei’s for i ∈ I and,

• if r + 1 ∈ I , then ∆′I is the convex hull of the origin and e1 + · · ·+ ei’s for i ∈ I \ {r + 1}.

Then we can describe the set of (P,Q)-subposet vectors more precisely:
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Corollary 3.5 The (P,Q)-subposet vectors are exactly the integer lattice points of the polytope

N ′P,Q :=
∑

1≤i≤j≤r+1

|Bi,j |∆′[i,j]

.

Let us end with an example. Consider a poset P given by Figure 6. The chain Q is chosen as the
elements labeled a and b. We label 0̂ = q0, a = q1, b = q2, 1̂ = q3. If we restrict all possible linear
extensions of P to q1 and q2, we get integer vectors (2, 4), (2, 5), (3, 4), (3, 5), (4, 5). These points are
exactly the (P,Q)-subposet vectors. We have 0̂, a ∈ B1,1, b ∈ B2,2, 1̂ ∈ B3,3, y ∈ B1,2, z ∈ B1,3. So
N ′P,Q = 2∆[1] + 1∆[2] + ∆[3] + ∆[1,2] + ∆[1,3] and this gives us a pentagon, where all integer lattice
points are exactly the elements of MP,Q.
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Fig. 6: A poset P and chain Q given by the black-colored elements. The summands of N ′
P,Q and the polytope N ′

P,Q

with its integer lattice points.

4 For Q in general
In this section, we are going to study the (P,Q)-subposet vectors when Q is not necessarily a chain of P .
The (P,Q)-subposet vectors are integer lattice points in a union of polytopes combinatorially equivalent
to generalized permutohedron. Then we are going to show that there is a nonconvex, contractible polytope
that can be obtained by gluing those polytopes nicely.

We will start with an example in Figure 7. One can notice that the points are grouped into two parts,
depending on which of a or b is bigger. Let us add the relation a > b to P and Q respectively to get
P1 and Q1. Similarly, let us add the relation a < b to P and Q respectively to get P2 and Q2. Then as
one can see from Figure 8, one group of points of (P,Q)-subposet vectors come from (P1, Q1)-subposet
vectors and the other comes from (P2, Q2)-subposet vectors.

If we look at the line xa = xb in Figure 8, the nearby faces of N ′P1,Q1
and N ′P2,Q2

look identical. More
precisely, the intersection of N ′P1,Q1

with xa−xb = 1 and the intersection of N ′P2,Q2
with xa−xb = −1

looks identical. And that face looks exactly like N ′P3,Q3
where P3 and Q3 are obtained from P and Q by

identifying a and b, as in Figure 9.
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Fig. 7: A poset P and subposet Q given by the black-colored elements. (P,Q)-subposet vectors are drawn on the
right.
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Fig. 8: P1 and Q1 are obtained from P and Q by adding a > b. P2 and Q2 are obtained from P and Q by adding
a < b.

1
2

3
4

5

�
�
�
�

��
��
��
��

1 2 3 4 5 a

b

��
��
��
��

��
��
��
��

a,b

1
^

0
^

y z

Fig. 9: P3 and Q3 are obtained from P and Q by identifying a and b.



Poset vectors and generalized permutohedra 541

This suggests that we can glue together N ′P1,Q1
and N ′P2,Q2

along N ′P3,Q3
. We translate N ′P1,Q1

by
negating 1 from xa and N ′P2,Q2

by negating 1 from xb. Then we get a polyhedra as in Figure 10, which
we will call the posetohedron of the pair (P,Q).
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Fig. 10: N ′
P1,Q1

and N ′
P2,Q2

glued together.

Now we will describe the above procedure formally. Recall that we denote the elements of Q by
q1, . . . , qr, by choosing some linear extension on Q. We are going to associate a hyperplane arrangement
given by hyperplanes xi − xj = 0 for all pairs 1 ≤ i ≤ j ≤ r, and denote this by AQ. Each chamber in
AQ corresponds to an ordering xw(1) < · · · < xw(r) where w ∈ Sr. So from now on, we will identify
the chambers with their corresponding permutations. We will say that w is valid if qw(1) < · · · < qw(r)

is a valid total ordering of elements of Q. For (P,Q)-subposet vectors coming from linear extensions
compatible with the ordering qw(1) < · · · < qw(r), we denote them (P,Q,w)-subposet vectors.

Then the set of (P,Q)-subposet vectors is just the disjoint union of (P,Q,w)-subposet vectors for
all w ∈ Sr, since (P,Q,w)-subposet vectors lie in the interior of chamber w. If we add the relation
qw(1) < · · · < qw(r) to P and Q to get Pw and Qw respectively, (P,Q,w)-subposet vectors are exactly
the integer lattice points of N ′Pw,Qw

. We will call such polytope as a block.
We want to show that if we translate each block N ′Pw,Qw

by −∑i(i − 1)ew(i), we get a polytopal
complex. In other words, we want to show that under this translation, the blocks glue nicely, especially
that the intersection of any collection of blocks is a common face of all such blocks.

We start with an obvious property.

Lemma 4.1 Let w and v be two different permutations. The translated blocks N ′Pw,Qw
−∑i(i− 1)ew(i)

and N ′Pv,Qv
−∑i(i− 1)ev(i) have disjoint interiors.

We now check that a nonempty intersection of any collection of blocks is a common face of the blocks.
We define a face ofAQ to be a face of one of the polyhedron, obtained by taking the closure of a chamber.
The faces of AQ are in bijection with the faces of a permutohedron under duality. The intersection of
some given set of translated blocks happen inside a face of AQ. Fix a face F of AQ and we will use CF
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to denote the set of chambers whose closure contains F . A face F which has dimension d corresponds to
an ordered partition of [r] into d parts according to Ziegler (1995). To be more precise, F of dimension
d corresponds to some ordered partition Π = (Π1, . . . ,Πd) and this translates to a partial ordering where
a < b if a ∈ Πi, b ∈ Πj for i < j. The chambers of CF are chambers corresponding to the total order
compatible with this partial order.

By reordering the coordinates, we may assume that F corresponds to the ordered partition ([1..i1], [i1 +
1..i1 +i2], . . . , [i1 +· · ·+id−1 +1..i1 +· · ·+id]). Then each chamber of CF correspond to a total ordering
w1(1) < · · · < w1(i1) < w2(i1 + 1) < · · · < w2(i1 + i2) < · · · < wd(i1 + · · · + id) where wk ∈ Sik
for each 1 ≤ k ≤ d.

First by showing that the blocks glue nicely when F is a facet of AQ, we can extend that to show that
all the blocks glue nicely. Hence we get the following result:

Proposition 4.2 The collection of translated blocksN ′Pw,Qw
−∑i(i−1)ew(i)’s form a polytopal complex.

We will call the support of the polytopal complex the (P,Q)-posetohedron. When Q is not a chain,
then (P,Q)-posetohedron is not convex in general, as one can see from Figure 11.
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Fig. 11: Example of a posetohedron that is not convex.

Proposition 4.3 The (P,Q)-posetohedron is contractible.

Hence we get a non-convex polytope from (P,Q)-subposet vectors, and this polytope turns out to be
contractible.

Problem 4.4 Is there some interesting topological property of a (P,Q)-posetohedron that depends on the
combinatorics of P and Q?

5 Describing the vertices of a posetohedron
In this section we use the machinery from Postnikov (2009) to give a description for the vertices of NP,Q.
Since the general case is obtained by gluing the posetohedra when Q is a chain, we will restrict ourselves
to when Q = {0̂ = q0 < q1 < ... < qr+1 = 1̂} is a chain.

Recall that a generalized permutohedron can be expressed by
∑

1≤i,j≤r+1 ci,j∆[i,j], where ci,j are
nonnegative integers. In case when ci,j > 0 for all i and j, the vertices of of the polytope are in bijection
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with plane binary trees on [r + 1] with the binary search labeling Knuth (1998). Binary search labeling
is the unique labeling of the tree nodes such that the label of any node is greater than that of any left
descendant, and less than that of any right descendant. Let T be such a binary tree, and identify any of its
nodes with its labeling. Extending Corollary 8.2 of Postnikov (2009), we get:

Lemma 5.1 The vertex vT = (t1, ..., tr+1) of a generalized permutohedron
∑

1≤i,j≤r+1 ci,j∆[i,j] is
given by

tk =
∑

lk≤i≤k≤j≤rk
ci,j ,

where lk, rk are such that the interval [lk, rk] is exactly the set of descendants of k in T .
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Fig. 12: Using binary search labeling to describe the vertices of Ass3.

There is a well-known bijection between plane binary trees on [r + 1] and subdivisions of the shifted
triangular (r+ 1)-by-(r+ 1) shape Dr+1 into rectangles, each touching a diagonal box. The nice feature
about this bijection is that if we denote by Rk the rectangle containing the kth diagonal box, then

lk ≤ i ≤ k ≤ j ≤ rk ⇐⇒ (i, j) ∈ Rk.
Figure 13 shows an example of this bijection.
Now we have a a convenient way to visualize the result of 5.1 as follows:
Write the numbers |Bi,j | in the boxes of the triangular shape Dr+1:

Corollary 5.2 Consider a subdivision Ξ of Dr+1 into rectangles R1, ..., Rr+1 with (i, i) ∈ Ri. Then a
vertex vΞ = (t1, ..., tr+1) of NP,Q is given by

tk =
∑

(i,j)∈Rk

|Bi,j |

The map Ξ 7→ vΞ is always surjective, and it is a bijection if and only if |Bi,j | > 0 for all i < j.
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Fig. 13: A binary search labeling and a corresponding subdivision.

This corollary also suggests a nice way of constructing linear extensions of P , whose (P,Q)-subposet
vector is the vertex vΞ of the posetohedron: Fill rectangleRk with the numbers t1 + ...+ tk−1 +1, ..., t1 +
...+ tk (i.e. construct an order preserving bijection σk : ∪(i,j)∈Rk

Bi,j → [t1 + ...+ tk−1 +1, t1 + ...+ tk]
for each k, and then combine the σk’s to produce a linear extension of P ).

Note that for each of the Cr+1 = 1
r+2

(
2(r+1)
r+1

)
subdivisions Ξ of Dr+1 produces a vertex of NP,Q, but

some of these will coincide if some of the |Bi,j | are 0.
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Abstract. For an arbitrary Coxeter group W , David Speyer and Nathan Reading defined Cambrian semilattices Cγ

as certain sub-semilattices of the weak order on W . In this article, we define an edge-labeling using the realization of
Cambrian semilattices in terms of γ-sortable elements, and show that this is an EL-labeling for every closed interval
of Cγ . In addition, we use our labeling to show that every finite open interval in a Cambrian semilattice is either
contractible or spherical, and we characterize the spherical intervals, generalizing a result by Nathan Reading.

Résumé. Pour tout groupe de Coxeter W , David Speyer et Nathan Reading ont défini les demi-treillis Cambriens
comme certains sous-demi-treillis de l’ordre faible sur W . Dans cet article, nous définissons un étiquetage des arêtes
basé sur la réalisation des demi-treillis Cambriens en termes d’éléments γ-triables, et prouvons que c’est un étiquetage
EL pour tout intervalle fermé de Cγ . Nous utilisons de plus cet étiquetage pour montrer que tout intervalle ouvert fini
dans un demi-treillis Cambrien est soit contractible soit sphérique, et nous caractérisons les intervalles sphériques,
généralisant ainsi un résultat de Nathan Reading.

Keywords: Coxeter Groups, Weak Order, Cambrian Semilattices, EL-Shellability

1 Introduction
In [6, Theorem 9.6] Anders Björner and Michelle Wachs showed that the Tamari lattice Tn, introduced in
[17], can be regarded as the subposet of the weak-order lattice on the symmetric group Sn, consisting of
312-avoiding permutations. More precisely, there exists a lattice homomorphism σ : Sn → Tn such that
Tn is isomorphic to the subposet of the weak-order lattice on Sn consisting of the bottom elements in the
fibers of σ. In [13], the map σ was realized as a map from Sn to the triangulations of an (n + 2)-gon,
where the partial order on the latter is given by diagonal flips. It was shown that the fibers of σ induce
a congruence relation on the weak-order lattice on Sn, and that the Tamari lattice is isomorphic to the
lattice quotient induced by this congruence. Moreover, it was observed that different embeddings of the
(n+ 2)-gon in the plane yield different lattice quotients of the weak-order lattice on Sn. The realization
of Sn as the Coxeter group An−1 was then used to connect the embedding of the (n + 2)-gon in the
plane with a Coxeter element of An−1. This connection eventually led to the definition of Cambrian
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lattices, which can analogously be defined for an arbitrary finite Coxeter group W as lattice quotients
of the weak-order lattice on W with respect to certain lattice congruences induced by orientations of the
Coxeter diagram of W , see [14].

In [15], Nathan Reading and David Speyer generalized the idea of Cambrian lattices to infinite Coxeter
groups. Since there exists no longest element in an infinite Coxeter group, the weak order constitutes only
a (meet)-semilattice. Using the realization of the Cambrian lattices in terms of Coxeter-sortable elements,
which was first described in [14] and later extended in [15], the analogous construction as in the finite
case yields a quotient semilattice of the weak-order semilattice, the so-called Cambrian semilattice.

This article is dedicated to the investigation of the topological properties of the order complex of the
proper part of closed intervals in a Cambrian semilattice. One (order-theoretic) tool to investigate these
properties is EL-shellability, which was introduced in [1], and further developed in [4, 5, 6]. The fact that
a poset is EL-shellable implies a number of properties of the associated order complex: this order complex
is Cohen-Macaulay, it is homotopy equivalent to a wedge of spheres and the dimensions of its homology
groups can be computed from the labeling. The main results of the present article are the following.

Theorem 1.1 Every closed interval in Cγ is EL-shellable for every (possibly infinite) Coxeter group W
and every Coxeter element γ ∈W .

We prove this result uniformly using the realization of Cγ in terms of Coxeter-sortable elements, and thus
our proof does not require W to be finite or even crystallographic. For finite crystallographic Coxeter
groups, Theorem 1.1 is implied by [9, Theorem 4.17]. Colin Ingalls and Hugh Thomas considered in
[9] the category of finite dimensional representations of an orientation of the Coxeter diagram of a finite
crystallographic Coxeter group W . However, their approach cannot be applied to non-crystallographic or
to infinite Coxeter groups. Recently, Vincent Pilaud and Christian Stump gave a proof of Theorem 1.1 for
finite Coxeter groups, by investigating increasing flip posets of certain subword complexes, see [11].

Finally, using the fact that every closed interval of Cγ is EL-shellable, we are able to determine the
homotopy type of the proper parts of these intervals by counting the number of falling chains with respect
to our labeling. It turns out that every open interval is either contractible or spherical, i.e. homotopy
equivalent to a sphere. We can further characterize which intervals of Cγ are contractible and which are
spherical, as our second main result shows. Recall that a closed interval [x, y] in a lattice is called nuclear
if y is the join of atoms of [x, y].

Theorem 1.2 Let W be a (possibly infinite) Coxeter group and let γ ∈ W be a Coxeter element. Every
finite open interval in the Cambrian semilattice Cγ is either contractible or spherical. Furthermore, a
finite open interval (x, y)γ is spherical if and only if the corresponding closed interval [x, y]γ is nuclear.

For finite Coxeter groups, Theorem 1.2 is implied by concatenating [12, Theorem 1.1] and [12, Proposi-
tions 5.6 and 5.7]. Nathan Reading’s approach in the cited article was to investigate fan posets of central
hyperplane arrangements. He then showed that for a finite Coxeter group W the Cambrian lattices can
be viewed as fan posets of a fan induced by certain regions of the Coxeter arrangement of W which are
determined by orientations of the Coxeter diagram of W . The tools Nathan Reading developed in [12]
apply to a much larger class of fan posets, but cannot be applied directly to infinite Coxeter groups.

The proofs of Theorems 1.1 and 1.2 are obtained completely within the framework of Coxeter-sortable
elements and thus have the advantage that they are uniform and direct.

This article is organized as follows. In Section 2, we recall the necessary order-theoretic concepts, as
well as the definition of EL-shellability. Furthermore, we recall the definition of Coxeter groups, and the
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construction of the Cambrian semilattices. In Section 3, we define a labeling of the Hasse diagram of
a Cambrian semilattice and give a case-free proof that this labeling is indeed an EL-labeling for every
closed interval of this semilattice, thus proving Theorem 1.1. In Section 4, we prove Theorem 1.2, by
counting the falling maximal chains with respect to our labeling and by applying [5, Theorem 5.9] which
relates the number of falling maximal chains in a poset to the homotopy type of the corresponding order
complex. The characterization of the spherical intervals of Cγ follows from Theorem 4.3.

The present article is an extended abstract of [10], and we have thus omitted most of the proofs and
some illustrating examples. They can be found at the corresponding places in the original article.

2 Preliminaries
In this section, we recall the necessary definitions, which are used throughout the article. For further
background on posets, we refer to [7] or to [16] where in addition some background on lattices and lattice
congruences is provided. An introduction to poset topology can be found in either [2] or [18]. For more
background on Coxeter groups, we refer to [3] and [8].

2.1 Posets and EL-Shellability

Let (P,≤P ) be a finite partially ordered set (poset for short). We say that P is bounded if it has a unique
minimal and a unique maximal element, which we usually denote by 0̂ and 1̂, respectively. For x, y ∈ P ,
we say that y covers x (and write x lP y) if x ≤P y and there is no z ∈ P such that x <P z <P y.
We denote the set of all covering relations of P by E(P ). For x, y ∈ P with x ≤P y, we define the
closed interval [x, y] to be the set {z ∈ P | x ≤P z ≤P y}. Similarly, we define the open interval
(x, y) = {z ∈ P | x <P z <P y}. A chain c : x = p0 ≤P p1 ≤P · · · ≤P ps = y is called
maximal if (pi, pi+1) ∈ E(P ) for every 0 ≤ i ≤ s − 1. Let (P,≤P ) be a bounded poset and let c : 0̂ =
p0lP p1lP · · ·lP ps = 1̂ be a maximal chain of P . Given another poset (Λ,≤Λ), a map λ : E(P )→ Λ is
called edge-labeling of P . We denote the sequence

(
λ(p0, p1), λ(p1, p2), . . . , λ(ps−1, ps)

)
of edge-labels

of c by λ(c). The chain c is called rising (respectively falling) if λ(c) is a strictly increasing (respectively
weakly decreasing) sequence. For two words (p1, p2, . . . , ps) and (q1, q2, . . . , qt) in the alphabet Λ, we
write (p1, p2, . . . , ps) ≤Λ∗ (q1, q2, . . . , qt) if and only if either

pi = qi, for 1 ≤ i ≤ s and s ≤ t, or
pi <Λ qi, for the least i such that pi 6= qi.

A maximal chain c of P is called lexicographically first among all maximal chains of P if for every other
maximal chain c′ of P we have λ(c) ≤Λ∗ λ(c′). An edge-labeling of P is called EL-labeling if for
every closed interval [x, y] in P there exists a unique rising maximal chain which is lexicographically first
among all maximal chains in [x, y]. A bounded poset that admits an EL-labeling is called EL-shellable.
Finally, we recall that the Möbius function µ of P is the map µ : P × P → Z defined recursively by

µ(x, y) =





1, x = y

−∑x≤P z<P y
µ(x, z), x <P y

0, otherwise.
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A remarkable property of EL-shellable posets is that we can compute the value of the Möbius function
for every closed interval of P from the labeling, as is stated in the following proposition(i).

Proposition 2.1 ([5, Proposition 5.7]) Let (P,≤P ) be an EL-shellable poset, and let x, y ∈ P with x ≤P
y. Then,

µ(x, y) = number of even length falling maximal chains in [x, y]

− number of odd length falling maximal chains in [x, y].

2.2 Coxeter Groups and Weak Order
Let W be a (possibly infinite) group, which is generated by the finite set S = {s1, s2, . . . , sn}. Let
m = (mi,j)1≤i,j≤n be a symmetric (n × n)-matrix, where the entries are either positive integers or the
formal symbol∞, and which satisfies mi,i = 1 for all 1 ≤ i ≤ n, and mi,j ≥ 2 otherwise. (We use the
convention that∞ is formally larger than any natural number.) We call W a Coxeter group if it has the
presentation

W = 〈S | (sisj)mi,j = ε, for 1 ≤ i, j ≤ n〉,
where ε ∈ W denotes the identity. We interpret the case mi,j = ∞ as stating that there is no relation
between the generators si and sj , and we call the matrixm the Coxeter matrix ofW . The Coxeter diagram
of W is the graph G = (V,E), with V = S and E =

{
{si, sj} | mi,j ≥ 3

}
. In addition, an edge {si, sj}

of G is labeled by the value mi,j if and only if mi,j ≥ 4.
Since S is a generating set of W , we can write every element w ∈W as a product of the elements in S,

and we call such a word a reduced word for w if it has minimal length. More precisely, define the word
length on W (with respect to S) as

`S : W → N, w 7→ min{k | w = si1si2 · · · sik and sij ∈ S for all 1 ≤ j ≤ k}.

If `S(w) = k, then every product of k generators which yields w is a reduced word for w. Define the
(right) weak order of W by

u ≤S v if and only if `S(v) = `S(u) + `S(u−1v).

The poset (W,≤S) is a graded meet-semilattice, the so-called weak-order semilattice of W , and `S is its
rank function. Further, (W,≤S) is finitary meaning that every closed interval of (W,≤S) is finite. In the
case where the group W is finite, there exists a unique longest word wo of W , and (W,≤S) is a lattice.

2.3 Coxeter-Sortable Words
Let γ = s1s2 · · · sn ∈W be a Coxeter element, and define the half-infinite word

γ∞ = s1s2 · · · sn|s1s2 · · · sn| · · · .

The vertical bars in the representation of γ∞ are “dividers”, which have no influence on the structure
of the word, but shall serve for a better readability. Clearly, every reduced word for w ∈ W can be
considered as a subword of γ∞. Among all reduced words for w, there is a unique reduced word, which
is lexicographically first as a subword of γ∞. This reduced word is called the γ-sorting word of w.
(i) Actually, Proposition 5.7 in [5] is stated for posets admitting a so-called CR-labeling. EL-shellable posets are a particular instance

of this class of posets, and for the scope of this article it is sufficient to restrict our attention to these.
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Example 2.2 Consider the Coxeter group W = S5, generated by S = {s1, s2, s3, s4}, where si corre-
sponds to the transposition (i, i + 1) for all i ∈ {1, 2, 3, 4} and let γ = s1s2s3s4. Clearly, s1 and s4

commute. Hence, w1 = s1s2|s1s4 and w2 = s1s2s4|s1 are reduced words for the same element w ∈ W .
Considering w1 and w2 as subwords of γ∞, we find that w2 is a lexicographically smaller subword of γ∞

than w1 is. There are six other reduced words for w, namely

w3 = s1s4|s2|s1, w4 = s4|s1s2|s1, w5 = s4|s2|s1s2,

w6 = s2s4|s1s2, w7 = s2|s1s4|s2, w8 = s2|s1s2s4.

It is easy to see that among these w2 is the lexicographically first subword of γ∞, and hence w2 is the
γ-sorting word of w.

In the following, we consider only γ-sorting words, and write

w = s
δ1,1
1 s

δ1,2
2 · · · sδ1,nn | sδ2,11 s

δ2,2
2 · · · sδ2,nn | · · · | sδl,11 s

δl,2
2 · · · sδl,nn , (1)

where δi,j ∈ {0, 1} for 1 ≤ i ≤ l and 1 ≤ j ≤ n. For each i ∈ {1, 2, . . . , l}, we say that

bi = {sj | δi,j = 1} ⊆ S

is the i-th block of w. We consider the blocks of w sometimes as sets and sometimes as subwords of
γ, depending on how much structure we need. We say that w is γ-sortable if and only if b1 ⊇ b2 ⊇
· · · ⊇ bl. In the previous example, we have seen that w2 = s1s2s4|s1 is a γ-sorting word in W with
b1 = {s1, s2, s4} and b2 = {s1}. Since b2 ⊆ b1, we see that w2 is indeed γ-sortable.

By definition, the set of γ-sortable words of W does not depend on the choice of the reduced word
for γ. Furthermore, the γ-sortable words of W are characterized by a recursive property which we will
describe next. A generator s ∈ S is called initial in γ if it is the first letter in some reduced word for γ.
For some subset J ⊆ S, we denote by WJ the parabolic subgroup of W generated by the set J , and for
s ∈ S we abbreviate 〈s〉 = S \ {s}. For w ∈ W , and J ⊆ S, we denote by wJ the restriction of w to the
parabolic subgroup WJ .

Proposition 2.3 ([15, Proposition 2.29]) Let W be a Coxeter group, γ a Coxeter element and let s be
initial in γ. Then an element w ∈W is γ-sortable if and only if

(i) s ≤S w and sw is sγs-sortable, or

(ii) s 6≤S w and w is an sγ-sortable word of W〈s〉.

2.4 Cambrian Semilattices
In [15, Section 7] the Cambrian semilattice Cγ was defined as the sub-semilattice of the weak order on
W consisting of all γ-sortable elements. That Cγ is well-defined follows from [15, Theorem 7.1]. It turns
out that Cγ is not only a sub-semilattice of the weak order, but also a quotient semilattice. The key role
in the proof of this property is played by the projection πγ↓ which maps every word w ∈ W to the unique
largest γ-sortable element below w. More precisely if s is initial in γ, then define

πγ↓ (w) =

{
sπsγs↓ (sw), if s ≤S w
πsγ↓ (w〈s〉), if s 6≤S w,

(2)
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and set πγ↓ (ε) = ε, see [15, Section 6].
Theorem 7.3 in [15] implies that πγ↓ is a semilattice homomorphism from the weak-order semilattice on

W to Cγ , and Cγ can be considered as the quotient semilattice of the weak order modulo the semilattice
congruence θγ induced by the fibers of πγ↓ . This semilattice congruence is called Cambrian congruence.
Since the lack of a maximal element is the only obstruction for the weak order to be a lattice, it follows
immediately that the restriction of πγ↓ (and hence θγ) to closed intervals of the weak order yields a lattice
homomorphism (and hence a lattice congruence).

In the remainder of this article, we switch frequently between the weak-order semilattice on W and the
Cambrian semilattice Cγ . In order to point out properly which semilattice we consider, we denote the
order relation of the weak-order semilattice by ≤S , and the order relation of Cγ by ≤γ . Analogously, we
denote a closed (respectively open) interval in the weak-order semilattice by [u, v]S (respectively (u, v)S),
and a closed (respectively open) interval in Cγ by [u, v]γ (respectively (u, v)γ).

3 EL-Shellability of the Closed Intervals in Cγ

In this section, we define an edge-labeling of Cγ , discuss some of its properties and eventually prove
Theorem 1.1.

3.1 The Labeling
Define for every w ∈W the set of positions of the γ-sorting word of w as

αγ(w) =
{

(i− 1) · n+ j | δi,j = 1
}
⊆ N,

where the δi,j’s are the exponents from (1). We remark that the set of positions of w depends not only on
the choice of the Coxeter element γ, but also on the choice of the reduced word of γ.

Example 3.1 Let W = S4, γ = s1s2s3 and consider u = s1s2s3|s2, and v = s2s3|s2|s1. Then,
αγ(u) = {1, 2, 3, 5}, and αγ(v) = {2, 3, 5, 7}, where u ∈ Cγ , while v /∈ Cγ .

It is not hard to see that an element w ∈ W lies in Cγ if and only if the following holds: if i ∈ αγ(w)
and i > n, then i− n ∈ αγ(w). In the previous example, we see that αγ(u) contains both 5 and 2, while
αγ(v) does not contain 7− 3 = 4.

Lemma 3.2 Let u, v ∈W with u ≤S v. Then αγ(u) is a subset of αγ(v).

Denote by E(Cγ) the set of covering relations of Cγ , and define an edge-labeling of Cγ by

λγ : E(Cγ)→ N, (u, v) 7→ min{i | i ∈ αγ(v) r αγ(u)}. (3)

Figure 1 shows the Hasse diagram of a Cambrian lattice Cγ of the Coxeter group A3, together with the
labels defined by the map λγ .

3.2 Properties of the Labeling
We notice that the definition of λγ depends on a specific reduced word for γ. The following lemma shows
that the structural properties of λγ are independent of the choice of reduced word for γ.

Lemma 3.3 Let γ ∈ W be a Coxeter element, and let u, v ∈ Cγ with u ≤γ v. The number of maximal
falling and rising chains in [u, v]γ does not depend on the choice of a reduced word for γ.
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ε

s1 s2 s3

s1s2 s1s3 s2s3

s1s2|s1 s1s2s3 s2s3|s2

s1s2s3|s1 s1s2s3|s2

s1s2s3|s1s2

s1s2s3|s1s2|s1

1 2 3

2
3 3

1

1

2

4
3

2

5

13 4 5

15

4

7

Fig. 1: An A3-Cambrian lattice with the labeling as defined in (3).

Whenever we use an initial letter s of γ in the remainder of this article, we consider λγ with respect to
a fixed reduced word for γ which has s as its first letter. The previous lemma implies that this can be done
without loss of generality.

Lemma 3.4 Let Cγ be a Cambrian semilattice, and let u, v ∈ Cγ such that u ≤γ v. Let i0 = min{i |
i ∈ αγ(v) r αγ(u)}. Then the following hold.

(i) The label i0 appears in every maximal chain of the interval [u, v]γ .

(ii) The labels of a maximal chain in [u, v]γ are distinct.

The γ-sortable words of W are defined recursively as described in Proposition 2.3. Thus we need to
investigate how our labeling behaves with respect to this recursion.

Lemma 3.5 Let W be a Coxeter group and let γ ∈W be a Coxeter element. For u, v ∈ Cγ with ulγ v
and for s ∈ S initial in γ, we have

λγ(u, v) =





1, if s 6≤S u and s ≤S v,
λsγs(su, sv) + 1, if s ≤S u,
λsγ(u〈s〉, v〈s〉) + k, if s 6≤S v and the first position where u and v

differ is in their k-th block.
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3.3 Proof of Theorem 1.1
We will prove Theorem 1.1 by showing that the map λγ defined in (3) is an EL-labeling for every closed
interval in Cγ . In particular we show the following.

Theorem 3.6 Let u, v ∈ Cγ with u ≤γ v. Then the map λγ defined in (3) is an EL-labeling for [u, v]γ .

We notice in view of Lemma 3.3 that the statement of Theorem 3.6 does not depend on a reduced word
for γ, even though our labeling does. For the proof of Theorem 3.6, we need one more technical lemma.
This lemma uses many of the deep results on Cambrian semilattices developed in [15], and requires the
following alternative characterization of the (right) weak order onW . Let T = {wsw−1 | w ∈W, s ∈ S},
and define for w ∈ W , the (left) inversion set of w as inv(w) = {t ∈ T | `S(tw) ≤ `S(w)}. It is the
statement of [3, Proposition 3.1.3] that u ≤S v if and only if inv(u) ⊆ inv(v). Moreover, for w ∈W , we
say that t ∈ inv(w) is called a cover reflection of w if there exists some s ∈ S with tw = ws. We denote
by cov(w) the set of all cover reflections of w.

Lemma 3.7 Let u, v ∈ Cγ with u ≤γ v and let s be initial in γ. If s 6≤γ u and s ≤γ v, then the join
s ∨γ u covers u in Cγ .

Proof: First of all, since s ≤γ v and u ≤γ v, we conclude from [15, Theorem 7.1] that s ∨γ u exists, and
set z = s ∨γ u. By assumption, we have u = πsγ↓ (u〈s〉) ∈ W〈s〉, and Proposition 2.3 implies u = u〈s〉.
We deduce then from [15, Lemma 2.23] that cov(z) = {s} ∪ cov(u). Therefore s is a cover reflection of
z, and it follows from [15, Proposition 5.4 (i)] that z = s ∨γ z〈s〉, and [15, Proposition 5.4 (ii)] implies
that cov(z) = {s} ∪ cov(z〈s〉). Hence, cov(u) = cov(z〈s〉), and [15, Theorem 8.9 (iv)] implies u = z〈s〉.
(The required fact that z〈s〉 is γ-sortable follows from [15, Propositions 3.13 and 6.10].)

On the other hand, it follows from the definition of a cover reflection that there exists an element
z′ = sz ∈ W with z′ lS z, thus z′〈s〉 ≤S z〈s〉, see [15, Section 2.5]. Furthermore we have that inv(z′) =

inv(z) \ {s}, and since inv(s) = {s}, Proposition 3.1.3 in [3] implies s 6≤S z′. Hence, by definition of
πγ↓ , see (2), we have πγ↓ (z′) = πsγ↓ (z′〈s〉) ∈ W〈s〉, and πγ↓ (z′) lγ z. Since πsγ↓ is order-preserving, see
[15, Theorem 6.1], we conclude from z′〈s〉 ≤S z〈s〉 that πsγ↓ (z′〈s〉) ≤S π

sγ
↓ (z〈s〉). Hence,

πγ↓ (z′) = πsγ↓ (z′〈s〉) ≤S πsγ↓ (z〈s〉) = πsγ↓ (u) = πsγ↓ (u〈s〉) = πγ↓ (u) = u.

Since πγ↓ (z′) lγ z and u <γ z, the previous implies u = πγ↓ (z′) and thus ulγ z. 2

Proof of Theorem 3.6: Let [u, v]γ be a closed interval of Cγ . Since the weak order on W is finitary, it
follows that [u, v]γ is a finite lattice. We show that there exists a unique maximal rising chain in [u, v]γ
which is the lexicographically first among all maximal chains in this interval.

We proceed by induction on length and rank, using the recursive structure of γ-sortable words, see
Proposition 2.3. We assume that `S(v) ≥ 3, and that W is a Coxeter group of rank ≥ 2, since the result is
trivial otherwise. Say that W is of rank n, and say that `S(v) = k. Suppose that the induction hypothesis
is true for all parabolic subgroubs of W of rank < n and suppose that for every closed interval [u′, v′]γ of
Cγ with `S(v′) < k, there exists a unique rising maximal chain from u′ to v′ which is lexicographically
first among all maximal chains in [u′, v′]γ . We show that there is a unique rising maximal chain in the
interval [u, v]γ wich is lexicographically first among all maximal chains in [u, v]γ . For s initial in γ, we
distinguish two cases: (1) s ≤γ v and (2) s 6≤γ v.
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(1a) Suppose first that s ≤γ u as well. Then, s is the first letter in the γ-sorting word of every element
in [u, v]γ . It follows from [15, Proposition 2.18] and Proposition 2.3 that the interval [u, v]γ is isomorphic
to the interval [su, sv]sγs. Moreover, Lemma 3.5 implies that for a covering relation x lγ y in [u, v]γ
we have λγ(x, y) = λsγs(sx, sy) + 1. Say that c′ : su = sx0 lsγs sx1 lsγs · · · lsγs sxt = sv is
the unique rising maximal chain in [su, sv]sγs. (This chain exists by induction, since `S(sv) < `S(v).)
Then, the chain c : u = x0 lγ x1 lγ · · · lγ xt = v is a maximal chain in [u, v]γ and clearly rising.
With Lemma 3.5, we find that c is the unique rising chain and every other maximal chain in [u, v]γ is
lexicographically larger than c.

(1b) Suppose now that s 6≤γ u. Since s ≤γ v and u ≤γ v the join u1 = s ∨γ u exists and lies in
[u, v]γ . Lemma 3.7 implies that u lγ u1. Consider the interval [u1, v]γ . Then s ≤γ u1 and analogously
to (1a) we can find a unique maximal rising chain c′ : u1 lγ u2 lγ · · · lγ ut = v in [u1, v]γ which is
lexicographically first. Moreover, min{i | i ∈ αγ(v) r αγ(u1)} > 1, since s ≤γ u1 ≤γ v. By definition
of our labeling, the label 1 cannot appear as a label in any chain in the interval [u1, v]γ . On the other hand,
it follows from Lemma 3.5 that λγ(u, u1) = 1. Thus, the chain c : u lγ u1 lγ u2 lγ · · · lγ ut = v
is maximal and rising in [u, v]γ . Suppose that there is another element u′ that covers u in [u, v]γ such
that λγ(u, u′) = 1. Then, by definition of λγ , it follows that s appears in the γ-sorting word of u′. In
particular, since s is initial in γ, we deduce that s ≤γ u′. Therefore u′ is above both s and u in Cγ . By
the uniqueness of joins and the definition of u1 it follows that u1 = u′. Thus c is the lexicographically
smallest maximal chain in [u, v]γ . Finally, Lemma 3.4 implies that c is the unique maximal rising chain.

(2) Since s 6≤γ v, it follows that no element of [u, v]γ contains the letter s in its γ-sorting word. We
consider the parabolic Coxeter group W〈s〉 (generated by S \ {s}) and the Coxeter element sγ. It follows
from Proposition 2.3 that the interval [u, v]γ is isomorphic to the interval [u〈s〉, v〈s〉]sγ in W〈s〉. Since
the rank of W〈s〉 is n − 1 < n, by induction there exists a unique maximal rising chain c′ : u〈s〉 =
(x0)〈s〉 lsγ (x1)〈s〉 lsγ · · ·lsγ (xt)〈s〉 = v〈s〉 which is lexicographically first among all maximal chains
in [u〈s〉, v〈s〉]sγ . The result then follows with Lemma 3.5. 2

Proof of Theorem 1.1: This follows by definition from Theorem 3.6. 2

4 Applications
In [12], Nathan Reading investigated, among others, the topological properties of open intervals in so-
called fan posets. A fan poset is a certain partial order defined on the maximal cones of a complete fan
of regions of a real hyperplane arrangement. For a finite Coxeter group W and a Cambrian congruence θ,
the Cambrian fan Fθ is the complete fan induced by certain cones in the Coxeter arrangementAW of W .
More precisely, each such cone is a union of regions of AW which correspond to elements of W lying in
the same congruence class of θ. It is the assertion of [12, Theorem 1.1], that a Cambrian lattice of W is
the fan poset associated to the corresponding Cambrian fan. The following theorem is a concatenation of
[12, Theorem 1.1] and [12, Propositions 5.6 and 5.7]. In fact, Propositions 5.6 and 5.7 in [12] imply this
result for a much larger class of fan posets.

Theorem 4.1 Let W be a finite Coxeter group and let γ ∈W be a Coxeter element. Every open interval
in the Cambrian lattice Cγ is either contractible or spherical.

It is well-known that the reduced Euler characteristics of the order complex of an open interval (x, y) in
a poset determines µ(x, y), see for instance [16, Proposition 3.8.6]. Hence, it follows immediately from
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Theorem 4.1 that for γ-sortable elements x and y in a finite Coxeter group W satisfying x ≤γ y, we have
|µ(x, y)| ≤ 1, as was already remarked in [13, pp. 4-5]. In light of Proposition 2.1 and Theorem 3.6, we
can extend this statement to compute the Möbius function of closed intervals in the Cambrian semilattice
Cγ , by counting the falling maximal chains with respect to the labeling defined in (3).

Theorem 4.2 Let W be a (possibly infinite) Coxeter group and γ ∈W a Coxeter element. For u, v ∈ Cγ
with u ≤γ v, we have |µ(u, v)| ≤ 1.

Proof: In view of Proposition 2.1 it is enough to show that the interval [u, v]γ has at most one maximal
falling chain. We use similar arguments as in the proof of Theorem 3.6 and proceed by induction on
length and rank. Again, for s initial in γ, we distinguish the following two cases: s ≤γ v and s 6≤γ v.
Here we discuss only the special case where s ≤γ v and s 6≤γ u. (The others follow by applying
the same methods as in the proof of Theorem 3.6.) It follows from Lemma 3.4 that a maximal chain
u = c0 lγ c1 lγ · · · lγ ct−1 l ct = v of [u, v]γ can be falling only if λγ(ct−1, v) = 1. Hence, if there
is no element v1 ∈ (u, v)γ , with v1 l v satisfying λγ(v1, v) = 1, then the interval [u, v]γ has no maximal
falling chain, which means that µ(u, v) = 0. Otherwise, consider the interval [u, v1]γ . By the choice
of v1, it follows that every maximal falling chain in [u, v1]γ can be extended to a maximal falling chain
in the interval [u, v]γ . Conversely, every maximal falling chain in [u, v]γ can be restricted to a maximal
falling chain in [u, v1]γ . Therefore, since `S(v1) < `S(v), we deduce from the induction hypothesis that
the interval [u, v1]γ has at most one maximal falling chain. Thus |µ(u, v)| ≤ 1. 2

In addition Propositions 5.6 and 5.7 in [12] characterize the open intervals in a (finite) Cambrian lattice
which are contractible, and those which are spherical in the following way: an interval [u, v]γ in Cγ
is called nuclear if the join of the upper covers of u is precisely v. Nathan Reading showed that the
nuclear intervals are precisely the spherical intervals. With the help of our labeling, we can generalize this
characterization to infinite Coxeter groups.

Theorem 4.3 Let u, v ∈ Cγ with u ≤γ v and let k denote the number of atoms of the interval [u, v]γ .
Then, µ(u, v) = (−1)k if and only if [u, v]γ is nuclear.

For the proof of Theorem 4.3, we need the following lemma.

Lemma 4.4 Let u, v ∈ Cγ with u ≤γ v, and let s be initial in γ. Suppose further that s 6≤γ u, while
s ≤γ v. Then the following are equivalent:

1. The interval [u, v]γ is nuclear.

2. There exists an element v′ ∈ [u, v]γ satisfying s 6≤γ v′ lγ v, and the interval [u, v′]γ is nuclear.

Proof of Theorem 4.3: In view of Proposition 2.1, we need to show that [u, v]γ has a falling chain if
and only if [u, v]γ is nuclear. We use similar arguments as in the proof of Theorem 3.6 and proceed by
induction on length and rank. For the inductive step we distinguish two cases: (1) s 6≤γ v and (2) s ≤γ v,
where s initial in γ. Here we discuss the special case where s 6≤γ u, while s ≤γ v. If [u, v]γ is nuclear,
the result follows by combining Lemmas 3.5,4.4, Theorem 4.2 and by applying induction on the rank of
W . Conversely, suppose that there exists a maximal falling chain c : u = x0 lγ x1 lγ · · · lγ xt = v
in [u, v]γ , and let A = {w ∈ Cγ | u lγ w and w ≤γ v} denote the set of atoms of [u, v]γ . It follows
then that the chain c′ : u = x0 lγ x1 lγ · · · lγ xt−1 is falling, thus by induction we can conclude that
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the interval [u, xt−1]γ is nuclear. We deduce from Lemma 3.4 that s 6≤γ xt−1, and since xt−1 lγ v, it
follows from Lemma 4.4 that [u, v]γ is nuclear. This completes the proof of the theorem. 2

Proof of Theorem 1.2: It follows directly from Theorem 1.1, [5, Theorem 5.9] and Theorem 4.2. The
characterization of the spherical intervals is an immediate consequence of Theorem 4.2. 2

We conclude this article with a short example of an infinite Coxeter group.

Example 4.5 Consider the affine Coxeter group Ã2, which is generated by the set {s1, s2, s3} satisfying
(s1s2)3 = (s1s3)3 = (s2s3)3 = ε, as well as s2

1 = s2
2 = s2

3 = ε. Consider the Coxeter element
γ = s1s2s3. Figure 2 shows the sub-semilattice of the Cambrian semilattice Cγ consisting of all γ-
sortable elements of Ã2 of length ≤ 7. We encourage the reader to verify Theorem 3.6 and Theorem 4.2.

ε

s3 s1 s2

s1s3 s2s3 s1s2

s1s3|s1 s2s3|s2 s1s2s3 s1s2|s1

s1s2s3|s2 s1s2s3|s1

s1s2s3|s1s2 s1s2s3|s1s3

s1s2s3|s1s2|s1 s1s2s3|s1s2s3

s1s2s3|s1s2s3|s1 s1s2s3|s1s2s3|s2

3 1 2

1

2

3 2 3

1

4

2

5 3 4

5 4

3

4

5 6

7 6

5

7 8

Fig. 2: The first seven ranks of an Ã2-Cambrian semilattice, with the labeling as defined in (3).
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The Eulerian polynomials of type D have only
real roots

Carla D. Savage 1 and Mirkó Visontai 2
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Abstract. We give an intrinsic proof of a conjecture of Brenti that all the roots of the Eulerian polynomial of type
D are real and a proof of a conjecture of Dilks, Petersen, and Stembridge that all the roots of the affine Eulerian
polynomial of type B are real, as well.

Résumé. Nous prouvons, de façon intrinsèque, une conjecture de Brenti affirmant que toutes les racines du polynôme
eulérien de type D sont réelles. Nous prouvons également une conjecture de Dilks, Petersen, et Stembridge que toutes
les racines du polynôme eulérien affine de type B sont réelles.

Keywords: Eulerian polynomials, Coxeter group of type D, inversion sequences, polynomials with only real roots.

1 Overview
Let Sn denote the group of all permutations of the set [n] = {1, 2, . . . , n}. The descent set of a permuta-
tion π in Sn (given in its one-line notation π = π1 · · ·πn) is defined as

Desπ = {i ∈ [n− 1] : πi > πi+1} .

The Eulerian polynomial, Sn(x), is the generating function for the statistic desπ = |Desπ| on Sn:

Sn(x) =
∑

π∈Sn

xdesπ. (1)

In addition to its many notable properties, Sn(x) has only real roots, which implies that its coefficient
sequence, the Eulerian numbers, is unimodal and log-concave.

The notion of descents, and therefore Eulerian polynomials, extends to all finite Coxeter groups. Brenti
conjectured (Conjecture 5.1 in Brenti (1994)) that the Eulerian polynomials for all finite Coxeter groups
have only real roots. He proved this to be the case for the exceptional groups and for type B. The main
goal of this paper is to prove the last missing part of Brenti’s conjecture, for type D groups:

Conjecture 1.1 (Conjecture 5.2 in Brenti (1994)) The typeD Eulerian polynomials have only real roots.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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To be precise, we view the Coxeter group of type B (resp. D) of rank n, denoted by Bn (resp. Dn),
as the set of signed (resp. even-signed) permutations of the set [n]. The type B and D descents have
the following simple combinatorial interpretation (see Brenti (1994); Björner and Brenti (2005)). For a
signed (resp. even-signed) permutation σ given in its “window notation” (σ1, . . . , σn), let

DesB σ = {i ∈ [n− 1] : σi > σi+1} ∪ {0 : if σ1 < 0}, (2)
DesD σ = {i ∈ [n− 1] : σi > σi+1} ∪ {0 : if σ1 + σ2 < 0}. (3)

The type B and type D Eulerian polynomials are, respectively,

Bn(x) =
∑

σ∈Bn

xdesB σ and Dn(x) =
∑

σ∈Dn

xdesD σ ,

where desB σ = |DesB σ| and desD σ = |DesD σ|.
Our approach is novel and general. It applies not only to type D, but also—as we will see—to the

type A and type B Eulerian polynomials. Moreover, we will apply our method to the affine Eulerian
polynomials proposed by Dilks, Petersen, and Stembridge (2009). In doing so, in Section 8, we will
resolve another conjecture:

Conjecture 1.2 (Dilks et al. (2009)) The affine Eulerian polynomials of type B have only real roots.

The type A and C affine Eulerian polynomials are multiples of the classical Eulerian polynomial and
hence, have only real roots. However, the affine type D case remains open. See discussion in Section 8.

Our method makes use of the s-inversion sequences and their ascent statistic, defined in the Section 3.
These were inspired by lecture hall partitions Bousquet-Mélou and Eriksson (1997) and introduced in
Savage and Schuster (2012). The method works as follows.

• First, encode each element, w, of the Coxeter group as an s-inversion sequence, e, in such a way
that the descent set of w is the same as the ascent set of e (Sections 2,3 and 4).

• Secondly, observe that (a refinement of) the generating polynomial for the number of ascents over
inversion sequences satisfies a recurrence of a certain form (Section 5).

• Finally, show that the polynomials defined by such recurrences are “compatible” (a notion closely
related to interlacing) to deduce that the Eulerian polynomials have all roots real (Sections 6, 7).

2 Type D Eulerian polynomials
Let us start with a simple observation. Note that the type D descent statistic, DesD, defined in (3) can
be extended to all signed permutations. Furthermore, DesD is equidistributed over even-signed and odd-
signed permutations. In other words, we have the following equality.

Proposition 2.1 For n ≥ 2, ∑

σ∈Bn

xdesD σ = 2
∑

σ∈Dn

xdesD σ.
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Proof: The involution on Bn that swaps the values 1 and −1 in (the window notation of) σ ∈ Bn is a
bijection between Dn and Bn \Dn that preserves the type D descent statistic.

2

Therefore, in order to avoid dealing with the parity of the signs and to allow for simpler recurrences,
we will be working instead with the polynomial

Tn(x) =
∑

σ∈Bn

xdesD σ. (4)

Clearly, Tn(x) has only real roots if and only ifDn(x) does. In what follows, we will restrict our attention
to permutations and signed permutations, with the goal of showing Tn(x) has all real roots.

3 s-Inversion sequences and s-Eulerian polynomials
For a sequence s = s1, s2, . . . of positive integers, the set I(s)n of s-inversion sequences of length n is
defined by

I(s)n = {e ∈ Zn : 0 ≤ ei < si}.

The ascents of an inversion sequence e ∈ I(s)n are the elements of the set

Asc e =

{
i ∈ [n− 1] :

ei
si
<
ei+1

si+1

}
∪ {0 : if e1 > 0}.

The s-Eulerian polynomial, E(s)
n (x), is the generating polynomial for the ascent statistic asc e =

|Asc e| on I(s)n :

E(s)
n (x) =

∑

e∈I(s)n

xasc e.

Our main result is the following theorem which we will prove in Section 6.

Theorem 3.1 For any n ≥ 1 and any sequence s of positive integers, E(s)
n (x) has only real roots.

Consequently, to show the real-rootedness of a family of polynomials, it suffices to show that it is equal
to E

(s)
n (x) for some sequence s of positive integers. For example, the type A and type B Eulerian

polynomials have the following form (we defer the proof to Section 4).

Proposition 3.2 (Savage and Schuster (2012)) For n ≥ 1,

Sn(x) = E(1,2,...,n)
n (x), (5)

Bn(x) = E(2,4,...,2n)
n (x), (6)

from which it follows by Theorem 3.1 that Sn(x) and Bn(x) have only real roots.

In this paper, we will show how to adapt this idea to type D and affine type B Eulerian polynomials.
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4 Inversion sequence representation of (signed) permutations
To simplify notation for inversion sequences, let

In = I(1,2,...,n)n and IBn = I(2,4,...,2n)n .

In this section, we will prove bijections that imply not only the inversion sequence representations for Sn

(5) and Bn (6), but also the following, novel, inversion sequence representation for Dn.

Proposition 4.1 For n ≥ 1,

Tn(x) =
∑

e∈IBn

xascD e ,

where ascD e = |AscD e| is the number of type D ascents of e = (e1, . . . , en) ∈ IBn given by

AscD e =

{
i ∈ [n− 1] :

ei
i
<

ei+1

i+ 1

}
∪
{
0 : if e1 +

e2
2
≥ 3

2

}
. (7)

4.1 An inversion sequence for permutations
We will make use of the following bijection between permutations and inversion sequences (see, for
example, Lemma 1 in (Savage and Schuster, 2012)). We note that several variants of this map are known
under different names: inversion table, Lehmer code, etc.

Lemma 4.2 The mapping φ : Sn → In defined by φ(π1π2 · · ·πn) = (t1, t2, . . . , tn), where

ti = |{j ∈ [i− 1] : πj > πi}|
is a bijection satisfying

πi > πi+1 if and only if ti < ti+1, for i ∈ [n− 1].

Proof: First, πi > πi+1 if and only if the set {j ∈ [i − 1] | πj > πi} is a proper subset of the set
{j ∈ [i] | πj > πi+1}, which happens if and only if ti < ti+1.

Clearly, φ(Sn) ⊆ In. In particular, t1 = 0 and tn = n − πn. It is clear that φ is a bijection for
n = 1. Let (t1, . . . tn) ∈ In for some n > 1 and assume that φ is a bijection for smaller dimensions.
Let π1 · · ·πn−1 = φ−1(t1, . . . tn−1). Then φ−1(t1, . . . , tn) = π′1 · · ·π′n, where π′n = n − tn and π′i =
πi + χ(πi ≥ πn) for i ∈ [n− 1], where χ(P ) = 1 if P is true and 0, otherwise. 2

We will also use the following basic but useful observation.

Proposition 4.3 Let a, b, p be nonnegative integers such that 0 ≤ a/p < 1 and 0 ≤ b/(p+ 1) < 1. Then

a

p
<

b

p+ 1
⇐⇒ a < b.

Proof: If a < b, then a+ 1 ≤ b. Thus, since a < p, (p+ 1)a = pa+ a < pa+ p = p(a+ 1) ≤ pb. So,
(p+ 1)a < pb. Conversely, if a ≥ b, then (p+ 1)a ≥ (p+ 1)b > pb, so (p+ 1)a > pb. 2

Remark 4.4 The proposition does not hold without the hypothesis. For example, 4 < 5, but 4/3 > 5/4.

Proof of (5) in Proposition 3.2: Follows from Lemma 4.2 and Proposition 4.3. 2
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4.2 The bijection for signed permutations and its properties
Clearly, the set of signed permutations, Bn, has the same cardinality as the set of “type B” inversion
sequences, IBn . Next, we define a bijection between these sets that maps type B descents in signed
permutations to ascents in the inversion sequences. We will prove several other properties of Θ as well.
Some will be used to establish the real-rootedness of Tn(x)—and hence Dn(x)—and others will be
needed in Section 8 for the affine Eulerian polynomials. Throughout this paper we will assume the natural
ordering of integers,

−n < · · · < −1 < 0 < 1 < · · · < n.

Theorem 4.5 For σ = (σ1, . . . , σn) ∈ Bn, let (t1, . . . tn) = φ(|σ1| · · · |σn|) where φ is the map defined
in Lemma 4.2 and |σ1| · · · |σn| denotes the underlying permutation in Sn. Define the map Θ : Bn → IBn
as follows. Let

Θ(σ) = (e1, . . . , en),

where, for each i ∈ [n], ei =

{
ti if σi > 0,

2i− 1− ti if σi < 0.

Then Θ is a bijection satisfying the following properties.

1. σ1 < 0 if and only if e1 > 0.

2. σn > 0 if and only if en < n.

3. σ1 + σ2 < 0 if and only if e1 + e2
2 ≥ 3

2 .

4. σi > σi+1 if and only if eii <
ei+1

i+1 , for i ∈ [n− 1].

5. σn−1 + σn > 0 if and only if en−1

n−1 + en
n < 2n−1

n .

Proof: Θ is a bijection since φ is. Note that σi < 0 if and only if ei ≥ i which proves 1. and 2.

3. It is not too hard to see that it is sufficient to verify this claim for all σ ∈ B2. See Table 1.

σ ∈ B2 e ∈ IB2 AscD e ascD e
(1,2) (0,0) { } 0
(-1,2) (1,0) { } 0
(2,1) (0,1) {1} 1
(-2,1) (1,1) {0} 1
(2,-1) (0,2) {1} 1
(-2,-1) (1,2) {0} 1
(1,-2) (0,3) {0, 1} 2
(-1,-2) (1,3) {0, 1} 2

Tab. 1: An example of the bijection for n = 2.

4. To prove this claim, we consider four cases, based the signs of σi and σi+1.
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(a) If σi > 0 and σi+1 > 0. Then ei = ti < i and ei+1 = ti+1 < i + 1. By Lemma 4.2,
σi > σi+1 if and only if ti < ti+1, i.e, if and only if ei < ei+1. By Proposition 4.3, this is
equivalent to ei/i < ei+1/(i+ 1).

(b) If σi < 0 and σi+1 < 0. Then ei = 2i−1−ti and ei+1 = 2(i+1)−1−ti+1. Now σi > σi+1

if and only if |σi| < |σi+1|, which, applying Lemma 4.2, is equivalent to ti ≥ ti+1.

If ti ≥ ti+1,

ei
i
= 2− ti + 1

i
≤ 2− ti+1 + 1

i
< 2− ti+1 + 1

i+ 1
=

ei+1

i+ 1
.

On the other hand, if ti < ti+1, then ti + 1 ≤ ti+1 and by Proposition 4.3, ti+1/i < (ti+1 +
1)/(i+ 1), so

ei
i
= 2− ti + 1

i
≥ 2− ti+1

i
> 2− ti+1 + 1

i+ 1
=

ei+1

i+ 1
.

(c) If σi < 0 < σi+1. In this case, ei = 2i − 1 − ti and ei+1 = ti+1 ≤ i. Since ti ≤ i − 1,
ei ≥ 2i− 1− (i− 1) = i. Thus we have

ei
i
≥ 1 >

i

i+ 1
≥ ei+1

i+ 1
.

(d) If σi > 0 > σi+1. In this case, ei = ti < i and ei+1 = 2(i + 1) − 1 − ti+1. Since ti+1 ≤ i,
ei+1 ≥ 2(i+ 1)− 1− (i) = i+ 1. Thus we have

ei
i
< 1 ≤ ei+1

i+ 1
.

5. The proof of this claim is a tedious case analysis which we defer to the full paper. We make use of
the fifth claim only at the end of the paper where we propose an inversion sequence characterization
of the type D affine Eulerian polynomials.

2

Proof of (6) in Proposition 3.2: Follows from Theorem 4.5 (parts 1 and 4). 2

Remark 4.6 The bijection Θ is different from the one given in (Pensyl and Savage, 2013).

Proof of Proposition 4.1: Follows from Theorem 4.5 (parts 3 and 4). 2

For example, for n = 2, from Table 1, T2(x) = 2 + 4x+ 2x2 = 2D2(x), as expected.
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5 A recurrence for refined Eulerian polynomials
The inversion sequence representation of E(s)

n (x) and Tn(x) allows us to refine these polynomials as
follows. Let χ(P ) = 1 if P is true and let χ(P ) = 0, otherwise. Define

E
(s)
n,i (x) =

∑

e∈I(s)n

χ(en = i) · xasc e , (8)

Tn,i(x) =
∑

e∈IBn

χ(en = i) · xascD e . (9)

Clearly, E(s)
n (x) =

∑si
i=0E

(s)
n,i (x) and Tn(x) =

∑2n−1
i=0 Tn,i(x). We have the following recurrences.

Proposition 5.1 Let s = {si}∞i=1. For n ≥ 1 and 0 ≤ i < sn+1,

E
(s)
n+1,i(x) =

dni/(n+1)e−1∑

`=0

xE
(s)
n,`(x) +

sn−1∑

`=dni/(n+1)e
E

(s)
n,`(x),

with initial conditions E(s)
1,0(x) = 1 and E(s)

1,i (x) = x for 0 < i < s1.

Proof: Omitted. 2

Proposition 5.2 For n ≥ 2 and 0 ≤ i < 2(n+ 1),

Tn+1,i(x) =

dni/(n+1)e−1∑

`=0

xTn,`(x) +

2n−1∑

`=dni/(n+1)e
Tn,`(x),

with initial conditions T2,0(x) = 2, T2,1(x) = T2,2(x) = 2x, and T2,3(x) = 2x2.

Proof: The initial conditions can be checked from the Table 1. For n ≥ 2 and e = (e1, . . . , en+1) ∈ IBn+1

with en+1 = i, let ` = en. Then by the definition of the type D ascent set, n+ 1 ∈ AscD e if and only if
`/n < i/(n+ 1) or, equivalently, whenever 0 ≤ ` ≤ dni/(n+ 1)e − 1. So,

xascD e =

{
x1+ascD(e1,...,en) if 0 ≤ ` ≤ dni/(n+ 1)e − 1
xascD(e1,...,en) if dni/(n+ 1)e ≤ ` < 2n.

2

In Section 7, we will show that Tn,i(x) has real roots for all 0 ≤ i < 2n and so also does Tn(x).

6 Preserving real-rootedness via compatible polynomials
A classical way to show that a recurrence given by a linear combination of two polynomials preserves
real-rootedness is to show that the roots of the two polynomials interlace. We say that two real-rooted
polynomials f(x) =

∏deg f
i=1 (x−xi) and g(x) =

∏deg g
j=1 (x−ξj) interlace if their roots alternate, formally,

· · · ≤ x2 ≤ ξ2 ≤ x1 ≤ ξ1.
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Note that this requires the degrees to satisfy the following inequalities: deg f ≤ deg g ≤ deg f + 1. In
particular, the order of polynomials is important.

Interlacing implies real-rootedness by the following theorem.

Theorem 6.1 (Satz 5.2 in Obreschkoff (1963)) Let f, g ∈ R[x]. Then f and g interlace if and only if
their arbitrary linear combination, c1f(x) + c2g(x) for all c1, c2 ∈ R has only real roots.

Unfortunately, the interlacing property cannot be extended to linear combinations of more than two
polynomials (as pointed out in Chudnovsky and Seymour (2007)). So, instead, we will be working with a
weaker property, called compatibility, that can be defined for an arbitrary number of polynomials. In fact,
these properties are closely related as we will see in Lemmas 6.2 and 6.4.

Following Chudnovsky and Seymour (2007), we call a set of polynomials f1, . . . , fm ∈ R[x] com-
patible if their arbitrary conic combination, i.e.,

∑
i cifi(x) for ci ≥ 0, has real roots only. We say that

f1, . . . , fm are pairwise compatible if fi and fj are compatible for all 1 ≤ i < j ≤ m. Several useful
properties of compatible polynomials were summarized in the following lemma.

Lemma 6.2 (3.6 in Chudnovsky and Seymour (2007)) Let f1(x), . . . , fk(x) be polynomials with posi-
tive leading coefficients and all roots real. The following four statements are equivalent:

• f1, . . . , fk are pairwise compatible,

• for all s, t such that 1 ≤ s < t ≤ k, the polynomials fs, ft have a common interlacer,

• f1, . . . , fk have a common interlacer,

• f1, . . . , fk are compatible,

where f and g have a common interlacer if there is a polynomial h such that h and f interlace and also
h and g interlace.

Next we give a transformation that maps a set of compatible polynomials to another set of compatible
polynomials under the following conditions.

Theorem 6.3 Given a set of polynomials f1, . . . , fm ∈ R[x] with positive leading coefficients that satisfy
for all 1 ≤ i < j ≤ m that

(a) fi(x) and fj(x) are compatible, and

(b) xfi(x) and fj(x) are compatible

define another set of polynomials g1, . . . , gm′ ∈ R[x] by the equations

gk(x) =

tk−1∑

`=0

xf`(x) +
m∑

`=tk

f`(x), for 1 ≤ k ≤ m′

where 0 ≤ t0 ≤ t1 ≤ . . . ≤ tm′ ≤ m. Then, for all 1 ≤ i < j ≤ m′ we have that

(a’) gi(x) and gj(x) are compatible, and

(b’) xgi(x) and gj(x) are compatible.
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Proof: We first show (a’), i.e., that the polynomial cigi(x)+ cjgj(x) has only real roots for all ci, cj ≥ 0.
By the definition of gi(x), gj(x) and the assumption that ti ≤ tj it is clear that

cigi(x) + cjgj(x) =

ti−1∑

α=0

(cix+ cjx)fα(x) +

tj−1∑

β=ti

(ci + cjx)fβ(x) +
m∑

γ=tj

(ci + cj)fγ(x),

that is, cigi(x) + cjgj(x) can be written as a conic combination of the following polynomials, which we
group into three (possibly empty) sets:

{xfα(x) : 0 ≤ α < ti} ∪ {(ci + cjx)fβ(x) : ti ≤ β < tj} ∪ {fγ(x) : tj ≤ γ ≤ m} .

Therefore, it suffices to show that these m polynomials are compatible. In fact, by Lemma 6.2, it is
equivalent to show that they are pairwise compatible. This is what we do next.

First, two polynomials from the same sets are compatible by (a). Secondly, a polynomial from the first
set is compatible with another from the third set by (b), since α < γ. To show compatibility between a
polynomial from the first set and one from the second, we need that axfα(x)+ b(ci+ cjx)fβ(x) has only
real roots for all a, b, ci, cj ≥ 0 and α < β. Note that this expression is a conic combination of xfα(x),
xfβ(x), and fβ(x). Since α < β, these three polynomials are again pairwise compatible by (a) and (b)
(and the basic fact the f(x) and xf(x) are compatible), and hence compatible, by Lemma 6.2. Finally,
the compatibility of a polynomial in the second set and one in the third set follows by a similar argument,
exploiting the fact that, xfβ(x), fβ(x), and fγ(x) are pairwise compatible for β < γ.

Now we are left to show (b’), that xgi(x) and gj(x) are compatible for all i < j. Similarly as before,
cixgi(x) + cjgj(x) is real-rooted for all ci, cj ≥ 0 if

{x(cix+ cj)fα(x) : 0 ≤ α < ti} ∪ {(ci + cj)xfβ(x) : ti ≤ β < tj} ∪ {(cix+ cj)fγ(x) : tj ≤ γ ≤ m}

is a set of compatible polynomials. This follows from analogous reasoning to the above. Two polynomials
from the same subsets are compatible by (a). Considering one from the first and one from the third:
xfα(x) and fγ(x) are compatible by (b). Similarly, x2fα(x), xfα(x), and xfβ(x) are pairwise compatible
which settles the case when we have a polynomial from the first and one from the second subset. Finally,
xfβ(x), xfγ(x), and fγ(x) are compatible, settling the case of one polynomial from the second subset
and one from the third. 2

Proof of Theorem 3.1: We use induction on n. When n = 1, for 0 ≤ i ≤ j < s1, (E(s)
1,i (x), E

(s)
1,j (x)) ∈

{(1, 1), (1, x), (x, x)} and thus (xE
(s)
1,i (x), E

(s)
1,j (x)) ∈ {(x, 1), (x, x), (x2, x)}. Clearly, each of the

pairs of polynomials (1, 1), (1, x), (x, x), (x2, x), is compatible. From Proposition 5.1 we see that the
polynomials E(s)

n,i (x) satisfy a recurrence of the form required in Theorem 6.3, hence, by induction, they

are real-rooted for all 0 ≤ i < 2n. In particular, E(s)
n (x) has only real roots for n ≥ 1 (and arbitrary

sequence s).
2

6.1 Connection to interlacing
The condition of Theorem 6.3 can be simplified since our polynomials have positive coefficients.
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Lemma 6.4 Let f, g ∈ R[x] be polynomials with positive coefficients. Then the following are equivalent:

• f(x) and g(x) are compatible, and xf(x) and g(x) are also compatible.

• f(x) and g(x) interlace.

Proof: Let nf (x0) denote the number of roots of the polynomial f in the interval [x0,∞). There is an
equivalent formulation for both compatibility and interlacing in terms of this notion. First, f and g are
compatible if and only if |nf (x0) − ng(x0)| ≤ 1 for all x0 ∈ R (see 3.5 in Chudnovsky and Seymour
(2007)). Secondly, by definition, f and g interlace, if and only if 0 ≤ ng(x0) − nf (x0) ≤ 1 for all
x0 ∈ R. We also have that nxf (x0) = nf (x0) + χ(x0 ≤ 0). Therefore, the following equivalence settles
the lemma (since all roots of f and g are nonpositive, we can assume that x0 ≤ 0):

|nf (x0)− ng(x0)| ≤ 1 and |nf (x0) + 1− ng(x0)| ≤ 1⇐⇒ 0 ≤ ng(x0)− nf (x0) ≤ 1 .

2

Remark 6.5 Lemma 6.4 appeared (without a proof) as Lemma 3.4 in Wagner (2000).

7 The Eulerian polynomials of type D have only real roots
Now we are in position to prove Conjecture 1.1.

Theorem 7.1 For n ≥ 2, the polynomial Tn(x) has only real roots. In fact, for 0 ≤ i < 2n, Tn,i(x) has
only real roots.

Proof: Clearly, T2(x) = 2(x + 1)2 has only real roots, but T2,0(x) = 2, T2,1(x) = T2,2(x) =
2x, T2,3(x) = 2x2 fail to be compatible. Using the recurrence given in Proposition 5.2 we can com-
pute Tn,i for n = 3. It is easy to check that T3,0 = 2(x+1)2, T3,1(x) = 2x(x+3), T3,2(x) = T3,3(x) =
4x(x + 1), T3,4(x) = 2x(3x + 1), T3,5(x) = 2x(x + 1) are compatible polynomials—hence T3(x) has
only real roots—but xT3,0(x) and T3,1(x) do not interlace and thus they don’t satisfy the assumption
needed for Theorem 6.3. However, iterating one more time, we obtain the following polynomials.

T4,0(x) = 2(x+ 1)(x2 + 10x+ 1) {−9.899,−1,−0.101}
T4,1(x) = 4x(x+ 1)(x+ 5) {−5,−1, 0}
T4,2(x) = 2x(3x2 + 14x+ 7) {−4.097,−0.569, 0}
T4,3(x) = 2x(5x2 + 14x+ 5) {−2.380,−0.420, 0}
T4,4(x) = 2x(5x2 + 14x+ 5) {−2.380,−0.420, 0}
T4,5(x) = 2x(7x2 + 14x+ 3) {−1.756,−0.244, 0}
T4,6(x) = 4x(x+ 1)(5x+ 1) {−1,−0.2, 0}
T4,7(x) = 2x(x+ 1)(x2 + 10x+ 1) {−9.899,−1,−0.101, 0}.

One can check the roots explicitly (approximate values are given above for the reader’s convenience) to
see that T4,i(x) and T4,i+1(x) interlace for all 0 ≤ i ≤ 6. By Lemma 6.4, this means that the polynomials
T4,0(x), . . . , T4,7(x) are compatible and also that xT4,i(x) and T4,j(x) are compatible for 0 ≤ i < j ≤ 7.
Therefore, by induction on n, and successive applications of Theorem 6.3 we get that for all n ≥ 4,
{Tn,i(x)}0≤i≤2n−1 is a set of pairwise interlacing polynomials. In particular, this implies that they are
compatible, hence Tn(x) has only real roots for all n ≥ 4 as well. 2
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8 Further implications: real-rooted affine Eulerian polynomials
Dilks, Petersen, and Stembridge (2009) recently defined Eulerian-like polynomials associated to irre-
ducible affine Weyl groups and proposed two companion conjectures to Brenti’s conjecture. In this sec-
tion, we prove one of them. The affine Eulerian polynomial of type B is defined in (Dilks et al., 2009,
Section 5.3) as the generating function of the “affine descents” over the corresponding finite Weyl group,
Bn,

B̃n(x) =
∑

σ∈Bn

xd̃esBσ,

where for a signed permutation σ = (σ1, . . . , σn) ∈ Bn the affine descent statistic is computed as

d̃esBσ = χ(σ1 < 0) + |{i ∈ [n− 1] : σi > σi+1}|+ χ(σn−1 + σn > 0).

We now prove Conjecture 1.2. Notice the affine Eulerian polynomial of type B is intimately related to the
type D Eulerian polynomial in the following way.

Theorem 8.1 For n ≥ 2,
B̃n(x) = Tn+1,n+1(x) ,

where Tn,i(x) is the refined Eulerian polynomial of type D defined in (9).

Proof: It is easy to see, under the involution (σ1, . . . , σn) 7→ (−σn, . . . ,−σ1), that d̃esB has the same
distribution over Bn as the statistic

s̃tatBσ = χ(σn > 0) + |{i ∈ [n− 1] : σi > σi+1}|+ χ(σ2 + σ1 < 0).

From Theorem 4.5 part 3 it follows that σ2 +σ1 < 0 is equivalent to e1 + e2/2 > 3/2 and from part 2 we
have that σn > 0 if and only if en < n. Note that en < n is equivalent to en/n < 1 = (n+ 1)/(n+ 1).
So, B̃n(x) = Tn+1,n+1(x). 2

Corollary 8.2 For n ≥ 2, B̃n(x) has only real roots.

Proof: Follows from the fact that Tn,i(x) have only real roots (see Theorem 7.1). 2

We should mention that there is an analogous conjecture for type D which remains unsolved.

Conjecture 8.3 (Dilks et al. (2009)) Let

d̃esDσ = χ(σ1 + σ2 < 0) + |{i ∈ [n− 1] : σi > σi+1}|+ χ(σn−1 + σn > 0) .

Then the affine Eulerian polynomial of type D
∑

σ∈Dn

xd̃esD

has only real roots.

By Theorem 4.5 (parts 2, 4 and 5) we can at least express the type D affine Eulerian polynomial in terms
of ascent statistics on inversion sequences.
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Corollary 8.4 The type D affine Eulerian polynomial satisfies

2
∑

σ∈Dn

xd̃esDσ =
∑

e∈IBn

xãscDe,

where the type D affine ascent statistic is given by

ãscDe = χ

(
e1 +

e2
2
≥ 3

2

)
+

∣∣∣∣
{
i ∈ [n− 1] :

ei
i
<

ei+1

i+ 1

}∣∣∣∣+ χ

(
en−1
n− 1

+
en
n
<

2n− 1

n

)
.
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On Kerov polynomials for Jack characters†
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Abstract. We consider a deformation of Kerov character polynomials, linked to Jack symmetric functions. It has been
introduced recently by M. Lassalle, who formulated several conjectures on these objects, suggesting some underlying
combinatorics. We give a partial result in this direction, showing that some quantities are polynomials in the Jack
parameter α with prescribed degree.

Our result has several interesting consequences in various directions. Firstly, we give a new proof of the fact that the
coefficients of Jack polynomials expanded in the monomial or power-sum basis depend polynomially in α. Secondly,
we describe asymptotically the shape of random Young diagrams under some deformation of Plancherel measure.

Résumé. On considère une déformation des polynômes de Kerov pour les caractères du groupe symétrique. Cette
déformation est liée aux polynômes de Jack. Elle a été récemment définie par M. Lassalle, qui a proposé plusieurs
conjectures sur ces objets, suggérant ainsi l’existence d’une combinatoire sous-jacente. Nous donnons un résultat
partiel dans cette direction, en montrant que certaines quantités sont des polynômes (dont on contrôle les degrés) en
fonction du paramètre de Jack α.

Notre résultat a des conséquences intéressantes dans des directions diverses. Premièrement, nous donnons une nou-
velle preuve de la polynomialité (toujours en fonction de α) des coefficients du développement des polynômes de
Jack dans la base monomiale. Deuxièmement, nous décrivons asymptotiquement la forme de grands diagrammes de
Young distribués selon une déformation de la mesure de Plancherel.

Keywords: Jack polynomials; Kerov’s polynomials; free cumulants; Young diagrams

1 Introduction
1.1 Polynomiality of Jack polynomials

In a seminal paper [9], H. Jack introduced a family of symmetric functions J (α)
λ depending on an addi-

tional parameter α called Jack polynomials. Up to multiplicative constants, for α = 1, Jack polynomials
coincide with Schur polynomials. Over the time, it has been shown that several results concerning Schur
polynomials can be generalized in a rather natural way to Jack polynomials (Section (VI,10) of I.G. Mac-
donald’s book [20] gives a few results of this kind).

†This paper is an extended abstract of [4], which will be submitted elsewhere.
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One of the most surprising features of Jack polynomials is that they have several equivalent classical
definitions, but none of them makes obvious the fact that the coefficients of their expansion on the mono-
mial basis are polynomials in α (by construction, they are only rational functions). This property has been
established by Lapointe and Vinet [16]. One of the result of this paper is a new proof of Lapointe-Vinet
theorem.
Theorem 1.1 (Lapointe and Vinet [16]) The coefficients of the expansion of Jack polynomials in the
monomial basis are polynomials in α.

This theorem is proved in Section 3.2. We believe that this new proof is interesting in itself, because it
relies on a very different approach to Jack polynomials.

To be comprehensive on the subject, let us mention that the coefficients of these polynomials are in fact
non-negative integers. This result had been conjectured by R. Stanley and I. Macdonald; see e.g. [20, VI,
equation (10.26?)]. It was proved by Knop and Sahi [15], shortly after Lapointe-Vinet’s paper. We are
unfortunately unable to prove this stronger result with our methods.

1.2 Dual approach
We will later define Jack character to be equal (up to some simple normalization constant) to the coeffi-
cient [pµ]Jλ in the expansion of the Jack polynomial Jλ in the basis of power-sum symmetric functions.
The idea of the dual approach is to consider Jack characters as a function of λ and not as a function of µ
as usual. In more concrete words, we would like to express the Jack character as a sum of some quanti-
ties depending on λ over some combinatorial set depending on µ (in Knop-Sahi’s result, it is roughly the
opposite).

Inspired by the case α = 1 (which corresponds to the usual characters of the symmetric groups),
Lassalle [18] suggested to express Jack characters in terms of, so called, free cumulants of the transition
measure of the Young diagram λ. This expression, called Kerov polynomials for Jack characters, involves
rational functions in α, which are conjecturally polynomials with non-negative integer coefficients in α
and β = 1 − α (see [18, Conjecture 1.2]); we refer to this as Lassalle’s conjecture. This suggests the
existence of a combinatorial interpretation. A result of this type holds true in the case α = 1, see [5].

In this paper, we prove a part of Lassalle’s conjecture, that is the polynomiality in α (but neither the
non-negativity, nor the integrity) of the coefficients.

Theorem 1.2 The coefficients of Kerov polynomials for Jack characters are polynomials in α with ratio-
nal coefficients.

This theorem with a precise bound on the degree of these polynomials is stated in Section 3.1. In this
extended abstract, we only give the guidelines of the proof.

1.3 Applications
Our bounds for degrees of coefficients of Kerov polynomials for Jack characters imply in particular that
some coefficients (corresponding to the leading term for some gradation) are independent on α. In Section
4, we use this simple remark to describe asymptotically the shape of random Young diagrams whose
distribution is a deformation of Plancherel measure.

Another consequence of our results is a uniform proof of the polynomiality of structure constants of
several meaningful algebras. This allows us to solve some conjectures of Matsumoto [21] and to give a
partial answer to the Matching-Jack conjecture of I. Goulden and D. Jackson [7]. Due to the lack of space,
we will not present these results in this extended abstract. They can be found in [4, Section 4].
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Outline of the paper. Section 2 gives all necessary definitions and background; in particular we recall
the notions of free cumulants and Kerov polynomials. In Section 3 we sketch the proof of Theorem 1.2
and Theorem 1.1. Finally, we state and prove our results on large Young diagrams in Section 4.

2 Jack characters and Kerov polynomials
2.1 Partitions and symmetric functions
We begin with a few classical definitions and notations.

A partition λ of n (denote it by λ ` n) is a non-increasing list (λ1, . . . , λ`) of positive integers of sum
equal to n. Then n is called the size of λ and denoted by |λ| and the number ` is the length of the partition
(denoted by `(λ)).

We also consider the graded ring of symmetric functions Sym. Recall that its homogeneous component
Symn of degree n admits several classical bases: the monomials (mλ)λ`n, the power-sums (pλ)λ`n, each
indexed by partitions of n. All the definitions can be found in [20, Chapter I].

Jack polynomials are symmetric functions indexed by partitions and depending on a parameter (α).
There exist several normalizations for Jack polynomials in the literature. We shall work with the one
denoted by J in the book of Macdonald [20, VI, (10.22)] and use the same notation as he does. For a fixed
value of the parameter α, the family (J

(α)
λ )λ`n forms a basis of Symn.

2.2 Jack characters
As power-sum symmetric functions (pρ)ρ`n form a basis of Symn, we can expand the Jack polynomial
J
(α)
λ in that base. For λ ` n, there exist (unique) coefficients θ(α)ρ (λ) such that

J
(α)
λ =

∑

ρ:
|ρ|=|λ|

θ(α)ρ (λ) pρ. (1)

Then we can define Jack characters by the formula:

Ch(α)µ (λ) = α−
|µ|−`(µ)

2

(|λ| − |µ|+m1(µ)

m1(µ)

)
zµ θ

(α)

µ,1|λ|−|µ|(λ),

where mi(µ) denotes the multiplicity of i in the partition µ and zµ = µ1µ2 · · · m1(µ)! m2(µ)! · · · .
In the case α = 1, Jack polynomials correspond, up to some normalization constants, to Schur symmet-

ric functions. The coefficients of the latter in the basis of the power-sum symmetric functions are known
to be equal to the irreducible characters of the symmetric groups; see [20, Section I,7] (this explains the
name characters in the general case, even if, except for α = 1/2, 1, 2, these quantities have no known
representation-theoretical interpretation). It means that Jack characters with parameter α = 1 correspond,
up to some numerical factors, to character values of the symmetric groups.

This normalization corresponds in fact to the one used by Kerov and Olshanski in [13]. These nor-
malized characters – following the denomination of Kerov and Olshanski – have plenty of interesting
properties; for example when considered as functions on the set of Young diagrams λ 7→ Ch

(1)
µ (λ), they

form a linear basis (when µ runs over the set of all partitions) of the algebra Λ? of shifted symmetric
functions , which is very rich in structure.

Jack characters have been first considered by M. Lassalle in [17]. Note that the normalization used here
is different that the one of these papers. The reason of this new choice of normalization will be clear later.
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λ

7→

T2, 12 (λ)

Fig. 1: Example of stretched Young diagram.

o1 = −2 i1 = −1.5

o2 = 0 i2 = 2.5

o3 = 3

Fig. 2: A generalized Young diagram Lwith
the corresponding set OL and IL.

2.3 Generalized Young diagrams and Kerov interlacing coordinates
In this section, we will see different ways of representing Young diagrams and even more general objects
related to them. Let us consider a zigzag line L going from a point (0, y) on the y-axis to a point (x, 0)
on the x-axis. We assume that every piece is either an horizontal segment from left to right or a vertical
segment from top to bottom. A Young diagram can be seen as such a zigzag line: just consider its border.
Therefore, we call these zigzag lines generalized Young diagrams.

We will be in particular interested in the following generalized Young diagrams. Let λ be a (general-
ized) Young diagram and s and t two positive real numbers. We denote by Ts,t(λ) the broken line obtained
by stretching λ horizontally by a factor s and vertically by a factor t (see Figure 1; we use french conven-
tion to draw Young diagrams). These anisotropic Young diagrams have been introduced by S. Kerov in
[11]. In the special case s = t, we denote by Ds(λ) = Ts,s(λ) the dilated Young diagram.

The content of a point of a plane is the difference of its x-coordinate and its y-coordinate. We denote
by OL the sets of contents of the outer corners of L, that is corners which are points of L connecting a
horizontal line on the left with vertical line on the bottom. Similarly, the set IL is defined as the contents
of the inner corners, that is corners which are points of L connecting a horizontal line on the right with
vertical line above. An example is given on Figure 2. The denomination inner/outer may seem strange,
but it refers to the fact that the box in the corner is inside or outside the diagram.

A generalized Young diagram can also be seen as a function on the real line. Indeed, if one rotates the
zigzag line counterclockwise by 45◦ and scale it by a factor

√
2 (so that the new x-coordinate corresponds

to contents), then it can be seen as the graph of a piecewise affine continuous function with slope ±1. We
denote this function by ω(λ). Therefore, we shall call continuous Young diagram a Lipshitz continuous
function ω with Lipshitz constant 1 such that ω(x) = |x| for |x| big enough . This notion will be used in
Section 4 to describe the limit shape of Young diagrams.

2.4 Polynomial functions on the set of Young diagrams
If k is a positive integer, one can consider the power sum symmetric function pk, evaluated on the differ-
ence of alphabets OL − IL. By definition, it is a function on generalized Young diagrams given by:

L 7→ pk(OL − IL) :=
∑

o∈OL
ok −

∑

i∈IL
ik.

As any symmetric function can be written (uniquely) in terms of pk, we can define f(OL − IL) for any
symmetric function f as follows. Expand f on the power-sum basis f =

∑
ρ aρpρ1 · · · pρ` for some
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family of scalars (aρ) indexed by partitions. Then, by definition

f(OL − IL) =
∑

ρ partition

aρpρ1(OL − IL) · · · pρ`(OL − IL).

This convenient notation is classical in lambda-ring calculus.
Consider the set of functions {λ 7→ f(OL − IL)}, where f describes the set of symmetric functions.

This is a subalgebra of the algebra of functions on the set of all Young diagrams. Following S. Kerov and
G. Olshanski, we shall call it the algebra of polynomial functions and denote it by Λ?.

V. Ivanov and G. Olshanski [8, Corollary 2.8] have shown that the normalized characters (λ 7→ Ch
(1)
µ (λ))µ

form a linear basis of this algebra and (λ 7→ pk(Oλ − Iλ))k≥2 forms an algebraic basis of Λ? (for all di-
agrams λ, one has p1(Oλ − Iλ) = 0). This algebra admits several other characterization: for instance it
corresponds to the algebra of shifted symmetric functions (see [8, Section 1 and 2]).

All this has a natural extension for a general parameter α.
We say that F is an α-polynomial function on the set of (generalized) Young diagrams if

λ 7→ F (T√α−1,
√
α(λ))

is a polynomial function. The ring of α polynomial functions is denoted by Λ
(α)
? . Then (λ 7→ Ch

(α)
µ (λ))µ

forms a linear basis of Λ
(α)
? . This is a consequence of a result of M. Lassalle [17, Proposition 2].

Remark 1 Lassalle’s result is in fact formulated in terms of shifted symmetric functions, but as mentioned
above, it is proved in [8, Section 1 and 2] that they correspond to polynomial functions.

Fact 2 With the definitions above, it should be clear that polynomial functions are defined on generalized
Young diagrams. They can in fact also be canonically extended to continuous Young diagrams; see [1,
Section 1.2]. This will be useful in Section 4.

2.5 Transition measure and free cumulants
S. Kerov [10] introduced the notion of transition measure of a Young diagram. This probability measure
µλ associated to λ is defined by its Cauchy transform

Gµλ(z) =

∫

R

dµλ(x)

z − x =

∏
i∈Iλ z − i∏
o∈Oλ z − o

.

Its moments are hk(Oλ − Iλ), where hk is the complete symmetric function of degree k, hence they are
polynomial functions on the set of Young diagrams; we will denote them by M (1)

k .
In Voiculescu’s free probability it is very convenient to associate to a probability measure µ a sequence

of numbers (Rk(µ))k≥1 called free cumulants [26]. The free cumulants of the transition measure of
Young diagrams appeared first in the work of P. Biane [1] and play an important role in the asymptotic
representation theory. As explained by M. Lassalle (look at the case α = 1 of [18, Section 5]), they can
be expressed as

R
(1)
k (λ) := Rk(µλ) = e?k(Oλ − Iλ)

for some homogeneous symmetric function e?k of degree k. Note also that (e?k)k as well as complete
symmetric functions (hk)k are algebraic basis of symmetric functions and, hence (R

(1)
k )k≥2 as well as
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(M
(1)
k )k≥2 are algebraic basis of ring of polynomial functions on the set of Young diagrams (R(1)

1 = M
(1)
1

is the null function).

Fact 3 It is easy to see that, as hk and e?k are homogeneous symmetric functions, the corresponding
polynomial functions M (1)

k and R(1)
k are compatible with dilations. Namely

M
(1)
k

(
Ds(λ)

)
= skM

(1)
k

(
λ
)
; R

(1)
k

(
Ds(λ)

)
= skR

(1)
k

(
λ
)
.

Using the relevant definitions, the α-anisotropic moments and free cumulants defined by

M
(α)
k (λ) = M

(1)
k

(
T√α,√α−1(λ)

)
,

R
(α)
k (λ) = R

(1)
k

(
T√α,√α−1(λ)

)

are α-polynomial and the families (M
(α)
k )k≥2 and (R

(α)
k )k≥2 are two algebraic basis of the algebra Λ?(α).

2.6 Kerov polynomials

Recall that Jack characters Ch(α)µ are α-polynomial functions hence can be expressed in terms of the two
algebraic bases above.

Definition-Proposition 2.1 Let µ be a partition and α > 0 be a fixed real number. There exist unique
polynomials L(α)

µ and K(α)
µ such that, for every λ,

Ch(α)µ (λ) = L(α)
µ

(
M

(α)
2 (λ),M

(α)
3 (λ), · · ·

)
,

Ch(α)µ (λ) = K(α)
µ

(
R

(α)
2 (λ), R

(α)
3 (λ), · · ·

)
.

The polynomials K(α)
µ have been introduced by S. Kerov in the case α = 1 [12] and by M. Lassalle in the

general case [18]. Once again, we emphasize that our normalizations are different from his.
From now on, when it does not create any confusion, we suppress the superscript (α).
We present a few examples of polynomials Kµ. This data has been computed using the one given in

[18, page 2230]

K(1) = R2,

K(2) = R3 + γR2,

K(3) = R4 + 3γR3 + (1 + 2γ2)R2,

K(4) = R5 + γ(6R4 +R2
2) + (5 + 11γ2)R3 + (7γ + 6γ3)R2,

K(2,2) = R2
3 + 2γR3R2 − 4R4 + (γ2 − 2)R2

2 − 10γR3 − (6γ2 + 2)R2.

where we set γ = 1−α√
α

. A few striking facts appear on these examples:
• All coefficients are polynomials in the auxiliary parameter γ: the sketch of the proof of this fact

will be presented in the next section with explicit bounds on the degrees.
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• For one part partition, polynomials K(r) have non-negative coefficients. We are unfortunately un-
able to prove this statement, which is a more precise version of [18, Conjecture 1.2]. A similar
conjecture holds for several part partitions, see [18, Conjecture 1.2].

Remark 4 This facts explain our changes of normalization. In Lassalle’s work, the non-negativity of the
coefficients is hidden: he has to use two variables α and β = 1− α and choose a “natural” way to write
all quantities in terms of α and β. Using our normalizations and the parameter γ, the non-negativity of
the coefficients appears directly.

3 Polynomiality
3.1 Main result
Theorem 3.1 The coefficient of Mρ in Jack character polynomial Lµ is a polynomial in γ of degree
smaller or equal to

min
(
|µ|+ `(µ)− |ρ|, |µ| − `(µ)− (|ρ| − 2`(ρ))

)
.

Moreover, it has the same parity as the integer |µ|+ `(µ)− |ρ|.
The same is true for the coefficient of Rρ in Kµ.

We do not prove this theorem in this extended abstract. The proof is of course available in the long
version of the paper [4, Section 3]. Here, we are going to present a guidelines of this proof.

The difficulty is that the proof of the existence of the polynomials Lµ and Kµ (Proposition 2.1) is not
constructive. However, M. Lassalle gives an algorithm to compute the polynomial Kµ [18, Section 9],
but his algorithm involves an induction on the size of the partition |µ|. The coefficients of Kµ are the
solutions of an overdetermined linear system involving the coefficients of Kµ′ , for some partitions µ′

with |µ′| < |µ|. His algorithm can be easily adapted to Lµ [4, Section 3.2].
Our proof relies on this work and on the two following important facts:
• the linear system computing the coefficients of Lµ contains a triangular subsystem (this is not true

with Kµ);
• with our normalization of Jack characters and anisotropic moments, the diagonal coefficients of this

linear subsystem are independent of γ (and hence invertible in Q[γ]).
The polynomiality in γ follows from these two facts. To obtain the bound on the degree, one has to

look carefully at the degrees of the coefficients of the linear system.

Recall that our normalization is different from the one used by M. Lassalle. After a simple rewriting
game [4, Section 3.6], we can see that Theorem 3.1 implies that the coefficients of Lµ and Kµ with
Lassalle’s normalizations are polynomials in α (that is the statement of Theorem 1.2).

3.2 Lapointe-Vinet theorem
In this section, we prove that θµ(λ) is a polynomial in α. This result was already known (see Introduction),
but in our opinion it illustrates that Lassalle’s approach to Jack polynomials is relevant.

To deduce this from the results above, one has to see how Mk(λ) depends on α.

Lemma 3.2 Let k ≥ 2 be an integer and λ be a partition. Then
√
α
k−2

Mk(λ) is a polynomial in α with
integer coefficients.
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Proof: We use induction over |λ|. Let o = (x, y) be an outer corner of λ, we denote by λ(o) the diagram
obtained from λ by adding a box at place o. Comparing the corner of λ(o) and λ, we get that:

Oλ(o) − Iλ(o) = Oλ − Iλ + {x− (y + 1)}+ {x+ 1− y} − {x− y}

(for readers not used to λ-ring, this equality can be understood as equality between formal sums of ele-
ments in the set). After dilatation, we get

OT√
α,
√
α−1 (λ(o)) − IT√

α,
√
α−1 (λ(o)) = OT√

α,
√
α−1 (λ) − IT√

α,
√
α−1 (λ) + {zo −

1√
α
}+ {zo + α} − {zo},

and zo =
√
αx− y/√α is the content of the considered corner in T√α,√α−1(λ).

By a standard λ-ring computations (see [18, Proposition 8.3]), this yields

Mk(λ(o))−Mk(λ) =
∑

r≥1,s,t≥0,
2r+s+t≤k

zk−2r−s−to

(
k − t− 1

2r + s− 1

)(
r + s− 1

s

)
(−γ)

s
Mt(λ),

which can be rewritten as

√
α
k−2

Mk(λ(o))−√αk−2Mk(λ) =
∑

r≥1,s,t≥0,
2r+s+t≤k

αr(
√
αzo)

k−2r−s−t

(
k − t− 1

2r + s− 1

)(
r + s− 1

s

)
(α− 1)

s√
α
t−2

Mt(λ).

But
√
αzo = αx− y is a polynomial in α with integer coefficients. Thus the induction is immediate. 2

Now we write, for µ, λ ` n,

zµθµ(λ) = α
|µ|−`(µ)

2 Chµ(λ) =
∑

ρ

α
|µ|−`(µ)−(|ρ|−2`(ρ))

2 aµρ


 ∏

i≤`(ρ)

√
α
ρi−2

Mρi(λ)


 .

The quantities α
|µ|−`(µ)−(|ρ|−2`(ρ))

2 aµρ and
√
α
ρi−2Mρi(λ) are polynomials in α (by Theorem 3.1 and

Lemma 3.2), hence θµ(λ) is a polynomial in α, which proves Theorem 1.1.

3.3 Gradation
Looking at Theorem 3.1 it makes natural to consider some gradations on Λ

(α)
? . This structure will also be

useful in the next section.

The ring Λ
(α)
? of α-polynomial functions can be endowed with a gradation by deciding that Mk is a

homogeneous function of degree k: as (Mk)k≥2 is an algebraic basis of Λ
(α)
? , any choice of degree for

Mk (for all k ≥ 2) defines uniquely a gradation on Λ
(α)
? . Then Rk is also a homogeneous function of

degree k, thanks to the moment-free cumulant relations, see e.g. [1, Section 2.4].
Theorem 3.1 shows that Chµ has at most degree |µ| + `(µ) (this has also been proved by M. Lassalle

[18, Proposition 9.2 (ii)]). Note that Chµ is not homogeneous in general. Moreover, its component of
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degree |µ| + `(µ) does not depend on α. As this dominant term is known in the case α = 1 (see for
example [24, Theorem 4.9]), one obtains the following result (which extends [18, Theorem 10.2]):

Chµ =

`(µ)∏

i=1

Rµi+1 + smaller degree terms.

In particular, Chµ has exactly degree |µ|+ `(µ).
Consider the subspace V≤d ⊂ Λ

(α)
? of elements of degree less or equal to d. Its dimension is the number

of partitions ρ of size less or equal to d with no parts equal to 1. By removing 1 from every part of ρ, we
see that this is also the number of partitions µ such that |µ|+ `(µ) ≤ d. But the latter index the functions
Chµ lying in V≤d. Hence,

V≤d = Vect
(
{Chµ, |µ|+ `(µ) ≤ d}

)

and the degree of an element in Λ
(α)
? can be determined as follows:

deg

(∑

µ

aµChµ

)
= max
µ:aµ 6=0

|µ|+ `(µ). (2)

Remark 5 The algebra Λ
(α)
? admits other relevant gradations, see [4, Sections 3.5 and 3.8].

4 Application: asymptotics of large Young diagrams
We consider the following deformation of the Plancherel measure P(α)

n (λ) = αnn!

j
(α)
λ

, where j(α)λ is the

following deformation of the square of the hook products:

j
(α)
λ =

∏

2∈λ
(αa(2) + `(2) + 1)(αa(2) + `(2) + α). (3)

Here, a(2) and `(2) are respectively the arm and leg length of the box as defined in [20, Chapter I]. The
probability measure P(α)

n on Young diagrams of size n has appeared recently in several research papers
[3, 6, 23, 21] and is presented as an important area of research in Okounkov’s survey on random partitions
[22, § 3.3]. When α = 1, it specializes to the well-known Plancherel measure for the symmetric groups.

The following property, which corresponds to the case π = (1n) in [21, Equation (8.4)], characterizes
the Jack-Plancherel measure:

EP(α)
n

(θ(α)µ (λ)) = δµ,1n ,

where λ is a random variable distributed according to P(α)
n .

Using the definition of Chµ we have:

EP(α)
n

(Chµ) =

{
n(n− 1) · · · (n− k + 1) if µ = 1k for some k ≤ n,
0 otherwise.

As Chµ is a linear basis of Λ
(α)
? , it implies the following lemma (which is an analogue of [23, Theorem

5.5] with another gradation).
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Lemma 4.1 Let F be an α-polynomial function. Then EP(α)
n

(F ) is a polynomial in n of degree at most
deg(F )/2.

Proof: It is enough to verify this lemma on the basis Chµ because of equation (2). But in this case
EP(α)

n
(F ) is explicit (see formula above) and the lemma is obvious (recall that deg(Chµ) = |µ| + `(µ);

see Section 3.3). 2

Let (λn)n≥1 be a sequence of random partitions, where λn has distribution P(α)
n . In the case α = 1,

it has been proved in 1977 separately by Logan and Shepp [19] and Kerov and Vershik [14] that, in
probability,

lim
n→∞

∥∥ω(D1/
√
n(λn))− Ω

∥∥ = 0, (4)

where Ω is the limit shape given explicitly as follows:

Ω(x) =

{
|x| if |x| ≥ 2;
2
π

(
x · arcsin x

2 +
√

4− x2
)

otherwise.

Recall from Section 2.3 that Ds(λ) is the Young diagram λ dilated by a factor s and ω(λ) is by defini-
tion the function whose graphical representation is the border of λ, rotated by 45◦ (see Section 2.3) and
stretched by

√
2.

In the general α case, we have the following weak convergence result:

Proposition 4.2 For any 1-polynomial function F ∈ Λ
(1)
? , when n tends to infinity, one has

F
(
T√

α/n,1/
√
nα

(λn)
) P(α)

n−−−→ F (Ω),

where
P(α)
n−−−→ means convergence in probability.

Proof: As (R
(1)
k )k≥2 is an algebraic basis of Λ

(1)
? , it is enough to prove the proposition for any R(1)

k .
Let µ be partition. As mentioned at the beginning of the section, one has:

∏

i≤`(µ)
R

(α)
µi+1 = Chµ + terms of degree at most |µ|+ `(µ)− 1. (5)

Together with Lemma 4.1 and the formula for EP(α)
n

(Chµ), this implies:

EP(α)
n


 ∏

i≤`(µ)
R

(α)
µi+1


 =

{
n(n− 1) · · · (n− k + 1) +O(nk−1) if µ = 1k for some k;

o(n
|µ|+`(µ)

2 ) otherwise.

In particular, one has that

EP(α)
n

(
R

(α)
k (D1/

√
n(λn))

)
=

1

nk/2
EP(α)

n
(R

(α)
k ) = δk,2 +O

(
1√
n

)
;

VarP(α)
n

(
R

(α)
k (D1/

√
n(λn))

)
=

1

nk

(
EP(α)

n

(
(R

(α)
k )2

)
− EP(α)

n
(R

(α)
k )2

)
= O

(
1

n

)
.
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Thus, for each k, R(α)
k (D1/

√
n(λn)) converges in probability towards δk,2. But, by definition

R
(α)
k (D1/

√
n(λn)) = R

(1)
k

(
T√

α/n,1/
√
nα

(λn)
)

and (δk,2)k≥2 is the sequence of free cumulants of the continuous diagram Ω (see [2, Section 3.1]), i.e.
δk,2 = R

(1)
k (Ω). 2

Roughly speaking, Proposition 4.2 means that, the stretched Young diagram T√
α/n,1/

√
nα

(λn) con-
verges weakly towards Ω (in probability). So this result already means that the considered diagrams admit
some limit shape.

However, it would be desirable to obtain a result with uniform convergence, which is a more natural
notion of convergence. This can be done thanks to the following lemma.

Lemma 4.3 There exists a constant C such that

lim
n→∞

P
[
max

(
c(λn)√
n

;
r(λn)√

n

)
≤ C

]
= 1,

where, for each n, the diagram λn is chosen randomly with distribution P(α)
n and r(λn) and c(λn) are

respectively its numbers of rows and columns.

The proof of this lemma is quite technical and relies on the explicit formula (3) for P(α)
n . It can be

found in [4, Section 6.4]. We can now state the uniform convergence result.

Theorem 4.4 For each n, let λn be a random Young diagram of size n distributed with α-Plancherel
measure. Then, in probability,

lim
n→∞

∥∥∥ω
(
T√

α/n,1/
√
nα

(λn)
)
− Ω

∥∥∥ = 0.

Proof: It follows from Proposition 4.2 and Lemma 4.3 by the same argument as the one given in [8,
Theorem 5.5]. 2

The idea of using polynomial functions to study the asymptotic shape of Young diagrams has been
developped by S. Kerov (see [8]). In the case α = 1, he gave more precise result that what we have
here: he proved that for any polynomial function F , the quantity F (λn) has Gaussian fluctuations. A
better understanding of polynomials Kµ could lead to a proof of a similar phenomena in the general α
case, using the ideas introduced in [25]. Let us mention the existence of a partial result (corresponding to
F = Ch(2)) obtained by J. Fulman [6, Theorem 1.2] by another method.
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Abstract. The Hecke algebra of the pair (S2n,Bn), where Bn is the hyperoctahedral subgroup of S2n, was introduced
by James in 1961. It is a natural analogue of the center of the symmetric group algebra. In this paper, we give a
polynomiality property of its structure coefficients. Our main tool is a combinatorial universal algebra which projects
on the Hecke algebra of (S2n,Bn) for every n. To build it, we introduce new objects called partial bijections.
Résumé. L’algèbre de Hecke de la paire (S2n,Bn), où Bn est le sous-groupe hyperoctaédral de S2n, a été introduite
par James en 1961. C’est un analogue naturel du centre de l’algèbre du groupe symétrique. Dans ce papier, on donne
une propriété de polynomialité de ses coefficients de structure. On utilise une algèbre universelle construite d’une
facon combinatoire et qui se projette sur toutes les algèbres de Hecke de (S2n,Bn). Pour la construire, on introduit
de nouveaux objets appelés bijections partielles.

Keywords: Hecke algebra of (S2n,Bn), partial bijections, structure coefficients

This paper is an extended abstract of [Tou12], which contains all detailed proofs and will be submitted
elsewhere.

1 Introduction
The center of the symmetric group algebra of n, denoted Z(C[Sn]), is a classical object in algebraic
combinatorics. It is linearly generated by elements Zλ, indexed by partitions of n, which are the sums of
permutations of n with cycle-type λ. The structure coefficients cρλδ describe the product in this algebra:

ZλZδ =
∑

ρ partition of n

cρλδZρ.

In other words, cρλδ counts the number of pairs of permutations (x, y) with cycle-type λ and δ such that
x · y = z for a fixed permutation z with cycle-type ρ. It is known, see [Cor75], that these coefficients
also count numbers of graphs drawn on oriented surfaces with some additional conditions. One of the
tools used to calculate these coefficients is the representation theory of the symmetric group, see [JV90,
Lemma 3.3]. In [GS98, Theorem 2.1], Goupil and Schaeffer gave a cumbersome formula for cρλδ if one
of the partitions λ, δ and ρ is equal to (n). There are no formulas for cρλδ in general.

†This work is partially supported by the ANR – PSYCO project (ANR-11-JS02-001).

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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In 1958, Farahat and Higman proved the polynomiality of the coefficients cρλδ in n when λ, δ and ρ
are fixed partitions, completed with parts equal to 1 to get partitions of n, see [FH59, Theorem 2.2]. This
result is also proved by Ivanov and Kerov in [IK99] through the introduction of partial permutations. This
proof provides a combinatorial description of these coefficients.

Here, we consider the Hecke algebra of the pair (S2n,Bn), where Bn is the hyperoctahedral group
(see definition in section 2.2). It was introduced by James in [Jam61] and it also has a basis indexed
by partitions of n. This algebra is a natural analogue of Z(C[Sn]) for several reasons. Goulden and
Jackson proved in [GJ96] that its structure coefficients count graphs drawn on non-oriented surfaces. To
get formulas for these coefficients, zonal spherical functions are used instead of irreducible characters of
the symmetric group, see [Mac95, Section VII, 2].

In this paper we give a polynomiality property of the structure coefficients of the Hecke algebra of
(S2n,Bn). We prove that these coefficients can be written as the product of the number 2nn! with a
polynomial in n. In some specific basis, this polynomial has non-negative coefficients. Our proof is
inspired by the construction of Ivanov and Kerov in [IK99]. However, we had to face some difficulties
that do not appear in their work. In the proof, we introduce new combinatorial objects called partial
bijections of n. These objects allow us to build in a combinatorial way a universal algebra which projects
on Hecke algebra of (S2n,Bn) for every n. It also gives us a combinatorial description of the coefficients
of the relevant polynomials.

A weaker version of our polynomiality result (without non-negativity of the coefficients) for the struc-
ture coefficients of Hecke algebra of (S2n,Bn) has been established by indirect approach using Jack
polynomials in [DF12, Proposition 4.4]. There is no combinatorial description in that proof. In [AC10],
Aker and Can considered the same question, but their article contains a mistake (the coefficient 2nn! does
not appear in their result).

The paper is organized as follows. In section 2, we put on all necessary definitions to describe the Hecke
algebra of (S2n,Bn). Then, we give our main result about its structure coefficients. We start section 3 by
introducing partial bijections of n then we construct our universal algebra. We use this algebra in section
4 to prove Theorem 2.1.

2 Definitions and statement of the main result
2.1 Partitions
Since partitions index bases of the algebras studied in this paper, we recall the main definitions. A partition
λ is a sequence of integers (λ1, λ2, . . .) where λ1 ≥ λ2 ≥ . . . ≥ 1. The λi are called the parts of λ and
the size of λ, denoted by |λ|, is the sum of all its parts. If |λ| = n, we say that λ is a partition of n. We
will also use the exponential notation λ = (1m1(λ), 2m2(λ), 3m3(λ), . . .), where mi(λ) is the number of
parts equal to i in the partition λ. If λ and δ are two partitions we define the union λ ∪ δ as the following
partition:

λ ∪ δ = (1m1(λ)+m1(δ), 2m2(λ)+m2(δ), 3m3(λ)+m3(δ), . . .).

A partition is called proper if it does not have any part equal to 1. The proper partition associated to a
partition λ is the partition λ̄ := λ \ (1m1(λ)) = (2m2(λ), 3m3(λ), . . .).
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2.2 Permutations and Coset type
We will denote by [n] the set {1, . . . , n}. A permutation of n is a bijection between the set [n] and
itself. For a permutation ω, we use the line notation ω1 ω2 · · · ωn, where ωi = ω(i). The set Sn of all
permutations of n is a group for the composition called the symmetric group of size n.

To each permutation ω of 2n we associate a graph Γ(ω) with 2n vertices located on a circle. Each
vertex is labelled by two labels (exterior and interior). The exterior labels run through natural numbers
from 1 to 2n around the circle. The interior label of the vertex with exterior label i is ω(i). We link the
vertices with exterior (resp. interior) labels 2i−1 and 2i by an exterior (resp. interior) edge. Since exterior
and interior edges alternate, the graph Γ(ω) has only cycles of even lengths 2λ1 ≥ 2λ2 ≥ 2λ3 ≥ · · · .
The coset-type of ω denoted by ct(ω) is the partition (λ1, λ2, λ3, . . .) of n.

Example 2.1. The graph Γ(ω) associated to the permutation ω = 2 4 9 3 1 10 5 8 6 7 ∈ S2n is drawn on
Figure 1. It has two cycles of length 6 and 4, so ct(ω) = (3, 2).

•2

•
4

•
9

•
3

•
1

•10

• 5

•
8

•
6

•7

1

2

34

5

6

7

8 9

10

Fig. 1: The graph Γ(ω) from Example 2.1.

For every k ≥ 1, we set ρ(k) := {2k−1, 2k}. The hyperoctahedral group Bn is the subgroup of S2n of
permutations ω such that, for every 1 ≤ k ≤ n, there exists 1 ≤ k′ ≤ n with
ω(ρ(k)) = ρ(k′). In other words Bn = {ω ∈ S2n | ct(ω) = (1n)}. For example, 4 3 1 2 6 5 ∈ B3.

A Bn-double coset of S2n is the set BnxBn = {bxb′ ; b, b′ ∈ Bn} for some x ∈ S2n. It is known, see
[Mac95, page 401], that two permutations of S2n are in the same Bn-double coset if and only if they have
the same coset-type. Thus, if x ∈ S2n has coset-type λ, we have:

BnxBn = {y ∈ S2n such that ct(y) = λ}.

2.3 The Hecke algebra of (S2n,Bn)
The symmetric group algebra of n denoted by C[Sn] is the algebra over C linearly generated by all
permutations of n. The group Bn×Bn acts on C([S2n]) by the following action: (b, b′) · x = bxb′, called
the Bn-double action. The Hecke algebra of (S2n,Bn) denoted by C[Bn \ S2n/Bn] is the sub-algebra of
C[S2n] of elements invariant under the Bn-double action. Recall that Bn-double cosets are indexed by
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partitions of n. Therefore, the set

{Kλ(n) : λ proper partition, |λ| ≤ n}
forms a basis for C[Bn \ S2n/Bn], where Kλ(n) is the sum of all permutations of S2n with coset-type
λ ∪ 1n−|λ|. So, for any two proper partitions λ and δ with size at most n, there exist complex numbers
αρλδ(n) such that:

Kλ(n) ·Kδ(n) =
∑

ρ proper partition
|ρ|≤n

αρλδ(n)Kρ(n). (1)

2.4 Main result
We give in this paper a polynomiality property of the structure coefficients of the Hecke algebra of
(S2n,Bn) that appear in (1). More precisely, we prove the following theorem. We will use the stan-
dard notation (n)k := n!

(n−k)! = n(n− 1) · · · (n− k + 1).

Theorem 2.1. Let λ, δ and ρ be three proper partitions, we have:

αρλδ(n) =





2nn!fρλδ(n) if n ≥ |ρ|,

0 if n < |ρ|,

where fρλδ(n) =

|λ|+|δ|−|ρ|∑

j=0

aj(n− |ρ|)j is a polynomial in n with aj ∈ Q+.

Example 2.2. Let us compute the structure coefficient α∅(2)(2)(n). We have:

K(2)(n) =
∑

ω∈S2n
ct(ω)=(2)∪(1n−2)

ω.

To find the coefficient of K∅(n) in K(2)(n) · K(2)(n), we fix a permutation with coset-type (1n), for
example Id2n, and we look in how many ways we can obtain Id2n as a product of two elements σ · β
where ct(σ) = ct(β) = (2, 1n−2). Thus we are looking for the number of permutations σ ∈ S2n such
that ct(σ) = ct(σ−1) = (2, 1n−2). But, for any σ ∈ S2n with ct(σ) = (2, 1n−2), its inverse has the
same coset-type. Therefore α∅(2)(2)(n) is the number of permutations of coset-type (2, 1n−2), which is by
[Mac95, page 402]

(2nn!)2

2n−1(2 · (n− 2)!)
= n(n− 1)2nn!.

2.5 Major steps of the proof
The idea of the proof is to build a universal algebra A∞ over C satisfying the following properties:

1. For every n ∈ N∗, there exists a morphism of algebras θn : A∞ −→ C[Bn \ S2n/Bn].

2. Every element x inA∞ is written in a unique way as an infinite linear combination of elements Tλ,
indexed by partitions. For any two partitions λ and δ, there exist non-negative rational numbers bρλδ
such that:

Tλ ∗ Tδ =
∑

ρ partition

bρλδTρ. (2)
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3. The morphism θn sends Tλ to a multiple of Kλ̄(n).
To build A∞, we introduce new combinatorial objects called partial bijections. For every n ∈ N∗, we
construct an algebra An using the set of partial bijections of size n. The algebra A∞ is defined as the
projective limit of this sequence (An).

The projection pn : A∞ → An involves coefficients which are polynomials in n. By defining the
extension of a partial bijection of n to the set [2n], we construct a morphism fromAn to C[Bn \S2n/Bn].
Its coefficients involve the number 2nn!. It turns out that the morphism θn is the composition of those two
morphisms:

A∞

θn

��

pn

&&NNNNNNNNNNNN

An

xxqqqqqqqqqqq

C[Bn \ S2n/Bn]

The final step consists in applying the chain of morphisms in the diagram above to equation (2).
Remark. This method is based on Ivanov and Kerov’s one to get the polynomiality of the structure co-
efficients of the center of the symmetric group algebra (see [IK99] for more details). Nevertheless, our
construction is more complicated, mainly because a partial bijection does not have a unique trivial exten-
sion to a given set, see Definition 3.2.

3 The partial bijection algebra
In this section we define the set of partial bijections of n. With this set, we build the algebras and mor-
phisms that appear in the diagram above.

3.1 Definition
We start by defining partial bijections of n and the partial bijection algebra. Then, we introduce the
notion of trivial extension of a partial bijection of n and we use it to build a morphism between the partial
bijection algebra of n and the symmetric group algebra of 2n.

For n ∈ N∗, Pn denotes the following set:

Pn := {ρ(k1) ∪ · · · ∪ ρ(ki) | 1 ≤ i ≤ n, 1 ≤ k1 < · · · < ki ≤ n}.

Definition 3.1. A partial bijection of n is a triple (σ, d, d
′
) where d, d

′ ∈ Pn and σ : d −→ d
′

is a
bijection. We denote by Qn the set of all partial bijections of n.

It should be clear that

|Qn| = sn =
n∑

k=0

(
n
k

)2

(2k)!.

A permutation σ of 2n can be written as (σ, [2n], [2n]), so the set S2n can be considered as a subset of
Qn.

For any partial bijection α, we will use the convention that σ (resp. d, d
′
) is the first (resp. second,

third) element of the triple defining α. The same convention holds for α̃, αi, α̂ . . .



586 Omar Tout

Observation. In the same way as in section 2.2, we can associate to each partial bijection α of n a graph
Γ(α) with |d| vertices placed on a circle. The exterior (resp. interior) labels are the elements of the set d
(resp. d

′
). Since the sets d and d

′
are in Pn, we can link 2i with 2i − 1 as in the case d = d

′
= [2n].

So, the definition of coset-type extends naturally to partial bijection. We denote by ct(α) or ct(σ) the
coset-type of a partial bijection α.
Definition 3.2. Let (σ, d, d

′
) and (σ̃, d̃, d̃′) be two partial bijections of n. We say that (σ̃, d̃, d̃′) is a trivial

extension of (σ, d, d
′
) if:

d ⊆ d̃, σ̃|d = σ and ct(σ̃) = ct(σ) ∪
(

1
|d̃\d|

2

)
.

We denote by Pα(n) the set of all trivial extensions of α in Qn.

Lemma 3.1. Let α be a partial bijection of n and X an element of Pn such that d ⊆ X . The number of
trivial extension α̃ such that d̃ = X is

(2n− |d|) · (2n− |d| − 2) · · · (2n− |d| − |X \ d|+ 2) = 2
|X\d|

2

(
n− |d|

2

)
|X\d|

2

.

We have the same formula for the number of trivial extension α̃ such that d̃′ = X .

Proof. We proceed by induction on the size of X \ d. If |X \ d| = 2, suppose that X \ d = ρ(k) for some
k ∈ [n]. There are 2n − |d| possible values for σ̃(2k − 1). If σ̃(2k − 1) = 2k′ − 1 (resp. 2k′), we have
σ̃(2k) = 2k′ (resp. 2k′ − 1). So, the number of trivial extensions α̃ such that d̃ = X is 2n− |d|.

We suppose that we have the result for |X \ d| ≤ 2(r − 1). Let X be a set such that |X \ d| = 2r. We
fix an element 2i− 1 of X \ d. Trivial extensions α̃ such that d̃ = X are obtained as follows:
• first, take all trivial extensions α1 such that d1 = X \ ρ(i). Since

∣∣(X \ ρ(i)
)
\ d
∣∣ = 2(r − 1), the

number of these trivial extensions is by induction 2r−1(n− |d|2 )r−1.

• second, for every trivial extension α1, take all trivial extensions α̃1 such that d̃1 = X . For a
fixed α1, the number of trivial extensions α̃1 such that d̃1 = X is, by the base case of induction,
2n− |X \ ρ(i)| = 2n− |d| − 2r + 2.

Every trivial extension α̃ is obtained exactly once: as a trivial extension of α1, where α1 is α̃|X\ρ(i) . Thus,
the number of trivial extension α̃ such that d̃ = X is the product:

2r−1
(
n− |d|

2

)
r−1
· (2n− |d| − 2r + 2) = 2r

(
n− |d|

2

)
r
.

This ends our induction and proves the first part of lemma. The proof of the second part (number of trivial
extension α̃ such that d̃′ = X) is similar.

Consider Dn = C[Qn] the vector space with basis Qn. We want to endow it with an algebra structure.
Let α1 and α2 be two partial bijections. If d1 = d′2, we can compose α1 and α2 and we define α1 ∗ α2 =
α1 ◦ α2 = (σ1 ◦ σ2, d2, d

′
1). Otherwise, we need to extend α1 and α2 to partial bijections α̃1 and α̃2

such that d̃1 = d̃′2. Since there exist several trivial extensions of α1 and α2, a natural choice is to take the
average of the composition of all possible trivial extensions. Let Eα2

α1
(n) be the following set:

Eα2
α1

(n) := {(α̃1, α̃2) ∈ Pα1
(n)× Pα2

(n) such that d̃1 = d̃′2 = d1 ∪ d′2}.



Structure coefficients of the Hecke algebra of (S2n,Bn) 587

Elements of Eα2
α1

(n) are schematically represented on Figure 2. We define the product of α1 and α2 as
follows:

α1 ∗ α2 :=
1

|Eα2
α1 (n)|

∑

(α̃1,α̃2)∈Eα2
α1

(n)

α̃1 ◦ α̃2. (3)

By Lemma 3.1, we can see that |Eα2
α1

(n)| = 2
|d′2\d1|

2 +
|d1\d′2|

2 .(n− |d
′
1|
2 )

(
|d′2\d1|

2 )
.(n− |d2|2 )

(
|d1\d′2|

2 )
.

σ2

σ1

d2 d′2

d1 d′1

Fig. 2: Schematic representation of elements of Eα2
α1

(n).

Proposition 3.2. The product ∗ is associative and Dn is a (non-unital) algebra.

We shall not present the proof here since it is technical, and uses the same type of arguments as the
proof of Proposition 3.3.

Proposition 3.3. The following function defines a morphism of algebras:

ψn : C[Qn] → C[S2n]

α 7→ 1

2n−
|d|
2 (n− |d|2 )!

∑

α̂∈S2n∩Pα(n)

σ̂ .

Proof. Let α1 and α2 be two basis elements of C[Qn]. We refer to Figure 2 and denote
2b = |d2| = |d′2|, 2c = |d1| = |d′1| and 2e = |d′2 ∩ d1|. We first prove that:

∑

α̂1∈S2n∩Pα1
(n)

∑

α̂2∈S2n∩Pα2
(n)

σ̂1 ◦ σ̂2

= 2n−(b+c−e)(n− (b+ c− e))!
∑

(α̃1,α̃2)∈Eα1
α2

(n)

∑

̂̃α1◦α̃2∈S2n∩Pα̃1◦α̃2
(n)

̂̃σ1 ◦ σ̃2. (4)

We fix (α̃1, α̃2) ∈ Eα2
α1

(n) and ω ∈ S2n ∩ Pα̃1◦α̃2
(n), i.e.:

ω|
d̃2

= σ̃1 ◦ σ̃2 and ct(ω) = ct(σ̃1 ◦ σ̃2) ∪ (1(n−(b+c−e))).

We look for the number of permutations σ̂1 and σ̂2 in S2n∩Pα1
(n) and S2n∩Pα2

(n) such that σ̂1◦σ̂2 = ω.
In this equation, σ̂2 determines σ̂1. But the condition ω|

d̃2
= σ̃1 ◦ σ̃2 gives the values of σ̂2 on d̃2

(σ̂2(x) = σ2(x) if x ∈ d2 and σ̂2(x) = σ−1
1 (ω(x)) if x ∈ d̃2\d2). Thus, the number of ways to choose σ̂2

is the number of ways to extend trivially σ̃2 to be a permutation of 2n, which is 2n−(b+c−e)(n−(b+c−e))!
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by Lemma 3.1. This proves equation (4).
Now we have:

ψn(α1)ψn(α2) =
1

22n−b−c(n− c)!(n− b)!
∑

α̂1∈S2n∩Pα1
(n)

∑

α̂2∈S2n∩Pα2
(n)

σ̂1 ◦ σ̂2

=
(n− b− c+ e)!

2n−e(n− c)!(n− b)!
∑

(α̃1,α̃2)∈Eα1
α2

(n)

∑

̂̃α1◦α̃2∈S2n∩Pα̃1◦α̃2
(n)

̂̃σ1 ◦ σ̃2. (5)

On the other hand:

ψn(α1 ∗ α2) =
1

2b+c−2e(n− c)(b−e)(n− b)(c−e)

∑

(α̃1,α̃2)∈Eα1
α2

(n)

ψn
(
(σ̃1 ◦ σ̃2, d̃2, d̃′1)

)
.

But
ψn
(
(σ̃1 ◦ σ̃2, d̃2, d̃′1)

)
=

1

2n−(b+c−e)(n− (b+ c− e))!
∑

̂̃α1◦α̃2∈S2n∩Pα̃1◦α̃2
(n)

̂̃σ1 ◦ σ̃2.

Thus,

ψn(α1 ∗ α2) =
(n− b− c+ e))!

2n−e(n− c)!(n− b)!
∑

(α̃1,α̃2)∈Eα1
α2

(n)

∑

̂̃α1◦α̃2∈S2n∩Pα̃1◦α̃2
(n)

̂̃σ1 ◦ σ̃2. (6)

Comparing equations (5) and (6), we see that for any two partial bijections α1 and α2 of n, we have
ψn(α1 ∗ α2) = ψn(α1)ψn(α2). In other words, ψn is a morphism of algebras.

3.2 Action of Bn × Bn on Dn

In this section, we construct the algebra An as the algebra of invariant elements by an action of Bn × Bn
on Dn.
Definition 3.3. The group Bn × Bn acts on Qn by:

(a, b) • (σ, d, d′) = (aσb−1, b(d), a(d′)),

for any (a, b) ∈ Bn × Bn and (σ, d, d′) ∈ Qn.
We can extend this action by linearity to get an action of Bn × Bn on Dn. This action is compatible

with the product ofQn. Namely, we can prove that, for any (a, b) ∈ Bn×Bn and for any partial bijections
α1, α2 of n, we have:

(a, b) • (α1 ∗ α2) = ((a, id) • α1) ∗ ((id, b) • α2). (7)

We consider the set An of invariant elements by the action of Bn × Bn on Dn:

An = DBn×Bnn = {x ∈ Dn | (a, b) • x = x for any (a, b) ∈ Bn × Bn}.

Due to equation (7), we can see that An is an algebra. The following result is easy to check.
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Proposition 3.4. The elements (Sλ,n)|λ|=r≤n, where Sλ,n =
∑

α∈Qn,ct(α)=λ

α , form a basis for the alge-

bra An.

Corollary 3.5. If λ and δ are two partitions such that |λ|, |δ| ≤ n, there exist unique constants cρλδ(n) ∈ C
such that:

Sλ,n ∗ Sδ,n =
∑

ρ partition
max (|λ|,|δ|)≤|ρ|≤min (|λ|+|δ|,n)

cρλδ(n)Sρ,n.

Proof. We only have to prove the inequalities on the size of ρ. Let α1 and α2 be two partial bijections
of n with coset-type λ and δ. By definition (see Figure 2), every partial bijection of n that appears in the
sum of the product α1 ∗ α2 has some coset-type ρ with |ρ| = |d1∪d′2|

2 . But

max
( |d1|

2
,
|d′2|
2

)
= max(|λ|, |δ|) ≤ |ρ| = |d1 ∪ d′2|

2
≤ |d1|+ |d′2|

2
= |λ|+ |δ|.

Lemma 3.6. Let λ be a partition such that |λ| = r ≤ n. We have:

ψn(Sλ,n) =
1

2n−|λ|(n− |λ|)!

(
n− |λ̄|
m1(λ)

)
Kλ̄(n).

Proof. For a partial bijection α ∈ Qn such that ct(α) = λ, we have:

ψn(α) =
1

2n−|λ|(n− |λ|)!
∑

α̂∈S2n∩Pα(n)

σ̂.

To conclude the proof, note that for a fixed permutation ω ∈ Kλ̄(n), the number of partial bijections

α ∈ Aλ,n such that ω is a trivial extension of α is
(
n− |λ̄|
m1(λ)

)
.

This lemma implies that ψn(An) ⊆ C[Bn/S2n\Bn]. The morphismAn → C[Bn/S2n\Bn] mentioned
in Section 2.5 is the morphism ψn|An

.

3.3 Projective limits
In this paragraph, we first show that the sequence (An) admits a projective limitA∞ by giving a morphism
from An+1 to An. Then, we prove in Proposition 3.8 that every element of A∞ is written in a unique
way as infinite linear combination of elements indexed by partitions.

Lemma 3.7. The function ϕn defined as follows:

ϕn : An+1 → An
Sλ,n+1 7→

{ n+1
(n+1−|λ|)Sλ,n if |λ| = r < n+ 1,

0 if |λ| = n+ 1,

is a morphism of algebras.

Proof. Omitted for brevity.
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Let A∞ be the projective limit of (An, ϕn):

A∞ = {(an)n≥1 | for every n ≥ 1, an ∈ An and ϕn(an+1) = an}.
For every partition λ, we define the sequence Tλ as follows:

Tλ = (Tλ)n≥1 =





0 if n < |λ|,

1
 n
|λ|



Sλ,n if n ≥ |λ|.

We can prove easily the following proposition.

Proposition 3.8. Every element a ∈ A∞ is written in a unique way as infinite linear combination of
elements Tλ.

This proposition shows that the algebra A∞ satisfies the second property required in section 2.5. In
particular, Tλ ∗ Tδ writes as linear combination of elements Tρ. We can be more precise.

Corollary 3.9. Let λ and δ be two partitions. There exist unique constants bρλδ ∈ Q+ such that:

Tλ ∗ Tδ =
∑

ρ partition
max (|λ|,|δ|)≤|ρ|≤|λ|+|δ|

bρλδTρ.

Proof. The conditions on the size of partitions ρ in the sum index are obtained by Corollary 3.5. We may
check that bρλδ =

cρλδ(|ρ|)
|ρ|
|λ|





|ρ|
|δ|



, which explains that bρλδ ∈ Q+.

4 Proof of Theorem 2.1
In the previous section, we built all algebras and morphisms that we need in order to prove Theorem 2.1.

Let λ and δ be two proper partitions, by Corollary 3.9, we have:

Tλ ∗ Tδ =
∑

ρ partition
max (|λ|,|δ|)≤|ρ|≤|λ|+|δ|

bρλδTρ.

Recall that this is an equality of sequences. Taking the n-th term, we have:
1(
n
|λ|

)Sλ,n ∗
1(
n
|δ|

)Sδ,n =
∑

ρ partition
max (|λ|,|δ|)≤|ρ|≤min (|λ|+|δ|,n)

bρλδ
1(
n
|ρ|

)Sρ,n.

By applying ψn we obtain (see Lemma 3.6):

1

2n−|λ|(n− |λ|)!Kλ(n) · 1

2n−|δ|(n− |δ|)!Kδ(n) =

∑

ρ partition
max (|λ|,|δ|)≤|ρ|≤min (|λ|+|δ|,n)

bρλδ

(
n
|λ|

)(
n
|δ|

)

(
n
|ρ|

)
2n−|ρ|(n− |ρ|)!

(
n− |ρ̄|
m1(ρ)

)
Kρ̄(n).
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After simplification, we get:

Kλ(n) · Kδ(n) =
∑

ρ partition
max (|λ|,|δ|)≤|ρ|≤min (|λ|+|δ|,n)

bρλδ
(|ρ|)|ρ̄|
|λ|!|δ|! 2n+|ρ|−|λ|−|δ|n!(n − |ρ̄|)m1(ρ)Kρ̄(n).

Fact. Any partition ρ such that |ρ| ≤ min (|λ|+ |δ|, n) can be written in a unique way as ρ = τ ∪ (1j),
where τ is a proper partition and j ≤ min (|λ|+ |δ|, n)− |τ |.

Using this fact, the product can be written as follows:

Kλ(n) ·Kδ(n) =
∑

τ proper partition
|τ|≤min (|λ|+|δ|,n)

ατλδ(n)Kτ (n),

where

ατλδ(n) =
1

|λ|!|δ|!

min (|λ|+|δ|,n)−|τ |∑

j=0

b
τ∪(1j)
λδ n!(n− |τ |)j(|τ |+ j)|τ |2

n+|τ |+j−|λ|−|δ|

=
2nn!

|λ|!|δ|!

|λ|+|δ|−|τ |∑

j=0

b
τ∪(1j)
λδ (n− |τ |)j(|τ |+ j)|τ |2

|τ |+j−|λ|−|δ|.

The change of sum index in the last equality comes from the fact that if n < |λ|+ |δ|, we have:

(n− |τ |)j = 0 for any j with n− |τ | < j ≤ |λ|+ |δ| − |τ |.

This ends the proof of Theorem 2.1.

Corollary 4.1. If λ, δ and ρ are three proper partitions such that |ρ| = |λ|+ |δ|, then:

αρλδ(n) = bρλδ
|ρ|!
|λ|!|δ|! 2

nn! = cρλδ(|ρ|)
|λ|!|δ|!

(|λ|+ |δ|)!2
nn!.
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Abstract. We give noncommutative versions of the Redfield-Pólya theorem in WSym, the algebra of word symmetric
functions, and in other related combinatorial Hopf algebras.
Résumé. Nous donnons des versions non-commutatives du théorème d’énumération de Redfield-Pólya dans WSym,
l’algèbre des fonctions symétriques sur les mots, ainsi que dans d’autres algèbres de Hopf combinatoires.
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1 Introduction
The Redfield-Pólya enumeration theorem (R-P theorem) is one of the most exciting results in combina-
torics of the twentieth century. It was first published by John Howard Redfield (18) in 1927 and indepen-
dently rediscovered by George Pólya ten years later (17). Their motivation was to generalize Burnside’s
lemma on the number of orbits of a group action on a set (see e.g (3)). Note that Burnside attributed this
result to Frobenius (8) and it seems that the formula was prior known to Cauchy. Although Redfield found
the theorem before Pólya, it is often attributed only to Pólya. This is certainly due to the fact that Pólya
popularized the result by providing numerous applications to counting problems and in particular to the
enumeration of chemical compounds. The theorem is a result of group theory but there are important im-
plications in many disciplines (chemistry, theoretical physics, mathematics — in particular combinatorics
and enumeration etc.) and its extensions lead to Andrés Joyal’s combinatorial species theory (1).
Consider two sets X and Y (X finite) and let G be a finite group acting on X . For a map f : X → Y ,
define the vector vf = (#{x : f(x) = y)})y∈Y ∈ NY . The R-P theorem deals with the enumeration of
the maps f having a given vf = v (v fixed) up to the action of the group G. The reader can refer to (11)
for proof, details, examples and generalizations of the R-P theorem.
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Algebraically, the theorem can be pleasantly stated in terms of symmetric functions (see e.g. (15, 12));
the cycle index polynomial is defined in terms of power sum symmetric functions and, whence writing in
the monomial basis, the coefficients count the number of orbits of a given type. From the seminal paper
(9), many combinatorial Hopf algebras have been discovered and investigated. The goal is to mimic the
combinatorics and representation theory related to symmetric functions in other contexts. This paper asks
the question of the existence of combinatorial Hopf algebras in which the R-P theorem can naturally arise.
In this sense, the article is the continuation of (6, 7) in which the authors investigated some Hopf algebras
in the aim to study the enumeration of bipartite graphs up to the permutations of the vertices.
Each function f : X → Y can be encoded by a word of size #X on an alphabet AY = {ay : y ∈ Y }.
Hence, intuitively, we guess that the R-P theorem arises in a natural way in the algebra of words C〈A〉.
The Hopf algebra of word symmetric functions WSym has been studied in (19, 2, 10). In S Section
2, we recall the basic definitions and properties related to this algebra and propose a definition for the
specialization of an alphabet using the concept of operad (13, 14). In Section 3, we construct and study
other related combinatorial Hopf algebras. In Section 4, we investigate the analogues of the cycle index
polynomials in these algebras and give two noncommutative versions of the R-P theorem. In particular,
we give a word version and a noncommutative version. Finally, in Subsection 4.5, we propose a way to
raise Harary-Palmer type enumerations (the functions are now enumerated up to an action of G on X and
an action of another group H on Y ) in WSym. For this last equality, we need the notion of specialization
defined in Section 2.

2 Word symmetric functions
2.1 Basic definitions and properties
Consider the family Φ := {Φπ}π whose elements are indexed by set partitions of {1, . . . , n} (we will
denote π  n). The algebra WSym (19) is generated by Φ for the shifted concatenation product:
ΦπΦπ

′
= Φππ

′[n] where π and π′ are set partitions of {1, . . . , n} and {1, . . . ,m}, respectively, and
π′[n] means that we add n to each integer occurring in π′. Other bases are known, for example, the word
monomial functions defined by

Φπ =
∑

π≤π′
Mπ′

where π ≤ π′ indicates that π is finer than π′, i.e., that each block of π′ is a union of blocks of π.
WSym is a Hopf algebra when endowed with the shifted concatenation product and the following

coproduct, where std(π) means that for all i, we replace the ith smallest integer in π by i:

∆Mπ =
∑

π′∪π′′=π
π′∩π′′=∅

Mstd(π′) ⊗Mstd(π′′).

Note that the notion of standardization makes sense for more general objects. If S is a total ordered set,
the standardized std(`), for any list ` of n elements of S, is classicaly the permutation σ = [σ1, . . . , σn]
verfying σ[i] > σ[j] if `[i] > `[j] or if `[i] = `[j] and i > j. Now if the description of an object o contains
a list ` , the standardized std(o) is obtained by replacing ` by std(`) in o.

Let A be an infinite alphabet. The algebra WSym is isomorphic to WSym(A), the subalgebra of C〈A〉
defined by Rosas and Sagan (19) and constituted by the polynomials which are invariant by permutation of
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the letters of the alphabet. The explicit isomorphism sends each Φπ to the polynomial Φπ(A) :=
∑
w w

where the sum is over the words w = w1 · · ·wn (w1, . . . , wn ∈ A) such that if i and j are in the same
block of π then wi = wj . Under this isomorphism, each Mπ is sent to Mπ(A) =

∑
w w where the sum

is over the words w = w1 · · ·wn (w1, . . . , wn ∈ A) such that wi = wj if and only if i and j are in the
same block of π. In the sequel, when there is no ambiguity, we will identify the algebras WSym and
WSym(A). With the realization explained above, the coproduct of WSym consists of identifying the
algebra WSym⊗WSym with WSym(A+B), where A and B are two noncommutative alphabets such
that A commutes with B, by setting f(A)g(B) ∼ f ⊗ g (see. It is a cocommutative coproduct for which
the polynomials Φ{1,...,n} are primitive. Endowed with this coproduct, WSym has a Hopf structure which
has been studied by Hivert et al. (10) and Bergeron et al. (2).

2.2 What are virtual alphabets in WSym?
We consider the set C of set compositions together with additional elements {om : m > 1} (we will also
set o0 = []) and a unity 1. This set is a naturally bigraded set: if Cmn denotes the set of compositions
of {1, . . . , n} into m subsets, we have C = {1} ∪ ⋃n,m∈N Cmn ∪ {om : m > 1}. We will also use
the notations Cn (resp. Cm) to denote the set of compositions of {1, . . . , n} (resp. the set compositions
into m subsets together with om) with the special case: 1 ∈ C1. The formal space C[Cm] is naturally
endowed with a structure of right C[Sm]-module; the permutations acting by permuting the blocks of
each composition and letting om invariant. For simplicity, we will denote also by C the collection (S-
module, see e.g.(13))[C[C0],C[C1], . . . ,C[Cm]].

For each 1 ≤ i ≤ k, we define partial compositions ◦i : Ck × Ck
′ → Ck+k′−1 by:

1. If Π = [π1, . . . , πk] and Π′ = [π′1, . . . , π
′
k′ ] then

Π ◦i Π′ =

{
[π1, . . . , πi−1, π

′
1[πi], . . . , π

′
k′ [πi], πi+1, . . . , πk] if Π′ ∈ C#πi

ok+k′−1 otherwise,

where π′j [πi] = {ij1 , . . . , ijp} if π′j = {j1, . . . , jp} and πi = {i1, . . . , ik} with i1 < · · · < ik;

2. Π ◦i ok′ = ok ◦i Π′ = ok+k′−1 for each Π ∈ Ck and Π′ ∈ Ck
′
;

3. 1 ◦1 Π′ = Π′ and Π ◦i 1 = Π for each Π ∈ Ck and Π′ ∈ Ck
′
.

Proposition 2.1 The S-module C (i.e. each graded component Cn is a Sn-module (13)) endowed with
the partial compositions ◦i is an operad in the sense of Martin Markl (14), which means the compositions
satisfy:

1. (Associativity) For each 1 ≤ j ≤ k, Π ∈ Ck, Π′ ∈ Ck
′

and Π′′ ∈ Ck
′′

:

(Π ◦j Π′) ◦i Π′′ =





(Π ◦i Π′′) ◦j+k′′−1 Π′, for 1 ≤ i < j,
Π ◦J (Π′ ◦i−j+1 Π′′), for j ≤ i < k′ + j,
(Π ◦i−k′+1 Π′′) ◦j Π′, for j + k′ ≤ i < k + k′ − 1,

2. (Equivariance) For each 1 ≤ i ≤ m, τ ∈ Sm and σ ∈ Sn, let τ ◦i σ ∈ Sm+n−1 be given by
inserting the permutation σ at the ith place in τ . If Π ∈ Ck and Π′ ∈ Ck

′
then (Πτ) ◦i (Π′σ) =

(Π ◦τ(i) Π′)(τ ◦i σ).
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3. (Unitality) 1 ◦1 Π′ = Π′ and Π ◦i 1 = Π for each Π ∈ Ck and Π′ ∈ Ck
′
.

Let V =
⊕

n Vn be a graded space over C. We will say that V is a (symmetric) C-module, if there is an
action of C on V which satisfies:

1. Each Π ∈ Cm acts as a linear application V m → V .

2. (Compatibility with the graduation) [π1, . . . , πm](Vj1 , . . . , Vjm) = 0 if #πi 6= ji for some 1 ≤ i ≤
m and om(Vj1 , . . . , Vjm) = 0. Otherwise, [π1, . . . , πm] ∈ Cn sends V#π1

× · · · × V#πm to Vn.
Note also the special case 1(v) = v for each v ∈ V .

3. (Compatibility with the compositions)

(Π ◦i Π′)(v1, . . . , vk+k′−1) = Π(v1, . . . , vi−1,Π
′(vi, . . . , vi+k′−1), vi+k′ , . . . , vk+k′−1).

4. (Symmetry) Π(v1, . . . , vk) = (Πσ)(vσ(1), . . . , vσ(k)).

If V is generated (as a C-module) by {vn : n ≥ 1} with vn ∈ Vn, then setting v{π1,...,πm} =
[π1, . . . , πm](v#π1

, . . . , v#πm), we have Vn = span{vπ : π  n}. Note that the existence of vπ fol-
lows from the point 4 of the definition of a C-module.

Example 2.2 If A is a noncommutative alphabet, the algebra C〈A〉 can be endowed with a structure of
C-module by setting

[π1, . . . , πm](w1, . . . , wm) =

{
[π1,...,πm](w1, . . . , wm) if wi ∈ A#πi for each 1 ≤ i ≤ m

0 otherwise

where w1, . . . , wm ∈ A∗ and [π1,...,πm](w1, . . . , wm) = a1 . . . an is the only word of A#π1+···+#πm

such that for each 1 ≤ i ≤ m, if πi = {j1, . . . , j`}, aj1 . . . aj` = wj .
Note that C[A] has also a structure of C-module defined by [π1, . . . , πm](x1, . . . , xm) = x1 . . . xm if xi
is a monomial of degree #πi.

Proposition 2.3 WSym is a C-module.

Proof: We define the action of C on the power sums by

[π1, . . . , πm](Φn1 , . . . ,Φnm) =

{
Φ{π1,...,πm} if ni = #πi for each 1 ≤ i ≤ m
0 otherwise.

and extend it linearly to the spaces WSymn. Since this action is compatible with the realization:

[π1, . . . , πm](Φn1 , . . . ,Φnm)(A) = [π1,...,πm](Φ
n1(A), . . . ,Φnm(A))

(the definition of π is given in Example 2.2) and WSym is obviously stable by the action of C,
WSym(A) is a sub-C-module of C〈A〉. Hence, WSym is a C-module.

A morphism of C-module is a linear map ϕ from a C-module V1 to another C-module V2 satisfying

ϕΠ(v1, . . . , vm) = Π(ϕ(v1), . . . , ϕ(vm)) for each Π ∈ Cm. In this context, a virtual alphabet (or a spe-
cialization) is defined by a morphism of C-module ϕ from WSym to a C-module V . The image of a word
symmetric function f will be denoted by f [ϕ]. The C-module WSym is free in the following sense:
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Proposition 2.4 Let V be generated by v1 ∈ V1, v2 ∈ V2, . . . , vn ∈ Vn, . . . as a C-module (or equiva-
lently, Vn = span{vπ : π  n}). There exists a morphism of C-module ϕ : WSym → V , which sends
Φn to vn.

Proof: This follows from the fact that {Φπ : π  n} is a basis of WSymn. Let ϕ : WSymn → Vn be the
linear map such that ϕ(Φπ) = V π; this is obviously a morphism of C-module.

For convenience, we will write WSym[ϕ] = ϕWSym.

Example 2.5 1. Let A be an infinite alphabet. The restriction to WSym(A) of the morphism of
algebra ϕ : C〈A〉 → C[A] defined by ϕ(a) = a is a morphism of C-module sending WSym(A)
to Sym(A) (the algebra of symmetric functions on the alphabet A). This morphism can be defined
without the help of alphabets, considering that Sym is generated by the power sums p1, . . . , pn, . . .
with the action [π1, . . . , πm](p#π1

, . . . , p#πm) = p#π1
. . . p#πm .

2. LetA be any alphabet (finite or not). If V is a sub-C-module of C〈A〉 generated by the homogeneous
polynomials Pn ∈ C[An] as a C-module, the linear map sending, for each π = {π1, . . . , πm}, Φπ

to Π[P#π1
, . . . , P#πm ], where Π = [π1, . . . , πm], is a morphism of C-module.

3 The Hopf algebra of set partitions into lists
3.1 Set partitions into lists
A set partition into lists is an object which can be constructed from a set partition by ordering each
block. For example, {[1, 2, 3], [4, 5]} and {[3, 1, 2], [5, 4]} are two distinct set partitions into lists of the set
{1, 2, 3, 4, 5}. The number of set partitions into lists of an n-element set (or set partitions into lists of size
n) is given by Sloane’s sequence A000262 (20). If Π is a set partition into lists of {1, . . . , n}, we will write
Π � n. We will denote by cycle support(σ) the cycle support of a permutation σ, i.e., the set partition
associated to its cycle decomposition. For instance, cycle support(325614) = {{135}, {2}, {4, 6}}. A
set partition into lists can be encoded by a set partition and a permutation in view of the following easy
result:

Proposition 3.1 For all n, the set partitions into lists of size n are in bijection with the pairs (σ, π) where
σ is a permutation of size n and π is a set partition which is less fine than or equal to the cycle support of
σ.

Indeed, from a set partition π and a permutation σ, we obtain a set partition into lists Π by ordering the
elements of each block of π so that they appear in the same order as in σ.

Example 3.2 Starting the set partition π = {{1, 4, 5}, {6}, {3, 7}, {2}} and the permutation σ = 4271563,
we obtain the set partition into lists Π = {[4, 1, 5], [7, 3], [6], [2]}.

3.2 Construction
Let Π � n and Π′ � n′ be two set partitions into lists. Then, we set Π]Π′ = Π∪{[l1 +n, . . . , lk +n] :
[l1, . . . , lk] ∈ Π′} � n + n′. Let Π′ ⊂ Π � n, since the integers appearing in Π′ are all distinct, the
standardized std(Π′) of Π′ is well defined as the unique set partition into lists obtained by replacing the
ith smallest integer in Π by i. For example,std({[5, 2], [3, 10], [6, 8]}) = {[3, 1], [2, 6], [4, 5]}.
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Definition 3.3 The Hopf algebra BWSym is formally defined by its basis (ΦΠ) where the Π are set
partitions into lists, its product ΦΠΦΠ′ = ΦΠ]Π′ and its coproduct ∆(ΦΠ) =

∑
Φstd(Π′) ⊗ Φstd(Π′′),

where the sum is over the (Π′,Π′′) such that Π′ ∪Π′′ = Π and Π′ ∩Π′′ = ∅.

Following Section 3.1 and for convenience, we will use alternatively ΦΠ and Φ(σπ) to denote the same
object.
We define MΠ = M(σπ)

by setting Φ(σπ) =
∑

π≤π′
M(σπ)

′ . The formula being diagonal, it defines MΠ for

any Π and proves that the family (MΠ)Π is a basis of BWSym. Consider for instance {[3, 1], [2]} ∼(
321

{{1, 3}, {2}}

)
, we have Φ{[3,1],[2]} = M{[3,1],[2]} +M{[3,2,1]}.

For any set partition into lists Π, let s(Π) be the corresponding classical set partition. Then, the linear
application φ defined by φ(ΦΠ) = Φs(Π) is obviously a morphism of Hopf algebras. As an associative al-
gebra, BWSym has also algebraical links with the algebra FQSym (4). Recall that this algebra is defined
by its basis (Eσ) whose product is EσEτ = Eσ/τ , where σ/τ is the word obtained by concatening σ and
the word obtained from τ by adding the size of σ to all the letters (for example 321/132 = 321465).
The subspace V of WSym⊗ FQSym linearly spanned by the Φπ ⊗Eσ such that the cycle supports of σ
is finer than π is a subalgebra, and the linear application sending Φπ,σ to Φπ ⊗ Eσ is an isomorphism of
algebras. Moreover, when the set of cycle supports of σ is finer than π, Mπ ⊗ Eσ also belongs to V and
is the image of M(σπ)

.
The linear application from BWSym to FQSym which sends M{[σ]} to Eσ and MΠ to 0 if card(Π) > 1,
is also a morphism of algebras.

3.3 Realization
Let A(j) = {a(j)

i | i > 0} be an infinite set of bi-indexed noncommutative variables, with the order
relation defined by a(j)

i < a
(j)
i′ if i < i′. Let A =

⋃
j A

(j). Consider the set partition into lists Π =

{L1, L2, . . .} = {[l11, l12, . . . , l1n1
], [l21, l

2
2, . . . , l

2
n2

], . . .} � n. Then, one obtains a polynomial realization
BWSym(A) by identifying ΦΠ with ΦΠ(A), the sum of all the monomials a1 . . . an (where the ai are in
A) such that k = k′ implies alkt , alk′s ∈ A

(j) for some j, and for each k, std(ai1 . . . aink ) = std(lk1 . . . l
k
nk

)

with {lk1 , . . . , lknk} = {i1 < · · · < ink} (The “B” of BWSym is for “bi-indexed letters”). The coproduct
∆ can be interpreted by identifying ∆(ΦΠ) with ΦΠ(A+B) as in the case of WSym. Here, if a ∈ A and
b ∈ B then a and b are not comparable.

Proposition 3.4 The Hopf algebras BWSym and BWSym(A) are isomorphic.

Now, let M ′Π(A) be the sum of all the monomials a1 . . . an, ai ∈ A, such that alkt and alk′s belong in the
same A(j) if and only if k = k′, and for each k, std(ai1 . . . aink ) = std(lk1 . . . l

k
nk

) with {lk1 , . . . , lknk} =

{i1 < · · · < ink}. For example, the monomial a(1)
1 a

(1)
1 a

(1)
2 appears in the expansion of Φ{[1,3],[2]}, but

not in the one of M ′{[1,3],[2]}. The M ′Π form a new basis (M ′Π) of BWSym. Note that this basis is not the
same as (MΠ). For example, one has

Φ{[1],[2]} = M{[1],[2]} +M{[1,2]} = M ′{[1],[2]} +M ′{[1,2]} +M ′{[2,1]}.

Consider the basis Fσ of FQSym defined in (4). The linear application, from BWSym to FQSym, which
sends M ′{[σ]} to F(σ−1), and M ′Π to 0 if card(Π) > 1, is a morphism of algebras.
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3.4 Related Hopf algebras
By analogy with the construction of BWSym, we define a “B” version for each of the algebras Sym,
QSym and WQSym. In this section, we sketch briefly how to construct them; the complete study is
deferred to a forthcoming paper.
As usual when L = [`1, . . . , `k] and M = [m1, . . . ,m2] are two lists, the shuffle product is defined recur-
sively by [ ] L = L [ ] = {L} and L M = [`1].([`2, . . . , `k] M) ∪ [m1].(L [m2, . . . ,mk]). The
algebra of biword quasi-symmetric functions (BWQSym) has its bases indexed by set compositions into
lists. The algebra is defined as the vector space spanned by the formal symbols ΦΠ, where Π is a composi-
tion into lists of the set {1, . . . , n} for a given n, together with the product ΦΠΦΠ′ =

∑
Π′′∈Π Π′[n] ΦΠ′′ ,

where Π′[n] means that we add n to each of the integers in the lists of Π′ and Π is a composition into
lists of {1, . . . , n}. Endowed with the coproduct defined by∆(ΦΠ) =

∑
Π′.Π′′=Π Φstd(Π′) ⊗ Φstd(Π′′),

BWQSym has a structure of Hopf algebra. Note that BWQSym =
⊕

n BWQSymn is naturally graded;
the dimension of the graded component BWQSymn is 2n−1n! (see sequence A002866 in (20)).
The algebra BSym =

⊕
n BSymn is a graded cocommutative Hopf algebra whose bases are indexed by

multisets of permutations. Formally, we set BSymn = span{φ{σ1,...,σk} : σi ∈ Sni , n1 + · · ·+nk = n},
φS1 .φS2 = φS1∪S2 and for any permutation σ, φ{σ} is primitive. The dimensions of the graded compo-
nents are given by the sequence A077365 of (20).
Finally, BQSym =

⊕
n BQSymn is generated by φ[σ1,...,σk], its product is φLφL′ =

∑
L′′∈L L′ φL′′

and its coproduct is ∆(φL) =
∑
L=L′.L′′ φL′ ⊗ φL′′ . The dimension of the graded component BQSymn

is given by Sloane’s sequence A051296 (20).

4 On the R-P theorem
4.1 R-P theorem and symmetric functions
Consider two setsX and Y such thatX is finite (#X = n), together with a groupG ⊂ Sn acting onX by
permuting its elements. We consider the set Y X of the mapsX → Y . The type of a map f is the vector of
the multiplicities of its images; more precisely, type(f) ∈ NY with type(f)y = #{x ∈ X : f(x) = y}.
For instance, consider X = {a, b, c, d, e}, Y = {0, 1, 2}, f(a) = f(c) = f(d) = 1, f(b) = 2, f(c) = 0:
we have type(f) = [10, 31, 12]. The action ofG onX induces an action ofG on Y X . Obviously, the type
of a function is invariant for the action of G. Then all the elements of an orbit of G in Y X have the same
type, so that the type of an orbit will be the type of its elements. The question is: how to count the number
nI of orbits for the given type I? Note that, if λI denotes the (integer) partition obtained by removing all
the zeros in I and reordering its elements in the decreasing order, λI = λI′ implies nI = nI′ ; it suffices to
understand how to compute nλ when λ is a partition. The Redfield-Pólya theorem deals with this problem
and its main tool is the cycle index:

ZG :=
1

#G

∑

σ∈G
pcycle type(σ),

where cycle type(σ) is the (integer) partition associated to the cycle of σ (for instance σ = 325614 =
(135)(46), cycle type(σ) = [3, 2, 1]). When λ = [λ1, . . . , λk] is a partition, pλ denotes the (commuta-
tive) symmetric function pλ = pλ1 . . . pλk and pn is the classical power sum symmetric function.
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The Redfield-Pólya theorem states:

Theorem 4.1 The expansion of ZG on the basis (mλ) of monomial symmetric functions is given by

ZG =
∑

λ

nλmλ.

Example 4.2 Suppose that we want to enumerate the non-isomorphic non-oriented graphs on three ver-
tices. The symmetric group S3 acting on the vertices induces an action of the group

G := {123456, 165432, 345612, 321654, 561234, 543216} ⊂ S6

on the edges. The construction is not unique. We obtain the group G by labelling the 6 edges from 1 to
6. Hence, to each permutation of the vertices corresponds a permutation of the edges. Here, the 1 labels
the loop from the vertex 1 to itself, 2 labels the edge which links the vertices 1 and 2, 3 is the loop from
the vertex 2 to itself, 4 labels the edge from the vertex 2 to the vertex 3, 5 is the loop from the vertex 3 to
itself, finally, 6 links the vertices 1 and 3. The cycle index of G is

ZG = 1
6 (p6

1 + 3p2
2p

2
1 + 2p2

3) = m6 + 2m51 + 4m42 + 6m411 + 6m33 + . . .

The coefficient 4 of m42 means that there exists 4 non-isomorphic graphs with 4 edges coloured in blue
and 2 edges coloured in red.

4.2 Word R-P theorem
If σ is a permutation, we define Φσ := Φcycle support(σ). Now for our purpose, a map f ∈ Y X will be
encoded by a word w : we consider an alphabet A = {ay : y ∈ Y }, the elements of X are relabelled by
1, 2, . . . ,#X = n and w is defined as the word b1 . . . bn ∈ An such that bi = af(i). With these notations,
the action of G on Y X is encoded by the action of the permutations of G on the positions of the letters in
the words of An.
It follows that for any permutation σ ∈ G, one has

Φσ =
∑

wσ=w

w. (1)

The cycle support polynomial is defined by ZG :=
∑
σ∈G Φσ. From (1) we deduce

ZG =
∑

w

#StabG(w)w

where StabG(w) = {σ ∈ G : wσ = w} is the subgroup of G which stabilizes w. In terms of monomial
functions, this yields :

Theorem 4.3
ZG =

∑

π

#StabG(wπ)Mπ

where wπ is any word a1 . . . an such that ai = aj if and only if i, j ∈ πk for some 1 ≤ k ≤ n.
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Example 4.4 Consider the same example as in Example 4.2. Each graph is now encoded by a word
a1a2a3a4a5a6: the letter a1 corresponds to the colour of the vertex 1, the letter 2 to the colour of the
vertex 2 and so on.
The cycle support polynomial is

ZG := Φ{{1},{2},{3},{4},{5},{6}} + Φ{{2,6},{3,5},{1},{4}}

+Φ{{1,3},{4,6},{2},{5}} + Φ{{1,5},{2,4},{3},{6}} + 2Φ{{1,3,5},{2,4,6}}.

The coefficient of M{{2,6},{3,5},{1},{4}} in ZG is 2 because it appears only in Φ{{1},{2},{3},{4},{5},{6}}

and Φ{{2,6},{3,5},{1},{4}}. The monomials of M{{2,6},{3,5},{1},{4}} are of the form abcdbcb, where a, b, c
and d are four distinct letters. The stabilizer of abcdcb inG is the two-element subgroup {123456, 165432}.
Note that the cycle support polynomial has already appeared in the literature on the work of Sagan and
Gebhard (5) on a slightly different setting which is a special case of our purpose.

4.3 From word R-P theorem to R-P theorem
The aim of this section is to link the numbers nI of Section 4.1 and the numbers #StabG(w) appearing
in Section 4.2.
If w is a word we will denote by orbG(w) its orbit under the action of G. The Orbit-stabilizer theorem
(see e.g.(3)) together with Lagrange’s theorem gives:

#G = #orbG(w)#StabG(w) (2)

Denote by Λ(π) the unique integer partition defined by (#π1, . . . ,#πk) if π = {#π1, . . . , πk} with
#π1 ≥ #π2 ≥ · · · ≥ #πk. If λ = (mkm , . . . , 2k2 , 1k1) we set λ! = km! . . . k2!k1!. The shape of a word
w is the unique set partition π(w) such that w is a monomial of Mπ(w). Note that all the orbits of words
with a fixed shape π have the same cardinality. Let π = {π1, . . . , πk} and Ak = {a1, . . . , ak} be an
alphabet of size k. we will denote by Sπ,Ak the set of words w with size k such that the number of letter

ai in w is #πi. All the words of Sπ,Ak have the same coefficients in ZG and this set splits into Λ(π)!

#orb(wπ)

orbits of size #orb(wπ)

nλ =
∑

Λ(π)=λ

λ!

#orbG(wπ)
=

∑

Λ(π)=λ

λ!#StabG(wπ)

#G
. (3)

If we consider the morphism of algebra θ : WSym → Sym which sends Φn to pn, we have θ(Mπ) =
Λ(π)!mλ. Hence, we have

1

#G
θ(ZG) =

∑

λ


 ∑

Λ(π)=λ

λ!

#orbG(wπ)


mλ =

∑

λ

nλmλ

as expected by the Redfield-Pólya theorem (Theorem 4.1).

4.4 R-P theorem without multiplicities
Examining with more details Example 4.4, the coefficient 2 of M{2,6},{3,5},{1},{4} in ZG follows from
the group {123456, 165432} of order two which stabilizes abcdcb. In terms of set partitions into lists, this
can be interpreted by M{[2,6],[3,5],[1],[4]} + M{[6,2],[5,3],[1],[4]} → 2M{{2,6},{3,5},{1},{4}}. We deduce the
following version (without multiplicities) of Theorem 4.3 in BWSym.
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Theorem 4.5 Let G be a permutation group. We have

ZG :=
∑

σ∈G
Φ( σ

cycle support(σ)) =
∑

π

∑

σ∈Stabπ(G)

M(σπ)
.

Consider again Example 4.4.

ZG = Φ( 123456
{{1}{2}{3}{4}{5}{6}}) + Φ( 165432

{{1}{26}{35}{4}}) + Φ( 345612
{{135}{246}})

+ Φ( 321654
{{13}{2}{46}{5}}) + Φ( 561234

{{135}{246}}) + Φ( 543216
{{15}{234}{6}}).

When expanded in the monomial M basis, there are exactly 2 terms of the form M( σ
{{2,6},{3,5},{1},{4}})

(for σ = 123456 and σ = 165432). Note that we can use another realization which is compatible with
the space but not with the Hopf algebra structure. It consists to set Φ̃(σπ) :=

∑
w

(
σ
w

)
, where the sum is

over the words w = w1 . . . wn (wi ∈ A) such that if i and j are in the same block of π then wi = wj . If
we consider the linear application ψ̃ sending Φ(σπ) to Φ̃(σπ), ψ̃ sends M(σπ)

to M̃(σπ)
:=
∑
w

(
σ
w

)
, where the

sum is over the words w = w1 . . . wn (wi ∈ A) such that i and j are in the same block of π if and only
if wi = wj . Let w be a word, the set of permutations σ such that

(
σ
w

)
appears in the expansion of ψ̃(ZG)

is the stabilizer of w in G. The linear application sending each biword
(
σ
w

)
to w sends Φ̃(σπ) to Φπ and∑

σ∈StabG(w)

(
σ
w

)
to #StabG(w)w. Note that #StabG(w) is also the coefficient of the corresponding

monomial Mπ(w) in the cycle support polynomial ZG. For instance, we recover the coefficient 2 in
Example 4.4 from the biwords

(
123456
abcdcb

)
and

(
165432
abcdcb

)
in ψ̃(ZG).

4.5 WSym and Harary-Palmer type enumerations
Let A := {a1, . . . , am} be a set of formal letters and I = [i1, . . . , ik] a sequence of elements of
{1, . . . ,m}. We define the virtual alphabet AI by

Φn(AI) := (ai1 . . . aik)
n
k + (ai2 . . . aikai1)

n
k + · · ·+ (aika1 . . . aik−1

)
n
k ,

if k divides n and 0 otherwise. If σ ∈ Sm we define the alphabet Aσ as the formal sum of the alphabets
Ac associated to its cycles:

Φ{1...n}[Aσ] :=
∑

c cycle in σ

Φn[Ac].

From Example 2.5.2, the set {Φ{1,...,n}[Aσ] : n ∈ N} generates the sub-C-module WSym[Aσ] of C〈A〉
(the composition Π acting by Π).
Let H ⊂ Sm and G ⊂ Sn be two permutation groups. We define Z(H;G) :=

∑
τ∈H ΦG[Aτ ].

Proposition 4.6 We have:
Z(H;G) =

∑

w∈An
#StabH,G(w)w

where StabH,G(w) denotes the stabilizer ofw under the action ofH×G (H acting on the left on the names
of the variables ai and G acting on the right on the positions of the letters in the word); equivalently,
StabH,G(ai1 . . . aik) = {(τ, σ) ∈ H ×G : aτ(iσ(j)) for each 1 ≤ j ≤ n}.
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Hence, from Burnside’s classes formula, sending each variable to 1 in Z(H;G), we obtain the number of
orbits of H ×G.

Example 4.7 Consider the set of the non-oriented graphs without loop whose edges are labelled by three
colours. Suppose that we consider the action of the groupH = {123, 231, 312} ⊂ Sn on the colours. We
want to count the number of graphs up to permutation of the vertices (G = S3) and the action ofH on the
edges. There are three edges, and each graph will be encoded by a word ai1ai2ai3 where ij denotes the
colour of the edge j. We first compute the specialization Φ{1...n}[Aσ] for 1 ≤ n ≤ 3 and σ ∈ H . We find
Φ{1}[A123] = a1 +a2 +a3, Φ{1}[A231] = Φ{1}[A312] = 0, Φ{1,2}[A123] = a2

1 +a2
2 +a2

3, Φ{1,2}[A231] =
Φ{1,2}[A312] = 0, Φ{1,2,3}[A123] = a3

1 + a3
2 + a3

3, Φ{1,2,3}[A213] = a2a3a1 + a3a1a2 + a1a2a3, and
Φ{1,2,3}[A312] = a1a3a2 +a3a2a1 +a2a1a3. Now, we deduce the values of the other Φπ[Aσ] with π  3
and σ ∈ H by the action of Π. For instance:

Φ{{1,2},{3}}[A123] = [{1,2},{3}]
(
Φ{1,2}[A123],Φ{1}[A1]

)

= a3
1 + a2

1a2 + a2
1a3 + a2

2a1 + a3
2 + a2

2a3 + a2
3a1 + a2

3a2 + a3
3.

We find also

Φ{{1,3},{2}}[A123] = a3
1 + a1a2a1 + a1a3a1 + a2a1a2 + a3

2 + a2a3a2 + a3a1a3 + a3a2a3 + a3
3,

Φ{{1},{2,3}}[A123] = a3
1 + a2a

2
1 + a3a

2
1 + a1a

2
2 + a3

2 + a3a
2
2 + a1a

2
3 + a2a

2
3 + a3

3,

Φ{{1},{2},{3}}[A123] = (a1 + a2 + a3)3.

The other Φπ[Aσ] are zero. Hence,

Z[H;S3] = Φ123[A123] + Φ132[A123] + Φ213[A123] + Φ321[A123]+
Φ231[A231] + Φ231[A312] + Φ312[A231] + Φ312[A312]

= 6(a3
1 + a3

2 + a3
3) + 2

∑
i 6=j a

2
i aj + 2

∑
i 6=j ajaiaj + 2

∑
i 6=j aja

2
i

+3(a1a2a3 + a2a3a1 + a3a1a2) + 3(a1a3a2 + a3a2a1 + a2a1a3).

The coefficient 3 of a1a2a3 means that the word is invariant under the action of three pairs of permutations
(here (123, 123), (231, 312), (312, 231)). Setting a1 = a2 = a3 = 1, we obtain Z[H,S3] = 18× 4: 18
is the order of the group H ×S3 and 4 is the number of orbits:
{a3

1, a
3
2, a

3
3}, {a2

1a2, a1a2a1, a2a
2
1, a

2
2a3, a2a3a2, a3a

2
2, a

2
3a1, a3a1a3, a1a

2
3}, {a2

2a1, a2a1a2, a1a
2
2, a

2
1a3,

a1a3a1, a3a
2
1, a

2
3a2, a3a2a3, a1a

2
3}, and {a1a2a3, a1a3a2, a2a1a3, a2a3a1, a3a1a2, a3a2a1}.
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Extending the parking space

Andrew Berget1† and Brendon Rhoades2‡

1Dept. of Mathematics, University of Washington, Seattle, WA, USA
2Dept. of Mathematics, University of California - San Diego, La Jolla, CA, USA

Abstract. The action of the symmetric group Sn on the set Parkn of parking functions of size n has received a great
deal of attention in algebraic combinatorics. We prove that the action of Sn on Parkn extends to an action of Sn+1.
More precisely, we construct a graded Sn+1-module Vn such that the restriction of Vn to Sn is isomorphic to Parkn.
We describe the Sn-Frobenius characters of the module Vn in all degrees and describe the Sn+1-Frobenius characters
of Vn in extreme degrees. We give a bivariate generalization V

(`,m)
n of our module Vn whose representation theory

is governed by a bivariate generalization of Dyck paths. A Fuss generalization of our results is a special case of this
bivariate generalization.

Résumé. L’action du groupe symétrique Sn sur l’ensemble Parkn des fonctions de stationnement de longueur n a
reçu beaucoup d’attention dans la combinatoire algébrique. Nous démontrons que l’action de Sn sur Parkn s’étend
à une action de Sn+1. Plus précisément, nous construisons un gradué Sn+1-module Vn telles que la restriction
de Sn est isomorphe à Parkn. Nous décrivons la Sn-Frobenius caractères des modules Vn à tous les degrés et
décrivent le Sn+1-Frobenius caractères de Vn en degrés extrêmes. Nous donnons une généralisation bivariée V

(`,m)
n

de notre module Vn dont la représentation théorie est régi par une généralisation bivariée des chemins de Dyck. Une
généralisation Fuss de nos résultats est un cas particulier de cette généralisation bivariée.

Keywords: parking functions, symmetric group, Dyck paths, representation, matriod

1 Introduction
This paper is about extending the visible permutation action of Sn on the space Parkn spanned by parking
functions of size n to a hidden action of the larger symmetric group Sn+1. The Sn+1-module we construct
will be a subspace of the coordinate ring of the reflection representation of type An and will inherit
the polynomial grading of this coordinate ring. Using statistics on Dyck paths, we will give an explicit
combinatorial formula for the graded Sn-Frobenius character of our module and will describe the extended
Sn+1-Frobenius character in extreme degrees.

As far as the authors know, this is the first example and proof of an extension of Parkn to Sn+1 an
Sn+1-module.

We remark that our result is the ‘best possible’ in two senses. First, it is not always possible to extend
Parkn to an Sn+2-module; for example, the action of S4 on Park4 does not extend to an action of S6.
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606 Andrew Berget and Brendon Rhoades

Also, from a combinatorial point of view, one may be interested in extending the action of Sn on Parkn
to a permutation action of the larger symmetric group Sn+1. Our extended module is graded, but is not
a permutation module. However, it is impossible to extend the action of S4 on Park4 to a permutation
action of S5.

2 Background and Main Results
A length n sequence (a1, . . . , an) of positive integers is called a parking function of size n if its nonde-
creasing rearrangement (b1 ≤ · · · ≤ bn) satisfies bi ≤ i for all i. Parking functions were introduced
by Konheim and Weiss [KW66] in the context of computer science, but have seen much application in
algebraic combinatorics with connections to Catalan combinatorics, Shi hyperplane arrangements, diago-
nal coinvariant rings, and rational Cherednik algebras. The set of parking functions of size n is famously
counted by (n + 1)n−1. The C-vector space Parkn spanned by the set of parking functions of size n
carries a natural permutation action of the symmetric group Sn on n letters:

w.(a1, . . . , an) = (aw(1), . . . , aw(n)) (1)

for w ∈ Sn and (a1, . . . , an) ∈ Parkn.
A partition λ of a positive integer n is a weakly decreasing sequence λ = (λ1 ≥ · · · ≥ λk) of

nonnegative integers which sum to n. We write λ ` n to mean that λ is a partition of n and define
|λ| := n. We call k the length of the partition λ. The Ferrers diagram of λ consists of λi left justified
boxes in the ith row from the top (‘English notation’). If λ is a partition, we define a new partition mult(λ)
whose parts are obtained by listing the (positive) part multiplicities in λ in weakly decreasing order. For
example, we have that mult(4, 4, 3, 3, 3, 1, 0, 0) = (3, 2, 2, 1).

We will make use of two partial orders on partitions in this paper. The first partial order is Young’s
lattice with relations given by λ ⊆ µ if λi ≤ µi for all i ≥ 1 (where we append an infinite string of zeros
to the ends of λ and µ so that these inequalities make sense). Equivalently, we have that λ ⊆ µ if and only
if the Ferrers diagram of λ fits inside the Ferrers diagram of µ. Dominance order on partitions is defined
by λ � µ if for all i ≥ 1 we have the inequality of partial sums λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi (where we
again append an infinite string of zeros to the ends of λ and µ). Observe that either of the relations λ ⊆ µ
or λ � µ imply that |λ| ≤ |µ|.

For a partition λ = (λ1, . . . , λk) ` n, we let Sλ denote the Young subgroup Sλ1 × · · ·×Sλk of Sn. We
denote by Mλ the coset representation of Sn given by Mλ := IndSnSλ (1Sλ) ∼=Sn CSn/Sλ and we denote
by Sλ the irreducible representation of Sn labeled by the partition λ.

LetRn denote the C-vector space of class functions Sn → C. Identifying modules with their characters,
the set {Sλ : λ ` n} forms a basis of Rn. The graded vector space R :=

⊕
n≥0Rn attains the structure

of a C-algebra via the induction product Sλ ◦ Sµ := Ind
Sn+m

Sn×Sm(Sλ ⊗C Sµ), where λ ` n and µ ` m.
We denote by Λ the ring of symmetric functions (in an infinite set of variables X1, X2, . . . , with co-

efficients in C). The C-algebra Λ is graded and we denote by Λn the homogeneous piece of degree n.
Given a partition λ, we denote the corresponding Schur function by sλ and the corresponding complete
homogeneous symmetric function by hλ.

The Frobenius character is the graded C-algebra isomorphism Frob : R → Λ induced by setting
Frob(Sλ) = sλ. It is well known that we have Frob(Mλ) = hλ. Generalizing slightly, if V =⊕

k≥0 V (k) is a graded Sn-module, define grFrob(V ; q) ∈ Λ⊗C C[[q]] to be the formal power series in
q with coefficients in Λ given by grFrob(V ; q) :=

∑
k≥0 Frob(V (k))qk.
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{3,5}

{1,4,6}

{2}

Fig. 1: A Dyck path of size 6.

A Dyck path of size n is a lattice path D in Z2 consisting of vertical steps (0, 1) and horizontal steps
(1, 0) which starts at (0, 0), ends at (n, n), and stays weakly above the line y = x. A maximal continguous
sequence of vertical steps in D is called a vertical run of D.

We will associate two partitions to a Dyck path D of size n. The vertical run partition λ(D) ` n
is obtained by listing the (positive) lengths of the vertical runs of D in weakly decreasing order. For
example, if D is the Dyck path in Figure 1, then λ(D) = (3, 2, 1). The area partition µ(D) is the
partition of length n whose Ferrers diagram is the set of boxes to the upper left of D in the n× n square
with lower left coordinate at the origin. For example, if D is the Dyck path of size 6 in Figure 1, then
µ(D) = (5, 1, 1, 1, 0, 0). The boxes in the Ferrers diagram of µ(D) are shaded. We define the area
statistic(i) on Dyck paths by area(D) = |µ(D)|. For the Dyck path in our running exampe, area(D) = 8.
By construction, we have that mult(µ(D)) = λ(D) for any Dyck path D of size n.

Dyck paths of size n can be used to obtain a decomposition of Parkn as a direct sum of coset modules
Mλ. In particular, let D be a Dyck path of size n. A labeling of D assigns each vertical run of D to a
subset of [n] := {1, 2, . . . , n} of size equal to the length of that vertical run such that every letter in [n]
appears exactly once as a label of a vertical run. Figure 1 shows an example of a labeled Dyck path of
size 6, where the subsets labeling the vertical runs are placed just to the right of the runs.

The set of labeled Dyck paths of size n carries an action of Sn given by label permutation. There is an
Sn-equivariant bijection from the set of labeled Dyck paths D of size n to parking functions (a1, . . . , an)
of size n given by letting ai be one greater than the x-coordinate of the vertical run of D labeled by i. For
example, the labeled Dyck path in Figure 1 corresponds to the parking function (2, 6, 1, 2, 1, 2) ∈ Park6.
Since any fixed labeled Dyck path of size D generates a cyclic Sn-module isomorphic to Mλ(D), it is
immediate that the parking space Parkn decomposes into coset representations as

Parkn ∼=Sn

⊕

D

Mλ(D), (2)

where the direct sum is over all Dyck pathsD of size n. Equivalently, we have that the Frobenius character
of Parkn is given by Frob(Parkn) =

∑
D hλ(D). For example, the 5 Dyck paths of size 3 shown in

Figure 3 lead to the Frobenius character

Frob(Park3) = h(3) + 3h(2,1) + h(1,1,1). (3)

(i) Many authors instead define the area of a Dyck path D to be the number of complete lattice squares between D and the line
y = x, so that our statistic would be the ‘coarea’.
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1

23

1 1 1

2 2 23 3 3

Fig. 2: The four slim subgraphs of K3.

The vector space underlying the Sn+1-module which will extend Parkn is a subspace of the polynomial
ring C[x1, . . . , xn+1] in n + 1 variables and first studied in the work of Postnikov and Shapiro [PS04].
Let Kn+1 denote the complete graph on the vertex set [n + 1]. Given an edge e = (i < j) in Kn+1, we
associate the polynomial weight p(e) := xi − xj ∈ C[x1, . . . , xn+1]. A subgraph G ⊆ Kn+1 (identified
with its edge set) gives rise to the polynomial weight p(G) :=

∏
e∈G p(e). Following Postnikov and

Shapiro, we call a subgraph G ⊆ Kn+1 slim if the complement edge set Kn+1 −G is a connected graph
on the vertex set [n+ 1].

Definition 1 Denote by Vn the C-linear subspace of C[x1, . . . , xn+1] given by

Vn := span{p(G) : G is a slim subgraph of Kn+1}. (4)

Let Vn(k) denote the homogeneous piece of Vn of polynomial degree k; the space Vn(k) is spanned by
those polynomials p(G) corresponding to slim subgraphs G of Kn+1 with k edges.

In the case n = 2, Figure 2 shows that four slim subgraphs of the complete graph K3. From left to right,
the corresponding polynomials are 1, x1 − x2, x1 − x3, and x2 − x3. It follows that V2(0) = span{1}
and V2(1) = span{x1 − x2, x1 − x3, x2 − x3}. Observe that the graded Frobenius character of V2
is grFrob(V2; q) = s(3)q

0 + s(2,1)q
1. By the branching rule for symmetric groups (see [Sag01]), we

have that grFrob(ResS3

S2
(V2); q) = s(2)q

0 + (s(2) + s(1,1))q
1. Setting q = 1 yields Frob(ResS3

S2
(V2)) =

2s(2) + s(1,1), which agrees with the Frobenius character of Park2.
While the set of polynomials {p(G) : G is a slim subgraph of Kn+1} is linearly dependent in general,

a basis for Vn can be constructed using standard matroid theoretic results. Fix a total order on the edge
set of Kn+1. Given a spanning tree T of Kn+1, the external activity ex(T ) of T is the set of edges
e ∈ Kn+1 such that e is the minimal edge of the unique cycle in T ∪ {e}. A basis of Vn is given
by {p(Kn+1 − (T ∪ ex(T ))) : T is a spanning tree of Kn+1}. It follows immediately from Cayley’s
theorem that dimVn = (n+ 1)n−1.

Since the slimness of a subgraph is preserved under the action of Sn+1 on the vertex set [n + 1] and
p(G) is homogeneous of degree equal to the number of edges in G, it follows that Vn =

⊕
k≥0 Vn(k)

is a graded Sn+1-submodule of the polynomial ring C[x1, . . . , xn+1]. In fact, the space Vn sits inside
the copy of the coordinate ring of the reflection representation of type An sitting inside C[x1, . . . , xn+1]
generated by xi − xi+1 for 1 ≤ i ≤ n.

The following result was conjectured by the first author. We postpone its proof, along with the proofs
of the other results in this section, to Section 3.

Theorem 2 Embed Sn into Sn+1 by letting Sn act on the first n letters. We have that

Res
Sn+1

Sn
(Vn(k)) ∼=Sn

⊕

D

Mλ(D), (5)
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Fig. 3: The 5 Dyck paths of size 3. From left to right, their contributions to the graded Frobenius character
grFrob(ResS4

S3
(V3); q) are h(3)q

0, h(2,1)q
1, h(2,1)q

2, h(2,1)q
2, and h(1,1,1)q

3.

where the direct sum is over all Dyck paths of size n and area k. In particular, by Equation 2 we have that

Res
Sn+1

Sn
(Vn) ∼=Sn Parkn. (6)

Equivalently, we have that grFrob(Res
Sn+1

Sn
(Vn); q) =

∑
D q

area(D)hλ(D), where the sum is over all
Dyck paths D of size n. For example, computing the area and run partitions of the 5 Dyck paths of size 3
shown in Figure 3 shows that

grFrob(ResS4

S3
(V3); q) = h(3)q

0 + h(2,1)q
1 + 2h(2,1)q

2 + h(1,1,1)q
3. (7)

Postnikov and Shapiro showed that the dimension of the vector space Vn is equal to (n+1)n−1, however
the Sn-module structure of Vn has remained unstudied. Indeed, Theorem 2 is the first description of the
Sn-module structure of Vn.

It is natural to ask for an explicit description of the Sn+1-structure of Vn or of its graded pieces Vn(k).
This problem is open in general, but we can describe the extended structure of Vn(k) in the extreme
degrees k = 0, 1, . . . , n as well as k =

(
n
2

)
. Let Cn+1 be the cyclic subgroup of Sn+1 generated by the

long cycle c := (1, 2, . . . , n + 1) and let ζ be the linear representation of Cn+1 which sends c to e
2πi
n+1 .

Mackey’s Theorem can be used to prove that the Lie representation Lien := Ind
Sn+1

Cn+1
(ζ) of Sn+1 satisfies

Res
Sn+1

Sn
(Lien) ∼=Sn C[Sn]. Stanley proved that the Lie representation arises as the action of Sn+1 on

the top poset cohomology of the lattice of set partitions of [n + 1], tensored with the sign representation
[Sta82].

Proposition 3 The module Vn(0) carries the trivial representation of Sn+1, the module Vn(1) carries
the reflection representation of Sn+1, and in general Vn(k) = Symk(Vn(1)) for k < n. The module
Vn(
(
n
2

)
) = Vn(top) carries the Lie representation of Sn+1 tensor the sign representation.

The first part of this result is optimal in the sense that if k ≥ n then Vn(k) is a proper subspace of
Symk(Vn(1)).

We will prove a bivariate generalization of Theorem 2 which includes a ‘Fuss generalization’ as a
special case. Given `,m, n > 0, define a (`,m)-Dyck path of size n to be a lattice path D in Z2 consisting
of vertical steps (0, 1) and horizontal steps (1, 0) which starts at (−` + 1, 0), ends at (mn, n), and stays
weakly above the line y = x

m . Taking ` = m = 1, we recover the classical notion of a Dyck path of
size n. Taking ` = 1 and m general, the (1,m)-Dyck paths are the natural Fuss extension of Dyck paths.
As before, we define the vertical run partition λ(D) ` n of an (`,m)-Dyck path D of size n to be the
partition obtained by listing the lengths of the vertical runs of D in weakly decreasing order. We also
define the area partition µ(D) to be the length n partition whose Ferrers diagram fits between D and a
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Fig. 4: A (2, 2)-Dyck path of size 3.

(` − 1 + mn) × n) rectangle with lower left hand coordinate (−` + 1, 0). The area of D is defined by
area(D) := |µ(D)|. We have that mult(µ(D)) = λ(D).

Figure 4 shows an example of a (2, 2)-Dyck path of size 3. The path D starts at (−1, 0), ends at (6, 3),
and stays above the line y = x

2 . We have that λ(D) = (2, 1) ` 3, µ(D) = (5, 1, 1), and area(D) = 7.

Let K(`,m)
n+1 be the multigraph on the vertex set [n + 1] with m edges between i and j for all 1 ≤ i <

j ≤ n and ` edges between i and n + 1 for all 1 ≤ i ≤ n. We call a sub-multigraph G of K(`,m)
n+1 slim if

the multi-edge set difference K(`,m)
n+1 −G is a connected multigraph on [n+ 1]. We extend the polynomial

weight p(G) ∈ C[x1, . . . , xn+1] to multigraphs G in the obvious way.

Definition 4 Let V (`,m)
n be the C-linear subspace of C[x1, . . . , xn+1] given by the span

V (`,m)
n := span{p(G) : G is a slim sub-multigraph of K(`,m)

n+1 }. (8)

As in the case m = ` = 1, the space V (`,m)
n is stable under the action of Sn and is a graded Sn-

representation with respect to the standard polynomial degree. When ` = m, V (`,m)
n also caries an action

of Sn+1. Postnikov and Shapiro showed that the dimension of V (`,m)
n is (mn + `)n−1 [PS04]. Let

V
(`,m)
n (k) be the degree k piece of V (`,m)

n .

Theorem 5 We have that
(V (`,m)
n (k)) ∼=Sn

⊕

D

Mλ(D), (9)

where the direct sum is over all (`,m)-Dyck paths of size n and area k. For k < n, V (`,m)
n (k) =

Symk(V
(`,m)
n (1)).

When ` = m, the top degree piece of V (`,m)
n is isomorphic, as an Sn+1-module, to Lien ⊗ sign⊗`.

While the degree 0 and 1 pieces of V (`,m)
n have Sn+1-structure given by the trivial representation and

the reflection representation, respectively, the authors do not know of a nice expression for the extended
Frobenius character in other degrees.

3 Proofs
While Theorem 5 implies Theorem 2, the proof of Theorem 5 is a straightforward extension of the proof
of Theorem 2 and it will be instructive to prove Theorem 2 first.
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Fig. 5: A Dyck path D of size 5 and the associated subgraph G(D) of K6.

The first step in the proof of Theorem 2 is to relate the modules on both sides of the claimed iso-
morphism by associating a subgraph G(D) of Kn+1 and a polynomial p(D) ∈ C[x1, . . . , xn+1] to
any Dyck path D of size n. We start by labeling the 1 × 1 box b which is completely above the line
y = x with the edge e(b) = (n − j, n − i) in Kn+1, where (i, j) is the upper left coordinate of b. See
Figure 5 for an example of this labeling in the case n = 5. We let G(D) be the subgraph of Kn+1

consisting of those edges e(b) for which the box b is to the upper left of the path D. In Figure 5,
the shaded boxes above the path D each contribute an edge to the subgraph G(D) and we have that
G(D) = {1− 6, 1− 5, 1− 4, 1− 3, 2− 6, 2− 5, 3− 6}.
Lemma 6 The subgraph G(D) is slim for any Dyck path D.

Proof: The subgraph G(D) contains none of the edges in the path 1− 2− · · · − (n+ 1). 2

By Lemma 6, the polynomial p(D) := p(G(D)) is contained in Vn. For example, if n = 5 and D is
the Dyck path shown in Figure 5, we have that

p(D) = (x1 − x6)(x1 − x5)(x1 − x4)(x1 − x3)(x2 − x6)(x2 − x5)(x3 − x6) ∈ V5. (10)

By construction, for any Dyck pathD the polynomial p(D) is homogeneous with degree equal to area(D).
In order to prove the direct sum decomposition in Theorem 2, we will show that the polynomials p(D)

project nicely onto a certain subspace of C[x1, . . . , xn+1]. Since Theorem 2 only concerns the restriction
of Vn to Sn, it is natural to consider a subspace of C[x1, . . . , xn+1] which is closed under the action of
Sn but not of Sn+1.

Let stn := (n − 1, n − 2, . . . , 1) be the staircase partition of length n − 1. We call a partition
λ = (λ1, . . . , λn) sub-staircase if λ ⊆ stn (observe that this definition has tacit dependence on n). For
any Dyck path D of size n, the partition µ(D) is sub-staircase.

For a partition λ = (λ1, . . . , λn), we use the shorthand xλ := xλ1
1 · · ·xλnn ∈ C[x1, . . . , xn]. We call a

monomial xd11 · · ·x
dn+1

n+1 in the variables x1, . . . , xn+1 sub-staircase if there exists a permutation w ∈ Sn
and a sub-staircase partition λ = (λ1 ≥ · · · ≥ λn) ` n

xd11 · · ·x
dn+1

n+1 = w.xλ. (11)
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In particular, the variable xn+1 does not appear in any sub-staircase monomial. If the monomial xd11 · · ·x
dn+1

n+1

is sub-staircase, the partition λ is uniquely determined from the monomial; call this the exponent partition
of the monomial. Let Wn ⊂ C[x1, . . . , xn+1] be the C-linear span of all sub-staircase monomials. The
subspace Wn is closed under the action of Sn, but not under the action of Sn+1.

In the case n = 3, the S3-orbits of the 16 staircase monomials in C[x1, . . . , x4] are shown in the
following table, where the left column shows a representative from each orbit.

1
x1 x2, x3
x21 x22, x

2
3

x1x2 x1x3, x2x3
x21x2 x21x3, x

2
2x1, x

2
2x3, x

2
3x1, x

2
3x2

The S3-orbits are parametrized by sub-staircase partitions λ = (λ1, λ2, λ3) and each orbit contains a
unique representative of the form xλ. The staircase monomials form a linear basis of W3 and the cyclic
S3-submodule ofW3 generated by xλ is isomorphic toMmult(λ). The natural bijection between exponent
vectors and parking functions affords an isomorphism W3

∼=S3
Park3. These observations generalize in

a straightforward way to the following lemma, whose proof is left to the reader.

Lemma 7 The set of sub-staircase monomials forms a linear basis for Wn and is closed under the action
of Sn. The Sn-orbits are parametrized by sub-staircase partitions λ, and the orbit labeled by λ has a
unique monomial of the form xλ. The cyclic Sn-submodule of Wn generated by xλ is isomorphic to
Mmult(λ) and we have that Wn

∼=Sn Parkn.

With Lemma 7 in mind, we will construct a graded Sn-module isomorphism Vn
∼−→ Wn. We define a

graded Sn-module homomorphism φ : Vn →Wn by the following composition:

φ : Vn ↪→ C[x1, . . . , xn+1] � C[x1, . . . , xn] �Wn, (12)

where the first map is inclusion, the second is the specialization xn+1 = 0, and the third linear map fixes
the space Wn pointwise and sends monomials which are not sub-staircase to zero.

We want to show that φ is an isomorphism. Postnikov and Shapiro showed that dim(Wn) = dim(Vn) =
(n+ 1)n−1 [PS04], so it is enough to show that φ is surjective. We will do this by analyzing the polyno-
mials φ(p(D)), where D is a Dyck path of size n.

The set of sub-staircase partitions forms an order ideal in dominance order. The next lemma states
that the transition matrix between the set {φ(p(D)) : D a Dyck path of size n} expands in the monomial
basis of Wn given by {xλ : λ sub-staircase} in a unitriangular way with respect to any linear extension
of dominance order (where we associate φ(p(D)) with the partition µ(D)).

Lemma 8 Let D be a Dyck path of size n. There exist integers cλ,w ∈ Z such that

φ(p(D)) = xµ(D) +
∑

λ≺µ(D)
|λ|=|µ(D)|
w∈Sn

cλ,ww.x
λ. (13)
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Proof: By definition, we have that

p(D) =
∏

e=(i<j)∈G(D)

(xi − xj), (14)

so (up to sign) a typical monomial in the expansion of p(D) is obtained by choosing an endpoint of every
edge inG(D) and multiplying the corresponding variables. The map φ kills any monomial which contains
the variable xn+1, so up to sign a typical monomial in φ(p(D)) is obtained by choosing an endpoint of
each edge in G(D) and multiplying the corresponding variables such that whenever G(D) has an edge of
the form (i < n+1), we choose the smaller endpoint i. The result follows from the construction ofG(D)
and the definition of dominance order. 2

As an example of Lemma 8, consider the case n = 5 and let the Dyck path D be shown in Figure 5
with µ(D) = (4, 2, 1). To calculate φ(p(D)), we set x6 = 0 in the product formula for p(D) given in
Equation 10 and expand. The resulting polynomial is

φ(p(D)) = x1(x1 − x5)(x1 − x4)(x1 − x3)x2(x2 − x5)x3 (15)

= x41x
2
2x3 + terms involving sub-staircase monomials with exponent partition ≺ (4, 2, 1).

(16)

We are ready to complete the proof of Theorem 2.

Proof of Theorem 2: By Lemma 7, the set of sub-staircase monomials forms a linear basis of Wn, so
Lemma 8 implies that the Sn-module homomorphism φ : Vn → Wn is surjective. Since dim(Vn) =

dim(Wn), this implies that φ is also injective and gives an isomorphism Res
Sn+1

Sn
(Vn) ∼=Sn Parkn. To

prove the graded isomorphism in Theorem 2, it is enough to observe that mult(µ(D)) = λ(D) for any
Dyck path D and apply Lemmas 7 and 8 together with the fact that φ is graded. 2

It may be tempting to guess that p(D) generates a cyclic Sn-submodule of Vn isomorphic to Mλ(D),
but this is false in general. The reason for this is that while the ‘leading term’ in the expansion of φ(p(D))
in Lemma 8 generates the submoduleMλ(D) under the action of Sn, the other terms in this expansion can
cause φ(p(D)) to generate a different cyclic submodule.

We are ready to prove the claimed Sn+1-structure of the extreme degrees of the graded module Vn(k).

Proof of Proposition 3: It is clear from the definitions that Vn(0) carries the trivial representation of Sn+1.
The space Vn(1) has basis given by the polynomials x1−x2, x2−x3, . . . , xn−xn+1 and hence carries the
reflection representation of Sn+1 (i.e., the irreducible Sn+1-module corresponding to the partition (n, 1)).
Since Vn ⊆ Sym(Vn(1)) we are claiming that in degree k < n this is an equality. The Hilbert series of
Vn is the Tutte polynomial evaluation q(

n+1
2 )−nTKn+1

(1, 1/q) and so we must prove that the first n − 1

terms of this sum are the binomial coefficents
(
n+k−1

k

)
. There is nothing special aboutKn+1 in this claim

and we will prove a more general statement in Lemma 9.
To prove that Vn(top) is isomorphic to Lien+1 ⊗ sign we reason as follows. The space Vn(top) is

spanned by those p(G) where the complementary subgraph Kn+1 \G is connected and has n edges.
LetAn denote the braid arrangementin Cn+1, which is the union of those hyperplanes with at least two

coordinates equal. Let H∗(Cn+1 \ An;C) denote the (complexified) de Rham cohomology ring of its
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complement. Consider, now, the linear map c : Vn(top)→ Hn(Cn+1 \ An) that sends

p(G) 7→ p(G) · d(x1 − x2) ∧ d(x2 − x3) ∧ · · · ∧ d(xn − xn+1)/
∏

1≤i<j≤n
(xi − xj).

This is an isomorphism of vector spaces, since it is division by the Vandermond product, followed by mul-
tiplication by the n-form. To see that c is equivariant notice that

∧n
Vn(1) carries the sign representation

of Sn+1, because it is 1 dimensional and non-trivial. Likewise does the one dimensional representation
spanned by the Vadnermond product. It follows that the signs introduced by multiplication by the n-form
and division by the Vandermond cancel, and c is equivariant.

Finally, the top degree cohomology of the complement Cn+1 \ An is known to be Sn+1-isomorphic to
the top degreee Whitney homology of its lattice of flats. The lattice of flats of An is the partition lattice
Πn+1 and by a result of Stanley [Sta82] (beautifuly recounted by Wachs in [Wac07]), the top degree
Whitney homology of the partition lattice Πn+1 is Lien+1 ⊗ sign. 2

Lemma 9 Let G be a connected graph on v vertices with e edges. Denote the Tutte polynomial of G by
TG(x, y). Then, the polynomial qe−v+1TG(1, 1/q) takes the form,

1 + (v − 1)q +

(
v

2

)
q2 +

(
v + 1

3

)
q3 + · · ·+

(
(v − 1) + (v − 2)− 1

v − 2

)
qv−2 +O(qv−1).

Proof: We write TG(x, y) in terms of the two variable coboundary polynomial, χG(λ, ν). This is the sum

χG(λ, ν) =
1

λ

e∑

i=0

ci(G;λ)νi

where ci(G;λ) is the number of ways to color the vertices ofGwith λ colors and exactly imonochromatic
edges. It is a fact that this is a polynomial in λ and ν. Now by [Whi92, Theorem 6.3.26],

qe−v+1TG(1, 1/q) =
qe

(1− q)v−1χG(0, 1/q).

Thus, to prove the first part of the lemma we will show that ci(G;λ) = 0 for e − v + 1 < i < e, and
that ce(G;λ) = λ. Suppose that we have colored the vertices of G and we have more than e − v + 1
monochromatic edges. Then the collection of monochromatic edges forms a connected subgraph of G.
It follows that all vertices of G are colored the same and hence all edges of G are monochromatic. This
means that ci(G;λ) = 0 unless i = e. That ce(G;λ) = λ is clear. 2

The proof of Theorem 5 is a straight-forward extension of the proof of Theorem 2 and is only sketched.

Proof of Theorem 5, sketch: Given any (`,m)-Dyck path D of size n we associate a sub-multigraph
G(D) of K(`,m)

n+1 by letting every box which contributes to area(D) correspond to a single edge in the
multigraph G(D); the labeling which accomplishes this is shown in Figure 6 in the case (`,m) = (3, 2)
and n = 4. For general `,m, and n, we label the boxes in the ith row from the top from left to right with
(`+m−2) copies of the edge i−(n+1),m copies of the edge i−n,m copies of the edge i−(n−1), . . . ,
m copies of the edge i− (i+ 2), and (m− 1) copies of the edge i− (i+ 1).
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34
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Fig. 6: A (3, 2)-Dyck path D of size 4 and the associated sub-multigraph G(D) of K(3,2)
4 .

For any (`,m)-Dyck path D of size n, the multigraph complement of G(D) within K(`,m)
n contains

each of the edges in the path 1 − 2 − · · · − n − (n + 1) with multiplicity at least one. Therefore, the
sub-multigraph G(D) is slim and the polynomial p(D) := p(G(D)) is contained in V (`,m)

n .
We say that a partition λ with n parts is sub-(`,m)-staircase if in Young’s lattice we have the relation

λ ⊆ (`− 1 +m(n− 1), `− 1 +m(n− 2), . . . , `− 1). A monomial xd11 · · ·x
dn+1

n+1 is sub-(`,m)-staircase
if there exists w ∈ Sn and a sub-(`,m)-staircase partition λ such that

xd11 · · ·x
dn+1

n+1 = xλ1

w(1) · · ·x
λn
w(n). (17)

Let W (`,m)
n be the subspace of C[x1, . . . , xn+1] spanned by the set of all sub-(`,m)-staircase monomi-

als. We have that W (`,m)
n is closed under the action of Sn and the degree k homogeneous piece of W (`,m)

n

is isomorphic as an Sn-module to the direct sum on the right hand side of the isomorphism asserted in
Theorem 5.

The isomorphism in Theorem 5 is proven by showing that the graded Sn-module homomorphism
φ(`,m) : V

(`,m)
n →W

(`,m)
n given by the composite

φ(`,m) : V (`,m)
n ↪→ C[x1, . . . , xn+1] � C[x1, . . . , xn] �W (`,m)

n (18)

is an isomorphism, where the first map is inclusion, the second is the evaluation xn+1 = 0, and the third
fixes W (`,m)

n pointwise and sends every monomial which is not sub-(`,m)-staircase to zero.
Postnikov and Shapiro proved that the vector space V (`,m)

n has dimension (` + mn)n−1 [PS04]. A
standard counting argument shows that there are (` + mn)n−1 sub-(`,m)-staircase monomials, so we
have that dim(V

(`,m)
n ) = dim(W

(`,m)
n ). Therefore, to show that φ(`,m) is a graded isomorphism of

Sn-modules, it is enough to show that φ(`,m) is surjective.
To show that φ(`,m) is surjective, we prove a generalization of Lemma 8 which states that for any

(`,m)-Dyck path D of size n, the monomial expansion of φ(`,m)(p(D)) has the form

φ(`,m)(p(D)) = xµ(D) + terms involving monomials whose exponent partitions are ≺ µ(D), (19)

where we extend the definition of µ(D) to (`,m)-Dyck paths of size n in the obvious way. This trian-
gularity result implies that φ(`,m) is surjective, and dimension counting implies that φ(`,m) is a graded
Sn-module isomorphism. Theorem 5 follows.
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The claim about V (`,m)
n in low degree follows since Vn ⊂ V (`,m)

n . The claim about V (`,`)
n (top) follows

since this space is isomorphic to Vn(top), the isomorphism being division by
∏
i<j(xi − xj)`−1. 2

4 Concluding Remarks
In this paper we constructed a graded Sn+1-module Vn which satisfies Res

Sn+1

Sn
(Vn) ∼=Sn Parkn. As we

mentioned in Section 1, there does not exist an S6-module M such that ResS6

S4
(M) ∼=S4 Park4, so we

cannot hope for an extension of Parkn to a symmetric group of higher rank than n+ 1 in general.
On the other hand, we identified the top degree Vn(top) of Vn with the Lie representation Lien of Sn+1

tensor the sign representation. Whitehouse [Whi97] proved that the representation Lien extends to Sn+2.
This suggests the following problem.

Problem 10 For which values of n and k does Vn(k) extend to a representation of Sn+2?

By Whitehouse’s result, for any n > 0, the k-value k =
(
n−1
2

)
leads to an extension as in Problem 10.

Also, since Vn(0) is the trivial representation of Sn+1, one can take k = 0 and n arbitrary. On the other
hand, if k = 1 we have that Vn(1) is the reflection representation of Sn+1. For n > 3, this representation
is not the restriction of any Sn+2-module.
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Kazhdan–Lusztig polynomials of boolean
elements
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Abstract. We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic ana-
logue of type q in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig
theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan num-
bers and use a combinatorial interpretation of the Coxeter graph of the group. In the case of classical Weyl groups,
this combinatorial interpretation can be restated in terms of statistics of (signed) permutations. As an application
of the formulas, we compute the intersection homology Poincaré polynomials of the Schubert varieties of boolean
elements.

Résumé. Nous donnons des formules combinatories pour les polynômes de Kazhdan-Lusztig et leurs analogues
parabolique de type q pour les éléments booléens, introduite dans [M. Marietti, Boolean elements in Kazhdan–Lusztig
theory, J. Algebra 295 (2006)], dans les groupes de Coxeter dont le graphe de Coxeter est un arbre. Ces formules
utilisent les nombres de Catalan et une interprétation combinatoire des graphes du groupe de Coxeter. Dans le cas
des groupes de Weyl classiques, cette interprétation combinatoire peut être reformulée en termes de statistiques de
permutations avec signe. Avec ces formules, on peut calculer le polynôme de l’intersection homologie de Poincaré
pour la variété de Schubert de booléen éléments.

Keywords: Coxeter groups, Kazhdan–Lusztig polynomials, Boolean elements, Poincaré polynomials

1 Introduction
In their fundamental paper Kazhdan and Lusztig (1979) defined, for every Coxeter group W , a family
of polynomials, indexed by pairs of elements of W , which have become known as the Kazhdan–Lusztig
polynomials of W (see, e. g., (Humphreys, 1990, Chapter 7) or (Björner and Brenti, 2005, Chapter 5)).
These polynomials play an important role in several areas of mathematics, including the algebraic geom-
etry and topology of Schubert varieties and representation theory (see, e. g., (Björner and Brenti, 2005,
Chapter 5), and the references cited there). In particular, their coefficients gives the dimensions of the
intersection cohomology modules for Schubert varieties (see, e. g., Kazhdan and Lusztig (1980)).

In order to find a method for the computation of the dimensions of the intersection cohomology modules
corresponding to Schubert varieties inG/P , where P is a parabolic subgroup of the Kac-Moody groupG,

†This paper is part of the author’s Ph.D. thesis written under the direction of Prof. F. Brenti at the Univ. ”la Sapienza” of Rome,
Italy.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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(Deodhar (1987)) introduced two parabolic analogues of these polynomials which correspond to the roots
x = q and x = −1 of the equation x2 = q + (q − 1)x. These parabolic Kazhdan–Lusztig polynomials
reduce to the ordinary ones for the trivial parabolic subgroup and are also related to them in other ways
(see, e. g., Proposition 2.2 below). Besides these connections the parabolic polynomials also play a
direct role in several areas including the theories of generalized Verma modules (Casian and Collingwood
(1987)), tilting modules (Soergel (1997a), Soergel (1997b)) and Macdonald polynomials(Haglund et al.
(2005a), Haglund et al. (2005b)).

The purpose of this work is to give explicit combinatorial product formulas for all (parabolic and ordi-
nary) Kazhdan-Lusztig polynomials indexed by pairs of boolean elements (see Section 2 for the definition)
in all Coxeter groups whose Coxeter graph is a tree. Our results show that all such polynomials have non-
negative coefficients, conjectured by Kazhdan and Lusztig (1979), and give a combinatorial interpretation
of them in terms of Catalan numbers and the Coxeter graph of the group. In the case of classical Weyl
groups, this combinatorial interpretation can be restated in terms of excedances and other statistics of
(signed) permutations. Our results also confirm a conjecure of Brenti on the parabolic Kazhdan-Lusztig
polynomials of type q (see Corollary 3.3 below).

2 Definitions, notation and preliminaries
We let P := {1, 2, 3, . . . }, N := P∪{0}, Z := N∪{−1,−2, . . . }. For all m,n ∈ Z, m ≤ n we set
[m,n] := {m,m+ 1, . . . , n} and [n] := [1, n]. Given a set A we denote by #A its cardinality.

We follow (Stanley, 1997, Chapter 3) for poset notation and terminology. In particular, given a poset
(P,≤) and u, v ∈ P we let [u, v] := {w ∈ P |u ≤ w ≤ v} and call this an interval of P . We say that v
covers u, denoted u / v (or, equivalently, that u is covered by v) if #[u, v] = 2.

We follow Humphreys (1990) for general Coxeter groups notation and terminology. Given a Coxeter
system (W,S) and u ∈ W we denote by l(u) the length of u in W , with respect to S, i. e. the minimal
length of words si1 · · · sik = u whose alphabet is S (such minimal words are called reduced). Given
u, v ∈W we denote by l(u, v) = l(v)− l(u). We let DR(u) := {s ∈ S|l(us) < l(u)} the set of the right
descents of u, DL(u) := {s ∈ S|l(su) < l(u)} the set of the left descents of u and we denote by ε the
identity of W . Given J ⊆ S we let WJ the parabolic subgroup generated by J and

W J := {u ∈W |l(su) > l(u) for all s ∈ J} (1)

Note that W ∅ = W (the above definition is a little bit different from the classical one given in (Björner
and Brenti, 2005, Definition 2.4.2)). IfWJ is finite, then we denote by w0(J) its longest element. We will
always assume that W J is partially ordered by Bruhat order. Recall (see e.g. (Humphreys, 1990, Chapter
5.9 and 5.10)) that this means that x ≤ y if and only if for one reduced word of y (equivalently for all)
there exists a subword that is a reduced word of x. Given u, v ∈W J , u ≤ v we let

[u, v]J := {w ∈W J |u ≤ w ≤ v},

and [u, v] := [u, v]∅.
For J ⊆ S, x ∈ {−1, q} and u, v ∈ W J we denote by P J,xu,v (q) the parabolic Kazhdan–Lusztig poly-

nomials in W J of type x (we refer the reader to Deodhar (1987) for the definitions of these polynomials,
see also Proposition 2.2 below). We denote by Pu,v(q) the ordinary Kazhdan–Lusztig polynomials.
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For u, v ∈ W J let µJ,q(u, v) be the coefficient of q
1
2 (l(u,v)−1) in P J,qu,v (q) (so µJ,q(u, v) = 0 when

l(v) − l(u) is even). It is well known that if u, v ∈ W J then µJ,q(u, v) = µ(u, v), the coefficient of
q

1
2 (l(u,v)−1) in Pu,v(q) (see Corollary 2.1 below). The following result is due to Deodhar, and we refer

the reader to Deodhar (1987) for its proof.

Proposition 2.1 Let (W,S) be a Coxeter system, J ⊆ S, and u, v ∈ W J , u ≤ v. Then for each
s ∈ DR(v) we have that

P J,qu,v (q) = P̃u,v − M̃u,v (2)

where

P̃u,v =





P J,qus,vs + qP J,qu,vs if us < u;
qP J,qus,vs + P J,qu,vs if u < us ∈W J ;
0 if u < us 6∈W J .

and
M̃u,v =

∑

u≤w<vs|ws<w
µ(w, vs)q

l(w,v)
2 P J,qu,w(q).

The parabolic Kazhdan–Lusztig polynomials are related to their ordinary counterparts in several ways,
including the following one, which may be taken as their definition in most cases.

Proposition 2.2 Let (W,S) be a Coxeter system, J ⊆ S and u, v ∈W J . Then we have that

P J,qu,v (q) =
∑

w∈WJ

(−1)l(w)Pwu,v(q).

Moreover, if WJ is finite, then
P J,−1u,v (q) = Pw0(J)u,w0(J)v(q).

A proof of this result can be found in Deodhar (1987) (see Proposition 3.4, and Remark 3.8). Since for
all w ∈WJ and u ∈W J we have l(wu) = l(w) + l(u) by (Björner and Brenti, 2005, Proposition 2.4.4),
then the degree of Pwu,v(q) in Proposition 2.2 is less than 1

2 (l(u, v) − 1) except when w = ε. Therefore
we have

Corollary 2.1 For any J ⊆ S and u, v ∈W J we have

µJ,q(u, v) = µ(u, v).

Proposition 2.3 Let (W,S) a Coxeter system and J ⊆ S. Let u, v ∈W J and s ∈ DR(v).

a) If us 6∈W J then P J,qu,v (q) = 0;

b) if us ∈W J then P J,qus,v(q) = P J,qu,v (q);

c) if µ(u, v) 6= 0 then DR(v) ⊆ DR(u) and DL(v) ⊆ DL(u).

In the rest of the paper we will consider parabolic Kazhdan–Lusztig polynomials of type q. Therefore
we will write P Ju,v instead of P J,qu,v .

Let (W,S) be any Coxeter system and t be a reflection in W . Following Marietti (Marietti (2002),
Marietti (2006) and Marietti (2010)), we say that t is a boolean reflection if it admits a boolean expression,
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which is, by definition, a reduced expression of the form s1 · · · sn−1snsn−1 · · · s1 with sk ∈ S, for all
k ∈ {1, . . . n} and si 6= sj if i 6= j. We say that u ∈W is a boolean element if u is smaller than a boolean
reflection in the Bruhat order. Let v be a reduced word of a boolean element and s ∈ S, we denote by
v(s) the number of occurrences of s in v.

Given a Coxeter system (W,S), the Coxeter graph of W is a graph whose vertex set is S and two
vertices s, s′ are joined by an edge if ss′ 6= s′s. We label this edge with m(s, s′), the smallest positive
integer such that (ss′)m(s,s′) = ε (m(s, s′) = ∞ if there is no such integer). We say that W is a tree-
Coxeter group if its Coxeter graph is a tree.

fai o nuova sezione o breve intro For any generator si ∈ S we denote by Si = S \ {si} and by
com(si) the subset of S which contains all elements commuting with si different from si.

Lemma 2.1 Let u, v ∈ W J such that siu, siv ∈ W J
Si (i. e. there exist reduced words for u, v starting

with si and with no other occurrences of si). Then

P Ju,v = P J∩com(si)
siu,siv .

Lemma 2.2 Let u, v ∈W J be such that u, siv ∈WSi (i. e. there are no occurrences of si in any reduced
expression of u and siv). Then

P Ju,v =

{
P Ju,siv if siv ∈W J

0 otherwise

We now introduce a family of numbers which are used in the next section. The Catalan triangle is a
triangle of numbers formed in the same manner as Pascal’s triangle, except that no number may appear
on the left of the first element (see (OEI, sequence A008313)).

1
1

1 1
2 1

2 3 1
5 4 1

5 9 5 1
14 14 6 1

14 28 20 7 1
42 48 27 8 1

Let h ≥ 1. We set

fh(q) =

[h2 ]∑

i=0

C(h, i)q[
h
2 ]−i

where [h] denotes the integer part of h and C(h, i) is the i-th number in the h-th row (here we start the
enumeration from 0). For example f4(q) = 2q2 + 3q + 1; f7(q) = 14q3 + 14q2 + 6q + 1. Note that in
the first column we find the classical Catalan numbers (see (OEI, sequence A008313) for details).
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3 Parabolic Kazhdan–Lusztig polynomials
Let (W,S) be a tree-Coxeter group. Let t = si1 · · · sin−1sinsin−1 · · · si1 be a boolean reflection. Consider
the Coxeter graph G and represent it as a rooted tree with root the vertex corresponding to the generator
sin . In this paper all the roots will be depicted on the right of their graphs. In Figure 1 we give the Coxeter
graph of the affine Weyl group D̃11.

•s11

•s10

•s2

•s1

•s9

•s3

•s8

•s4

•s7

•s5

•s6

Fig. 1: The Coxeter graph of D̃11 with root s6, corresponding to the reflection t =
s1s2 · · · s5s10s11s9s8s7s6s7s8s9s11s10s5 . . . s2s1.

According to such rooted graph we say that sj is on the right (respectively on the left) of si if and only
if there exists an edge joining them and the only path from si to sn contains sj .

Let w be a word in the alphabet S and s ∈ S. We denote by w(s) the number of occurrences of s in
w. Let u, v ∈ W be such that u, v ≤ t. Let u, v be the unique reduced expressions of u, v satisfying the
following properties

• v is a subword of s1 · · · , sn−1snsn−1 · · · s1 and if i is such that v(si) = 1 and v(sj) = 0, where sj
is the only element on the right of si, then we choose the subword with si in the leftmost admissible
position;

• u is a subword of v and if i is such that u(si) = 1 and u(sj) = 0, we apply the same above rule.

Here we give an example. Let t = s1s2 · · · s5s10s11s9s8s7s6s7s8s9s11s10s5 . . . s2s1 in D̃11, see
Figure 1. Let v = s4s5s10s11s6s7s8s9s5s4s2s1 and u = s8s6s1 then v = s1s2s4s5s10s11s6s7s8s9s5s4
and u = s1s6s8.

Now we give a graphical representation of the pair (v, u). We start from the rooted tree of the Coxeter
graph and we substitute for each vertex a table with one column and two rows. In the first row we write
v(sj) (sj is the element associated to the vertex); in the second row we write u(sj). In the case v(sj) = 1,
it is possible that sj is on the left or on the right of sn (the root) as subword of t. We distinguish the two
cases by writing 1l if sj is on the left of sn, and 1r otherwise. By convention we write 1l in the root sn if
v(sn) 6= 0. We apply the same rule to the second row. Moreover, in the first row, we use capital letter R
instead of r if the second row of the column to the right does not contain 0.

We mark the column corresponding to sj with ◦ if j ∈ J and with × if j 6∈ J . Finally, if a vertex sj
has only one vertex on the left then we write the two corresponding columns in same table. In Figure 2
we give the graphical representation of the pair (v, u) in D̃11, with J = {s5, s7}.
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×
1l
0

×
1l
1l

×
1l
0

×
1l
0

× × ◦
0 2 2
0 0 0

× × ◦
1R 1r 1R
0 1r 0

×
1l
1l

Fig. 2: Diagram of (v = s1s2s4s5s11s10s6s7s8s9s5s4, us1s6s8) in D̃11.

In the sequel a symbol ∗ denotes the possibility to have arbitrary entries in the cell. A symbol such as
6 1l, 6 0, etc. means that the value in the cell is not 1l, 0, etc. Moreover we will be interested in subdiagrams
of such representations, i. e. diagrams obtained by deleting one or more columns. Since the order of the
tables from top to bottom is not important (while the order from left to right is fundamental), we use the
following notation



∗
a
b



n

∗
c
d

∗
a
b

∗
e
f

to mean
...

...

∗
a
b

∗
c
d

∗
e
f

... (3)
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where the column with entries a, b is repeated n times. Now we give all the definitions necessary to
Theorem 3.1.

Given a pair (v, u) in W , we let ah(u, v) be the number of subdiagrams in the diagram of (u, v) of one
of the following type:



∗
6 2
∗



n

×
1∗
0


∗
2
6 2



h+1

;



∗
6 2
∗



n

×
2
0


∗
2
6 2



h

;



∗
x
y



n

◦
1R
0


∗
2
6 2



h+1

;



∗
6 2
∗



n

∗
1l
1l

◦
1∗
0



∗
2
6 2



h+1

;



∗
6 2
∗



n

∗
1l
1l

◦
2
0



∗
2
6 2



h

;

We define bh(u, v) be the number of subdiagrams in the diagram of (u, v) of one of the following type:



∗
x
y



n

◦
1l/r
0


∗
2
6 2



h+1

;



∗
x
y



n

◦
2
0


∗
2
6 2



h

.
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We set c(u, v) be the number of subdiagrams in the diagram of (u, v) of one of the following type:



∗
x
y



n ◦

2
0

;



∗
x
y



n

◦
1l
0

∗
∗
0

;



∗
x
y



n

◦
1r
0

∗
2
6 2

;



∗
x
y



n ◦

1r
0

;



∗
x
y



n

◦
1l
0

∗
2
6 2

;



∗
x′

y′



n ◦

2
1r

;



∗
x′

y′



n

◦
1l
1l

∗
2
6 2

.

Finally, we set c′(u, v) be the number of subdiagrams of the diagram of (u, v) of the following type:



∗
x′

y′



n

◦
∗
1l

∗
2
1l

.
m(s,s’)=3
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In all previous diagrams n is an arbitrary non–negative integer and (x, y) ∈ P1, (x′, y′) ∈ P1 ∪ P2 with
P1 = {(1l, 0), (1r, 0), (1r, 1r), (2, 1r)}, P2 = {(1R, 0), (1R, 1r), (2, 0)}. In each diagram (x, y), (x′, y′),
(6 2, ∗) or (2, 6 2) are not necessarily the same pair for all n ≥ 0 (or h ≥ 0) columns. We can now state the
main result of this work.

Theorem 3.1 Let J ⊆ S, u, v ∈W J and set c(u, v) = c(u, v) + c′(u, v). We have

P Ju,v(q) =

{ ∏
h≥1 f

ah
h+1(fh+1 − 1)bh if c(u, v) = 0

0 otherwise

Corollary 3.1 Let J ⊆ S, u, v ∈ W J with l(v) − l(u) ≥ 3 odd. Then µ(u, v) 6= 0 if and only if the
entries in each column of the diagram of (u, v) are equal except for exactly one subdiagram which is



∗
2
1l



h+1 ∗

6 0
0

or



∗
2
1l



h ∗ ∗

2 . . . 2
0 . . . 0

In this case µ(u, v) = C([h+1
2 ]), the [h+1

2 ]-th Catalan number.

In the case of the classical Kazhdan–Lusztig polynomials, Theorem 3.1 becomes much simpler.

Corollary 3.2 Let W be a tree-Coxeter group and u, v ∈ W be boolean elements. Then Pu,v(q) =∏
h≥1 f

ah
h+1, where ah is defined before Theorem 3.1.

For example, the Kazhdan–Lusztig polynomial of the pair (u, v) depicted in Figure 2 is P Ju,v = f2(q)−
1 = q, since ah = 0 for all h ≥ 0, b1 = 1 and bh = 0 for all h 6= 1.

Remark 3.1 Theorem 3.1 implies result in (Marietti, 2010, Theorem 5.2).

We give the following easy consequence of Theorem 3.1 which proves, in the case of boolean elements, a
conjecture of Brenti (private communication).

Corollary 3.3 Let I ⊆ J and u, v ∈W J . Then

P Ju,v(q) ≤ P Iu,v(q)

in the coefficientwise comparison.

cita solo atilde

4 Poincaré polynomials
Given v ∈ W , let Fv(q) =

∑
u≤v q

l(v)Pu,v . It is well known that, if W is any finite Coxeter or affine
Weyl group, Fv(q) is the intersection homology Poincaré polynomial of the Schubert variety indexed by
v (see Kazhdan and Lusztig (1980)). In this section we compute the Poincaré polynomial for any boolean
element in a Coxeter group whose Coxeter graph is a tree with at most one vertex having more than two
adjacent vertices (such groups include all classical finite Coxeter and affine Weyl groups except Ãn and
D̃n).
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Let v ∈ W be a boolean element and consider the diagram of (εW , v). For convenience we will not
depict the second row of each column which is always 0 and we omit all symbols ×. We will call it the
diagram of v.

Let v be a boolean element and let s be the element of S associated to one of the leftmost vertices in the
diagram of v. We set F \v,s =

∑
ql(v)Pu,v where the sum runs over all elements u ≤ v such that u(s) 6= 0

and F 0
v,s =

∑
ql(v)Pu,v where the sum runs over all elements u ≤ v such that u(s) = 0.

Now consider a diagram d. Delete all entries equal to 0 and delete all edges whose left vertex is not
a cell containing 2. Let d1, . . . , dk be the remaining connected components. We refer to them as the
essential components of d.

2 1l 0

2

2

1r 2 2

1

2 1l

2

2

1r 2 2

1

Fig. 3: A diagram and its essential components.

Lemma 4.1 Let v ∈W be a boolean element and let d be the diagram of v. Let d1, . . . , dk be the essential
components of the diagram d and v1, . . . , vk be the boolean reflections corresponding to d1, . . . , dk. Then

Fv(q) =
k∏

i=1

Fvi(q).

Proposition 4.1 Let W be a Coxeter group such that its Coxeter graph is a tree and all vertices except
at most one have degree less than 3. Denote with w such exceptional vertex. Let v ∈ W be a boolean
element. Then

Fv(q) = (1 + q + q2)k−1
(
q(1 + q)h+1 + fh(q)

)
(1 + q)l(v)−2k−h−2,

where k is the number of essential components of the diagram d of v with at least two vertices and h is
the number of entries equal to 2 in the adjacent cells of w (also consider the cell on the right).

The formula is also true when there is no vertex of degree greater than 2: in this case let w be any vertex
of degree 2.
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Asymptotic properties of some minor-closed
classes of graphs
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Abstract. Let A be a minor-closed class of labelled graphs, and let Gn be a random graph sampled uniformly from
the set of n-vertex graphs ofA. When n is large, what is the probability that Gn is connected? How many components
does it have? How large is its biggest component? Thanks to the work of McDiarmid and his collaborators, these
questions are now solved when all excluded minors are 2-connected.

Using exact enumeration, we study a collection of classes A excluding non-2-connected minors, and show that their
asymptotic behaviour is sometimes rather different from the 2-connected case. This behaviour largely depends on the
nature of the dominant singularity of the generating function C(z) that counts connected graphs ofA. We classify our
examples accordingly, thus taking a first step towards a classification of minor-closed classes of graphs. Furthermore,
we investigate a parameter that has not received any attention in this context yet: the size of the root component. This
follows non-gaussian limit laws (beta and gamma), and clearly deserves a systematic investigation.

Keywords: Labelled graphs – Excluded minors – Enumeration – Asymptotic properties

1 Introduction
We consider simple graphs on the vertex set {1, . . . , n}. A set of graphs is a class if it is closed under
isomorphisms. A class of graphs A is minor-closed if any minor of a graph of A is in A. To each such
class one can associate a set E of excluded minors: an (unlabelled) graph is excluded if its labelled versions
do not belong toA, but the labelled versions of each of its proper minors belong toA. A remarkable result
of Robertson and Seymour states that E is always finite [19].

For a minor-closed class A, we study the asymptotic properties of a random graph Gn taken uniformly
in An, the set of graphs of A having n vertices: what is the probability pn that Gn is connected? More
generally, what is the number Nn of connected components? What is the size Sn of the root component,
that is, the component containing the vertex 1? Or the size Ln of the largest component?

Thanks to the work of McDiarmid and his collaborators, a lot is known if all excluded graphs are 2-
connected: then pn converges to constant larger than 1/

√
e,Nn converges in law to a Poisson distribution,

n−Sn and n−Ln converge in law to the same discrete distribution. Details are given in Section 3. If some

†Both authors were partially supported by a CNRS-Oxford collaboration scheme, 2012

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Fig. 1: Top: the 3-star, the triangle K3, the bowtie and the diamond. Bottom: A caterpillar and the 4-spoon.

excluded minors are not 2-connected, the properties of Gn may be rather different (imagine we exclude the
one edge graph...). This paper takes a preliminary step towards a classification of the possible behaviours
by presenting an organized catalogue of examples. We refer to [7] for more examples, complete proofs
and Boltzmann samplers for our classes of graphs.

For each class A that we study, we first determine the generating functions C(z) and A(z) that count
connected and general graphs ofA, respectively. The minors that we exclude are always connected, which
implies that A is decomposable: a graph belongs to A if and only if all its connected components belong
to A. In particular, A(z) = exp(C(z)). Our exact and asymptotic results make extensive use of the

Excluded C(ρ) Sing. lim pn number Nn root largest Refs. and
minors of C(z) of comp. comp. Sn comp. Ln methods

2-connected <∞ ? ≥ e− 1
2 O(1) n− Sn n− Ln [1, 16]

< 1 Poisson → disc. → disc. [17]
a spoon, <∞ (1− ze)3/2 > 0 id. id. id. Sec. 8

but no tree ≤ e− 1
2 sing. an.

∞ simple 0
√
n

√
n

√
n log n Sec. 5

(path forests) pole gaussian xe−x Gumbel saddle

∞ id. 0 id. id. ? Sec. 5
(caterpillar for.) saddle

∞ id. 0 id. id. ? Sec. 5
(max. deg. 2) (+ log) saddle

∞ log 0 log n n PD(1)(1/4) Sec. 6
(+√ ) gaussian 1

4 (1− x)−
3
4 sing. an.

∞ 1/
√ 0 n1/3 n2/3 ? Sec. 7

gaussian 2
√
x/πe−x saddle

Tab. 1: Summary of the results: for each quantity Nn, Sn and Ln, we give the limit law (or its density) and an
estimate of the expected value when it diverges (up to a constant). The symbol PD(1)(1/4) stands for the first
component of a Poisson-Dirichlet distribution of parameter 1/4.
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techniques of Flajolet and Sedgewick’s book [11]: symbolic combinatorics, singularity analysis, saddle
point method, and their application to the derivation of limit laws. We recall a few basic principles in
Section 2, but then we only sketch the proofs, at best. We also need and prove two general results of
independent interest related to the saddle point method (Theorems 3 and 4).

Our results are summarized in Table 1. A first dichotomy emerges: when C(z) is finite at its radius
of convergence ρ, the properties of A are qualitatively the same as in the 2-connected case (for which
C(ρ) is known to converge), except that the limit of pn can be arbitrarily small (Section 8). When C(ρ)
diverges, a whole variety of behaviours can be observed, depending on the nature of the singularity of
C(z) at ρ (Sections 5 to 7): the probability pn tends to 0 at various speeds; the number Nn of components
goes to infinity at various speeds (but is invariably gaussian after normalization); the size Sn of the root
component follows, after normalization, non-gaussian limit laws (gamma or beta). We only study the size
Ln of the largest component in a few cases. Much remains to be done in this direction.

Let us conclude with a few words on the size of the root component. It appears that this parameter,
which can be defined for any exponential family of objects, has not been studied systematically yet, and
follows interesting (i.e., non-gaussian!) continuous limit laws, after normalization. We are currently
working on such a systematic study, in the spirit of what Bell et al. [4] and Gourdon [13] did for the
number of components and the largest component, respectively. This project is also reminiscent of the
study of the 2-connected root component in a planar map [3], which also leads to non-gaussian limit laws.

2 Generatingfunctionology for graphs
Let E be a finite set of (unlabelled) connected graphs that forms an antichain with respect to the minor
order. Let A be the set of labelled graphs that do not contain any element of E as a minor. By An
we denote the subset of A formed of graphs having n vertices and by an the cardinality of An. The
associated exponential generating function (g.f.) is A(z) =

∑
n≥0 anz

n/n!. We use similar notation
(cn and C(z)) for the subset C of A consisting of (non-empty) connected graphs. Since the excluded
minors are connected, A is decomposable, and A(z) = exp(C(z)). Several refinements of this series are
of interest, for instance the g.f. that keeps track of the number of (connected) components as well:

A(z, u) =
∑

G∈A
uc(G) z

|G|

|G|! = exp(uC(z)),

where |G| is the size of G (the number of its vertices) and c(G) the number of its components. We denote
by Nn the number of components in a (uniform) random graph Gn of An. Clearly,

P(Nn = i) =
[zn]C(z)i

i![zn]A(z)
and E(Nn(Nn − 1) · · · (Nn − i+ 1)) =

[zn]C(z)iA(z)

[zn]A(z)
. (1)

Several general results provide a limit law for Nn if C(z) satisfies certain conditions: for instance the re-
sults of Bell et al. [4] that requireC(z) to converge at its radius; or the exp-log schema of [11, Prop. IX.14,
p. 670], which requires C(z) to have a logarithmic singularity. We use them when applicable, and prove
a new result of this type, which applies when C(z) diverges with an algebraic singularity (Theorem 4).

We also study the size r(G) of the root component (the component containing the vertex 1). Let

Ā(z, v) =
∑

G∈A,G 6=∅
vr(G)−1 z|G|−1

(|G| − 1)!
= C ′(zv)A(z). (2)
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The choice of |G| − 1 instead of |G| slightly simplifies some calculations. Note that Ā(z, 1) = A′(z).
Denoting by Sn the size of the root component in Gn, we have

P(Sn = k) =
ckan−k

(
n−1
k−1
)

an
and E((Sn − 1) · · · (Sn − i)) =

[zn−i−1]C(i+1)(z)A(z)

n[zn]A(z)
. (3)

Surprisingly, this parameter has not been studied before. Our examples lead to non-gaussian limit laws
(gamma or beta, cf. Propositions 7 or 12). In fact, the form (2) of the generating function shows that this
parameter is bound to give rise to interesting limit laws, as both the location and nature of the singularity
change as v moves to 1− ε to 1 + ε. Using the terminology of [11, Sec. IX.11], a phase transition occurs.
We are currently working on a systematic study of this parameter for exponential objects.

3 Classes defined by 2-connected excluded minors
We assume here that the classA excludes at least one minor, and that all excluded minors are 2-connected.
This includes the class of forests, series-parallel graphs, planar graphs, and many more. Many results are
known in this case. The general picture is that A shares many properties with the class of forests.

Proposition 1 The series C(z) and A(z) = eC(z) are finite at their (positive) radius of convergence ρ.
Moreover, the sequence (an/n!)n is smooth, meaning that nan−1/an tends to ρ as n grows.

The probability that Gn is connected tends to 1/A(ρ), which is clearly in (0, 1). In fact, this limit is
also larger than or equal to 1/

√
e. This value is reached when A is the class of forests.

The fact that ρ > 0 is due to Norine et al. [18], and holds for any proper minor-closed class. The next
results are due to McDiarmid [16]. The fact that 1/A(ρ) ≥ 1/

√
e , or equivalently, that C(ρ) ≤ 1/2, was

proved independently in [1] and [14].
For forests, all results are well-know (see for instance [11, p. 132]). We have C(z) = T (z)−T (z)2/2,

where T (z) = zeT (z) counts rooted trees. The series T , C and A have radius ρ = 1/e, and A(ρ) =
√
e.

The nature of the singularity of C(z) at ρ depends on the class: (1 − z/ρ)3/2 for forests (and more
generally, for subcritical minor-closed classes [8]), but (1 − z/ρ)5/2 for planar graphs. We refer to [12]
for a more detailed discussion that applies to classes that exclude 3-connected minors.

Proposition 2 The random variableNn−1 converges in law to a Poisson distribution of parameterC(ρ):

P(Nn = i+ 1)→ C(ρ)i

i!eC(ρ)
.

The random variables n− Ln and n− Sn both converge to a discrete limit distribution X given by

P(X = k) =
1

A(ρ)

akρ
k

k!
. (4)

Proof: The first two results (on Nn and Ln) are due to McDiarmid [16, Cor. 1.6]. The third one is in
fact equivalent to the second (the root component is, with high probability, the largest one), but we give
here an independent proof, as we will recycle its ingredients later for some classes of graphs that avoid
non-2-connected minors. Let k ≥ 0 be fixed. By (3),

P(Sn = n− k) =
cn−kak

(
n−1
k

)

an
=
ak
k!

cn−k
an−k

(n− 1)!an−k
(n− k − 1)!an

.
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By Proposition 1, the term cn−k/an−k, which is the probability that Gn−k is connected, converges to
1/A(ρ). Moreover, the sequence an/n! is smooth, so that (n−1)!an−k

(n−k−1)!an converges to ρk. The result follows.
2

4 General tools: Hayman admissibility and extensions
We consider in Sections 5 to 7 minor-closed classes of graphs such that C(z) diverges at its radius of
convergence ρ. This often results in A(z) diverging rapidly at ρ, and leads us to estimate an using the
saddle point method, or rather, a black box that applies to Hayman-admissible (or H-admissible) series:
see [11, Thm. VIII.4, p. 565]. These series have useful closure properties [ibid., p. 568]. Here is one that
we did not find in the literature.

Theorem 3 LetA(z) = F (z)G(z) where F (z) andG(z) are power series with real coefficients and radii
of convergence 0 < ρF < ρG ≤ ∞. Assume that F (z) has non-negative coefficients and is H-admissible,
and that G(ρF ) > 0. Then A(z) is H-admissible.

We will also need a uniform version of Hayman-admissibility for series of the form euC(z).

Theorem 4 Let C(z) be a power series with non-negative coefficients and radius of convergence ρ. As-
sume A(z) = eC(z) has radius ρ and is H-admissible. Define

b(r) = rC ′(r) + r2C ′′(r) and V (r) = C(r)− (rC ′(r))2

rC ′(r) + r2C ′′(r)
.

Assume that, as r → ρ,

V (r)→ +∞, C(r)

V (r)3/2
→ 0, b(r)1/

√
V (r) = O(1). (5)

Then A(z, u) := euC(z) satisfies Conditions (1)–(6), (8) and (9) of [10, Def. 1]. If Nn is a sequence of
random variables such that

P(Nn = i) =
[zn]C(z)i

i![zn]eC(z)
,

then the mean and variance of Nn satisfy:

E(Nn) ∼ C(ζn), V(Nn) ∼ V (ζn), (6)

where ζ ≡ ζn is the unique solution in (0, ρ) of the saddle point equation ζC ′(ζ) = n. Moreover, the
normalized random variable Nn−E(Nn)√

V(Nn)
converges in law to a standard normal distribution.

Proof: We carefully check the eight conditions (the only that do not come for free are (2) and (3)). As
explained in [10] just below Theorem 2, they give the estimates (6) of E(Nn) and V(Nn) and imply the
existence of a gaussian limit law. 2

We finish with a simple but useful result on products of series [5, Thm. 2].

Proposition 5 Let F (z) =
∑
n fnz

n and G(z) =
∑
n gnz

n be power series with radii of convergence
0 ≤ ρF < ρG ≤ ∞, respectively. Suppose that G(ρF ) 6= 0 and fn−1/fn approaches a limit (which is
necessarily ρF ) as n→∞. Then [zn]F (z)G(z) ∼ G(ρF )fn.
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5 Forests of paths or caterpillars: a simple pole
Let A be a decomposable class (for instance defined by excluding connected minors), with g.f. A(z) =
exp(C(z)). Assume that C(z) has a unique dominant singularity ρ, which is an isolated simple pole:

C(z) =
α

1− z/ρ +D(z), where D(ρ) = β (7)

and D has radius of convergence strictly larger than ρ. Of course, we assume α > 0.

Proposition 6 If the above conditions hold, then, as n→∞,

cn ∼ n!αρ−n and an ∼ n!
α1/4eα/2+β

2
√
πn3/4

ρ−ne2
√
αn. (8)

In particular, the probability that Gn is connected tends to 0 at speed n3/4e−2
√
αn.

Proof: The asymptotic behaviour of cn follows from [11, Thm. IV.10, p. 258]. For an, we first write

A(z) = F (z)G(z) with F (z) = exp

(
α

1− z/ρ

)
and G(z) = eD(z), (9)

where G(z) has radius strictly larger than ρ. To estimate the coefficients of F , we apply the ready-to-use
results of Macintyre and Wilson [15, Eqs. (10)–(14)], according to which, for α > 0 and γ ≥ 0,

[zn]
1

(1− z)γ exp

(
α

1− z

)
∼ α1/4eα/2

2
√
πn3/4

(n
α

)γ/2
e2
√
αn. (10)

This gives

fn := [zn]F (z) ∼ α1/4eα/2

2
√
πn3/4

ρ−ne2
√
αn.

In particular, fn−1/fn tends to ρ, so that we can apply Proposition 5 to (9) and conclude. 2

Proposition 7 Assume (7) holds.
1. The mean and variance of Nn satisfy:

E(Nn) ∼ √αn, V(Nn) ∼ √αn/2, (11)

and the random variable Nn−
√
αn

(αn/4)1/4
converges in law to a standard normal distribution.

2. For i ≥ 0, the ith moment of Sn satisfies, as n→∞,

E(Sin) ∼ (i+ 1)!(n/α)i/2.

Consequently, the normalized variable Sn/
√
n/α converges in distribution to a gamma(2) law, of density

xe−x on [0,∞). A local limit law also holds: for x > 0 and k = bx
√
n/αc,

√
n/α P(Sn = k) ∼ xe−x.
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Proof: 1. We apply Theorem 4. The H-admissibility of A(z) follows from Theorem 3, using (9) and the
H-admissibility of exp(α/(1− z/ρ)) (see [11, p. 562]). Conditions (5) are then readily checked, using

C(r) ∼ α

1− z/ρ , b(r) ∼ 2α

(1− z/ρ)3
and V (r) ∼ α

2(1− z/ρ)
.

We thus conclude that the normalized version of Nn converges in law to a standard normal distribution.
For (11), we use (6) with the saddle point estimate ζn = ρ− ρ

√
α/n+O(1/n).

2. We apply (3), with

C(i+1)(z) =
α(i+ 1)!

ρi+1(1− z/ρ)i+2
+D(i+1)(z). (12)

As in the proof of Proposition 6, we combine Proposition 5, (9) and (10) to obtain

an
(n− 1)!

E((Sn − 1) · · · (Sn − i)) = α(i+ 1)!
α1/4eα/2+β

2
√
πn3/4

(n
α

)i/2+1

ρ−ne2
√
αn.

Combined with (8), this gives the limiting ith moment of Sn. Since these moments characterize the above
gamma distribution, we conclude [11, Thm. C.2] that Sn/

√
n/α converges in law to this distribution.

For the local limit law, we simply combine the first part of (3) with (8). 2

We now apply these results to two classes for whichC(z) has a simple pole: forests of paths, and forests
of caterpillars (a caterpillar is a tree made of a simple path to which leaves are attached; see Figure 1).

Proposition 8 The generating functions of paths and of caterpillars are respectively

Cp(z) =
z(2− z)
2(1− z) and Cc(z) =

z2(ez − 1)2

2(1− zez) + zez − z2

2
.

For both series, Condition (7) is satisfied and Propositions 6 and 7 hold. For paths we have ρ = 1,
α = 1/2 and β = 0. For caterpillars, ρ ' 0.567 is the only real such that ρeρ = 1,

α =
(1− ρ)2

2(1 + ρ)
' 0.06 and β =

ρ
(
10 + 3 ρ− 4 ρ2 − ρ3

)

4 (1 + ρ)
2 ' 0.59.

For forests of paths, we have also studied the size Ln of the largest component.

Proposition 9 In forests of paths, the size of the largest component converges to a Gumbel distribution:

P

(
Ln −

√
n/2 log n√
n/2

< x

)
→ exp

(
−e
−x/2
√

2

)
.

Proof: The generating function of paths of size less than k is C [k](z) = z/2 + (z − zk)/(2(1− z)). We
then use Cauchy’s formula and a saddle point approach. 2

Graphs with maximal degree 2: a simple pole plus a logarithm. Let A be the class of graphs avoiding
the 3-star. The connected components of such graphs are paths and cycles. The series C(z) has now, in
addition to a simple pole, a logarithmic singularity at its radius. The logarithm changes the asymptotic
behaviour of the numbers an, but the other results remain unaffected. The proofs are very similar to the
above ones.
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Proposition 10 The generating function of connected graphs of A is

C(z) =
z(2− z + z2)

4(1− z) +
1

2
log

1

1− z .

The generating function of graphs of A is A(z) = eC(z). We have, for large n,

cn =
n!

2
+

(n− 1)!

2
and an ∼ n!

1

2
√
eπn1/2

e
√
2n.

In particular, the probability that Gn is connected tends to 0 at speed n1/2e−
√
2n.

The number of components and the size of the root component behave as in Proposition 7, with α = 1/2.

6 Excluding the diamond and the bowtie: a logarithm dominates
Let A be the class of graphs avoiding the diamond and the bowtie (shown in Figure 1). The connected
components are trees or unicyclic graphs, and have been counted a long time ago by Wright [20].

Proposition 11 Let T (z) = zeT (z) be the g.f. of rooted trees. The g.f. of connected graphs of A is

C(z) =
T

2
− 3T 2

4
+

1

2
log

1

1− T .

The generating function of graphs of A is A(z) = eC(z). As n→∞,

cn ∼ n!
en

4n
and an ∼ n!

1

(2e)1/4Γ(1/4)

en

n3/4
. (13)

In particular, the probability that Gn is connected tends to 0 at speed n−1/4 as n→∞.

Proof: A connected graph of A is either an (unrooted) tree (with g.f. T − T 2/2), or consists of a cycle,
in which each vertex is replaced by a rooted tree. The generating function of cycles is

Cyc(z) =
1

2

∑

n≥3

zn

n
=

1

2

(
log

1

1− z − z −
z2

2

)
, (14)

and this gives the expression of C(z). We then estimate cn and an via singularity analysis [11, VI.4]. 2

Proposition 12 1. The mean and variance of Nn satisfy E(Nn) ∼ V(Nn) ∼ log n/4, and the random
variable Nn−logn/4√

logn/4
converges in law to a standard normal distribution.

2. For i ≥ 0, the ith moment of Sn satisfies, as n→∞,

E(Sin) ∼ Γ(5/4)i!

Γ(i+ 5/4)
ni.
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Consequently, the normalized variable Sn/n converges in distribution to a beta law, of density (1 −
x)−3/4/4 on [0, 1]. A local limit law also holds: for x ∈ (0, 1) and k = bxnc,

nP(Sn = k) ∼ 1

4
(1− x)−3/4.

3. The normalized variable Ln/n converges in law to the first component of a Poisson-Dirichlet distribu-
tion of parameter 1/4.

Proof: Once the singular expansion of C(z) is obtained, the first result follows from [11, Prop. IX.14,
p. 670]. To study the moments of Sn, we apply (3). Using T (z) = zeT (z), we obtain, for i ≥ 1,

C(i+1)(z) ∼ i!

4

(
e

1− ze

)i+1

.

The estimate of the ith moment of Sn then follows again from singularity analysis. Since these moments
characterize the above beta distribution, we conclude [11, Thm. C.2] that Sn/n converges in law to this
distribution. For the local limit law, we start from (3), and use (13).

Finally, the third result follows from general results on logarithmic structures [2]. 2

Remark. A subdominant term in
√

1− ze occurs in the expansion of C(z), but has no influence on the
asymptotic results. They would be the same (with possibly different constants) for any C(z) having a
purely logarithmic singularity.

7 Excluding the bowtie: a singularity in (1− z/ρ)−1/2

We now denote by A the class of graphs avoiding the bowtie (shown in Figure 1).

Proposition 13 Let T (z) = zeT (z) be the g.f. of rooted trees. The g.f. of connected graphs in A is

C(z) =
T 2
(
1− T + T 2

)
eT

1− T +
1

2
log

(
1

1− T

)
+
T
(
12− 54T + 18T 2 − 5T 3 − T 4

)

24(1− T )
.

As n→∞,

cn ∼ n!
e− 5/4√

2π

en√
n

and an ∼ n!
(e− 5/4)1/6e19/8−11e/3√

6π

en

n2/3
e3(e−5/4)

2/3n1/3/2.

Proof: This is the most delicate enumeration result of the paper. We have

C(z) = T (z)− T (z)2/2 + C̄(T (z)),

where C̄(z) counts graphs with minimal degree 2 avoiding the bowtie. After studying the properties of
these graphs, we conclude that they are either cycles, or K4 with one edge possibly replaced by a chain of
vertices of degree 2, or the graphs of Figure 2. Counting these various classes gives C̄(z), and thus C(z).
2
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at least one vertex

≥ 2

at least two vertices

. . . . . .

Fig. 2: Some graphs avoiding the bowtie. The white vertex is optional.

Proposition 14 1. The mean and variance of Nn satisfy:

E(Nn) ∼ (e− 5/4)2/3n1/3, V(Nn) ∼ 2

3
(e− 5/4)2/3n1/3,

and the random variable Nn−E(Nn)√
V(Nn)

converges in law to a standard normal distribution.

2. For i ≥ 0, the ith moment of Sn satisfies, as n→∞,

E(Sin) ∼ Γ(i+ 3/2)

Γ(3/2)

(
2n2/3

(e− 5/4)2/3

)i
.

Consequently, the normalized variable (e−5/4)2/3Sn/(2n
2/3) converges in distribution to a gamma(3/2)

law, of density 2
√
xe−x/

√
π on [0,∞). A local limit law also holds: for x > 0 and k = bx 2n2/3

(e−5/4)2/3 c,

2n2/3

(e− 5/4)2/3
P(Sn = k) ∼ 2

√
x

π
e−x.

8 When trees dominate: C(z) converges at ρ
Let A be a decomposable class of graphs (for instance, a class defined by excluding connected minors)
with set of components C. Assume that C contains all trees (counted by T − T 2/2), and that

C(z) = T (z)− T (z)2/2 +D(z), (15)

where D(z) has radius strictly larger than 1/e (the radius of T ). We say that A is dominated by trees.
Some examples are presented below. In this case, the properties that hold for forests (Section 3) still hold,
except that the limit of cn/an is now smaller than 1/

√
e.

Proposition 15 Assume A is dominated by trees. As n→∞,

cn ∼ n!
en√

2πn5/2
and an ∼ A(1/e)cn.

In particular, the probability that Gn is connected tends to 1/A(1/e) = e−1/2−D(1/e).
The asymptotic behaviours of Nn, Ln and Sn are described by Proposition 2, with ρ = 1/e.

Proof: The asymptotic behaviours of cn and an are obtained via singularity analysis. For Nn, we can
either start from (1) and apply singularity analysis, or use directly [4, Thm. 2]. For Sn, the two ingredients
used in the proof of Proposition 2, namely smoothness of an/n! and convergence of cn/an, still hold here.
For Ln, we use the fact that the root component is with high probability the biggest one. 2

We now give examples where trees dominate.
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Proposition 16 Let k ≥ 1. Let A be a minor-closed class of graphs containing all trees, but not the
k-spoon (shown in Figure 1). Then A is dominated by trees, and the results of Proposition 15 apply.

Proof: We partition the set C of connected graphs of A into three subsets: the set of trees, counted by
T − T 2/2, the set C1 of unicyclic graphs (counted by C1), and finally the set C2 containing graphs with
at least two cycles (counted by C2). We prove that C1 has radius strictly larger than 1/e, and that C2 is
entire. 2

Proposition 17 Let Tk be the g.f. of rooted trees of height less than k. That is, Tk = zeTk−1 with T1 = z.
Let A(k) be the class of graphs avoiding the diamond, the bowtie and the k-spoon. Then (15) holds with

D(z) ≡ D(k)(z) =
1

2

(
log

1

1− Tk(z)
− Tk(z)− Tk(z)2

2

)
.

The class A(k) is dominated by trees, and Proposition 15 applies. In particular, the probability that a
random graph ofA(k)

n is connected tends to 1/A(k)(1/e) as n→∞. This value tends to 0 as k increases.

By specializing the proof of Proposition 13, we have also counted graphs avoiding the 2-spoon.

Proposition 18 The g.f. of connected graphs avoiding the 2-spoon satisfies (15) with

D(z) =
1

2

(
log

1

1− zez − ze
z − z2e2z

2

)
+
z4

4!
+ z2e2z

(
ez − 1− z − z2

4

)
.

9 Final comments
The nature of the dominant singularities of C(z) is clearly a central parameter of the class, as the
quantities Nn and Sn seem to depend largely on it (see Table 1). Is it possible to determine the nature of
this singularity from the properties of the excluded minors? For instance, C(ρ) is finite when all excluded
minors are 2-connected, but Section 8 shows that this happens as well with non-2-connected minors.
Which excluded minors give rise to a simple pole in C(z)? to a logarithmic singularity? to a singularity
in (1− z/ρ)−1/2?

Other parameters. We have focussed on certain parameters that are well understood for 2-connected
excluded minors. But others have been investigated in different contexts: the number of edges, the size of
the largest 2-connected component, the distribution of vertex degrees [6, 8, 9, 12]. When specialized to
the theory of minor-closed classes, these papers generally assume that all excluded minors are (at least)
2-connected. Including (some of) these parameters in our results may be the topic of future work.

Acknowledgements. KW would like to thank C. McDiarmid for many inspiring discussions as well as
for constant support. We also thank J.-F. Marckert and B. Salvy for pointing out Refs. [2] and [15].
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[2] R. Arratia, A. D. Barbour, and S. Tavaré. Logarithmic combinatorial structures: a probabilistic
approach. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2003.
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SIAM J. Discrete Math., 25(4):1615–1651, 2011.
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Abstract. We describe edge labelings of the increasing flip graph of a subword complex on a finite Coxeter group, and
study applications thereof. On the one hand, we show that they provide canonical spanning trees of the facet-ridge
graph of the subword complex, describe inductively these trees, and present their close relations to greedy facets.
Searching these trees yields an efficient algorithm to generate all facets of the subword complex, which extends the
greedy flip algorithm for pointed pseudotriangulations. On the other hand, when the increasing flip graph is a Hasse
diagram, we show that the edge labeling is indeed an EL-labeling and derive further combinatorial properties of paths
in the increasing flip graph. These results apply in particular to Cambrian lattices, in which case a similar EL-labeling
was recently studied by M. Kallipoliti and H. Mühle.

Résumé. Nous décrivons des étiquetages d’arêtes du graphe des flips croissants d’un complexe de sous-mots sur un
groupe de Coxeter fini, et nous en étudions certaines applications. D’une part, nous montrons qu’ils fournissent des
arbres couvrants canoniques du graphe des flips du complexe de sous-mots, nous décrivons inductivement ces arbres,
et nous présentons leurs liens étroits avec les facettes gloutonnes du complexe. Le parcours de ces arbres permet
d’engendrer efficacement les facettes du complexe des sous-mots, généralisant ainsi l’algorithme de flips gloutons
pour les pseudotriangulations. D’autre part, lorsque le graphe des flips croissants est un diagramme de Hasse, nous
montrons que notre étiquetage d’arêtes est lexicographique et nous en déduisons des propriétés supplémentaires du
graphe des flips croissants. Ces résultats s’appliquent en particulier aux treillis Cambriens pour lesquels un étiquetage
lexicographique similaire a été récemment étudié par M. Kallipoliti and H. Mühle.

Keywords: EL-labelings, subword complexes, spanning trees, exhaustive generation, Möbius function.

Subword complexes on Coxeter groups were defined and studied by A. Knutson and E. Miller in the
context of Gröbner geometry of Schubert varieties [KM04, KM05]. TypeA spherical subword complexes
can be visually interpreted using pseudoline arrangements on primitive sorting networks. These were
studied by V. Pilaud and M. Pocchiola [PP12] as combinatorial models for pointed pseudotriangulations
of planar point sets [RSS08] and for multitriangulations of convex polygons [PS09]. These two families
of geometric graphs extend in two different ways the family of triangulations of a convex polygon.
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The greedy flip algorithm was initially designed to generate all pointed pseudotriangulations of a given
set of points or convex bodies in general position in the plane [PV96, BKPS06]. It was then extended
in [PP12] to generate all pseudoline arrangements supported by a given primitive sorting network. The key
step in this algorithm is to construct a spanning tree of the flip graph on the combinatorial objects, which
has to be sufficiently canonical to be visited in polynomial time per node and polynomial working space.

In the present paper, we study natural edge lexicographic labelings of the increasing flip graph of
a subword complex on any finite Coxeter group. As a first line of applications of these EL-labelings,
we obtain canonical spanning trees of the flip graph of any subword complex. We provide alternative
descriptions of these trees based on their close relations to greedy facets, which are defined and studied
in this paper. Moreover, searching these trees provides an efficient algorithm to generate all facets of
the subword complex. For type A spherical subword complexes, the resulting algorithm is precisely that
of [PP12], although the presentation is quite different.

The second line of applications of the EL-labelings concerns combinatorial properties ensuing from
EL-shellability [Bjö80, BW96]. Indeed, when the increasing flip graph is the Hasse diagram of the in-
creasing flip poset, this poset is EL-shellable, and we can compute its Möbius function. These results
extend recent work of M. Kallipoliti and H. Mühle [KM12] on EL-shellability of N. Reading’s Cambrian
lattices [Rea06, Rea07], which are, for finite Coxeter groups, increasing flip posets of specific subword
complexes studied by C. Ceballos, J.-P. Labbé and C. Stump [CLS13] and by the authors in [PS11].

This extended abstract presents the results and the main ideas of the paper [PS12]. We refer the reader
to this paper for further details, examples, and all proofs which we omit here due to limited space.

1 Edge labelings of graphs and posets
In [Bjö80], A. Björner introduced EL-labelings of partially ordered sets to study topological properties of
their order complexes. These labelings are edge labelings of the Hasse diagrams of the posets with certain
combinatorial properties. In this paper, we consider edge labelings of finite, acyclic, directed graphs
which might differ from the Hasse diagrams of their transitive closures.

1.1 ER-labelings of graphs and associated spanning trees
LetG := (V,E) be a finite, acyclic, directed graph. For u, v ∈ V , we write u v if there is an edge from u
to v in G, and u v if there is a path u = x1 x2 · · · x` x`+1 = v from u to v in G (this path
has length `). The interval [u, v] in G is the set of vertices w ∈ V such that u w v.

An edge labeling ofG is a map λ : E → N. It induces a labeling of any path p : x1 x2 · · · x` x`+1

given by λ(p) :=λ(x1 x2) · · ·λ(x` x`+1). The path p is λ-rising (resp. λ-falling) if λ(p) is strictly
increasing (resp. weakly decreasing). The labeling λ is an edge rising labeling of G (or ER-labeling for
short) if there is a unique λ-rising path p between any vertices u, v ∈ V with u v.

Remark 1.1 (Spanning trees) Let u, v ∈ V , and λ : E → N be an ER-labeling of G. Then the union of
all λ-rising paths from u to any other vertex of the interval [u, v] forms a spanning tree of [u, v], rooted at
and directed away from u. We call it the λ-source tree of [u, v] and denote it by Tλ([u, v]). Similarly, the
union of all λ-rising paths from any vertex of the interval [u, v] to v forms a spanning tree of [u, v], rooted
at and directed towards v. We call it the λ-sink tree of [u, v] and denote it by T ∗λ ([u, v]). In particular,
if G has a unique source and a unique sink, this provides two canonical spanning trees Tλ(G) and T ∗λ (G)
for the graph G itself.
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Example 1.2 (Cube) Consider the 1-skeleton �d of the d-dimensional cube [0, 1]d, directed from vertex
0 := (0, . . . , 0) to vertex 1 := (1, . . . , 1). Its vertices are the elements of {0, 1}d and its edges are the pairs
of vertices which differ in a unique position. Note that ε := (ε1, . . . , εd) ε′ := (ε′1, . . . , ε

′
d) if and only

if εk ≤ ε′k for all k ∈ [d].
For any edge ε ε′ of �d, let λ(ε ε′) denote the unique position in [d] where ε and ε′ differ. Then

the map λ is an ER-labeling of �d. If ε ∈ {0, 1}d r 0, then the father of ε in Tλ(�d) is obtained from ε
by changing its last 1 into a 0. Similarly, if ε ∈ {0, 1}d r 1, then the father of ε in T ∗λ (�d) is obtained
from ε by changing its first 0 into a 1. See Figure 1.
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Fig. 1: An ER-labeling λ of the 1-skeleton �3 of the 3-cube, the λ-source tree Tλ(�3) and the λ-sink tree T ∗λ (�3).

1.2 EL-labelings of graphs and posets
Although ER-labelings of graphs are sufficient to produce canonical spanning trees, we need the following
extension for further combinatorial properties. The labeling λ : E → N is an edge lexicographic labeling
of G (or EL-labeling for short) if for any vertices u, v ∈ V with u v,

(i) there is a unique λ-rising path p from u to v, and

(ii) its labeling λ(p) is lexicographically first among the labelings λ(p′) of all paths p′ from u to v.

For example, the ER-labeling of the 1-skeleton of the cube �d presented in Example 1.2 is in fact an
EL-labeling. Remember now that one can associate a finite poset to a finite acyclic directed graph and
vice versa. Namely,

(i) the transitive closure of a finite acyclic directed graph G = (V,E) is the finite poset (V, );

(ii) the Hasse diagram of a finite poset P is the finite acyclic directed graph whose vertices are the
elements of P and whose edges are the cover relations in P , i.e. u v if u <P v and there is
no w ∈ P such that u <P w <P v.

The transitive closure of the Hasse diagram of P always coincides with P , but the Hasse diagram of
the transitive closure of G might as well be only a subgraph of G. An EL-labeling of the poset P is an
EL-labeling of the Hasse diagram of P . If such a labeling exists, then the poset is called EL-shellable.

As already mentioned, A. Björner [Bjö80] originally introduced EL-labelings of finite posets to study
topological properties of their order complex. In particular, they provide a tool to compute the Möbius
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function of the poset. Recall that the Möbius function of the poset P is the map µ : P × P → Z defined
recursively by

µ(u, v) :=





1 if u = v,

−∑u≤Pw<P v
µ(u,w) if u <P v,

0 otherwise.

When the poset is EL-shellable, this function can be computed as follows.

Proposition 1.3 ([BW96, Proposition 5.7]) Let λ be an EL-labeling of the poset P . For every u, v ∈ P
with u ≤P v, we have

µ(u, v) = evenλ(u, v)− oddλ(u, v),

where evenλ(u, v) (resp. oddλ(u, v)) denotes the number of even (resp. odd) length λ-falling paths from u
to v in the Hasse diagram of P .

Example 1.4 (Cube) The directed 1-skeleton �d of the d-dimensional cube [0, 1]d is the Hasse diagram
of the boolean poset. The edge labeling λ of �d of Example 1.2 is thus an EL-labeling of the boolean
poset. Moreover, for any two vertices ε ε′ of �d, there is a unique λ-falling path between ε and ε′,
whose length is the Hamming distance δ(ε, ε′) := | {k ∈ [d] | εk 6= ε′k} |. The Möbius function is thus
given by µ(ε, ε′) = (−1)δ(ε,ε

′) if ε ε′ and µ(ε, ε′) = 0 otherwise. In particular, µ(0,1) = (−1)d.

2 Subword complexes on Coxeter groups
2.1 Subword complexes
We consider a finite Coxeter system (W,S), with root system Φ and simple roots {α1, . . . , αn}. We fix
a word Q := q1q2 · · · qm on the generators of S, and an element ρ ∈ W . Background on Coxeter groups
can be found in [Hum90].

A. Knutson and E. Miller [KM04] define the subword complex SC(Q, ρ) to be the simplicial complex
of those subwords of Q whose complements contain a reduced expression for ρ as a subword. A vertex
of SC(Q, ρ) is a position of a letter in Q. We denote by [m] := {1, 2, . . . ,m} the set of positions in Q. A
facet of SC(Q, ρ) is the complement of a set of positions which forms a reduced expression for ρ in Q.
We denote by F(Q, ρ) the set of facets of SC(Q, ρ).

Example 2.1 Consider the type A Coxeter group S4 generated by {τ1, τ2, τ3}, where τi := (i i + 1).
Consider Qex := τ2τ3τ1τ3τ2τ1τ2τ3τ1 and ρex := [4, 1, 3, 2]. The reduced expressions of ρex are τ2τ3τ2τ1,
τ3τ2τ3τ1, and τ3τ2τ1τ3. Therefore, the facets of the subword complex SC(Qex, ρex) are {1, 2, 3, 5, 6},
{1, 2, 3, 6, 7}, {1, 2, 3, 7, 9}, {1, 3, 4, 5, 6}, {1, 3, 4, 6, 7}, {1, 3, 4, 7, 9}, {2, 3, 5, 6, 8}, {2, 3, 6, 7, 8},
{2, 3, 7, 8, 9}, {3, 4, 5, 6, 8}, {3, 4, 6, 7, 8}, and {3, 4, 7, 8, 9}. We will use this example throughout this
paper to illustrate further notions.

Remark 2.2 There is a natural reversal operation on subword complexes. Namely,

SC(qm · · · q1, ρ
−1) = {{m+ 1− i | i ∈ I} | I ∈ SC(q1 · · · qm, ρ)} .

We will use this operation to relate positive and negative labelings, facets and trees.
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2.2 Inductive structure
We denote by Q` := q2 · · · qm and Qa := q1 · · · qm−1 the words on S obtained from Q := q1 · · · qm by
deleting its first and last letters respectively. We denote by X ? z := {X ∪ z | X ∈ X} the join of a
collection X of subsets of Z with an element z ∈ Z. We let `(ρ) denote the length of ρ ∈ W and we
write ρ ≺ Q when Q contains a reduced expression of ρ, i.e. when SC(Q, ρ) is non-empty.

We can decompose inductively the facets of the subword complex SC(Q, ρ) according on whether or
not they contain the last letter of Q. Denoting by ε the empty word and by e the identity of W , we have
F(ε, e) = {∅} and F(ε, ρ) = ∅ if ρ 6= e. For a non-empty word Q on S, the set F(Q, ρ) is given by

(i) F(Qa, ρqm) if m appears in none of the facets of SC(Q, ρ) (equivalently if ρ 6≺ Qa);

(ii) F(Qa, ρ) ?m if m appears in all the facets of SC(Q, ρ) (equivalently if `(ρqm) > `(ρ));

(iii) F(Qa, ρqm) t
(
F(Qa, ρ) ?m

)
otherwise.

By reversal (see Remark 2.2), there is also a similar inductive decomposition of the facets of the subword
complex SC(Q, ρ) according on whether or not they contain the first letter of Q. Although we will only
use these decompositions for the facets F(Q, ρ), they extend to the whole subword complex SC(Q, ρ)
and are used to obtain the following result.

Theorem 2.3 ([KM04, Corollary 3.8]) The subword complex SC(Q, ρ) is either a simplicial sphere or
a simplicial ball.

2.3 Flips and roots
Let I be a facet of SC(Q, ρ) and i be a position in I . If there exists a facet J of SC(Q, ρ) and a position
j ∈ J such that I r i = J r j, we say that I and J are adjacent facets, that i is flippable in I , and that J
is obtained from I by flipping i. Note that, if i is flippable, then J and j are unique by Theorem 2.3. We
denote by G(Q, ρ) the graph of flips, whose vertices are the facets of SC(Q, ρ) and whose edges are pairs
of adjacent facets. That is, G(Q, ρ) is the ridge graph of the simplicial complex SC(Q, ρ). This graph is
connected by Theorem 2.3. It can moreover be naturally oriented by the direction of the flips as follows.
Let I and J be two adjacent facets of SC(Q, ρ) with I r i = J r j. We say that the flip from I to J is
increasing if i < j. We then orient the corresponding edge of G(Q, ρ) from I to J .

Example 2.4 Figure 2 shows the increasing flip graph G(Qex, ρex) for the subword complex SC(Qex, ρex)
of Example 2.1. The facets of SC(Qex, ρex) appear in lexicographic order from left to right.

Remark 2.5 The increasing flip graph of SC(Q, ρ) was already considered by A. Knutson and E. Miller
[KM04, Remark 4.5]. It carries various combinatorial informations about the subword complex SC(Q, ρ).
In particular, since the lexicographic order on the facets of SC(Q, ρ) is a shelling order for SC(Q, ρ), the
h-vector of the subword complex SC(Q, ρ) is the in-degree sequence of the increasing flip graph G(Q, ρ).

We consider flips as elementary operations on subword complexes. In practice, the necessary informa-
tion to perform flips in a facet I of SC(Q, ρ) is encoded in its root function r(I, ·) : [m]→ Φ defined by

r(I, k) := ΠQ[k−1]rI(αqk),

where ΠQX denotes the product of the reflections qx ∈ Q for x ∈ X . The root function was introduced by
C. Ceballos, J.-P. Labbé and C. Stump [CLS13] and its main properties can be found in [CLS13, Lemmas
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3.3 and 3.6]. Essentially, an element i of a facet I is flippable if and only if r(I, i) ∈ {±β | β ∈ inv(ρ)},
and then i flips to the unique position j /∈ I such that r(I, j) ∈ {±r(I, i)}. Moreover, r(I, i) = r(I, j) ∈ Φ+

if i < j (increasing flip), while r(I, i) = −r(I, j) ∈ Φ− if i > j (decreasing flip). The root configuration
of the facet I is the multiset R(I) := {{r(I, i) | i flippable in I}}. We extensively studied root configura-
tions in [PS11] in the construction of brick polytopes for spherical subword complexes.

3 EL-labelings and spanning trees for the subword complex
3.1 EL-labelings of the increasing flip graph
We now define two natural edge labelings of the increasing flip graph G(Q, ρ). Let I and J be two adjacent
facets of SC(Q, ρ), with I r i = J r j and i < j. We label the edge I J of G(Q, ρ) with the positive
edge label p(I J) := i and with the negative edge label n(I J) := j. We call p : E(G(Q, ρ)) → [m]
the positive edge labeling and n : E(G(Q, ρ)) → [m] the negative edge labeling of the increasing flip
graph G(Q, ρ). The terms “positive” and “negative” emphasize the fact that the roots r(I, p(I J))
and r(J, n(I J)) are always positive and negative roots respectively. The positive and negative edge
labelings are clearly reverse to one another (see Remark 2.2).

Example 3.1 Consider the subword complex SC(Qex, ρex) of Example 2.1. We have represented on Fig-
ure 2 the positive and negative edge labelings p and n. Since we have represented the graph G(Qex, ρex)
such that the flips are increasing from left to right, each edge has its positive label on the left and its
negative label on the right.

Our main result concerns the positive and negative edge labelings of the increasing flip graph.

Theorem 3.2 The positive edge labeling p and the negative edge labeling n are both EL-labelings of the
increasing flip graph.

For Cambrian lattices, whose Hasse diagrams were shown to be particular cases of increasing flip
graphs in [PS11, Section 6], a similar result was recently obtained by M. Kallipoliti and H. Mühle
in [KM12].

In Sections 3.2 and 3.3, we present applications of Theorem 3.2 to the construction of canonical span-
ning trees and to the generation of the facets of the subword complex. Further combinatorial applications
of this theorem are also discussed in Section 4.
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Fig. 2: The positive and negative edge labelings p and n of G(Qex, ρex). Each edge has its positive label on the left
(orange) and its negative label on the right (blue).
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Before going on, we want to give a very brief idea of the proof of Theorem 3.2. We refer the interested
reader to the complete proof in [PS12]. To prove the existence of a p-rising path between any two compa-
rable facets of SC(Q, ρ), we use a procedure which improves locally a path by restriction of SC(Q, ρ) to a
dihedral parabolic subgroup. The uniqueness and lexicographic property of the p-rising are then obtained
from the following proposition.

Proposition 3.3 Let I1 · · · I`+1 be a path of increasing flips, and define pk := p(Ik Ik+1) and
nk := n(Ik Ik+1). Then, for all k ∈ [`], we have

min{pk, . . . , p`} = min(Ik r I`+1) and max{n1, . . . , nk} = max(Ik+1 r I1).

Moreover, the path is p-rising if and only if pk = min(Ikr I`+1) for all k ∈ [`], while the path is n-rising
if and only if nk = max(Ik+1 r I1) for all k ∈ [`].

3.2 Greedy facets
We now characterize the unique source and sink of the increasing flip graph G(Q, ρ).

Proposition 3.4 The lexicographically smallest (resp. largest) facet of SC(Q, ρ) is the unique source
(resp. sink) of G(Q, ρ).

We call positive (resp. negative) greedy facet and denote by P(Q, ρ) (resp. N(Q, ρ)) the unique source
(resp. sink) of the graph G(Q, ρ) of increasing flips. The term “positive” (resp. “negative”) emphasizes
the fact that P(Q, ρ) (resp. N(Q, ρ)) is the unique facet of SC(Q, ρ) whose root configuration is a sub-
set of positive (resp. negative) roots, while the term “greedy” refers to the greedy properties of these
facets. The greedy facets P(Q, ρ) and N(Q, ρ) are reverse to one another (see Remark 2.2). Namely,
N(qm · · · q1, ρ

−1) = {m+ 1− p | p ∈ P(q1 · · · qm, ρ)}.
Example 3.5 The positive and negative greedy facets of the subword complex SC(Qex, ρex) presented in
Example 2.1 are respectively P(Qex, ρex) = {1, 2, 3, 5, 6} and N(Qex, ρex) = {3, 4, 7, 8, 9}. They appear
respectively as the leftmost and rightmost facets in Figure 2.

We have seen in Theorem 3.2 that for any two facets I, J ∈ F(Q, ρ) such that I J , there is a p-rising
(resp. n-rising) path from I to J . In particular, there is always a p-rising (resp. n-rising) path from P(Q, ρ)
to N(Q, ρ). It turns out that there is also at least one p-falling (resp. n-falling) path from P(Q, ρ) to N(Q, ρ)
if the subword complex SC(Q, ρ) is spherical.

Proposition 3.6 For any spherical subword complex SC(Q, ρ), there is always a p-falling and an n-
falling path from P(Q, ρ) to N(Q, ρ).

Note that this proposition fails if we drop the condition that SC(Q, ρ) is spherical, as illustrated in the
subword complex SC(Qex, ρex) of Example 2.1.

3.3 Spanning trees
As discussed in Remark 1.1, the edge labelings p and n automatically produce canonical spanning trees
of any interval of the increasing flip graph G(Q, ρ). Since G(Q, ρ) has a unique source P(Q, ρ) and a
unique sink N(Q, ρ), we obtain in particular four spanning trees of the graph G(Q, ρ) itself. The goal of
this section is to give alternative descriptions of these four spanning trees.
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We call respectively positive source tree, positive sink tree, negative source tree, and negative sink tree,
and denote respectively by P(Q, ρ), P∗(Q, ρ), N (Q, ρ), and N ∗(Q, ρ), the p-source, p-sink, n-source,
and n-sink trees of G(Q, ρ). The tree P(Q, ρ) (resp. N (Q, ρ)) is formed by all p-rising (resp. n-rising)
paths from the positive greedy facet P(Q, ρ) to all the facets of SC(Q, ρ). Both P(Q, ρ) andN (Q, ρ) are
rooted at and directed away from the positive greedy facet P(Q, ρ). The tree P∗(Q, ρ) (resp. N ∗(Q, ρ))
is formed by all p-rising (resp. n-rising) paths from all the facets of SC(Q, ρ) to the negative greedy
facet N(Q, ρ). Both P∗(Q, ρ) and N ∗(Q, ρ) are rooted at and directed towards the negative greedy
facet N(Q, ρ). Note that the positive source and negative sink trees (resp. the positive sink and the negative
source trees) are reverse to one another (see Remark 2.2).

Example 3.7 Consider the subword complex SC(Qex, ρex) of Example 2.1. Figure 3 represents the
trees P(Qex, ρex), P∗(Qex, ρex), N (Qex, ρex), and N ∗(Qex, ρex). Observe that these four canonical
spanning trees of G(Q, ρ) are all different in general.

We now give a direct description of the father of a facet I in P∗(Q, ρ) and N (Q, ρ).

Proposition 3.8 Let I be a facet of SC(Q, ρ). If I 6= N(Q, ρ), then the father of I in P∗(Q, ρ) is obtained
from I by flipping the smallest position in I r N(Q, ρ). Similarly, if I 6= P(Q, ρ), then the father of I
in N (Q, ρ) is obtained from I by flipping the largest position in I r P(Q, ρ).

We now focus on the positive source tree P(Q, ρ) and on the negative sink tree N ∗(Q, ρ), and provide
two different descriptions of them. The first is an inductive description of P(Q, ρ) and N ∗(Q, ρ) (see
Proposition 3.10). The second is a direct description of the father of a facet I in P(Q, ρ) and N ∗(Q, ρ)
in terms of greedy prefixes and suffixes of I (see Proposition 3.11). These descriptions mainly rely on the
following property of the greedy facets.

Proposition 3.9 If m is a flippable position of N(Q, ρ), then N(Qa, ρqm) is obtained from N(Q, ρ) by
flipping m. Similarly, if 1 is a flippable position of P(Q, ρ), then P(Q`, q1ρ) is obtained from P(Q, ρ) by
flipping 1 and shifting to the left.

Using Proposition 3.9, we can describe inductively the two trees P(Q, ρ) andN ∗(Q, ρ). The induction
follows the induction formulas for the facets F(Q, ρ) presented in Section 2.2. Remember that we denote
the deletion of the first or last letter in Q := q1 · · · qm by Q` := q2 · · · qm and Qa := q1 · · · qm−1 respec-
tively. For a tree T whose vertices are subsets of Z and for an element z ∈ Z, we denote by T ? z the tree
with a vertex X ∪ z for each vertex X of T and an edge X ∪ z Y ∪ z for each edge X Y of T .

The inductive description of the negative sink tree N ∗(Q, ρ) is based on the right induction formula.
For the empty word ε, the treeN ∗(ε, e) is formed by the unique facet ∅ of SC(ε, e), and the treeN ∗(ε, ρ)
is empty if ρ 6= e. Otherwise, N ∗(Q, ρ) is obtained as follows.

Proposition 3.10 For a non-empty word Q, the tree N ∗(Q, ρ) equals

(i) N ∗(Qa, ρqm) if m appears in none of the facets of SC(Q, ρ);

(ii) N ∗(Qa, ρ) ?m if m appears in all the facets of SC(Q, ρ);

(iii) the disjoint union of N ∗(Qa, ρqm) and N ∗(Qa, ρ) ?m, with an additional edge from N(Qa, ρqm)
to N(Q, ρ) = N(Qa, ρ) ∪m, otherwise.
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Fig. 3: The positive source tree P(Qex, ρex), the positive sink tree P∗(Qex, ρex), the negative source
treeN (Qex, ρex), and the negative sink treeN ∗(Qex, ρex) of the subword complex SC(Qex, ρex) of Example 2.1.
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A similar inductive description of the positive source tree P(Q, ρ) can be obtained from the left induc-
tion formula. See [PS12].

We now give a direct characterization of the father of a facet I of SC(Q, ρ) in the positive source and
negative sink trees P(Q, ρ) and N ∗(Q, ρ). This description can be understood in terms of the longest
greedy prefix or suffix of I .

Proposition 3.11 Let I be a facet of SC(Q, ρ). If I 6= N(Q, ρ), then the father of I in N ∗(Q, ρ) is
obtained from I by flipping the smallest position x ∈ [m] such that I ∩ [x] 6= N(q1 · · · qx,ΠQ[x]rI).
Similarly, if I 6= P(Q, ρ), then the father of I in P(Q, ρ) is obtained from I by flipping the largest
position x ∈ [m] such that {i− x | i ∈ I r [x]} 6= P(qx+1 · · · qm,ΠQ[x+1,m]rI).

3.4 Greedy flip algorithm
The initial motivation of this paper was to find efficient algorithms for the exhaustive generation of the
setF(Q, ρ) of facets of the subword complex SC(Q, ρ). The properties of the subword complex described
in Sections 2.2 and 2.3 already provide two immediate enumeration algorithms. First, the inductive struc-
ture of F(Q, ρ) yields an inductive algorithm whose running time per facet is polynomial. The second
option is an exploration of the flip graph G(Q, ρ), whose running time is still polynomial per facet. The
problem of a naive exploration is that we would need to store all facets of F(Q, ρ) during the algorithm,
which may require an exponential working space. Using the canonical spanning trees constructed in this
paper, we can bypass this difficulty: we avoid to store all visited facets while preserving the same run-
ning time. The greedy flip algorithm generates all facets of the subword complex SC(Q, ρ) by a depth
first search procedure on one of the four canonical spanning trees described in Section 3.3. The preorder
traversal of the tree also provides an iterator on the facets of SC(Q, ρ). We refer to [PS12] for a dis-
cussion on the complexity and on an implementation of this algorithm. This algorithm is similar to that
of [BKPS06] for pointed triangulations and that of [PP12] for primitive sorting networks.

4 Further combinatorial properties of the EL-labelings
In this section, we discuss some implications of the EL-labelings of the increasing flip graph presented in
Section 3.1. These results concern combinatorial properties of the increasing flip poset Γ(Q, ρ), defined
as the transitive closure of the increasing flip graph G(Q, ρ). The key property for the validity of these
results is that the increasing flip graph G(Q, ρ) coincides with the Hasse diagram of the increasing flip
poset Γ(Q, ρ) (see the discussion in the beginning of Section 1.2). We first characterize and study the
subword complexes which fulfill this property.

We say that the subword complex SC(Q, ρ) has a double root if there is a facet I ∈ SC(Q, ρ) and two
distinct positions i 6= j ∈ [m] both flippable in I such that r(I, i) = r(I, j). Otherwise, we say that the
subword complex SC(Q, ρ) is double root free. We focus on double root free subword complexes due to
the following characterization.

Proposition 4.1 The subword complex SC(Q, ρ) is double root free if and only if its increasing flip
graph G(Q, ρ) coincides with the Hasse diagram of its increasing flip poset Γ(Q, ρ).

Intervals in the increasing flip graph of a double root free subword complex have the following property.

Proposition 4.2 Let I and J be two facets of a double root free subword complex SC(Q, ρ). Then the
intersection I ∩ J is contained in all facets of the interval [I, J ] in the increasing flip graph G(Q, ρ).
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Corollary 4.3 There is at most one p-falling (resp. n-falling) path between any two facets I and J of a
double root free subword complex SC(Q, ρ). If it exists, its length is given by |I r J | = |J r I|.
Corollary 4.4 Let I and J be two facets of a double root free subword complex such that I J . The
unique p-rising (resp. n-rising) path from I to J has maximal length among all path from I to J . Moreover,
if there is a p-falling (resp. n-falling) path from I to J , it has minimal length.

Remark 4.5 Note that the conclusions of Proposition 4.2, Corollary 4.3, and Corollary 4.4 do indeed not
hold if SC(Q, ρ) has double roots. This situation reduces to the situation of type A1 with generator s for
the word Q = sss and the element ρ = s, which contradicts the three statements.

Corollary 4.6 The Möbius function on the increasing flip poset Γ(Q, ρ) of a double root free subword
complex SC(Q, ρ) is given by

µ(I, J) =

{
(−1)|JrI| if there is a p-falling (resp. n-falling) path from I to J ,
0 otherwise.

By this corollary, we can compute the Möbius function of an interval [I, J ] of the increasing flip poset
as soon as we can decide whether or not there is a p-falling path from I to J . According to Proposition 3.6,
there is always a p-falling path from the positive greedy facet to the negative greedy facet of a spherical
subword complex. We therefore obtain the following statement.

Corollary 4.7 In a spherical double root free subword complex SC(Q, ρ), we have

µ
(
P(Q, ρ),N(Q, ρ)

)
= (−1)|Q|−`(ρ).

Observe again that this result fails if we drop the condition that SC(Q, ρ) is spherical. The subword
complex SC(Qex, ρex) of Example 2.1 provides a counter-example.

Example 4.8 (Cambrian lattices) We finally want to recall that cluster complexes of finite types are par-
ticular examples of subword complexes, see [CLS13]. This implies that Cambrian lattices of finite types
are indeed increasing flip graphs, see [PS11]. Our construction thus proves that Cambrian lattices of
finite types are EL-shellable. This result was as well obtained by M. Kallipoliti and H. Mühle in [KM12].
We want to emphasize that the two resulting labelings differ, as do the two resulting spanning trees. We
refer to the long version of this paper [PS12] for further details.

Example 4.9 (Duplicated words) Fix an element ρ ∈ W and a reduced expression of it. Consider
a word Qdup obtained by duplicating d ≤ `(ρ) letters in this reduced expression. Any facet of the
subword complex SC(Qdup, ρ) contains precisely one position among each pair of duplicated letters,
and no other position. Therefore, the subword complex SC(Qdup, ρ) is the boundary complex of a d-
dimensional cross-polytope, its increasing flip graph G(Qdup, ρ) is the directed 1-skeleton �d of a d-
dimensional cube, and the increasing flip poset Γ(Qdup, ρ) is a boolean poset. Let φ : �d → Γ(Qdup, ρ)
be the natural graph isomorphism which sends 0 to P(Qdup, ρ) and 1 to N(Qdup, ρ). It sends the edge
labeling λ of �d (see Example 1.2) to the positive and negative edge labelings p and n of the subword
complex SC(Qdup, ρ). More precisely, λ(ε ε′) = p(φ(ε) φ(ε′)) = n(φ(ε) φ(ε′))−1. Thus, φ sends
the λ-source tree of �d to the source trees P(Qdup, ρ) = N ∗(Qdup, ρ), and the λ-sink tree of �d to the
sink trees P∗(Qdup, ρ) = N ∗(Qdup, ρ). See Example 1.2 and Figure 1. Finally, the Möbius function on
the increasing flip poset Γ(Qdup, ρ) is given by µ(φ(ε), φ(ε′)) = (−1)δ(ε,ε

′) if ε ε′ (where δ denotes
the Hamming distance on the vertices of the cube) and µ(φ(ε), φ(ε′)) = 0 otherwise. See Example 1.4.
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[CLS13] Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump. Subword complexes, cluster com-
plexes, and generalized multi-associahedra. J. Algebraic Combin., 2013.

[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

[KM04] Allen Knutson and Ezra Miller. Subword complexes in Coxeter groups. Adv. Math.,
184(1):161–176, 2004.
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Abstract. We study the statistics area, bounce and dinv associated to polyominoes in a rectangular box m times
n. We show that the bi-statistics (area, bounce) and (area, dinv) give rise to the same q, t-analogue of Narayana
numbers, which was introduced by two of these authors in a recent paper. We prove the main conjectures of that
same work, i.e. the symmetries in q and t, and in m and n of these polynomials, by providing a symmetric functions
interpretation which relates them to the famous diagonal harmonics.

Résumé. Nous étudions les statistiques area, bounce et dinv associées aux polyominos dans un rectangle m par n.
Nous montrons que les bi-statistiques (area, bounce) et (area, dinv) donnent lieu au même q, t-analogue des nombres
de Narayana, qui a été introduit par deux de ces auteurs dans un article récent. Noous démontrons les conjectures
principales du même article, c’est-à-dire la symétrie dans q et t, et dans m et n de ces polynômes, en donnant une
interprétation en termes de fonctions symétriques qui les connecte aux célèbre diagonales harmoniques.

Keywords: q, t-Narayana, rectangular polyominoes, parking functions.

1 Introduction
Given two natural numbers m and n, the set of m × n rectangular polyominoes Polyom,n is known to
have cardinality equal to N(m+ n− 1,m), where for positive integers a, b ∈ N,

N(a, b) :=
1

a

(
a
b

)(
a

b− 1

)

are the famous Narayana numbers.
In [3] two authors of this work introduced two statistics on these combinatorial objects, area and

bounce, which led to a q, t-analogue of the Narayana numbers N(m+ n− 1,m), namely

Naram,n(q, t) :=
∑

P∈Polyom,n

qarea(P )tbounce(P ).

In that same work it was conjectured that these polynomials were symmetric both in q and t, and inm and
n.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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In this work we introduce a new statistic dinv, which gives a new q, t-analogue of the same numbers

Ñaram,n(q, t) :=
∑

P∈Polyom,n

qdinv(P )tarea(P ).

The following theorem establish a relation between these two polynomials.

Theorem 1.1 For all m ≥ 1 and n ≥ 1, we have

Naram,n(q, t) = Ñaran,m(q, t).

The main result of this paper is the proof of the symmetries conjectured in [3].

Theorem 1.2 For all m ≥ 1 and n ≥ 1, we have

Naram,n(q, t) = Naram,n(t, q)

and
Naram,n(q, t) = Naran,m(q, t).

In order to prove this result, we use a symmetric functions interpretation of our q, t-Narayana numbers:

Theorem 1.3 For all m ≥ 1 and n ≥ 1 we have

Naram,n(q, t) = (qt)m+n−1 · 〈∇em+n−2, hm−1hn−1〉,

where ek and hk are the elementary and the homogeneous symmetric functions of degree k respectively,
∇ is the well known nabla operator introduced by Bergeron and Garsia (see [2, Section 9.6]), and the
scalar product is the usual Hall inner product on symmetric functions.

This result brings a surprising link with the famous diagonal harmonicsDHn, since∇en is the Frobenius
characteristic of this important module of the symmetric group Sn, as it was shown by Haiman in [6].

Haglund in [4] gave a combinatorial interpretation of the polynomial 〈∇em+n−2, hm−1hn−1〉 in terms
of parking functions. In fact Haglund’s result would be an easy consequence of the famous shuffle conjec-
ture, which predicts a combinatorial interpretation of ∇en in terms of parking functions (see [5, Chapter
6]).

In order to prove our main result, we used the recursion already established for Naram,n(q, t), proving
that the combinatorial polynomials in Haglund’s result satisfy the same recursion.

This paper is organized in the following way:

• In Section 2 we give the basic definitions, introducing our statistics and our q, t-analogues of
Narayana numbers.

• In Section 3 we provide a bijection between Polyom,n and Polyon,m sending the bistatistic (area, bounce)
in the bistatistic (dinv, area), so establishing Theorem 1.1.

• In Section 4 we provide a recursion satisfied by both our q, t-Narayana, which gives another proof
of Theorem 1.1.

• In Section 5 we provide the necessary background to state Theorem 1.3, we see some of its conse-
quences, and we explain the strategy of its proof.
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2 The statistics
In these paper we consider polyominoes in rectangular boxes. More precisely, consider a square grid in
Z2 of width m and height n. On this grid consider two paths, both starting from the South-West corner
and arriving at the North-East corner, travelling on the grid, performing only North or East steps, with the
further restriction that they touch each other only at the starting point and at the ending point. The region
between the two paths is called the interior of the polyomino.

In Figure 1 there is an example where m = 12 and n = 7, and the interior is shadowed.

Fig. 1: A parallelogram polyomino having a 12 times 7 bounding box.

We encode the polyomino in an area word consisting of natural numbers and natural numbers with a
bar on top, in the following way.

We will label each North step of the upper (red) path with a number with a bar, and each East step of
the lower (green) path with a number without a bar. We do this in two stages.

First, for each East step of the lower path we draw a line starting with the East endpoint and going
North-West until reaching the upper path: we label this step with the number of squares crossed by this
line.

Second, we label each North step of the upper path by the number of squares in the interior of the
polyomino to the East of it which were not crossed by any of the lines that we drew at the previous stage.

An example of this labelling is shown in Figure 2, where we put a black dot in the non-crossed squares.

22

1

2

2

1

0

1 2 3

2 2

1 2

1 1

2 21

Fig. 2: The parallelogram polyomino of Figure 1 with its perimeter labelled.
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Once we have done this labelling, we read the labels in the following order: starting from South-West
and going to North-East imagine to span the polyomino with a straight line oriented North-West to South-
East, and when we encounter vertical steps of the upper path or horizontal steps of the lower path we write
the corresponding labels, recalling that if we encounter both types of steps at the same time we write the
label of the upper path first.

For example, the area word of the example in Figure 2 is 0112232221121112222.
Notice that the sum of these numbers (disregarding the bars) gives the area of the polyomino, which is

the first of the statistics that are relevant to us. In the example the area is 30.
The next statistic that we want to consider is the bounce. Consider the following path in a given

polyomino: we start with a single East step from the South-West corner, and then we move North until
we reach the East endpoint of a horizontal step of the upper path; at this point we “bounce”, i.e. we
start moving East, until we reach the North endpoint of a vertical step of the lower path; at this point we
“bounce” again, starting moving North, and we repeat this procedure until we reach the North-East corner.

Once we have the bounce path, starting from South-West, we label each step of the first sequence of
vertical steps with 1, then each step of the second of such sequences with 2, and so on; while we label
each step of the first sequence of horizontal steps with 0, then each step of the second of such sequences
with 1, and so on. See Figure 3 for an example.

4

0 1

1

1

1 1 1 1 2

2 2 3

3 33 4

4

4

Fig. 3: The labelled bounce path.

We define the bounce of the polyomino to be the sum of the labels of the bounce path, disregarding the
bars. For example the bounce of the example in Figure 3 is 41.

Consider now the total order on the labels

0 < 1 < 1 < 2 < 2 < 3 < 3 < 4 < 4 < · · · .

Given a polyomino with area word a1a2 . . . ak, we define the dinv as the number of pairs ai, aj with i < j
and aj is the successor of ai in the fixed order. For example the dinv of the polyomino in Figure 2 is 35.

We fix the following notations: let Polyom,n be the set of polyominoes in a rectangle m times n, and
let

Naram,n(q, t) :=
∑

P∈Polyom,n

tarea(P )qdinv(P )
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and
Ñaram,n(q, t) :=

∑

P∈Polyom,n

tbounce(P )qarea(P ).

The polynomials Naram,n(q, t) where first introduced in [3] by two of the authors of the present work.
In the same paper, it was conjectured that these polynomials where symmetric both in q and t, and in m
and n.

3 Bijection sending (area, bounce) in (dinv, area)

This section is dedicated to prove Theorem 1.1, which we restate here for convenience.

Theorem 3.1 For all m and n,
Naram,n(q, t) = Ñaran,m(q, t).

In order to prove it, we now describe a bijection between Polyom,n and Polyon,m which sends the
bi-statistic (area, bounce) in the bi-statistic (dinv, area). Clearly this implies the theorem.

Starting from the polyomino, we read the labels of its bounce path, getting a word in integers and
integers with a bar on top. Then, starting from the bottom-left corner, for each turn of the bounce path,
we look at the part of the path (upper or lower) that includes it. For example in the polyomino of Figure 3
or 6, the first turn of the bounce path is between 0 and the next 1 in the labelling of the bounce path. The
including path consists of the first 4 steps (counted from the South-West corner) of the upper path. We
label the vertical steps of the including path with the labels used for the vertical steps in that part of the
bounce path, and the horizontal steps of the including path with the labels used for the horizontal steps in
that part of the bounce path. See Figure 6 for an example.

1 1

1

0

0

1

11

Fig. 4: The containing path and the new labels are blue.

Then we read the new labels by following the including path from North-East down to South-West. In
the example we read 0111.

The rule is to preserve the relative positions of these labels along the rest of the construction.
We then repeat the algorithm with the second turn. In the example this occurs between the last 1 and

the first 1 in the bounce path. This time the including path consists of the steps of the lower path between
the second and the eighth. We repeat the procedure that we used before, and the word that we get reading
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the new labels will prescribe the relative positions of the 1’s and the 1’s. In the example (see Figure 5) we
get the prescriptions 1111111. This together with the other prescription gives a partial word 01111111. In
general we will construct this partial word in a way that it can be the word of a polyomino and respecting
all the prescriptions. This will always be possible since the first step of the including path that we read
will always be labelled by the smallest of the two types of labels that we are considering: this is due to
the definition of the bounce path.

11

1 1

11

1

1

1

1

1

1

1 1

Fig. 5: The containing path and the new labels are violet.

We keep doing this until all the labels of the bounce path are included. At the end we will get a word of
a polyomino. In the example, at the next step we get the prescriptions 11211, which gives the partial word
011112111; then we get the prescriptions 222, which gives the partial word 01111222111; then we get
the prescriptions 223, which gives the partial word 011112223111; then we get the prescriptions 3333,
which gives the partial word 011112223333111; then we get the prescriptions 33443, which gives the
partial word 01111222333443111; and finally we get the prescriptions 4444, which gives the final word
0111122233344443111.

With this construction we get a polyomino, which is clearly in a rectangle n times m, since the number
of integers without a bar is n and the number of integers with the bar is m by construction. Moreover it
has clearly area equal to the bounce of the original polyomino, again by construction. See Figure 6 for a
picture of the image polyomino of the example.

We need to show that the dinv of the new polyomino is equal to the area of the original one.
To see this, recall how we constructed the word of the new polyomino: for consecutive types of labels,

we prescribed the relative positions by reading the corresponding including path. But each pair of a
vertical step and an horizontal step in the including path contributing to the dinv corresponds to a square
in the area of the polyomino.

It remains to see that this is a bijection. To see this, we can consider the inverse function: given a
polyomino, write in weakly increasing order its word, and draw it as a bounce path with labels. Then
reading the relative positions of consecutive types of labels you can reconstruct piecewise both the upper
and lower path. This completes the proof.

Let us observe some consequence of this result.
First of all, notice that iterating this bijection a second time, we get a bijection of the polyominoes in a

rectangle m times n into themselves which sends the bounce in the area. Moreover, applying the inverse
and composing it with the flip along the South-West to North-East line that pass through the South-West
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Fig. 6: The image polyomino.

corner (which obviously preserves the area) we get a bijection of the polyominoes in a rectangle m times
n into themselves which sends the dinv in the area.

In conclusion we see that all our three statistics are equidistributed both inside the same rectangle m
times n and with the polyominoes in the flipped rectangle n times m.

4 A recursion
In this section we prove that both Naram,n(q, t) and Ñaran,m(q, t) satisfy a certain recursion. As an im-
mediate byproduct we get another proof of the identity Naram,n(q, t) = Ñaran,m(q, t) stated in Theorem
1.1.

We call P̃olyo
(r,s)

m,n the set of polyominoes in a rectangle m×n whose labelled bounce path has r many
1’s and s many 1’s. In other words, r is the number of steps between the first and the second bounce of
the bounce path, while s is the number of steps between the second and the third bounce.

We fix the notation

Ñara
(r,s)

m,n (q, t) :=
∑

P∈P̃olyo(r,s)m,n

tbounce(P )qarea(P ),

so that Ñaram,n is the sum over all r and s of Ñara
(r,s)

m,n (q, t). Also, for all positive integers n,

[n]q :=
1− qn
1− q = 1 + q + q2 + · · ·+ q−1
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denotes the q-analogue of n (by convention we set [0]q := 1),

[n]q! :=
n∏

i=0

[i]q,

denotes the q-analogue of the factorial n!, and finally for n ≥ k ≥ 0,
[
n
k

]

q

:=
[n]q!

[n− k]q![k]q!

denotes the q-analogue of the binomial
(
n
k

)
.

Theorem 4.1 For all m ≥ 1 and n ≥ 1, and for 1 ≤ r ≤ n and 0 ≤ s ≤ m− 1 we have the recursion

Ñara
(r,s)

m,n (q, t) = tm+n−1qr+s
n−r∑

h=1

m−s−1∑

k=0

[
s+ r − 1

s

]

q

[
s+ h− 1

h

]

q

Ñara
(h,k)

m−s,n−r(q, t),

with initial conditions

Ñara
(n,s)

m,n (q, t) =





(qt)m+n−1
[
m+ n− 2
m− 1

]

q

if s = m− 1

0 if s < m− 1

,

and
Ñara

(r,0)

1,n (q, t) = 0 for r < n.

For a proof see [1].
Let us denote by Polyo(r,s)n,m the set of polyominoes in a rectangle n ×m whose area word has r many

1’s and s many 1’s.
We fix the notation

Nara(r,s)n,m (q, t) :=
∑

P∈P̃olyo(r,s)n,m

tarea(P )qdinv(P ),

so that Ñaran,m is the sum over all r and s of Ñara
(r,s)

n,m (q, t).

These polynomials satisfy the same recursion satisfied by the Ñara
(r,s)

m,n (q, t)’s:

Theorem 4.2 For all m ≥ 1 and n ≥ 1, and for 1 ≤ r ≤ n and 0 ≤ s ≤ m− 1 we have the recursion

Nara(r,s)n,m (q, t) = tm+n−1qr
n−r∑

h=1

m−s−1∑

k=0

qs
[
s+ r − 1

s

]

q

[
s+ h− 1

h

]

q

Nara
(h,k)
n−r,m−s(q, t),

with initial conditions

Nara(n,s)n,m (q, t) =





(qt)m+n−1
[
m+ n− 2
m− 1

]

q

if s = m− 1

0 if s < m− 1

,
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and
Nara

(r,0)
n,1 (q, t) = 0 for r < n.

For a proof see [1].

These recursions give immediately Nara(r,s)n,m (q, t) = Ñara
(r,s)

m,n (q, t), and hence another proof of the
identity Naram,n(q, t) = Ñaran,m(q, t).

5 Symmetric functions interpretation
In this section we will use some tools from the theory of Macdonald polynomials. For a quick survey of
what we need (and more), we refer to the book [2], in particular Chapters 3 and 9.

Here we will recall only some basic facts, mostly to fix the notation.
Let Λ =

⊕
n≥0 Λn be the space of symmetric functions with coefficients in C(q, t), where q and t are

variables, with its natural decomposition in components of homogeneous degree.
Recall the fundamental bases of symmetric functions: elementary {eµ}µ, homogeneous {hµ}µ, power
{pµ}µ, monomial {mµ}µ and Schur {sµ}µ, where the indices µ are partitions.

A scalar product is defined on Λ by declaring the Schur basis to be orthonormal:

〈sλ, sµ〉 = χ(λ = µ),

where χ is the indicator function, which is 1 when its argument is true, and 0 otherwise.
Another fundamental basis of Λ {H̃µ}µ has been introduced by Macdonald, and its elements are called

Macdonald polynomials.
The fundamental ingredient of the theory is the nabla operator∇ acting on Λ. This is an homogeneous

invertible operator introduced by F. Bergeron and A. Garsia in the study of the famous diagonal harmonics
DHn of Sn. In fact, it turns out that∇en gives precisely the bigraded Frobenius characteristic of DHn.

The so called shuffle conjecture predicts a combinatorial interpretation of ∇en in terms of parking
functions. Special cases of this conjecture have been proven by several authors. In particular J. Haglund
proved the combinatorial interpretation of

〈∇en, hjhn−j〉

for 1 ≤ j ≤ n predicted by the shuffle conjecture.
Surprisingly, this same polynomial provides the symmetric functions interpretation of our q, t-Narayana

numbers.
More precisely, we have Theorem 1.3, which is the main result of this paper. For a proof see [1].

Theorem 5.1
Naram,n(q, t) = (qt)m+n−1 · 〈∇em+n−2, hm−1hn−1〉.

We give here an immediate corollary.

Corollary 5.2 The polynomials Naram,n(q, t) are symmetric both in q and t, and in m and n. Moreover,
we have

Naram,n(q, t) = Ñaram,n(q, t)
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Proof of the Corollary: The symmetry in q and t comes from a general property of the nabla operator,
which is easy to show: nabla applied to any Schur function is symmetric in q and t.

The symmetry in m and n is obvious from the formula.
Now the fact that Naram,n(q, t) = Ñaram,n(q, t) is a direct consequence of the symmetries and of

Theorem 1.1. 2

In order to prove Theorem 1.3, we used the combinatorial interpretation given by Haglund for 〈∇em+n−2, hm−1hn−1〉.
In order to state it, we need some definitions.

For us a Dyck path of order k will be given by an area word, i.e. a sequence of non-negative integers
b1b2 · · · bk such that b1 = 0, and bi+1 ≤ bi + 1 for all i = 1, 2, ..., k − 1.

A parking function of order k will be given by a domino sequence, i.e. sequence of dominoes
a
b

like PF =
a1 a2 · · · ak
b1 b2 · · · bk

, where b1b2 · · · bk is the area word of a Dyck path, and the ai’s are the

integers from 1 to k, and they satisfy ai < ai+1 if bi < bi+1.

For example PF =
5 11 1 9 6 8 3 4 7 10 2
0 1 1 2 0 1 0 1 2 3 3

is a parking function of order 11.

The set of parking functions of order k is denoted by PFk.
Given a parking function, we can reorder its dominoes by comparing first the bottom numbers, from

the biggest to the smallest, and then, we place the dominoes with the same bottom number in order as we
read them from right to left in the parking function. The reading word σ(PF ) associated to the parking
function PF is the permutation that we obtain by reading the upper entries of this reordered sequence of
dominoes.

For example, the parking function that we have seen before get reordered as

2 10 7 9 4 8 1 11 3 6 5
3 3 2 2 1 1 1 1 0 0 0

,

so the corresponding reading word is

σ(PF ) = 2 10 7 9 4 8 1 11 3 6 5.

Given a parking function PF =
a1 a2 · · · ak
b1 b2 · · · bk

, we define its area area(PF ) as the sum
∑k
i=1 bi of the bottom numbers of the dominoes, and its dinv dinv(PF ) as the number of pairs of domi-

noes
ai
bi

,
aj
bj

of PF with i < j, where bi = bj and ai < aj , or bi = bj + 1 and ai > aj .

For example the area of the parking function of our previous example is 14, while its dinv is 8.
Given two disjoint sequences of numbers A and B, we denote by A ∪∪B the set of shuffles of A and

B, i.e. the sequences consisting of the numbers from A ∪B in which all the elements of A and B appear

in their original order, so that |A ∪∪B| =
(
|A|+ |B|
|A|

)
.

For any a and b in N, we call Parka,b the set of parking functions PF of order a+b such that σ(PF ) ∈
(1, 2, . . . , a) ∪∪(a+ 1, a+ 2, . . . , a+ b).
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We finally set
Paraa,b(q, t) :=

∑

PF∈Parka,b

tarea(PF )qdinv(PF ).

We can state now the result of Haglund (see [4] for a proof, and [5] for the needed background).

Theorem 5.3 (Haglund) For all m ≥ 1 and n ≥ 1, we have

〈∇em+n−2, hm−1hn−1〉 = Paran−1,m−1(q, t).

Hence in order to prove Theorem 1.3, it remains to show that

Naram,n(q, t) = (qt)m+n−1Paran−1,m−1(q, t).

We proved this by showing that they both satisfy the recurrence given in Section 4. See [1] for the details.
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The critical surface fugacity for self-avoiding
walks on a rotated honeycomb lattice
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Abstract. In a recent paper with Bousquet-Mélou, de Gier, Duminil-Copin and Guttmann (2012), we proved that
a model of self-avoiding walks on the honeycomb lattice, interacting with an impenetrable surface, undergoes an
adsorption phase transition when the surface fugacity is 1 +

√
2. Our proof used a generalisation of an identity

obtained by Duminil-Copin and Smirnov (2012), and confirmed a conjecture of Batchelor and Yung (1995). Here
we consider a similar model of self-avoiding walk adsorption on the honeycomb lattice, but with the impenetrable
surface placed at a right angle to the previous orientation. For this model there also exists a conjecture for the critical
surface fugacity, made by Batchelor, Bennett-Wood and Owczarek (1998). We adapt the methods of the earlier paper
to this setting in order to prove the critical surface fugacity, but have to deal with several subtle complications which
arise.

This article is an abbreviated version of a paper of the same title, currently being prepared for submission.

Résumé. Dans un article récent avec Bousquet-Mélou, de Gier, Duminil-Copin et Guttmann (2012), nous avons
prouvé qu’un modèle de marches auto-évitantes sur le réseau hexagonal, interagissant avec une surface impénétrable,
subit une transition de phase absorbante quand la fugacité de la surface est 1 +

√
2. Notre preuve utilisait une

généralisation d’une identité obtenue par Duminil-Copin et Smirnov (2012), et permettait d’établir une conjecture de
Batchelor et Yung (1995). Ici nous considérons un modèle similaire d’absorption de marches aléatoires auto-évitantes
sur le réseau hexagonal, mais avec une surface impénétrable placée à angle droit par rapport à l’orientation précédente.
Pour ce modèle il existe aussi une conjecture concernant la fugacité critique de la surface, formulée par Batchelor,
Bennett-Wood et Owczarek (1998). Nous adaptons les méthodes de l’article précédent à ce cadre afin de prouver la
fugacité critique de la surface, mais devons faire face à plusieurs complications subtiles qui apparaissent.

Cet article est la version courte d’une article ayant le même titre et actuellement en préparation.

Keywords: self-avoiding walks, polymer adsorption, honeycomb lattice, discrete holomorphicity

1 Introduction
Self-avoiding walks (SAWs) have been considered a model of long-chain polymers in solution for a num-
ber of decades – see for example early works by Orr (1947) and Flory (1949). In the simplest model one
associates a weight (or fugacity) x with each step (or monomer, in the context of polymers) of a walk, and
then (for a given lattice) considers the generating function

C(x) =
∑

n≥0
cnx

n,

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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where cn is the number of SAWs starting at a fixed origin and comprising n steps.
It is straightforward to show (see e.g. Madras and Slade (1993)) that the limit

µ := lim
n→∞

c1/nn

exists and is finite. The lattice-dependent value µ is known as the growth constant, and is the reciprocal
of the radius of convergence of the generating function C(x). The honeycomb lattice is the only reg-
ular lattice in two or more dimensions for which the value of the growth constant is known; its value
µ =

√
2 +
√

2 was conjectured in 1982 by Nienhuis (1982) and proved by Duminil-Copin and Smirnov
(2012).

The interaction of long-chain polymers with an impenetrable surface can be modelled by restricting
SAWs to a half-space, and associating another fugacity y with vertices (or edges) in the boundary of the
half-space which are visited by a walk. It is standard practice to place the origin on the boundary. This
naturally leads to the definition of a partition function

C+
n (y) =

∑

m≥0
c+n (m)ym,

where c+n (m) is the number of n-step SAWs starting on the boundary of the half-space and occupying m
vertices in the boundary.

The limit
µ(y) := lim

n→∞
C+
n (y)1/n

has been shown to exist for the d-dimensional hypercubic lattice for y > 0 (see e.g. Hammersley et al.
(1982)). It is a finite, log-convex and non-decreasing function of y, and is thus continuous and almost
everywhere differentiable. The adaptation of the proof to other regular lattices (in particular, to the hon-
eycomb lattice) is elementary – see Beaton (2012) for details.

It can also be shown that for 0 < y ≤ 1,

µ(y) = µ(1) = µ,

and that µ(y) ≥ max{µ,√y}. (The lower bound
√
y applies to the honeycomb lattice as discussed in this

paper, but this bound varies depending on the lattice and orientation of the surface.(i)) This implies the
existence of a critical fugacity yc ≥ 1 satisfying

µ(y)

{
= µ if y ≤ yc,
> µ if y > yc.

This critical fugacity signifies an adsorption phase transition, and demarcates the desorbed phase y < yc
and the adsorbed phase y > yc.

Just as the honeycomb lattice is the only regular lattice whose growth constant is known exactly, it is
also the only lattice for which an exact value for yc is known. In fact, because there are two different ways
to orient the surface (see Figure 1) for the honeycomb lattice, there are two different values of yc. When the

(i) In general, it is straightforward to show µ(y) ≥ y1/k , where k is the minimum number of steps required to walk from one
weighted vertex to another.
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(a) (b)

Fig. 1: The two orientations of an impenetrable surface on the honeycomb lattice, with the surface vertices
indicated.

surface is oriented so that there are lattice edges perpendicular to the surface (i.e. Figure 1(a)), the critical
fugacity is yc = 1+

√
2. This value was conjectured by Batchelor and Yung (1995), using the integrability

of the model and comparison with a more general solvable loop model on the square lattice. The critical
boundary weight was obtained by finding reflection matrices which satisfy the boundary Yang-Baxter
equation. A proof was discovered by Beaton et al. (2012); it used a generalisation of an identity obtained
by Duminil-Copin and Smirnov (2012), as well as an adaptation of some results of Duminil-Copin and
Hammond (2012).

It is the other orientation of an impenetrable surface on the honeycomb lattice (i.e. Figure 1(b)) that
is the focus of this article. For this model of polymer adsorption there is also a conjecture regarding the
critical surface fugacity, due to Batchelor et al. (1998) and obtained using the same methods as for the
first orientation. In this extended abstract we sketch the proof of that result:

Theorem 1 For the self-avoiding walk model on the semi-infinite honeycomb lattice with the boundary
oriented as per Figure 1(b), the critical surface fugacity is

y = yc =

√
2 +
√

2

1 +
√

2−
√

2 +
√

2
= 2.455 . . .

This paper is an overview of Beaton (2012), which in turn largely follows the same structure as Beaton
et al. (2012). In the interest of brevity we omit most proofs. We first present an identity relating several
different generating functions of SAWs in a finite domain, evaluated at the critical step fugacity x = xc =
µ−1. We then give adaptations of some existing results for the hypercubic lattice to the honeycomb lattice,
and show how the critical fugacity relates to an appropriate limiting case of our identity. This relationship
enables us to derive a proof of Theorem 1, subject to a certain generating function in a restricted geometry
(specifically, the generating function of self-avoiding bridges which span a strip of height T ) disappearing
in a limit. We omit the proof of that result here; it is given in the appendix of Beaton (2012). The proof
there is very similar to that of the appendix in Beaton et al. (2012), which was in turn based on arguments
featured in Duminil-Copin and Hammond (2012).

In Beaton et al. (2012), we also established identities for a generalisation of the self-avoiding walk
model, namely the O(n) loop model. The equivalent generalisation for the rotated lattice is discussed in
Beaton (2012), and we refer the reader to that article for further details.
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a

z

Fig. 2: A SAW on the honeycomb lattice. The contribution of this SAW to F (z) is e−iσπx33y4.

2 The identities
2.1 The local identity for bulk vertices
We consider the semi-infinite honeycomb lattice, oriented as in Figure 1(b), embedded in the complex
plane in such a way that the edges have unit length. We follow the examples of Duminil-Copin and
Smirnov (2012) and Beaton et al. (2012) and consider self-avoiding walks which start and end at the
mid-points of edges on the lattice. Note that this means the length of a walk is the same as the number
of vertices it occupies. We define a domain Ω to be a finite connected collection of mid-edges with the
property that for every vertex v adjacent to a mid-edge of Ω, all three mid-edges adjacent to v must be in
Ω. We denote by V (Ω) the set of vertices adjacent to mid-edges of Ω, and by ∂Ω the set of mid-edges of
Ω adjacent to only one vertex of V (Ω). Let γ be a self-avoiding walk. We denote by |γ| the number of
vertices occupied by γ and by c(γ) the number of contacts with the surface (i.e. vertices on the surface
occupied by γ).

Now define the following so-called parafermionic observable: for a ∈ ∂Ω and z ∈ Ω, set

F (Ω, a, p;x, y, σ) ≡ F (p) :=
∑

γ:a→p
x|γ|yc(γ)e−iσW (γ),

where the sum is over all SAWs γ ⊂ Ω which run from a to p, and W (γ) is the winding angle of γ, that
is, π/3 times the difference between the number of left turns and right turns. See Figure 2 for an example.

The following lemma appears as part of Lemma 3 in Beaton et al. (2012); the case y = 1 is due to
Smirnov (2010).

Lemma 2 Let

σ = −1

8
, x−1c = 2 cos

(
3π

8

)
=

√
2−
√

2, or (1)

σ =
5

8
, x−1c = 2 cos

(π
8

)
=

√
2 +
√

2. (2)
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Then for a vertex v ∈ V (Ω) not belonging to the weighted surface, the observable F satisfies

(p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0, (3)

where p, q, r are the three mid-edges adjacent to v, and the variable x is set to xc.

Equation (1) corresponds to the larger of the two critical values of the step weight x and hence to the
dense regime critical point, while (2) corresponds to the line of critical points separating the dense and
dilute phases. In what follows we refer to (1) and (2) as the dense and dilute regimes respectively.

2.2 The local identity for surface vertices
We now wish to generalise Lemma 2 to include vertices lying on the weighted boundary. To do this,
we have to be more particular about the domain being used. We work in the special domain DT,L, as
illustrated in Figure 3. The height T of the domain is the length of the shortest walk starting at a and
ending at the top boundary; the width 2L + 1 is the number of columns of cells. Walks start at the mid-
edge a. We choose this mid-edge in order to preserve the reflective symmetry of the domain, which greatly
simplifies an important identity. However, the fact that a is not an external mid-edge does introduce some
complications:

• A walk which ends at a particular external mid-edge could have two different winding angles,
depending on whether it started from a in the left or right direction. This is undesirable, but easily
corrected. Define

W ∗(γ) :=





W (γ) + π/2 if γ starts in the left direction,
W (γ)− π/2 if γ starts in the right direction,
0 if γ is the empty walk.

Then, define F ∗(p) in the same way as F (p), but now using W ∗ instead of W .

• This new observable F ∗ will satisfy the same identity (3) as F on all non-boundary vertices of
DT,L, except for the vertices a− and a+ adjacent to a. To deal with this, we define V ′(DT,L) :=
DT,L\{a−, a+}, and will end up evaluating (3) only on the vertices of V ′(DT,L).

Proposition 3 Let σ and xc be as defined in (2). Define 1β+(v) to be 1 if the vertex v is adjacent to a
mid-edge in β+ and 0 otherwise, and similarly define 1β−(v). Then for every vertex v in V ′(DT,L) with
adjacent mid-edges p, q, r,

(p− v)F ∗(p) + (q − v)F ∗(q) + (r − v)F ∗(r)

= 1β+(v)(1− y)e−iσ(−π/6)(xcy)−1
(

(r − v)λ̄
∑

γ:a→r→p
x|γ|c yc(γ) + (q − v)λ

∑

γ:a→q→p
x|γ|c yc(γ)

)

+ 1β−(v)(1− y)e−iσ(π/6)(xcy)−1
(

(r − v)λ̄
∑

γ:a→r→p
x|γ|c yc(γ) + (q − v)λ

∑

γ:a→q→p
x|γ|c yc(γ)

)
, (4)

where for vertices adjacent to mid-edges in β+ or β−, the surrounding mid-edges p, q, r are in clockwise
order from the external mid-edge, and the sums are over walks which visit the indicated mid-edges in the
prescribed order.
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ε+

ε+

ε+

ε−

ε−

ε−

αO+ αO+αI+αO− αI+αI−αI−αO−

β− β+β+β−β+β−β+β−β+β−

aa− a+

Fig. 3: The domain DT,L of height T = 7 and width 2L + 1 = 9, with the weighted vertices on the β
boundary indicated. The external mid-edges attached to a− and a+ are present in the domain but will not
play a part in the identity, and are thus not illustrated.

It is clear that if y = 1 or if v is not a weighted vertex, then the RHS of (4) disappears and thus (4)
reduces to something very similar to (3) – the differences being that here a is not an external mid-edge,
and V ′(DT,L) does not quite include all vertices in the domain. The factors e−iσ(−π/6) and e−iσ(π/6) are
the contributions of the modified winding angles of walks to β+ and β− mid-edges respectively.

2.3 The domain identity

In Duminil-Copin and Smirnov (2012), the authors use Lemma 2 to prove that the growth constant of self-
avoiding walks (the dilute regime) is x−1c =

√
2 +
√

2. They do so by considering a special trapezoidal
domain, and using the local identity (3) to derive a domain identity satisfied by generating functions of
SAWs which end on different sides of the domain. In Beaton et al. (2012), that identity is generalised to
one which relates generating functions of theO(n) loop model and takes into account the surface fugacity
y.

Here, we construct a similar identity to the one used in Beaton et al. (2012). We take σ and xc to be the
values given in (2).

Define

AOT,L(x, y) =
∑

γ:a→αO+
⋃
αO−

x|γ|yc(γ) AIT,L(x, y) =
∑

γ:a→αI+
⋃
αI−

x|γ|yc(γ)

ET,L(x, y) =
∑

γ:a→ε+ ⋃
ε−

x|γ|yc(γ) BT,L(x, y) =
∑

γ:a→β+
⋃
β−

x|γ|yc(γ),

where each sum runs over SAWs which start at a and end in the indicated set of external mid-edges of
DT,L. Also, define

PT,L(x, y) =
∑

ρ3a
x|ρ|yc(ρ),
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which sums over all undirected (non-empty) self-avoiding polygons in DT,L which contain a. That is,
ρ is a simple closed loop on the edges of DT,L which passes through a, |ρ| is the number of edges (or,
equivalently, vertices) occupied by ρ and c(ρ) is the number of boundary vertices occupied by ρ.

Proposition 4 Let T +L ≡ 1(mod 2). Then the generating functions AOT,L, A
I
T,L, ET,L, BT,L and PT,L,

evaluated at x = xc, satisfy the identity

cOAA
O
T,L(xc, y) + cIAA

I
T,L(xc, y) + cEET,L(xc, y) + cPPT,L(xc, y) + cB(y)BT,L(xc, y) = cG, (5)

where

cOA := 2 cos

(
5π

16

)
=

√
2−

√
2−
√

2, cIA := 2 cos

(
7π

16

)
=

√
2−

√
2 +
√

2,

cE := 2 cos

(
3π

16

)
=

√
2 +

√
2−
√

2,

cP :=
4

xc
cos

(
7π

16

)
= 2

√
4 + 2

√
2−

√
2
(

10 + 7
√

2
)
,

cG := 4xc cos
( π

16

)
=

√√√√2

(
4− 2

√
2 +

√
2
(

2−
√

2
))

, and

cB(y) := 2 cos
( π

16

)
− 2(1− xcy − x2cy2) cos

(
15π
16

)
+ 2x2cy

2 cos
(
5π
16

)

xcy(1 + xcy)

=
cB

xcy(1 + xcy)
− xcyc

O
A

1 + xcy
, and cB := cB(1) = 2 cos

( π
16

)
=

√
2 +

√
2 +
√

2.

The proof follows by computing the sum

S =
∑

v∈V ′(DT,L)
p,q,r∼v

(p− v)F ∗(p) + (q − v)F ∗(q) + (r − v)F ∗(r), (6)

where p, q, r are the three mid-edges adjacent to vertex v, in two ways. One one hand, the contribution to
S of any “internal” mid-edge (i.e. any mid-edge adjacent to two vertices in V ′(DT,L)) will be 0, and thus
we only need to consider the contributions of external mid-edges. On the other hand, (4) guarantees that
the contribution of any unweighted vertex is 0, and so we can compute S by calculating the contributions
of the vertices on the β boundary. We require T + L ≡ 1(mod 2) so that we can pair up vertices on the β
boundary.

3 The critical surface fugacity
In this extended abstract we omit most of the technical results which enable us to adapt known results for
the hypercubic lattice (see Hammersley et al. (1982) and van Rensburg et al. (2006)) to the honeycomb
lattice, and instead only present the main result that we need. In a strip of height T , we set the mid-edge a
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a

(a)

a

(b)

a

(c)

Fig. 4: Sections of the strip of height T , with (a) an arch, (b) a bridge and (c) a general walk. The dark
circles indicate the weighted vertices on the top of the strip.

to be a horizontal mid-edge on the bottom of the strip (similar to its placement in the finite domain DT,L).
We then define the following three types of SAWs (see Figure 4): bridges, which start at a and end at the
top of the strip; arches, which start at a and end on the bottom of the strip; and general walks, which start
at a and may end anywhere in the strip. We then define the generating function

BT (x, y) =
∑

n,m≥0
bT,n(m)xnym

where BT,n(m) is the number of length n bridges in the strip of width T which contain m vertices at the
top of the strip. We likewise define AT (x, y) and CT (x, y) for arches and general walks respectively.

The following proposition will allow us to relate the generating functions we considered in the previous
section with the critical surface fugacity yc. Recall from Section 1 the definition of µ(y).

Proposition 5 For y > 0, the generating functions AT (x, y), BT (x, y) and CT (x, y) all have the same
radius of convergence, ρT (y). The sequence ρT (y) decreases to ρ(y) := µ(y)−1 as T →∞. In particu-
lar, ρT (y) decreases to ρ := µ−1 for y ≤ yc.

There exists a unique yT > 0 such that ρT (yT ) = xc := µ−1. The series (in y) AT (xc, y), BT (xc, y)
and CT (xc, y) have radius of convergence yT , and yT decreases to the critical fugacity yc as T →∞.

We now return to the identity (5) relating the generating functions in the domainDT,L. Note that cB(y)
is a continuous and monotone decreasing function of y for y > 0, and that cB(y†) = 0 where

y† =

√
2 +
√

2

1 +
√

2−
√

2 +
√

2
.

For 0 < y < y†, every term in (5) is non-negative. Observe that AOT,L, AIT,L, BT,L and PT,L are
increasing with L. (As L increases these generating functions just count more and more objects.) We then
see that for those values of L satisfing T + L ≡ 1 (mod 2), ET,L must decrease as L increases. It is thus
valid to take the limit L→∞ of (5) over the values of L with T +L ≡ 1 (mod 2). But now AOT,L, AIT,L,
BT,L and PT,L actually increase with L regardless of whether T + L ≡ 1 (mod 2) or not, and so they
have the same limits as L → ∞ over any subsequence of L values. Hence, we can in fact take the limit
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L→∞ of (5) over all values of L. If we define

AOT (xc, y) := lim
L→∞

AOT,L(xc, y),

and similar limits for the other generating functions (we also have limL→∞BT,L(x, y) = BT (x, y) as
defined earlier), then we obtain

cOAA
O
T (xc, y) + cIAA

I
T (xc, y) + cEET (xc, y) + cPPT (xc, y) + cB(y)BT (xc, y) = cG. (7)

In this rest of this section, we will prove the following:

Proposition 6 If it can be shown that

B(xc, 1) := lim
T→∞

BT (xc, 1) = 0

then yc = y†.

The proof that B(xc, 1) = 0 is quite involved and will thus be omitted from this extended abstract; see
the appendix of Beaton (2012).

We begin by establishing a lower bound on yc with a straightforward corollary to Proposition 5.

Corollary 7 The critical surface fugacity yc satisfies

yc ≥ y†.

Proof: For y < y† the identity (7) establishes the finiteness of BT (xc, y), and thus we see yT ≥ y†. By
Proposition 5 it then follows that yc ≥ y†. 2

We now show that one of the generating functions in (7) has disappeared in the limit L→∞.

Corollary 8 For 0 ≤ y < y†,

ET (xc, y) := lim
L→∞

ET,L(xc, y) = 0,

and hence
cOAA

O
T (xc, y) + cIAA

I
T (xc, y) + cPPT (xc, y) + cB(y)BT (xc, y) = cG. (8)

Proof: By Proposition 5, yT is the radius of convergence of CT (xc, y). Since yT ≥ yc ≥ y†, it follows
that CT (xc, y) is convergent for 0 ≤ y < y†. Now

∑

L

ET,L(xc, y) ≤ CT (xc, y) <∞,

as each walk counted by ET,L, for every value of L, will also be counted by CT . The corollary follows
immediately. 2

We note here that AOT (xc, y) ≤ CT (xc, y) (since any walk counted by AOT is also counted by CT ), and
likewise for AOT and PT . Hence all the generating functions featured in (8) have radius of convergence at
least yT .
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T + 1
T

Fig. 5: Factorisation of a walk counted by AOT+1 into two bridges.

Now consider the y = 1 case of (8):

cOAA
O
T (xc, 1) + cIAA

I
T (xc, 1) + cPPT (xc, 1) + cBBT (xc, 1) = cG.

Since AOT (xc, 1), AIT (xc, 1) and PT (xc, 1) all increase with T (as T increases these generating functions
count more and more objects), and since they are all bounded by this identity, it follows that they all have
limits as T → ∞. Then BT (xc, 1) must decrease as T increases, and it too has a limit as T → ∞. As
indicated in Proposition 6, we denote this limit

B(xc, 1) := lim
T→∞

BT (xc, 1).

Proof of Proposition 6: Assume now that B(xc, 1) = 0. Any walk counted by AOT+1(xc, y) which has
contacts with the top boundary can be factored into two pieces by cutting it at the mid-edge immediately
following its last surface contact. (See Figure 5.) The first piece, after reflecting the last step, is an
object counted by BT+1(xc, y), while the second piece (with its direction reversed) will be counted by
(1 + xc)BT (xc, 1)/2. Thus we obtain

AOT+1(xc, y)−AOT (xc, 1) ≤ 1 + xc
2
·BT+1(xc, y)BT (xc, 1)

≤ BT+1(xc, y)BT (xc, 1).

This inequality is valid in the domain of convergence of the series it involves, that is, for y < yT+1. Using
similar arguments we can obtain the equivalent inequality for AIT+1(xc, y) and PT+1(xc, y).

Combining this decomposition for AOT+1, A
I
T+1 and PT+1, we find for 0 ≤ y < yT+1,

cOA[AOT+1(xc, y)−AOT (xc, 1)] + cIA[AIT+1(xc, y)−AIT (xc, 1)] + cP [PT+1(xc, y)− PT (xc, 1)]

≤ (cOA + cIA + cP )BT+1(xc, y)BT (xc, 1). (9)

Using (8) to eliminate the AO, AI and P terms, we obtain

cBBT (xc, 1)− cB(y)BT+1(xc, y) ≤ (cOA + cIA + cP )BT+1(xc, y)BT (xc, 1),
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and hence

0 ≤ 1

BT+1(xc, y)
≤ (cOA + cIA + cP )

cB
+

cB(y)

cBBT (xc, 1)
. (10)

In particular, for 0 ≤ y < yc = limT→∞ yT and for any T ,

0 ≤ xc(c
O
A + cIA + cP )

cB
+

cB(y)

cBBT (xc, 1)
. (11)

Now consider what happens as T → ∞. By assumption, limT→∞BT (xc, 1) = 0. Suppose (for a
contradiction) that yc > y†. Then for any y† < y < yc and sufficiently large T , the RHS of (11) will be
negative, because cB(y) < 0 for y > y† and BT (xc, 1)−1 will become arbitrarily large. This contradicts
the inequality, and we are forced to conclude yc ≤ y†, and hence yc = y†. 2
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Generalized monotone triangles: an extended
combinatorial reciprocity theorem

Lukas Riegler†
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Abstract. In a recent work, the combinatorial interpretation of the polynomial α(n; k1, k2, . . . , kn) counting the
number of Monotone Triangles with bottom row k1 < k2 < · · · < kn was extended to weakly decreasing sequences
k1 ≥ k2 ≥ · · · ≥ kn. In this case the evaluation of the polynomial is equal to a signed enumeration of objects called
Decreasing Monotone Triangles. In this paper we define Generalized Monotone Triangles – a joint generalization of
both ordinary Monotone Triangles and Decreasing Monotone Triangles. As main result of the paper we prove that
the evaluation of α(n; k1, k2, . . . , kn) at arbitrary (k1, k2, . . . , kn) ∈ Zn is a signed enumeration of Generalized
Monotone Triangles with bottom row (k1, k2, . . . , kn). Computational experiments indicate that certain evaluations
of the polynomial at integral sequences yield well-known round numbers related to Alternating Sign Matrices. The
main result provides a combinatorial interpretation of the conjectured identities and could turn out useful in giving
bijective proofs.

Résumé. Dans un travail récent, l’interprétation combinatoire du polynôme α(n; k1, k2, . . . , kn) comptant le nombre
de triangles monotones avec dernière ligne k1 < k2 < · · · < kn a été étendue aux suites faiblement décroissantes
k1 ≥ k2 ≥ · · · ≥ kn. Dans ce cas l’évaluation du polynôme est égale à l’énumération signée d’objets ap-
pelés triangles monotones décroissants. Dans ce papier nous définissons des triangles monotones généralisés –
une généralisation commune des triangles monotones ordinaires et décroissants. Notre résultat principal est que
l’évaluation de α(n; k1, k2, . . . , kn) en un quelconque (k1, k2, . . . , kn) ∈ Zn est une énumération signée de trian-
gles monotones généralisés avec dernière ligne (k1, k2, . . . , kn). Des calculs par ordinateur indiquent que certaines
valeurs du polynôme sont des nombres bien connus liés aux matrices à signe alternant. Le résultat principal fournit
une interprétation combinatoire des identités conjecturales et pourrait être utile dans l’obtention de preuves bijectives.

Keywords: Combinatorial Reciprocity, Monotone Triangle, Generalized Monotone Triangle, Alternating Sign Matrix

1 Introduction
A Monotone Triangle of size n is a triangular array of integers (ai,j)1≤j≤i≤n

a1,1
a2,1 a2,2

. . . . . .
an,1 · · · · · · an,n
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with strictly increasing rows, i.e. ai,j < ai,j+1, and weakly increasing North-East- and South-East-
diagonals, i.e. ai+1,j ≤ ai,j ≤ ai+1,j+1. An example of a Monotone Triangle of size 5 is given in
Fig.1.

4
4 5

3 5 7
2 5 6 8

2 4 5 8 9

Fig. 1: One of the 16939 Monotone Triangles with bottom row (2, 4, 5, 8, 9).

For each n ≥ 1, there exists a unique polynomial α(n; k1, k2, . . . , kn) of degree n− 1 in each of the n
variables such that the evaluation of this polynomial at strictly increasing sequences k1 < k2 < · · · < kn
is equal to the number of Monotone Triangles with prescribed bottom row (k1, k2, . . . , kn) – for example
α(5; 2, 4, 5, 8, 9) = 16939. This result was derived in [Fis06], where the polynomials are given explicitly
in terms of an operator formula.

In [FR13] we studied the evaluation of α(n; k1, . . . , kn) at weakly decreasing sequences k1 ≥ k2 ≥
· · · ≥ kn. As it turned out, the evaluation can be interpreted as signed enumeration of the following
combinatorial objects:

A Decreasing Monotone Triangle (DMT) of size n is a triangular array of integers (ai,j)1≤j≤i≤n having
the following properties:

• The entries along NE- and SE-diagonals are weakly decreasing.

• Each integer appears at most twice in a row.

• Two consecutive rows do not both contain the same integer exactly once.

One of the motivations for considering evaluations of α(n; k1, . . . , kn) at non-increasing (k1, . . . , kn) ∈
Zn stems from the connection to Alternating Sign Matrices. An Alternating Sign Matrix (ASM) of size n
is a n×n-matrix with entries in {0, 1,−1} such that in each row and column the non-zero entries alternate
in sign and sum up to 1. It is well-known ([MRR83]) that the set of ASMs is in bijection with the set of
Monotone Triangles with bottom row (1, 2, . . . , n). Counting the number of ASMs of size n had been
an open problem for more than a decade until the first two proofs were given by D. Zeilberger ([Zei96])
and G. Kuperberg ([Kup96]) in 1996 (see [Bre99] for more details). The Refined ASM Theorem – i.e.
the refined enumeration with respect to the unique 1 in the first row – was reproven by I. Fischer in 2007
([Fis07]). The identity

α(n; k1, . . . , kn) = (−1)n−1α(n; k2, . . . , kn, k1 − n) (1)

plays one of the key roles in this algebraic proof. A bijective proof of (1) could give more combinatorial
insight to the theorem. However, note that if k1 < k2 < · · · < kn, then kn > k1 − n, i.e. (1) can per se
only be understood as identity satisfied by the polynomial.

The objective of this paper is to give a combinatorial interpretation to the evaluation of α(n; k1, . . . , kn)
at arbitrary (k1, . . . , kn) ∈ Zn. For this, we define triangular arrays of integers which locally combine the
restrictions of ordinary Monotone Triangles and Decreasing Monotone Triangles:
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A Generalized Monotone Triangle (GMT) is a triangular array (ai,j)1≤j≤i≤n of integers satisfying the
following conditions:

(1) Each entry is weakly bounded by its SW- and SE-neighbour, i.e.

min{ai+1,j , ai+1,j+1} ≤ ai,j ≤ max{ai+1,j , ai+1,j+1}.

(2) If three consecutive entries in a row are weakly increasing, then their two interlaced neighbours in
the row above are strictly increasing, i.e.

ai+1,j ≤ ai+1,j+1 ≤ ai+1,j+2 → ai,j < ai,j+1.

(3) If two consecutive entries in a row are strictly decreasing and their interlaced neighbour in the row
above is equal to its SW-/SE-neighbour, then the interlaced neighbour has a left/right neighbour and
is equal to it, i.e.

ai,j = ai+1,j > ai+1,j+1 → ai,j−1 = ai,j ,

ai+1,j > ai+1,j+1 = ai,j → ai,j+1 = ai,j .

Note that by Condition (1) and (2) three consecutive entries in a row of a GMT can not coincide. By way
of illustration, let us find all GMTs with bottom row (4, 2, 1, 3): first, construct all possible penultimate
rows (l1, l2, l3). Condition (1) implies that l1 ∈ {2, 3, 4}, Condition (3) further restricts it to l1 ∈ {2, 3}.
If on the one hand l1 = 2, then Condition (3) forces l2 = 2. The right-most entry l3 is bounded by 1
and 3, but since l1 = l2 = l3 = 2 can not occur, we have l3 ∈ {1, 3}. If on the other hand l1 = 3, then
Condition (3) implies that l2 = l3 = 1. Continuing in the same way with all penultimate rows yields the
four GMTs depicted in Fig.2.

2
2 2

2 2 1
4 2 1 3

2
2 3

2 2 3
4 2 1 3

3
2 3

2 2 3
4 2 1 3

1
1 1

3 1 1
4 2 1 3

Fig. 2: The four GMTs with bottom row (4, 2, 1, 3).

For k1 < k2 < · · · < kn, the set of GMTs with bottom row (k1, . . . , kn) is equal to the set of Monotone
Triangles with this bottom row: Every GMT with strictly increasing bottom row is by Conditions (1)
and (2) a Monotone Triangle. Conversely, the weak increase along NE- and SE-diagonals of Monotone
Triangles implies Condition (1) of GMTs, the strict increase along rows Condition (2), and the premise of
(3) can not hold.

For k1 ≥ k2 ≥ · · · ≥ kn, the set of GMTs with bottom row (k1, . . . , kn) is equal to the set of
Decreasing Monotone Triangles with this bottom row: The NE- and SE-diagonals of every GMT with
weakly decreasing bottom row are by Condition (1) weakly decreasing. This also implies a weak decrease
along rows, and since three consecutive equal entries can not occur, each integer appears at most twice in
a row. Furthermore, two consecutive rows can not both contain an integer exactly once due to Condition
(3). Conversely, the weak decrease of DMTs along NE- and SE-diagonals implies Condition (1) and weak
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decrease along rows. Thus, the premise of (2) can only hold if three consecutive entries coincide, which
is not admissible in DMTs. Finally, Condition (3) follows from the weak decrease along rows together
with the condition that two consecutive rows do not both contain the same integer exactly once.

Therefore, Generalized Monotone Triangles are indeed a joint generalization of ordinary Monotone
Triangles and Decreasing Monotone Triangles. The main result of the paper is that the evaluation of
α(n; k1, k2, . . . , kn) at integral values is a signed enumeration of the GMTs with bottom row (k1, k2, . . . , kn).
The sign of a GMT is determined by the following two statistics:

1. An entry ai,j is called newcomer if ai+1,j > ai,j > ai+1,j+1.

2. A pair (x, x) of two consecutive equal entries in a row is called sign-changing, if their interlaced
neighbour in the row below is also equal to x.

In the following, let Gn(k1, k2, . . . , kn) denote the set of GMTs with bottom row (k1, k2, . . . , kn).

Theorem 1 Let n ≥ 1 and (k1, k2, . . . , kn) ∈ Zn. Then

α(n; k1, k2, . . . , kn) =
∑

A∈Gn(k1,...,kn)
(−1)sc(A),

where sc(A) is the total number of newcomers and sign-changing pairs in A.

Applying Theorem 1 to our example in Fig.2 gives α(4; 4, 2, 1, 3) = −2, since only the left-most GMT
has an even number of sign-changes.

Theorem 1 is known to be true for strictly increasing sequences k1 < k2 < · · · < kn, as in this case
the set Gn(k1, . . . , kn) is equal to the set of Monotone Triangles with bottom row (k1, k2, . . . , kn) and
sc(A) = 0 for every Monotone Triangle.

Lemma 3 of [FR13] implies the correctness of Theorem 1 for weakly decreasing bottom rows: In
this case Gn(k1, . . . , kn) is equal to the set of DMTs with bottom row (k1, . . . , kn) and the sc-functions
coincide. K. Jochemko and R. Sanyal recently gave a proof of the theorem in this case from a geometric
point of view ([JS12]).

In Section 2 we sketch a straight-forward inductive proof of Theorem 1 using a recursion satisfied by
α(n; k1, . . . , kn) and case distinctions (more details in [Rie12]). In Section 3 a connection with a known
generalization ([Fis11]) is established, which enables us to give a shorter, more subtle proof of Theorem
1. Apart from being a joint generalization of Monotone Triangles and DMTs, the newly introduced
generalization is more reduced in the sense that fewer cancellations occur in the signed enumeration than
in previously known generalizations. In Section 4 we apply the theorem to give a combinatorial proof of
an identity satisfied by α(n; k1, . . . , kn) and provide a collection of open problems.

2 Summation Operator & Proof of Theorem 1
The number of Monotone Triangles with bottom row (k1, . . . , kn) can be counted recursively by determin-
ing all admissible penultimate rows (l1, . . . , ln−1) and summing over the number of Monotone Triangles
with these bottom rows. The polynomial α(n; k1, . . . , kn) hence satisfies

α(n; k1, . . . , kn) =
∑

(l1,...,ln−1)∈Zn−1,
k1≤l1≤k2≤l2≤···≤kn−1≤ln−1≤kn,

li<li+1

α(n− 1; l1, . . . , ln−1) (2)
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for all k1 < k2 < · · · < kn, ki ∈ Z. In fact ([Fis06]), one can define a summation operator
(k1,...,kn)∑
(l1,...,ln−1)

for

arbitrary (k1, . . . , kn) ∈ Zn such that

α(n; k1, . . . , kn) =

(k1,...,kn)∑

(l1,...,ln−1)

α(n− 1; l1, . . . , ln−1) (3)

holds. This summation operator is defined recursively by

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) :=
(k1,...,kn−1)∑

(l1,...,ln−2)

kn∑

ln−1=kn−1+1

A(l1, . . . , ln−2, ln−1) (4)

+

(k1,...,kn−2,kn−1−1)∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−1), n ≥ 2,

with
(k1)∑
()

:= id. Using induction, it is clear that the summation operators in (2) and (3) coincide for

increasing sequences k1 < k2 < · · · < kn. In order to give a meaning to (4) for arbitrary (k1, . . . , kn) ∈
Zn, we have to extend the definition of simple sums. Motivated by the formal identity

∑b
i=a f(i) =∑∞

i=a f(i)−
∑∞
i=b+1 f(i) for a ≤ b, we define

b∑

i=a

f(i) :=





0, b = a− 1,

−
a−1∑
i=b+1

f(i), b+ 1 ≤ a− 1.
(5)

To prove (3) for arbitrary (k1, . . . , kn) ∈ Zn, let us first note that applying
(k1,...,kn)∑
(l1,...,ln−1)

to a polynomial in

(l1, . . . , ln−1) yields a polynomial in (k1, . . . , kn): In the base case n = 2, write the polynomial p(l1) in
terms of the binomial basis p(l1) =

∑m−1
i=0 ci

(
l1
i

)
. The polynomial q(x) :=

∑m−1
i=0 ci

(
x
i+1

)
then satisfies

q(x + 1) − q(x) = p(x). For integers k1 ≤ k2, it follows that
∑k2
l1=k1

p(l1) = q(k2 + 1) − q(k1), but
this is by definition (5) true for arbitrary k1, k2 ∈ Z. The inductive step is immediate using (4). Thus, we
know that the right-hand side of (3) is a polynomial in (k1, . . . , kn) coinciding with the polynomial on the
left-hand side whenever k1 < k2 < · · · < kn. Since a polynomial in n variables is uniquely determined
by these values, it follows that (3) indeed holds. The same is true for the alternative recursive description

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =
(k1,...,kn−1)∑

(l1,...,ln−2)

kn∑

ln−1=kn−1

A(l1, . . . , ln−2, ln−1) (6)

−
(k1,...,kn−2)∑

(l1,...,ln−3)

A(l1, . . . , ln−3, kn−1, kn−1), n ≥ 3.
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Lemma 1 For (k1, . . . , kn) ∈ Zn let P(k1, . . . , kn) denote the set of (n − 1)-st rows of elements in
Gn(k1, k2, . . . , kn). Then every function A(l1, . . . , ln−1) satisfies

(k1,...,kn)∑

(l1,...,ln−1)

A(l1, . . . , ln−1) =
∑

(l1,...,ln−1)∈P(k1,...,kn)
(−1)sc(k;l)A(l1, . . . , ln−1), n ≥ 2,

where sc(k; l) := sc(k1, . . . , kn; l1, . . . , ln−1) is the total number of newcomers and sign-changing pairs
in (l1, . . . , ln−1).

It is instructive to see how the base case n = 2 follows from (4), (5) and the definition of GMTs. In
general, the set of admissible values for an entry li depends on its neighbours li−1 and li+1 as well as the
four adjacent entries ki−1, ki, ki+1 and ki+2 in the row below – ordered

li−1 li li+1

ki−1 ki ki+1 ki+2

– in the following way: If ki−1 > li−1 = ki, then the only admissible value is li = ki. Symmetrically,
if ki+1 = li+1 > ki+2, then li = ki+1. Otherwise, li can take any value strictly between ki and ki+1.
To determine whether li = ki is allowed, distinguish between ki > ki+1, ki−1 > ki ≤ ki+1 and
ki−1 ≤ ki ≤ ki+1. If ki > ki+1, then li = ki is admissible, if and only if li−1 = ki. If ki−1 > ki ≤ ki+1,
then li = ki is admissible. If ki−1 ≤ ki ≤ ki+1, then li = ki is admissible, if and only if li−1 < ki.
Determining whether li = ki+1 is admissible works symmetrically.

In order to prove Lemma 1 inductively, we hence have to distinguish between the cases kn−1 ≤ kn
(Case 1) and kn−1 > kn (Case 2). Since a different behaviour occurs depending on whether ln−1 – the
rightmost entry of the penultimate row – is equal to kn−1 or not, we have to consider sub-cases 1.1, 1.2
and 2.1, 2.2 respectively. Using Recursion (4) in Case 1 and Recursion (6) in Case 2, one can now give a
straight-forward proof of the Lemma. The proof in full length can be found in [Rie12]. Theorem 1 is then
an immediate consequence of (3) and Lemma 1:

α(n; k1, . . . , kn) =

(k1,...,kn)∑

(l1,...,ln−1)

α(n− 1; l1, . . . , ln−1)

=
∑

(l1,...,ln−1)∈P(k1,...,kn)
(−1)sc(k;l)α(n− 1; l1, . . . , ln−1)

=
∑

(l1,...,ln−1)∈P(k1,...,kn)
(−1)sc(k;l)

∑

A∈Gn−1(l1,...,ln−1)

(−1)sc(A) =
∑

A∈Gn(k1,...,kn)
(−1)sc(A).

3 Connection with different extension & Alternative proof
In [Fis11] four different combinatorial extensions of α(n; k1, . . . , kn) to all (k1, . . . , kn) ∈ Zn are de-
scribed. The idea behind all of them is to write the sum in (2) in terms of simple summations, i.e.
summations as defined in (5). In the third extension this is based on the inclusion-exclusion principle: For
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k1 < k2 < · · · < kn let

M := {(l1, . . . , ln−1) ∈ Zn−1 | ∀j : kj ≤ lj ≤ kj+1 ∧ lj < lj+1},
A := {(l1, . . . , ln−1) ∈ Zn−1 | ∀j : kj ≤ lj ≤ kj+1},
Ai := {(l1, . . . , ln−1) ∈ Zn−1 | ∀j : kj ≤ lj ≤ kj+1 ∧ li−1 = ki = li}, i = 2, . . . , n− 1.

From ki < ki+1 it follows that Ai∩Ai+1 = ∅, and thus we have for any function f(l) := f(l1, . . . , ln−1)
that

∑

l∈M
f(l) =

∑

l∈A
f(l)−

n−1∑

i=2

∑

l∈Ai

f(l) +
∑

2≤i1<i2≤n−1
i2 6=i1+1

∑

l∈Ai1
∩Ai2

f(l)

−
∑

2≤i1<i2<i3≤n−1
ij+1 6=ij+1

∑

l∈Ai1
∩Ai2

∩Ai3

f(l) · · · , (7)

which can be written in terms of simple sums as

∑

p≥0
(−1)p

∑

2≤i1<i2<···<ip≤n−1
ij+1 6=ij+1

k2∑

l1=k1

k3∑

l2=k2

· · ·
ki1∑

li1−1=ki1

ki1∑

li1=ki1

· · ·
kip∑

lip−1=kip

kip∑

lip=kip

· · ·
kn∑

ln−1=kn−1

f(l).

(8)
Applying (5), we can interpret (8) for arbitrary (k1, . . . , kn) ∈ Zn. Hence, let us show that

α(n; k1, . . . , kn) =
∑

p≥0
(−1)p

∑

2≤i1<i2<···<ip≤n−1
ij+1 6=ij+1

(9)

k2∑

l1=k1

k3∑

l2=k2

· · ·
ki1∑

li1−1=ki1

ki1∑

li1=ki1

· · ·
kip∑

lip−1=kip

kip∑

lip=kip

· · ·
kn∑

ln−1=kn−1

α(n− 1; l1, . . . , ln−1)

holds for (k1, . . . , kn) ∈ Zn: The correctness for k1 < k2 < · · · < kn is ensured by (2), (7) and (8).
Similar to the proof of (3) for arbitrary (k1, . . . , kn) ∈ Zn, it suffices to note that the right-hand side of
(9) is a polynomial in k1, . . . , kn and thus uniquely determined by its evaluations at k1 < . . . < kn.

As pointed out in [Fis11], we can give (9) a combinatorial meaning by interpreting α(n; k1, . . . , kn) as
signed enumeration of the following combinatorial objects: In a triangular array (ai,j)1≤j≤i≤n of integers,
let us call the entries ai−1,j−1 and ai−1,j the parents of ai,j . Among the entries (ai,j)1<j<i≤n, there may
be special entries. Special entries in the same row must not be adjacent (choosing these special entries
corresponds to fixing the il’s in (9)). The requirements for the entries are

• If ai,j is special, then ai−1,j−1 = ai,j = ai−1,j .

• If ai,j is not the parent of a special entry and ai+1,j ≤ ai+1,j+1, then ai+1,j ≤ ai,j ≤ ai+1,j+1.

• If ai,j is not the parent of a special entry and ai+1,j > ai+1,j+1, then ai+1,j+1 > ai,j > ai+1,j . In
this case ai,j is called inversion.
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Let us denote by Tn(k1, . . . , kn) the set of these objects with bottom row (an,1, . . . , an,n) = (k1, . . . , kn).
For A ∈ Tn(k1, . . . , kn) let s(A) be the total number of special entries and inversions. Using induction
and (9) yields

α(n; k1, . . . , kn) =
∑

A∈Tn(k1,...,kn)
(−1)s(A). (10)

In the following, we give an alternative proof of Theorem 1 by finding cancellations occurring in (10).
An advantage of removing these cancellations is that the notion of special entries will no longer be re-
quired. In fact, what we obtain after this reduction are exactly the GMTs. To be more concrete, we can
eliminate those arrays (ai,j)1≤j≤i≤n violating the condition

ai,j−1 ≤ ai,j ≤ ai,j+1 → ai−1,j−1 < ai−1,j

by using the following sign-reversing involution: find the minimal index i, and under those the minimal
index j such that ai,j−1 ≤ ai,j ≤ ai,j+1 and ai−1,j−1 = ai,j = ai−1,j . If ai,j is special, then turn it non-
special, and vice-versa. Note that the minimality ensures that if ai,j is not special, then the neighbours of
ai,j are not special, i.e. turning ai,j special is admissible. It follows that

α(n; k1, . . . , kn) =
∑

A∈Tn(k1,...,kn)
ai,j−1≤ai,j≤ai,j+1→ai−1,j−1<ai−1,j

(−1)s(A).

Note that in this reduced set an entry ai,j is special if and only if ai−1,j−1 = ai,j = ai−1,j . Since special
entries now correspond to sign-changing pairs and inversions to newcomers, the only remaining part for
proving Theorem 1 is to show that

Gn(k1, . . . , kn) = {A ∈ Tn(k1, . . . , kn) : ai,j−1 ≤ ai,j ≤ ai,j+1 → ai−1,j−1 < ai−1,j},

where an entry ai,j is special if and only if ai−1,j−1 = ai,j = ai−1,j .
Let A ∈ Gn(k1, . . . , kn). Then two adjacent special entries in a row would imply three consecutive

equal entries in a row, in contradiction to Condition (2) of GMTs. If ai,j is special, then ai−1,j−1 =
ai,j = ai−1,j by definition. If ai+1,j ≤ ai+1,j+1, then ai+1,j ≤ ai,j ≤ ai+1,j+1 by Condition (1) of
GMTs. If ai+1,j > ai+1,j+1, then ai+1,j ≥ ai,j ≥ ai+1,j+1 by Condition (1) of GMTs, and if ai+1,j and
ai+1,j+1 are neither special, Condition (3) of GMTs implies that ai+1,j > ai,j > ai+1,j+1. We thus have
A ∈ Tn(k1, . . . , kn), and the additional property is exactly Condition (2) of GMTs.

Conversely, let A ∈ Tn(k1, . . . , kn) such that ai,j−1 ≤ ai,j ≤ ai,j+1 implies ai−1,j−1 < ai−1,j .
Conditions (1) and (2) of GMTs are then trivially satisfied. If ai,j = ai+1,j > ai+1,j+1, then ai+1,j is a
special entry, and thus ai,j = ai+1,j = ai,j−1. Symmetrically, if ai+1,j > ai+1,j+1 = ai,j , then ai+1,j+1

is special, and thus ai,j = ai+1,j+1 = ai,j+1. In total, we have A ∈ Gn(k1, . . . , kn).

4 Applications & Open Problems
With this generalization at hand, we can try to give a combinatorial interpretation to identities satisfied by
α(n; k1, . . . , kn). By way of illustration, take the identity

α(n; k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) (11)
= α(n; k1, . . . , ki−1, ki, ki, ki+2, . . . , kn) + α(n; k1, . . . , ki−1, ki + 1, ki + 1, ki+2, . . . , kn).
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A combinatorial proof of this identity in the case that k1 < k2 < · · · < ki and ki + 1 < ki+2 <
· · · < kn was given in [Fis11]. Using Theorem 1, we can now give a combinatorial proof for arbitrary
(k1, . . . , kn) ∈ Zn by showing that there exists a sign-preserving bijection

Gn(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn)

↔ Gn(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn) ∪̇ Gn(k1, . . . , ki−1, ki + 1, ki + 1, ki+2, . . . , kn).

If P(k1, . . . , kn) denotes the set of penultimate rows of GMTs with bottom row (k1, . . . , kn), it suffices
to show that

P(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn)

= P(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn) ∪̇ P(k1, . . . , ki−1, ki + 1, ki + 1, ki+2, . . . , kn), (12)

where each fixed row has the same total number of sign-changes on both sides.
Each (l1, . . . , ln−1) ∈ P(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) satisfies li ∈ {ki, ki + 1}. Let us

show that the set of penultimate rows with li = ki is equal to P(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn).
With li = ki it is clear that the restrictions for (l1, . . . , li−1) and (li+3, . . . , ln−1) are identical for both
P(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) and P(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn). For the restrictions
of (li+1, li+2) distinguish between ki + 1 ≤ ki+2, ki = ki+2 and ki > ki+2:

• If ki+1 ≤ ki+2, then ki+1 ≤ li+1 ≤ ki+2 on both sides and the restrictions for li+2 are the same:

Left-hand side of (12) Right-hand side of (12)
ki li+1

= < ≤ ≤
ki < ki + 1 ≤ ki+2

ki li+1

= = < ≤
ki = ki ≤ ki+2

• If ki = ki+2, thenP(k1, . . . , ki−1, ki, ki, ki+2, . . . , kn) is empty, and each element ofP(k1, . . . , ki−1, ki, ki+
1, ki+2, . . . , kn) with li = ki would have to satisfy li = li+1 = li+2 = ki:

Left-hand side of (12) Right-hand side of (12)
ki ki ki

= < > =

ki < ki + 1 > ki

ki  
= =

ki = ki = ki

But, since a GMT can not contain three consecutive equal entries, there is also no element in
P(k1, . . . , ki−1, ki, ki + 1, ki, . . . , kn) with li = ki.

• If ki > ki+2, then ki ≥ li+1 ≥ ki+2 on both sides and the restrictions for li+2 are the same:

Left-hand side of (12) Right-hand side of (12)
ki li+1

= < > ≥
ki < ki + 1 > ki+2

ki li+1

= = ≥ ≥
ki = ki > ki+2
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The entry li+1 is involved in a sign-change on both sides (note the special case li+1 = ki, where
li+1 is a newcomer on the left-hand side and in a sign-changing pair on the right-hand side).

Symmetrically, one can also see that the set P(k1, . . . , ki−1, ki, ki + 1, ki+2, . . . , kn) restricted to li =
ki + 1 is the same as P(k1, . . . , ki−1, ki + 1, ki + 1, ki+2, . . . , kn), concluding the combinatorial proof
of (11) for arbitrary (k1, . . . , kn) ∈ Zn.

A natural question is now whether similar identities hold if the difference between ki+1 and ki is larger.
For fixed integers k1, . . . , ki−1, ki+2, . . . , kn, let

tn(ki, ki+1) := α(n; k1, . . . , ki−1, ki, ki+1, ki+2, . . . , kn).

Similarly - with a bit more patience - one can also show the identity

tn(ki, ki+2) = tn(ki, ki)+tn(ki+1, ki+1)+tn(ki+2, ki+2)+tn(ki+2, ki+1)+tn(ki+1, ki) (13)

combinatorially. Both (11) and (13) are special cases of the following algebraic identity: Let Vx,y be
the operator defined as Vx,yf(x, y) := f(x − 1, y) + f(x, y + 1) − f(x − 1, y + 1). The function
fi(k1, . . . , kn) := Vki,ki+1

α(n; k1, . . . , kn) then satisfies

fi(k1, . . . , kn) = −fi(k1, . . . , ki−1, ki+1 + 1, ki − 1, ki+2, . . . , kn). (14)

Setting ki+1 = ki − 1 in (14) immediately implies (11). Equation (13) is then the special case ki+1 =
ki − 2 in (14). A similar shift-antisymmetry property for Gelfand-Tsetlin Patterns (Monotone Triangles
without the condition of strict increase along rows) was shown bijectively in a recent work ([Fis11]). It
would be interesting to give a bijective proof of (14) in the general case (an algebraic proof was given in
[Fis06]).

In [FR13] we showed the surprising identity

An := α(n; 1, 2, . . . , n) = α(2n;n, n, n− 1, n− 1, . . . , 1, 1) (15)

algebraically and gave initial thoughts on how a bijective proof could succeed. Let us conclude with
a list of related identities – all of them are up to this point conjectured using mathematical computing
software. As Theorem 1 provides a combinatorial interpretation of these identities, bijective proofs are of
high interest.

Conjecture 1 ([FR13]) Let n ≥ 1. Then

α(n; 2, 4, . . . , 2n) = (−1)nα(2n+ 1; 2n+ 1, 2n, . . . , 1) (16)

holds, whereby the left-hand side is known to be the number of Vertically Symmetric ASMs of size 2n+1.
By Theorem 1, the right-hand side is further equal to α(2n; 2n, 2n, 2n− 2, 2n− 2, . . . , 2, 2).

Conjecture 2 Let n ≥ 1. Then

An = α(n+ i; 1, 2, . . . , i, 1, 2, . . . , n), i = 0, . . . , n, (17)
An = (−1)nα(2n+ 1; 1, 2, . . . , n+ 1, 1, 2, . . . , n) (18)

holds. Furthermore, the numbers

Wn,i = α(2n+ 1; i, 2, . . . , n+ 1, 1, 2, . . . , n), i = 1, . . . , 3n+ 2

satisfy the symmetry Wn,i =Wn,3n+3−i.
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Conjecture 3 Let n ≥ 2. Then

An = α(n+ 2; 1, 2, . . . , i+ 1, i, i+ 1, . . . , n), i = 1, . . . , n− 1 (19)

holds.

Further computational experiments led to the conjecture that (15) and (19) have the following joint
generalization:

Conjecture 4 Let n ≥ 1. Then

An = α(n+ k; 1, . . . , i− 1, i+ k − 1, i+ k − 1, i+ k − 2, i+ k − 2, . . . , i, i, i+ k, i+ k + 1, . . . , n) (20)

holds for i = 1, . . . , n− k + 1, k = 1, . . . , n.

In words, the last identity takes a subsequence (i, i+1, . . . , i+k−1) of length k of (1, 2, . . . , n), reverses
the order, duplicates each entry and puts the subsequence back. Identity (15) is thus the special case of
(20) where k = n. Applying (11) and the fact that a GMT can not contain three consecutive equal entries,
shows that (19) is the special case of (20) with k = 2:

α(n+ 2; 1, 2, . . . , i− 1, i, i+ 1, i, i+ 1, i+ 2, . . . , n)

= α(n+2; 1, 2, . . . , i−1, i, i, i, i+1, i+2, . . . , n)+α(n+2; 1, 2, . . . , i−1, i+1, i+1, i, i+1, i+2, . . . , n)

= α(n+2; 1, 2, . . . , i−1, i+1, i+1, i, i, i+2, . . . , n)+α(n+2; 1, 2, . . . , i−1, i+1, i+1, i+1, i+1, i+2, . . . , n)

= α(n+ 2; 1, 2, . . . , i− 1, i+ 1, i+ 1, i, i, i+ 2, . . . , n).

From the correspondence between ASMs of size n and Monotone Triangles with bottom row (1, 2, . . . , n),
it follows that α(n − 1; 1, 2, . . . , i − 1, i + 1, . . . , n) is equal to the number of ASMs of size n with the
first row’s unique 1 in column i – denoted An,i. In the following conjecture we analogously remove the
i-th argument of the right-hand side in (19):

Conjecture 5 Let n ≥ 1. Then

α(n+ 1; 1, 2, . . . , i− 1, i+ 1, i, i+ 1, . . . , n) = −
n∑

j=1

(j − i)An,j , i = 1, . . . , n− 1 (21)

holds.

As a note on how we found (21), let us prove the case i = 1: Each penultimate row (l1, . . . , ln) of a GMT
with bottom row (2, 1, 2, . . . , n) satisfies l1 = l2 = 1 by Condition (3) of GMTs. Taking Conditions (1)
and (2) into account, Lemma 1 implies that

α(n+ 1; 2, 1, 2, . . . , n) = −
n∑

p=2

α(n; 1, 1, 2, . . . , p− 1, p+ 1, . . . , n).

Each penultimate row (m1, . . . ,mn−1) of a GMT with bottom row (1, 1, 2, . . . , p − 1, p + 1, . . . , n)
satisfies m1 = 1,m2 = 2, . . . ,mp−1 = p− 1. Applying Lemma 1 again yields the claimed equation:

α(n+ 1; 2, 1, 2, . . . , n) = −
n∑

p=2

n∑

j=p

An,j = −
n∑

j=2

(j − 1)An,j .
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For general i, the set of GMTs with bottom row (1, 2, . . . , i − 1, i + 1, i, i + 1, . . . , n) can be written as
disjoint union of those with structure

S1 : l1 · · · li−2 i+ 1 i+ 1 i li+2 · · · ln
1 · · · i− 2 i− 1 i+ 1 i i+ 1 i+ 2 · · · n,

S2 : l1 · · · li−2 i+ 1 i i li+2 · · · ln
1 · · · i− 2 i− 1 i+ 1 i i+ 1 i+ 2 · · · n,

S3 : l1 · · · li−2 i− 1 i i li+2 · · · ln
1 · · · i− 2 i− 1 i+ 1 i i+ 1 i+ 2 · · · n.

Similar to the case i = 1, one can see that the signed enumeration of GMTs with structure S3 is equal

to −
n∑

j=i+1

(j − i)An,j . Proving that the signed enumeration of GMTs with structure S1 and S2 yields

−
i−1∑
j=1

(j − i)An,j remains an open problem. A list of more conjectures can be found in [Rie12].
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On the ranks of configurations on the
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Abstract. We consider the parameter rank introduced for graph configurations by M. Baker and S. Norine. We focus
on complete graphs and obtain an efficient algorithm to determine the rank for these graphs. The analysis of this
algorithm leads to the definition of a parameter on Dyck words, which we call prerank. We prove that the distribution
of area and prerank on Dyck words of given length 2n leads to a polynomial with variables q, t which is symmetric in
these variables. This polynomial is different from the q, t-Catalan polynomial studied by A. Garsia, J. Haglund and
M. Haiman.

Résumé. Nous considérons le paramètre rang sur les configurations d’un graphes introduit par Baker et Norine . Nous
nous intéressons plus particulièrement aux graphes complets et obtenons un algorithme efficace de déxtermination du
rang d’une configuration pour ceux-ci. L’analyse de la complexité de cet algorithme conduit à définir un paramètre
sur les mots de Dyck que nous appelons pré-rang. Nous démontrons que la distribution des aires et pré-rangs des
mots de Dyck donne lieu à un polynôme à deux variables qui est symétrique en celles-ci. Il est différent du polynôme
q, t-Catalan étudié par A. Garsia, J. Haglund et par M. Haiman.

Keywords: Rank, Riemann-Roch for graphs, Complete graphs, Dyck Words

We consider the following solitary game on an undirected connected graph with no loops: at the beginning
a configuration u is given, meaning that integer values ui are attributed to the n vertices x1, x2, . . . xn of
the graph. These values can be positive or negative. At each step a toppling can be performed by the
player on a vertex xi: it consists in subtracting di (the number of neighbors of xi) to the amount ui and
adding 1 to all the amounts uj of the neighbors xj of xi. In this operation the amount of vertex xi may
become negative. The aim of the player is to find a sequence of toppling operations which will end with a
configuration where all the ui are non negative. Since the sum deg(u) of the ui is invariant by the toppling,
a necessary condition to succeed is that in the initial configuration deg(u) should be non negative.

This game has much to do with the chip firing game (see Björner et al. (1991), Biggs (1999)) and the
sandpile model (see Bak et al. (1988), Dhar (1990), Dhar and Majumdar (1992)), for which recurrent
configurations were defined and proved to be canonical representatives of the classes of configurations
equivalent by a sequence of topplings.

The game was introduced and studied in detail by Baker and Norine (Baker and Norine (2007)) who
introduced a new parameter on graph configurations: the rank. The rank ρ(u) of a configuration u is non
negative if and only if one can get from u a positive configuration by performing a sequence of topplings.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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For this parameter they obtain a simple formula expressing a symmetry similar to the Riemann-Roch
formula for surfaces (a classical reference to this formula is the book by Farkas and Kra (1992)).

Our aim here is to study the values of this parameter when G is the complete graph on n vertices, for
these graphs it was noticed (see Proposition 2.8. in Cori and Rossin (2000)) that the recurrent configura-
tions correspond to the parking functions which play a central role in combinatorics. We obtain a simple
greedy algorithm to compute the rank in that case, expected to be of linear complexity after optimisation,
while there is no known polynomial time algorithm to compute that rank for arbitrary graphs.

The distribution of rank and degree on a natural subset of configurations over a graph G, the parking
ones, is a bivariate power series PG(x, r) which has a symmetry inherited from the Riemann-Roch theo-
rem. We show that some coefficients of these series are related to an evaluation of Tutte polynomial. In
the case of complete graphs, we prove that our greedy algorithm to compute the rank has a linear com-
plexity when assuming that arithmetic operations on the ui may be performed in constant time. Up to
the classical action of symmetric group Sn on configurations our algorithm may be described in terms of
Dyck words. The analysis of this algorithm leads to the definition of a parameter on Dyck words, which
will call prerank. We prove that the distribution of area and prerank on Dyck words of length 2n leads to
a polynomial in two variables which is symmetric in these. This polynomial has some values in common
with the q, t-Catalan polynomial studied in Garsia and Haiman (1996); Haglund (2008). We provide a
bijective proof of the symmetry of our polynomial and propose an expression for it using Tchebychev
polynomials. Moreover the bistatistic prerank and dinv leads to the q, t-Catalan polynomial.

1 Configurations on a graph
1.1 The Laplacian configurations
Let G = (X,E) be a multi-graph, where X = {x1, x2, . . . , xn} is the vertex set and E is a symmetric
matrix such that ei,j is the number of edges with endpoints xi, xj , hence ei,j = ej,i. In all this paper n
denotes the number of vertices of the graph G and m the number of its edges. Moreover we suppose that
G is connected and has no loops, so that ei,i = 0 for all i.

We will consider configurations on this graph, which are elements of the discrete lattice Zn. Each
configuration u may be considered as assigning (positive or negative) tokens to the vertices. When there
is no possibility of confusion the symbol xi will also denote the configuration in which the value 1 is
assigned to vertex xi is and the value 0 is assigned to all others. Laplacian configurations ∆(i) given
by: ∆(i) = dixi −

∑n
i=1 ei,jxj , where di =

∑n
i=1 ei,j is the degree of the vertex xi, play a central role

througout this paper.
The degree of the configuration u is the sum of the ui’s and is denoted deg(u). We denote by LG the

subgroup of Zn generated by the ∆(i), and two configurations u and v will be said toppling equivalent if
u− v ∈ LG, which will also be written as u ∼LG

v.

1.2 Parking configurations
In each class of ∼LG

one configuration may be considered as a canonical representative. We call such
configurations parking configurations since in the case of complete graphs, these are exactly the parking
functions, a central object in combinatorics.

Definition 1 A configuration u on a graph G is a parking configuration if ui ≥ 0 for i < n and for any
subset Y of {x1, x2, . . . , xn−1} there is a vertex xi in Y such that ui is less than the number of edges
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which have as endpoints xi and an xj not in Y . More precisely if there exists i such that xi ∈ Y and
ui <

∑
xj /∈Y ei,j .

In other words a configuration u is a parking configuration if and only if there is no toppling of all the
vertices in a subset Y of {x1, x2, . . . xn−1} leaving all the ui ≥ 0.

Proposition 1 For any configuration u there exists a unique parking configuration denoted parking(u)
such that u− parking(u) ∈ LG

The proof of this Proposition is based on the notion of recurrent configurations which was considered
and characterized by D. Dhar, a simple proof of the the uniqueness of a recurrent configuration is given in
Cori and Rossin (2000).

1.3 Parking configurations and acyclic orientations
An orientation of G is a directed graph obtained from G by orienting each edge, so that one end vertex
is called the head and the other vertex is called the tail. A directed path in such a graph consists of a
sequence of edges such that the head of an edge is equal to the tail of the subsequent one.

The orientation is acyclic if there is no directed circuit, i.e. a directed path starting and ending at the
same vertex. We associate to any parking configuration u an acyclic orientation by:

Proposition 2 For any parking configuration u on G = (X,E) there exists an acyclic orientation −→G
such that for any vertex xi, i 6= n, ui is strictly less than its indegree d−i .

Proof: We orient the edges using an algorithm that terminates after n steps. Consider Y = {x1, x2, . . . , xn−1}.
From the condition for parking configurations given above, there is one vertex xi such that ui < ei,n then
orient all these ei,n edges from xn to xi, and remove xi from Y . Repeat the following operation until Y
is empty:

• Find xk in Y such that uk <
∑
xj /∈Y ek,j ; orient all the edges joining any vertex j outside Y to xk

from xj to xk and remove xk from Y .

2

2 Effective configurations and rank
In this section we give the main results of Baker and Norine (2007).
Definition 2 A configuration u is positive if ui ≥ 0 for all i. A configuration u is effective if there exists
a positive configuration v such that u− v ∈ LG.

Since two equivalent configurations by ∼LG
have the same degree, it is clear that a configuration with

negative degree is not effective. However we will prove that configurations with positive degree are not
necessarily effective as the two examples in Figure 1(a) show.

2.1 Configuration associated to an acyclic orientation of G
Let −→G be an acyclic orientation of G, we define the configuration u−→

G
by: (u−→

G
)i = d−i − 1, where d−i is

the number of edges which have head xi. The configuration represented in Figure 1(b) is equal to u−→
G

for
the represented orientation of G.

Proposition 3 The configuration associated to an acyclic orientation of G is non effective.
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1

1

2

0

−1 0

1

0

2

1

−1 0

(a) An effective configuration (left) and a non effec-
tive one (right)

1

0

2

1

−1 0

(b) An orientation of G
and the corresponding
configuration

Fig. 1: Examples of effective, non-effective configurations and orientations.

2.2 Characterisation of effective configurations
Theorem 1 For any configuration u, one and only one of the following assertions is satisfied:

(1) u is effective.
(2) There exists an acyclic orientation −→G such that u−→

G
− u is effective.

Moreover u is effective if and only if the parking configuration v such that u ∼LG
v satisfies vn ≥ 0.

Corollary 1 Any configuration u with degree greater than m− n is effective.

Proof: If u such that deg(u) > m − n is not effective, by the above theorem there exists an acyclic
orientation −→G of G such that u−→

G
− u is. But the degree of this configuration is negative, giving a

contradiction. 2

2.3 The rank of configurations
From now on it will be convenient to denote positive configurations by using the letters f, g · · · and
configurations with no particular assumptions on them by the letters u, v, w.

Definition 3 The rank ρ(u) of a configuration is the integer defined by:

• If u is non effective it is equal to −1

• If u is effective, it is the largest integer r such that for any positive configuration f of degree r the
configuration u− f is effective.

Denoting P as the set of positive configurations and E as the set of effective configurations, this defini-
tion can given by the following formula which is valid in both cases:

ρ(u) + 1 = minf∈P,u−f /∈E deg(f).
An immediate consequence of this definition is that if deg(u) ≥ −1 then ρ(u) ≤ deg(u), and for any

acyclic orientation−→G the rank of u−→
G

is−1. Moreover if two configurations u and v are such that ui ≤ vi
for all i then ρ(u) ≤ ρ(v).
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Definition 4 A positive configuration f is a proof for the rank ρ(u) of an effective configuration u if u−f
is non effective and u− h is effective for any positive configuration h such that deg(h) < deg(f).

Notice that if f is a proof for ρ(u) then ρ(u) = deg(f)− 1 = deg(f) + ρ(u− f).

Proposition 4 A configuration u of degree greater than 2m− 2n has rank r such that

r + 1 = deg(u)− (m− n).

Proof: We first show that for any positive configuration f such that deg(f) = r, the configuration u− f
is effective. This follows from deg(u− f) = deg(u)− r = m− n+ 1 by Corollary 1.

We now build a positive configuration f of degree r + 1 such that u − f is not effective. Consider
any acyclic orientation −→G of G and let v = u − u−→

G
. Then v is effective since its degree is equal to

deg(u) − m + n and is therefore greater than m − n. Let f be the positive configuration such that
v ∼LG

f , then u− f is such that u−→
G
∼LG

u− v ∼LG
u− f so that u− f is not effective by Theorem 1.

2

This result can be generalized into the following theorem which was given in Baker and Norine (2007)
and called the Riemann-Roch theorem for graphs. A geometric interpretation of it is given in Amini and
Manjunath (2010) and used in Manjunath (2011).

Theorem 2 Let κ be the configuration such that κi = di − 2 where for i = 1, . . . , n, the value di is the
degree of the vertex xi. Then we have for any configuration u:

ρ(u)− ρ(κ− u) = deg(u)− (m− n).

3 A greedy algorithm computing the rank for configurations on
complete graphs

Configurations on the complete graph may be sorted in such a way that the first n − 1 components form
a weakly decreasing sequence. Clearly any configuration and its sorted version have equal ranks. The
algorithm for determining the rank of u that we will describe proceeds in a certain number of steps. Each
of these steps consists in replacing u by a u′, and it will be convenient to work on their sorted versions.
From an algebraic point of view this consists in considering orbits of the action of the symmetric group
Sn−1 on the first n− 1 components instead of mere configurations; the correctness of the computation is
validated by the fact that all configurations in the same orbit have the same rank.

3.1 Greedy algorithm on parking functions
Any configuration u is toppling equivalent to a single parking configuration parking(u). In the case
of the complete graph Kn there is a linear time algorithm to compute it. It will be given below after
developing the link between Dyck words and parking configurations. We first examine how to determine
the rank of a parking configuration. On Kn, a configuration u is a parking one if and only if after sorting
the first n − 1 entries one obtains v = (v1, . . . vn−1, un), satisfying 0 ≤ vi < n − i for any 1 ≤ i < n.
In particular, vn−1 = 0; so in any parking configuration at least one of the ui’s is equal to 0. Our
greedy algorithm determines the rank of a configuration u on Kn by iteratively computing the parking
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configuration v equivalent to u and subtracting 1 on one of the vi such that (i) vi = 0 until the resulting
parking configuration is such that un < 0. The rank is then equal to the number of iterations done, the
algorithm is given in the left part of Figure 2.The fact that this algorithm correctly computes the rank is a
consequence of the lemma below.

1: u← parking(u)
2: rank ← −1
3: while un ≥ 0 do
4: u← subtract 1 in one of a ui such that ui = 0 and i < n
5: u← parking(u)
6: rank ← rank + 1
7: end while
8: Return rank

1: u← parking(u)
2: (d, s)← (d(u), s(u))
3: rank ← −1
4: while s ≥ 0 do
5: match d with afbg
6: d← gabf
7: rank ← rank + 1
8: s← s− |afb|a
9: end while

10: Return rank

Fig. 2: Two versions of a greedy algorithm computing rank on Kn: on configurations and Dyck words.

Lemma 1 Any positive configuration u where ui = 0 admits a proof g for its rank such that gi > 0.

Proof: Denote by ε(i) the configuration where ε(i)i = 1 and for j 6= i, ε(i)j = 0. Let f ≥ 0 be a proof of
ρ(u) and assume fi = 0, otherwise g = f satisfies the lemma. Let j 6= i such that uj−fj = −a < 0. Let
v = u−(f−aε(j)). Then 0 ≤ f−aε(j) ≤ f and vi = 0 = vj . Let τ be the transposition which exchanges
i and j. Since v = τv, we have g = f −aε(j) +aε(i) satisfies gi > 0, hence it is positive and has the same
degree as f . Moreover u − g is also non-effective since u − g = v − aε(i) = τ.[v − aε(j)] = τ(u − f),
hence g is the proof of ρ(u) as required. 2

To prove the correctness of the algorithm it suffices to remark that it determines a proof g of the rank
of u such that gi > 0.

3.2 Greedy algorithm on Dyck words
Let A be the alphabet with two letters {a, b}. For a word w on the alphabet A and for a letter x ∈ A, |w|x
denotes the number of occurrences of x in w. The function δ on words is defined by: δ(w) = |w|a−|w|b.
A Dyck word w is a word on the alphabet {a, b} such that δ(w) = 0, and for any of its prefixes w′ one
has δ(w′) ≥ 0. The size of a Dyck word w is |w|a = |w|/2. The height h(w′) of a prefix w′ ending by
an a of a Dyck word w is given by: h(w′) = δ(w′)− 1. The maximal height H(w) of a Dyck word w is
h(w) = maxw′ h(w′) where w′ runs through all prefixes of w ending with a.

To any (sorted) configuration u of Kn such that

n− 1 ≥ u1 ≥ u2 ≥ · · ·un−1 ≥ 0 (1)

we associate a word w = D(u) with n − 1 occurrences of a and n occurrences of b the following
way: the ith occurrence of a in w has exactly un−i occurrences of b before it; notice that D(u) ends

(i) We recall that configurations may have a negative number of tokens.
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with an occurrence of b. Moreover D(u) is a Dyck word followed by a b, if and only if u is a parking
configuration. This leads to a reformulation of the preceding greedy algorithm in terms of Dyck words.
When u is a sorted parking configuration it is convenient to write D(u) = d(u)b such that d(u) is a Dyck
word.

0⇒

5 4 4 2 0 0 0

0⇒

6 5 5 3 1 1 0

r
s s s s s s sd

d

d

d

d

d

d

d

d

d

d

d

d

d

d

0⇒

1 0 0 6 4 4 3

i

i

i

i

i

i

i

i

i

i

i

i

0⇒

6 4 4 3 1 0 0

(a) (b) (c) (d)

Fig. 3: An example of four steps of a loop iteration of algorithm computing rank

Any non-empty Dyck wordw admits the non-ambiguous classical first return decompositionw = afbg
where f and g are Dyck words. As announced at the beginning of this Section, we consider the algorithm
computing the rank in terms of sorted parking configurations toppling equivalent to it and its image via
the preceding map u −→ D(u). The algorithm may be described in terms of Dyck words due to:

Proposition 5 For any sorted parking configuration u, one step of the algorithm computing the rank
consists in the subtraction of 1 on un−1 and then computing the sorted parking configuration u′ toppling
equivalent to it. In terms of words, this translates to the following: if w = d(u) = afbg is the first return
decomposition of u then the new value of w is d(u′) = gabf .

The algorithm is described in detail in the right part of Figure 2. We do not provide a detailed proof of
Proposition 5 in this extended abstract, however we give details on an example of a loop iteration.

Assume that the algorithm reaches the sorted parking configuration u = (5, 4, 4, 2, 0, 0, 0, s) for some
s ≥ 0, also described by (d(u), s(u)) = (aaabbabbaababb, s). We draw d(u) in red from south-east to
north-west in part (a) of Figure 3 above. This red path and the brown horizontal axis pointed by ⇒ 0
define the diagram of the partition (u1, . . . un−1) in which un is omitted . We observe the following
iteration step: we subtract 1 to un−1 and to recover positivity the vertex xn is toppled to reach v =
(6, 5, 5, 3, 1, 1, 0, s − 7). These two steps are represented in part (b) of Figure 3. The cell labeled by r
describes the removed token and then the brown horizontal axis is lowered by one unit, adding one cell
labeled by s on each column of the partition which is the token coming from the toppling of the sink. This
configuration v is not parking since the three first vertices may topple together, preserving positivity. On
(b), observe that it corresponds to the rightmost vertical cross of the red path with the brown diagonal, this
should not be crossed if the configuration was a parking one. The toppling of the three first vertices leads
to w = (1, 0, 0, 6, 4, 4, 3, s − 4) is illustrated in part (c) of Figure 3. The tokens transmitted from these
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three toppled vertices to the four untoppled vertices different from xn may be interpreted as those in cells
labeled by d in (b) (before toppling) and by cells on (c) labeled by i (after toppling). The configuration w
is sorted to get w′ = (6, 4, 4, 3, 1, 0, 0, s− 4) described in part (d) , and this sorting may be interpreted as
taking a conjugate of the word d(u). This sorting operation may also be also described by the exchange
of f and g in the rewriting of afbg into gabf . In this example we have d(u) = afbg with f = aabbab
and g = aababb giving gabf = aababb.ab.aabbab = d(w′).

aaabbbab

abaabbababaababb

aabababb

aaababbb

aababbab aabbabab

abaaabbb

abababab

ababaabb

aabaabbb

aabbaabb

aaaabbbb

aaabbabb

1

3

3

3

2

1

1

Fig. 4: The tree of Dyck words of size 4 describing the function R.

The rewriting R(afbg) = gabf is a function on Dyck words of same size n that may be described by
a tree Tn as in Figure 4 where edges (w,R(w)) are oriented downward. There is a loop not drawn at the
root of the tree related to the single fixed point R((ab)n) = (ab)n. We define prerank p(w) of any Dyck
word as its distance to the root (ab)n or in other words p(w) = min{k|k ≥ 0 and Rk(w) = (ab)n}. This
is motivated by a count of the iterations required in the loop of the algorithm.

3.3 Computing a parking configuration equivalent to u

Lemma 2 Two configurations u and v are toppling equivalent in Kn if and only if the following holds:

deg(u) = deg(v) and for any 1 ≤ i, j ≤ n: ui − uj = vi − vj (mod n) (2)

Proof: It suffices to show that the configuration u is toppling equivalent to 0 if and only if deg(u) = 0 and
ui − uj = 0(mod n). But this follows from the fact that these relations are not modified by any toppling
and are satisfied by the parking configuration equivalent to 0 which is equal to (0, 0, . . . , 0).

2

Given a configuration u one can find a configuration v toppling equivalent to u and such that 0 ≤ vi < n
for any 1 ≤ i ≤ n − 1 by setting v1 = 0, then vi = ui − u1 (mod n) and vn = deg(u) −∑n−1

i=1 vi.
From such a v one builds the parking configuration using the following:

Proposition 6 Let u be a configuration satisfying equation (1) and let w = D(u). The classical Cyclic
Lemma states that there exists a unique conjugate w′ of w which is equal to a Dyck word followed by a
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letter b. Consider the configuration v such thatD(v) = w′ and such that vn is such that deg(u) = deg(v),
then v is the sorted version of the parking configuration equivalent to u.

4 Symmetry of area and prerank distribution on Dyck words
4.1 A symmetry and a bijective proof of it

The area of a Dyck word w is defined by area(w) =
∑
w′ h(w′) where w′ runs over all prefixes of w

ending with the letter a. We also consider for a Dyck word w the largest prefix u of it among those whose
height is H(w), and define the coheight hc(w′) for any prefix w′ of w ending with an a, this coheight is
H(w)−h(w′) if w′ is not larger than u and it isH(w)−h(w′)−1 if w′ is larger that u. Using Proposition
5 it is possible to prove that prerank(w) =

∑
w′ h

c(w′) where w′ runs over all prefixes of w ending with
the letter a.

We consider the generating function on Dyck words of size n counted according to the statistics area
and prerank:

Darea,prerank
n (q, t) =

∑

w

qarea(w)tprerank(w).

Theorem 3 For any n ≥ 1, we have the symmetry Darea,prerank
n (q, t) = Darea,prerank

n (t, q).

The proof follows from an involution Φ on Dyck words that exchanges areas and preranks, and is
defined as follows:

A non-empty Dyck word w admits a non-ambiguous last maximum decomposition w = ubv where u
is the largest prefix of w among those whose height is H(w). The mirror image w̃ of the word w whose
letters are w1w2 . . . wk−1wk is the word w̃ = wkwk−1 . . . w2w1; notice that we do not exchange letters a
and b. The involution Φ is defined from the last maximum decomposition w = ubv by: Φ(ubv) = ũbṽ.

This symmetry can be refined at the level of occurrences of the letter a in a Dyck word.

Lemma 3 For any Dyck word w of size n there is a bijection from the occurrences of the letter a in w
into those of the letter a in Φ(w) that exchanges heights and coheights. This bijection associates to an
occurrence of a in w its image by the involution Φ.

The involution Φ has another property with respect to the dinv parameter introduced by Haiman (see
Haglund (2008) for the definition of dinv).

Proposition 7 For any Dyck word w, dinv(Φ(w)) = dinv(w).

An immediate corollary is that the bistatistic (prerank, dinv) is the image by φ of the bistatistic
(area, dinv) which defines the q, t-Catalan numbers studied by A. Garsia, M. Haiman, J. Haglund.

Our definition of Φ may be seen, using mirror image, in the classical cyclic lemma attributed to Dvoret-
sky and Motzkin (1947). A word w on the alphabet {a, b} is called a quasi-balanced word of size n if
|w|a = n and |w|b = n + 1. The cyclic lemma states that for any quasi-balanced word w, among the
2n + 1 conjugates of the bi-infinite periodic word wZ exactly one may be written (w′b)Z where w′ is a
Dyck word of size n. The image of this via the mirror mapping is related to our definition of Φ: among the
2n+1 conjugates of (w̃)Z exactly one may be written (w′′b)Z where w′′ is a Dyck word and w′′ = Φ(w′).



698 R. Cori, Y. Le Borgne

It is also possible to prove that the involution Φ on Dyck paths satisfies a commutativity relation with
the function ζ introduced in Haglund (2008) (page 50). More precisely : Flip.ζ = ζΦ, where Flip is the
map that reflects a Dyck word and exchanges occurrences of a’s and b’s (ii)

4.2 Another description of the rank algorithm
The conjugate ΦRΦ of function R with this bijection Φ is described by the following lemma which leads
to another description of the rank algorithm.

Lemma 4 For any non-empty Dyck word w, let Φ(w) = ubv = (u′a)bv be the last maximum decompo-
sition of Φ(w) then Φ(R(w)) = u′bav.

The building of the tree in Fig. 4 becomes obvious from this viewpoint, when the nodes of Tn are
labeled by Φ(w) instead of w since the rewriting described by the edge (Φ(d),Φ(R(d))) corresponds to
a flip of the last highest peak ab into a valley ba.

4.3 Computing the area, prerank distribution
We currently have two ways to describe the distribution of the bistatistic (area, prerank) on Dyck words
of given size n. First, we have a non-ambiguous shuffle of any possible distribution of pairs heights and
coheights on occurences of letter a leading to all Dyck words with this distribution:

Proposition 8 For any n ≥ 0 and k such that 1 ≤ k ≤ n, let c = (c0, c1, . . . c2k−2) be a composition of
n− k into 2k − 1 parts. The number Nn,k,c of Dyck words such that 1 + c2i is the number of letters a of
height i and coheight k − i and c2i+1 is the number of letters a of height i and coheight k − 1− i is

Nn,k,c =
∏

i=0

(
c2i + c2i+2

c2i

)(
c2i+1 + c2i+3

c2i+1

)

consequently,

Darea,prerank
n (q, t) =

n∑

k=1

∑

c composition of n−k
Nn,k,c

k∏

i=0

(qitk−i)1+c2i(qitk−1−i)c2i+1 .

Using an interpretation of the decomposition at last maximum of the Dyck word in terms of heaps of
dimers in the framework of Viennot’s theory of heaps (see Krattenthaler (2006)) we also have:

Lemma 5 Let (Tn(y, z))n≥0 the polynomials recursively defined by T0(y, z) = 1 = T1(y, z) and for
n ≥ 2,

Tn(y, z) = Tn−1(y, z) + yn−2zTn−2(y, z)

then
∑

n≥1

Darea,prerank
n (q, t)zn =

∑

k≥2

(qt)(
k−1
2 )zk−1

Tk(q/t, tk−2z)Tk−1(q/t,−tk−3z)
.

(ii) We thank one of the anonymous referees of FPSAC 2013 to have suggested the existence of this link
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5 On degree and rank distribution
5.1 On any graph G

Given a sink, labeled by n in our notation, the toppling classes of configurations may be indexed by
G-parking configurations (π, s) where π belongs to ΠG the finite set of restrictions of G-parking config-
urations outside the sink and s ∈ Z is a number of tokens on the sink. These indices are used to define the
Laurent series related to the distribution of degree and rank by

P degree,rankG (x, r) =
∑

π∈ΠG,s∈Z
xdegree((π,s))rrank((π,s)).

Since a negative degree implies a rank equal to−1, using Proposition 4 for higher degrees we can consider
that the relevant part of this series is a (”Laurent”) polynomial P degree,rankG,[0,2m−2n](x, r) defined on configura-
tions with intermediate degree, that is belonging to the interval [0, 2m− 2n]. Hence we write:

P degree,rankG (x, r) =
(rx)−1|ΠG|

1− x−1
+ P degree,rankG,[0,2m−2n](x, r) +

x(x2r)m−n|ΠG|
1− xr .

Theorem 2 uses configuration κ of degree 2m − 2n to give a relation between the rank and degree of
two configurations u and κ−u, it implies the following formula expressing symmetry of degree and rank
distribution:

P degree,rankG (x, r) = (rx2)m−nP degree,rankG

(
1

xr
, r

)
.

The non-effective configurations are exactly those of rank −1 and the degree distribution on these
configurations may be related to an evaluation of the Tutte polynomial TG(x, y) of the graph G (see
Lopez (1997)) where x (respectively y) counts internal (respectively external) activity:

[r−1]P degree,rankG (x, r) =
1

1− x−1
TG(1, x).

5.2 On complete graphs
In the particular case the complete graph Kn, m =

(
n
2

)
, we define the distribution of degree and rank at

the level of orbits under the action of Sn−1 leading to the ” Laurent ” polynomial:

Ddegree,rank
n (x, r) =

∑

u

xdegree(u)rrank(u),

where u runs over sorted parking configurations such that degree(u) ∈ [0, n(n− 3)].
Baker and Norine’s theorem is compatible with the action of Sn−1 so we also have the symmetry

Ddegree,rank
n (x, r) = (rx2)n(n−3)/2Ddegree,rank

n

(
1

xr
, r

)
.

We conclude this extended abstract by the partial announcement of an enumerative result we obtained
recently via combinatorial considerations on the analysis of our algorithm computing the rank. This can
be stated as follows:

Ddegree,rank
n (x, r) = x(n−1

2 )−1r−1([zn]F (q1, q2; z))
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where [zn]f(z) denotes the coefficient of zn in power sum f(z), and F (q1, q2; z) is an explicit rational
function in q1 = x−1, q2 = xr, z, C(q1; z),C(q1; q1z), C(q2; z) and C(q2; q2z) where

C(q; z) =
∑

w dyck

qarea(w)zsize(z)

is the well known Carlitz q-analogue of Catalan numbers.
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Abstract. We study sorting operators A on permutations that are obtained composing Knuth’s stack sorting operator
S and the reverse operator R, as many times as desired. For any such operator A, we provide a bijection between the
set of permutations sorted by S ◦A and the set of those sorted by S ◦R ◦A, proving that these sets are enumerated
by the same sequence, but also that many classical permutation statistics are equidistributed across these two sets.
The description of this family of bijections is based on an apparently novel bijection between the set of permutations
avoiding the pattern 231 and the set of those avoiding 132 which preserves many permutation statistics. We also
present other properties of this bijection, in particular for finding families of Wilf-equivalent permutation classes.

Résumé. On étudie les opérateurs A de tri de permutations obtenus en composant l’opérateur S de tri par une pile
de Knuth et l’opérateur R de miroir, un certain nombre de fois. Pour tout opérateur A de cette forme, on donne
une bijection entre l’ensemble des permutations triées par S ◦ A et l’ensemble de celles triées par S ◦ R ◦ A,
démontrant ainsi que ces ensembles ont la même séquence d’énumération, mais aussi que de nombreuses statistiques
classiques sur les permutations ont la même distribution sur ces deux ensembles. La description de cette famille de
bijections repose sur une bijection apparemment nouvelle entre l’ensemble des permutations qui évitent le motif 231
et l’ensemble de celles qui évitent 132, qui préserve de nombreuses statistiques. On présente aussi d’autres propriétés
de cette bijection, en particulier pour trouver des familles de classes de permutations équivalentes au sens de Wilf.

Keywords: permutation, stack, sorting, enumeration, Wilf-equivalence

1 Introduction
Partial sorting algorithms were one of the early motivations for the study of permutation patterns. For
instance, Knuth (1975) considered the problem of sorting a permutation of length n, i.e. of the set [n] =
{1, 2, . . . , n}, using only a stack. If such a permutation, π, is written in one line notation as αnβ, then
π is sortable if and only if: each of α and β is sortable (thought of as permutations of the values they
contain); and each value in α is less than any value in β (or simply α < β). The first condition is clearly
necessary – the second condition is also necessary as, when n is the first element remaining to be added
to the stack, the entire stack must be emptied to have any hope of success, otherwise n will precede some
other element in the output, and the output will not be sorted. In the same fashion, the stack must at all
times obey the Hanoi condition that it never has a greater element lying on top of a lesser one. That the
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conditions are sufficient is also clear – the requisite operations are: sort and output α; add n to the stack;
sort and output β; remove n from the stack. Figure 1 shows an example of performing stack sorting on a
permutation. This simple behavior prompted many other investigations of stack sorting and its variations
and extensions beginning with works by Pratt (1973) and Tarjan (1972).

6 1 3 2 7 5 4

6

1

3
2

7 5 4

7

1 2 3 6 5 4 1 2 3 6 4 5 7

Fig. 1: Some steps of the stack sorting procedure applied to π = 61 3 2 7 5 4. Thus, S(π) = 1 2 3 6 4 5 7.

Stack sorting can be considered as an operator or procedure, S, applied to permutations. It is defined
recursively as: S(αnβ) = S(α)S(β)n. With this definition S(π) is the result of attempting to sort π using
a stack, maintaining the condition that the items in the stack must always be ordered from least to greatest
when read from top to bottom. We adopt the viewpoint throughout that any sequence of distinct values
can be interpreted as a permutation and “n” always denotes the maximum element of such a sequence.
West (1993) described the permutations that can be sorted using S◦S, and Zeilberger (1992) subsequently
confirmed a conjecture of West’s on their enumeration.

Bousquet-Mélou (2000) also considered the operator S and characterized, given π, the set S−1(π). We
shall be extending her results, and will discuss them in more detail later. Central to her analysis is the
observation that the operator S can be described in the following terms: given a permutation π form the
unique decreasing binary tree Tin(π) whose in-order reading is π, then S(π) is the post-order reading of
this tree.

A second operator on permutations is the reversal operator, that reads permutations from right to left
– it can also be modeled by using a stack where we are obliged to input the entire permutation to the
stack before performing any output. The reversal operator, R, is one of eight natural symmetries on the
collection of permutations. Bouvel and Guibert (2012) considered the enumeration of permutations sorted
by S ◦R ◦ S as well as the sets defined similarly with other symmetries in place of R. In experimental
investigations aimed at providing extensions to their results they noticed an interesting phenomenon that
can be expressed as:

Conjecture 1 For any composition, A, of the operators S and R the number of permutations sorted by
S ◦A and by S ◦R ◦A is the same. Moreover, many permutation statistics are equidistributed across
these two sets.

It is the primary purpose of this article to prove that this is indeed the case. To do so, we make use
of another classical description of stack sortable permutations. It is simply derived from their descrip-
tion by Knuth (1975) that we reported at the beginning of this section. Stack sortable permutations are
those that may not contain subwords (not necessarily consecutive) of the form bca where a < b < c.
Such permutations are said to avoid the pattern 231, and the collection of all such is denoted Av(231).
More generally and more formally, a permutation π = π(1)π(2) · · ·π(k) is a pattern of a permutation
σ = σ(1)σ(2) · · ·σ(n) when there exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that π is order isomor-
phic to σ(i1)σ(i2) · · ·σ(ik). If π is not a pattern of σ then we say that σ avoids π. We denote by
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Av(π, π′, · · · , π′′) the set of all permutations that avoid simultaneously the patterns π, π′, · · · , π′′. Such
a collection of permutations defined by the avoidance of a given set of permutations is also called a per-
mutation class.

With the characterization of stack sortable permutations as Av(231), proving Conjecture 1 is equivalent
to showing that there is a bijection between the elements of Av(231) belonging to the image of A, and
the elements of Av(231) belonging to the image of R ◦A, with the additional condition that the bijection
preserves the number of preimages under A (resp. R ◦ A). Equivalently, we can replace this latter set
by the elements of Av(132) belonging to the image of A, since the self-inverse operator R immediately
provides a bijection between Av(231) and Av(132).

In establishing this result we demonstrate an apparently novel bijection between Av(231) and Av(132)
which preserves many permutation statistics. We also present some other properties of this bijection.

2 Preimages of permutations in the image of S
As noted earlier, the description of the elements of S−1(π) for π in the image of S was carried out by
Bousquet-Mélou (2000). This description is central to our work, so we review it here.

There exists for any permutation σ a unique decreasing binary tree, Tin(σ) whose in-order reading is σ.
As usual, Tin(σ) is recursively defined: if σ = αnβ then the root of Tin(σ) is n and its left (resp. right)
subtrees are Tin(α) (resp. Tin(β)). The recursive description of S given above (S(αnβ) = S(α)S(β)n)
then shows that S converts in-order reading of decreasing binary trees to post-order reading. Therefore,
describing S−1(π) is equivalent to describing the decreasing binary trees, T , with post-order reading π.
For convenience we denote the post-order reading of a tree T by Post(T ).

Definition 2 A decreasing binary tree is canonical if it has the following property: any node, z, that has
a left child, x, also has a right child, and the leftmost value y in the subtree of the right child of z is less
than x.

From (Bousquet-Mélou, 2000, Proposition 2.6), we know that for π in the image of S there is a unique
canonical tree Tπ with Post(Tπ) = π. In fact, the permutation σ obtained from the in-order reading of Tπ
is the element of S−1(π) having the greatest number of inversions. Moreover, any decreasing binary tree
whose post-order reading is π (and only such trees) can be obtained from Tπ by a sequence of operations
of the following type: take a node z with no left child, and one of its descendants y on the leftmost branch
of its right subtree; remove the subtree rooted at y and make it the left subtree of z. It follows that |S−1(π)|
depends only on the structure of the tree Tπ and not on its labeling.

Example 3 The canonical tree associated with π = 5 1 8 2 3 6 4 7 9 is Tπ =

9
8

5 1
7

6
3

2

4. Its in-

order reading, σ = 5 8 1 9 6 3 2 7 4 gives the permutation with the largest number of inversions subject to
S(σ) = π. The four other decreasing binary trees with the same post-order reading are shown in Figure 2.
Thus |S−1(π)| = 5. If the labels 8 and 7, and 5 and 4, were exchanged in the original tree, corresponding
to π′ = 4 1 7 2 3 6 5 8 9 then, because the tree is still canonical, the method for constructing permutations
in S−1(π′) is still the same, and in particular |S−1(π′)| = |S−1(π)|.
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9
8

5 1
7

6
2 3

4

9
8

5 1
7

6
3

2

4

9
8

5 1
7

6
3

2

4

9
8

5 1
7

6
3

2

4

Fig. 2: The four non canonical decreasing trees whose post-order reading is π = 51 8 2 3 6 4 7 9.

3 A recursive bijection between Av(231) and Av(132)

In this section we introduce a bijection, P , between permutations in Av(231) and those in Av(132). It
is very easy to describe P recursively using the sum, ⊕, and skew sum, 	, operations on permutations.
These operations are easily understood on the diagrams corresponding to permutations. The diagram
of any permutation σ of length n is the set of n points in the plane at coordinates (i, σ(i)). If α is a
permutation of [a] and β of [b] we define:

α⊕ β = α (β + a) whose diagram is α
β

α	 β = (α+ b)β whose diagram is
α

β .

Here for example β + a is just the sequence obtained by adding a to every element of the sequence β and
α represents the diagram of permutation α.

Example 4 Let α = 2 3 1 and β = 3 1 4 2. Then α⊕ β = 2 3 1 6 4 7 5, while α	 β = 6 7 5 3 1 4 2.

Any permutation σ that can be written as a sum α⊕ β (resp. skew sum α	 β) is said ⊕-decomposable
(resp. 	-decomposable). Otherwise, we say that σ is ⊕-indecomposable (resp. 	-indecomposable).

Any π ∈ Av(231) is either the empty permutation ε or has a unique decomposition in the form α ⊕
(1 	 β) where α, β ∈ Av(231) (and are possibly empty), and conversely any permutation of this latter
form lies in Av(231). This is simply because the elements preceding the maximum in a 231-avoiding
permutation must all be less than those following the maximum, and the prefix before and suffix after the
maximum must also avoid 231. Conversely, if a permutation has this structure it cannot involve 231. This
decomposition makes it easy to define the bijection P recursively: P (ε) = ε and

if π = α⊕ (1	 β) then P (π) = (P (α)⊕ 1)	 P (β).

Alternatively, with diagrams:

α

β
P−→

P (α)

P (β)

.

As the 132-avoiding permutations have a generic decomposition of the form shown on the right above,
and since P (1) = 1 maps the unique 231-avoiding permutation of length 1 to the unique 132-avoiding
permutation of length 1, induction immediately implies that P : Av(231) → Av(132) is a bijection.
Notice that the restriction of P to the set Av(231, 132) is the identity map.

Example 5 For π = 1 5 3 2 4 9 8 6 7 ∈ Av(231), we have P (π) = 7 8 5 4 6 9 3 1 2.
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We recall a definition from the introduction:

Definition 6 For any permutation π, Tin(π) is the decreasing binary tree whose in-order reading is π.

It follows immediately by induction from the recursive description of P that:

Observation 7 Both Tin(π) and Tin(P (π)) have the same underlying unlabeled tree, or briefly “P pre-
serves the shape of in-order trees”. An example is provided in Figure 3.

Tin(π) =

9
5

1 4
3

2

8
7

6
Tin(P (π)) =

9
8

7 6
5

4

3
2

1

Fig. 3: Tin(π) and Tin(P (π)) for the permutation π = 15 3 2 4 9 8 6 7 of Example 5.

It is for this reason that P preserves many permutation statistics. Recall that, for π a permutation of
length n, a left-to-right (resp. right-to-left) maximum of π is an element π(i) such that for all j < i
(resp. j > i), π(j) < π(i), and that the up-down word of π is wπ ∈ {u, d}n−1 with wπ(i) = u (resp. d)
if π(i) < π(i+ 1) (resp. π(i) > π(i+ 1)).

Observation 8 P preserves the following statistics: the number and positions of the right-to-left maxima,
the number and positions of the left-to-right maxima and the up-down word.

Proof: All of these follow from Observation 7, since the value of each statistic mentioned for a permuta-
tion π is determined by the shape of Tin(π). 2

Among all the statistics reported in (Claesson and Kitaev, 2008/09, Section 2), the only ones that are
preserved by P are the ones that depend only on the shape of in-order trees.

4 Proof of Conjecture 1
4.1 Preparation
In addition to the results of Section 2, the principal ingredients in the proof to follow are a pair of obser-
vations concerning P and operators A which are compositions of S and R.

Observation 9 Let τ be any permutation, and A be any composition of the operators S and R. Suppose
that x, y ∈ [n] and that in τ there are no values larger than max(x, y) occurring between x and y. Then
the same holds in A(τ).

Proof: It suffices to prove the result for S and R individually. For R it is trivial and for S it is not hard to
prove that it follows by induction from the recursive description: S(αnβ) = S(α)S(β)n. 2

For the second observation we introduce a notational convention that we shall continue to use through-
out. Let π ∈ Av(231) be given. We think of the sequence P (π) as describing a relabeling of the values
that occur in π according to a certain permutation λπ , specifically P (π) = λπ ◦ π.
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Observation 10 Let π ∈ Av(231) be given and suppose that x, y ∈ [n], x < y, and in π there are no
values larger than max(x, y) occurring between x and y. Then λπ(x) < λπ(y).

Proof: The proof shall not be detailed here. Observation 10 simply says that λπ preserves the ordering
among elements of π which do not contain a larger element between them. This follows from the con-
struction of P since the only way that one element can be moved above another one is to (at some point
in the recursion) have a larger element in between. 2

4.2 The main argument
In this section we prove the main result. Recall that A is an operator formed by some composition of S
and R. For any such operator, we shall write π ∈ A to denote that π is in the image of A.

As above we consider λπ as a relabeling of the elements of [n]. We extend its effect to permutations,
trees etc. that carry labels from [n]: applying λπ to such an object will simply mean to apply λπ to each
of its labels.

Definition 11 We define a function ΦA from the set of permutations sorted by S ◦ A to the set of all
permutations as follows. For θ a permutation sorted by S ◦A, since A(θ) ∈ Av(231), we have λA(θ)

defined by P (A(θ)) = λA(θ) ◦A(θ) and we then set ΦA(θ) = λA(θ) ◦ θ.

In other words ΦA relabels a permutation θ sorted by S ◦A in the same way that A(θ) is relabeled to
produce P (A(θ)). We will prove (see Corollary 15) that ΦA is a bijection from the set of permutations
sorted by S ◦A to the set of those sorted by S ◦R ◦A. The key to this argument of course is to establish
that A(ΦA(θ)) = P (A(θ)).

We are concerned with operators A which are compositions of S and R. We say that such an operator
respects P if it has the following property:

For each π ∈ Av(231) ∩A,
• For each θ such that A(θ) = π, we have A(ΦA(θ)) = P (π) = λπ ◦ π and

Tin(ΦA(θ)) = λπ(Tin(θ)), and
• the correspondence ΦA : θ 7→ ΦA(θ) is a bijection between A−1(π) and A−1(P (π)).

In the above, notice that because A(θ) = π we actually have ΦA(θ) = λπ ◦ θ.

Proposition 12 If A respects P then so does A ◦R.

Proof: We shall only give the main arguments of the proof.
Let π ∈ Av(231) ∩ (A ◦R) and θ be such that (A ◦R)(θ) = π. Let τ = R(θ). Then A(τ) = π and

since A respects P , A(ΦA(τ)) = P (π) and Tin(ΦA(τ)) = λπ(Tin(τ)).
Because R is an involution on permutations that acts only on positions whereas λπ acts on values only,

it can be proved that R
(
ΦA◦R(θ)

)
= ΦA(τ). It follows that (A ◦R) (ΦA◦R(θ)) = A(ΦA(τ)) = P (π).

Moreover, applying R to a permutation is equivalent to recursively exchanging left and right subtrees in
its in-order tree. This is how we deduce Tin(ΦA◦R(θ)) = λπ(Tin(θ)) from Tin(ΦA(τ)) = λπ(Tin(τ)).
Finally, the correspondence ΦA◦R is the composition of three bijections: R, ΦA and R−1 = R, and so
is also a bijection. 2

Proposition 13 If A respects P then so does A ◦ S.
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Proof: For brevity, we only sketch the proof and omit the details.
Let π ∈ Av(231) ∩ (A ◦ S) and θ be such that (A ◦ S)(θ) = π. Let τ = S(θ). Then A(τ) = π and

since A respects P , A(ΦA(τ)) = P (π) and Tin(ΦA(τ)) = λπ(Tin(τ)).
We first define τ ′ = λπ ◦ τ = ΦA(τ) and show that τ ′ ∈ S. From Bousquet-Mélou (2000), we know

that it is enough to prove that τ ′ is the post-order reading of some decreasing binary tree. Denoting T the
unique canonical tree such that Post(T ) = τ , and defining T ′ = λπ(T ), we remark that Post(T ′) = τ ′,
hence τ ′ ∈ S. Moreover, it can be proved that the tree T ′ is canonical, so that T ′ is the unique canonical
tree such that Post(T ′) = τ ′.

Defining furthermore θ′ = λπ ◦ θ, we next prove that Tin(θ′) = Tin(θ)′ (i.e. the result of applying λπ
to the labels of Tin(θ)) and S(θ′) = τ ′. From Bousquet-Mélou (2000) again, because S(θ) = τ , we know
that Tin(θ) has been obtained from T by a series of moves of the following form:

Take a node z with no left child, and one of its descendants y on the leftmost branch of its
right subtree. Remove the subtree rooted at y and make it the left subtree of z.

Applying the same sequence of operations to T ′, that is, creating a tree with the same underlying structure
as Tin(θ), but with the labels arising from T ′, we obtain a decreasing tree (because the operations cannot
create an increasing pair) whose in-order reading is θ′, and whose post-order reading is τ ′, and hence
Tin(θ′) = Tin(θ)′ and S(θ′) = τ ′.

This implies that
• Tin(ΦA◦S(θ)) = Tin(λπ ◦ θ) = λπ(Tin(θ));
• A ◦ S(ΦA◦S(θ)) = A ◦ S(θ′) = A(S(θ′)) = A(τ ′) = A(ΦA(τ)) = P (π).

The correspondence θ 7→ θ′ is a bijective map between S−1(τ) and S−1(τ ′) (a consequence of
Proposition 2.7 of Bousquet-Mélou (2000)), and the correspondence ΦA◦S between (A ◦ S)−1(π) and
(A◦S)−1(P (π)) is just the union of all these correspondences on the disjoint sets S−1(τ) for τ ∈ A−1(π)
and to the disjoint sets S−1(τ ′) for τ ′ ∈ A−1(P (π)). So it is a bijection, and A ◦ S respects P . 2

Combining the two preceding propositions with the fact that from Observation 7 the identity operator
respects P we obtain our main theorem:

Theorem 14 Every operator that is formed by composition from {S,R} respects P .

Corollary 15 For any composition A of operators from {S,R}, ΦA is a bijection between the set of
permutations sorted by S ◦A and those sorted by S ◦R ◦A.

Corollary 15 proves the first part of Conjecture 1, namely that the number of permutations sorted by
S ◦A and by S ◦R ◦A is the same.

We now study the properties of bijections ΦA in somewhat greater detail. This will prove the second
part of Conjecture 1, that deals with permutation statistics equidistributed over the set of permutations
sorted by S ◦A and the set of those sorted by S ◦R ◦A.

4.3 Statistics preserved by the bijections ΦA

In this section, A denotes any composition of operators from {S,R}.

Theorem 16 The shape of the in-order tree is preserved by ΦA.
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Proof: For θ a permutation sorted by S ◦A, writing π = A(θ) ∈ Av(231) we have ΦA(θ) = λπ ◦ θ.
From Theorem 14, A respects P , so that Tin(λπ ◦ θ) and Tin(θ) have the same shape. 2

Because the shape of the in-order tree determines many permutation statistics, we have:

Corollary 17 ΦA preserves the following statistics: the number and positions of the right-to-left maxima,
the number and positions of the left-to-right maxima and the up-down word (and hence also the many
classical permutation statistics determined by the up-down word).

Zeilberger (1992) introduced a statistic to aid in the enumeration of the permutations sorted by S ◦ S.
Unsurprisingly, this statistic and one of its close relatives is also preserved by ΦA:

Theorem 18 If A = A0 ◦ S for some arbitrary composition A0 of operators from {S,R}, then ΦA pre-
serves the Zeilberger statistic, defined as: zeil(θ) = max{k | n(n−1) · · · (n−k+1) is a subword of θ}.
In addition, if there is at least one operator S ◦R in the composition that defines A0, then ΦA also pre-
serves the reverse of the above statistics: Rzeil(θ) = max{k | (n−k+1) · · · (n−1)n is a subword of θ}.

Proof: We only provide a sketch of the proof.
Consider θ a permutation sorted by S ◦ A, and set π = A(θ). Then ΦA(θ) = λπ ◦ θ, and we may

interpret this identity as ΦA(θ) being obtained relabeling the elements of θ according to λπ . As before,
we extend the effect of relabeling by λπ to any object that carries labels from [n].

For the first statement, let c ≤ n be the smallest value of [n] such that all d ≥ c are unaffected by the
relabeling λπ . Because Tin(λπ ◦ θ) = λπ(Tin(θ)), it is not hard to see that it is enough to prove that
c ≤ n − k, where k = zeil(θ). This is proved by contradiction, using the fact that S(θ) is the post-order
reading of Tin(θ), together with Observations 9 and 10.

For the second statement, we may write A = B0 ◦ S ◦R ◦ Sk, with k ≥ 1. Then, we apply the first
statement to B0 ◦ S, and we notice that R maps the zeil statistics to Rzeil. To conclude the proof, the
most important fact is that applying operator S may only increase the value of the Rzeil statistics. 2

5 More properties of the bijection P
5.1 Bijection P and Wilf-equivalences
Two permutation classes are said to be Wilf-equivalent if they contain the same number of permutations
of length n for every n. One common form of Wilf-equivalence arises from symmetries of the avoid-
ance relationship. For example, the reverse symmetry R provides a bijection between Av(231) and
Av(132), proving that these classes are Wilf-equivalent. More generally, for any symmetry Z obtained
composing reverse, complement and inverse, Av(π, π′, · · · , π′′) and Av(Z(π),Z(π′), · · · ,Z(π′′)) are
Wilf-equivalent classes, and we say that they are trivially Wilf-equivalent. However, more interesting
Wilf-equivalences are also somewhat common, and in this section we show how the bijection P from
Section 3 furnishes a supply of such Wilf-equivalences.

We say that a permutation π ∈ Av(231) respects P when P restricted to Av(231, π) is a bijection with
Av(132, P (π)). We define two families of permutations (λn) and (ρn) recursively by λ1 = ρ1 = 1 and
for all n ≥ 1, λn+1 = 1	 ρn and ρn+1 = λn⊕ 1 (see Figure 4). We also take the convention that λ0 and
ρ0 denote the empty permutation. Notice that for any n, λn and ρn are fixed by P , since they avoid both
231 and 132. Notice also that for any n, λn is ⊕-indecomposable and ρn is 	-indecomposable.
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λn = ρn−1 and ρn = λn−1
; λ6 = and ρ6 =

Fig. 4: Diagrams of λn and ρn, for general n and for n = 6.

Lemma 19 For every n ≥ 0, and every 0 ≤ k ≤ n, the permutation λk ⊕ λn−k respects P .

Proof: The proof of this result is based on an induction on n, and simply requires a careful analysis of
the way in which a pattern such as λk ⊕ λn−k can occur in a 231-avoiding permutation, and dually how
P (λk ⊕ λn−k) can occur in a 132-avoiding permutation. 2

Since λn and ρn are fixed by P , and because λk ⊕ λn−k = λk ⊕ (1 	 ρn−k−1), a consequence of
Lemma 19 is:

Theorem 20 For every n ≥ 0, and every 0 ≤ k ≤ n − 1, the permutation classes Av(231, λk ⊕ (1 	
ρn−k−1)) and Av(132, (λk ⊕ 1) 	 ρn−k−1) are Wilf-equivalent. Moreover, P provides a bijection from
one to the other, that preserves the shape of the in-order trees.

Even though there are more classes Av(231, π) and Av(132, P (π)) that are Wilf-equivalent, we are
able to show that except when π of the form of Lemma 19, P will not provide a bijection between
Av(231, π) and Av(132, P (π)). This is obtained proving the converse of Lemma 19, i.e. proving that all
permutations that respect P are of the form λk ⊕ λn−k. The proof is omitted for brevity.

Theorem 21 The permutations that respect P are exactly those of the form λk ⊕ λn−k = λk ⊕ (1 	
ρn−k−1), for n ≥ 0 and 0 ≤ k ≤ n− 1.

Table 1 shows all patterns that respect P of length 3 to 8. To each such pattern corresponds a Wilf-
equivalence between Av(231, π) and Av(132, P (π)). They are non trivial, except for three of them that
correspond to the reverse symmetry – those are indicated in italics. Due to symmetries, some Wilf-
equivalences may however correspond to several rows in Table 1. For instance, π = 42135 and π′ =
53124 yield the same Wilf-equivalence up to a reverse symmetry.

For π of length 3 or 4, the Wilf-equivalences obtained from Table 1 may be compared to those re-
ported in Wikipedia (2013). Among the Wilf-equivalences reported therein that we may hope to recover
(i.e. when one of the excluded pattern is 231 or one of its symmetries), we find three of them, while five
are left aside. These three are:

• because P (312) = 312, Av(231, 312) is Wilf-equivalent to Av(132, 312);
• because P (3124) = 3124, Av(231, 3124) is Wilf-equivalent to Av(132, 3124) which is up to

reverse symmetry the same as Av(132, 4213) being Wilf-equivalent to Av(132, 3124);
• because P (1423) = 3412, Av(231, 1423) is Wilf-equivalent to Av(132, 3412) which is up to

inverse-complement symmetry the same as Av(132, 4213) being Wilf-equivalent to Av(132, 3412).

Computer experiments have shown that there are (conjecturally) other Wilf-equivalences between classes
Av(231, π) and Av(132, P (π)), where π does not respect P . These are shown in Table 2.
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π P (π)

213 213
132 231
312 312

π P (π)

2143 3241
1423 3412
4213 4213
3124 3124

π P (π)

42135 42135
21534 43512
53124 53124
31254 42351
15324 45213

π P (π)

216435 546213
531246 531246
312645 534612
642135 642135
421365 532461
164235 563124

π P (π)

6421357 6421357
3127546 6457213
7531246 7531246
4213756 6435712
1753246 6742135
5312476 6423571
2175346 6573124

π P (π)

31286457 75683124
75312468 75312468
64213587 75324681
53124867 75346812
86421357 86421357
21864357 76842135
42138657 75468213
18642357 78531246

Tab. 1: Pairs of patterns (π, P (π)) such that π respects P , i.e. such that P provides a bijection between Av(231, π)
and Av(132, P (π)). In particular, these classes are Wilf-equivalent.

π P (π)

2137465 5467231
1327645 5647312

π P (π)

63125478 64235178
87153246 87452136
65312478 65312478
87421356 87421356

Tab. 2: The other patterns π up to length 8 such that Av(231, π) and Av(132, P (π)) are (conjecturally) Wilf-
equivalent.

5.2 Enumeration of Av(231, π), for π respecting P
Theorem 20 shows that for any n, there are n permutations π ∈ Avn(231) such that the two classes
Av(231, π) and Av(132, P (π)) are Wilf-equivalent. We can actually prove that these 2n permutation
classes we obtain (as exemplified in Table 1) are all Wilf-equivalent. Notice that for both n = 7 and 8, all
classes Av(231, π) with π of length n in Table 2 are not in the same Wilf-equivalence class.

The above Wilf-equivalence result follows immediately from Theorem 24 below. We first define a
family of generating function Fn(t) recursively as follows: F1(t) = 1, and for n ≥ 1

Fn+1(t) =
1

1− tFn(t)
for n ≥ 1.

This family satisfies a property that we shall use in the proof of Theorem 24:

Lemma 22 Define g(x, y) = 1−txy
1−tx−ty . For any n ≥ 3, and any j, k ≥ 1 such that j + k = n − 1,

Fn = g(Fj , Fk).
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Proof: Fix some n ≥ 3. Let us remark that g
(

1
1−tx ,

y−1
ty

)
= g(x, y).

Consequently, for any j > 1 and k = n− j − 1, we have g(Fj , Fk) = g(Fj−1, Fk+1). So it is enough to
prove that g(F1, Fn−2) = Fn. It is easily derived from the definition of the family (Fn). 2

Based on the decompositions λn = 1	ρn−1 and ρn = λn−1⊕1 it is relatively easy to prove inductively
that:

Lemma 23 The generating functions of Av(231, λn) and Av(231, ρn) respectively are both equal to Fn.

Finally we can also establish using the preceding two results:

Theorem 24 Let π ∈ Avn(231) be a permutation that respects P . The generating function of Av(231, π)
is Fn.

Proof: This follows immediately from Lemma 23 if π is of the form λn or ρn for any n ≥ 1. Otherwise,
by Theorem 21, we have π = λj ⊕ (1 	 ρk) for some j ≥ 1 and k ≥ 1. Let C = Av(231, π) and let
C be the corresponding generating function. When decomposing permutations of C as α ⊕ (1 	 β), the
subsequent constraints on α and β, together with Lemma 23, allow us to write that

C = 1 + tFjC + t(C − Fj)Fk, i.e. C =
1− tFjFk

1− tFj − tFk
.

Lemma 22 then ensures that C = Fn. 2

6 Conclusions
Many other permutation classes have recursive descriptions similar to those of Av(231) and Av(132).
In such cases it may well be possible to define analogous bijections to P which could lead to a unified
framework for understanding Wilf-equivalences between their subclasses. Indeed, even for these two
classes it is possible to combine the bijections P and R into various hybrid forms, and some of these may
be useful in characterising the additional Wilf-equivalences that seem to exist in this context.

Of course our results provide some bijections between collections of permutations sorted by some
combinations of S and R. However, they do not provide enumerations of these collections – this seems
to remain a difficult problem in general (and even more so if symmetries other than R are included) as
suggested by the relative difficulty of enumerating the permutations sorted by S ◦ S compared to those
sorted by S. Another point is to determine whether or not the bijection here between specifically the
permutations sorted by S ◦ S and those sorted by S ◦R ◦ S is the same as the one described implicitly in
Bouvel and Guibert (2012).

There are other relatively natural sorting operators. For instance bubble sort can be defined by B(αnβ) =
B(α)βn. Albert et al. (2011) considered the inverse images of permutation classes under B and some in-
vestigations of composites of B and related operators have been reported by Ferrari (2012). Combining
such operators with S (and other possibilities) offers further scope for the discovery (or explanation) of
Wilf-equivalences among permutation classes.
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Abstract. We introduce the notion of pattern in the context of lattice paths, and investigate it in the specific case of
Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set
of all Dyck paths, which we call the Dyck pattern poset. Given a Dyck path P , we determine a formula for the number
of Dyck paths covered by P , as well as for the number of Dyck paths covering P . We then address some typical
pattern-avoidance issues, enumerating some classes of pattern-avoiding Dyck paths. Finally, we offer a conjecture
concerning the asymptotic behavior of the sequence counting Dyck paths avoiding a generic pattern and we pose a
series of open problems regarding the structure of the Dyck pattern poset.

Résumé. Nous proposons la notion d’un motif dans le contexte de chemins de treillis, et étudions le cas spécifique
des chemins de Dyck. Comme dans le cas des permutations, on obtient une structure de poset sur l’ensemble de tous
les chemins de Dyck, que nous appelons l’ensemble des chemins de Dyck partiellement ordonné selon le motif. Étant
donné un chemin de Dyck P , nous déterminons une formule pour le nombre de chemins de Dyck couverts par P ,
ainsi que pour le nombre de chemins de Dyck couvrant P . Nous énumérons ensuite les chemins de Dyck évitant
certaines catégories de motif. Enfin, nous proposons une conjecture asymptotique concernant le nombre de chemins
de Dyck évitant un motif générique et nous posons quelques problèmes ouverts concernants la structure du poset
etudié.

Keywords: Dyck path, pattern containment relation, enumeration

1 Introduction
One of the most investigated and fruitful notions in contemporary combinatorics is that of a pattern.

Historically it was first considered for permutations [Kn], then analogous definitions were provided in the
context of many other structures, such as set partitions [Go, Kl, Sa], words [Bj, Bu], and trees [DPTW, Gi,
R]. Perhaps all of these examples have been motivated or informed by the more classical notion of graphs
and subgraphs. Informally speaking, given a specific class of combinatorial objects, a pattern can be
thought of as an occurrence of a small object inside a larger one; the word “inside” means that the pattern
is suitably embedded into the larger object, depending on the specific combinatorial class of objects. The
main aim of the present work is to introduce the notion of pattern in the context of lattice paths and to
begin its systematic study in the special case of Dyck paths.

†L. F. and R. P. partially supported by INdAM project: “Proprietà algebriche e combinatorie dei cammini discreti”; A. B. and
L. F. partially supported by PRIN project: “Automi e Linguaggi Formali: Aspetti Matematici e Applicativi”.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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For our purposes, a lattice path is a path in the discrete plane starting at the origin of a fixed Cartesian
coordinate system, ending somewhere on the x-axis, never going below the x-axis and using only a
prescribed set of steps Γ. We will refer to such paths as Γ-paths. This definition is extremely restrictive if
compared to what is called a lattice path in the literature, but it will be enough for our purposes. Observe
that a Γ-path can be alternatively described as a finite word on the alphabet Γ obeying certain conditions.
Using this language, we say that the length of a Γ-path is simply the length of the word which encodes
such a path. Among the classical classes of lattice paths, the most common are those using only steps
U(p) = (1, 1), D(own) = (1,−1) and H(orizontal) = (1, 0); with these definitions, Dyck, Motzkin
and Schröder paths correspond respectively to the set of steps {U,D}, {U,H,D} and {U,H2, D}.

Consider the class PΓ of all Γ-paths, for some choice of the set of steps Γ. Given P,Q ∈ PΓ having
length k and n respectively, we say thatQ contains (an occurrence of) the pattern P whenever P occurs as
a subword of Q. So, for instance, in the class of Dyck paths, UUDUDDUDUUDD contains the pattern
UUDDUD, whereas in the class of Motzkin paths, UUHDUUDHDDUDHUD contains the pattern
UHUDDHUD. When Q does not contain any occurrence of P we will say that Q avoids P . In the
Dyck case, the previously considered path UUDUDDUDUUDD avoids the pattern UUUUDDDD.

This notion of pattern gives rise to a partial order in a very natural way, by declaring P ≤ Q when
P occurs as a pattern in Q. In the case of Dyck paths, the resulting poset will be denoted by D. It is
immediate to notice that D has a minimum (the empty path), does not have a maximum, is locally finite
and is ranked (the rank of a Dyck path is given by its semilength). As an example, we provide the Hasse
diagram of an interval in the Dyck pattern poset:

Observe that this notion of pattern for paths is very close to the analogous notion for words (considered,
for instance, in [Bj], where the author determines the Möbius function of the associated pattern poset).
Formally, instead of considering the set of all words of the alphabet {U,D}, we restrict ourselves to the
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set of Dyck words (so what we actually do is to consider a subposet of Björner’s poset). However, the
conditions a word has to obey in order to belong to this subposet (which translate into the fact of being a
Dyck word) make this subposet highly nontrivial, and fully justify our approach, consisting of the study
of its properties independently of its relationship with the full word pattern poset.

2 The Dyck pattern poset
In the Dyck pattern poset D, following the usual notation for covering relation, we write P ≺ Q (Q

covers P ) to indicate that P ≤ Q and the rank of P is one less than the rank of Q (i.e., rank(P ) =
rank(Q)− 1). Our first result concerns the enumeration of Dyck paths covered by a given Dyck path Q.
We need some notation before stating it. Let k + 1 be the number of points of Q lying on the x-axis (call
such points p0, p1, . . . , pk). Then Q can be factorized into k Dyck factors F1, . . . , Fk, each Fi starting
at pi−1 and ending at pi. Let ni be the number of ascents in Fi (an ascent being a consecutive run of U
steps; ni also counts both the number of descents and the number of peaks in Fi). Moreover, we denote by
|UDU | and |DUD| the number of occurrences in a Dyck path of a consecutive factor UDU and DUD,
respectively. In the path Q of Figure 1, we have n1 = 2, n2 = 1, n3 = 2, |UDU | = 3, and |DUD| = 2.

F
1

p
0

p
1

F
2

p
2

p
3

F
3

Fig. 1: A Dyck path having three factors.

Proposition 2.1 If Q is a Dyck path with k factors F1, . . . Fk, with Fi having ni ascents, then the number
of Dyck paths covered by Q is given by

∑k
i=1 ni

2 + (
∑k
i=1 ni)

2

2
− |UDU | − |DUD| . (1)

In a similar fashion, we are also able to find a formula for the number of all Dyck paths which cover a
given path.

Proposition 2.2 If Q is a Dyck path of semilength n with k factors F1, . . . Fk, with Fi having semilength
fi, then the number of Dyck paths covering Q is given by

1 +
∑

i

f2
i +

∑

i<j

fifj . (2)

3 Enumerative results on pattern-avoiding Dyck paths
In the present section we will be concerned with the enumeration of some classes of pattern-avoiding

Dyck paths. Similarly to what has been done for other combinatorial structures, we are going to consider
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classes of Dyck paths avoiding a single pattern, and we will examine the cases of short patterns. Specif-
ically, we will count Dyck paths avoiding any single path of length ≤ 3; each case will arise as a special
case of a more general result concerning a certain class of patterns.

Given a pattern P , we denote by Dn(P ) the set of all Dyck paths of semilength n avoiding the pattern
P , and by dn(P ) the cardinality of Dn(P ).

3.1 The pattern (UD)k

This is one of the easiest cases.

Proposition 3.1 For any k ∈ N, Q ∈ Dn((UD)k) if and only if Q has at most k − 1 peaks.

Since it is well known that the number of Dyck paths of semilength n and having k peaks is given by
the Narayana number Nn,k (sequence A001263 in [Sl]), we have that dn((UD)k) =

∑k−1
i=0 Nn,i (partial

sums of Narayana numbers). Thus, in particular:

- dn(UD) = 0;

- dn(UDUD) = 1;

- dn(UDUDUD) = 1 +
(
n
2

)
.

3.2 The pattern Uk−1DUDk−1

Let Q be a Dyck path of length 2n and P = Uk−1DUDk−1. Clearly if n < k, then Q avoids P , and
if n = k, then all Dyck paths of length 2n except one (Q itself) avoid Q. Therefore:

• dn(P ) = Cn if n < k, and

• dn(P ) = Cn − 1 if n = k,

where Cn is the n-th Catalan number.
Now suppose n > k. Denote by A the end point of the (k − 1)-th U step of Q. It is easy to verify

that A belongs to the line r having equation y = −x + 2k − 2. Denote with B the starting point of the
(k − 1)-th-to-last D step of Q. An analogous computation shows that B belongs to the line s having
equation y = x− (2n− 2k + 2).

Depending on how the two lines r and s intersect, it is convenient to distinguish two cases.

1. If 2n− 2k + 2 ≥ 2k − 4 (i.e. n ≥ 2k − 3), then r and s intersect at height ≤ 1, whence xA ≤ xB
(where xA and xB denote the abscissas of A and B, respectively). The path Q can be split into
three parts (see Figure 2): a prefix QA from the origin (0, 0) to A, a path X from A to B, and a
suffix QB from B to the last point (2n, 0).

We point out that QA has exactly k − 1 U steps and its last step is a U step. Analogously, QB has
exactly k− 1 D steps and its first step is a D step. Notice that there is a clear bijection between the
set A of Dyck prefixes having k − 1 U steps and ending with a U and the set B of Dyck suffixes
having k − 1 D steps and starting with a D, since each element of B can be read from right to left
thus obtaining an element ofA. Moreover,A is in bijection with the set of Dyck paths of semilength
k − 1 (just complete each element of A with the correct sequence of D steps), hence |A| = Ck−1.
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k − 1    D
 steps

k−
 −

1 
U

 st
ep

s

(2n,0)

P

AQ

Q B

X

(2k − 4,0)

r

s

(2k − 2,0)

2n − 2k + 2

A
B

Fig. 2: Avoiding Uk−1DUDk−1, with n ≥ 2k − 3

If we require Q to avoid P , then necessarily X = U iDj , for suitable i, j (for, if a valley DU
occurred in X , then Q would contain P since Uk−1 and Dk−1 already occur in QA and QB ,
respectively). In other words, A and B can be connected only in one way, using a certain number
(possibly zero) of U steps followed by a certain number (possibly zero) of D steps. Therefore, a
path Q avoiding P is essentially constructed by choosing a prefix QA fromA and a suffix QB from
B, whence:

dn(P ) = C2
k−1, (if n ≥ 2k − 3). (3)

2. Suppose now k + 1 ≤ n < 2k − 3 (which means that r and s intersect at height > 1). Then it can
be either xA ≤ xB or xA > xB .

a) If xA ≤ xB , then we can count all Dyck paths Q avoiding P using an argument analogous
to the previous one. However, in this case the set of allowable prefixes of each such Q is
a proper subset of A. More specifically, we have to consider only those for which xA =
k − 1, k, k + 1, . . . , n (see Figure 3). In other words, an allowable prefix has k − 1 U steps

k 
− 1

 U
 st

ep
s k − 1   D

 steps

P

A

B

X=U  D
i j

Q
B

Q
A

r
s

2n − 2k + 2

(2k − 4,0) (2k − 2,0) (2n,0)

Fig. 3: Avoiding Uk−1DUDk−1, with xA ≤ xB

and 0, 1, 2, . . . or n − k + 1 D steps. If bi,j denotes the numbers of Dyck prefixes with i U
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steps and j D steps (i ≥ j), then the contribution to dn(P ) in this case is

d(1)
n (P ) =



n−k+1∑

j=0

bk−2,j




2

.

The coefficients bi,j are the well-known ballot numbers (sequence A009766 in [Sl]), whose
first values are reported in Table 1.

b) If xA > xB , then it is easy to see that Q necessarily avoids P , since A clearly occurs after
B, and so there are strictly less than k − 1 D steps from A to (2n, 0). Observe that, in this
case, the path Q lies below the profile drawn by the four lines y = x, r, s and y = −x+ 2n.
In order to count these paths, referring to Figure 4, just split each of them into a prefix and a
suffix of equal length n and call C the point having abscissa n.

P

A

B

C

(n, 2k−2)

(2n,0)

s

r

Fig. 4: Avoiding Uk−1DUDk−1, with xA > xB

Since C must lie under the point where r and s intersect, then its ordinate yC equals −n +
2k− 2− 2t with t ≥ 1 (and also recalling that yC = −n+ 2k− 2− 2t ≥ 0). A prefix whose
final point is C has k − j U steps and n − k + j D steps, with j ≥ 2. Since, in this case, a
path Q avoiding P is constructed by gluing a prefix and a suffix chosen among bk−j,n−k+j

possibilities (j ≥ 2), we deduce that the contribution to dn(P ) in this case is:

d(2)
n (P ) =

∑

j≥2

b2k−j,n−k+j .

Summing up the two contributions we have obtained in a) and b), we get:

dn(P ) = d(1)
n (P ) + d(2)

n (P )

=



n−k+1∑

j=0

bk−2,j




2

+
∑

j≥2

b2k−j,n−k+j , if k + 1 ≤ n < 2k − 3. (4)
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HHHHHi
j

0 1 2 3 4 5 6 7 8 9

0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132
7 1 7 27 75 165 297 429 429
8 1 8 35 110 275 572 1001 1430 1430
9 1 9 44 154 429 1001 2002 3432 4862 4862

Tab. 1: The sum of the gray entries gives the bold entry in the line below. The sum of the squares of the bold entries
gives an appropriate element of Table 2.

Notice that formula (4) reduces to the first sum if n ≥ 2k− 3, since in that case n− k+ j > k− j, for
j ≥ 2. We then have a single formula including both cases 1. and 2.:

dn(P ) =



n−k+1∑

j=0

bk−2,j




2

+
∑

j≥2

b2k−j,n−k+j , if n ≥ k + 1 . (5)

Formula (5) can be further simplified by recalling a well known recurrence for ballot numbers, namely
that, when j ≤ i+ 1,

bi+1,j =

j∑

s=0

bi,s.

Therefore, we get the following interesting expression for dn(P ) (when n ≥ k + 1) in terms of sums
of squares of ballot numbers along a skew diagonal (see also Tables 1 and 2):

dn(P ) =

{
C2
k−1 if n ≥ 2k − 3;∑

j≥1 b
2
k−j,n−k+j otherwise. (6)

Therefore we obtain in particular:

dn(UUDUDD) = 4, when n ≥ 3.

3.3 The pattern UkDk

The case P = UkDk is very similar to the previous one. We just observe that, when xA ≤ xB , the two
points A and B can be connected only using a sequence of D steps followed by a sequence of U steps.
This is possible only if n ≤ 2k − 2, which means that r and s do not intersect below the x-axis. Instead,
if n ≥ 2k − 1, Q cannot avoid P . Therefore we get (see also Table 3):

dn(P ) =

{
0 if n ≥ 2k − 1;∑

j≥1 b
2
k−j,n−k+j otherwise.
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HHHHk
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .
3 1 1 2 4 4 4 4 4 4 4 4 4 4 4 . . .
4 1 1 2 5 13 25 25 25 25 25 25 25 25 25 . . .
5 1 1 2 5 14 41 106 196 196 196 196 196 196 196 . . .
6 1 1 2 5 14 42 131 392 980 1764 1764 1764 1764 1764 . . .
7 1 1 2 5 14 42 132 428 1380 4068 9864 17424 17424 17424 . . .
8 1 1 2 5 14 42 132 429 1429 4797 15489 44649 105633 184041 . . .
9 1 1 2 5 14 42 132 429 1430 4861 16714 56749 181258 511225 . . .

Tab. 2: Number of Dyck paths of semilength n avoiding Uk−1DUDk−1 . Entries in boldface are the nontrivial ones
(k + 1 ≤ n < 2k − 3).

HHHHk
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 . . .
3 1 1 2 4 4 0 0 0 0 0 0 0 0 0 . . .
4 1 1 2 5 13 25 25 0 0 0 0 0 0 0 . . .
5 1 1 2 5 14 41 106 196 196 0 0 0 0 0 . . .
6 1 1 2 5 14 42 131 392 980 1764 1764 0 0 0 . . .
7 1 1 2 5 14 42 132 428 1380 4068 9864 17424 17424 0 . . .
8 1 1 2 5 14 42 132 429 1429 4797 15489 44649 105633 184041 . . .
9 1 1 2 5 14 42 132 429 1430 4861 16714 56749 181258 511225 . . .

Tab. 3: Number of Dyck paths of semilength n avoiding UkDk . Entries in boldface are the nontrivial ones (k+1 ≤
n < 2k − 3).

In particular, we then find:

- dn(UUDD) = 0, when n ≥ 3;

- dn(UUUDDD) = 0, when n ≥ 5.

3.4 The pattern Uk−1Dk−1UD

This is by far the most challenging case.
Let Q be a Dyck path of length 2n and P = Uk−1Dk−1UD. If Q avoids P , then there are two distinct

options: either Q avoids Uk−1Dk−1 or Q contains such a pattern. In the first case, we already know that
dn(Uk−1Dk−1) is eventually equal to zero. So, for the sake of simplicity, we will just find a formula for
dn(P ) when n is sufficiently large, i.e. n ≥ 2k−3. Therefore, for the rest of this section, we will suppose
that Q contains Uk−1Dk−1.

The (k − 1)-th D step of the first occurrence of Uk−1Dk−1 in Q lies on the line having equation
y = −x+2n. This is due to the fact that Q has length 2n and there cannot be any occurrence of UD after
the first occurrence of Uk−1Dk−1. The path Q touches the line of equation y = −x+ 2k− 2 for the first
time with the end point A of its (k − 1)-th U step. After that, the path Q must reach the starting point B
of the (k − 1)-th D step occurring after A. Finally, a sequence of consecutive D steps terminates Q (see
Figure 5).
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Therefore,Q can be split into three parts: the first part, from the beginning toA, is a Dyck prefix having
k − 1 U steps and ending with a U step; the second part, from A to B, is a path using n− k + 1 U steps
and k − 2 D steps; and the third part, from B to the end, is a sequence of D steps (whose length depends
on the coordinates of A). However, both the first and the second part of Q have to obey some additional
constraints.

The height of the point A (where the first part of Q ends) must allow Q to have at least k − 1 D steps
after A. Thus, the height of A plus the number of U steps from A to B minus the number of D steps from
A to B must be greater than or equal to 1 (to ensure that the pattern Uk−1Dk−1 occurs in Q). Hence,
denoting with x the maximum number of D steps which can occur before A, either x = k − 2 or the
following equality must be satisfied:

(k − 1)− x+ (n− k + 1)− (k − 2) = 1.

k 
− 1

 U
 st

ep
s

n−
k+

1 
U

 s
te

ps

k−
2 D

 stepsP

y = − x + 2k − 2

( k−1) − th D step of the first occurrence of P
B

A

y = − x + 2n

Fig. 5: A path Q avoiding P = Uk−1Dk−1UD

Therefore, x = min{n− k + 1, k − 2}. Observe however that, since we are supposing that n ≥ 2k − 3,
we always have x = k − 2.

Concerning the part of Q between A and B, since we have to use n− k+ 1 U steps and k− 2 D steps,
there are

(
n−1
k−2

)
distinct paths connecting A and B. However, some of them must be discarded, since they

fall below the x-axis. In order to count these “bad” paths, we split each of them into two parts. Namely,
if A′ and B′ are the starting and ending points of the first (necessarily D) step below the x-axis, the part
going from A to A′, and the remaining part (see Fig. 6).

k 
− 1

 U
 st

ep
s

B

A’

B’

A

P

y = − x + 2k − 2

y = − x + 2n

Fig. 6: A forbidden subpath from A to B.

It is not too hard to realize that the number of possibilities we have to choose the first part is given
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HHHHHk
n

0 1 2 3 4 5 6 7 8 9

1 1 1 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 2 4 6 8 10 12 14 16
4 1 1 2 5 13 28 48 73 103 138
5 1 1 2 5 14 41 110 245 450 739
6 1 1 2 5 14 42 131 397 1069 2427

Tab. 4: Avoiding Uk−1Dk−1UD

by a ballot number (essentially because, reading the path from right to left, we have to choose a Dyck
prefix from A′ to A), whereas the number of possibilities we have to choose the second part is given by a
binomial coefficient (essentially because, after having discarded the step starting at A′, we have to choose
an unrestricted path from B′ to B). After a careful inspection, we thus get to the following expression for
the total number dn(P ) of Dyck paths of semilength n ≥ 2k − 3 avoiding P :

dn(P ) =

(
n− 1

k − 2

)
Ck−1

−
k−2∑

s=2

bk−2,s ·
(
s−2∑

i=0

bk−3−i,s−2−i

(
n− k − s+ 3 + 2i

i

))
. (7)

Formula (7) specializes to the following expressions for low values of k (see also Table 4):

- when k = 3, dn(P ) = 2n− 2 for n ≥ 3;

- when k = 4, dn(P ) = 5n2−15n+6
2 for n ≥ 5;

- when k = 5, dn(P ) = 14n3−84n2+124n−84
6 for n ≥ 7.

4 Some remarks on the asymptotics of pattern-avoiding Dyck
paths

In this final section we collect some thoughts concerning the asymptotic behavior of integer sequences
counting pattern-avoiding Dyck paths. Unlike the case of permutations, for Dyck paths it seems plausible
that a sort of “master theorem” exists, at least in the case of single avoidance. This means that all the
sequences which count Dyck paths avoiding a single pattern P have the same asymptotic behavior (with
some parameters, such as the leading coefficient, depending on the specific path P ). We have some
computational evidence which leads us to formulate a conjecture, whose proof we have not been able to
complete, and so we leave it as an open problem.

Let P denote a fixed Dyck path of semilength x. We are interested in the behavior of dn(P ) when
n→∞. Our conjecture is the following:
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Conjecture. Suppose that P starts with a U steps and ends with b D steps. Then, setting k = 2x −
2− a− b, we have that dn(P ) is asymptotic to

αP · Ca · Cb
k!

nk,

whereCm denotes them-th Catalan numbers and αP is the number of saturated chains in the Dyck lattice
of order x (see [FP]) from P to the maximum UxDx.

Equivalently, αP is the number of standard Young tableaux whose Ferrers shape is determined by the
region delimited by the path P and the path UxDx, as shown in Figure 7.

36
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23 22 20
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1

2

13

21

29

9

Fig. 7: The standard Young tableau determined by a Dyck path.

We close our paper with some further conjectures concerning the order structure of the Dyck pattern
poset.

• What is the Möbius function of the Dyck pattern poset (from the bottom element to a given path?
Of a generic interval?)?

• How many (saturated) chains are there up to a given path? Or in a general interval?

• Does there exist an infinite antichain in the Dyck pattern poset?

The last conjecture has been suggested by an analogous one for the permutation pattern poset which has
been solved in the affirmative (see [SB] and the accompanying comment). In the present context we have
no intuition on what could be the answer, though we are a little bit less optimistic than in the permutation
case.

References
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Abstract. A function g, with domain the natural numbers, is a quasi-polynomial if there exists a period m and polyno-
mials p0, p1, . . . , pm−1 such that g(t) = pi(t) for t ≡ i mod m. Quasi-polynomials classically – and “reasonably” –
appear in Ehrhart theory and in other contexts where one examines a family of polyhedra, parametrized by a variable
t, and defined by linear inequalities of the form a1x1 + · · ·+ adxd ≤ b(t).

Recent results of Chen, Li, Sam; Calegari, Walker; and Roune, Woods show a quasi-polynomial structure in several
problems where the ai are also allowed to vary with t. We discuss these “unreasonable” results and conjecture a gen-
eral class of sets that exhibit various (eventual) quasi-polynomial behaviors: sets St that are defined with quantifiers
(∀, ∃), boolean operations (and, or, not), and statements of the form a1(t)x1 + · · · + ad(t)xd ≤ b(t), where ai(t)
and b(t) are polynomials in t. These sets are a generalization of sets defined in the Presburger arithmetic. We prove
several relationships between our conjectures, and we prove several special cases of the conjectures.

Résumé. Une fonction g, ayant les entiers naturels pour domaine, est un quasi-polynôme si il existe un entier m et
des ploynômes p0, p1, . . . , pm−1 tels que g(t) = pi(t) pour t ≡ i mod m. Les quasi-polynômes apparaissent dans
la théorie d’Erhart, ainsi que dans d’autres contextes où l’on s’intéresse à des familles de polyhèdres paramétrisées
par une variable t, et définies par des inégalités linéaires de la forme a1x1 + · · ·+ adxd ≤ b(t).

Des résultats récents de Chen, Li, Sam; Calegari, Walker; et Roune, Woods exhibent une structure de quasi-polynôme
dans plusieurs problèmes où les ai peuvent aussi varier en fonction de t. Nous nous intéressons à ces cas ”non-
raisonnables” et nous conjecturons l’existence d’une classe générale d’ensembles qui exhibent divers (possiblement)
comportement de type quasi-polynômes : il s’agit des ensembles St qui sont définis en termes de quantifieurs (∀,
∃), d’opérateurs booléens (conjonction, disjonction, négation), et d’énoncés de la forme a1(t)x1 + · · ·+ ad(t)xd ≤
b(t), où ai(t) et b(t) sont des polynômes en la variable t. Ces ensembles généralisent des ensembles définis dans
l’arithmétique de Presburger. Nous démontrons plusieurs relations entre nos conjectures, ainsi que plusieurs cas
spéciaux de ces mêmes conjectures.

Keywords: Quasi-polynomials, Ehrhart theory, Presburger arithmetic, rational generating functions

†With apologies to Wigner (1960) and Hamming (1980). A full version of this paper is available at http://www.oberlin.
edu/faculty/kwoods/papers.html.
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1 Reasonable Ubiquitousness
In this section, we survey classical appearances of quasi-polynomials (though Section 1.3 might be new
even to readers already familiar with Ehrhart theory). In Section 2, we survey some recent results
where the appearance of quasi-polynomials is more surprising. In Section 3, we make several conjec-
tures generalizing these “unreasonable” results. We state theorems relating these conjectures and state
theorems proving certain cases. In particular, we conjecture that any family of sets St – defined with
quantifiers (∀, ∃), boolean operations (and, or, not), and statements of the form a(t) · x ≤ b(t) (where
a(t) ∈ Q[t]d, b(t) ∈ Q[t], and · is the standard dot product) – exhibits eventual quasi-polynomial be-
havior, as well as rational generating function behavior. Of course, reasonable people may disagree on
what is unreasonable; the title is a play on “The unreasonable effectiveness of mathematics in the natural
sciences” Wigner (1960).

For reasons of space, proofs are omitted here; they are in the full version of this paper, available on the
author’s website. We use bold letters such as x to indicate multi-dimensional vectors.

Definition 1 A function g : N → Q is a quasi-polynomial if there exists a period m and polynomials
p0, p1, . . . , pm−1 ∈ Q[t] such that

g(t) = pi(t), for t ≡ i mod m.

Example 2

g(t) =

⌊
t+ 1

2

⌋
=

{
t
2 if t even,
t+1
2 if t odd,

is a quasi-polynomial with period 2.

This example makes it clear that the ubiquitousness of quasi-polynomials shouldn’t be too surprising:
anywhere there are floor functions, quasi-polynomials are likely to appear. We will generally be concerned
with integer-valued quasi-polynomials, those quasi-polynomials whose range lies in Z. Note that Example
2 demonstrates that such quasi-polynomials may still require rational coefficients.

1.1 Ehrhart theory
Perhaps the most well-studied quasi-polynomials are the Ehrhart quasi-polynomials:

Theorem 3 (Ehrhart, 1962) SupposeP is a polytope (bounded polyhedron) whose vertices have rational
coordinates. Let g(t) be the number of integer points in tP , the dilation of P by a factor of t. Then g(t)
is a quasi-polynomial, with period the smallest m such that mP has integer coordinates.

Example 4 Let P be the triangle with vertices (0, 0),
(
1
2 , 0
)
, and

(
1
2 ,

1
2

)
. Then

g(t) = #(tP ∩ Z2) =

(
bt/2c+ 1

)(
bt/2c+ 2

)

2
=

{
(t+ 2)(t+ 4)/8 if t even,
(t+ 1)(t+ 3)/8 if t odd,

(1)

is a quasi-polynomial with period 2.
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t ≤ s ≤ 2t 0 ≤ 2t ≤ s 0 ≤ s ≤ t

Fig. 1: Polyhedra defined in Example 5 for various (s, t) ∈ N2.

Writing tP from this example as

{(x, y) ∈ R2 : 2x ≤ t, y − x ≤ 0, −y ≤ 0}

suggests a way to generalize this result: for t ∈ Nn, let St be the set of integer points, x ∈ Zd, in a
polyhedron defined with linear inequalities of the form a · x ≤ b(t), where a ∈ Zd and b(t) is a degree 1
polynomial in t.

Example 5 Let

Ss,t =
{

(x, y) ∈ Z2 : 2y − x ≤ 2t− s, x− y ≤ s− t, x, y ≥ 0
}
.

For a fixed (s, t), Ss,t is the set of integer points in a polyhedron in R2. As (s, t) varies, the “constant”
term of these inequalities change, but the coefficients of x and y do not; in other words, the normal
vectors to the facets of the polyhedron do not change, but the facets move “in and out”. In fact, they can
move in and out so much that the combinatorial structure of the polyhedron changes. Figure 1 shows the
combinatorial structure for different (s, t) ∈ N2. Using various methods, Beck (2004) and Verdoolaege
and Woods (2008) compute that

g(s, t) = |Ss,t| =





s2

2 − b s2cs+ s
2 + b s2c2 + b s2c+ 1 if t ≤ s ≤ 2t,

st− b s2cs− t2

2 + t
2 + b s2c2 + b s2c+ 1 if 0 ≤ 2t ≤ s,

t2

2 + 3t
2 + 1 if 0 ≤ s ≤ t.

In this example, the function g(s, t) is a quasi-polynomial (in this multivariate case, one must con-
sider both s and t modulo some periods), at least piecewise. Sturmfels (1995) effectively proved this
generalization of Ehrhart theory:

Theorem 6 Let St be the set of integer points, x ∈ Zd, in a polyhedron defined with linear inequalities
a · x ≤ b(t), where a ∈ Zd and b(t) is a degree 1 polynomial in Z[t]. Then g(t) = |St| is a piecewise-
defined quasi-polynomial, where the finite number of pieces are polyhedral regions of parameter space.

Sections 2 and further will predominantly be concerned with univariate functions. Being a univariate
piecewise quasi-polynomial g : N→ Q is equivalent to eventually being a quasi-polynomial; that is, there
exists a T such that for all t ≥ T , g(t) agrees with a quasi-polynomial.
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1.2 Generating functions
Classic proofs of Ehrhart’s Theorem (Theorem 3) use generating functions. To prove that a function g(t)
is a quasi-polynomial of period m, it suffices (see Section 4.4 of Stanley, 2012) to prove that the Hilbert
series

∑
t∈N g(t)yt can be written as a rational function of the form

p(y)

(1− ym)d
,

where p(y) is a polynomial of degree less than md. For g(t) = |tP | with P the triangle in Example 4, we
can see that ∑

t∈N
g(t)yt = 1 + y + 3y2 + 3y3 + 6y4 + · · · = 1 + y

(1− y2)3
. (2)

Indeed, these proofs of Ehrhart’s Theorem start by considering the generating function
∑
t∈N,s∈tP∩Zd xsyt

(where xs = xs11 · · ·xsdd ) and substituting in x = (1, . . . , 1) to get the Hilbert series. For P in Example 4,
∑

t∈N,s∈tP∩Zd

xsyt = 1 + y + (1 + x1 + x1x2)y2 + (1 + x1 + x1x2)y3 + (1 + · · ·+ x21x
2
2)y4 + · · ·

=
1 + y

(1− y2)(1− x1y2)(1− x1x2y2)
,

as can be checked by expanding as a product of infinite geometric series. Substituting x1 = x2 = 1 yields
the Hilbert series in Equation 2.

Definition 7 We call any generating function or Hilbert series a rational generating function if it can be
written in the form

p(x)

(1− xb1) · · · (1− xbk)
,

where p is a Laurent polynomial over Q and bi ∈ Zd are lexicographically positive (first nonzero entry is
positive), .

While we will generally be assuming that the generating functions are for subsets of Nd, we need bi to
be lexicographically positive rather than simply in Nd \ {0} for examples like the following:

Example 8 Let S =
{

(x, y) ∈ N2 : x+ y = 1000
}

. While y1000 + xy999 + · · ·+ x1000 is a legitimate
generating function, it makes more sense to write it as

y1000 − x1001y−1
1− xy−1 .

If b is lexicographically negative, then

1

1− xb
=
−x−b

1− x−b

with −b is lexicographically positive. Having b lexicographically positive guarantees that 1/(1− xb) =

1 + xb + x2b + · · · is the Laurent series convergent in a neighborhood of x = (e−ε, e−ε
2

, . . . , e−ε
d) for

sufficiently small ε.
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In Section 3, we will use a different generating function: for fixed t, examine the generating function∑
s∈tP∩Zd xs. In the triangle from Example 4, this gives us

(
1 + x1 + x21 + · · ·+ x

bt/2c
1

)
+
(
x1 + x21 + ·+ x

bt/2c
1

)
x2 + · · ·+

(
x
bt/2c
1

)
x
bt/2c
2 .

In general, powerful tools such as Brion’s Theorem (Brion, 1988) help us compute a compact form for
this generating function; see Verdoolaege and Woods (2008) for more details. In this example, we can
verify directly, by expanding the fractions as products of geometric series, that

∑

s∈tP∩Zd

xs =
1

(1− x1)(1− x1x2)
− x

bt/2c+1
1

(1− x1)(1− x2)
+

x
bt/2c+1
1 x

bt/2c+2
2

(1− x2)(1− x1x2)
. (3)

Given this generating function, we can count the number of integer points in tP by substituting in
x = (1, . . . , 1). Substituting x1 = x2 = 1 into Equation 3, we see that (1, 1) is a pole of these fractions.
Fortunately, getting a common denominator and applying L’Hôpital’s rule to find the limit as x1 and x2
approach 1 will work, and it is evident that the differentiation involved in L’Hôpital’s rule will yield a
quasi-polynomial in t as the result; careful calculation will show that it matches Equation 1.

1.3 Presburger arithmetic
So far, our examples have been integer points in polyhedra. A key property of such sets is that they can be
defined without quantifiers. However, even for sets defined with quantifiers, we end up with reasonable
appearances of quasi-polynomials.

Definition 9 A Presburger formula is a boolean formula with variables in N that can be written using
quantifiers (∃,∀), boolean operations (and, or, not), and linear (in)equalities in the variables. We write a
Presburger formula as F (u) to indicate the the free variables u (those not associated with a quantifier).

Presburger (1929) (see Presburger, 1991, for a translation) examined this first order theory and proved
it is decidable.

Example 10 Given t ∈ N, let

St =
{
x ∈ N : ∃y ∈ N, 2x+ 2y + 3 = 5t and t < x ≤ y

}
.

We can compute that

St =

{{
t+ 1, t+ 2, . . . ,

⌊
5t−3
4

⌋}
if t odd, t ≥ 3,

∅ else.

This set has several properties, cf. Section 3:

1. The set of t such that St is nonempty is {3, 5, 7, . . .}. This set is eventually periodic.

2. The cardinality of St is

St =

{⌊
5t−3
4

⌋
− t if t odd, t ≥ 3,

0 else,

which is eventually a quasi-polynomial of period 4.
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3. When St is nonempty, we can obtain an element of St with the function x(t) = t + 1, and x(t) is
eventually a quasi-polynomial.

3a. More strongly, when St is nonempty, we can obtain the maximum element of St with the function
x(t) = b(5t− 3)/4c, and x(t) is eventually a quasi-polynomial.

4. We can compute the generating function

∑

s∈St

xs =

{
xt+1 + xt+2 + · · ·+ xb(5t−3)/4c if t odd, t ≥ 3,
0 else,

=




xt+1 − xb(5t−3)/4)c+1

1− x if t odd, t ≥ 3,

0 else.

We see that, for fixed t, this generating function is a rational function. Considering each residue
class of t mod 4 separately, the exponents in the rational function can eventually be written as
polynomials in t.

Versions of these properties always hold for sets defined in Presburger arithmetic. For example, Woods
(2012) gave several properties of Presburger formulas that hold even for sets defined with multivariate
parameters, t ∈ Nn:

Theorem 11 (from Theorems 1 and 2 of Woods, 2012) Suppose F (s, t) is a Presburger formula, with
s and t collections of free variables. Then

• g(t) = #
{
s ∈ Nd : F (s, t)

}
is a piecewise quasi-polynomial,

• ∑s,t:F (s,t) x
syt is a rational generating function, and

• ∑t∈Nn g(t)yt is a rational generating function.

Property 4 from Example 10 can be proved in general by using Theorem 11 to write
∑

s,t:F (s,t) x
syt as

a rational generating function and applying Theorem 29. The proof of Theorem 26 then shows that all of
the other properties follow, though the exact definitions of these properties are only stated in Section 3 for
a univariate parameter, t ∈ N.

2 Unreasonable Ubiquitousness
We now turn to the inspiration for this paper. Three recent results exhibit quasi-polynomial behavior,
in situations that seem “unreasonable”. In particular, all three involve sets St defined by inequalities
a(t) · x ≤ b(t), where a(t) is a polynomial in t; that is, the normal vectors to the facets change as t
changes. First we give an example showing that, unlike in Section 1, it is now important that we restrict
to only one parameter, t.

Example 12 Define Ss,t =
{

(x, y) ∈ N2 : sx+ ty = st
}

. Then Ss,t is an interval in Z2 with endpoints
(t, 0) and (0, s), and

|Ss,t| = gcd(s, t) + 1.

There is no hope for simple quasi-polynomial behavior here, as the cardinality depends on the arithmetic
relationship of s and t.



The unreasonable ubiquitousness of quasi-polynomials 731

2.1 Three results
This first result most directly generalizes Ehrhart Theory. Chen, Li, and Sam (2012) prove that, if St is
the set of integer points in a polytope defined by inequalities of the form a(t) · x ≤ b(t), then |St| is
eventually a quasi-polynomial.

Theorem 13 (Theorem 2.1 of Chen et al., 2012) Let A(t) be an r × d matrix, and b(t) be a column
vector of length r, all of whose entries are in Z[t]. Assume Pt = {x ∈ Rd : A(t)x ≤ b(t)} is eventually
a bounded set (a polytope). Then |Pt ∩ Zd| is eventually a quasi-polynomial.

Note that this can be equivalently phrased (Theorem 1.1 of Chen et al., 2012) using equalities A(t)x =
b(t), where x is constrained to be nonnegative, or it can be phrased (Theorem 1.4 of Chen et al., 2012) by
listing the vertices of Pt as rational functions of t.

Calegari and Walker (2011) were similarly concerned with the integer points in polyhedra defined by
A(t)x ≤ b(t). Rather than counting |Pt ∩Zd|, they wanted to find the integer hull of Pt, that is, the set of
vertices of the convex hull of Pt ∩ Zd.

Theorem 14 (Theorem 3.5 of Calegari and Walker, 2011) Let vi(t) be vectors in Qd whose coordi-
nates are rational functions of size O(t), and let Pt be the convex hull of the vi(t). Then there exists a
modulus m and functions pij : N → Zd with polynomial coordinates such that, for 0 ≤ i < m and for
sufficiently large t ≡ i mod m, the integer hull of Pt is {pi1(t),pi2(t), . . . ,piki(t)}.

This theorem could be similarly phrased using facet definitions of the polyhedra, rather than vertex
definitions. That the vertices are O(t) (grow no faster that ct for some constant c) is important for the
proof, though Calegari and Walker conjecture that the theorem still holds without this restriction.

A third recent result concerns the Frobenius number.

Definition 15 Given a1, . . . , ad ∈ N, let S be the semigroup generated by the ai, that is,

S = {a ∈ N : ∃λ1, . . . , λd ∈ N, a = λ1a1 + · · ·+ λdad}.

If the ai are relatively prime, then S contains all sufficiently large integers, and the Frobenius number is
defined to be the largest integer not in S.

Now we let ai = ai(t) vary with t. Roune and Woods (2012) prove that, if the ai(t) are linear functions
of t, then the Frobenius number is eventually a quasi-polynomial, and they conjecture that this is true if
the ai(t) are any polynomial functions of t:

Theorem 16 Let ai(t) ∈ Z[t] have degree at most one and be eventually positive. Then the set of t
such that the ai(t) are relatively prime is eventually periodic, and, for such t, the Frobenius number is
eventually given by a quasi-polynomial.

Example 17 Consider a1(t) = t, a2(t) = t+ 3. These are relatively prime exactly when t ≡ 1, 2 mod 3.
Since there are only two generators, a well-known formula (seemingly due to Sylvester, 1884) gives that
the Frobenius number is

a1a2 − a1 − a2 = t2 + t− 3.

Note that Theorem 16 utilizes sets defined with quantifiers; Presburger arithmetic seems a good place
to look for generalizations encompassing these three results.



732 Kevin Woods

2.2 Common tools
Each of these three results has their own method for proving quasi-polynomial behavior, but there are
several common tools needed. Chen et al. (2012) and Calegari and Walker (2011) independently prove
Theorems 18 through 22, and Calegari and Walker (2011) prove Theorem 23.

Theorem 18 (Division Algorithm) Given f(t), g(t) integer-valued polynomials,

1. if deg g > 0, there exist integer-valued quasi-polynomials q1(t) and r1(t) such that f(t) = q1(t)g(t)+
r1(t), with deg r1 < deg g, and

2. if g 6= 0, there exist integer-valued quasi-polynomials q2(t) and r2(t) such that f(t) = q2(t)g(t) +
r2(t), with eventually 0 ≤ r2(t) < |g(t)|.

These are both useful results, and only slightly different. For example, suppose f(t) = 2t − 3 and
g(t) = t. Then Statement 1 is a traditional polynomial division algorithm: f = 2g + −3. Statement
2, however, is a numerical division algorithm: f = 1g + (t − 3), and the remainder t − 3 is between 0
and g as long as t ≥ 3. In other words, if we have found q1 and r1, but we eventually have r1(t) < 0,
then we should use quotient q2 = q1 − sgn(g) and remainder r2 = |g| + r1 instead, as eventually
0 ≤ |g(t)|+ r1(t) < |g(t)|.

The main subtlety in proving Statement 1 of this theorem is the following: Suppose f(t) = t2 + 3t
and g(t) = 2t + 1. Then the leading coefficient of g does not divide the leading coefficient of f , and the
traditional polynomial division algorithm would produce quotients that are not integer-valued. Instead,
we look at tmodulo the leading coefficient of g; for example, if t = 2s+1, substituting gives f(2s+1) =
4s2 + 10s+ 3 and g(2s+ 1) = 4s+ 3, and now the leading term does divide evenly.

The division algorithm in hand, one can prove some stronger results:

Theorem 19 (Euclidean Algorithm and gcds) Let f and g be integer-valued quasi-polynomials. Then
there exists integer-valued quasi-polynomials p(t), q(t), and d(t) such that gcd

(
f(t), g(t)

)
= d(t) and

d(t) = p(t)f(t) + q(t)g(t).

This is obtained by repeated applications of the division algorithm.

Example 20

gcd(2t+ 1, 5t+ 6) = gcd(t+ 4, 2t+ 1) = gcd(7, t+ 4) =

{
7 if t ≡ 3 mod 7,
1 else.

Similarly, repeated application of the Euclidean algorithm can produce the Hermite or Smith normal
forms of matrices. We won’t define those here, but they are important, for example, in producing a basis
for lower-dimensional sublattices of Zd (see Newman, 1972).

Theorem 21 (Hermite/Smith Normal Forms) Given a matrix A(t) with integer-valued quasi-polyno-
mial entries, the Hermite and the Smith Normal forms, as well as their associated change-of-basis matri-
ces, also have quasi-polynomial entries.

The following theorem is obvious, but is repeatedly used.

Theorem 22 (Dominance) Suppose f, g ∈ Q[t] with f 6= g. Then either eventually f(t) > g(t) or
eventually g(t) > f(t).
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Repeated use of this property, for example, shows that the combinatorial structure of a polyhedron Pt
eventually stabilizes, when Pt is defined by A(t)x ≤ b(t).

Rational functions commonly appear in these results. For example, if a polyhedron is defined by
A(t)x ≤ b(t), a vertex will be a point where several of these inequalities are equalities, i.e., the solu-
tion to some A′(t)x = b′(t), where A′(t) is a full-rank d × d matrix of polynomials in t. Solving for x
using the adjunct matrix of A′ will result in x(t) given as a rational function of t. For large t, the behavior
of a rational function is predictable:

Theorem 23 (Rounding) Let f(t), g(t) ∈ Z[t]. Then f(t)/g(t) converges to a polynomial, and bf(t)/g(t)c
is eventually a quasi-polynomial.

3 Conjectures
Let St ⊆ Nd be a family of subsets of natural numbers. We now discuss some properties that it would be
nice (though unreasonable!) for such sets to have; cf. Example 10.

Property 1: The set of t such that St is nonempty is eventually periodic.

This is the weakest of the properties we will discuss, but an important one, as it is related to the decision
problem – “Is there a solution?”

Property 2: There exists a function g : N→ N such that, if St has finite cardinality, then g(t) = |St|, and
g(t) is eventually a quasi-polynomial. The set of t such that St has finite cardinality is eventually
periodic.

This is the property found in Theorem 13, where St is the set of integer points in a polytope defined by
inequalities a(t) · x ≤ b(t). Theorems 14 and 16, on the other hand, are not about counting points but
about finding points:

Property 3: There exists a function x : N → Nd such that, if St is nonempty, then x(t) ∈ St, and the
coordinate functions of x are eventually quasi-polynomials. The set of t such that St is nonempty
is eventually periodic.

This function x(t) acts as a certificate that the set is nonempty. But we may want to go further and pick
out particular elements of St:

Property 3a: Given c ∈ Zd, there exists a function x : N → Nd such that, if maxy∈St
c · y exists, then

it is attained at x(t) ∈ St, and the coordinate functions of x are eventually quasi-polynomials. The
set of t such that the maximum exists is eventually periodic.

This corresponds to Theorem 16, where we want to find the Frobenius number, the maximum element of
the complement of the semigroup. On the other hand, we may want to list multiple elements of the set:

Property 3b: Fix k ∈ N. There exist functions x1, . . . ,xk : N → Nd such that, if |St| ≥ k, then
x1(t), . . . ,xk(t) are distinct elements of St, and the coordinate functions of xi are eventually quasi-
polynomials. The set of t such that |St| ≥ k is eventually periodic.



734 Kevin Woods

If there is a uniform bound on |St|, then this property can be used to enumerate all elements of St, for all
t. This is the content of Theorem 14. Property 2 is about counting all solutions and Properties 3/3a/3b are
about obtaining specific solutions, and so they seem somewhat orthogonal to each other. The following
property, we shall see, unifies them:

Property 4: There exists a period m such that, for t ≡ i mod m,

∑

s∈St

xs =

∑ni

j=1 αijx
qij(t)

(1− xbi1(t)) · · · (1− xbiki
(t))

,

where αij ∈ Q, and the coordinate functions of qij ,bij : N→ Zd are polynomials with the bij(t)
lexicographically positive.

For what sets St can we hope for these properties to hold? Here is a candidate:

Definition 24 A family of sets St is a parametric Presburger family if they can be defined over the natural
numbers using quantifiers, boolean operations, and inequalities of the form a(t)·x ≤ b(t), where b ∈ Z[t]
and a ∈ Z[t]d.

We conjecture that these properties do, in fact, hold for any parametric Presburger family:

Conjecture 25 Let St be a parametric Presburger family. Then Properties 1, 2, 3, 3a, 3b, and 4 all hold.

Note that one can define a family St of subsets of Zd rather than of Nd, though one must be more
careful when talking about generating functions. For example, the set Z has generating function

· · ·+ x−1 + 1 + x1 + x2 + · · · = x−1

1− x−1 +
1

1− x = − 1

1− x +
1

1− x = 0.

See, for example, Barvinok (2008) for more details.
As evidence that Property 4 is interesting, we will show that it generalizes both 2 and 3/3a/3b:

Theorem 26 Let St be any family of subsets of Nd. We have the following implications among possible
properties of St.

2
�%

4

(0

+3

+3

3a +3 3 +3 1

3b

<D

As a final relationship between these properties, we note that, for the class of parametric Presburger
families, 3, 3a, and 3b are equivalent:

Theorem 27 Suppose all parametric Presburger families have Property 3. Then all parametric Pres-
burger families have Properties 3a and 3b.

Theorem 27 is a weaker implication than Theorem 26, which holds for a single family St in isolation. To
prove that 3 “implies” 3a and 3b, on the other hand, we will need to create new families S′t using additional
quantifiers or boolean operators, and we need to know that these new families still have Property 3.

Finally, we give evidence that these properties might actually hold. We can show that they all hold for
two broad classes of parametric Presburger families:
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Theorem 28 Suppose St is a parametric Presburger family such that either

(a) St is defined without using any quantifiers, or

(b) St is defined using only inequalities of the form a ·x ≤ b(t), where b(t) is a polynomial (that is, the
normal vector, a, to the hyperplane must be fixed).

Then Properties 1, 2, 3, 3a, 3b, and 4 all hold.

We isolate a piece of the proof of Part (b), in order to point out that Property 4 is a weaker property
than we might hope for, but seems to be as strong a property as we can get. Indeed, we might hope that∑
t∈N,s∈St

xsyt is a rational generating function. Theorem 11 shows that this is true for sets defined in
the normal Presburger arithmetic, and the following theorem shows that this implies Property 4.

Theorem 29 Suppose Sp, for p ∈ Nn, is a family of subsets of Nd. If
∑

p∈Nn,s∈Sp
xsyp is a rational

generating function, then there is a finite decomposition of Nn into pieces of the form P ∩ Zn (with P a
polyhedron) such that, considering the p in each piece separately,

∑

s∈Sp

xs =
∑

i

εi
xqi(p)

(1− xbi1) · · · (1− xbiki )
,

where εi = ±1, bij ∈ Zd are lexicographically positive, and the coordinate functions of qi : Nn → Zd
are degree 1 quasi-polynomials in p.

In general, however,
∑
t∈N,s∈St

xsyt will not be a rational generating function:

Example 30 Let St be the set {(s1, s2) ∈ N2 : ts1 = s2}. Then

∑

s∈St

xs = 1 + x1x
t
2 + x21x

2t
2 + · · · = 1

1− x1xt2

is a rational generating function with exponents depending on t, so Property 4 is satisfied. Nevertheless,

∑

t∈N,s∈St

xsyt =
1

1− x1
+

y

1− x1x2
+

y2

1− x1x22
+ · · ·

cannot be written as a rational function.

To prove that it cannot be so written, note that the set
{

(s1, s2, t) : s ∈ St
}

cannot be written as a
finite union of sets of the form P ∩ (λ + Λ), where P is a polyhedron, λ ∈ Z3 and Λ ⊆ Z3 is a lattice;
Theorem 1 of Woods (2012) then implies that

∑
t∈N,s∈St

xsyt is not a rational generating function.
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Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen in
welchen die Addition als einzige Operation hervortritt. In Comptes-Rendus du premier Congrès des
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We study variants of Gale-Robinson sequences, as motivated by cluster algebras with principal coefficients. For such
cases, we give combinatorial interpretations of cluster variables using brane tilings, as from the physics literature.

Résumé.

On étudie des variantes des suites de Gale-Robinson motivées par les algèbres amassées à coefficients principaux.
Pour ces cas, on donne des interprétations combinatoires des variables d’amas en termes de pavages branes, in-
terprétations qui ressemblent à celles qu’on trouve dans des articles de physique.

Keywords: cluster algebras, principal coefficients, F -polynomials, Aztec diamonds, Gale-Robinson recurrence,
perfect matchings, brane tilings, Seiberg dualities

1 Introduction
This article is concerned with a variant of the Gale-Robinson integer sequence [Gal91], i.e. {xn} sat-
isfying xnxn−N = xn−rxn−N+r + xn−sxn−N+s, where we include a second alphabet of variables,
{y1, y2, . . . , yn}, that breaks the symmetry of this recurrence. This deformation is motivated by the the-
ory of cluster algebras with principal coefficients.

The undeformed version of this sequence has been studied by several authors [BPW09, FZ02b, S07].
For example, Bousquet-Mélou, Propp, and West [BPW09] describe sequences of graphs, termed pinecones,
such that the nth term in the associated Gale-Robinson sequence enumerates perfect matchings in the
nth pinecone graph. Such pinecones can also be constructed by using Speyer’s “crosses-and-wrenches”
method [S07], which provides graph theoretical formulas for Laurent expansions of expressions satisfying
the Octahedron recurrence. In particular, if one chooses the appropriate plane of initial conditions, then
one can build graphs that are known by experts to be isomorphic (modulo elementary transformations) to
the pinecones. We now further investigate pinecone graphs with the following goals in mind:

1) Develop a more natural way to obtain pinecone graphs from cluster algebra theory directly. This
will take us on a detour through the physics literature of brane tilings which motivates further families
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‡Supported by NSF grants DMS-1067183 and DMS-1148634.
§Supported by the Columbia University Rabi Scholars Program.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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of examples for future study. Though most of these details are omitted in this extended abstract, the
interested reader may turn to [J], [JMZ], or [Z] for further details. We also turn the reader’s attention to
Eager’s work [E11] which discusses these examples in terms of terminology from physics and geometry.

2) Explain how to generalize results of [BPW09] and [S07] to include principal coefficients. Our main
result to this effect is the following Theorem.

Theorem 1 Let Â
Q

(r,s)
N

⊂ Q[y1, y2, . . . , yN ][x±1 , x
±
2 , . . . , x

±
N ] denote the cluster algebra with principal

coefficients associated to the Gale-Robinson quiver of type (r, s,N). For n ∈ {N +1, N +2, . . . }, define
the cluster variables x̂n by mutating the initial seed (Q̂

(r,s)
N , {x1, x2, . . . , xN , y1, y2, . . . , yN}) periodi-

cally by the sequence 1, 2, 3, . . . , N, 1, 2, . . . . Let G(r,s,N)
n be the graph as in Definition 16. Then for

n ≥ N + 1, the Laurent expansion of x̂n is given by the combinatorial formula: x̂n = w(G
(r,s,N)
n ).

The Gale-Robinson quivers are defined in Section 3, the graphs G(r,s,N)
n are defined in Section 5, and

the weights appearing in the combinatorial formula appear in Section 6. We conjecture that formulas for
a large class of examples from [S07] and the physics literature [E11, EF, DHP10, FHKVW, HS12] can
be generalized similarly, but we leave their study for the future.

2 Preliminaries: Periodic Quivers and Cluster Mutation
In this section, we review the necessary background material on cluster mutation and periodic quivers
from [FZ02a, FZ02b] and [FM11]. A quiver Q = (Q0, Q1) is a directed finite graph with vertex set Q0

and edge set Q1 (also known as the set of arrows). We will usually assume that quivers have no 1-cycles
nor 2-cycles, and state when this restriction is relaxed. Let |Q0| = N .

Definition 2 (Quiver Mutation) The mutation ofQ at vertex k, denoted by µkQ, is constructed (fromQ)
by the following three steps: (1) For every 2-path i → k → j in Q, add an arrow i → j. (2) Reverse the
direction of all arrows incident to vertex k. (3) Remove any 2-cycles created by steps (1) and (2).

To any quiver, we can associate a cluster algebra defined as follows. First, we associate a variable,
which we denote as xi, to each vertex of Q. This yields an initial cluster, {x1, x2, . . . , xN}, associated to
Q. We then define a cluster mutation that proceeds alongside the aforementioned quiver mutation.

Remark 3 Later on, we will discuss how to associate brane tilings, i.e. bipartite graphs on a torus, to
the quivers we study. In this context, quiver mutation corresponds to Urban Renewal or Seiberg Duality.

Definition 4 (Cluster Mutation) Given a quiver Q and a cluster X = {X1, X2, . . . , XN}, the mutation
of the cluster seed (Q,X) in the direction k is defined as µk(Q,X) = (µkQ,X

′), where X ′ equals
X \ {Xk} ∪ {X ′k} and X ′k is defined below. If there is an arrow from vertex i to vertex k in Q, we let bik
denote the number of such arrows, and bki = −bik, yielding a skew-symmetric matrix B. We define X ′k
as ∏

i→k in QX
bik
i +

∏
k→i in QX

bki
i

Xk
.

A cluster seed (Q, {X1, X2, . . . , XN}) can be mutated in N directions. Then, these newly constructed
seeds can then be again mutated in N directions, noting that µ2

k = id. There will possibly be cycles in
this mutation graph, but we generally get an infinite tree where each vertex has degree N .
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Definition 5 (Cluster variables and algebras) The set of cluster variables is the union of all clusters
obtained via all finite sequences of mutations. The cluster algebra AQ associated with the initial seed
(Q, {x1, . . . , xN}) is the subalgebra of Q(x1, . . . , xN ), the field of rational functions in N variables,
generated by the set of cluster variables.

Please see [FZ02a, GSV10] for more details about cluster algebras in general. We now introduce Fordy
and Marsh’s notion of periodic quivers [FM11]. For convenience, we draw such quivers by arranging
the vertices on a regular N -gon in clockwise order. Let ρ denote (1, N,N − 1, N − 2, . . . , 3, 2), the
permutation which rotates the vertices of the quiver Q clockwise while keeping the arrows fixed.

Definition 6 (Periodic Quiver) We say that a quiver Q is periodic, of period m, if the mutated quiver
Q(m) = µm ◦ · · · ◦ µ2 ◦ µ1(Q) equals ρm(Q). In other words, the quiver obtained by mutating by
1, 2, . . . ,m in sequence is equal to the quiver obtained by cyclically permuting the vertex labels of Q.

In particular, a quiverQ is of period 1 if and only if mutating at vertex 1 and then applying ρ−1 (sending
2 → 1, 3 → 2, . . . , N → N − 1, 1 → N ) yields back the original quiver Q. The importance of period
1 quivers is that as long as we mutate at 1, 2, 3, . . . in sequence and periodically, the quivers obtained by
mutation are equivalent to one another, up to cyclic permutation.

Definition 7 (Primitive Period 1 Quiver) Following [FM11], for 1 ≤ k ≤ N/2, we define the primitive
period 1 quiver +P (k)

N (resp. −P (k)
N ) as the N vertex quiver with N arrows (See Figure 1 for examples):

• For all 1 ≤ i ≤ k, draw an arrow i+N − k → i (resp. i→ i+N − k ),
• For all 1 ≤ j ≤ N − k, draw an arrow j + k → j (resp. j → j + k ).

We also let ±P (k)
{i1,i2,...,iN′} denote the quiver ±P (k)

N ′ where the vertices are relabeled using i1, . . . , iN ′ .

For a periodic quiverQ and an initial cluster {x1, x2, . . . , xN}, we may define xn, for all n ≥ 1, by mu-
tating periodically at 1, 2, 3, . . . . For example, we denote the new clusters µ1({x1, x2, . . . , xN}, Q) and
µ2 ◦ µ1({x1, x2, . . . , xN}, Q) as {xN+1, x2, . . . , xN} and {xN+1, xN+2, . . . , xN}, respectively. More
generally, for n = mq + r, we define xn to be the rth element of the cluster obtained by the mutation
µr ◦ µr−1 ◦ · · · ◦ µ1 ◦ (µm ◦ µm−1 ◦ · · · ◦ µ1)

q({x1, x2, . . . , xN}, Q). We obtain a one-parameter infinite
subsequence of cluster variables indexed by the positive integers. If Q is of period 1, then there is a single
recurrence relation

xnxn−N =
∏

i→1 in Q

xbi1n−i +
∏

1→i in Q
xb1in−i

satisfied by all n ≥ N + 1. For higher periods, there are m interlaced recurrence relations instead.

3 Gale-Robinson Sequences
Using the constructions of the previous section, we now focus on a certain two-parameter family of period
1 quivers. These quivers correspond to the Gale-Robinson sequence [Gal91] and were studied, implicitly,
in work by Bousquet-Mélou, Propp, and West [BPW09]. The Somos 4 and Somos 5 sequences (due to M.
Somos as described in [Gal91]) appear as special cases. Any Gale-Robinson sequence can also be shown
to be a specialization of the Octahedron Recurrence [S07]. See Remark 10 for details.

Definition 8 (Gale Robinson Sequences) For 1 ≤ r < s ≤ N/2, the Gale Robinson sequence of type
(r, s,N) is defined to be the sequence {xn : n ≥ 1} satisfying the recurrence relation (for n ≥ N + 1):

xnxn−N = xn−rxn−N+r + xn−sxn−N+s. (1)
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Fig. 1: The Gale-Robinson Quiver Q(2,3)
7 as a sum of the primitive period 1 quivers −P (2)

7 , +P
(3)
7 , and −P (1)

{4,5,6}.

As explained in Example 8.7 of [FM11], for each triple of positive integers (r, s,N) with r < s ≤ N/2,
there is a unique period 1 quiver whose mutations yield the sequence of xn’s satisfying recurrence (1).

Definition 9 (The Gale-Robinson Quiver) For 1 ≤ r ≤ s < N/2, we let Q(r,s)
N denote the quiver

constructed by the following four step process, starting with the edge-less quiver on N vertices:

1. For all 1 ≤ i ≤ N − r, draw an arrow i → i + r, and for all 1 ≤ j ≤ r, draw an arrow
j → N − r + j, i.e. adjoin the primitive period 1 quiver −P (r)

N .

2. For all 1 ≤ i ≤ N − s, draw an arrow s + i → i, and for all 1 ≤ j ≤ s, draw an arrow
N − s+ j → j, i.e. adjoin the primitive period 1 quiver +P (s)

N (resp. +2P
(N/2)
N if s = N/2).

3. For all 1 ≤ i ≤ N − r − s, draw an arrow from r + i→ s+ i and for all 1 ≤ j ≤ s− r, draw an
arrow r + j → N − s+ j, i.e. adjoin −P (s−r)

r+1,r+2,...,N−r (resp. −2P (N/2−r)
r+1,r+2,...,N−r if s = N/2).

4. Erase any 2-cycles created in Q(r,s)
N .

Note that there might be multiple arrows between vertices i and j. See Figure 1 for the example of Q(2,3)
7 .

In [BPW09], the authors provide a combinatorial interpretation for the Gale-Robinson sequence, given
by {xn : n ≥ 1}, with the initial conditions x1 = x2 = · · · = xN = 1. In particular, each xn is an
integer, which is a non-trivial fact since the recurrence relation (1) involves division. This was proven
directly in [Gal91], and also follows from Fomin and Zelevinsky’s Laurent Phenomenon [FZ02b], which
states that every cluster variable is a Laurent polynomial in terms of the initial cluster.

More specifically, in [BPW09], they introduce a family of graphs, known as pinecones. For each
quadruple of positive integers (n, r, s,N) such that r < s ≤ N/2 and n > N , they define the pinecone
P (n; r,N − r, s,N − s) so that the specialized cluster variable xn(x1 = x2 = · · · = xN = 1) counts
the number of perfect matchings in P (n; r,N − r, s,N − s). In the next section, we provide an alternate
construction of pinecones that is motivated by recent literature on supersymmetric quiver gauge theories.

Remark 10 While it has not been written down explicitly in print, the pinecone graphs constructed in
[BPW09] are equivalent to the subgraphs obtained in [S07] by David Speyer using his method of “crosses
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and wrenches”. More generally, for any sequence of cluster variables {f(i, j, k)} coming from a special-
ization of the Octahedron Recurrence:

f(i, j, k)f(i− 2, j, k) = f(i− 1, j − 1, k)f(i− 1, j + 1, k)− f(i− 1, j, k − 1)f(i− 1, j, k + 1),

Speyer’s method constructs families of graphs {Gi,j,k} and a weightingw(M) for the perfect matchings of
Gi,j,k such that the Laurent polynomial (equiv. cluster variable) f(i, j, k) equals the generating function∑
M a perfect matching of Ga,b,c

w(M). A variant of this weighting was also presented in [GK], and we will
elaborate on and utilize this in Section 6. As explained in [S07, Section 1.3]), by choosing an appropriate
plane of initial conditions, namely, (i, j, k) such that −N < Ni+(2r−N)j+(2s−N)k

2 ≤ 0, a subset of the
f(i, j, k)’s satisfy the Gale-Robinson recurrence relation of type (r, s,N).

4 From Gale-Robinson Quivers to Brane Tilings
We now describe how to use techniques from Supersymmetric Quiver Gauge Theories [FHH01, FHKVW,
FHMSVW] to obtain the pinecones more directly. By letting r = a and s = c, the Gale-Robinson
sequence {xn} defined above agrees with the {Zn}’s appearing in [EF, Section 9.1]. In the quiver gauge
theory and brane tiling literature, Zn denotes a Pyramid Partition Function (cluster variable) associated to
a certain cascade of Seiberg dualities (mutation sequence). The example highlighted in Section 9.1 of [EF]
is inspired by a La,b,c-geometry which comes from a toric Calabi-Yau 3-manifold. See [FHMSVW] for
more on the construction of the La,b,c-geometry and how to obtain a corresponding brane tiling. Further
details also appear in [E11], which describes connections to [S07], as in Remark 10, in this language.

A brane tiling is a tiling of the torus, which we visualize as a doubly-periodic tiling of its universal
cover, the infinite plane. We now summarize how to go from a Gale-Robinson quiver, Q(r,s)

N , to an
associated brane tiling, denoted as T (r,s)

N . Towards this end, we must now allow quivers with 2-cycles.

Let Q(r,s)
N denote the quiver obtained by following steps (1)-(3) of Definition 9. By abuse of notation, we

will also refer to Q(r,s)
N as a Gale-Robinson quiver, since 2-cycles do not affect the associated recurrence.

1. Firstly, sinceQ(r,s)
N is highly symmetric, we can unfold it onto the plane, obtaining an infinite quiver

Q̃
(r,s)
N that is straightforward to describe:

a) Start with the Z2 lattice as an undirected graph, connecting (a, b) with (a± 1, b) and (a, b± 1).

b) Label the vertex at the origin (0, 0) as 1. For all integer points (A,B), we label the corresponding
vertex as (1 +Ar +Bs)(mod N) ∈ {1, 2, . . . , N}.
c) We now turn this lattice into a directed graph. For all horizontal edges, we orient i → j if and
only if i < j. For all vertical edges, we do the opposite (orient i→ j if and only if i > j).

d) Lastly, we add diagonal arrows as needed so that all triangles or squares in this planar directed
graph are cyclically oriented. Proposition 11 ensures that this process is well-defined.

2. Secondly, we take the planar dual of Q̃(r,s)
N , and label its faces using the labels of vertices of Q̃(r,s)

N .

The resulting doubly-periodic tiling of the plane is the brane tiling T (r,s)
N . See Figure 3 for an example.
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Fig. 3: The unfolded quiver Q̃(2,3)
7 and brane tiling T (2,3)

7 .

Proposition 11 Consider a square S with vertices corresponding to i, i+s, i+r+s, i+r ∈ {1, 2, 3, . . . , N},
taken modulo N and in clockwise order starting from the lower-left. Orient the four edges of the square
using the convention of (1c). Then, as in Figure 2, either the edges of S form an oriented 4-cycle, or can
be split into to two cyclically oriented triangles by adding a single oriented diagonal.

Remark 12 These four local configurations also appear in the square-ice or six-vertex models.

Proposition 13 Construct Q̃(r,s)
N as above and then identify vertices with the same labels. The resulting

folded-up quiver exactly agrees with the Gale-Robinson quiver Q(r,s)
N (possibly with 2-cycles).

Remark 14 If we attempted to unfold the 2-cycle-less Q(r,s)
N instead of unfolding Q(r,s)

N , we would be
missing some of the diagonal edges which are relevant for obtaining a regular pattern of hexagons.

Corollary 15 For 1 ≤ i ≤ r, and N − r ≤ i ≤ N , the faces labeled with an i are squares. On the other
hand, the faces labeled with an i for r + 1 ≤ i ≤ N − r − 1 are hexagons.

Note: When drawing brane tilings or their subgraphs, we will depict hexagonal faces as horizontal
rectangles of height one and width two.

5 From Brane Tilings to Pinecones
We now describe how to obtain the pinecone graphs, P (n; r,N − r, s,N − s), constructed in [BPW09],

directly from brane tilings. Given a Gale-Robinson sequence and quiver Q(r,s)
N , we described in the last
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section how to construct the associated brane tiling T (r,s)
N . We now describe how to construct a family of

finite subgraphs of T (r,s)
N , each of which we denote as G(r,s,N)

n for n ≥ N + 1.

Definition 16 (Gale-Robinson Brane Subgraphs) For N + 1 ≤ n ≤ N + r, we define G(r,s,N)
n as the

subgraph of T (r,s)
N consisting of the square face labeled n−N . If n > N + r, we instead build G(r,s,N)

n

layer-by-layer. For this construction, we need some notation. For n > N+r, let n ∈ {1, 2, . . . , r} denote
the integer such that n ≡ N + n (mod r). Define the horizontal strip H(r,N)

n to be the induced subgraph
of T (r,s)

N obtained by taking the grid graph of unit height and width equal to 2bn−N−1r c+1 starting with
the square face labeled as n as the left-most face. In particular, H(r,N)

n is defined to be empty if n ≤ N .
For n > N + r, we then construct a graph by using H(r,N)

n as a central horizontal strip, and then
gluing to its top (resp. bottom) the strips H(r,N)

n−(N−s), H
(r,N)
n−2(N−s), . . . (resp. H(r,N)

n−s , H(r,N)
n−2s , . . . ) until

the strips added above and below are empty. We glue these together in the unique way so that successive
strips, emanating out from the center, are contained in the interior of the more central strip. This defines
an induced subgraph of T (r,s)

N , that we denote as G(r,s,N)
n .

Example 17 Consider the case r = 2, s = 3, and N = 7. The corresponding quiver Q(2,3)
7 appears in

Figure 1 and its brane tiling T (2,3)
7 appears in Figure 3. Then for 8 ≤ n ≤ 16, the strips H(2,7)

n are:

1
,

2
,

1 3
,

2 4
,

1 3 5
,

2 4 6 1

1 3 5 7 2
,

2 4 6 1 3
, and

1 3 5 7 2 4
.

Gluing these strips together, we obtain the Gale-Robinson brane subgraphs {G(2,3,7)
n } for 8 ≤ n ≤ 16:

1

,
2

,
1 3

,

2 4

1

,

1 3 5

2

1

,

2 4 6 1

2

1 3

,

1 3 5 7 2

2 4

1

1 3

,

2 4 6 1 3

2 4

1 3 5

2

, and

1 3 5 7 2 4

2 4 6 1

1 3

1 3 5

1

.
For example, the graph G(2,3,7)

16 is obtained by gluing together the horizontal strips (from top to bot-
tom) H(2,7)

8 , H
(2,7)
12 , H

(2,7)
16 , H

(2,7)
13 , and H(2,7)

10 . (The highlighted edges are minimal matchings which are
discussed further in Definition 23.)

Remark 18 As will be described in [JMZ], the graphsG(r,s,N)
n can also be constructed by superimposing

Aztec Diamonds of increasing sizes centered on top of a face (of the center row) of the brane tiling T (r,s)
N .

In particular, the first r graphs are squares labeled with 1 ≤ i ≤ r. Subsequently, we have r subsequences
of Aztec Diamonds. In particular, for N ′ ≥ 0, the graph G(r,s,N)

rN ′+i can be constructed by the following:

(i) locate a face of T (r,s)
N labeled as i. If it is a square, let (a, b) denote this face, as viewed in the Z2

lattice. If instead it is a hexagon, let (a, b) denote the left-hand-side of this face.
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1 3

5

4

42

5

1

1 3 5

5 7 2

1

4

2

4 6

42 6 1

25 7

1 3

3

5

1 3 5 7 2

5 7 2

6 1

3

1 3

4

42

5

4

4 6

42 6 1 3

25 7 4

1 3 5

2

53

1

5 7

4

Fig. 4: Recovering the Gale-Robinson subgraph for (r, s,N) = (2, 3, 7) from the associated Aztec Diamond for
10 ≤ n ≤ 15. Called the core of a pinecone in [BPW09]. Compare with Example 17 and T (2,3)

7 of Figure 3.

(ii) Take the Aztec Diamond of size (N ′+1) (which has a central row of size 2N ′+1) and center it on
top of the cell (a+N ′, b).

(iii) This superposition will usually result in a graph containing vertices of degree one. By removing
these, one-by-one, we obtain the desired subgraph G(r,s,N)

n .
See Figure 4 for an example. Note that this procedure is equivalent to taking the core of a pinecone, as

described in [BPW09, Section 2.4].

Proposition 19 For each choice of integers 1 ≤ r < s ≤ N/2 and n ≥ N + 1, the graphs G(r,s,N)
n and

pinecones P (n; r,N − r, s,N − s) from [BPW09] are equal (up to a vertical reflection).

Remark 20 A method for constructing subgraphs of brane tilings also appears in the string theory liter-
ature. For instance, in [EF, Sections 6, 7.3], they discuss a construction for the “shadow of a pyramid”.

6 Principal Coefficients and Combinatorial Formulas
We now generalize Theorem 9 of [BPW09] by enriching the cluster algebra A

Q
(r,s)
N

with principal co-
efficients. More generally, a coefficient system for a cluster algebra can be constructed by enlarging the
set of initial cluster variables by including so called frozen variables. These variables correspond to new
vertices at which mutation is disallowed. A system of principal coefficients is a special case where the
arrows incident to the new vertices are particularly simple. By Theorem 3.7 of [FZ07], it follows that any
coefficient system of geometric type can be algebraically deduced from a system of principal coefficients.

Definition 21 (Quiver with Principal Coefficients) Given a quiver Q with N vertices, we let Q̂ denote
the quiver on 2N vertices that (i) contains Q as an induced subgraph on the vertices {1, 2, . . . , N}, and
(ii) contains a single arrow v → v −N for each vertex v ∈ {N + 1, N + 2, . . . , 2N}.
We then let ÂQ denote the cluster algebra AQ̂, which we refer to as the cluster algebra for Q with
principal coefficients. Just as in Section 2, we obtain an infinite sequence of cluster variables by mutating

the enlarged quiver Q̂(r,s)
N periodically by 1, 2, . . . . We let {x1, x2, . . . , xN , y1, y2, . . . , yN} denote the

corresponding initial cluster, and denote the next two clusters as {x̂N+1, x2, . . . , xN , y1, y2, . . . , yN} and
{x̂N+1, x̂N+2, . . . , xN , y1, y2, . . . , yN}. Continuing in this way, we let {x̂n : n ≥ N + 1} denote the
infinite sequence of non-initial cluster variables obtained by this periodic mutation sequence. Since we
never mutate at vertex v for v ∈ {N + 1, N + 2, . . . , 2N}, it follows that all of the x̂n’s are Laurent
polynomials whose denominators are free of yi’s. We now discuss how to generalize the numerical result
of [BPW09] to obtain a combinatorial interpretation of the x̂n’s.
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Given a graph G, a set of edges M which covers all vertices in G exactly once is called a (perfect)
matching of G. We say that G is a weighted graph if there is a real number or a formal variable w(e)
associated to each edge e. When G is a subgraph of a brane tiling, we now define a weighting scheme
inspired by the Conductance Coordinates(i) appearing in [GK, Section 5.3] and Speyer’s weighting [S07].

Definition 22 (Weight of a perfect matching) Given a subgraph G of a brane tiling (with face labels
Fi), we define the weight x(e) of an edge e (straddling faces Fi and Fj) to be x(e) = 1

xixj
. Given a

perfect matching M of G, we define x(M) =
∏
e∈M x(e).

We additionally utilize height functions, as appearing in the literature [CKP01, CY, MSW11, P, Th90].

Definition 23 (Height of a perfect matching) For a pinecone graph G = G
(r,s,N)
n of the brane tiling

T (r,s)
N , let M− denote the unique perfect matching of G using only horizontal edges. See for instance

the highlighted edges in Example 17. Given another perfect matching M , we let M ⊕M− denote the
superposition of these two perfect matchings. We then define the height, y(M), as the monomial

y(M) =
N∏

i=1

∏

Face F of graph G labeled as i

y
# cycles of M⊕M− enclosing the face F
i .

We also have to define a certain monomial that is given by the labels of the faces appearing in G and its
boundary in the ambient tiling T .

Definition 24 (Covering monomial of a subgraph) Given a subgraph G of a brane tiling T (with face
labels Fi), let G denote the subgraph of T consisting of all faces that are incident to an edge appearing
in G. In particular, G contains G as a proper subgraph, as well as a “ring” of exterior faces. (These are
referred to as “open faces” in [S07].) Recall that by definition, each face of T is a 2k-gon where k ≥ 2.

Then for any face F of G, with label i, we define m(F ) = x
# edges in F

2 −1
i . For any of the open faces

F ∈ G \G, with label i, we define m(F ) = x
d# edges in F incident to G

2 e
i . Then the covering monomial of G

is defined to be cm(G) =
∏
F∈Gm(F ).

Remark 25 A more general definition of covering monomials appears in [J].

Given the above definition, the weight of a graph G is defined as w(G) = cm(G) ·∑M x(M)y(M),
where the sum is taken over all perfect matchings M of G.

We now give a sketch of our main result, Theorem 1, stated in Section 1. See [JMZ] for the full proof.

Proof:
Step 1: We show that as we mutate Q(r,s)

N periodically at 1, 2, 3, . . . , N, 1, 2, . . . , we get a Gale-
Robinson recurrence relation (with coefficients) of the following form:

xnxn−N = xn−rxn−N+r +
N∏

i=1

y
d(n−N−i,r,N−r)
i xn−sxn−N+s

where d(n−N − i, r,N − r) denotes #{(A,B) ∈ Z2
≥0 such that (n−N − i) = A · r +B · (N − r)}.

(i) Unlike Goncharov and Kenyon, we have weights only on faces, i.e. trivial weights on vertices.
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Step 2: For i ∈ {1, 2, . . . , N} and integer n such that n > N , we show that d(n − N − i, r,N − r)
equals the number of faces labeled i in the central strip H(r,N)

n of G(r,s,N)
n .

Step 3: Finally, we apply Kuo’s technique of graphical condensation [K04]. A superposition of a
perfect matching of G(r,s,N)

n−N centered on top of a perfect matching G(r,s,N)
n can be decomposed uniquely

(up to cycles) as exactly one of the following: (i) Into an east-west superposition of perfect matchings of
G

(r,s,N)
n−r and G(r,s,N)

n−N+r; or (ii) a north-south superposition of perfect matchings of G(r,s,N)
n−s and G(r,s,N)

n−N+s.
This method is also detailed for this case in [BPW09] and follows from Speyer’s more general proof in
[S07]. In particular, this decomposition is weight-preserving with respect to edge-weights and covering
monomials.

For this part of the proof, what is new relative to [BPW09] and [S07] is that an east-west superposi-
tion of minimal matchings again decomposes into a decomposition of minimal matchings of G(r,s,N)

n−N and

G
(r,s,N)
n . However a north-south superposition of minimal matchings does not. Instead, such a superpo-

sition decomposes into a minimal matching of G(r,s,N)
n−N and a perfect matching of G(r,s,N)

n where every

face in the central strip H(r,N)
n has been twisted down [P] exactly once. In the twisting down operation,

one perfect matching of the square or rectangle is exchanged for the other. This is also referred to as a
plaquette flip in [CY] and elsewhere. The proof of the Theorem then follows from Steps 1 and 2. 2

Remark 26 Related formulas also appeared in [EF, Appendix B] where all the xi’s are set to be one
so that F -polynomials [FZ07] are recovered. In the physics literature, these are referred to as pyramid
partition functions. F -polynomials for the related case of Aztec Diamonds also appear in [G11].

7 Further Topics
The authors have already started investigating other families of brane tilings and their connections to
cluster algebras. See [J] and [Z] for the related REU reports. Further details will appear in [JMZ].

In particular, In-Jee Jeong investigated the cluster algebras associated to the four-vertex quiver where
the vertices are arranged clockwise around a square, and there are two clockwise arrows between any pair
of adjacent vertices. If one mutates this quiver periodically, one obtains cluster variables whose Laurent
polynomials can be expressed in terms of w(ADn) where ADn is the nth Aztec Diamond, with a certain
face label. However, for certain non-periodic mutation sequences, Jeong also obtained graph theoretical
interpretations for the cluster variables here too. Jeong also initiated an investigation for a more general
framework that was part of the motivation for further study of the brane tiling literature.

Sicong Zhang studied a certain six vertex quiver, known as the dP3 (del-Pezzo 3 quiver) in the physics
literature. Certain subgraphs of the associated brane tiling were previously studied by C. Cottrell-B.Young
[CY] and M. Ciucu [C03] after being introduced by J. Propp [P99] under the name Aztec Dragons. Zhang
proved that like above, a certain infinite sequence of cluster variables associated to this quiver, obtained
by periodic mutation, has the property that their Laurent polynomial expansions can be expressed, under
a suitable weighting scheme, in terms of perfect matchings of these subgraphs.
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Abstract. Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the n×n determinant det((a+
j− i)Γ(b+ j + i)) in 2000. When a = 0, Ciucu and Krattenthaler computed the associated Pfaffian Pf((j− i)Γ(b+
j + i)) with an application to the two dimensional dimer system in 2011. Recently we have generalized the latter
Pfaffian formula with a q-analogue by replacing the Gamma function by the moment sequence of the little q-Jacobi
polynomials. On the other hand, Nishizawa has found a q-analogue of the Mehta–Wang formula. Our purpose is
to generalize both the Mehta-Wang and Nishizawa formulae by using the moment sequence of the little q-Jacobi
polynomials. It turns out that the corresponding determinant can be evaluated explicitly in terms of the Askey-Wilson
polynomials.

Résumé. Motivés par des travaux sur ensemble Gaussien symplectique, Mehta et Wang sont amenés à calculer le
déterminant det((a+ j− i)Γ(b+ j + i)) de taille n×n en 2000. Lorsque a = 0, Ciucu et Krattenthaler ont calculé
le Pfaffien Pf((j− i)Γ(b+ j + i)) avec une application au système à deux dimènsions dimeres en 2011. Récemment
nous avons généralisé le dernier Pfaffien avec un q-analogue en remplacant la fonction Gamma par les moments de
petits q-polynômes de Jacobi. Par ailleurs, Nishizawa a trouvé un q-analogue de la formule de Mehta-Wang. Dans
cet article nous démontrons une formule qui généralise à la fois la formule de Mehta-Wang et celle de Nishizawa en
utilisant les moments de petits q-polynômes de Jacobi. Il en resulte que le determinant correspondant peut s’écrire de
facon explicite à l’aide des polynômes de Askey-Wilson.

Keywords: The Mehta-Wang determinants, the moments of the little q-Jacobi polynomials, the Askey-Wilson poly-
nomials.

1 Introduction
Motivated by the Gaussian symplectic ensemble, [13] obtain the determinant identity

det
(
(a+ j − i)Γ(b+ i+ j)

)
0≤i,j≤n−1

= Dn

n−1∏

i=0

i!Γ(b+ i), (1.1)
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where (N.B. the binomial coefficient
(
n
k

)
is missing in [13, (7)])

Dn =
n∑

k=0

(−1)k
(
n

k

)(
b− a

2

)

k

(
a+ b

2

)

n−k
, (1.2)

where (α)n = Γ(α+n)
Γ(α) is known as the rising factorial . ThisDn satisfies the three term recurrence relation

D−1 = 0, D0 = 1, Dn+1 = aDn + n(b+ n− 1)Dn−1, (1.3)

which can be considered as the recurrence relation for a special case of the Meixner-Pollaczek polynomials
(see [13, 14]), and one may notice that the sequence {Γ(b + n)}n≥0 of the Gamma functions in the left-
hand side can be considered as the moment sequence of the Laguerre polynomials (see, for example,
[7, 8, 15]). [14] obtains a q-analogue of (1.1), which will be stated below. In this article we replace the
Gamma functions by the moments of the little q-Jacobi polynomials and show that we obtain a special
case of the Askey-Wilson polynomials asDn, which also generalize the two results in our previous papers
[4, 5]. Before we describe our results we need more notation.

Throughout this paper we use the standard notation for q-series (see [3, 7, 8]):

(a; q)∞ =

∞∏

k=0

(1− aqk), (a; q)n =
(a; q)∞

(aqn; q)∞

for any integer n. Usually (a; q)n is called the q-shifted factorial , and we frequently use the compact
notation:

(a1, a2, . . . , ar; q)n = (a1; q)n(a2; q)n · · · (ar; q)n.

The r+1φr basic hypergeometric series is defined by

r+1φr

(
a1, a2, . . . , ar+1

b1, . . . , br
; q, z

)
=

∞∑

n=0

(a1, a2, . . . , ar+1; q)n
(q, b1, . . . , br; q)n

zn. (1.4)

Here we also use the q-Gamma function

Γq(z) = (1− q)1−z (q; q)∞
(qz; q)∞

,

the q-integer [n]q = 1−qn
1−q and the q-factorial [n]q! =

∏n
k=1[k]q . The Askey-Wilson polynomials pn(x)

(see [3, 7, 8]) satisfy the well-known recurrence relation

2xpn(x) = Anpn+1(x) +Bnpn(x) + Cnpn−1(x), n ≥ 0, (1.5)

with p−1(x) = 0, p0(x) = 1, where

An =
1− abcdqn−1

(1− abcdq2n−1) (1− abcdq2n)
,

Cn =
(1− qn)

(
1− abqn−1

) (
1− acqn−1

) (
1− adqn−1

)

(1− abcdq2n−2) (1− abcdq2n−1)

(
1− bcqn−1

) (
1− bdqn−1

) (
1− cdqn−1

)
,

and
Bn = a+ a−1 −Ana−1 (1− abqn) (1− acqn) (1− adqn)

−Cna/
(
1− abqn−1

) (
1− acqn−1

) (
1− adqn−1

)
.
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They have the basic hypergeometric expression

pn(x; a, b, c, d; q) =
(ab, ac, ad; q)n

an
4φ3

(
q−n, abcdqn−1, aeıθ, ae−ıθ

ab, ac, ad
; q, q

)
(1.6)

with x = cos θ, where ı =
√
−1. We also use the symbol

χ(A) =

{
1 if A is true,
0 if A is false.

In [4] we have proven the Hankel determinant identity

det

(
(aq; q)i+j+r−2

(abq2; q)i+j+r−2

)

1≤i,j≤n
= a

n(n−1)
2 q

n(n−1)(2n−1)
6 +

n(n−1)r
2

n∏

k=1

(q, bq; q)k−1(aq; q)k+r−1

(abq2; q)k+n+r−2
(1.7)

for a positive integer n. Here

µn =
(aq; q)n

(abq2; q)n
(n = 0, 1, 2, . . .)

is the moments of the little q-Jacobi polynomials. In our previous paper [5], we have exploited the Pfaffian
identity

Pf

(
(qi−1 − qj−1)

(aq; q)i+j+r−2

(abq2; q)i+j+r−2

)

1≤i,j≤2n

= an(n−1)q
n(n−1)(4n+1)

3 +n(n−1)r
n−1∏

k=1

(bq; q)2k

n∏

k=1

(q; q)2k−1(aq; q)2k+r−1

(abq2; q)2(k+n)+r−3
(1.8)

for a positive integer n (see also [11, 12]).
In [14], Nishizawa has proven the q-analogue of the Mehta-Wang result:

det
(
[a+ j − i]qΓq(b+ i+ j)

)
0≤i,j≤n−1

= qna+n(n−1)b/2+n(n−1)(2n−7)/6Dn,q

n−1∏

k=0

[k]q! · Γq(b+ k), (1.9)

where Dn,q satisfies the recurrence relation

D−1,q = 0, D0,q = 1, Dn+1,q = q−a+n[a]qDn,q + q−a−b[n]q[b+ n− 1]qDn−1,q. (1.10)

Comparing this recurrence relation with the recurrence equation

2xQn(x) = Qn+1(x) + (A+B)qnQn(x) + (1− qn)(1−ABqn−1)Qn−1(x) (1.11)

of the Al-Salam–Chihara polynomials

Qn(x) = Qn(x;A,B; q) =
(AB; q)n
An

3φ2

(
q−n, Aeıθ, Ae−ıθ

AB, 0
; q; q

)
(1.12)

with x = cos θ (see [7, 8]), we may remark thatDn,q can be considered as a special case of the Al-Salam–
Chihara polynomials because

Dn,q = (−ı)nq− a+b2 n(1− q)−nQn
(

0; q
a+b
2 ı,−q b−a2 ı; q

)
. (1.13)
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By this observation, we can write Dn,q explicitly as

Dn,q =
(qb; q)n

qn(a+b)(q − 1)n

n∑

k=0

qk
(q−n; q)k

(q; q)k

k−1∏

j=0

1− qa+b+2j

1− qb+j . (1.14)

One natural question we may ask is what can we obtain if we replace the q-Gamma function in the
determinant of (1.9) by the moment of the little q-Jacobi polynomials. The aim of this paper is to answer
this question, and we can express the determinant by the Askey-Wilson polynomials.

Theorem 1.1 Let a, b and c be parameters, and let n ≥ 1 and r be integers. Then we have

det

(
(qi−1 − cqj−1)

(aq; q)i+j+r−2

(abq2; q)i+j+r−2

)

1≤i,j≤n

= (−1)na
n(n−3)

2 q
n(n+1)(2n−5)

6 +
n(n−3)r

2 (abcqr+1; q2)n

n∏

k=1

(q; q)k−1(aq; q)k+r(bq; q)k−2

(abq2; q)k+n+r−2

×4φ3

(
q−n, a

1
2 c

1
2 q

r+1
2 ,−a 1

2 c
1
2 q

r+1
2 , abqn+r

aqr+1, a
1
2 b

1
2 c

1
2 q

r+1
2 ,−a 1

2 b
1
2 c

1
2 q

r+1
2

; q, q

)
(1.15)

= (−ı)nan(n−2)
2 c

n
2 q

n(n−2)(2n+1)
6 +

n(n−2)r
2

n∏

k=1

(q; q)k−1(aq; q)k+r−1(bq; q)k−2

(abq2; q)k+n+r−2

×pn
(

0; a
1
2 c

1
2 q

r+1
2 ı,−a 1

2 c−
1
2 q

r+1
2 ı, b

1
2 ı,−b 1

2 ı; q
)
. (1.16)

Remark 1.2 If we put c = 0 in (1.15), then we recover our previous result (1.7) easily by using the
q-Chu-Vandermonde formula [3, (1.5.3)]

2φ1

(
a, q−n

c
; q, q

)
=

(c/a; q)n
(c; q)n

an. (1.17)

If we put a = qα−1, b = 0, c = qγ and r = 0 in (1.15), then the left-hand side equals

q
n(n−1)

2 (1− q)n2

{Γq(α)}n det ([γ + j − i]qΓq(α+ i+ j − 2))1≤i,j≤n

because of (qα; q)n = (1− q)n · Γq(α+n)
Γq(α) , and the right-hand side equals

(−ı)nq n(n−2)
2 α+n

2 γ+
n(n−1)(n−2)

3

n∏

k=1

(q; q)k−1(qα; q)k−1 ·Qn(0; q
α+γ

2 ı,−q α−γ2 ı; q)

because of the relationQn(x;A,B; q) = pn(x;A,B, 0, 0; q) between the Al-Salam–Chihara polynomials
and the Askey-Wilson polynomials. Hence we obtain Nishizawa’s formula (1.9) as a corollary.

Corollary 1.3 Let a, b and c be parameters, and let n ≥ 1 and r be integers.

(i) If the size n = 2m of the matrix is even, then we have

det

(
(qi−1 − cqj−1)

(aq; q)i+j+r−2

(abq2; q)i+j+r−2

)

1≤i,j≤2m
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= a2m(m−1)cmq
2m(m−1)(4m+1)

3 +2m(m−1)r
m∏

k=1

{
(q; q)2k−1(aq; q)2k+r−1(bq; q)2k−2

(abq2; q)2(k+m)+r−3

}2

×4φ3

(
q−2m, b−1q−2m+1, c, c−1

q, aqr+1, a−1b−1q1−4m−r ; q2, q2

)
(1.18)

= (−1)mam(2m−1)bmcmq
m(8m2+3m−2)

3 +m(2m−1)r
2m∏

k=1

(q; q)k−1(aq; q)k+r−1

(abq2; q)k+2m+r−2

×
m∏

k=1

{(bq; q)2k−2}2 · pm
(
c+ c−1

2
; 1, q, aqr+1, a−1b−1q1−4m−r; q2

)
. (1.19)

(ii) If the size n = 2m+ 1 of the matrix is odd, then we have

det

(
(qi−1 − cqj−1)

(aq; q)i+j+r−2

(abq2; q)i+j+r−2

)

1≤i,j≤2m+1

= a2m2

cmq
2m(m+1)(4m−1)

3 +2m2r · 1− c
1− q ·

m+1∏

k=1

(q; q)2k−1(aq; q)2k+r−2(bq; q)2k−2

(abq2; q)2(k+m−1)+r

×
m∏

k=1

(q; q)2k−1(aq; q)2k+r(bq; q)2k−2

(abq2; q)2(k+m−1)+r
· 4φ3

(
q−2m, b−1q−2m+1, cq, c−1q

q3, aqr+2, a−1b−1q−4m−r ; q2, q2

)
(1.20)

= (−1)mam(2m+1)bmcm(1− c)qm(8m2+15m+4)
3 +m(2m+1)r

2m+1∏

k=1

(q; q)k−1(aq; q)k+r−1

(abq2; q)k+2m+r−1

×
m+1∏

k=1

(bq; q)2k−2 ·
m∏

k=1

(bq; q)2k−2 · pm
(
c+ c−1

2
; q, q2, aqr+1, a−1b−1q−4m−r−1; q2

)
. (1.21)

Remark 1.4 If we put c = 1 in (1.18) for the even case, then it is clear that the 4φ3 sum reduces to 1,
so that the determinant becomes the product which equals the square of the Pfaffian (1.8) obtained in
[5]. Meanwhile, it does not suffice to prove (1.8) since it is not so trivial to take the square root of the
determinant and determine the sign (see [2, 5]). If we put c = 1 in (1.20) for the odd case, then the factor
(1− c) reduces the right-hand side to 0.

2 Determinant formula for arbitrary rows
In our previous paper [4], we prove the following formula in which the rows are arbitrary chosen. Let n
be a positive integer, and k1, . . ., kn be arbitrary positive integers. Then we have

det

(
(aq; q)ki+j−2

(abq2; q)ki+j−2

)

1≤i,j≤n
= a

n(n−1)
2 q

(n+1)n(n−1)
6

×
n∏

i=1

(aq; q)ki−1

(abq2; q)ki+n−2

∏

1≤i<j≤n
(qki−1 − qkj−1)

n∏

j=1

(bq; q)j−1. (2.1)

This formula is a generalization of (1.7) and a special case is obtained in [10, Theorem 3]. In this section
we give this type formula, i.e., Theorem 2.1, which is crucial to prove Theorem 1.1.
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First we fix some notation. If a and b are integers, we write [a, b] = {x ∈ Z | a ≤ x ≤ b }. We also
write [n] = [1, n] for short. If S is a finite set and r a nonnegative integer, let

(
S
r

)
denote the set of all

r-element subsets of S. LetA be anm×nmatrix. If i = (i1, . . . , ir) is an r-tuple of positive integers and
j = (j1, . . . , js) is an s-tuple of positive integers, then let Ai

j = Ai1,...,irj1,...,js
denote the submatrix formed by

selecting the row i and the column j from A. Then the following theorem generalize (2.1).

Theorem 2.1 Let a, b and c be parameters. Let n be a positive integer, and k = (k1, . . . , kn) be an
n-tuple of positive integers. Then we have

det

(
(qki−1 − cqj−1)

(aq; q)ki+j−2

(abq2; q)ki+j−2

)

1≤i,j≤n

= a
n(n−3)

2 q
n(n+1)(n−4)

6

n∏

i=1

(aq; q)ki−1(bq; q)i−2

(abq2; q)ki+n−2

∏

1≤i<j≤n
(qki−1 − qkj−1)

×
n∑

ν=0

(−1)n−ν(abcq2ν+1; q2)n−ν(acq; q2)νRn,ν(k, a, b; q), (2.2)

where

Rn,ν(k, a, b; q) =
∑

(i,j)

q
∑n−ν
l=1 il−n+ν

n−ν∏

l=1

(1− aqkil−il+l+ν)
ν∏

l=1

(1− abqkjl+jl−l+ν−1). (2.3)

Here the sum on the right-hand side runs over all pairs (i, j) such that [n] is a disjoint union of i =

{i1, . . . , in−ν} ∈
(

[n]
n−ν

)
and j = {j1, . . . , jν} ∈

(
[n]
ν

)
(i.e., i ∪ j = [n] and i ∩ j = ∅).

For example, if n = 3 and ν = 2, then the pairs (i, j) runs over

{({1}, {2, 3}) , ({2}, {1, 3}), ({3}, {1, 2})} .

Hence we have

R3,2({k1, k2, k3}, a, b; q) = (1− aqk1+2)(1− abqk2+2)(1− abqk3+2)

+q(1− aqk2+1)(1− abqk1+1)(1− abqk3+2)

+q2(1− aqk3)(1− abqk1+1)(1− abqk2+1).

Here we have no space to describe the proof of Theorem 2.1. We need some intensive use of linear algebra
for the proof. The interested reader should consult [6]. Here we describe only the sketch of the proof.

Let n be a positive integer, and let a, b, c and q be parameters. For an index set k = {k1, . . . , kn} of
positive integers, let Mn(k, a, b, c; q) = (Mn(k, a, b, c; q)i,j)1≤i,j≤n denote the matrix whose (i, j) entry
is given by

Mn(k, a, b, c; q)i,j = (qki−1 − cqj−1) (aqki ; q)j−1(abqki+j ; q)n−j . (2.4)

Then we have

det

(
(qki−1 − cqj−1)

(aq; q)ki+j−2

(abq2; q)ki+j−2

)

1≤i,j≤n
=

n∏

i=1

(aq; q)ki−1

(abq2; q)ki+n−2
· detMn(k, a, b, c; q). (2.5)
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Hence it is enough to evaluate detMn(k, a, b, c; q) to prove Theorem 2.1. The main task of this evaluation
is to show the following recurrence equation:

detMn(k, a, b, c; q)

an−2(bq; q)n−2

∏n−1
i=1 (qki − qkn)

= q−1(1− acq)(1− abqkn+n−1) detMn−1(k′, aq, b, cq; q)

−qn(n−3)/2(1− abcq2n−1)(1− aqkn) detMn−1(k′, a, b, c; q), (2.6)

where k′ = {k1, . . . , kn−1} denote the subset of the first (n−1) indices of k = {k1, . . . , kn−1, kn}. This
identity enable us to prove (2.2) by induction.

We introduce four triangular matrices Xn(k, a; q), Yn(q), Ln(k, a, b; q) and Un(q) which play an
important role to manipulate Mn(k, a, b, c; q) in (2.5). Let Xn(k, a; q) = (X(k, a; q)i,j)1≤i,j≤n and
Yn(q) = (Yn(q)i,j)1≤i,j≤n be the n × n lower triangular matrices whose (i, j)-entry is, respectively,
given by

X(k, a; q)i,j = − χ(i ≥ j)
qkj (1− aqkj )∏i

l=1
l 6=j

(qkl − qkj )
, (2.7)

Yn(q)i,j = (−1)i+jq−
(i−j)(2n+1−i−j)

2

[
n− j
i− j

]

q

. (2.8)

Similarly, let Ln(k, a, b; q) = (Ln(k, a, b; q)i,j)1≤i,j≤n (resp. Un(q) = (U(q)i,j)1≤i,j≤n ) be the n× n
lower (resp. upper) triangular matrix whose (i, j)-entry is, respectively, given by

Ln(k, a, b; q)i,j = − χ(i ≥ j)
qkj (1− abqkj+n−1)

∏i
l=1
l6=j

(qkl − qkj )
, (2.9)

U(q)i,j = (−1)i+jq
(j−i)(j−i+1)

2

[
j − 1

j − i

]

q

. (2.10)

We define the n× n matrices Pn(k, a, b, c; q) and Qn(k, a, b, c; q) by

Pn(k, a, b, c; q) = Xn(k, a; q)Mn(k, a, b, c; q)Yn(q),

Qn(k, a, b, c; q) = Ln(k, a, b; q)Mn(k, a, b, c; q)Un(q).

Since Xn(k, a; q), Ln(k, a, b; q) are triangular and Yn(q), Un(q) are unitriangular, we easily obtain

detPn(k, a, b, c; q) =
(−1)n detMn(k, a, b, c; q)

q
∑n
i=1 ki

∏n
i=1(1− aqki)∏1≤i<j≤n(qki − qkj ) , (2.11)

detQn(k, a, b, c; q) =
(−1)n detMn(k, a, b, c; q)

q
∑n
i=1 ki

∏n
i=1(1− abqki+n−1)

∏
1≤i<j≤n(qki − qkj ) . (2.12)

The key to prove (2.6) is the following lemma:

Lemma 2.2 Let n be a positive integer, and let a, b, c and q be parameters. Let Pn(k, a, b, c; q) and
Qn(k, a, b, c; q) be as defined above. When k = {k1, . . . , kn−1, kn} is a row index set, let k′ =
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{k1, . . . , kn−1} denote the subset of the first (n− 1) indices of k. Then we have

detPn(k, a, b, c; q)
[1,n−1]
[2,n] = (−1)n−1 detMn−1(k′,aq,b,cq;q)

q
∑n−1
i=1

ki
∏

1≤i<j<n(qki−qkj )
, (2.13)

detQn(k, a, b, c; q)
[1,n−1]
[1,n−1] = (−1)n−1 detMn−1(k′,a,b,c;q)

q
∑n−1
i=1

ki
∏

1≤i<j<n(qki−qkj )
, (2.14)

detPn(k,a,b,c;q)
[1,n−1]

[1,n−1]∏n−1
ν=1 (1−abqkν+n−1)

= (−q)−n+1 detQn(k,a,b,c;q)
[1,n−1]

[2,n]∏n−1
ν=1 (1−aqkν )

. (2.15)

Now we are in position to prove Theorem 2.1. In fact the proof is straightforward by induction.

Proof of Theorem 2.1. First, we note that, for any integers n and ν, it holds

Rn,ν(k, a, b; q) = (1− abqkn+n−1)Rn−1,ν−1(k′, aq, b; q)

+qn−1(1− aqkn)Rn−1,ν(k′, a, b; q), (2.16)

where k = {k1, . . . , kn−1, kn} and k′ = {k1, . . . , kn−1} are as before. (2.16) follows from the definition
(2.3) of Rn,ν(k, a, b; q) by considering two exclusive cases, jν = n or in−ν = n. Now we prove the
identity

detMn(k, a, b, c; q) = (−1)na
n(n−3)

2 q
n(n+1)(n−4)

6

n∏

i=1

(bq; q)i−2

×
∏

1≤i<j≤n
(qki−1 − qkj−1)

n∑

ν=0

(−1)ν(abcq2ν+1; q2)n−ν(acq; q2)ν Rn,ν(k, a, b; q), (2.17)

by induction on n. If n = 1, then the left-hand side of (2.17) is trivially qk1−1 − c from (2.4). It is
straightforward computation to check the right-hand side equals qk1−1 − c. Assume n > 1 and (2.17)
holds up to (n− 1). Using (2.6) and the induction hypothesis, we obtain

detMn(k, a, b, c; q)

(−1)na
n(n−3)

2 q
n(n2−6n−1)

6

∏n
i=1(bq; q)i−2

∏
1≤i<j≤n(qki − qkj )

= (1− abqkn+n−1)
n−1∑

ν=0

(−1)ν+1(abcq2ν+3; q2)n−ν−1(acq; q2)ν+1Rn−1,ν(k′, aq, b; q)

+qn−1(1− aqkn)

n−1∑

ν=0

(−1)ν(abcq2ν+1; q2)n−ν(acq; q2)νRn−1,ν(k′, a, b; q).

Replacing ν + 1 by ν in the first sum and applying (2.16), we establish (2.17) for n. Hence (2.17) holds
for an arbitrary positive integer n. Finally, (2.5) and (2.17) immediately implies (2.2). This completes the
proof of Theorem 2.1. 2

For the detail of the proofs of the lemmas in this section, the reader can consult [6]

3 Proof of the main theorems
The aim of this section is to describe the outline of the proofs of the theorems in Section 1, i.e., Theo-
rem 1.1 from Theorem 2.1, and then prove Corollary 1.3 from Theorem 1.1. Once we prove Theorem 2.1,
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then it is easy and straightforward to prove the main theorems mainly by induction. In fact, to prove
Theorem 1.1, we need to set k = [n] = {1, 2, . . . , n} in (2.2). Hence, the following lemma is essential to
prove (1.16).

Lemma 3.1 If we put k = [n] in (2.2), then we obtain

Rn,ν([n], a, b; q) = q
(n−ν)(n−ν−1)

2

[n
ν

]
q

(aqν+1; q)n−ν(abqn; q)ν . (3.1)

In fact the proof of Theorem 1.1 is quite straightforward by substitution k = [n] into (2.2) using (3.1). We
use some well-known q-series identities. The details are described in [6].

To derive Corollary 1.3 from Theorem 1.1 the following proposition plays a crucial role:

Proposition 3.2 Let n be an integer, a, b and c be arbitrary parameters. Then we have

pn(0; a, b, c,−c; q) = (−1)mambmc2mqm(3m−1)(−c2; q2)m

×pm
(
x0; 1, q, ab,−a−1b−1c−2q−4m+2; q2

)
, (3.2)

if n = 2m is even, and

pn(0; a, b, c,−c; q) = (−1)m+1ambm+1c2m(1 + ab−1)qm(3m+1)(−c2; q2)m+1

×pm
(
x0; q, q2, ab,−a−1b−1c−2q−4m; q2

)
, (3.3)

if n = 2m+ 1 is odd, where x0 = −ab−1+a−1b
2 .

When b = −a, replacing c by b, one gets incidentally the following known result due to Andrews (see [3,
(II.17)]).

Corollary 3.3

pn(0; a,−a, b,−b; q) =

{
(−1)m(q,−a2,−b2, a2b2q2m; q2)m if n = 2m,
0 if n = 2m+ 1. (3.4)

To prove of Proposition 3.2, we use the following contiguous relations for 4φ3.

Proposition 3.4 Let z, a, b, c, d, e, f , g and q be arbitrary parameters. Then we have

4φ3

(
a, bq, c, d

e, f, g
; q, z

)
− 4φ3

(
aq, b, c, d

e, f, g
; q, z

)

=
z (b− a) (1− c)(1− d)

(1− e)(1− f)(1− g)
4φ3

(
aq, bq, cq, dq

eq, fq, gq
; q, z

)
, (3.5)

(1− f)(a− e) 4φ3

(
a, b, c, d

eq, f, g
; q, z

)
− (1− e)(a− f) 4φ3

(
a, b, c, d

e, fq, g
; q, z

)

= (1− a)(f − e) 4φ3

(
aq, b, c, d

eq, fq, g
; q, z

)
, (3.6)

and

(1− e)(1− f)(1− g) 4φ3

(
a, b, c, d

e, f, g
; q, q

)

= c(1− e)
(

1− f

c

)(
1− g

c

)
4φ3

(
aq, bq, c, d

e, fq, gq
; q, q

)

+d(1− c)
(

1− e

d

)(
1− fg

cd

)
4φ3

(
aq, bq, cq, d

eq, fq, gq
; q, q

)
, (3.7)
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where, in the last identity, we assume abcdq = efg and a = q−n for some nonnegative integer n.

Remark 3.5 The contiguous relations (3.5) (resp. (3.6)) correspond to (3.2) (resp. (3.10)) in [9], mean-
while (3.6) can be written as a contiguous relation for 8W7. In fact, if one uses Watson’s transformation
formula [3, (2.5.1)]

8W7

(
a; b, c, d, e, q−n; q, a

2qn+2

bcde

)
=

(aq, aqde ;q)
n

( aqd ,
aq
e ;q)

n

4φ3

(
q−n,d,e, aqbc
aq
b ,

aq
c ,

deq−n
a

; q, q

)
(3.8)

for a terminating very-well-poised 8φ7 series, where

r+1Wr(a1; a4, . . . , ar+1; q, z) = r+1φr

(
a1,qa

1
2
1 ,−qa

1
2
1 ,a4,...,ar+1

a
1
2
1 ,−a

1
2
1 ,

qa1
a4

,...,
qa1
ar+1

; q, z

)
, (3.9)

then (3.7) is equivalent to

(c− a)(d− aq)(e− aq)(b− aqn) 8W7

(
a; b, cq, d, e, q−n; q, a

2qn+1

bcde

)

= a(1− b)(1− aq)(de− aq)(1− cqn) 8W7

(
aq; bq, cq, d, e, q−n+1; q, a

2qn+1

bcde

)

+(bc− a)(d− aq)(e− aq)(1− aqn) 8W7

(
a; b, c, d, e, q−n+1; q, a

2qn+1

bcde

)
. (3.10)

4 A quadratic relation
First we recall the reader a well-known theorem for determinants. The following identity is known as the
Desnanot-Jacobi adjoint matrix theorem [1, Theorem 3.12]

detA
[2,n−1]
[2,n−1] detA

[n]
[n] = detA

[n−1]
[n−1] detA

[2,n]
[2,n] − detA

[n−1]
[2,n] detA

[2,n]
[n−1]. (4.1)

Let

Dn(a, b, c; q) = det

(
(qi−1 − cqj−1)

(aq; q)i+j−2

(abq2; q)i+j−2

)

1≤i,j≤n

and apply (4.1) to this determinant. Then we obtain

Dn(a, b, c; q)Dn−2(aq2, b, c; q) =
q(aq; q)2

(abq2; q)2
·Dn−1(a, b, c; q)Dn−1(aq2, b, c; q)

−q(1− aq)
n(1− abq3)n−2

(1− aq2)n−2(1− abq2)n
·Dn−1(aq, b, cq; q)Dn−1(aq, b, cq−1; q). (4.2)

Hence we can substitute (1.16) into (4.2), then replacing a
1
2 c

1
2 q

1
2 ı, −a 1

2 c−
1
2 q

1
2 ı and b

1
2 ı by a, b and c,

respectively, we obtain the following corollary.

Corollary 4.1 Let n be a positive integer and a, b, c and q parameters. Then we have

ab(1− qn−1)(1 + c2qn−2)pn(0; a, b, c,−c; q)pn−2(0; aq, bq, c,−c; q)
= (1− abqn−1)(1 + abc2qn−1)pn−1(0; a, b, c,−c; q)pn−1(0; aq, bq, c,−c; q)
−(1− ab)(1 + abc2q2n−2)pn−1(0; aq, b, c,−c; q)pn−1(0; a, bq, c,−c; q). (4.3)

Here we derive Corollary 4.1 as a corollary of Theorem 1.1.
In fact a more general formula holds. Recently one of the authors has proven that the following

quadratic equation in a different method.
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Theorem 4.2 For r ≥ 1, there holds

(1− a−1
0 )(a1 − b1) r+1φr

[
a0/q, a1, a2, . . . , ar
b1/q, b2, . . . , br

; q, z

]
r+1φr

[
a0q, a1, a2q . . . , arq
b1q, b2q, . . . , brq

; q, z

]

= (1− a1/a0)(1− b1) r+1φr

[
a0, a1, a2, . . . , ar
b1, b2, . . . , br

; q, z

]
r+1φr

[
a0, a1, a2q . . . , arq
b1, b2q, . . . , brq

; q, z

]

− (1− a1)(1− b1/a0) r+1φr

[
a0, a1/q, a2, . . . , ar
b1/q, b2, . . . , br

; q, z

]
r+1φr

[
a0, a1q, a2q . . . , arq
b1q, b2q, . . . , brq

; q, z

]
.(4.4)

This formula gives a simple proof of Theorem 1.1 using the Desnanot-Jacobi adjoint matrix theorem
(4.1). But, note that Theorem 2.1 is more general and cannot be derived from the quadratic equation. This
thorem may also hint us there could exist a more general formula than Theorem 1.1. But it is not an easy
task to find the appropriate entry of the determinant which gives this quadratic relation.
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Abstract. We prove that the Mahonian-Stirling pairs of permutation statistics (sor, cyc) and (inv, rlmin) are equidis-
tributed on the set of permutations that correspond to arrangements of n non-atacking rooks on a fixed Ferrers board
with n rows and n columns. The proofs are combinatorial and use bijections between matchings and Dyck paths and
a new statistic, sorting index for matchings, that we define. We also prove a refinement of this equidistribution result
which describes the minimal elements in the permutation cycles and the right-to-left minimum letters.

Résumé. Nous prouvons que les paires de statistiques de Mahonian-Stirling (sor, cyc) et (inv, rlmin) suivent la
même distribution pour des permutations correspondant à des placements de n tours sur un tableau de Ferrer fixé avec
n lignes et n colonnes. Les preuves sont combinatoires et utilisent des bijections entre les couplages et les chemins
de Dyck. Nous définissons une nouvelle statistique, l’indice de tri pour les couplages. Nous prouvons également un
résultat plus fin qui décrit les éléments minimaux dans les cycles des permutations et les lettres minimum droite á
gauche.

Keywords: sorting index, cycle, matching, Ferrers board

1 Introduction
An inversion in a permutation σ is a pair σ(i) > σ(j) such that i < j. The number of inversions in σ is
denoted by inv(σ). The distribution of inv over the symmetric group Sn was first found by Rodriguez [9]
in 1837 and is well known to be

∑

σ∈Sn

qinv(σ) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Much later, MacMahon [6] defined the major index maj and proved that it has the same distribution as
inv. In his honor, all permutation statistics that are equally distributed with inv are called Mahonian.
MacMahon’s remarkable result initiated a systematic research of permutation statistics and in particular
many more Mahonian statistics have been described in the literature since then.

Another classical permutation statistic is the number of cycles, cyc. Its distribution is given by
∑

σ∈Sn

tcyc(σ) = t(t+ 1)(t+ 2) · · · (t+ n− 1)

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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and the coefficients of this polynomial are known as the unsigned Stirling numbers of the first kind.
Given these two distributions, it is natural then to ask which “Mahonian-Stirling” pairs of statistics

(stat1, stat2) have the distribution
∑

σ∈Sn

qstat1(σ)tstat2(σ) = t(t+ q)(t+ q + q2) · · · (t+ q + · · ·+ qn−1). (1)

As proved by Björner and Wachs [1], (inv, rlmin) and (maj, rlmin) are two such pairs, where rlmin is
the number of right-to-left minimum letters. A right-to-left minimum letter of a permutation σ is a letter
σ(i) such that σ(i) < σ(j) for all j > i. The set of all right-to-left minimum letters in σ will be denoted
by Rlminl(σ). In fact, Björner and Wachs proved the following stronger result
∑

σ∈Sn

qinv(σ)
∏

i∈Rlminl(σ)

ti =
∑

σ∈Sn

qmaj(σ)
∏

i∈Rlminl(σ)

ti = t1(t2+q)(t3+q+q
2) · · · (tn+q+· · ·+qn−1).

(2)
A natural Mahonian partner for cyc was found by Petersen [7]. For a given permutation σ ∈ Sn there

is a unique expression
σ = (i1j1)(i2j2) · · · (ikjk)

as a product of transpositions such that is < js for 1 ≤ s ≤ k and j1 < · · · < jk. The sorting index of σ
is defined to be

sor(σ) =
k∑

s=1

(js − is).

The sorting index can also be described as the total distance the elements in σ travel when σ is sorted using
the Straight Selection Sort algorithm [5] in which, using a transposition, we move the largest number
to its proper place, then the second largest to its proper place, etc. For example, the steps for sorting
σ = 6571342 are

6571342
(37)−−→ 6521347

(16)−−→ 4521367
(25)−−→ 4321567

(14)−−→ 1324567
(23)−−→ 1234567

and therefore σ = (2 3)(1 4)(2 5)(1 6)(3 7) and sor(σ) = (3−2)+(4−1)+(5−2)+(6−1)+(7−3) = 16.
The relationship to other Mahonian statistics and the Eulerian partner for sor were studied by Wilson [10]
who called the sorting index DIS.

Petersen showed that
∑

σ∈Sn

qsor(σ)tcyc(σ) = t(t+ q)(t+ q + q2) · · · (t+ q + · · ·+ qn−1),

which implies equidistribution of the pairs (inv, rlmin) and (sor, cyc).
In this article we show that the pairs (inv, rlmin) and (sor, cyc) have the same distribution on the set

of restricted permutations
Sr = {σ ∈ Sn : σ(k) ≤ rk, 1 ≤ k ≤ n}

for a nondecreasing sequence of integers r = (r1, . . . , rn) with 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. These
can be described as permutations that correspond to arrangements of n non-atacking rooks on a Ferrers
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board with rows of length r1, . . . , rn. To obtain the results, in Section 2 we define a sorting index and
cycles for perfect matchings and study the distributions of these statistics over matchings of fixed type. We
use bijections between matchings and weighted Dyck paths which enable us to keep track of set-valued
statistics and obtain more refined results similar to (2) for restricted permutations.

Analogously to sor, Petersen defined the sorting index for signed permutations of type Bn and Dn.
Using algebraic methods he proved that

∑

σ∈Bn

qsorB(σ)t`
′
B(σ) =

∑

σ∈Bn

qinvB(σ)tnminB(σ) =

n∏

i=1

(1 + t[2i]q − t), (3)

where for an element σ ∈ Bn, `′B(σ) denotes its reflection length, invB(σ) denotes the type Bn inver-
sion number, and nmin is a signed permutation statistic similar to rlmin. Petersen also defined sorD, a
sorting index for type Dn permutations and showed that it is equidistributed with the number of type Dn

inversions:
∑

σ∈Dn

qsorD(σ) =
∑

σ∈Dn

qinvD(σ) = [n]q ·
n−1∏

i=1

[2i]q. (4)

While space constraints prevent us from providing details in this extended abstract, we mention that
in [8] we define a sorting index and cycle number for bicolored matchings in a fashion analogous to
what we will show for ordinary matchings. In particular, this gives a combinatorial proof that the pairs
(sorB , `

′
B) and (invB ,nminB) are equidistributed on the set of restricted signed permutations

Br = {σ ∈ Bn : |σ(k)| ≤ rk, 1 ≤ k ≤ n}

for a nondecreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. Using bijections between
bicolored matchings and weighted Dyck paths with bicolored rises, we in fact prove equidistribution of
set-valued statistics and their generating functions. Moreover, we find natural Stirling partners for sorD
and invD and prove equidistribution of the two Mahonian-Stirling pairs on sets of restricted permutations
of type Dn:

Dr = {σ ∈ Dn : |σ(k)| ≤ rk, 1 ≤ k ≤ n}.

2 Statistics on perfect matchings
A matching is a partition of a set in blocks of size at most two and if it has no single-element blocks the
matching is said to be perfect. The set of all perfect matchings with n blocks is denoted by Mn. All
matchings in this work will be perfect and henceforth we will omit this adjective.

2.1 Statistics based on crossings and nestings
A matching in Mn can be represented by a graph with 2n labeled vertices and n edges in which each
vertex has a degree 1. The vertices 1, 2, . . . , 2n are drawn on a horizontal line in natural order and two
vertices that are in a same block are connected by a semicircular arc in the upper half-plane. We will use
i · j to denote an arc with vertices i < j. The vertex i is said to be the opener while j is said to be the
closer of the arc. For a vertex i, we will denote by M(i) the other vertex which is in the same block in
the matching M as i. Two arcs i · j and k · l with i < k can be in three different relative positions. We
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say that they form a crossing if i < k < j < l, they form a nesting if i < k < l < j, and they form an
alignment if i < j < k < l. The arc with the smaller opener will be called the left arc of the crossing,
nesting, or the alignment, respectively, while the arc with the larger opener will be called the right arc.
The numbers of crossings, nestings, and alignements in a matching M are denoted by cr(M), ne(M),
and al(M), respectively.

If o1 < · · · < on and c1 < · · · < cn are the openers and the closers in M , respectively, let

Long(M) = {k : ok ·M(ok) is not a right arc in a nesting}
and

Short(M) = {k :M(ck) · ck is not a left arc in a nesting}.
Similarly, let

Left(M) = {k : ok ·M(ok) is not a right arc in a crossing}.
We will use lower-case letters to denote the cardinalities of the sets. For example, long(M) = |Long(M)|.
Example 2.1. For the matching M in Figure 1 we have ne(M) = cr(M) = al(M) = 5, Long(M) =
{1, 2}, Short(M) = {1, 2, 3, 5}, and Left(M) = {1, 5}.

The pair of sets ({o1, . . . , on}, {c1, . . . , cn}) of openers and closers of a matching M is called the type
of M . There is a natural one-to-one correspondence between types of matchings inMn and Dyck paths
of semilength n, i.e., lattice paths that start at (0, 0), end at (2n, 0), use steps (1, 1) (rises) and (1,−1)
(falls), and never go below the x-axis. The set of all such Dyck paths will be denoted by Dn. Namely,
the openers in the type correspond to the rises in the Dyck path while the closers correspond to the falls.
Therefore, for convenience, we will say that a matching inMn is of typeD, for some Dyck pathD ∈ Dn,
and we will denote the set of all matchings of type D byMn(D).

The height of a rise of a Dyck path is the y-coordinate of the right endpoint of the corresponding (1, 1)
segment. The sequence (h1, . . . , hn) of the heights of the rises of a D ∈ Dn when read from left to right
will be called shortly the height sequence of D. For example, the height sequence of the Dyck path in
Figure 1 is (1, 2, 3, 3, 3, 4). A weighted Dyck path is a pair (D, (w1, . . . , wn)) whereD ∈ Dn with height
sequence (h1, . . . , hn) and wi ∈ Z with 1 ≤ wi ≤ hi. There is a well-known bijection ϕ from the set
WDn of weighted Dyck paths of semilength n to Mn [2]. Namely, the openers o1 < o2 < · · · < on
of the matching that corresponds to a given (D, (w1, . . . , wn)) ∈ WDn are determined according to the
type D. To construct the corresponding matching M , we connect the openers from right to left, starting
from on. After on, on−1, . . . , ok+1 are connected to a closer, there are exactly hk unconnected closers that
are larger than ok. We connect ok to the wk-th of the available closers, when they are listed in decreasing
order (see Figure 1).

2

1

2

32

1

ϕ1

c6c5c4c3o6o5c2o4c1o2o1 o3

Fig. 1: The bijection ϕ between weighted Dyck paths and matchings.

Via the bijection ϕ we immediately get the following generating function.
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Theorem 2.2. If D ∈ Dn has a height sequence (h1, . . . , hn), then

∑

M∈Mn(D)

pcr(M)qne(M)
∏

i∈Left(M)

si
∏

i∈Long(M)

ti =
n∏

k=1

(tkp
hk−1 + phk−2q+ · · ·+ pqhk−2 + skq

hk−1).

(5)

Proof: The edge ok ·M(ok) will be a right arc in exactly wk − 1 nestings and exactly hk −wk crossings
in M = ϕ(D, (w1, . . . , wn)). So, k ∈ Long(M) if and only if wk = 1 while the closer that is connected
to ok is in Left(M) if and only if wk = hk.

The map ϕ also has the following property. The definition of Rlminl was given for permutations but it
extends to words in a straightforward way.

Proposition 2.3. Let (D, (w1, . . . , wn)) ∈ WDn and M = ϕ(D, (w1, . . . , wn)). Then

Short(M) = Rlminl(2− w1, 3− w2, . . . , n+ 1− wn). (6)

2.2 Cycles and sorting index for matchings
Let M0 be a matching inMn(D). For M ∈ Mn(D) define cyc(M,M0) as the number of cycles in the
graph G = (M,M0) on 2n vertices in which the arcs from M are drawn in the upper half-plane as usual
and the arcs of M0 are drawn in the lower half-plane, reflected about the number axis. If the openers of
M are o1 < · · · < on, we define

Cyc(M,M0) = {k : ok is a minimal vertex in a cycle in the graph (M,M0)}.

Figure 2 shows the calculation of cyc and Cyc for all matchings of type with respect to the nonnesting
matching of that type.

cyc(M3,M4) = 2cyc(M1,M4) = 1

Cyc(M1,M4) = {1} Cyc(M2,M4) = {1, 2} Cyc(M3,M4) = {1, 3} Cyc(M4,M4) = {1, 2, 3}

cyc(M2,M4) = 2 cyc(M4,M4) = 3

Fig. 2: Counting cycles in matchings.

For M,M0 ∈Mn(D), we define the sorting index of M with respect to M0, denoted by sor(M,M0),
in the following way. Let o1 < o2 < · · · < on be the openers in M and M0. We construct a sequence
of matchings Mn,Mn−1, . . . ,M2,M1 as follows. First, set Mn = M . Then, if Mk(ok) = M0(ok), set
Mk−1 = Mk. Otherwise, set Mk−1 to be the matching obtained by replacing the edges ok ·Mk(ok) and
Mk(M0(ok))·M0(ok) in the matchingMk by the edges ok ·M0(ok) andMk(M0(ok))·Mk(ok). It follows
from the definition thatM1 =M0. In other words, we gradually sort the matchingM by reconnecting the
openers to the closers as “prescribed” by M0. Note that when swapping of edges takes place, it is always
true thatMk(M0(ok)) < ok and therefore all the intermediary matchings we get in the process are of type
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D. Define

sork(M,M0) =

{
|{c : c > ok, c ∈ [Mk(ok),M0(ok)] and M0(c) < ok}|, if Mk(ok) ≤M0(ok)

|{c : c > ok, c /∈ (M0(ok),Mk(ok)) and M0(c) < ok}|, if M0(ok) < Mk(ok)

and

sor(M,M0) =
n∑

k=1

sork(M,M0).

Example 2.4. Figure 3 shows the intermediate matchings that are obtained when M = M6 is sorted to
M0 =M1. So,

sor6(M,M0) = |{c3, c5, c6}| = 3, sor5(M,M0) = |{c3, c5}| = 2, sor4(M,M0) = |{c2, c5}| = 2,
sor3(M,M0) = |∅| = 0, sor2(M,M0) = |{c5}| = 1, sor1(M,M0) = |∅| = 0,

and sor(M,M0) = 0 + 1 + 0 + 2 + 2 + 3 = 8.

o1

M6 : M3 :

M2 :M5 :

M4 : M1 :

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2 o3

Fig. 3: Sorting of the matching M = M6 to the matching M0 = M1. The dashed lines indicate arcs that are about
to be swapped while the bold lines represent arcs that have been placed in correct position.

Theorem 2.5. Let D be a Dyck path with height sequence (h1, . . . , hn). For each M0 ∈ Mn(D), there
is a bijection

φ : {(w1, w2, . . . , wn) : 1 ≤ wi ≤ hi} →Mn(D)

which depends on M0 such that

(a) sor(φ(w1, . . . , wn),M0) =
∑n
i=1(wi − 1),

(b) Cyc(φ(w1, . . . , wn),M0) = {k : wk = 1}.
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Additionally, if M0 is the unique nonnesting matching of type D, then

(c) Short(φ(w1, . . . , wn)) = Rlminl(2− w1, 3− w2, . . . , n+ 1− wn).

Proof: Fix M0 ∈ Mn(D). We construct the bijection φ in the following way. Draw the matching
M0 with arcs in the lower half-plane. Suppose o1 < · · · < on are the openers of M0. To construct
M = φ(w1, . . . , wn), we draw arcs in the upper half plane by connecting the openers from right to left to
closers as follows.

Suppose that the openers on, on−1, . . . , ok+1 are already connected to a closer and denote the partial
matching in the upper half-plane by Nk. To connect ok, we consider all the closers c with the property
c > ok and M0(c) ≤ ok. There are exactly hk such closers, call them candidates for ok.

Let ck0 be the closer which is wk-th on the list when all those hk candidates are listed starting from
M0(ok) and then going cyclically to left. If ck0 is not connected to an opener by an arc in the up-
per half-plane, draw the arc ok · ck0 . Otherwise, there is a maximal path in the graph of the type:
ck0 , Nk(ck0),M0(Nk(ck0)), Nk(M0(Nk(ck0))), . . . , c

∗ which starts with ck0 , follows arcs in Nk and M0

alternately and ends with a closer c∗ which has not been connected to an opener yet (see Figure 4). Due
to the order in which we have been drawing the arcs in the upper half-plane, all vertices in the aforemen-
tioned path are to the right of ok. In particular, c∗ is to the right of ok and is not one of the candidates
for ok. Draw an arc in the upper half-plane connecting ok to c∗. After all openers are connected in this
manner, the resulting matching in the upper half-plane is M = φ(w1, . . . , wn).

c6c5c1o2

Fig. 4: The solid arcs in the top half-plane represent the partial matching N2. The candidates for o2 are c1 and c5. If
w2 = 1, o2 will try to connect to c1, but since it is already connected to an opener, we follow the bold path that starts
with c1 to reach c∗ = c6 and connect it to o2.

LetMn =M,Mn−1, . . . ,M2,M1 =M0 be the intermediary sequence of matchings constructed when
sorting M to M0. Then Mk(ok) is exactly the closer ck0 defined above. This means that sork(M,M0) =
wk − 1 and therefore sor(M,M0) =

∑n
k=1(wk − 1). This property also gives us a way of finding the

sequence (w1, . . . , wn) which corresponds to a given M ∈Mn(D). Namely, wk = sork(M,M0) + 1.
To prove the second property of φ, we analyze when connecting ok by an arc will close a cycle. There

are two cases.

1. The closer ck0 which was wk-th on the list of candidates for ok was not incident to an arc in the
partial matching Nk and we drew the arc ok · ck0 . If wk = 1, then ck0 = M0(ok) and the arcs
connecting ok and ck0 in the upper and lower half-planes close a cycle. Otherwise, M0(ck0) < ok
and therefore M0(ck0) is not incident to an arc in Nk and the arc ok · ck0 will not close a cycle.
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2. The closer ck0 which was wk-th on the list of candidates for ok was incident to an arc in the partial
matching Nk and we drew the arc ok · c∗. If wk = 1, the path traced from ck0 to c∗, the arc ok · ck0
in M0, and the newly added arc ok · c∗ form a cycle. Otherwise, connecting ok to c∗ does not close
a cycle since the opener M0(ck0) is in the same connected component of the graph (M,M0) as ok,
but is not connected to a closer yet, since M0(ck0) < ok.

We conclude that a cycle is closed exactly when wk = 1 and therefore

Cyc(φ(w1, . . . , wn),M0) = {k : wk = 1}.

Finally, we prove the third property of φ. IfM0 is a nonnesting matching, its edges are ok ·ck where the
openers and closers are indexed in ascending order. LetM = φ(w1, . . . , wn). The following observations
are helpful. When connecting ok in the construction of M , the first choice for ok, i.e., the wk-th candidate
for ok is exactly ck+1−wk

. Also, M(ok) ≥ ck+1−wk
. Furthermore, if ck was not a candidate for M(ck),

i.e. if the edge ck was chosen as a partner for M(ck) by following a path in the graph as described above,
then k /∈ Short(M). Namely the edge M(ck0) · ck0 , where ck0 was the first choice when the opener
M(ck) was connected in the construction of M , is nested below it.

For a number k ∈ [n] there are three possibilities:

1. k /∈ {2− w1, 3− w2, . . . , n+ 1− wn}
In this case, ck was not a first choice for any of the openers and therefore must have been connected
to an opener by following a path in the graph (M,M0). It follows from the observation above that
k /∈ Short(M).

2. k ∈ {2− w1, 3− w2, . . . , n+ 1− wn} and k ∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn)
Then ck was a first choice for at least one opener. Let o be the largest one. Then all openers to the
right of o got connected to a closer which is greater than ck, so no edge is nested below o · ck ∈M .
Consequently, k ∈ Short(M).

3. k ∈ {2− w1, 3− w2, . . . , n+ 1− wn} but k /∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn)
In this case, let m + 1 − wm be the rightmost number in the sequence (2 − w1, . . . , n + 1 − wn)
which is smaller than k. It is necessarily to the right of k in this sequence and belongs to Rlminl(2−
w1, . . . , n+ 1−wn). This implies that the edge om · cm+1−wm is in M , while M(ol) > ck for all
l > m. So, M(ck) < om and therefore the edge om · cm+1−wm

is nested below M(ck) · ck, which
means that k /∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn).

As a consequence, we get the following generating functions. Note that their explicit formulas imply
that in fact the distributions are independent of the choice of M0.

Corollary 2.6. Let M0 ∈Mn(D) and let (h1, . . . , hn) be the height sequence of D. Then

∑

M∈Mn(D)

qsor(M,M0)
∏

i∈Cyc(M,M0)

ti =

n∏

k=1

(tk + q + · · ·+ qhk−1). (7)

Combining Theorem 2.2 and Corollary 2.6 we get the following corollary.



Cycles and sorting index for matchings and restricted permutations 769

Corollary 2.7. Let M0 ∈Mn(D) and let (h1, . . . , hn) be the height sequence of D. Then
∑

M∈Mn(D)

qsor(M,M0)
∏

i∈Cyc(M,M0)

ti =
∑

M∈Mn(D)

qne(M)
∏

i∈Long(M)

ti.

Corollary 2.8. If M0 is the unique nonnesting matching of type D then the multisets

{(sor(M,M0),Cyc(M,M0),Short(M)) :M ∈Mn(D)}

and
{(ne(M),Long(M),Short(M)) :M ∈Mn(D)}

are equal.

2.3 Connections with restricted permutations
For a fixed n, let r denote the non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. Let

Sr = {σ ∈ Sn : σ(k) ≤ rk, 1 ≤ k ≤ n}.
Note that Sr 6= ∅ precisely when rk ≥ k, for all k, so we will consider only the sequences that satisfy

this condition without explicitly mentioning it. Let D(r) be the unique Dyck path whose k-th fall is
preceded by exactly rk rises. Consider the following bijection fr : Sr → Mn(D(r)). If σ ∈ Sr, then
fr(σ) is the matching in Mn(D(r)) with edges oσ(k) · ck, where o1 < · · · < on are the openers and
c1 < · · · < cn are the closers. It is not difficult to see that fr is well defined and that it is a bijection.

Two arcs oσ(j) · cj and oσ(k) · ck in fr(σ) with j < k form a nesting if and only if σ(j) > σ(k). So,
ne(fr(σ)) = inv(σ). Moreover, σ(j) ∈ Rlminl(σ) if and only if σ(j) does not form an inversion with
a σ(k) for any k > j, which means if and only if oσ(j) · cj is not nested within anything in fr(σ), i.e.,
σ(j) ∈ Long(fr(σ)). From Theorem 2.2 we get the following corollary.

Corollary 2.9. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with rk ≥ k,
for all k. Then

∑

σ∈Sr

qinv(σ)
∏

i∈Rlminl(σ)

ti =
n∏

k=1

(tk + q + q2 + · · ·+ qhk−1)

where (h1, . . . , hn) is the height sequence of D(r). In particular,

∑

σ∈Sr

qinv(σ)trlminl(σ) =

n∏

k=1

(t+ q + q2 + · · ·+ qrk−k).

Proof: The first result follows directly from the discussion above and Theorem 2.2. For the second equal-
ity, note that the height sequence (h1, . . . , hn) of the Dyck path D(r) is a permutation of the sequence
of the heights of the falls in D(r), where the height of a fall is the y-coordinate of the higher end of the
corresponding (1,−1) step. The height of the k-th fall is easily seen to be rk − k + 1.

In particular, when r1 = r2 = · · · = rn = n, we have Sr = Sn. The height sequence of D(r) is
(1, 2, . . . , n) and we recover the result of Björner and Wachs about the distribution of (inv,Rlmin) given
in (2).
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If M0 ∈ M(D(r)) the sorting index sor( · ,M0) induces a permutation statistic on Sr. Namely, if
σ, σ0 ∈ Sr, define

sorr(σ, σ0) = sor(f−1r (σ), f−1r (σ0)).

Equivalently, the statistic sorr(σ, σ0) on Sr can be defined directly via a sorting algorithm similar
to Straight Selection Sort. Namely, permute the elements in σ ∈ Sr by applying transpositions which
place the largest element n in position σ−10 (n), then the element n − 1 in position σ−10 (n − 1), etc.
Let σn = σ, σn−1, . . . , σ1 = σ0, be the sequence of permutations obtained in this way. Specifically,
σ−1k (i) = σ−10 (i) for i > k, and σk−1 is obtained by swapping k and σk(σ−10 (k)) in σk.

Let l = σ−1k (k) and m = σ−10 (k). Define

ak =





|{i : l ≤ i ≤ m,σ0(i) < k}|, l < m

0, l = m

|{i : ri ≥ k, i /∈ (m, l), σ0(i) < k}|, l > m.

(8)

Then

sorr(σ, σ0) =

n∑

k=1

ak.

Note that, sorr(σ, σ0) in general depends on r. However, the case when σ0 is the identity permutation
is an exception.

Lemma 2.10. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with rk ≥ k,
for all k. Let σ ∈ Sr. Then

sorr(σ, id) = sor(σ).

Proof: First note that the case l > m in (8) cannot occur. Namely, in the case when σ0 = id, we have
m = k and if l > k, σ−1k (l) = σ−10 (l) = l. This contradicts l = σ−1k (k). Therefore, the definition of ak
simplifies to

ak = |{i : l ≤ i < k}|.
This is precisely the “distance” that k travels when being placed in its correct position with the Straight
Selection Sort algorithm.

Corollary 2.11. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with
rk ≥ k, for all k. Let σ0 ∈ Sr. Then

∑

σ∈Sr

qsorr(σ,σ0)
∏

i∈Cyc(σσ−1
0 )

ti =

n∏

i=1

(ti + q + · · ·+ qhi−1), (9)

where (h1, . . . , hn) is the height sequence of D(r) and Cyc(σ) is the set of the minimal elements in the
cycles of σ. In particular,

∑

σ∈Sr

qsor(σ)
∏

i∈Cyc(σ)

ti =
n∏

i=1

(tk + q + · · ·+ qhk−1) (10)
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and ∑

σ∈Sr

qsor(σ)tcyc(σ) =
∑

σ∈Sr

qinv(σ)trlminl(σ) (11)

Proof: Let fr(σ0) = M0 and fr(σ) = M . The cycle k → σ0σ
−1(k) → · · · → (σ0σ

−1)s(k) = k of the
permutation σ0σ−1 corresponds to the cycle ok M(ok) M0(M(ok)) · · · ok in the
graph (M,M0). So, k ∈ Cyc(σ0σ

−1) if and only if k ∈ Cyc(M,M0). Now, (9) follows from (7) and the
fact that the cycles of σσ−10 are equal to the cycles of σ0σ−1 reversed. Since id ∈ Sr for every sequence
r, we get (10) as a corollary of Lemma 2.10.

Let Lrmaxp(σ) denote the set of left-to-right maximum places in the permutation σ, i.e,

Lrmaxp(σ) = {k : σ(k) > σ(j) for all j < k}.

From Corollary 2.8 we get the following result for restricted permutations.

Corollary 2.12. The triples (inv,Rlminl,Lrmaxp) and (sor,Cyc,Lrmaxp) are equidistributed on Sr.
That is, the multisets

{(inv(σ),Rlminl(σ),Lrmaxp(σ)) : σ ∈ Sr}

and
{(sor(σ),Cyc(σ),Lrmaxp(σ)) : σ ∈ Sr}

are equal.

The equidistribution of the pairs (Rlminl,Lrmaxp) and (Cyc,Lrmaxp) on Sr for the special case
when the corresponding Dyck path D(r) is of the form uk1dk1uk2dk2 · · ·uksdks was shown by Foata and
Han [3] .

Corollary 2.13. Let σ0 ∈ Sr. Then

∑

σ∈Sr

tcyc(σσ
−1
0 ) =

n∏

k=1

(t+ rk − k). (12)

In particular, the left-hand side of (12) does not depend on σ0.

We remark that the sets {σσ−10 : σ ∈ Sr} and Sr are in general not equal. For example, let σ0 =
143265 ∈ S[4,4,4,6,6,6]. Then σ = 231546 ∈ S[4,4,4,6,6,6] but σσ−10 = 251364 /∈ S[4,4,4,6,6,6].

The polynomial
∏n
k=1(t+ rk − k) is well-known in rook theory. It is equal [4] to the polynomial

n∑

k=0

rn−k(t− 1)(t− 2) · · · (t− k)

where rk is the number of placements of k non-atacking rooks on a Ferrers board with rows of length
r1, r2, . . . , rn.
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Permutations
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Abstract The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like
matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and cross-
ing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, Stanley, and Yan, and for permutations
given by Burrill, Mishna, and Post involved passing through tableau-like objects. Recently, Chen and Guo for match-
ings, and Marberg for set partitions extended the result to coloured arc annotated diagrams. We prove that symmetric
joint distribution continues to hold for arc-coloured permutations. As in Marberg’s recent work, but through a different
interpretation, we also conclude that the ordinary generating functions for all j-noncrossing, k-nonnesting, r-coloured
permutations according to size n are rational functions. We use the interpretation to automate the generation of these
rational series for both noncrossing and nonnesting coloured set partitions and permutations.

L’équidistribution de plusieurs statistiques décrites en termes d’emboitements et de chevauchements d’arcs s’observes
dans plusieurs familles d’objects combinatoires, tels que les couplages, partitions d’ensembles, permutations et
graphes étiquetés. L’involution échangeant le nombre d’emboitements et de chevauchements dans les partitions
d’ensemble due à Krattenthaler, et aussi Chen, Deng, Du, Stanley et Yan, et l’involution similaire dans les permuta-
tions due à Burrill, Mishna et Post, requièrent d’utiliser des objets de type tableaux. Récemment, Chen et Guo pour
les couplages, et Marberg pour les partitions d’ensembles, ont étendu ces résultats au cas de diagrammes arc-annotés
coloriés. Nous démontrons que la propriété d’équidistribution s’observe est aussi vraie dans le cas de permutations
aux arcs coloriés. Tout comme dans le travail résent de Marberg, mais via un autre chemin, nous montrons que
les séries génératrices ordinaires des permutations r-coloriées ayant au plus j chevauchements et k emboitements,
comptées selon la taille n, sont des fonctions rationnelles. Nous décrivons aussi des algorithmes permettant de calcu-
ler ces fonctions rationnelles pour les partitions d’ensembles et les permutations coloriées sans emboitement ou sans
chevauchement.

Keywords: arc-coloured permutation, crossing, nesting, bijection, enumeration, tableau, generating tree, finite state
automaton, transfer matrix, automation

1 Introduction
Crossing and nesting statistics have intrigued combinatorialists for many decades. For example, it is
well known that Catalan numbers, cn = 1

n+1

(
2n
n

)
, count the number of noncrossing matchings on [2n]

which is also the number of nonnesting matchings of the same size. The concept of crossing and nesting

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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i1 i2
. . . ik j1 j2

. . . jk

Figure 1: The arc diagram of a k-crossing

i1 i2
. . . ik jk

. . . j2 j1

Figure 2: The arc diagram of a k-nesting

i1 i2
. . . ik = j1 j2

. . . jk

Figure 3: The arc diagram of an enhanced k-
crossing

i1 i2
. . . ik = jk

. . . j2 j1

Figure 4: The arc diagram of an enhanced k-nesting

was then extended to higher numbers where symmetric joint distribution continues to hold not only for
matchings (8), but also for set partitions (4, 9), labelled graphs (7), set partitions of classical types (13),
and permutations (2). In all cases, bijective proofs were given; and for some, generating functions were
found.

Inspired by recent works of Chen and Guo (3) on coloured matchings and Marberg (10) on coloured set
partitions, we give a bijection to establish symmetric joint distribution of crossing and nesting statistics
for arc-coloured permutations. We also show that the ordinary generating functions for j-noncrossing,
k-nonnesting, r-coloured permutations according to size n are rational functions.

1.1 Definitions and Terminology
A permutation S of the set [n] := {1, 2, . . . , n} is a bijection from [n] to itself, σ : [n] → [n]. Using
two-line notation, we can write S =

(
1 2 3 ... n

σ(1) σ(2) σ(3) ... σ(n)

)
. An arc annotated diagram is a labelled

graph on n vertices drawn horizontally, labelled left to right consecutively such that Arc(i, j) joins vertex
i to vertex j. A permutation has a representation as an arc annotated diagram where Arc(i, σ(i)) is drawn
as an upper arc for σ(i) ≥ i, and a lower arc for σ(i) < i. Note that the dissymmetry draws a fixed
point in S as an upper loop. When this diagram is restricted to only the upper arcs (or lower arcs) with
all n vertices, then it also represents a set partition of [n]. Separately, we call these upper and lower
arc diagrams of a permutation. From this diagram, we define a k-crossing (resp. k-nesting) as k arcs
{(i1, j1), (i2, j2), . . . , (ik, jk)} all mutually cross, or i1 < i2 < · · · < ik < j1 < j2 < · · · < jk (resp.
nest, i. e. i1 < i2 < · · · < ik < jk < jk−1 < · · · < j1 ) as shown in Figure 1 (resp. Figure 2). We also
need a variant: enhanced k-crossing (resp. enhanced k-nesting) where i1 < i2 < · · · < ik ≤ j1 < j2 <
· · · < jk (resp. i1 < i2 < · · · < ik ≤ jk < jk−1 < · · · < j1 ) as shown in Figure 3 (resp. Figure 4).

We need both notions of crossings and nestings for permutations because the enhanced definitions are
used for upper arc diagrams whereas the other definitions (without enhanced), for lower arc diagrams.
This is in accordance with the literature (6) on permutation statistics for weak exceedances and pattern
avoidance. We define the crossing number, cr(S) = j (resp. nesting number, ne(S) = k) of a permutation
S as the maximum j (resp. k) such that S has a j-enhanced crossing (resp. k-enhanced nesting) in the
upper arc diagram or a j-crossing (resp. k-nesting) in the lower arc diagram. When a permutation S does
not have a j-(enhanced)-crossing (resp. k-(enhanced)-nesting), then we say S is j-noncrossing (resp. k-
nonnesting). Burrill, Mishna, and Post (2) gave an involution mapping between the set of permutations of
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[n] with cr(S) = j and ne(S) = k and those with cr(S) = k and ne(S) = j, thus extending the result of
symmetric joint distribution for matchings and set partitions of Chen, Deng, Du, Stanley, and Yan (4) and
Krattenthaler (9) to permutations.

Next, Chen and Guo (3) generalized symmetric equidistribution of crossing and nesting statistics to
coloured complete matchings. Most recently, Marberg (10) extended the result to coloured set partitions
with a novel way of proving that the ordinary generating functions of j-noncrossing, k-nonnesting, r-
coloured partitions according to size n are rational functions. We extend their results to r-arc-coloured
permutations, or r-coloured permutations in short.

Coloured permutations are generalizations of permutations represented as arc annotated diagrams.
Once the arcs are coloured to satisfy j-noncrossing and k-nonnesting conditions for each colour class,
the resulting arc diagrams can be represented in the topological graph theoretic book embedding set-
ting (11), each colour on a separate page while the vertices are on the spine of the book. The differences
are two fold: each page satisfies the crossing/nesting conditions instead of finding a minimum number
of pages, noncrossing on each page, to represent a given (non-planar) graph, and the number of pages is
not necessarily minimal with respect to the crossing/nesting conditions. Secondary RNA structures with
different bonding energies have been analysed in the book embedding setting, naturally represented as
coloured set partitions (5); however, arc-coloured permutations have yet to find a natural application.

Some caution on terminology is in order here. Group properties of coloured permutations have been
widely studied since the 1990’s (1, 15), but there the colours are assigned to vertices instead of arcs.

1.2 Main Theorem
Since crossing and nesting statistics involves arcs, we define an r-coloured permutation parallel to (10)
as a pair, (S, φ) consisting of a permutation of [n] and an arc-colour assigning map φ : Arc(S) → [r],
and use a capital Greek letter, Σ, to denote these objects. We say Σ has a k-crossing (resp. k-nesting) if k
arcs of the same colour cross (resp. nest). As always throughout this paper, enhanced statistics is applied
to upper arc diagrams while non-enhanced for lower arc diagrams of permutations. Define cr(Σ) (resp.
ne(Σ)) as the maximum integer k such that Σ has a k-crossing (resp. k-nesting). The bijection of (2)
can be extended to establish symmetric joint distribution of the numbers cr(Σ) and ne(Σ) over r-coloured
permutations preserving opener and closer sequences (equivalently, sets of minimal and maximal elements
of each block when upper arc and lower arc diagrams are viewed separately as set partitions).

More formally, vertices of a permutation are of five types, an opener ( ), a closer ( ), a fixed point

( ) , an upper transitory ( ), and a lower transitory( ). For a particular Σ, restricting to only one
colour, both upper arc and lower arc diagrams can be seen as set partitions whose minimal block elements
are the openers, and maximal block elements are the closers. For upper arc diagrams, both a fixed point
and an upper transitory contribute to the set of minimal (opener) and the set of maximal (closer) elements
over blocks of the set partition. Lower arc diagrams are set partitions in Marberg’s partition setting, thus
Theorem1.1 and Corollary 1.2 of (10) apply exactly here.

Given an r-coloured permutation Σ = (S, φ), let the set of openers (resp. the set of closers) be O(Σ)
(resp. C(Σ)) of the uncoloured permutation, S. For all positive integers, j and k, and subsets O, C ⊆ [n],
define NCNO,C

j,k (n, r) to be the number of r-coloured permutations Σ of [n] with cr(Σ) < j, ne(Σ) < k,
O(Σ) = O, and C(Σ) = C. Then Theorem 1 is analogous to Theorem 1.1 in (4, 10) for r-coloured
permutations.
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Theorem 1 For all positive integers, j and k, and subsetsO, C ⊆ [n], NCNO,C
j,k (n, r) = NCNO,C

k,j (n, r).

As customary in the literature, we let NCNj,k(n, r) denote the number of all r-coloured, j-noncrossing,
k-nonnesting permutations of [n]. Summing both sides of Theorem 1 over all O, C ⊆ [n] gives the
generalization of (4, 10) for Corollary 1. We also let NCk(n, r) (resp. NNk(n, r)) denote the number of
k-noncrossing (resp. k-nonnesting) r-coloured permutations on [n].

Corollary 1 For all integers, j, k, n, r, NCNj,k(n, r) = NCNk,j(n, r) and NCk(n, r) = NNk(n, r).

1.3 Plan
The tools needed for the proof of Theorem 1 are given in Section 2. Section 3 gives the proof of Theorem 1
combining essential ingredients of both (2, 10) with the added care of managing both upper and lower
arc diagrams simultaneously where both notions of crossing and nesting are applied. The transfer matrix
approach Marberg used to establish the rationality of the ordinary generating function,

∑
n≥0 NCNj,k(n+

1, r)xn for set partitions of size n + 1 is through translating the original problem to counting all closed
walks of n-steps with certain column and row length restrictions (according to j, k) for each component
from ∅ ∈ Yr, that is, r copies of the Hasse diagram of the Young lattice. This idea cannot be extended to
permutations on (Yr,Yr) because upper arc diagrams are dependent on lower arc diagrams. However,
another interpretation of Marberg’s multigraphs Gj,k,r in terms of the types of vertices and colours of
edges leads to the multigraphs for r-coloured permutations which permits the application of transfer
matrix method to draw the same conclusion: The ordinary generating function,

∑
n≥0 NCNj,k(n, r)xn

for j-noncrossing, k-nonnesting, r-coloured permutations is rational. The combination of the method
of generating trees and finite state automata in the interpretation can be extended to other combinatorial
objects where both crossing and nesting statistics are bounded, thus leading to the same conclusion that
the corresponding generating functions are rational.

2 Background
The proof of Theorem 1 requires working knowledge of the theory of integer partition, especially its
representation as Young diagrams, the Hasse diagram of the Young lattice, and the RSK-algorithm for
filling positive integers to obtain the beginning of some standard Young tableau. We refer the reader to
Volume 2 of Stanley’s Enumerative Combinatorics (14) for more details.

Define a partition of n ∈ N to be a sequence λ = (λ1, λ2, . . . , λk) ∈ Nk such that
∑k
i=1 λi = n,

and λ1 ≥ λ2 ≥ · · · ≥ λk. If λ is a partition of n, we write λ ` n or |λ| = n. The non-zero terms λi
are called the parts of λ, and we say λ has k parts if λk > 0. We can draw λ using a left-justified array

of boxes with λi boxes in row i. For example, λ = (5, 3, 2, 2, 1) is drawn as . This representation
is the Young diagram of a partition. To “add a box” to a partition λ means to obtain a partition µ such
that |λ|+ 1 = |µ|, and λ’s Young diagram is included in that of µ. This inclusion induces a partial order
on the set of partitions of non-negative integers, denoted by Y, or the Young lattice. When we place
integers 1, 2, . . . , n in all n boxes of a Young diagram so that entries increase in each row and column, we
produce a standard Young tableau, abbreviated as SYT. As one builds an SYT from the empty set through
the process of adding a box at a time, a sequence of integer partitions, (λ0 = ∅, λ1, λ2, . . . , λn) emerges
where λi−1 ⊂ λi, and |λi| = |λi−1| + 1. In addition to adding a box, we include “deleting a box” and
“doing nothing” for the following four types in Definition 1.
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Definition 1 We define four types of sequences of tableaux, T = (λ0 = ∅, λ1, λ2, . . . , λn), where λ0 =
λn = ∅ such that λi is obtained from λi−1 for each i ∈ [n] by one of the three actions: adding a box,
deleting a box, or doing nothing.

1. A semi-oscillating tableau is any such sequence T .

2. An oscillating tableau has distinct neighbouring λi’s.

3. A vacillating tableau is any such sequence T which has λi−1 ⊆ λi when i is even, and λi−1 ⊇ λi

when i is odd.

4. A hesitating tableau is any such sequence T which has λi−1 ⊆ λi when i is odd, and λi−1 ⊇ λi

when i is even.

In the uncoloured case, Marberg (10) links the sequence T to an n-step walk on the Hasse diagram
of the Young lattice, Y where “doing nothing” is also counted as a step. For his enumeration purposes,
Marberg’s definitions differ slightly from (4) to achieve that these n-step walks are closed walks from ∅.
Though we will not walk on an ordered pair of r-tuple Hasse diagrams, we will keep the requirement that
each sequence T begins and ends with ∅.

3 Proof of Main Theorem
The proof of Theorem 1 needs two local rules for changing set partitions to involutions: Rule H for
hesitating tableaux tracking enhanced statistics in upper arcs and Rule V for vacillating tableaux.

Opener Closer Transitory Fixed point
Rule H 7→ 7→ 7→ 7→
Rule V 7→ 7→ 7→ 7→

3.1 Proof of Theorem 1

Proof: We show an involution between the set of r-coloured permutations of [n] with maximal crossing
number j, nesting number k and those with maximal crossing number k and nesting number j.

Given an r-coloured permutation of [n], say Σ = (S, φ), first consider its corresponding uncoloured
permutation S. Let O be O(S), the set of openers and C be C(S), the set of closers. Applying the
involution of (2) results in another permutation with the same O and C while switching maximal crossing
and nesting numbers.

Now for each colour class, the resulting arc diagram is no longer a permutation, but two set partitions:
enhanced for the upper arc diagram, and non-enhanced for the lower arc diagram. We employ the same
encoding techniques from (2):

Step 1 Translate the upper arc diagram into a hesitating tableau sequence, and the lower arc diagram into
a vacillating tableau sequence.

Step 2 Perform a component-wise transpose to each tableau sequence.

Step 3 Apply reverse RSK to fill each tableau in the sequence from the right to the left.

Step 4 Translate the newly filled sequence of tableaux back to arc diagrams according to its own rule.
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Thus, we obtain the resulting arc diagram with its upper and lower arc components where maximal cross-
ing and nesting numbers are switched because the bijections of (2, 4, 9) interchange maximal column
length with maximal row length while preserving sets of maximal and minimal block elements. This in-
terchange achieved through taking the conjugate (transpose) of each tableau translates to the switching of
maximal nesting and crossing numbers while preserving the sets of openers and closers. The preservation
of these sets when restricted to one colour of arcs permits the involution to be applied separately to all
arcs of the same colour, one colour at a time, without interfering with the sets of openers and closers
from other colour classes. Finally, the combination of all r involutions, one for each colour, produces
the desired r-coloured permutation such that for each colour, crossing number and nesting number are
switched. If the original r-coloured Σ is j-noncrossing and k-nonnesting, then its image after the r-fold
involution is j-nonnesting and k-noncrossing. 2

3.2 An example of a 2-coloured permutation
We show a 2-coloured permutation where we apply the involution of the proof of Theorem 1 to find its
image.
Example 1 A permutation encoded by a hesitating tableau sequence, λ1 for colour 1, λ2 for colour 2 in
the upper arcs and a vacillating tableau sequence, µ2 for colour 2 in the lower arcs.

λ01 λ11 λ21 λ31 λ41 λ51 λ61 λ71 λ81 λ91 λ101 λ111 λ121
∅ 4 4 4 4 3

4
4 4 ∅ ∅ ∅ ∅ ∅

Rule H1

λ02 λ12 λ22 λ32 λ42 λ52 λ62 λ72 λ82 λ92 λ102 λ112 λ122
∅ ∅ ∅ 5 5 5 5 5 6 5 6 5 6 6 6 ∅

Rule H2

1 2 3 4 5 6

1
2

2

1

2

2

Rule V2

µ0
2 µ1

2 µ2
2 µ3

2 µ4
2 µ5

2 µ6
2 µ7

2 µ8
2 µ9

2 µ10
2 µ11

2 µ12
2

∅ ∅ 6 6 5
6

5
6

5
6

5
6

5
6

6 6 ∅ ∅

The result of transposing every tableau in each sequence λ1, λ2, and µ2, and filling the tableau from the
right is the following 2-coloured permutation in Figure 5.

4 Enumeration of r-coloured permutations
Before we enumerate r-coloured permutations, a quick overview of Marberg’s approach for the enumer-
ation of coloured set partitions helps set the stage for a new interpretation.
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1 2 3 4 5 6

1

2

21

2 2

Figure 5: The image of Example 1 under the involution in the proof of Theorem 1

4.1 Another interpretation of Gj,k,r for set partitions
Marberg viewed r sequences of vacillating tableaux, one for each colour, as r×(k−1) matricesA = [Ai,l]
encoding λli in a vacillating tableau sequence T for colour i. If the set partition is j-noncrossing and
k-nonnesting, then this tableau has a maximum of j − 1 columns and k − 1 rows. For colour i, the
ith row of matrix A just lists parts of λl, thus at most k − 1 non-zero parts. The multigraph Gj,k,r is
drawn using all such allowable A’s as vertices, and edges and loops connecting vertices corresponding
to adding a box, deleting a box, or doing nothing in the construction of vacillating tableaux so that the
resulting sequence contains only tableaux of at most j − 1 columns and k − 1 rows. Once completed,
the multigraph Gj,k,r gives rise to an adjacency matrix. To find the number NCNj,k(n, r) which is also
the number of (n − 1)-step walks on Gj,k,r from the zero matrix to itself, the method of transfer matrix
gives a quotient of two polynomials (determinants actually), thus concluding that the ordinary generating
function

∑
n≥0 NCNj,k(n+ 1, r)xn is rational.

4.2 Examples of G2,2,1 and G2,2,2 for set partitions
To illustrate the construction of Gj,k,r, we first reconstruct Marberg’s G2,2,1 and G2,2,2 by naming each
vertex and edge as it becomes necessary.

The arc annotated diagram of a set partition on [n] has n − 1 consecutive gaps, i. e. between each pair
of adjacent points. Let the set of non-crossing, non-nesting, uncoloured set partitions on [n] be denoted
by P2,2,1(n). For each P ∈ P2,2,1(n), a snap shot of each gap belongs to one of the first four types in
Table 1 where the matching steps in G2,2,1 are also given. Since r = 1, only two vertices exist in G2,2,1:
v0, the initial state for no opener, and v1, for one opener. No other vertices accounting for other states
are present because any state vi where i ≥ 2 would mean two or more openers which will form at least

a 2-nesting or 2-crossing when closed. Incident at v0 are three types of edges: two loops,
×

for no arc

in the consecutive gap, and
1

for a distance 1-arc both of which do not change the number of openers
present as the set partition is scanned from the left to the right; the last type is a directed edge from v0 to

v1 to indicate that an opener is present in the consecutive gap. Once at v1, only the loop,
×

, is allowed

because a 1-arc
1

will create a 2-nesting in P with the existing opener. A directed edge from v1 to v0
means that an opener is closed. To simplify drawing, an edge without arrows is bidirectional. The result
is shown in Figure 6.

To construct G2,2,2, we require four vertices: still v0 as the initial state for no opener, but also two states
indicating one r-coloured (r ∈ [2]) opener, v11 and v12 . Since two arcs of different colours do not create
a crossing or nesting, one more state is needed, v212 , for two openers, one of each colour. As in G2,2,1,
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v0 v1

×

1

×1

Figure 6: An uncoloured set partition graph, G2,2,1.

v0

v11

v12

v212

×

1

2

× 2

×
1

×

1

2

12

2

1

Figure 7: A 2-coloured set partition graph, G2,2,2.

the loops and edges are placed according to what is allowed in P , but a new edge between v11 and v12
is added in the last row of Table 1 for the closing of one colour on point m while an opener is present at
point m− 1 in P . The result is shown in Figure 7.

For details on how the adjacency matrices for Figures 6 and 7 give rise to generating functions, please
see (16).

In general, we obtain Gj,k,r directly through labelling the edges and vertices of Gj,k,r similar to gener-
ating such set partitions through the method of generating trees except that each vertex vi (considered as a
state) in Gj,k,r indicates that i openers are pending to close. When drawn from the left to the right where
all vertices of the same first subscript line up vertically, we get edges either between vi and vi+1 for each
i ≥ 0 for openers or closers as in Figure 8, or between vertices of the same first subscript for the presence
of both (drawn as vertical edges, not shown in Figure 8). Care needs to be taken when many arcs of the
same colour are open because the order in which they are closed relates to how crossing and nesting are
formed.

We list the first few series for G2,2,r, r = {3, 4}. The first two series, r = 1, 2 were found by Marberg
(10) where A216949 in (12) is for r = 2. Our series mark the number of consecutive gaps, namely, xk

counts the number of such coloured set partitions on k + 1 elements. For more terms and the rational
functions, please consult A225029–A225033 in (12) for r = 3 to 7.

∑

n≥0
NCN2,2(n, 3)xn =

1− 10x+ 22x2 − x3
1− 14x+ 59x2 − 74x3 + x4

= 1+4x+19x2+103x3+616x4+3949x5+ . . .

∑

n≥0
NCN2,2(n, 4)xn =

1− 20x+ 122x2 − 224x3 + x4

1− 25x+ 218x2 − 782x3 + 973x4 − x5 = 1+5x+29x2+193x3+1441x4+. . .

Using an average personal computer, Maple15 can generate up to 7 colours. The next case, r = 8, with a
matrix size of 256× 256, computation would take too long to find the determinants.

4.3 Multigraphs, G2,2,1 and G2,2,2 for permutations
Instead of translating consecutive gaps from set partitions into steps in the multigraph G, we examine
each vertex in the arc diagram of a coloured permutation and assign each type of vertex to a step in G.
As for set partitions, we first construct the multigraph G2,2,1 for non-crossing, non-nesting, uncoloured
permutations. Let us denote the set of all such permutations on [n] by S2,2,1(n). If S ∈ S2,2,1(n), then a
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v0

v11

v12

...
v1r

v211

v212

...
v21r

v221

...
v2rr

Figure 8: The line-up for states of the same number of openers

Domain Set partition Types of arcs Types of steps in G2,2,1 and G2,2,2

m ≥ 2 m− 1 m no arc
×

m ≥ 2 m− 1

r

m a 1-arc coloured r
r

, r ∈ [2]

m ≥ 2 m− 1

r

m an opener vi

r

vi+1

m ≥ 3 m

r

m− 1 a closer vi+1rvi

m ≥ 3 m− 1

2

m

1

a closer and an opener

vi1

12

vi2

Table 1: Five situations between point m− 1 and point m for set partitions and the matching steps in G.

vertex is either a fixed point ( ) , an opener ( ), a closer ( ), or a lower transitory( ). We can’t
have an upper transitory which contributes to a 2-(enhanced) crossing.

In Figure 9, v0 still indicates the initial state with 0 opener; v1 indicates the state with 1 opener. The
loop labelled 1 is the step taken when a fixed point coloured 1 is encountered in the permutation scanned
from the left. The loop labelled 1t is the presence of a lower transitory with coloured 1 arcs on both sides;
this is possible only when an opener coloured 1 is present, thus at v1. Note that a lower transitory does
not alter the state. The directed edge (v0, v1) indicates the presence of an opener, and the edge traversed
in reverse indicates that of a closer. An edge drawn without arrows still means a bidirectional edge.

The construction of G2,2,2 involves more types of vertices and edges which we summarize in Table 2.

v0 v11 1t

1
1

Figure 9: An uncoloured permutation graph, G2,2,1.
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Each state with one opener has the colours of the openers as subscripts. When a state has two openers,
both colours are used, thus only one such vertex in v2. The method of transfer matrix gives the following
generating function. Here x marks the size of the permutation.

∑

n≥0
NCN2,2(n, 2)xn =

1− 6x+ 4x2

(1− 2x)(1− 6x)
= 1+2x+8x2 +40x3 +224x4 +1312x5 +7808x6 +O(x7).

This series, A092807 in (12), counts (with interpolated zeros) the number of closed walks of length n
at a vertex of the edge-vertex incidence graph of K4, the complete graph on 4 vertices associated with the
edges of K4. The next two series, A224992 and A224993 in (12), however, are new. For 5 colours, the
matrix size, 252× 252, hinders fast computation of determinants.

∑

n≥0
NCN2,2(n, 3)xn =

1− 17x+ 66x2 − 36x3

(1− 2x)(1− 6x)(1− 12x)
= 1 + 3x+ 18x2 + 144x3 + 1368x4 +O(x5),

∑

n≥0
NCN2,2(n, 4)xn =

1− 36x+ 380x2 − 1200x3 + 576x4

(1− 2x)(1− 6x)(1− 12x)(1− 20x)
= 1+4x+32x2+352x3+4736x4+O(x5).

Domain Permutation Vertex Types of arcs Types of steps in G2,2,2

all vertices

l

a fixed point
l

, l ∈ [2]

all except the last

r

s an opener vi

r
s

vi+1 , r, s ∈ [2]

all except the first

r

s a closer vi+1

r
s

vi , r, s ∈ [2]

no first, no last rr a lower transitory
rt

, r ∈ [2]

no first, no last
sr

an upper transitory

vir

rs

vis , r, s ∈ [2]

no first, no last rs a lower transitory

vir

sr

vis , r, s ∈ [2]

Table 2: Vertices in permutations and the matching steps in G2,2,2.

4.4 Proof of Rationality through Multigraphs for r-coloured permutations
In general, drawing Gj,k,r for coloured permutations is a tedious task. As the j, k, and r increase, types of
edges and vertices increase. Not only does one need to track the order in which coloured arcs are closed,
one also needs to create unidirectional edges which go to the right states. Regardless of the complexity of
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v0

v1 1
1

v1 1
2

v1 2
1

v1 2
2

v2 1,2
1,2

1

2

2 1t

2 2t

1t1

1 2t

1t

2t

1
1

12

1
2

2
1

12

2
2

12

12

2
2

1
2

2
1

1
1

Figure 10: A 2-coloured permutation multigraph, G2,2,2

the multigraph, Gj,k,r, only a finite number of vertices and edges are present because both crossing and
nesting numbers are bounded for the set of r-coloured permutations. Furthermore, the number of such
permutations on [n] is the number of n-step paths from v0 to v0 in Gj,k,r because all openers must be
closed. Using the method of transfer matrix then yields a rational function for the ordinary generating
function,

∑
n≥0 NCNj,k(n, r)xn.

5 Concluding Remarks
When both nesting and crossing numbers are bounded, a finite multigraph can be constructed. This
method of transfer matrix may be extended to the enumeration of set partitions of classical types as in
the works of Rubey and Stump (13), even their coloured counterparts. The challenge lies in finding the
generating function when only one of the bounds is present. For instance, Marberg (10) showed that the
ordinary generating function for noncrossing 2-coloured set partitions is D-finite, but conjectured non-D-
finite series for noncrossing r-coloured set partitions when r ≥ 3.
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Results and conjectures on the number of
standard strong marked tableaux

Susanna Fishel1†and Matjaž Konvalinka 2‡
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Abstract. Many results involving Schur functions have analogues involving k-Schur functions. Standard strong
marked tableaux play a role for k-Schur functions similar to the role standard Young tableaux play for Schur functions.
We discuss results and conjectures toward an analogue of the hook length formula.

Résumé. De nombreux résultats impliquant les fonctions de Schur possèdent des analogues pour les fonctions de
k-Schur. Les tableaux standard fortement marqués jouent un rôle pour les fonctions de k-Schur semblable á celui
joué par les tableaux de Young pour les fonctions de Schur. Nous proposons ici des résultats et conjectures vers un
analogue de la formule des équerres.

Keywords: k-Schur functions, strong marked tableaux, enumeration

1 Introduction
In 1988, Macdonald introduced a new class of polynomials and conjectured that they expand positively
in terms of Schur functions. This conjecture, verified in Haiman (2001), has led to an enormous amount
of work, including the development of the k-Schur functions. The k-Schur functions were defined in
Lapointe et al. (2003). Lapointe, Lascoux, and Morse conjectured that they form a basis for a certain
subspace of the space of symmetric functions and that the Macdonald polynomials indexed by partitions
whose first part is not larger than k expand positively in terms of the k-Schur functions, leading to a
refinement of the Macdonald conjecture. The k-Schur functions have since been found to arise in other
contexts; for example, as the Schubert cells of the cohomology of affine Grassmannian permutations Lam
(2006), and they are related to the quantum cohomology of the affine permutations Lapointe and Morse
(2008).

One of the intriguing features of standard Young tableaux is the Frame-Thrall-Robinson hook-length
formula, which enumerates them. It has many different proofs and many generalizations, see e.g. (Stanley,
1999, Chapter 7), Greene et al. (1979), Ciocan-Fontanine et al. (2011) and the references therein.
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In this extended abstract, we partially succeed in finding an analogue of the hook-length formula for
standard strong marked tableaux (or starred tableaux for short), which are a natural generalization of
standard Young tableaux in the context of k-Schur functions. For a fixed n, the shape of a starred tableau
(see Subsection 2.5 for a definition) is necessarily an n-core, a partition for which all hook-lengths are
different from n. In Lam et al. (2010), a formula is given for the number of starred tableaux for n = 3.

Proposition 1.1 (Lam et al. (2010), Proposition 9.17) For a 3-core λ, the number of starred tableaux of
shape λ equals

m!

2bm2 c
,

where m is the number of boxes of λ with hook-length < 3. 2

The number of 2-hooks is
⌊
m
2

⌋
. Therefore we can rewrite the result as

m!∏

i,j∈λ
hij<3

hij
.

Note that this is reminiscent of the classical hook-length formula.

The authors left the enumeration for n > 3 as an open problem. The main result (Theorem 3.1) of this
extended abstract implies the existence, for each n, of (n− 1)! rational numbers which we call correction
factors. Once the corrections factors have been calculated by enumerating all starred tableaux for certain
shapes, the number of starred tableaux of shape λ for any n-core λ can be easily computed. In fact,
Theorem 3.1 is a t-analogue of the hook formula. The theorem is “incomplete” in the sense that we
were not able to find explicit formulas for the (weighted) correction factors. We have, however, been
able to state some of their properties (some conjecturally), the most interesting of these properties being
unimodality (Conjecture 3.7).

Another result of interest is a new, alternative description of strong marked covers via simple triangular
arrays of integers which we call residue tables and quotient tables (Theorem 4.2).

The extended abstract is structured as follows. In Section 2, we give the requisite background, notation,
definitions, and results. In Section 3, we state the main results and conjectures. In Section 4, we give
an alternative description of strong covers directly in terms of bounded partitions (instead of via cores,
abacuses or affine permutations). We envision this description as the first steps toward an inductive proof
of the main formula We finish with some remarks and open questions in Section 5.

2 Preliminaries
Here we introduce notation and review some constructions. Please see Macdonald for the definitions of
integer partitions, ribbons, hook lengths, etc., which we omit in this extended abstract.
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2.1 Cores and bounded partitions
Let n be a positive integer. An n-core is a partition λ such that hλij 6= n for all (i, j) ∈ λ. Core
partitions were introduced by Nakayama to describe when two ordinary irreducible representations of the
symmetric group belong to the same block. There is a close connection between (k + 1)-cores and k-
bounded partitions, which are partitions whose first part (and hence every part) is≤ k. Indeed, in Lapointe
and Morse (2005), a simple bijection between (k+ 1)-cores and k-bounded partitions is presented. Given
a (k + 1)-core λ, whose diagram has λi boxes in row i, let πi be the number of boxes in row i of λ
with hook-length ≤ k. The resulting π = (π1, π2, . . . , π`) is a k-bounded partition, we denote it b(λ).
Conversely, given a k-bounded partition π, move from the last row of π upwards, and in row i, shift the
πi boxes of the diagram of π to the right until their hook-lengths are at most k. The resulting (k+ 1)-core
is denoted c(π). In this extended abstract, we will always use n as shorthand for k + 1.

Example 2.1 On the left-hand side of Figure 1, the hook-lengths of the boxes of the 5-core λ = 953211
are shown, with the ones that are < 5 in bold. That means that b(λ) = 432211.

14 11 9 7 6 4 3 2 1

9 6 4 2 1

6 3 1

4 1

2

1

Fig. 1: Bijections b and c.

The right-hand side shows the construction of c(π) = 75221 for the 6-bounded partition π = 54221. �
Of particular importance are k-bounded partitions π that satisfy mi(π) ≤ k − i for all i = 1, . . . , k.

We call such partitions k-irreducible partitions, see Lapointe et al. (2003). The number of k-irreducible
partitions is k!.

2.2 Young tableaux and the hook-length formula
Young’s lattice Y takes as its vertices all integer partitions, and the relation is containment. If λ and µ are
partitions, then µ covers λ if and only if λ ⊆ µ and |µ| = |λ| + 1. The rank of a partition is given by its
size.

A semistandard Young tableau T of shape λ is a Young diagram of shape λ whose boxes have been
filled with positive integers satisfying the following: the integers must be nondecreasing as we read a
row from left to right, and increasing as we read a column from top to bottom. The weight of T is the
composition (α1, α2, . . .), where αi is the number of i’s in T . The tableau T is a standard Young tableau
if the entries are 1, . . . , |λ| in some order, i.e. if the weight is (1, . . . , 1). A standard Young tableau of
shape λ represents a saturated chain in the interval [∅, λ] of the Young’s lattice. Let (λ(0), λ(1), . . . , λ(m)),
λ(0) = ∅, λ(m) = λ, be such a chain. Then in the tableau corresponding to this chain, i is the entry in the
box added in moving from λ(i−1) to λ(i).
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The Frame-Thrall-Robinson hook-length formula shows how to compute fλ, the number of standard
Young tableaux of shape λ. We have:

fλ =
|λ|!∏
i,j∈λ h

λ
ij

. (2.1)

This formula has a well-known weighted version, see (Stanley, 1999, Corollary 7.21.5). For a standard
Young tableau T , define a descent to be an integer i such that i + 1 appears in a lower row of T than
i, and define the descent set D(T ) to be the set of all descents of T . Define the major index of T as
maj(T ) =

∑
i∈D(T ) i, and the polynomial

fλ(t) =
∑

tmaj(T ),

where the sum is over all standard Young tableaux of shape λ. Then

fλ(t) =
tb(λ)(|λ|)!∏
i,j∈λ (h

λ
ij)

. (2.2)

Here b(λ) =
∑
i(i− 1)λi =

∑
i

(
λ′
i
2

)
, (i) = 1 + t+ . . .+ ti−1 and (i)! = (1) · (2) · · · (i).

2.3 Strong marked and starred tableaux
The strong n-core poset Cn is the subposet of Y induced by the set of all n-core partitions. That is, its
vertices are n-core partitions and λ ≤ µ in Cn if λ ⊆ µ. The cover relations are trickier to describe in Cn
than in Y .

Proposition 2.2 (Lam et al. (2010), Proposition 9.5) Suppose λ ≤ µ in Cn, and let C1, . . . , Cm be the
connected components of µ/λ. Then µ covers λ (denoted λlµ) if and only if each Ci is a ribbon, and all
the components are translates of each other with heads on consecutive diagonals with the same residue.

The rank of an n-core is the number of boxes of its diagram with hook-length < n. If λ l µ and µ/λ
consists of m ribbons, we say that µ covers λ in the strong order with multiplicity m. Figure 2 shows the
strong marked covers for 4-cores with rank at most 6. Only multiplicities 6= 1 are marked.

A strong marked cover is a triple (λ, µ, c) such that λ l µ and that c is the content of the head of one
of the ribbons. We call c the marking of the strong marked cover. A strong marked horizontal strip of
size r and shape µ/λ is a sequence (ν(i), ν(i+1), ci)

r−1
i=0 of strong marked covers such that ci < ci+1,

ν(0) = λ, ν(r) = µ. If λ is an n-core, a strong marked tableau T of shape λ is a sequence of strong
marked horizontal strips of shapes µ(i+1)/µ(i), i = 0, . . . ,m − 1, such that µ(0) = ∅ and µ(m) = λ.
The weight of T is the composition (r1, . . . , rm), where ri is the size of the strong marked horizontal
strip µ(i)/µ(i−1). If all strong marked horizontal strips are of size 1, we call T a standard strong marked
tableau or a starred tableau for short. For a k-bounded partition π (recall that n = k + 1), denote the
number of starred tableaux of shape c(π) by F (k)

π .
Figure 3 illustrates F (3)

211 = 6.
If λ is a k-bounded partition that is also an n-core (i.e., if λ1 + `(λ) ≤ k + 1), then strong marked

covers on the interval [∅, λ] are equivalent to the covers in the Young lattice, strong marked tableaux of
shape λ are equivalent to semistandard Young tableaux of shape λ, and starred tableaux of shape λ are
equivalent to standard Young tableaux of shape λ.
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∅

2 2 2

2
2

2

2 2
2

2
2 2

Fig. 2: The 4-core lattice up to rank 6. Only boxes with hook-lengths ¡ 4 are drawn.

1∗ 2∗ 3∗ 1∗ 2∗ 4∗ 1∗ 2∗ 4 1∗ 3∗ 4∗ 1∗ 3∗ 4 1∗ 4 4∗

4∗ 3∗ 3∗ 2∗ 2∗ 2∗

4 4 4∗ 4 4∗ 3∗

Fig. 3: All starred tableaux of shape 311.

2.4 Schur functions

For the definition of Λ, the ring of symmetric functions, see Macdonald or Stanley (1999). For a partition
λ, define the monomial symmetric function

mλ = mλ(x1, x2, . . .) =
∑

α

xα,

where the sum is over all weak compositions α that are a permutation of λ, and xα = xα1
1 xα2

2 · · · . For
partitions λ and µ of the same size, define the Kostka number Kλµ as the number of semistandard Young
tableaux of shape λ and weight µ. Define the Schur function

sλ =
∑

Kλµmµ

with the sum over all partitions µ. The Schur functions form the most important basis of Λ and have
numerous beautiful properties. See for example (Stanley, 1999, Chapter 7) and (Macdonald, Chapter 1).
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2.5 k-Schur functions
There are at least three conjecturally equivalent definitions of k-Schur functions. Here, we give the def-
inition from Lam et al. (2010) via strong marked tableaux. For k-bounded partitions π and τ , define the
k-Kostka number K(k)

πτ as the number of strong marked tableaux of shape c(π) and weight τ . Then we
define the k-Schur function

s(k)π =
∑

τ

K(k)
πτ mτ , (2.3)

where the sum is over all k-bounded partitions τ .

If π is also a (k+1)-core, then strong marked tableaux of shape π are equivalent to semistandard Young
tableaux of shape π, and therefore in this case s(k)π = sπ .

The original definition of k-Schur functions was via atoms Lapointe et al. (2003), which we will not use
here (but see 5.2). Note that in full generality, the k-Schur functions (in any definition) have a parameter
t. In this extended abstract, t = 1.

3 Main results and conjectures
For a starred tableau T , define the descent set of T , D(T ), as the set of all i for which the marked box at
i is strictly above the marked box at i + 1. Define the major index of T , maj(T ), by

∑
i∈D(T ) i. For a

k-bounded partition π, define the polynomial

F (k)
π (t) =

∑

T

tmaj(T ), (3.1)

where the sum is over all starred tableaux of shape c(π). Recall that F (k)
π denotes the number of such

starred tableaux, i.e. F (k)
π = F

(k)
π (1).

Our main result is the following theorem.

Theorem 3.1 Let π be a k-bounded partition, and write

π = 〈ka1+1·w1 , (k − 1)a2+2·w2 , . . . , 1ak+k·wk〉,

for 0 ≤ ai < i. Then

F (k)
π (t) =

t
∑k
i=1 wi(

i
2)(k−i+1)(|π|)!F (k)

σ (t)

(|σ|)! ∏k
j=1 (j)

∑k
i=1 wimin{i,j,k+1−i,k+1−j} ,

where σ = 〈ka1 , (k − 1)a2 , . . . , 1ak〉.
By plugging in t = 1, we get the following.

Corollary 3.2 Let π be a k-bounded partition, and write

π = 〈ka1+1·w1 , (k − 1)a2+2·w2 , . . . , 1ak+k·wk〉,
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for 0 ≤ ai < i. Then

F (k)
π =

|π|!F (k)
σ

|σ|! ∏k
j=1 j

∑k
i=1 wimin{i,j,k+1−i,k+1−j} ,

where σ = 〈ka1 , (k − 1)a2 , . . . , 1ak〉. 2

The theorem (respectively, corollary) implies that in order to compute F (k)
π (t) (resp., F (k)

π ) for all k-
bounded partitions π, it suffices to compute F (k)

σ (t) (resp., F (k)
σ ) only for k-irreducible partitions σ; recall

that there are k! such partitions.

The proof is omitted in the extended abstract. Let us just mention that it uses the expansion of k-Schur
functions in terms of fundamental quasisymmetric functions, and the stable principal specialization (i.e.,
evaluation at 1, t, t2, . . .) of fundamental quasisymetric functions.

Example 3.3 The following gives the formulas for k ≤ 3.

1. For k = 1, we have F (1)
10 (t) = 1 and therefore

F
(1)
1w1 (t) =

(w1)! · 1
(0)! · (1)w1

= (w1)!.

This is consistent with (Lam et al., 2010, §9.4.1), which states that F (1)
1w1 = w1!.

2. For k = 2, we have F (2)
2010(t) = 1 and F (2)

2011(t) = 1. Therefore,

F
(2)

2w112w2
(t) =

tw2(2w1 + 2w2)! · 1
(0)! · (2)w1+w2

=
tw2(2w1 + 2w2)!

(2)
w1+w2

.

F
(2)

2w111+2w2
(t) =

tw2(2w1 + 2w2 + 1)! · 1
(0)! · (2)w1+w2

=
tw2(2w1 + 2w2 + 1)!

(2)
w1+w2

.

This is consistent with (Lam et al., 2010, Proposition 9.17), reprinted here as Proposition 1.1.

3. For k = 3, we have F
(3)
302010 = F

(3)
302011 = F

(3)
302110 = 1, F (3)

302012 = t, F (3)
302111 = t(1 + t) and,

F
(3)
302112 = t

(
t2 + 1

) (
t2 + t+ 1

)
. So, among other formulas, we have

F
(3)

3w121+2w211+3w3
(t) =

t2w2+3w3+1 · (3w3 + 4w2 + 3w1 + 3)!

(2)
w1+2w2+w3 · (3)w1+w2+w3+1 .

Using a computer, it is easy to obtain formulas for larger k. �

We now introduce weighted correction factors. For a k-bounded partition π, let H(k)
π (t) =

∏
(hij),

where the product is over all boxes (i, j) of the (k + 1)-core c(π) with hook-lengths at most k, and let
H

(k)
π = H

(k)
π (1) be the product of all hook-lengths≤ k of c(π). Furthermore, if bj is the number of boxes

in the j-column of c(π) with hook-length at most k, write b(k)π =
∑
j

(
bj
2

)
.
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Example 3.4 For the 6-bounded partition π = 54211 from Example 2.1, we have
H

(6)
π (t) = (1)

4
(2)

3
(3)

2
(4)

2
(5)(6)

2, H(6)
π = 207360 and b(6)π = 2

(
3
2

)
+ 3
(
2
2

)
+ 2
(
1
2

)
= 9. �

By introducing weighted correction factors C(k)
σ (t) for a k-irreducible partition σ, we can, by Theorem

3.1, express F (k)
π (t) (for all k-bounded partitions π) in another way which is reminiscent of the classical

hook-length formula. More precisely, define a rational function C(k)
σ (t) so that

F (k)
σ (t) =

tb
(k)
σ (|σ|)!C(k)

σ (t)

H
(k)
σ (t)

. (3.2)

Note that this implies, in the notation of Theorem 3.1, that

F (k)
π (t) =

tb
(k)
σ +

∑k
i=1 wi(

i
2)(k+1−i)(|π|)!C(k)

σ (t)

H
(k)
σ (t) ·∏k

j=1 (j)
∑k
i=1 wimin{i,j,k+1−i,k+1−j} .

The correction factor C(k)
σ is defined as C(k)

σ (1).

For k ≤ 3, all weighted correction factors are 1. For k = 4, all but four of the 24 weighted correction
factors–for 4-bounded partitions 2211, 321, 3211 and 32211–are 1, and the ones different from 1 are

1 + 2t+ t2 + t3

(2)(3)
,

1 + t+ 2t2 + t3

(2)(3)
,

1 + 2t+ 2t2 + 2t3 + t4

(3)
2 ,

1 + t+ 3t2 + t3 + t4

(3)
2 ,

respectively.

We state some results and conjectures about the weighted correction factors. For a k-bounded partition
π, denote by ∂k(π) the boxes of c(π) with hook-length ≤ k. If ∂k(π) is not connected, we say that π
splits. Each of the connected components of ∂k(π) is a horizontal translate of ∂k(πi) for some k-bounded
partition πi. Call π1, π2, . . . the components of π.

Proposition 3.5 The weighted correction factors are multiplicative in the following sense. If a k-irreducible
partition σ splits into σ1, σ2, . . . , σm, then C(k)

σ (t) =
∏m
i=1 C

(k)
σi (t).

Conjecture 3.6 For a k-irreducible partition σ, the weighted correction factor is 1 if and only if σ splits
into σ1, σ2, . . . , σl, where each σi is a k-bounded partition that is also a (k + 1)-core.

The “if” direction is easy: if a k-bounded partition σ is also a (k + 1)-core, then strong covers on the
interval [0, σ] are precisely the regular covers in the Young lattice, the starred tableaux of shape σ are
standard Young tableaux of shape σ, and the major index of a starred tableau of shape σ is the classical
major index for standard Young tableaux; the fact that the weighted correction factor is 1 then follows
from the classical weighted version of the hook-length formula (2.2). If σ splits into cores, we can use
(Denton, 2012, Theorem 1.1).

The most interesting conjecture about the weighted correction factors is the following. Recall that a
sequence (αi)i is unimodal if there exists I so that αi ≤ αi+1 for i < I and αi ≥ αi+1 for i ≥ I , and a
unimodal polynomial is a polynomial whose sequence of coefficients is unimodal.
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Conjecture 3.7 For a k-irreducible partition σ, we can write

1− C(k)
σ (t) =

P1(t)

P2(t)
,

where P1(t) is a unimodal polynomial with non-negative integer coefficients and P2(t) is a polynomial of
the form

∏k−1
i=1 (j)

wj for some non-negative integers wj .
In particular, we have 0 < C

(k)
σ ≤ 1 for all σ.

4 Strong covers and k-bounded partitions
Our proof of Theorem 3.1, omitted in the extended abstract, closely follows one of the possible proofs
of the classical (non-weighted and weighted) hook-length formula, see e.g. (Stanley, 1999, §7.21). Note,
however, that the truly elegant proofs (for example, the celebrated probabilistic proof due to Greene,
Nijenhuis and Wilf Greene et al. (1979)) are via induction. In this section, we show the first steps toward
such a proof.

In the process, we present a new description of strong marked covers in terms of bounded partitions
(previous descriptions included cores – at least implicitly, via k-conjugation – affine permutations and
abacuses). See the definition of residue and quotient tables below, and Theorem 4.2.

We identify a bounded partition π = 〈kp1 , (k − 1)p2 , . . . , 1pk〉 with the sequence p = (p1, . . . , pk).
Given i, j,m, 0 ≤ m < i ≤ j ≤ k, define pi,j,m as follows.

For i < j, pi,j,mh =





ph +m if h = i− 1

ph −m if h = i

ph −m− 1 if h = j

ph +m+ 1 if h = j + 1

Ph otherwise.

For i = j, pi,i,mh =





ph +m if h = i− 1

ph − 2m− 1 if h = i

ph +m+ 1 if h = i+ 1

Ph otherwise.

If j = k, then we are adding m+ 1 copies of k − j = 0, which does not change the partition. If i = 1,
we have m = 0, so adding m copies of k + 2 − i = k + 1 also does not change the partition. To put it
another way: to get pi,j,m from p, increase the firstm copies of k+1− i by 1, and decrease the lastm+1
copies of k + 1− j by 1. See Example 4.3.

Define upper-triangular arraysR = (rij)1≤i≤j≤k, Q = (qij)1≤i≤j≤k by

• rjj = pj mod j, rij = (pi + ri+1,j) mod i for i < j,

• qjj = pj div j, qij = (pi + ri+1,j) div i for i < j.

We callR the residue table and Q the quotient table.

Example 4.1 Take k = 4 and p = (1, 3, 2, 5). Then the residue and quotient tables are given by

0 0 0 0
1 1 1

2 0
1

1 2 2 2
1 2 1

0 1
1
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It is easy to reconstruct p from the diagonals ofR and Q: p1 = 0 + 1 · 1, p2 = 1 + 1 · 2, p3 = 2 + 0 · 3,
p4 = 1 + 1 · 4. �

It turns out that the residue and quotient tables determine strong marked covers (and probably other
important relations as well, see 5.5).

Theorem 4.2 Take p = (p1, . . . , pk) and 1 ≤ i ≤ j ≤ k. If rij < ri+1,j , . . . , rjj , then p covers pi,j,rij in
the strong order with multiplicity qij + . . .+ qjj . Furthermore, these are precisely all strong covers.
In particular, an element of the (k + 1)-core lattice covers at most

(
k+1
2

)
elements.

Example 4.3 Take k = 4 and p = (1, 3, 2, 5) as before. Let us underline the entries rij in the residue
tableR for which rij < ri+1,j , . . . , rjj .

0 0 0 0
1 1 1

2 0
1

By Theorem 4.2, p covers (exactly) the following elements in the strong order:
p1,1,0 = (0, 4, 2, 5) with multiplicity 1, p1,2,0 = (1, 2, 3, 5) with multiplicity 2+1 = 3, p2,2,1 = (2, 0, 4, 5)
with multiplicity 1, p1,3,0 = (1, 3, 1, 6) with multiplicity 2+2+0 = 4, p2,3,1 = (2, 2, 0, 7) with multiplicity
2 + 0 = 2, p3,3,2 = (1, 5,−3, 8) with multiplicity 0, p3,4,0 = (1, 3, 2, 4) with multiplicity 1 + 1 = 2, and
p4,4,1 = (1, 3, 3, 2) with multiplicity 1.

Note that while (1, 5,−3, 8) does not represent a valid partition, the multiplicity of the cover is 0, so
we can ignore this cover relation. �
For a k-bounded partition π, we clearly have

F (k)
π =

∑

τ

mτπF
(k)
τ ,

where the sum is over all k-bounded τ that are covered by π, and mτπ is the multiplicity of the cover.
Therefore Theorem 4.2 can be used to prove Corollary 3.2 for small values of k by induction. First, we
need the following corollary.

Corollary 4.4 Let p = (p1, . . . , pk), pi < i, with corresponding residue and quotient tables R and Q.
Assume that for 1 ≤ i ≤ j ≤ k, we have rij < ri+1,j , . . . , rjj . For si ∈ N, write s = (s1, 2s2, . . . , ksk).
Then p+ s covers pi,j,rij + s with multiplicity qij + . . .+ qjj + si + . . .+ sj .

The corollary implies that in order to prove Corollary 3.2, all we have to do is check k! equalities. The
authors did all such calculations with a computer for small k (k ≤ 8).

5 Final remarks
5.1
There are also notions of weak horizontal strips and weak tableaux. For n-cores λ and µ, λ ⊆ µ, we say
that µ/λ is a weak horizontal strip if b(µ)/b(λ) is a horizontal strip and b(µ′)/b(λ′) is a vertical strip. If
in addition |b(µ)| = |b(λ)| + 1, we say that µ covers λ in the weak order. A weak tableau of shape λ is
a sequence of weak horizontal strips µ(i+1)/µ(i), i = 0, . . . ,m − 1, such that µ(0) = ∅ and µ(m) = λ.
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Define f (k)π to be the number of weak tableaux of shape c(π). In Lam et al. (2010), it was proved that
f
(2)

2w112w2
= f

(2)

2w111+2w2
= (w1+w2)!

w1!w2!
.

It is not hard to prove by induction that

f
(3)

3w122w213w3
=

22w2(w1 + w2)!(w2 + w3)!(w1 + 2w2 + w3 − 1)!(2w1 + 2w2 + 2w3)!

w1!w2!w3!(w1 + w2 + w3 − 1)!(2w1 + 2w2)!(2w2 + 2w3)!
;

similar formulas exist for

f
(3)

3w122w211+3w3
, f

(3)

3w122w212+3w3
, f

(3)

3w121+2w213w3
, f

(3)

3w121+2w211+3w3
, f

(3)

3w121+2w212+3w3
.

We were unable to find formulas for k ≥ 4, and it seems unlikely that simple formulas exist. For example,
the simplest recurrence relation that g(i, j) = f

(4)
23i14j seem to satisfy is

a(i, j)g(i, j) + b(i, j)g(i, j + 1)− c(i, j)g(i+ 1, j) = 0,

where a and b are fourth degree polynomials in i and j with rational coefficients and c, also fourth degree,
is a polynomial with integer coefficients.

5.2
Our work has led us to consider (weighted) correction factors. They seem to be mysterious objects that
deserve further study. The unimodality conjecture (Conjecture 3.7) is certainly intriguing and could hint
that the factors have some geometric meaning.

Let us give another perspective on these factors. Since k-Schur functions are symmetric, they can be
expanded in terms of Schur functions; in fact, the original definition of k-Schur functions via atoms gives
precisely such an expansion. For example, s(4)2211 = s2211 + s321. Take the stable principal specialization
and multiply by (6)!(1 − t)6. By calculations done in our proof of Theorem3.1 and (Stanley, 1999,
Proposition 7.19.11), we have

F
(4)
2211(t) = f2211(t) + f321(t).

Then, by (3.2) and (Stanley, 1999, Corollary 7.21.5),

C
(k)
2211(t) = (2)(3)(4)

(
t3

(2)
2
(4)(5)

+
1

(3)
2
(5)

)
=

1 + 2t+ t2 + t3

(2)(3)
.

5.3
There is also a formula for the principal specialization of sλ of order i (i.e. evaluation at 1, t, . . . , ti−1,
see e.g. (Stanley, 1999, Theorem 7.21.2)), in which both hook-lengths and contents of boxes appear. By
imitating 5.2, we can get rational functions (which depend on i) which converge to the weighted correction
factors as i→∞. These rational functions also seem interesting and worthy of further study.

5.4
As we already mentioned, it would be preferable to prove Corollary 3.2 by induction, using the cover
relations in Section 4 for a general k and in a way that would make apparent the meaning of hook-lengths
and correction factors (the ideal being a variant of the probabilistic proof from Greene et al. (1979)). It
seems likely that one would need to know a formula for the correction factors before such a proof would
be feasible.
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5.5
We showed (in Theorem 4.2) how to interpret the residue and quotient table to find strong covers. We feel
that residue (and quotient) tables could prove important in other aspects of the k-Schur function theory.
These tables can also be used to describe weak covers, weak horizontal and vertical strips and at least one
of the possible cases of LLMS insertion for standard strong marked tableaux (see Lam et al. (2010)).
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Abstract. Originally motivated by algebraic invariant theory, we present an algorithm to enumerate integer vectors
modulo the action of a permutation group. This problem generalizes the generation of unlabeled graph up to an
isomorphism. In this paper, we present the full development of a generation engine by describing the related theory,
establishing a mathematical and practical complexity, and exposing some benchmarks. We next show two applications
to effective invariant theory and effective Galois theory.

Résumé. Initialement motivé par la théorie algébrique des invariants, nous présentons une stratégie algorithmique
pour énumérer les vecteurs d’entiers modulo l’action d’un groupe de permutations. Ce problème généralise le
problème d’énumération des graphes non étiquetés. Dans cet article, nous développons un moteur complet d’énumération
en expliquant la théorie sous-jacente, nous établissons des bornes de complexité pratiques et théoriques et exposons
quelques bancs d’essais. Nous détaillons ensuite deux applications théoriques en théorie effective des invariants et en
théorie de Galois effective.

Keywords: Generation up to an Isomorphism, Enumerative Combinatorics, Computational Invariant Theory, Effec-
tive Galois Theory

1 Introduction
Let G be a group of permutations, that is, a subgroup of some symmetric group Sn. Several problems in
effective Galois theory (see [Girstmair(1987), Abdeljaouad(2000)]), computational commutative algebra
(see [Faugère and Rahmany(2009), Borie and Thiéry(2011), Borie(2011)]) and generation of unlabeled
with repetitions species of structures rely on the following computational building block.

Let N be the set of non-negative integers. An integer vector of length n is an element of Nn. The
symmetric group Sn acts on positions on integer vectors in Nn: for σ a permutation and (v1, . . . , vn) an
integer vector,

σ.(v1, . . . , vn) := (vσ−1(1), . . . , vσ−1(n)) .

This action coincides with the usual action of Sn on monomials in the multivariate polynomial ring K[x]
with K a field and x := x1, . . . , xn indeterminates.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Problem 1.1 Let G ⊂ Sn be a permutation group. Enumerate the integer vectors of length n modulo the
action of G.

Note that there are infinitely many such vectors; in practice one usually wants to enumerate the vectors
with a given sum or content.

For example, the Problem 1.1 contains the listing non-negative integer matrices with fixed sum up to
the permutations of rows or columns appearing in the theory of multisymmetric functions [Gessel(1987),
MacMahon(2004)] and in the more recent investigations of multidiagonal coinvariant [Bergeron(2009),
Bergeron et al.(2011)Bergeron, Borie, and Thiéry].

Define the following equivalence relation over elements of Nn: two vectors u := (a1, . . . , an) and
v := (b1, . . . , bn) are equivalent if there exists a permutation σ ∈ G such that

σ · u = (aσ−1(1), . . . , aσ−1(n)) = (b1, . . . , bn) = v.

Problem 1.1 consists in enumerating all Nn/G equivalence classes.
This problem is not well solved in the literature. Some applications present a greedy strategy searching

and deleting all pairs of vectors such that the second part can be obtained from the first part. The most
famous sub-problem is the unlabeled graph generation which consists in enumerate tuples over 0 and 1 of
length

(
n
2

)
enumerated up to the action of the symmetric groups acting on pair on nodes. This example

has a very efficient implementation in Nauty which is able to enumerate all graphs over a small number
of nodes.

The algorithms presented in this paper have been implemented, optimized, and intensively tested in
Sage [Stein et al.(2009)]; most features are integrated in Sage since release 4.7 (2011-05-26, ticket
#6812, 1303 lines of code including documentation).

2 Orderly generation and tree structure over integer vectors
The orderly strategy consists in setting a total order on objects before quotienting by the equivalence
relation. This allows us to define a single representative by orbit. Using the lexicographic order on integer
vectors, we will call a vector v canonical under the action of G or just canonical if v is maximum in its
orbit under G for the lexicographic order:

v is canonical ⇔ v = max
lex
{σ · v | σ ∈ G}.

Now, the goal being to avoid to test systematically if vectors are canonical, we decided to use a tree
structure on the objects in which we will get properties relaying the canonical vectors. Any result relating
fathers, sons and the property of being canonical in the tree may allow us to skip some canonical test.

2.1 Tree Structure over integer vectors
Let r be the vector r := (0, . . . , 0) called root, we build a tree with the following function father.

Definition 2.1 Let a = (a1, a2, . . . , an) be a tuple of integers of length n which is not the root. Let
1 6 i 6 n be the position of the last non-zero entry of a. We define the father of a

father(a1, a2, . . . , ai, 0, 0, . . . , 0) := (a1, a2, . . . , ai − 1, 0, 0, . . . , 0)
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For any integer vector v = (a1, . . . , an), we can go back to the generation root (0, . . . , 0) by sum(v) :=
a1 + · · ·+ an steps. The corresponding application giving the children of an integer vector is thus:

Definition 2.2 Let a = (a1, a2, . . . , an) be a tuple of integers of length n. Let 1 6 i 6 n be the position
of the last non-zero entry of a (i = 1 if all entries are null). The set of children of a is obtained as:

children: (a1, a2, . . . , ai, 0, 0, . . . , 0) 7−→





(a1, a2, . . . , ai + 1, 0, 0, . . . , 0)
(a1, a2, . . . , ai, 1, 0, . . . , 0)
(a1, a2, . . . , ai, 0, 1, . . . , 0)

. . .
(a1, a2, . . . , ai, 0, 0, . . . , 1)





Proposition 2.3 For any permutation group G ⊂ Sn, for any integer vector v, if v is not canonical
under G, all children of v are not canonical. Therefore, the canonicals form a ”prefix tree” in the tree of
all integer vectors.

Sketch of proof: When a father is not canonical, there exists a permutation such that the permuted
vector is greater. Applying the same permutation on the children shows also it cannot be canonical.

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

(3,0,0) (2,1,0) (2,0,1) (1,2,0) (1,1,1) (1,0,2) (0,3,0) (0,2,1) (0,1,2) (0,0,3)

Figure 1: Enumeration tree of integer vectors modulo the action of G = 〈(1, 2, 3)〉 ⊂ S3, the cyclic group of degree
3.

Figure 1 displays integer vectors of length 3 whose sum is at most 3 and shows the tree relations between
them. Choosing the cyclic group of order 3 and using the generation strategy, underlined integer vectors
are tested but are recognized to be not canonical. Using Proposition 2.3, crossed-out integer vectors are
not tested as they cannot be canonical as children of non canonical vectors.

Our strategy consists now in making a breath first search over the sub-tree of canonicals. This is done
lazily using Python iterators.

2.2 Testing whether an integer vector is canonical
As we have seen, the fundamental operation for orderly generation is to test whether an integer vector is
canonical; it is thus vital to optimize this operation. To this end, we use the work horse of computational
group theory for permutation groups: stabilizer chains and strong generating sets.

Following the needs required by applications, we want to test massively if vectors are canonical or not.
For this reason, we will use a strong generating system of the group G. We can compute this last item in
almost linear time [Seress(2003)] using GAP [GAP(1997)].
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Let n a positive integer and G a permutation group G ⊂ Sn. Recall that its stabilizer chain is Gn =
{e} ⊂ Gn−1 ⊂ · · · ⊂ G1 ⊂ G0 = G, where

∀i, 1 6 i 6 n : Gi := {g ∈ G|∀j 6 i : g(j) = j} .
From this chain, we build a strong generating system T = {T1, T2, . . . , Tn} where Ti is a transversal

of Gi−1/Gi. This set of strong generators is particularly adapted to the partial lexicographic order as
stabilizers are defined with positions 1, 2, . . . , n from left to right.

Let n and i be two positive integers such that 1 6 i 6 n. For v = (v1, . . . , vn) and w = (w1, . . . , wn)
two integer vectors of length n, let us define the following binary relations

v <i w ⇐⇒ (v1, . . . , vi) <lex (w1, . . . , wi)
v 6i w ⇐⇒ (v1, . . . , vi) 6lex (w1, . . . , wi)
v =i w ⇐⇒ ∀j, 1 6 j 6 i : vj = wj

where <lex and 6lex represent regular strict and large lexicographic comparison.
Algorithm 1 is a natural extension of McKay’s canonical graph labeling algorithm as it is explained

in [Hartke and Radcliffe(2009)].

Algorithm 1 Testing whether an integer vector is canonical
Arguments
• v: An integer vector of length n;
• sgs(G): A strong generating set for G, as a list {T1, . . . , Tn} of transversals.

def is canonical(v, sgs(G)) :
todo← {v}
for i ∈ {1, 2, . . . , n} :

new todo← { }
for w ∈ todo :

children← {g ·w|g ∈ Ti}
for child ∈ children :

if v <i child :
return False

else :
if v =i child and child /∈ new todo :

new todo← new todo ∪ {child}
todo← new todo

return True

Algorithm 1 takes advantage of partial lexicographic orders and the strong generating system of the
group G. It tries to explore only a small part of the orbit of the vector v; the worst case complexity of
this step is bounded by the size of the orbit, and not by |G|. In this sense, it does take into account the
automorphism group of the vector v.

Proposition 2.4 Let n be a positive integer and G a subgroup of Sn. Let v be an integer vector of length
n. Algorithm 1 returns True if v is canonical under the action of G and returns False otherwise.

Sketch of proof: It is based on the properties of a strong generating system.
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3 Complexity
3.1 Theoretical complexity

3.1.1 Efficiency of the tree structure
Let n be a positive integer and G ⊂ Sn a permutation group. For any non negative integer d, let C(d)
(resp. C(d)) be the number of canonical (resp. non canonical) integer vectors of degree d. Based on
the tree structure presented in Section 2.1, let T (n) (resp. T (n)) the number of tested (resp. non tested)
integer vectors.

Proposition 3.1 Generating all canonical integer vectors up to degree d > 0 using the generation strat-
egy presented in Section 2 presents an absolute error bounded by C(d). Equivalently, regarding the series,
we have

d∑

i=0

T (i)−
d∑

i=0

C(i) 6 C(d)

Sketch of proof: Using Lemma 2.3, we get this bound noticing two tested but non canonical vectors
cannot have a paternity relation.

This absolute error is not very explicit (directly usable), but it can be used to get a relative error at the
price of a rough approximation.

Corollary 3.2 Let n and b be two positive integers and G ⊂ Sn a permutation group. Generating all
canonical monomials under the action of G up to degree d using the generation strategy presented in
Section 2 presents a relative error bounded by min{n(|G|−1)n+d , n− 1}.

Sketch of proof: We use the previous proposition with the fact that any integer vector has at least one
child but no more than n− 1 children (the generation root is the only one having n children).

The bound is optimal for trivial groups ({e} ⊂ Sn), and seems to be better as the permutation group is
of small cardinality. This relative error becomes better as we go up along the degree and tends to become
optimal when the degree goes to infinity.

3.1.2 Complexity of testing if a vector is canonical
We now investigate the complexity of Algorithm 1. We need first to select a reasonable statistic to collect,
which will define the complexity of this algorithm.

The explosion appearing in the algorithm is conditioned by the size of the set new todo. For v an inte-
ger vector and {T1, . . . , Tn} a strong generating system of a permutationG, when i runs over {1, 2, . . . , n}
in the main loop, the set new todoi contains at step i:

new todoi = {g1 · · · gi · v|g1 · · · gi · v =i v,∀j 6 i : gj ∈ Tj}

The right statistic to record is the size of the union of the new todoi for all i such that the algorithm is
still running: that corresponds to the part of the orbit explored by the algorithm. This statistic appears to
be very difficult to evaluate by a theoretical way. However, collecting it with a computer is a simple task.
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3.1.3 Parallelization and memory complexity

Let us note that this generation engine is trivially amenable for parallelism: one can devote the study
of each branch to a different processor. Our implementation uses a little framework SearchForest,
co-developed by the author, for exploration trees and map-reduce operations on them. To get a paral-
lel implementation, it is sufficient to use the drop-in parallel replacement for SearchForest under
development by Jean-Baptiste Priez and Florent Hivert.

The memory complexity of the generation engine is reasonable, bounded by the size of the answer.
Indeed, we keep in the cache only the Canonical vectors of degree d − 1 when we search for those in
degree d. In case one wants to only iterate through the elements of a given degree d, then this can be
achieved with memory complexity O(nd).

3.2 Benchmarks design

To benchmark our implementation, we chose the following problem as test-case.

Problem 3.3 Let n be a positive integer and G ⊂ Sn a permutation group. Iterate through all the
canonical integer vectors v under the staircase (i.e. vi ≤ n− i).

A vector v of length n is said to be under the staircase when it is componentwise smaller than the vector
(n− 1, n− 2, . . . 1, 0).

This problem contains essentially all difficulties that can appear. The family of n! integer vectors under
the staircase contains vectors with trivial automorphism group as well as vectors with a lot of symmetries.
Applications also require to deal with this problem as the corresponding family of monomials plays a
crucial role in algebra.

3.2.1 Benchmarks for transitive permutation groups

We now need a good family of permutation groups, representative of the practical use cases. We chose
to use the database of all transitive groups of degree ≤ 30 [Hulpke(2005)] available in Sage through the
system GAP [GAP(1997)].

The benchmarks have been run on an off-the-shelf 2.40 GHz dual core Mac Book laptop running
Ubuntu 12.4 and Sage version 5.3.

3.3 Benchmarks

3.3.1 Tree Structure over integer vectors

This first benchmark investigates the efficiency of the tree structure presented in Section 2.1. As we
don’t test children of non canonical integer vectors, one wants to take measures of the part of tested non
canonical vectors (which corresponds to the useless part of computations). For that, we solve Problem 3.3
for each group of the database and we collect the following information as follows.
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Transitive Groups of degree 5
Database Id. |G| Index in Sn Canonicals number of tests

1 5 24 71 81
2 10 12 68 81
3 20 6 46 67
4 60 2 41 67
5 120 1 41 67

This table displays the statistics for transitive groups of degree 5. Database Id. is the integer indexing
the group, |G| and Index in Sn are respectively the cardinality and the index of the group G in the
symmetric group Sn. Canonicals denotes the number of canonical vectors under the staircase and number
of tests is the number of times the algorithm testing if an integer vector is canonical is called.

From this information, we set a quantity Err defined as follows:

Err :=
number of tests− Canonicals

Canonicals
.

The following figure shows Err depending on the index n!
|G| . The figure contains 166 crosses, one for

each transitive group over at most 10 variables. We use a logarithmic scale on the x axis.
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Figure 2: Relative Error between number of tested vectors and number of canonicals vectors.

3.3.2 Empirical complexity of testing if a vector is canonical
Algorithm 1 needs to explore a part of the orbit of the tested integer vectors. The following table displays
for each transitive group over 5 variables, the number of elements of all orbits of tested vectors solving
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Problem 3.3 compared to the total number of integer vectors explored.

Transitive Groups of degree 5
Database Id. |G| Index in Sn total orbits total explored

1 5 24 401 351
2 10 12 691 393
3 20 6 1091 365
4 60 2 1891 328
5 120 1 1891 326

Now we define Ratio to be the average size of the orbit needed to be explored to know if an integer
vector is canonical:

Ratio :=
total explored

total orbits
.

The following figure plots Ratio in terms of |G| for transitive groups on at most 9 variables.
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Figure 3: Average, over all integer vectors v under the stair case, of the number of vectors in the orbit of v explored
by is canonical(v).

3.3.3 Overall empirical complexity of the generation engine
We now evaluate the overall complexity by comparing the ratio between the computations and the size of
the output. We define the measure Complexity as follows:

Complexity :=
total explored

Canonicals
.

The following graph displays Complexity in terms of the size of the group |G| for transitive Groups on up
to 9 variables (and excluding the alternate and symmetric group of degree 9).
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The dashed line has as equation y = 5ln(|G|). Therefore, we get the following empirical overall
complexity:

Computations = O(ln(|G|)× Output size)

3.3.4 Tests around the unlabeled graph generation problem

Although the generation engine is not optimized for the unlabeled graph generation problem, we can apply
our strategy on it.

Fix n, and consider the set E of pairs of elements of n. The symmetric group Sn acts on pairs by
σ · (i, j) = (σ(i), σ(j)) for σ ∈ Sn and (i, j) ∈ E. Let G be the induced group of permutations of E. A
labeled graph can be identified with the integer vector with parts in 0, 1. Then, two graphs are isomorphic
if and only if the corresponding vectors are in the same G-orbit.

Now, one needs just to know which are these permutation groups acting on pairs of integers. In the
following example, we retrieve the number of graphs on n unlabeled nodes is, for small values of n is
given by: 1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, ...

sage: L = [TransitiveGroup(1,1), TransitiveGroup(3,2),
TransitiveGroup(6,6), TransitiveGroup(10,12), TransitiveGroup(15,28),
TransitiveGroup(21,38), TransitiveGroup(28,502)]

sage: [IntegerVectorsModPermutationGroup(G,max part=1).cardinality() for G in
L]

[2, 4, 11, 34, 156, 1044, 12346]

Notice that our generation engine generalizes the graph generation problem in two directions. Remov-
ing the option max part, one enumerates multigraphs (graphs with multiple edges between nodes). On
the other hand, graphs correspond to special cases of permutation groups. From an algebraic point of
view, we saw graphs as monomials whose exponents are 0 or 1, canonical for the action of the symmetric
group on pairs of nodes.
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4 Computing the invariants ring of a permutation group
Let us explain how the generation engine from Section 2 is plugged into effective invariant theory (see [Derksen and Kemper(2002)]
and [King(2007)]).

A well-known application to build an invariant polynomial under the action of a permutation group G
is the Reynolds operator R. From any polynomial P in n variables x := x1, x2, . . . , xn, the invariant is

R(P ) :=
1

|G|
∑

σ∈G
σ · P,

where σ · P is the polynomial built from P for which σ has permuted by position the tuple of variables
(x1, x2, . . . , xn). Formally, for any σ ∈ G

(σ · P )(x1, x2, ..., xn) := P (xσ−1(1), xσ−1(2), . . . , xσ−1(n)).

For large groups, the Reynolds operator is not very convenient to build invariant polynomials. If P is
a monomial xa := xa11 x

a2
2 · · ·xann where a = (a1, a2, . . . , an), the minimal invariant one can build in

number of terms is the orbit sum
∑

Orb(G)

(xa) of x.

Let K a field, we denote by K[x]G the ring formed by all polynomials invariant under the action of G.

K[x]G := {P ∈ K[x]|∀σ ∈ G : σ · P = P}.

For any subgroups G of Sn and K a field of characteristic 0, a result due to Hilbert and Noether state
that the ring of invariant K[x]G is a free module of rank n!

|G| over the symmetric polynomials in the variable
x. Computing the invariant ring K[x]G consists essentially in building algorithmically an explicit family
(called secondary invariant polynomials) of generators of this free module.

Searching the secondary invariant polynomials from orbit sum of monomials whose vector of exponents
is canonical (instead of all monomials) produces a gain of complexity of |G| if we assume that all orbits
are of cardinality |G|. This assumption is obviously false; however, in practice, it seems to hold in average
and up to a constant factor [Borie(2011)]).

In [Borie and Thiéry(2011)], the authors calculate the secondary invariants of the 61st transitive group
over 14 variables whose cardinality is 50803200. Using the canonical monomials, they managed to
build a family of 28 irreducible secondary invariants deploying a set of 1716 secondary invariants. This
computation is unreachable by Gröbner basis techniques.

5 Computing primitive invariants for a permutation group
5.1 Introduction
We now apply our generation strategy to this problem concerning effective Galois theory.

Problem 5.1 Let n a positive integer and G a permutation group, subgroup of Sn. Let K be a field and
x := x1, . . . , xn be n formal variables. Find a polynomial P ∈ K[x1, . . . , xn] such that

{σ ∈ Sn|σ · P = P} = G.

A such polynomial is called a primitive invariant for G.
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Problem 5.1 (exposed in [Girstmair(1987)] and [Abdeljaouad(2000)]) consists in finding an invariant
P under the action of G such that its stabilizer StabSn

(P ) in Sn is equal to G itself. Solving this prob-
lem becomes difficult when we want to construct a primitive invariant of minimal degree or a primitive
invariant with a minimal number of terms.

5.2 Primitive invariant of minimal degree

Algorithm 2 Primitive invariant using stabilizer refinement
Prerequisites :
• IntegerV ectorsModPermgroup: module to enumerate orbit representatives;
• stabilizer of orbit of(G, v): a function returning the permutation group which stabilizes the orbit of
v under the action of the permutation group G.
Arguments:
• G: A permutation group, subgroup of Sn.

def minimal primitive invariant(G) :
cumulateStab← SymmetricGroup(degree(G))
chain← [[(0, 0, . . . , 0), cumulateStab, cumulateStab]]
if Cardinality(cumulateStab) == Cardinality(G) :

return chain
for v ∈ IntegerV ectorsModPermgroup(G) :

AutV ← stabilizer of orbit of(G, v)
Intersect← cumulateStab ∩AutV
if Cardinality(Intersect) < Cardinality(cumulateStab) :

chain← chain ∪ [v,AutV, Intersect]
cumulateStab← Intersect
if Cardinality(cumulateStab) == Cardinality(G) :

return chain

5.3 Benchmarks

Algorithm 2 terminates in less than an hour for any subgroup of S10. Even, it can calculate some primitive
invariants for a lot of subgroups with degree between 10 and 20 while the literature only provides examples
up to degree 7 or 8. Using the same computer, this benchmark just collects the average time in seconds of
execution of Algorithm 2 by executing systematically the algorithm on transitive groups of degree n.

Degree of Groups 1 2 3 4 5 6 7 8 9
Computations time 0.008 0.064 0.104 0.160 0.208 0.393 0.537 2.364 27.093

This research was driven by computer exploration using the open-source mathematical software Sage [Stein et al.(2009)].
In particular, we perused its algebraic combinatorics features developed by the Sage-Combinat com-
munity [Sage-Combinat community(2008)], as well as its group theoretical features provided by GAP [GAP(1997)].
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labellings, and affine Stanley symmetric
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Abstract. We study the diagrams of affine permutations and their balanced labellings. As in the finite case, which was
investigated by Fomin, Greene, Reiner, and Shimozono, the balanced labellings give a natural encoding of reduced
decompositions of affine permutations. In fact, we show that the sum of weight monomials of the column strict
balanced labellings is the affine Stanley symmetric function defined by Lam and we give a simple algorithm to
recover reduced words from balanced labellings. Applying this theory, we give a necessary and sufficient condition
for a diagram to be an affine permutation diagram. Finally, we conjecture that if two affine permutations are diagram
equivalent then their affine Stanley symmetric functions coincide.

Résumé. Nous étudions les schémas de permutations affines et de leurs étiquetages équilibrés. Comme ce fut le cas
fini, qui a été étudiée par Fomin, Greene, Reiner, et Shimozono, les étiquetages équilibrés donner un codage naturel
des décompositions réduites de permutations affines. En fait, nous montrons que l’addition des monômes poids de la
colonne strictes étiquetages équilibrés est le symétrique affine de Stanley fonction définie par Lam, et nous donnons
un algorithme simple pour récupérer des mots réduits étiquetages équilibrés. Sur l’application de cette théorie, nous
donnons une condition nécessaire et suffisante pour qu’un diagramme soit un schéma affine permutation. Enfin, nous
supposons que si deux permutations affines sont les schémas équivalents puis leurs fonctions symétriques affines
Stanley coı̈ncident.

Keywords: affine permutations, permutation diagrams, balanced labellings, reduced words, Stanley symmetric func-
tions

1 Introduction
The diagram, or the Rothe diagram of a permutation is a widely used technique to visualize the inversions
of the permutation on the plane. It is well known that there is a one-to-one correspondence between the
permutations and the set of their inversions.
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Balanced labellings are labellings of the diagram D(w) of a permutation w ∈ Σn such that each cell
of the diagram is balanced. They are defined in [FGRS97] to encode reduced decompositions of the
permutation w. There is a notion of injective labellings which generalize both standard Young tableaux
and Edelman-Greene’s balanced tableaux [EG87], and column strict labellings which generalize semi-
standard Young tableaux. Column strict labellings yield symmetric functions in the same way semi-
standard Young tableaux yield Schur functions. In fact, these symmetric functions Fw(x) are the Stanley
symmetric functions, which were introduced to calculate the number of reduced decompositions of w ∈
Σn [Sta84]. The Stanley symmetric function coincides with the Schur function whenw is a Grassmannian
permutation. Furthermore, if one imposes flag conditions on column strict labellings, they yield Schubert
polynomial of Lascoux and Schützenberger [LS85]. One can directly observe the limiting behaviour of
Schubert polynomials (e.g. stability, convergence to Fw(x), etc.) in this context. In [FGRS97] it was also
shown that the balanced flagged labellings form a basis of the Schubert modules whose character is the
Schubert polynomial.

The main purpose of this paper is to extend the idea of diagrams and balanced labellings to affine per-
mutations. We first define the diagrams of affine permutations and balanced labellings on them. Following
the footsteps of [FGRS97], we show that the column strict labellings on affine permutation diagrams yield
the affine Stanley symmetric function defined by Lam in [Lam06]. When a permutation is 321-avoiding
affine Grassmannian, the balanced labellings coincide with semi-standard cylindric tableaux, and they
yield the cylindric Schur function of Postnikov [Pos05].

Also as a byproduct of balanced labellings, we give the complete characterization of diagrams of affine
permutations using the notions of content. We will introduce the notion of a wiring diagram of an affine
permutation diagram in the process, which generalizes Postnikov’s wiring diagram of Grassmannian per-
mutations [Pos06].

2 Balanced labellings and reduced words
In this section we study balanced labellings and their relations with reduced words and affine Stanley
symmetric functions. Our terms, lemmas, and theorems will be in parallel with [FGRS97], extending
them from finite to affine permutations. Although most of the definitions in [FGRS97] will remain the
same with slight modifications, we state them here for the sake of completeness.

Let Σ̃n denote the affine symmetric group generated by s0, s1, . . . , sn−1 satisfying the relations

s2i = 1 for all i
sisi+1si = si+1sisi+1 for all i

sisj = sjsi for |i− j| ≥ 2

where the indices are taken modulo n. An element w of Σ̃n is called an affine permutation (of period
n). A reduced decomposition of w is a decomposition w = si1 · · · si` where ` is the minimal number for
which such a decomposition exists. In this case, ` is called the length of w and denoted by `(w). The
word i1i2 · · · i` is called a reduced word of w.

Another way to realize Σ̃n is as the set of bijections w : Z → Z such that w(i + n) = w(i) + n

and
∑n
i=1 w(i) = n(n + 1)/2. In this alternative realization, one can write each element of Σ̃n in the
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window notation: w = [w(1), · · · , w(n)], since these n numbers are sufficient for identifying w. The
(finite) symmetric group Σn generated by s1, · · · , sn−1 can be naturally embedded in Σ̃n and the window
notation for elements of Σn is the usual one-line notation for finite permutations. We will call w finite if
it is contained in this subgroup.

The diagram, or affine permutation diagram, of w ∈ Σ̃n is the set

D(w) = {(i, w(j)) | i < j, w(i) > w(j)} ⊆ Z× Z.

This is a natural generalization of the Rothe diagram for finite permutations. When w is finite, D(w)
consists of infinite number of identical copies of the Rothe diagram of w diagonally.

Throughout this paper, we will use a matrix-like coordinate system on Z × Z: The vertical axis corre-
sponds to the first coordinate increasing as one moves toward south, and the horizontal axis corresponds
to the second coordinate increasing as one moves toward east. We will visualize D(w) as the collection
of unit square lattice boxes on Z× Z whose positions are given by D(w).

From the construction it is clear that (i, j) ∈ D(w)⇔ (i+n, j+n) ∈ D(w). We will call a collection
D of unit square lattice boxes on Z×Z an affine diagram (of period n) if there are finite number of cells on
each row and column, and (i, j) ∈ D ⇔ (i+n, j+n) ∈ D. ObviouslyD(w) is an affine diagram of period
n. For an affine diagram D, we will call the collection of boxes {(i + rn, j + rn) | r ∈ Z} a cell of D,
and denote it by (i, j). From the periodicity, we can take the representatives of each cell (i, j) in the first n
rows {1, 2, . . . , n}×Z, called the fundamental window. Each horizontal strip {1 + rn, · · · , n+ rn}×Z
for some r ∈ Z will be called a window. The intersection of D and the fundamental window will be
denoted by [D]. The boxes in [D] are the natural representatives of the cells of D. An affine diagram D is
said to be of size ` if the number of boxes in [D] is `. Note that the size of D(w) for w ∈ Σ̃n is the length
of w.

2.1 Balanced labellings: basic definitions and results

In this section, we define the notion of balanced labellings of affine diagrams.

To each cell (i, j) of an affine diagram D, we associate the hook Hi,j := Hi,j(D) consisting of the
cells (i′, j′) of D such that either i′ = i and j′ ≥ j or i′ ≥ i and j′ = j. The cell (i, j) is called the corner
of Hi,j .

Definition 2.1 (Balanced hooks) A labelling of the cells of Hi,j with positive integers is called balanced
if it satisfies the following condition: if one rearranges the labels in the hook so that they weakly increase
from right to left and from top to bottom, then the corner label remains unchanged.

A labelling of an affine diagram is a map T : D → Z>0 from the boxes of D to the positive integers
such that T (i, j) = T (i + n, j + n) for all (i, j) ∈ D. In other words, it sends each cell (i, j) to some
positive integer. Therefore if D has size `, there can be at most ` different numbers for the labels of the
boxes in D.

Definition 2.2 (Balanced labellings) Let D be an affine diagram of size `.

1. A labelling of D is balanced if each hook Hi,j is balanced for all (i, j) ∈ D.
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2. A balanced labelling is injective if each of the labels 1, · · · , ` appears exactly once in [D].

3. A balanced labelling is column strict if no column contains two equal labels.

Given w ∈ Σ̃n and its reduced decomposition w = sa1 · · · sa` , we read from left to right and interpret
sk as adjacent transpositions switching the numbers at (k + rn)-th and (k + 1 + rn)-th positions, for all
r ∈ Z. In other words, w can be obtained from applying the sequence of transpositions sa1 , sa2 , . . . , sa`
to the identity permutation. It is clear that each si corresponds to a unique inversion of w. Here, an
inversion of w is a family of pairs {(w(i+ rn), w(j+ rn)) | r ∈ Z} where i < j and w(i) > w(j). Note
that w(i + rn) > w(j + rn) ⇔ w(i) > w(j). Often we will ignore r and use a representative of pairs
when we talk about the inversions. On the other hand, each cell of D(w) also corresponds to a unique
inversion of w. In fact, (i, j) ∈ D(w) if and only if (w(i), j) is an inversion of w.

Definition 2.3 (Canonical labelling) Let w ∈ Σ̃n be of length `, and a = a1a2 · · · a` be a reduced word
of w. Let Ta : D → {1, · · · , `} be the injective labelling defined by setting Ta(i, w(j)) = k if sak
transposes w(i) and w(j) in the partial product sa1 · · · sak where w(i) > w(j). Then Ta is called the
canonical labelling of D(w) induced by a.

Theorem 2.4 LetR(w) denote the set of reduced words of w ∈ Σ̃n, and B(D) denote the set of injective
balanced labellings of the affine diagram D. The correspondence a 7→ Ta is a bijection between R(w)
and B(D(w)).

Theorem 2.4 follows as a corollary from more general results in next sections, namely Lemma 2.11
and Theorem 2.12. Algorithm to decode the reduced word from a balanced labelling will be given in
Section 2.3. The following lemma will be useful in the proof.

Lemma 2.5 (Localization) Let w ∈ Σ̃n and let T be an injective labelling of D(w). Then T is balanced
if and only if for all integers i < j < k the restriction of T to the sub-diagram of D(w) determined by the
intersections of rows i, j, k and columns w(i), w(j), w(k) is balanced.

2.2 Column strict balanced labellings and affine Stanley symmetric functions

In this section we consider column strict balanced labellings of affine permutation diagrams. We show
that they give us the affine Stanley symmetric function in the same way the semi-standard Young tableaux
give us the Schur function.

Affine Stanley symmetric functions are symmetric functions parametrized by affine permutations. They
are defined in [Lam06] as an affine counterpart of the Stanley symmetric function [Sta84]. Like Stanley
symmetric functions, they play an important role in combinatorics of reduced words. The affine Stanley
symmetric functions also have a natural geometric interpretation [Lam08], namely they are pullbacks
of the cohomology Schubert classes of the affine flag variety LSU(n)/T to the affine Grassmannian
ΩSU(n) under the natural map ΩSU(n) → LSU(n)/T . There are various ways to define the affine
Stanley symmetric function, including the geometric one above. For our purpose, we use one of the two
combinatorial definitions in [Lam10].

A word a1a2 · · · a` with letters in Z/nZ is called cyclically decreasing if (1) each letter appears at most
once, and (2) whenever i and i+1 both appears in the word, i+1 precedes i. An affine permutationw ∈ Σ̃n
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is called cyclically decreasing if it has a cyclically decreasing reduced word. We call w = v1v2 · · · vr
cyclically decreasing factorization of w if each vi ∈ Σ̃n is cyclically decreasing, and `(w) =

∑r
i=1 `(vi).

Definition 2.6 ([Lam10]) Let w ∈ Σ̃n be an affine permutation. The affine Stanley symmetric function
F̃w(x) corresponding to w is defined by

F̃w(x) := F̃w(x1, x2, · · · ) =
∑

w=v1v2···vr
x
`(v1)
1 x

`(v2)
2 · · ·x`(vr)r ,

where the sum is over all cyclically decreasing factorization of w.

Given an affine diagram D, let CB(D) denote the set of column strict balanced labellings of D. Now
we can state our first main theorem.

Theorem 2.7 Let w ∈ Σ̃n be an affine permutation. Then

F̃w(x) =
∑

T∈CB(D(w))

xT

where xT denotes the monomial
∏

(i,j)∈[D(w)] xT (i,j)

Remark 2.8 In the case of finite permutations, Fomin, Greene, Reiner, and Shimozono also showed that
the generating function for the balanced labellings under certain flag condition is the Schubert polynomial
Sw. In fact, if CFB(D(w)) is the set of all column strict balanced labellings T such that T (i, j) ≤ i for
all (i, j) ∈ D(w), then Sw =

∑
T∈CFB(D(w)) x

T . One may regard this formula as a direct translation
of the result of Billey, Jockusch, and Stanley [BJS93] to the language of balanced labellings. It would be
really interesting if we could extend this result to affine permutations.

Comparing the coefficients of x1x2 · · ·x`(w) in both sides of Theorem 2.7, we see that the set of re-
duced words of w and the set of injective balanced labellings of D(w) have the same cardinality. See
Theorem 2.4 and Section 2.3 for an explicit bijection between them.

Definition 2.9 (Border cell) Let w ∈ Σ̃n and (i, j) be a cell of D(w). If w(i+ 1) = j then the cell (i, j)
is called a border cell of D(w).

The border cells correspond to the (right) descents of w, i.e. the simple reflections that can appear at
the end of some reduced decomposition of w. When we multiply a descent of w to w from right side,
we get an affine permutations whose length is `(w) − 1. It is immediate that this operation changes the
diagram in the following manner:

Lemma 2.10 Let si be a descent of w, and α = (i, j) be the corresponding border cell of D(w). Let
D(w) \α denote the diagram obtained from D(w) by deleting every cell (i+ rn, j+ rn) and exchanging
rows (i+ rn) and (i+ 1 + rn), for all r ∈ Z. Then the diagram D(wsi) is D(w) \ α.

Lemma 2.11 Let T be a columns strict balanced labelling of D(w) with largest label M . Then every
row containing an M must contain an M in a border cell. In particular, if i is the index of such row, then
i must be a descent of w.

Theorem 2.12 Let T be any labelling of D(w), and assume some border cell α contains the largest label
M in T . Then T is balanced if and only if T \ α is balanced.
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Note that Theorem 2.4 in the previous section follows directly from these results. We also obtain a
recurrence relation on the number of injective balanced labellings.

Corollary 2.13 Let bD(w) denote the number of injective balanced labellings of D(w). Then,

bD(w) =
∑

α

bD(w)\α,

where the sum is over all border cells α of D(w).

2.3 Encoding and decoding of reduced decompositions

In this section we present a direct combinatorial formula for decoding reduced words from injective
balanced labellings of affine permutation diagrams. Again, the theorem in [FGRS97] extends to the affine
case naturally.

Theorem 2.14 Let w ∈ Σ̃n and T be an injective balanced labelling of D(w). Let α be the box in [D]
labelled by k. Let

I(k) := the row index of α,

R+(k) := the number of entries k′ > k in the same row of α,

U+(k) := the number of entries k′ > k above α in the same column, and

ak := (I(k) +R+(k)− U+(k)) modulo n.

Then a = a1a2 · · · a`(w) is a reduced word of w, and T is the canonical labelling Ta induced by a.

3 Characterization of affine permutation diagrams
One unexpected application of balanced labellings is a nice characterization of affine permutation di-
agrams. We will introduce the notion of the content map of an affine diagram, which generalizes the
classical notion of content of a Young diagram. We will conclude that the existence of such map, along
with the North-West property, completely characterizes the affine permutation diagrams.

3.1 The content map
Given an affine diagram D of size n, the oriental labelling of D will denote the injective labelling of the
diagram with numbers from 1 to n such that the numbers increases as we read the boxes in [D] from top
to bottom, and from right to left. See Figure 1. (This reading order reminds us of the traditional way to
write and read a book in some East Asian countries such as Korea, China, or Japan, and hence the term
“oriental”.)

Lemma 3.1 The oriental labelling of an affine (or finite) diagram is a balanced labelling.
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Now, suppose we start from an affine permutations and we construct the oriental labelling of the di-
agram of the permutation. For example, let w = [2, 6, 1, 4, 3, 7, 8, 5] ∈ Σ8 ⊂ Σ̃8. Figure 1 shows the
oriental labelling of the diagram of w, where the box labelled by 7 is at the (1,1)-coordinate.

Following the spirit of Theorem 2.14, for each box with label k in the diagram, let us write down the
integer ak where ak = I(k) +R+(k)− U+(k). Recall that I(k) is the row index, R+(k) the number of
entries greater than k in the same row, U+(k) the number of entries greater than k and located above k in
the same column. The formula is actually much simpler in the case of the oriental labelling, since U+(k)
vanishes and R+(k) is simply the number of boxes to the left of the box labelled by k. Figure 2 illustrates
the diagram filled with ak instead of k. From Theorem 2.14, we already know that we can recover the
affine permutation we started with by ak’s. For example, w = [2, 6, 1, 4, 3, 7, 8, 5] = s5s6s7s4s3s4s1s2,
where the right hand side comes from reading the Figure 2 “orientally” modulo 8.

Motivated by this example, we define a special way of assigning integers to each box of a diagram,
which will take a crucial role in the rest of this section.

Definition 3.2 Let D be an affine diagram with period n. A map C : D → Z is called a content map if it
satisfies the following four conditions.

(C1) If boxes b1 and b2 are in the same row (respectively, column), b2 being to the east (resp., south) to
b1, and there are no boxes between b1 and b2, then C(b2)− C(b1) = 1.

(C2) If b2 is strictly to the southeast of b1, then C(b2)− C(b1) ≥ 2.

(C3) If b1 = (i, j) and b2 = (i+ n, j + n) coordinate-wise, then C(b2)− C(b1) = n.

(C4) For each row (resp., column), the content of the leftmost (resp., topmost) box is equal to the row
(resp., column) index.

Proposition 3.3 Let D be the diagram of an affine permutation w ∈ Σ̃n. Then, D has a unique content
map.

1

2

3

6

458

7

Fig. 1: oriental labelling of a finite diagram

5

6

7

4

432

1

Fig. 2: ak’s of the oriental labelling
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3.2 The wiring diagram and the bijection

We start this section by recalling a well-known property of (affine) permutation diagrams.

Definition 3.4 An affine diagram is called North-West (or NW) if, whenever there is a box at (i, j) and
at (k, `) with the condition i < k and j > `, there is a box at (i, `).

It is easy to see that every affine permutation diagram is NW. In fact, if (i, w−1(j)) and (k,w−1(`))
is an inversion and i < k, j > `, then (i, w−1(`)) is also an inversion since i < k < w−1(`) and
w(i) > j > `. The main theorem of this section is that the content map and the NW property completely
characterize the affine permutation diagrams.

Theorem 3.5 An affine diagram is an affine permutation diagram if and only if it is NW and admits a
content map.

In fact, given a NW affine diagramD of period nwith a content map, we will introduce a combinatorial
algorithm to recover the affine permutation w ∈ Σ̃n corresponding to D. This will turn out to be a
generalization of the wiring diagram appeared in the section 19 of [Pos06], which gave a bijection between
Grassmannian permutations and the partitions.

Let D be a NW affine diagram of period n with a content map. A northern edge of a box b in D will be
called a N-boundary of D if

(1) b is the northeast-most box among all the boxes with the same content and

(2) there is no box above b on the same column.

Similarly, an eastern edge of a box b in D will be called a E-boundary of D if

(1) b is the northeast-most box among all the boxes with the same content and

(2) there is no box to the right of b on the same row.

A northern or eastern edge of a box in D will be called a NE-boundary if it is either a N-boundary or
an E-boundary. We can define an S-boundary, W-boundary, and SW-boundary in the same manner by
replacing “north” by “south”, “east” by “west”, “above” by “below”, “right” by “left”, etc.

Now, from the midpoint of each NE-boundary, we draw an infinite ray to NE-direction (red rays in
Figure 3) and index the ray “i” if it is a N-boundary of a box of content i, and “i + 1” if it is an E-
boundary of a box of content i. We call such rays NE-rays. Similarly, a SW-ray is an infinite ray from the
midpoint of each SW-boundary to SW-direction (blue rays in Figure 3), indexed “wi” if it is a W-boundary
of a box of content i, and “wi+1” if it is a S-boundary of a box of content i.

Lemma 3.6 No two NE-rays (respectively, SW-rays) have the same index, and the indices increase as we
read the rays from NW to SE direction.

Lemma 3.7 There is no NE-ray of index k if and only if there is no SW-ray of index wk.

Now, given a NW affine diagram D with a content map, we construct the wiring diagram of D through
the following procedure.
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Fig. 3: content, (NE/SW-) boundaries, and rays
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w1

w2

w3

w4
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(9)

w6 w7 w8 (w9)

Fig. 4: wiring diagram

(a) (Rays) Draw NE- and SW-rays.

(b) (The “Crosses”) Draw a “+” sign inside each box, i.e., connect the midpoint of the western edge to
the midpoint of the eastern edge, and the midpoint of the northern edge to the midpoint of the southern
edge of each box.

(c) (Horizontal Movement) If the box a and the box b are in the same row (a is to the left of b) and there
are no boxes between them, then connect the midpoint of the eastern edge of a to the midpoint of the
western edge of b.

(d) (Vertical Movement) If the box a and the box b are in the same column (a is above b) and there are
no boxes between them, then connect the midpoint of the southern edge of a to the midpoint of the
northern edge of b.

(e) (The “Tunnels”) Suppose that the box a of content k is not the northeast-most box among all the
boxes with content k and that there is no box on the same row to the right of a. Let b be the closest
box to a, which is to the northeast of b and has content k. For every such pair a and b, connect the
midpoint of the eastern edge of a to the midpoint of the southern edge of b.

Lemma 3.8 Each midpoint of an edge of a box in D is connected to exactly two line segments of (a), (b),
(c), (d), and (e).

Figure 4 illustrates the wiring diagram of the affine diagram of period 9 in Figure 2. Note that the curved
line connecting two boxes of content 4 is a “tunnel”. Once we draw this wiring diagram of a NW affine
diagram with a content, it is very easy to recover the affine permutation corresponding to the diagram.
From a NE-ray indexed by i, proceed to the southwest direction following the lines in the wiring diagram
until we meet a SW-ray of index wj . This translates to wj = i in the corresponding affine permutation. If
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there is no NE-ray of index i (equivalently, no SW-ray of index wi), then let wi = i. For instance, Figure
4 corresponds to the affine permutation w = [w1, w2, . . . , w9] = [2, 6, 1, 4, 3, 7, 8, 5, 9] ∈ Σ9 ⊂ Σ̃9

Proposition 3.9 The wiring diagram gives a bijection between the NW affine diagrams of period n with
a content map, and the affine permutations in Σ̃n.

Our main result of this section, Theorem 3.5, is a direct consequence of Proposition 3.9.

4 Diagram equivalence conjecture
In this section we consider some sufficient condition for affine permutations to have the same affine
Stanley symmetric function.

For finite permutations, Stanley symmetric functions are the Frobenius character of the diagram Specht
module of the permutation diagram [RS95]. By definition, the Specht module is invariant under permuting
rows and columns of the diagram, hence so is the Stanley symmetric function. We call this invariance
property diagram equivalence. We extend the notion to the affine permutations.

4.1 Diagram graphs and equivalence
To each affine diagram D, let us associate a bipartite graph GD.

Definition 4.1 The diagram graph GD of D is defined as follows:

1. GD = (V,ED) where V = VL t VR is the vertex set, and each edge in ED connects a vertex in VL
with a vertex in VR. Here VL and VR are called the left and right vertices, respectively.

2. Both VL and VR are indexed by Z, and (i, j) ∈ ED denotes the edge connecting i ∈ VL with
j ∈ VR.

3. (i, j) ∈ ED if and only if (i, j) ∈ D.

It is immediate from the definition of affine diagram that GD has the following properties: (1) (i, j) ∈
E ⇔ (i+n, j+n) ∈ E, (2) every vertex has a finite degree. We will call a graph that has these properties
n-periodic.

Definition 4.2 Two n-periodic graphs G and H are isomorphic if there is a pair of bijections (φ, ψ)
between vertices of G and H such that

1. φ is a bijection between the left vertices, and ψ is between the right vertices,

2. (i, j) ∈ EG ⇔ (φ(i), ψ(j)) ∈ EH .

Definition 4.3 Two affine permutations u, v ∈ Σ̃n are said to be diagram equivalent if GD(u) and GD(v)

are isomorphic.

Conjecture 4.4 F̃u(x) = F̃v(x) if u and v are diagram equivalent.
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Remark 4.5 Note that the converse is not true. The Stanley symmetric functions may coincide even if the
permutations are not diagram equivalent. For finite skew diagrams, more precise conditions are studied
in [RSvW07].

There is a natural dihedral symmetry of the Dynkin diagram of affine type A. This symmetry gives
us an obvious relation between the affine Stanley symmetric functions of certain permutations. The ∗-
operator in [Lam06] is an example of this symmetry. Obviously w and (w∗)−1 have the same affine
Stanley symmetric function, and it is easy to check that they actually are diagram equivalent.

When GD(w) does not have any cycle, the number of reduced decompositions of w turns to be the
same as the normalized volume of certain polytope called periodic matching polytope. Since the periodic
matching polytope is invariant under the diagram equivalence, this result supports our conjecture. Precise
definitions and the results on periodic matching polytopes will appear in a separate paper [Yoo13].

5 Further questions
1. Can we define the affine Schubert polynomial using balanced labellings? Geometrically, they have

to form a basis of the cohomology ring of the affine flag variety, and combinatorially, they would
have to satisfy an analogue of the transition equation of Schubert polynomials.

2. It is possible to define set-valued balanced labellings of affine diagrams and describe affine stable
Grothen-dieck polynomials using them. Also we were able to use flagged column strict set-valued
balanced labellings to describe Grothendieck polynomials. As in the previous question, we wonder
if this result can be extended to affine Grothendieck polynomials.

3. One motivation of studying the diagram of affine permutations is to answer the question posed by
Lam in [Lam06]. How can we characterize the “affine vexillary permutations”?

4. Can we prove Conjecture 4.4 by finding a bijection between column strict balanced labellings of
two diagram equivalent permutations? For dihedral symmetry, it is easy to find such a bijection but
it does not extend to the general situation.

5. Our Theorem 3.5 is not local since we have to find a global datum like content. Is there local
criterion of affine permutation diagrams? More precisely, can we characterize the affine permutation
diagrams by avoiding some diagram patterns?
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1 Dep. de Matemàtica Aplicada II. Universitat Politècnica de Catalunya. Jordi Girona 1-3, 08034 Barcelona. Spain.
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Abstract. Erdős and Rényi conjectured in 1960 that the limiting probability p that a random graph with n vertices
and M = n/2 edges is planar exists. It has been shown that indeed p exists and is a constant strictly between 0 and
1. In this paper we answer completely this long standing question by finding an exact expression for this probability,
whose approximate value turns out to be p ≈ 0.99780.

More generally, we compute the probability of planarity at the critical window of width n2/3 around the critical point
M = n/2. We extend these results to some classes of graphs closed under taking minors. As an example, we show
that the probability of being series-parallel converges to 0.98003.

Our proofs rely on exploiting the structure of random graphs in the critical window, obtained previously by Janson,
Łuczak and Wierman, by means of generating functions and analytic methods. This is a striking example of how
analytic combinatorics can be applied to classical problems on random graphs.

Résumé. Erdős et Rényi ont conjecturé en 1960 que la probabilité limite p qu’un graphe aléatoire avec n sommets
et M = n/2 arêtes soit planaire existe. Il a été prouvé qu’en fait p existe et est une constante comprise strictement
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probabilité, dont la valeur approchée s’avère être p ≈ 0.99780.

Plus genéralement, nous calculons la probabilité qu’un graphe soit planaire dans la fenêtre critique de largeur n2/3

autour du point critique M = n/2. Nous étendons ces resultats à différentes classes de graphes closes par exclusion
de mineurs. A titre d’exemple, nous montrons que la probabilité d’être série-parallèle converge vers 0.98003.

Nos preuves exploitent la structure des graphes aléatoires dans la fenêtre critique, décrite précedemment par Janson,
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1 Introduction
The random graph model G(n,M) assigns uniform probability to graphs on n labelled vertices with M
edges. A fundamental result of Erdős and Rényi (1960) is that the random graph G(n,M) undergoes
an abrupt change when M is around n/2, the value for which the average vertex degree is equal to one.
When M = cn/2 and c < 1, almost surely the connected components are all of order O(log n), and
are either trees or unicyclic graphs. When M = cn/2 and c > 1, almost surely there is a unique giant
component of size Θ(n). We direct to reader to the reference texts of Bollobás (1985) and Janson et al.
(2000) for a detailed discussion of these facts.

We concentrate on the so-called critical window namely M = n
2 (1 + λn−1/3), where λ is a real

number, identified by Bollobás (1984a,b). Let us recall that the excess of a connected graph is the number
of edges minus the number of vertices. A connected graph is complex if it has positive excess. As
λ → −∞, complex components disappear and only trees and unicyclic components survive, and as
λ → +∞, components with unbounded excess appear. A thorough analysis of the random graph in the
critical window can be found in Janson et al. (1993) and Łuczak et al. (1994), which constitute our basic
references.

For each fixed λ, we denote the random graphG
(
n, n2 (1 + λn−1/3)

)
byG(λ). The core C(λ) ofG(λ)

is obtained by repeatedly removing all vertices of degree one from G(λ). The kernel K(λ) is obtained
from C(λ) by replacing all maximal paths of vertices of degree two by single edges. The parameter n is
implicitly assumed in all the previous definitions. The graph G(λ) satisfies asymptotically almost surely
several fundamental properties, that were established by Łuczak et al. (1994) by a subtle simultaneous
analysis of the G(n,M) and the G(n, p) models.

1. The number of complex components is bounded.
2. Each complex component has size of order n2/3, and the largest suspended tree in each complex

component has size of order n2/3.
3. C(λ) has size of order n1/3 and maximum degree three, and the distance between two vertices of

degree three in C(λ) is of order n1/3.
4. K(λ) is a cubic (3-regular) multigraph of bounded size.

The key property for us is the last one. It implies that asymptotically almost surely the components of
G(λ) are trees, unicyclic graphs, and those obtained from a cubic multigraph K by attaching rooted trees
to the vertices of K, and attaching ordered sequences of rooted trees to the edges of K. Some care is
needed here, since the resulting graph may not be simple, but asymptotically this can be accounted for.

It is clear that G(λ) is planar if and only if the kernel K(λ) is planar. Then by counting planar cubic
multigraphs it is possible to estimate the probability that G(λ) is planar. To this end we use generating
functions. The trees attached to K(λ) are encoded by the generating function T (z) of rooted trees, and
complex analytic methods are used to estimate the coefficients of the corresponding series. This allows
us to determine the exact probability

p(λ) = lim
n→∞

Pr
{
G
(
n, n2 (1 + λn−1/3)

)
is planar

}
.

In particular, we obtain p(0) ≈ 0.99780.
This approach was initiated in the seminal paper of Flajolet et al. (1989), where the authors determined

the threshold for the appearance of the first cycles in G(n,M). A basic feature in Flajolet et al. (1989)
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is to estimate coefficients of large powers of generating functions using Cauchy integrals and the saddle
point method. This path was followed by Janson et al. (1993), obtaining a wealth of results on G(λ). Of
particular importance for us is the determination in Janson et al. (1993) of the limiting probability that
G(λ) has given excess. The approach in Łuczak et al. (1994) is more probabilistic and has as starting
point the classical estimates by Wright (1980) on the number of connected graphs with fixed excess. The
range of these estimates was extended by Bollobás (1984a) and more recently the analysis was refined
by Flajolet et al. (2004), by giving complete asymptotic expansions in terms of the Airy function. Very
recently, the question of planarity has been analyzed in a wider setting of random subgraphs of a given
graph by Frieze and Krivelevich.

The paper is organized as follows. In Section 2 we present the basic lemmas needed in the sequel. In
Section 3 we compute the number of cubic planar multigraphs, suitably weighted, where we follow Kang
and Łuczak (2012). In Section 4 we compute the exact probability that the random graph G(λ) is planar
as a function of λ. We generalize this result by determining the probability that G(λ) belongs to a minor-
closed class of graphs in several cases of interest.

We close this introduction with a remark. The problem of 2-satisfiability presents a striking analogy
with the random graph process. Given n Boolean variables and a conjunctive formula of M clauses, each
involving two literals, the problem is to determine the probability that the formula is satisfiable when M
grows with n. The threshold has been established atM = n and the critical window is also of width n2/3;
see Bollobás et al. (2001). However the exact probability of satisfiability when the number of clauses is
n(1 + λn−1/3) has not been determined, and appears to be a more difficult problem.

2 Preliminaries
All graphs in this paper are labelled. The size of a graph is its number of vertices. A multigraph is a graph
with loops and multiple edges allowed.

We recall that the exponential generating function T (z) of rooted trees satisfies

T (z) = zeT (z).

Using Lagrange’s inversion (see Flajolet and Sedgewick (2009)), one recovers the classical formula nn−1

for the number of rooted labelled trees.The generating function for unrooted trees is

U(z) = T (z)− T (z)2

2
.

This can be proved by integrating the relation T (z) = zU ′(z), or more combinatorially using the dissim-
ilarity theorem for trees (see Otter (1948)).

A graph is unicyclic if it is connected and has a unique cycle. A unicyclic graph can be seen as an
undirected cycle of length at least three to which we attach a sequence of rooted trees. Since the directed
cycle construction corresponds algebraically to log(1/(1 − z)) (see Flajolet and Sedgewick (2009)), the
generating function is

V (z) =
1

2

(
log

1

1− T (z)
− T (z)− T (z)2

2

)
.

Graphs whose components are unicyclic are given by the exponential formula:

eV (z) =
e−T (z)/2−T (z)2/4

√
1− T (z)

.
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The following result, which is fundamental for us, is proved in Theorem 4 of Łuczak et al. (1994)
by a careful analysis of the structure of complex components in G(λ). We say that a property P holds
asymptotically almost surely (a.a.s.) in G(n,M) if the probability that P is satisfied tends to one as
n→∞. Recall that G(λ) = G

(
n, n2 (1 + λn−1/3)

)
.

Lemma 1 For each λ, the kernel of G(λ) is a.a.s. a cubic multigraph.

Given a cubic multigraph M with a loops, b double edges and c triple edges, define its weight as

w(M) = 2−a2−b6−c.

This weight (called the compensation factor in Janson et al. (1993)), has the following explanation. When
we substitute edges of the kernel by sequences of rooted trees, a loop has two possible orientations that
give rise to the same graph. A double (triple) edge can be permuted in two (six) ways, again producing
the same graph. From now on, all multigraphs we consider are weighted, so that we omit the qualifier.
The following lemma is proved in Janson et al. (1993) using a combination of guessing and recurrence
relations. The proof we give appears in Chapter 2 of the book Bollobás (1985).

Lemma 2 The number Er of cubic multigraphs with 2r vertices is equal to

Er =
(6r)!

(3r)!23r62r
.

Proof: A cubic multigraph can be modeled as a pairing of darts (half-edges), 3 for each vertex, with a
total of 6r darts. The number of such pairings is (6r)!/((3r)!23r). However, we have to divide by the
number 62r of ways of permuting each of the 2r triples of darts. The weight takes care exactly of the
number of times a cubic multigraph is produced in this process. 2

The next result is essentially proved in Janson et al. (1993). Here we present a concise proof. We denote
by [zn]A(z) the coefficient of zn in the power series A(z).

Lemma 3 The number g(n,M, r) of simple graphs with n vertices, M edges and cubic kernel of size 2r
satisfies

g(n,M, r) ≤ n! [zn]
U(z)n−M+r

(n−M + r)!
eV (z) Er

(2r)!

T (z)2r

(1− T (z))3r

and

g(n,M, r) ≥ n! [zn]
U(z)n−M+r

(n−M + r)!
eV (z) Er

(2r)!

T (z)8r

(1− T (z))3r
.

Proof: Such a graph is the union of a set of s unrooted trees, a set of unicyclic graphs, and a cubic
multigraph K with a rooted tree attached to each vertex of K and a sequence (possibly empty) of rooted
trees attached to each edge of K. Let us see first that s = n −M + r. Indeed, the final excess of edges
over vertices must beM−n. Each tree component contributes with excess−1, each unicyclic component
with excess 0, and K (together with the attached trees) with excess r. Hence M − n = −s+ r.

The first two factors U(z)n−M+r/(n −M + r)! and eV (z) on the right-hand side of the inequalities
encode the set of trees and unicyclic components. The last part encodes the kernelK. It has 2r vertices and
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is labelled, hence the factorEr/(2r)!; the weighting guarantees that each graph contributing to g(n,M, r)
is counted exactly once. The trees attached to the 2r vertices give a factor T (z)2r. The sequences of trees
attached to the 3r edges give each a factor 1/(1 − T (z)). However, this allows for the empty sequence
and the resulting graph may not be simple, so we get only an upper bound. To guarantee that the final
graph is simple we take sequences of length at least two, encoded by T (z)2/(1 − T (z)) (length one is
enough for multiple edges of K, but length two is needed for loops). Since this misses some graphs, we
get a lower bound. 2

The following technical result is essentially Lemma 3 from Janson et al. (1993).

Lemma 4 Let M = n
2 (1 + λn−1/3). Then for any fixed a and integer r > 0 we have

n!
((n

2)
M

) [zn]
U(z)n−M+r

(n−M + r)!

T (z)a

(1− T (z))3r
eV (z) =

√
2πA

(
3r +

1

2
, λ

)(
1 +O

(
1 + λ4

n1/3

))
(1)

uniformly for |λ| ≤ n1/12, where

A(y, λ) =
e−λ

3/6

3(y+1)/3

∑

k≥0

(
1
232/3λ

)k

k! Γ
(
(y + 1− 2k)/3

) . (2)

We omit the proof, which is based on relating the left-hand side of Equation (1) to the integral repre-
sentation of A(y, λ) defined in Equation (10.7) of Janson et al. (1993):

A(y, λ) =
1

2πi

∫

Π

s1−yeK(λ,s)ds,

where K(λ, s) is the polynomial

K(λ, s) =
(s+ λ)2(2s− λ)

6
=
s3

3
+
λs2

2
− λ3

6

and Π is a suitable path in the complex plane.
It is important to notice that in the previous lemma the final asymptotic estimate does not depend on

the choice of a. The next result is a direct consequence and can be found as Formula (13.17) in Janson
et al. (1993).

Lemma 5 The limiting probability that the random graph G(λ) has a cubic kernel of size 2r is equal to

√
2π erA

(
3r +

1

2
, λ

)
,

where er = Er/(2r)! (Er is defined in Lemma 2) and A(y, λ) is as in the previous lemma.
In particular, for λ = 0 the limiting probability is

√
2

3

(
4

3

)r
er

r!

(2r)!
.
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Proof: Using the notation of Lemma 3, the probability for a given n is by definition

g(n,M, r)
((n

2)
M

) .

Lemma 3 gives upper and lower bounds for this probability, and using Lemma 4 we see that both bounds
agree in the limit and are equal to

Er
(2r)!

√
2πA

(
3r +

1

2
, λ

)
,

thus proving the result. A key point is that the discrepancy between the factors T (z)2r and T (z)8r in the
bounds for g(n,M, r) does not affect the limiting value of the probability. 2

Notice that if we replace the er by the numbers gr arising by counting planar cubic multigraphs, we
obtain immediately the probability that G(λ) has a cubic planar kernel of size 2r. Since G(λ) is planar if
and only if its kernel is planar, we can use this fact to compute the probability of G(λ) being planar. But
first we must compute gr.

3 Planar cubic multigraphs
In this section we compute the numbers Gr of cubic weighted planar multigraphs of size 2r. All multi-
graphs are labelled in vertices, hence the counting formulas are exponential in this parameter. The as-
sociated generating function has been obtained recently in Kang and Łuczak (2012) (generalizing the
enumeration of simple cubic graphs in Bodirsky et al. (2007)), but their derivation contains some minor
errors. They do not affect the correctness of Kang and Łuczak (2012), since the asymptotic estimates
needed by the authors are still valid. However, for the computations that follow we need the exact values.
The next result is from Kang and Łuczak (2012), the corrections are detailed below.

Lemma 6 Let G1(z) be the generating function of connected cubic planar multigraphs. Then G1(z) is
determined by the following system of equations:

3z dG1(z)
dz = D(z) + C(z)

B(z) = z2

2 (D(z) + C(z)) + z2

2

C(z) = S(z) + P (z) +H(z) +B(z)

D(z) = B(z)2

z2

S(z) = C(z)2 − C(z)S(z)

P (z) = z2C(z) + 1
2z

2C(z)2 + z2

2

2(1 + C(z))H(z) = u(z)(1− 2u(z))− u(z)(1− u(z))3

z2(C(z) + 1)3 = u(z)(1− u(z))3.
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The generating functions B(z), C(z), D(z), S(z), P (z) and H(z) correspond to distinct families of
edge-rooted cubic planar graphs, and u(z) is an algebraic function related to the enumeration of 3-
connected cubic planar graphs (dually, 3-connected triangulations).

The corrections with respect to Kang and Łuczak (2012) are the following. In the first equation a
term −7z2/24 has been removed. In the second and sixth equations we have replaced a term z2/4 by
z2/2. In the fourth equation we have removed a term −z2/16. For the combinatorial interpretation of the
various generating functions and the proof of the former equations we refer to Kang and Łuczak (2012).
Notice that eliminating u(z) from the last two equations we obtain a relation between C(z) and H(z).
This relation can be used to obtain a single equation satisfied by C(z), by eliminating S(z), P (z), H(z),
D(z) and B(z) from the first equations. We reproduce it here in case the reader wishes to check our
computations.

1048576 z6 + 1034496 z4 − 55296 z2+(
9437184 z6 + 6731264 z4 − 1677312 z2 + 55296

)
C+(

37748736 z6 + 18925312 z4 − 7913472 z2 + 470016
)
C2+(

88080384 z6 + 30127104 z4 − 16687104 z2 + 1622016
)
C3+(

132120576 z6 + 29935360 z4 − 19138560 z2 + 2928640
)
C4+(

132120576 z6 + 19314176 z4 − 12429312 z2 + 2981888
)
C5+(

88080384 z6 + 8112384 z4 − 4300800 z2 + 1720320
)
C6+(

37748736 z6 + 2097152 z4 − 614400 z2 + 524288
)
C7+(

9437184 z6 + 262144 z4 + 65536
)
C8 + 1048576C9z6 = 0.

The first terms are

C(z) = z2 +
25

8
z4 +

59

4
z6 +

11339

128
z8 + · · ·

This allows us to compute B(z), D(z), S(z), P (z) and H(z), hence also G1(z). The first coefficients of
G1(z) are as follows.

G1(z) =
5

24
z2 +

5

16
z4 +

121

128
z6 +

1591

384
z8 + · · ·

Using the set construction, the generating function G(z) for cubic planar multigraphs is then

G(z) = eG1(z) =
∞∑

r=0

Gr
z2r

(2r)!
= 1 +

5

24
z2 +

385

1152
z4 +

83933

82944
z6 +

35002561

7962624
z8 + · · · , (3)

where Gr is the number of planar cubic multigraphs with 2r vertices. This coincides with the generating
function for all cubic (non-necessarily planar) multigraphs up to the coefficient of z4. The first discrepancy
is in the coefficient of z6. The difference between the coefficients is 1/72 = 10/6!, corresponding to the
10 possible ways of labelling K3,3, the unique non-planar cubic multigraph on six vertices.

4 Probability of planarity and generalizations
Let G be a graph with a cubic kernel K. Then clearly G is planar if and only if K is planar, and we can
compute the probability that G(n,M) is planar by counting over all possible planar kernels.
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Theorem 7 Let gr(2r)! be the number of cubic planar multigraphs with 2r vertices. Then the limiting
probability that the random graph G(n,M = n

2 (1 + λn−1/3)) is planar is

p(λ) =
∑

r≥0

√
2π grA

(
3r +

1

2
, λ

)
.

In particular, the limiting probability that G(n, n2 ) is planar is

p(0) =
∑

r≥0

√
2

3

(
4

3

)r
gr

r!

(2r)!
≈ 0.99780.

Proof: The same analysis as in Section 2 shows that
√

2π grA(3r+ 1
2 , λ) is the probability that the kernel

is planar and has 2r vertices. Summing over all possible r, we get the desired result. 2

As already mentioned, in Erdős and Rényi (1960) it was conjectured that p(0) exists and 0 < p(0) < 1.
This was proved in Łuczak et al. (1994), showing that p(λ) exists for all λ and that 0 < p(λ) < 1. The
bounds in Janson et al. (1993) for p(0) are

0.98707 < p(0) < 0.99977,

obtained by considering connected cubic multigraphs with at most six vertices. We remark that in
Stepanov (1988) is shown that p(λ) < 1 for λ ≤ 0 (without actually establishing the existence of the
limiting probability). The function p(λ) is plotted in Figure 1. As expected, p(λ) is close to 1 when
λ→ −∞ and close to 0 when λ→∞. For instance, p(−3) ≈ 1− 1.02 · 10−7 and p(5) ≈ 4.9 · 10−7.

Besides planar graphs, one can consider other classes of graphs. Let G be a class of graphs closed under
taking minors, that is, if H is a minor of G and G ∈ G, then H ∈ G. If H1, · · · , Hk are the excluded
minors of G, then we write G = Ex(H1, . . . ,Hk). (By the celebrated theorem of Robertson and Seymour,
the number of excluded minors is finite, but we do not need this deep result here). The following result
generalizes the previous theorem.

Theorem 8 Let G = Ex(H1, . . . ,Hk) and assume all the Hi are 3-connected. Let hr(2r)! be the number
of cubic multigraphs in G with 2r vertices. Then the limiting probability that the random graphG(n,M =
n
2 (1 + λn−1/3)) is in G is

pG(λ) =
∑

r≥0

√
2π hrA

(
3r +

1

2
, λ

)
.

In particular, the limiting probability that G(n, n2 ) is in G is

pG(0) =
∑

r≥0

√
2

3

(
4

3

)r
hr

r!

(2r)!
.

Moreover, for each λ we have
0 < pG(λ) < 1.
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Proof: If all the Hi are 3-connected, then clearly a graph is in G if and only its kernel is in G. The
probability pG(λ) is then computed as in Theorem 7. It is positive since G contains all trees and unicyclic
graphs, which contribute with positive probability (although tending to 0 as λ → ∞). To prove that it
is less than one, let t be the smallest size of the excluded minors Hi. By splitting vertices it is easy to
construct cubic graphs containing Kt+1 as a minor, hence G(λ) contains Kt+1 as a minor with positive
probability (alternatively, see the argument at the end of Łuczak et al. (1994)). It follows that 1−pG(λ) >
0. 2

0.2

0.4

0.6

0.8

1

–1 1 2 3 4 5

x

Fig. 1: The probability of G(λ) being planar and of being series-parallel are both plotted for λ ∈ [−1, 4]. The
function on top corresponds to the planar case.

In some cases of interest we are able to compute the numbers hr explicitly. Let G = Ex(K4) be the class
of series-parallel graphs. The same system of equations as in Lemma 6 holds for series-parallel graphs
with the difference that now H(z) = 0 (this is due to the fact that there are no 3-connected series-parallel
graphs). The generating function for cubic series-parallel multigraphs can be computed as

Gsp(z) = 1 +
5

24
z2 +

337

1152
z4 +

55565

82944
z6 +

15517345

7962624
z8 + · · ·

For instance, [z4](G(z) − Gsp(z)) = 1
24 , corresponding to the fact that K4 is the only cubic multigraph

with 4 vertices which is not series-parallel. The limiting probability that G(n, n2 ) is series-parallel is

p sp(0) ≈ 0.98003.
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See Figure 1 for a plot of p sp(λ).
As another example, consider excludingK3,3. Since the only 3-connected non-planar graph in Ex(K3,3)

is K5, which is not cubic, the values of hr in this case are exactly the same as the ones in the planar case.
Observe that 3-connectivity plays and important role in the equations of weighted cubic multigraphs in
Section 3 (namely, the one related to the counting formula H(z)). Hence, the limiting probability of
being in this class is exactly the same as of being planar, although Ex(K3,3) is exponentially larger than
the class of planar graphs (see Gerke et al. (2008)). But excluding the graph K+

3,3, obtained by adding
one edge to K3,3, does increase the probability, since K3,3 is in the class and is cubic and non-planar (the
probability is computable since the 3-connected graphs in Ex(K+

3,3) are known, see Gerke et al. (2008)).
Other classes such as Ex(K5 − e) or Ex(K3 ×K2) can be analyzed too using the results from Giménez
et al..

It would be interesting to compute the probability that G(λ) has genus g. For this we need to count
cubic multigraphs of genus g (orientable or not). We only know how to do this for g = 0, the reason being
that a 3-connected planar graph has a unique embedding in the sphere. This is not at all true in positive
genus. It is true though that almost all 3-connected graphs of genus g have a unique embedding in the
surface of genus g (see Chapuy et al. (2011)). This could be the starting point for the enumeration, by
counting first 3-connected maps of genus g (a map is a graph equipped with a 2-cell embedding). But this
is not enough here, since we need the exact numbers of graphs.
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M. Bodirsky, M. Kang, M. Löffler, and C. McDiarmid. Random cubic planar graphs. Random Structures

Algorithms, 30(1-2):78–94, 2007.

B. Bollobás. The evolution of random graphs. Transactions of the American Mathematical Society, 286
(1):257–274, 1984a.

B. Bollobás. The evolution of sparse graphs. In Graph theory and combinatorics (Cambridge, 1983),
pages 35–57. Academic Press, London, 1984b.

B. Bollobás. Random graphs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London,
1985.

B. Bollobás, C. Borgs, J. T. Chayes, J. H. Kim, and D. B. Wilson. The scaling window of the 2-SAT
transition. Random Structures Algorithms, 18(3):201–256, 2001.
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A direct bijection between permutations and a
subclass of totally symmetric self-
complementary plane partitions

Jessica Striker
School of Mathematics, University of Minnesota, Minneapolis, MN 55455

Abstract. We define a subclass of totally symmetric self-complementary plane partitions (TSSCPPs) which we show
is in direct bijection with permutation matrices. This bijection maps the inversion number of the permutation, the
position of the 1 in the last column, and the position of the 1 in the last row to natural statistics on these TSSCPPs.
We also discuss the possible extension of this approach to finding a bijection between alternating sign matrices and
all TSSCPPs. Finally, we remark on a new poset structure on TSSCPPs arising from this perspective which is a
distributive lattice when restricted to permutation TSSCPPs.

Résumé. Nous définissons une sous-classe de partitions planes totalement symétriques autocomplémentaires (TSS-
CPPs) que nous montrons est en bijection directe avec des matrices permutation. Cette bijection trace le numéro
inverse de la permutation, la position du 1 dans la derniére colonne, et la position du 1 dans le dernier rayon aux
statistiques naturelles sur cettes TSSCPPs. Aussi, nous discutons l’extension possible de cette approche pour trouver
une bijection entre les matrices á signe alternat et toutes TSSCPPs. Finalement, nous remarquons sur une structure
poset nouvelle sur les TSSCPPs se levant de cette perspective qui est une treillis distributif quand elle est limité aux
TSSCPPs permutation.

Keywords: alternating sign matrix, plane partition, permutation, bijection

1 Introduction
Alternating sign matrices (ASMs) and their equinumerous friends, descending plane partitions (DPPs) and
totally symmetric self-complementary plane partitions (TSSCPPs), have been bothering combinatorialists
for decades by the lack of an explicit bijection between any two of the three sets of objects. (See [7] [8]
[1] [12] [6] for these enumerations and bijective conjectures and [4] for the story behind these papers.)
In [9], we gave a bijection between permutation matrices (which are a subclass of ASMs) and descending
plane partitions with no special parts in such a way that the inversion number of the permutation matrix
equals the number of parts of the DPP. In this paper, we complete the solution to this bijection problem in
the special case of permutations by identifying the subclass of TSSCPPs corresponding to permutations
and giving a bijection which yields a direct interpretation for the inversion number on these permutation
TSSCPPs.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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In Section 2, we define TSSCPPs and ASMs and give bijections within their respective families. We
recall the standard bijection from ASMs to monotone triangles. We then outline a known bijection from
TSSCPPs to non-intersecting lattice paths and then transform these to new objects we call boolean trian-
gles.

In Section 3, we identify the permutation subclass of TSSCPPs in terms of the boolean triangles of
Section 2. We use this characterization to present a direct bijection between this subclass of TSSCPPs
and permutation matrices. This bijection gives a natural interpretation on the TSSCPP for the inversions
of the permutation as well as the positions of the 1’s in the bottom row and last column of the permutation
matrix.

It is not obvious how to extend this bijection to all ASMs and TSSCPPs. No one knows statistics on
TSSCPPs with distributions corresponding to the inversion number or the number of −1’s in an ASM. In
Section 4, we discuss the outlook of the general bijection problem and compare the bijection of this paper
with another recent bijection of Biane and Cheballah [3].

Finally, in Section 5 we make some remarks about a new partial order on TSSCPPs obtained via boolean
triangles, which reduces in the permutation case to the distributive lattice which is the product of chains
of lengths 2, 3, . . . , n.

2 The objects and their alter egos: ASMs & monotone triangles,
TSSCPPs & non-intersecting lattice paths / boolean triangles

We first define ASMs and recall the standard bijection to monotone triangles. We then define TSSCPPs
and give bijections with non-intersecting lattice paths and new objects we call boolean triangles. Then in
the next section, we give a bijection from permutation ASMs to permutation TSSCPPs via these interme-
diary objects.

Definition 1 An alternating sign matrix (ASM) is a square matrix with entries 0, 1, or−1 whose rows and
columns each sum to 1 and such that the nonzero entries in each row and column alternate in sign.




1 0 0
0 1 0
0 0 1






1 0 0
0 0 1
0 1 0






0 1 0
1 0 0
0 0 1






0 1 0
1 −1 1
0 1 0






0 1 0
0 0 1
1 0 0






0 0 1
1 0 0
0 1 0






0 0 1
0 1 0
1 0 0




Fig. 1: The seven 3× 3 ASMs.

See Figure 1 for the seven 3× 3 ASMs. It is clear that the alternating sign matrices with no −1 entries
are the permutation matrices.

Alternating sign matrices are known to be in bijection with monotone triangles, which are certain
semistandard Young tableaux (that are also strict Gelfand-Tsetlin patterns). See Figure 2.

Definition 2 A monotone triangle of order n is a triangular arrays of integers with i integers in row i for
all 1 ≤ i ≤ n, bottom row 1 2 3 · · · n, and integer entries ai,j for 1 ≤ i ≤ n, n − i ≤ j ≤ n − 1 such
that ai,j−1 ≤ ai−1,j ≤ ai,j and ai,j < ai,j+1.

It is well-known that monotone triangles of order n are in bijection with n×n alternating sign matrices
via the following map [4]. For each row of the ASM note which columns have a partial sum (from the top)
of 1 in that row. Record the numbers of the columns in which this occurs in increasing order. This process
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1
1 2

1 2 3

1
1 3

1 2 3

2
1 2

1 2 3

2
1 3

1 2 3

2
2 3

1 2 3

3
1 3

1 2 3

3
2 3

1 2 3

Fig. 2: The seven monotone triangles of order 3, listed in order corresponding to Figure 1.

yields a monotone triangle of order n. Note that entries ai,j in the monotone triangle satisfying the strict
diagonal inequalities ai,j−1 < ai−1,j < ai,j are in bijection with the −1 entries of the corresponding
ASM. Also, recall that the inversion number of an ASM A is defined as I(A) =

∑
AijAk` where the

sum is over all i, j, k, ` such that i > k and j < `. This definition extends the usual notion of inversion in
a permutation matrix.

We now define plane partitions.

Definition 3 A plane partition is a two dimensional array of positive integers which weakly decreases
across rows from left to right and down columns.

We can visualize a plane partition as a stack of unit cubes pushed up against the corner of a room. If we
identify the corner of the room with the origin and the room with the positive orthant, then denote each
unit cube by its coordinates in N3, we obtain the following equivalent definition. A plane partition π is a
finite set of positive integer lattice points (i, j, k) such that if (i, j, k) ∈ π and 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j, and
1 ≤ k′ ≤ k then (i′, j′, k′) ∈ π. A plane partition is totally symmetric if whenever (i, j, k) ∈ π then all
six permutations of (i, j, k) are also in π.

Definition 4 A totally symmetric self–complementary plane partition (TSSCPP) inside a 2n × 2n × 2n
box is a totally symmetric plane partition which is equal to its complement, that is, the collection of empty
cubes in the box is of the same shape as the collection of cubes in the plane partition itself.

6 6 6 3 3 3
6 6 6 3 3 3
6 6 6 3 3 3
3 3 3
3 3 3
3 3 3

6 6 6 4 3 3
6 6 5 3 3 2
6 6 6 3 3 3
4 3 3 1
3 3 3
3 3 2

6 6 6 4 3 3
6 6 5 4 3 3
6 6 4 3 2 2
4 4 3 2
3 3 2
3 3 2

6 6 6 5 5 3
6 5 5 4 3 1
6 5 4 3 2 1
5 4 3 2 1
5 3 2 1 1
3 1 1

6 6 6 5 5 3
6 5 5 3 3 1
6 5 5 3 3 1
5 3 3 1 1
5 3 3 1 1
3 1 1

6 6 6 5 4 3
6 6 5 3 3 2
6 5 5 3 3 1
5 3 3 1 1
4 3 3 1
3 2 1

6 6 6 5 4 3
6 6 5 4 3 2
6 5 4 3 2 1
5 4 3 2 1
4 3 2 1
3 2 1

Fig. 3: TSSCPPs inside a 6× 6× 6 box

See Figure 3 for the seven TSSCPPs of order 3.



836 J. Striker

In [5], Di Francesco gives a bijection from TSSCPPs of order n to a collection of nonintersecting lattice
paths. The bijection proceeds by taking a fundamental domain of the TSSCPP, and instead of reading the
number of boxes in each stack, one looks at the paths going alongside those boxes. This yields a collection
of nonintersecting paths with two types of steps. With a slight further deformation, he obtains that the
following objects are in bijection with TSSCPPs. See Figure 4.

Proposition 5 (Di Francesco) Totally symmetric self-complementary plane partitions inside a 2n×2n×
2n box are in bijection with nonintersecting lattice paths (NILP) starting at (i,−i), i = 1, 2, . . . , n − 1,
and ending at positive integer points on the x-axis of the form (ri, 0), i = 1, 2, . . . , n − 1, making only
vertical steps (0, 1) or diagonal steps (1, 1).

• • · ·

◦ · ·

◦

• · •
~~~~

·

◦ · ·

◦

• · • ·

◦ · ·
~~~~

◦

· •
~~~~

• ·

◦ · ·
~~~~

◦

· •
~~~~

•
~~~~

·

◦ · ·

◦

• · · •
����

◦ · ·
����

◦

· •
~~~~

· •
����

◦ · ·
����

◦

Fig. 4: The seven TSSCPP NILP of order 3.

In [5], Di Francesco uses the Lindström-Gessel-Viennot formula for counting nonintersecting lattice
paths via a determinant evaluation to give an expression for the generating function of TSSCPPs with a
weight of τ per vertical step. We will show that when restricted to permutation TSSCPPs, this weight
corresponds to the inversion number of the permutation. Note that the distribution of the number of
vertical steps in all TSSCPP NILPs does not correspond to the inversion number distribution on ASMs.

With another slight deformation, we obtain a tableaux version of these NILPs. See Figures 5 and 6.

Definition 6 A boolean triangle of order n is a triangular integer array {bi,j} for 1 ≤ i ≤ n − 1,
n− i ≤ j ≤ n− 1 with entries in {0, 1} such that the diagonal partial sums satisfy

1 +
i′∑

i=j+1

bi,n−j−1 ≥
i′∑

i=j

bi,n−j . (1)

b1,n−1
b2,n−2 b2,n−1

b3,n−3 b3,n−2 b3,n−1
...

bn−1,1 bn−1,2 · · · bn−1,n−2 bn−1,n−1

Fig. 5: A generic boolean triangle

Proposition 7 Boolean triangles of order n are in bijection with TSSCPPs inside a 2n× 2n× 2n box.

Proof: The bijection proceeds by replacing each vertical step of the NILP with a 1 and each diagonal
step with a 0 and vertically reflecting the array. The inequality on the partial sums is equivalent to the
condition that the lattice paths are nonintersecting. 2
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1
1 1

1
1 0

0
1 1

0
0 1

1
0 0

0
1 0

0
0 0

Fig. 6: The seven TSSCPP boolean triangles of order 3, listed in order corresponding to Figure 4 (and Figure 2 via
the bijection of Theorem 9).

3 A bijection on permutations
In this section, we give a bijection between n×n permutation matrices and a subclass of totally symmetric
self-complementary plane partitions inside a 2n× 2n× 2n box, preserving the inversion number statistic
and two boundary statistics. First, we identify the permutation subclass of TSSCPPs.

Definition 8 Let permutation TSSCPPs of order n be all TSSCPPs of order n whose corresponding
boolean triangles have weakly decreasing rows. (In the NILP picture, each row has some number of
vertical steps followed by some number of diagonal steps.)

It is easy to see that there are n! permutation TSSCPPs. The condition on the boolean triangle that
the rows be weakly decreasing means that all the 1’s must be left-justified, thus the defining partial sum
inequality (1) is never violated. To construct a permutation TSSCPP, freely choose any number of left-
justified 1’s in each row of the boolean triangle and the rest zeros; there are i + 1 choices for row i, and
the choices are all independent.

We are now ready to state and prove our main theorem.

Theorem 9 There is a natural, statistic-preserving bijection between n × n permutation matrices with
inversion number p whose 1 in the last row is in column k and whose 1 in the last column is in row `
and permutation TSSCPPs of order n with p zeros in the boolean triangle, exactly n − k of which are
contained in the last row, and for which the lowest 1 in diagonal n− 1 is in row `− 1.

Proof: We first describe the bijection map. An example of this bijection is shown in Figure 7.
Begin with a permutation TSSCPP of order n. Consider its associated boolean triangle b = {bi,j} for

1 ≤ i ≤ n − 1, n − i ≤ j ≤ n − 1. Define a = {ai,j} for 1 ≤ i ≤ n, n − i ≤ j ≤ n − 1 as follows:
an,j = j + 1 and for i < n, ai,j = ai+1,j if bi,j = 0 and ai,j = ai+1,j−1 if bi,j = 1. We claim a is
a monotone triangle. Clearly ai,j−1 ≤ ai−1,j ≤ ai,j . Also, ai,j < ai,j+1, since if ai,j = ai,j+1, then
ai,j = ai+1,j and ai,j+1 = ai+1,j+1 so that we would need bi,j = 0 and bi,j+1 = 1. This contradicts the
fact that the rows of permutation boolean triangles must weakly decrease. Furthermore, a is a monotone
triangle with no −1’s in the corresponding ASM, since each entry is defined to be equal to one of it’s
diagonal neighbors in the row below. This process is clearly invertible.

We now show that this map takes a permutation TSSCPP boolean triangle with p zeros to a permutation
matrix with p inversions. Recall that the inversion number of any ASM A (with the matrix entry in row i
and column j denoted Aij) is defined as I(A) =

∑
AijAk` where the sum is over all i, j, k, ` such that

i > k and j < `. This definition extends the usual notion of inversion in a permutation matrix. In [10]
we found that I(A) satisfies I(A) = E(A) +N(A), where N(A) is the number of −1’s in A and E(A)
is the number of entries in the monotone triangle equal to their southeast diagonal neighbor (entries ai,j
satisfying ai,j = ai+1,j). Since in our case, N(A) = 0 and E(A) equals the number of zeros in the
corresponding TSSCPP boolean triangle, we have that I(A) equals the number of zeros in b.
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TSSCPP
◦• • · · •

~~~~
•

~~~~
· •

����
· •

����
·

◦ · ·
~~~~

·
~~~~

· ·
����

· ·
����

·

◦ · · · · ·
����

·

◦ · ·
~~~~

·
����

·

◦ · ·

◦

⇔

Boolean triangle

1
0 0

1 1 0
0 0 0 0

1 0 0 0 0

⇔

Monotone triangle

4
4 6

3 4 6
3 4 5 6

1 3 4 5 6
1 2 3 4 5 6

⇔

Permutation matrix




0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0




Fig. 7: An example of the bijection. The bold entries in the monotone triangle are the entries equal to their southeast
diagonal neighbor. These are exactly the diagonal steps of the TSSCPP. Note that the matrix on the right represents the
permutation 463512 which has 11 inversions. These inversions correspond to the 11 diagonal steps of the TSSCPP
on the left.

We can see that the zeros of b correspond to permutation inversions directly by noting that to convert
from the monotone triangle representation of a permutation to a usual permutation σ such that i → σ(i),
we set σ(i) equal to the unique new entry in row i of the monotone triangle. Thus for each entry of the
monotone triangle ai,j such that ai,j = ai+1,j , there will be an inversion in the permutation between ai,j
and σ(i+1). This is because ai,j = σ(k) for some k ≤ i and σ(k) = ai,j > σ(i). These entries ai,j such
that ai,j = ai+1,j correspond exactly to zeros in row i of the boolean triangle b. Thus if a permutation
TSSCPP has p zeros in its boolean triangle, its corresponding permutation will have p inversions.

Also, observe that if the number of zeros in the last row of the boolean triangle is k, then the 1 in the
bottom row of the permutation matrix will be in column n− k. So the missing number in the penultimate
monotone triangle row shows where the last row of the boolean triangle transitions from ones to zeros. So
by the bijection between monotone triangles and ASMs, the 1 in the last row of A is in column n− k.

Finally, if the lowest 1 in diagonal n − 1 of the boolean triangle is in row ` − 1, this means that the
entries {ai,n−1} for ` ≤ i ≤ n are all equal to n. So the 1 in the last column of the permutation matrix is
in row `. 2

See Figure 7 for an example of this bijection.

4 Toward a bijection between all TSSCPPs and ASMs
In [9], we discussed the obstacles to turning the bijection between permutations and descending plane
partitions presented there into a bijection between all ASMs and DPPs. Here we discuss some of the
challenges to the ASM-TSSCPP bijection in full generality.
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While DPPs have the property that the number of parts equals the inversion number of the ASM (this
is now proved, though not bijectively [2]), TSSCPPs do not have such a statistic as of yet. We showed
that the number of diagonal steps in a permutation-NILP gives the inversion number of the permutation
matrix, but this is not true for general TSSCPPs and ASMs. Furthermore, while the number of special
parts of a DPP corresponds to the number of −1’s in the ASM, there is no such statistic on TSSCPP.
It would seem reasonable to conjecture that the −1 of the ASM should correspond to all instances of a
vertical step followed by a diagonal step as you go from left to right along a row of the NILP (or a 0
followed by a 1 as you go across a row of the boolean triangle). This holds up to n = 4, and it seems to
hold for arbitrary n in the special cases of one −1 and the maximal number of −1’s (bn2

4 c). But for the
number of −1’s between 1 and bn2

4 c, these statistics diverge.
Di Francesco has noted that the distribution of diagonal steps in the top row of the TSSCPP-NILP

corresponds to the refined enumeration of ASMs. So one might hope to begin a general bijection by
determining the (n− 1)st row of the monotone triangle from the top row of the NILP (or the bottom row
of the boolean triangle) by left-justifying all the vertical steps and then bijecting in the same way as in
the permutation case. After that, though, it is unclear how to proceed. See Figure 4 for a summary of the
various statistics which are preserved in the permutation case DPP-ASM-TSSCPP bijections and which
should correspond in full generality. (See [9] for further explanation on the DPP case.)

DPP ASM TSSCPP boolean triangle
no special parts* no −1’s rows weakly decrease
number of parts* number of inversions number of zeros
number of n’s* position of 1 in last column position of lowest 1 in last diagonal

largest part value that position of 1 in last row number of zeros in last row*
does not appear

Fig. 8: This table show the statistics preserved by the permutation case bijections of this paper and [9]. There is a star
by the DPP and TSSCPP statistics that have the same distribution as the ASM statistic in the general case.

Finally, we compare this work with another recent bijection due to Biane and Cheballah. In [3], the
authors give a bijection between Gog and Magog trapezoids of two diagonals. (Gog triangles are exactly
monotone triangles. Magog triangles can be seen to be in bijection with the TSSCPP boolean triangles
considered here. The term trapezoid indicates the truncation of the triangle to a fixed number of diago-
nals.) Their bijection is both more and less general than the one of this paper. It is more general in the
sense that it includes configurations corresponding to the −1 in an ASM, where we consider only permu-
tations. It is less general in that it uses only two diagonals of the triangle, where we are able to consider
the full triangle.

Experimental evidence suggests the bijection of [3] and the bijection of this paper may coincide (up to
slight deformation) in the case of permutation monotone triangles, truncated to two diagonals. Perhaps
the combination of these two perspectives will provide insight on the full bijection.

5 Poset Structure
In [10], we examined a poset structure on TSSCPPs, which turned out to be a distributive lattice with
poset of join irreducibles very similar to that of the ASM lattice. In this final section, we remark on a new
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partial order on TSSCPPs arising from this perspective which is not a distributive lattice, but which has
nice distributive lattice structure when restricted to the permutation case.

Define the boolean partial order on TSSCPPs of order n as the boolean triangles of order n ordered
by componentwise comparison of the entries. This is an induced subposet of the Boolean lattice on

(
n
2

)

elements given by only taking the elements corresponding to TSSCPPs. This order on TSSCPPs is not a
distributive lattice. But if we further restrict this order to the permutation TSSCPPs, the poset formed is
[2]× [3]× · · · × [n], that is, the product of chains of length 2, 3, 4, . . . , n, where the order ideal composed
of k elements in the chain [i] corresponds to row i − 1 of the boolean triangle containing k 1’s. This
permutation TSSCPP lattice is a partial order on permutations which sits between the weak and strong
Bruhat orders on the symmetric group. It contains all of the ordering relations of the weak order plus
some of the additional relations of the strong order. See Figure 9.

•
~~~~ @@@@

• •

•
@@@@ •

~~~~

•

•
~~~~ @@@@

• •

{{{{{{{{{{

•
@@@@ •

~~~~

•

•
~~~~ @@@@

•

CCCCCCCCCC •

{{{{{{{{{{

•
@@@@ •

~~~~

•

Fig. 9: From left to right: The weak order on S3, the boolean partial order on permutation TSSCPPs of order 3, and
the strong Bruhat order on S3.

Conversely, the natural partial order on all ASMs is the distributive lattice of monotone triangles, but
its restriction to permutations is the strong Bruhat order, which is not a lattice. In fact, the ASM lattice is
the smallest lattice to contain the Bruhat order on the permutations as a subposet (i.e. it is the MacNeille
completion of the Bruhat order [11]). See Figure 10 for a comparison of this order on ASMs with the
TSSCPP boolean order.

•
~~~~ @@@@

•
@@@@ •

~~~~

•

•
@@@@ •

~~~~

•

•
~~~~ @@@@

•
@@@@ •

~~~~

•
~~~~ @@@@

•
@@@@ •

~~~~

•

Fig. 10: Left: The boolean partial order on TSSCPPs of order 3. Right: The lattice of 3× 3 ASMs.

We hope that the study of this new partial order on TSSCPPs will provide insight on the combinatorics
of these objects and the associated outstanding bijection problems.
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Abstract. In this article, we study some quotient sets on permutations built from peaks, valleys, double rises and
double descents. One part is dedicated to the enumeration of the cosets using the bijection of Françon-Viennot which
is a bijection between permutations and the so-called Laguerre histories. Then we study the algebraic properties of
these quotient sets. After having shown that some of them give rise to quotient algebras of FQSym, we prove that
they are also free.

Résumé. Dans cet article, on étudie certains quotients de l’ensemble des permutations construits à partir des pics,
vallées, double montées, double descentes. Une des parties est consacrée au calcul des cardinaux des ensembles
quotients. Pour cela, on utilisera la bijection de Françon-Viennot, qui transforme les permutations en histoires de
Laguerre. Puis, nous nous intéressons aux propriétés algébriques de ces quotients. En particulier, après avoir montré
que certains d’entre eux sont des algèbres quotients de FQSym, on montre qu’ils sont libres.

Keywords: Laguerre histories, Free quasi-symmetric functions, quotient algebra, increasing binary trees

1 Introduction
One of the goals of algebraic combinatorics is to study operations on discrete structures, and relations
between these structures. The set of permutations has provided many recent results in combinatorics
and in algebra. In particular, an algebra based on permutations, called FQSym ([11], [1]), is a non-
commutative generalization of the algebra of symmetric functions. It contains the theory of the non-
commutative symmetric functions ([4]) and many other algebras. Some of them are described thanks to
equivalence relations on permutations, as NCSF (having the same descents [7]), PBT (having the same
binary search tree [6]), or FSym (having the same P -symbol in the RSK algorithm [12]). The formalism
of FQSym has enabled to find simple proofs of some results, as e.g., the Littlewood-Richardson rule ([9]),
the construction of the peak algebra ([7]), the representation theory of the 0-Hecke algebra ([8]).

On the enumerative part, in 1979, Françon and Viennot established a bijection between permutations
and Laguerre histories ([3]). These objects encode in a natural way some statistics on permutations: peaks,
valleys, double rises, and double descents. This bijection has been used in many occasions, and was one
of the building blocks of the combinatorial theory of orthogonal polynomials along with [2]. Since this
bijection concerns permutations, hence elements indexing the basis of FQSym, one natural question is
how Laguerre histories can be understood in this algebraic framework.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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A first approach is given here: indeed, some statistics have enabled us to build some subalgebras and/or
quotient algebras of FQSym. So one can ask whether among the four statistics peaks, valleys, double
rises, and double descents, some statistics allow one to build quotient algebras. In our case, we will see
that some of them we can indeed construct some quotient algebras of FQSym.

We begin by recalling some classical definitions and the bijection of Françon-Viennot. Then we com-
pute the cardinality of the different quotient sets. Finally, the algebraic aspect is tackled: we first study
sets defining quotient algebras of FQSym, and then show that these algebras are free.

2 Definitions and bijection of Françon-Viennot
2.1 Some statistics on permutations
Let us denote by Sn the set of permutations of size n and by S = ∪nSn. Let σ be in Sn, and i in
[1, n]. Since we want to define the type of any value by comparing it to its left and right neighbours, we
need to fix some conventions for σ(0) and σ(n+ 1). Up to simple transforms, there are only two distinct
conventions: σ(0) = 0, σ(n+ 1) = 0, and σ(0) = 0, σ(n+ 1) =∞. Then σ(i) is called:

-a peak if σ(i− 1) < σ(i) > σ(i+ 1),
-a valley if σ(i− 1) > σ(i) < σ(i+ 1),
-a double rise if σ(i− 1) < σ(i) < σ(i+ 1),
-a double descent if σ(i− 1) > σ(i) > σ(i+ 1).

For example, with the convention 0-0, the permutation 27416358 has the peaks set {7, 6, 8}, the
valleys set {1, 3}, the double rises set {2, 5}, and the double descents set {4} (graphical representation
of definitions on Figure 1). Note that these statistics extend directly to words over N with no repeating
letters.

1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 9

Figure 1: Graphical representation of the per-
mutation 27416358.

1
2

1 3
2

11

Figure 2: A Laguerre history of size 7.

From now on, we shall work with the convention 0-0, the case 0-∞ being essentially the same. Indeed,
by embedding Sn in Sn+1 by adding n+ 1 as fixed point for a permutation of size n, we come back to
the case 0-0. By slightly adapting the proofs, all results of the case 0-0 transpose to the case 0-∞.
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2.2 The algebra of free quasi-symmetric functions FQSym
Let w be a word over N. Recall that the shifted word w[k] is the word in which each letter of w is shifted
by k: if w = w1 · · ·wn, then w[k] = (w1 + k) · · · (wn + k). The shuffle product is defined by induction
as follows:

- ε� a = a� ε = a,
- w = au, v = bt, w� v = a(u� v) + b(w� t), where a and b are letters.

The shifted shuffle of σ ∈ Sn and τ is denoted by σ � τ , and is equal to σ � τ [n]. For example, the
shifted shuffle product of σ = 12 and τ = 21 is

σ� τ = 1243 + 1423 + 1432 + 4123 + 4132 + 4312. (1)

The algebra FQSym is generated by the basis 〈Fσ〉σεS and has the following product formula:

FσFτ =
∑

νεσ�τ

Fν . (2)

More details about FQSym can be found in [1].

2.3 The bijection of Françon-Viennot
Let us now introduce the bijection of Françon-Viennot. It is a bijection between permutations and the
so-called Laguerre histories. All details can be found in [3].

2.3.1 Laguerre histories
A Laguerre history of size n is a positive valued path, beginning at (0, 0), ending at (n, 0) staying above
the horizontal axis, with four types of steps: (1, 1), (1,−1), (1, 0), and an another type of horizontal step,
(1, 0). The i-th step has an integer value between 1 and γ(i), where γ is the following function:

- γ(1) = 1,
- γ(i+ 1) = γ(i) if the i-th step is (1, 0) or (1, 0),
- γ(i+ 1) = γ(i) + 1 if the i-th step is (1, 1),
- γ(i+ 1) = γ(i)− 1 if the i-th step is (1,−1).

Figure 2 shows an example of a Laguerre history h of size 7, where (1, 0) is represented as a dotted
line. On this example, the corresponding function γ takes the successive values 1, 2, 2, 3, 3, 3, 2. Let
LH(n) be the set of Laguerre histories of size n.

2.3.2 The bijection of Françon-Viennot
Let h be a Laguerre history of size n−1 and let us build the corresponding permutation σ of size n. The
algorithm starts with the word w = ∞, and we transform this word by applying some rules. One reads
the Laguerre history from left to right and, for each step transforms w as follows: if t is the type of the
i-th step of h, and j its weight, the j-th∞ of w is replaced by:





i if t is (1,−1),
∞i∞ if t is (1, 1),

i∞ if t is (1, 0),
∞i if t is (1, 0).
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Finally, the last∞ is changed into n.
For example, the Laguerre history shown Figure 2 gives the following steps:

∞ 1−→∞1∞ 2−→ 2∞1∞ 3−→ 2∞1∞3∞ 4−→ 2∞41∞3∞

5−→ 2∞41∞35∞ 6−→ 2∞41635∞ 7−→ 2741635∞ 8−→ 27416358.

(3)

So its corresponding permutation is σ = 27416358. Since each step of the construction is reversible,
it induces a bijection between Laguerre histories of size n−1 and Sn. Note that with the convention
0-0, the type of a step of a Laguerre history and the type of the corresponding value in σ in one-to-one
correspondence. Indeed, the i-th step of h is respectively (1,−1), (1, 1), (1, 0), or (1, 0), when i is
respectively a peak, a valley, a double rise, or a double descent in σ.

3 Enumeration of the quotient sets
Given the four types of statistics on Sn, we construct some quotient sets on Sn as follows: consider a
partition (A1, · · · , Ap) of {P, V, Dr, Dd}. Then two permutations belong to the same class if and only if
they have identical unions of sets of statistics for all the Ai. For example, if we choose (P, V, Dr, Dd),
the equivalence relation consists in having the same peaks, valleys, double rises and double descents. At
n = 3, there are five equivalence classes, 213 and 312 belonging to the same class. If we choose to
regroup peaks, valleys and double descents, the equivalence relation consists in having the same double
rises set, and we will denote it by (P ∪ V ∪ Dd, Dr). For example, 13245 and 14532 are in the same class
for the second relation, but not for the first one. Indeed, the four sets respectively are ({3, 5}, {2}, {1, 4},
ø) and ({5}, ø, {1, 4}, {2, 3}). So the permutations do not belong to the same (P, V, Dr, Dd) class but they
do belong to same (P ∪ V ∪ Dd, Dr) since both sets are ({2, 3, 5}, {1, 4}).

Thanks to the bijection of Françon-Viennot, each type of statistics is interpreted as a type of step. So two
permutations of size n are in the same class for (P, V, Dr, Dd) if and only if they have the same unvalued
Laguerre histories of size n−1, which are the Motzkin paths with two types of horizontal steps. Since
each type of step represents one type of statistics, and since (P, V, Dr, Dd) is represented by the unvalued
Laguerre histories, the other quotients are obtained by identifying the corresponding types of steps on the
unvalued Laguerre histories. For example, if we identify the peaks with the valleys, we identify the steps
(1,−1) and (1, 1) in the Laguerre histories.

3.1 The quotient set (P, V, Dr, Dd)

Thanks to the bijection, (P, V, Dr, Dd) is in bijection with the unvalued Laguerre histories of size n−1,
and hence is enumerated by the n-th Catalan number. The full proof is presented in [3].

3.2 The quotient set (P, V, Dr ∪ Dd)

In this case, the two types of horizontal steps are identified. Therefore, (P, V, Dr ∪ Dd) has a one-to-
one correspondence with the Motzkin paths of size n−1. The representatives are given by the Laguerre
histories with all horizontal steps equal to (1, 0).
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3.3 The quotient set (P ∪ V, Dr, Dd)
In this case, the type of steps (1, 1) and (1,−1) are identified. Note that in an unvalued Laguerre history,
there is always the same number k of steps (1, 1) and (1,−1). Let k be an integer between 0 and n−1

2 .
Since the horizontal steps can be anywhere, we have to select n−1 −2l steps in the set {1, · · · , n − 1}.
These steps may be (1, 0) or (1, 0), hence two choices. So we get the following formula for the number
of classes:

n−1
2∑

k=0

(
n− 1

n− 1− 2k

)
2n−1−2k =

n−1
2∑

k=0

(
n− 1

2k

)
2n−1−2k =

(2 + 1)n−1 + (2− 1)n−1

2
. (4)

Thus, the number of classes is 3n−1+1
2 . Let us give one representative of each class in term of unvalued

Laguerre history. If there are n−1−2l horizontal steps, there are 2k steps which are not. We take the first
such k steps to be of type (1, 1), and the others to be of type (1,−1).

3.4 The quotient sets (P ∪ V ∪ Dd, Dr) and (P ∪ V ∪ Dr, Dd)
Reversing dotted and not dotted horizontal steps is an involution on unvalued Laguerre histories. In terms
of types of statistics, it sends two permutations having the same double rises into two permutations having
the same double descents and vice versa, and preserves the peaks and the valleys. As a consequence, these
two quotients are in bijection. Therefore, we only study the case of (P ∪ V ∪ Dd, Dr). Here, for each
step, we can decide if it is or not a dotted horizontal step. So we have at most 2n−1 classes. Conversely,
let us choose the dotted horizontal steps. Then the other steps can be taken as non dotted horizontal steps,
which gives an unvalued Laguerre history. So there are 2n−1 classes.

3.5 The quotient sets (P, Dr ∪ V ∪ Dd) and (V, Dr ∪ P ∪ Dd)
First, we observe that reading the unvalued Laguerre histories right to left is an involution. In terms of
types of statistics, it sends two permutations having the same peaks into two permutations having the same
valleys, and vice versa, and preserves the double rises and double descents. So, the quotient sets (P, Dr ∪
V ∪ Dd) and (V, Dr ∪ P ∪ Dd) are in bijection. Now, for (P, Dr ∪ V ∪ Dd), identify the steps (1, 0), (1, 0),
and (1, 1). We then obtain a left factor of a Dyck path of length n−1. Conversely, given a left factor of a
Dyck path, if there are k steps equal to (1,−1), we keep the k first steps equal to (1, 1), and change the
other steps equal to (1, 1) into (1, 0). We then get an unvalued Laguerre history. Thus the equivalence
classes are in bijection with the left Dyck factors, which are enumerated by the central binomial of n−1
[13](A001405).

3.6 The quotient sets (P, Dr, V ∪ Dd), (P, Dd, V ∪ Dr), (P ∪ Dd, V, Dr) and (P ∪
Dr, V, Dd)

With the involutions consisting in reading from right to left or reversing dotted and not dotted horizontal
steps, these four quotient sets are in bijection. So, it is enough to study the case (P, Dr, V ∪ Dd). Here, the
type of steps (1, 1) and (1, 0) are identified with the step (1, 1). So we obtain a left factor of a Motzkin path
of size n−1. Conversely, if we take a left factor of a Motzkin path, if there are k steps of type (1,−1), we
keep the first k steps of type (1, 1), and change the others into (1, 0). So we obtain an unvalued Laguerre
history for each left factor of a Motzkin path. So (P, Dr, V ∪ Dd) is enumerated by the left factors of
Motzkin paths of size n−1 which are in bijection with the directed animals of size n−1 [13](A005773).
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3.7 The quotient set (P ∪ V, Dr ∪ Dd)
Here, the steps (1,−1) and (1, 1) are identified. We also identify the step (1, 0) with the step (1, 0). By
the same arguments as in the case (P ∪ V, Dr, Dd), we show that the number of classes is 2n−2.

3.8 The quotient sets (P ∪ Dr, V ∪ Dd) and (P ∪ Dd, V ∪ Dr)
By reading from right to left, these two quotient sets are in bijection. Here, we are identifying (1,−1)
with (1, 0), and (1, 1) with (1, 0). So the number of classes is smaller than or equal to 2n−1. Since the
representatives are given by the paths without (1, 1) and (1,−1), the number of classes is indeed 2n−1.

4 The quotient algebras of FQSym
In recent papers, many quotients of FQSym have been constructed from statistics on permutations ([5],
[12], [7]). For example, the algebra QSym is the quotient algebra of FQSym where Fσ and Fτ are
identified if σ and τ have the same descents. Since we have built some quotient sets in Sn for each n, it
is natural to check if there are some quotient algebras in FQSym induced by these equivalence relations.
To this aim, we first recall some notions on increasing binary trees. Indeed, our statistics interpret directly
on these combinatorial structures. Then we will study all cases beginning with the quotient set (P, V, Dr,
Dd).

4.1 Increasing binary trees
The notion of increasing binary trees appears in [2] as tournament trees. Let A be a totally ordered
alphabet. Let w be a word on A, with no repeated letters. If w is the empty word (denoted by ε), then the
corresponding tree (denoted by T (w)) is a leaf. Otherwise, we write w = w1aw2, where a is the smallest
letter in w. The corresponding increasing binary tree is recursively built as follows: the letter a is the root,
the left subtree is the increasing binary tree associated with w1, and the right subtree is the increasing
binary tree associated with w2. Note that here an increasing binary tree is a complete binary tree, where
all internal nodes are labelled, and the leaves are not.

4.1.1 The grafting operation
Let T and T ′ be two trees, let l be a leaf of T . The graft of T ′ on T at position l is the substitution of l by
T ′.

T\{l}
l

T ′
→

T\{l}
T ′

4.1.2 Increasing binary trees and shifted shuffle
Let σ and τ be two permutations, and w in σ � τ . We can write w as: w = τ (1)σ1 · · ·σnτ (n+1), where
τ [n] = τ (1) · · · τ (n+1), and τ (i) may be an empty word. Then T (w) is the tree built as follows: in the tree
T (σ), graft the tree of the word τ (i) at its i-th leaf (in the infix order) .

Conversely, if we decompose τ [n] = τ (1) · · · τ (n+1), with τ (i) a factor of τ [n] (maybe empty), and
graft at the i-th leaf (in the infix order) of T (σ) the tree T (τ (i)), we obtain an increasing binary tree T ′.
By reading T ′ in infix order, we get a w which is in σ � τ . or example, let σ = 2413, τ = 3.2.14. The
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word w = 27416358 decomposes as 27416358 in σ � τ (the empty words are forgotten) and T (w) is
represented igure 3.

1

2
. 4

7
. .

.

3

6
. .

5
. 8

. .

Figure 3: The increasing binary tree of 27416358.

4.1.3 Increasing binary trees and permutations
Let us recall that there is a classical bijection between the permutations of size n, and the complete
increasing binary trees with n internal nodes labelled by {1, · · · , n}. A permutation σ is sent to its
increasing binary tree. Conversely, by reading an increasing binary tree in infix order, we obtain its
corresponding permutation. Let us see how the types of statistics are interpreted in the increasing binary
tree. Let σ be in Sn, i a letter in σ, and T (σ) the corresponding increasing tree. Note that depending
on i being a peak, a valley, a double rise, or a double descent in σ, the node i in T (σ) has respectively
zero labelled child, two labelled children, one labelled child to the left or to the right (see the exemple
Figure 3).

4.2 The quotient algebras of FQSym
Let us consider one equivalence relation ∼ in S. This relation induces a quotient of FQSym, by identify-
ing Fσ and Fτ if σ ∼ τ . Proving that this quotient is well-defined is equivalent to prove that if σ and τ are
equivalent then for all s in S, there exists a bijection φ between σ � s and τ � s, a bijection ψ between
s� σ and s� τ such that each element in σ� s or in s� σ are respectively equivalent to their image by
φ or ψ.

4.2.1 The quotient by the four types of statistics
In this Section, we write σ ∼ τ if σ and τ belong to the same (P, V, Dr, Dd) class. In terms of trees,
σ ∼ τ if and only if for each labelled node of T (σ) and T (τ), the left and right children are of same type
(labelled or not). Now, let w be in σ� s.

Construction of φ: The word w decomposes in the following form: w = s(1)σ1 · · ·σns(n+1), with
s[n] = s(1) · · · s(n+1). Denote by (f1, · · · , fk) the non-empty factors among the s(i) in order. So we
have, s[n] = f1 · · · fk.

Since w is in σ � s, we know that T (w) is obtained by grafting at the i-th leaf the tree T (s(i)) (see
Section 4.1.2). Let us mark the leaves where the T (fj) are grafted and denote by pj the father of the leaf
where T (fj) is grafted (two pj may be equal). Note that T (fj) may graft at the left or right child of pj .

Since σ and τ have the same four statistics, all nodes pj in T (τ) are of the same type as in T (σ). So
the left and right children of pj are the same type (labelled or not) in T (σ) and T (τ). Let us then mark
in T (τ) the children of pj where there is a graft of a T (fj) in T (σ). Now, we graft at the i-th marked
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T ′ = T (φ(w)))

Figure 4: Construction of T ′ with σ = 3142, τ = 4213, s = 51342, and w = 935714862.

leaf of T (τ) the tree T (fi). Let T ′ be this tree. By construction, the pj have the same type in T (w) and
T ′. Moreover, the other labelled nodes do not change type between type T (σ), T (s) and T ′. So each
labelled node of T (w) and T ′ have same type. So the permutation φ(w) associated with T ′ is in the same
equivalence class as w, and belongs to τ � s.

If we apply the same algorithm on φ(w), exchanging the role of τ and σ, we find back w. So this
operation is a bijection between σ� s and τ � s. Here is an example of computation of φ in Figure 4.

Construction of ψ: The key ingredient in building ψ relies on

Proposition 4.1 let σ ∼ τ be two words and write σ as a concatenation of k words: σ = f1 · · · fk. Then
there exists a decomposition of τ = g1 · · · gk such that for each letter a in fi, the word gj containing a
satisfies that a has same type in fi and gj .

Proof:
Let ai be the smallest letter between the last letter of fi and the first letter of fi+1. For each ai, we cut

τ at the right of ai if ai is in fi and at the left of ai otherwise. Thus, we obtain a decomposition of τ of
the form g1 · · · gk. Note that the letters that change type between τ and the gj are exactly the ai. So all
but the ai have same type in the fi and gj : their type is preserved from fi to σ, from σ to τ , and from τ to
gj . Now, concerning the ai, they have same type in σ and τ and it changes in the same way from σ to fi
than from τ to gj .

2

For example, let σ = 25.7.1.34.6, and τ = 3612457. Here are the different steps in order to find the
decomposition of τ :

3612457
5<7−−→ 361245.7

7>1−−→ 36.1245.7
1<3−−→ 36.1.245.7

4<6−−→ 36.1.24.5.7.

So the decomposition associated with τ is 36.1.24.5.7. Note that the previous statement extends directly
to words with no repeated letters of the same evaluation and same type.
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Let us now build the bijection ψ. For w in s� σ, we mark the k leaves in T (s) where there is a graft
in order to obtain T (w). It corresponds to write w = σ(1)s1 · · · smσ(m+1), with σ[m] = σ(1) · · ·σ(m+1)

and consider the sequence (f1, · · · , fk) of the non-empty factors among the σ(i) in order. We apply
Proposition 4.1 to σ[m] = f1 · · · fk and τ [m] and obtain a decomposition of τ [m] = g1 · · · gk. Define T ′

as the tree obtained by grafting T (gi) at the i-th marked leaf of T (s). By construction, the labelled nodes
in T (s) are of same type in T (w) and T ′. Thanks to Proposition 4.1, the other labelled nodes have also
same type. So, by reading T ′ in infix order we obtain a word ψ(w) in s� τ , which has same type as w.

Note that if we apply this algorithm on ψ(w), exchanging the role of σ and τ , we find back w. So ψ is
a bijection.

Here is an example of computation of ψ, with σ = 4132, τ = 3214, s = 51243, and w = 591682437
in s� σ. The word w gives the following factorization for σ: 4.13.2. Then we factorize τ as:

3214
4>1−−→ 321.4

3>2−−→ 3.21.4.

So we have the following grafting locations in T (s) and finally the tree T ′:

1

5
. .

2
. 3

4
. .

.

−→

1

5
. 8

. .

2

6

7
. .

.
3

4
. .

9
. .

T (s) T ′ = T (ψ(w))

The definitions of both φ and ψ then proves

Theorem 4.1 The quotient of FQSym by (P, V, Dr, Dd) is well-defined.

4.2.2 The other cases
The case (P, V, Dr ∪ Dd) where we consider having the same peaks and valleys is also a well-defined
quotient algebra of FQSym. Indeed, in terms of trees, the equivalence concerns nodes having the same
number of children which are leaves. So in order to build φ, instead of considering how to graft to the left
or to the right, we just graft where it is possible. In order to build ψ, we also adapt the factorization: we
just cut at the only possible place in order to change the type of a letter.

The other cases studied in the previous part do not give any quotient algebra except (P ∪ Dr, V ∪ Dd)
and (P ∪ Dd, V ∪ Dr). These cases give back an already known quotient algebra defined in [5].

Let us give some counter-examples for the other cases. In the cases where peaks and valleys are
identified, shuffling by 1 on the right does not preserve the statistics. For example, if we take σ = 2746351
and τ = 2756341, the words w = 27563481 and w′ = 27563841 are in τ � 1, and 4 is a double rise in
w and a double descent in w′, whereas 4 is always a valley in the elements of σ � 1. So the only case
where peaks and valleys are identified and where the quotient is well-defined is where all four statistics
are identified, that is the case where all elements of Sn are in the same class, a rather uninteresting case.
For (P ∪ Dr, V, Dd) and (V, P ∪ Dr ∪ Dd), consider σ = 45312 and τ = 53124. They are in the same
class for these two quotients. The permutation w = 645312 is in σ� 1, and 4 is a valley. But 4 cannot be
a valley in the element of τ � 1. All other cases are equivalent to the previous ones, up to reversal of the
alphabet or mirror image of words.
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5 The quotient algebras are all free
After proving that some quotients are well-defined algebras, let us now prove that these quotients are all
free. To this aim, we give an isomorphism between a free subalgebra (denoted by B) of FQSym and a
quotient (denoted by C) having the same sequence of dimensions. We denote by p the projection onto
C. The strategy is the following: we consider a basis B of B and show that the family (p(b))b∈B spans
C. Since in our case we know a basis C of C, we then show that the matrix of p(B) in the basis C is
invertible. So B and C are isomorphic as algebras.

5.1 The quotient of FQSym by (P, V, Dr, Dd)
In this Section, we take B = PBT (for more details about PBT, see [10]), C = FQSym�(P, V, Dr, Dd).
The projection p is the quotient from FQSym onto C. Let us denote by R = {σ ∈ S|σ avoiding 312}.
Thanks to [3], a basis of C is given by (p(Fσ))σ∈R. We order this family by the inverse lexicographic
order, and denote it by C.

Recall ([6]) that the E basis of PBT is given by Eσ =
∑
τ≥Pσ

Fτ , for σ ∈ R, where ≥P is the order
of the right permutohedron. We denote by B this family ordered by the inverse lexicographic order. Note
that PBT and C have the same sequence of dimensions, which is the Catalan sequence. Moreover, the
algebra PBT is free since a family of independent algebraic generators is given by the Eσ with σ in R,
and ending by 1. Let σ be in R. We have:

p(Eσ) =
∑

τ≥Pσ

p(Fτ ) =
∑

s∈R
c(σ)s p(Fs), where c(σ)s = |{τ ≥P σ|τ ∼ s}|. (5)

Let us admit temporarily the following Proposition.

Proposition 5.1 Let σ be in R. If τ satisfies σ ≤P τ , then the element τ ′ in R which has the same four
statistics as τ satisfies σ ≤lex τ ′.

Thanks to Proposition 5.1, for s and σ in R, c(σ)s = 0 if s <lex σ. Morever, c(σ)σ ≥ 1. So the matrix of
p(B) in the basis C is upper triangular with non zero coefficients on the diagonal. So p(B) is a basis of
C, and PBT is isomorphic to C. In particular, C is free.

Let us prove a slightly more general case than Proposition 5.1. Before stating the result, we first need
some notations. Denote by X the set of words appearing during the execution of the Françon-Viennot
algorithm. It is the set of words that are obtained by inserting some ∞ inside permutations, no two ∞
consecutive. Let Xn be the subset of X where the permutation is in Sn. Given such an element, working
backwards, one easily checks that there is only one way to apply the Françon-Viennot algorithm to get it.

Therefore, given τ ∈ Xn, we define two elements: p(τ) ∈ Sn obtained from τ by erasing the∞ letters
and r(τ) obtained by doing the same replacements in the Françon-Viennot algorithm as to obtain τ but
always on the first∞ sign. Note that in the case where there are no∞ in τ , this algorithm produces the
element of the class of τ avoiding 312 as already proven by Françon and Viennot. We have:

Proposition 5.2 Let σ ∈ Sn avoiding 312 and w ∈ Xn containing at least one∞, such that σ ≤P p(w).
Then σ∞ ≤lex r(w).

Proof: We make the proof by induction on n. For n = 1, it is obvious.
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Assume that the property holds for all such elements of Sk with k ≤ n− 1. Let σ ∈ Sn and in R. Let
w be a word satisfying the statement and let i be the position of 1 in σ.

Since σ avoids 312, σ = σ11σ2 where σ1 is a permutation of {2, . . . , i}.
If i = n, σ ends with 1, so does p(w), and so does p(w′). Then the property comes by induction on the

longest prefixes of σ and w not containing 1.
Otherwise, let us consider the words σ(i) and w(i) obtained by stopping the algorithm after only i steps

instead of n. Then σ(i) =σ11∞. Since σ≤P p(w), we have σ11≤P p(w(i)). So the induction hypothesis
applies and σ(i) ≤lex r(w(i)).

If the inequality is strict, then since the∞ in the prefix of size i of r(w(i)) are only replaced by letters
greater than i, we deduce that σ(i) <lex r(wn) = r(w), and then σ∞ <lex r(w). Otherwise, the induction
applies on the longest suffixes of σ and w not containing 1 and the result follows. 2

5.2 The quotient of FQSym by (P, V, Dr ∪ Dd)

In this Section,∼ represents the equivalence of permutations having the same peaks and valleys. Let us de-
note by D the permutations in R without double rise. Then (p(Fσ))σ∈D is a basis of C = FQSym�(P, V, Dr ∪ Dd).
Let us order this by the inverse lexicographic order, and denote this basis by C. In that case, let B be the
subalgebra generated by the family (Eσ)σ∈D. Note that this algebra has the same sequence of dimensions
as C. Moreover, B is free, and a family of independent algebraic generators is given by the Eσ , with σ in
D, and ending by 1.

In order to prove that the family p(B) is free on C, we will use similar arguments as in the case
FQSym�(P, V, Dr, Dd).

Proposition 5.3 Let σ be in R. If τ is in R, equivalent to σ for (P, V, Dr ∪ Dd), and its set of double rises
strictly contains the set of double rises of σ, then τ <lex σ.

Proof:
Let σ and τ be two permutations satisfying the hypothesis. Let k be the smallest integer such that k is a

double rise of τ , and a double descent of σ (since the inclusion of double rises set is strict, such a k exists).
Since σ and τ are in R, we have: σ(k−1) = τ(k−1) = u∞v where u is a word without∞. So, if we apply
the k-th step of the construction of Françon-Viennot, we have: σ(k) = u∞kv, and τ(k) = uk∞v. Since
the first∞ in σ(k) will be replaced by a letter greater than k, we have τ <lex σ.

2

Let us denote by cτσ the number |{s ≥P σ|s ∼ τ}|. From Proposition 5.3, we have that if σ and τ are
in D, and σ >lex τ , then cτσ is equal to zero. The cσσ are strictly positive, so C is a free algebra.

5.3 The quotients of FQSym by (P ∪ Dr, V ∪ Dd) or (P ∪ Dd, V ∪ Dr)

Thanks to the involutions, these two quotient sets are isomorphic. Note that the equivalence relation (P
∪ Dr, V ∪ Dd) amounts to having the same descent bottoms set, so, hence up to a simple involution,
having the same Genocchi set which is the set (see [5]). Thus FQSym�(P ∪ Dd, V ∪ Dr) is isomorphic
to NCSF, and so is free.
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Abstract After extending classical results on simple varieties of trees to trees counted by their number of leaves,
we describe a filtration of the set of permutations based on their strong interval trees. For each subclass we provide
asymptotic formulas for number of trees (by leaves), average number of nodes of fixed arity, average subtree size
sum, and average number of internal nodes. The filtration is motivated by genome comparison of related species.

Résumé Nous commençons par étendre les résultats classiques sur les variétés simples d’arbres aux arbres comptés
selon leur nombre de feuilles, puis nous décrivons une filtration de l’ensemble des permutations qui repose sur leurs
arbres des intervalles communs. Pour toute sous-classe, nous donnons des formules asymptotiques pour le nombre
d’arbres (comptés selon les feuilles), le nombre moyen de nœuds d’arité fixée, la moyenne de la somme des tailles
des sous-arbres, et le nombre moyen de nœuds internes. Cette filtration est motivée par des problématiques de
comparaison de génomes.

Keywords: permutations, simple varieties of trees, random generation, tree parameters, asymptotic formulas

This short paper is an extended abstract of [7], where details of the proofs are provided.

1 Introduction
The idea of viewing permutations as enriched trees has been around for several decades in different re-
search communities. For example, the recent enumerative study [1] of pattern avoiding permutations, in
which (substitution) decomposition trees play a crucial role. Also, the analysis of sorting algorithms is
very linked to tree representations of permutations: PQ trees [5] appear in the context of graph algorithms
and strong interval trees arise in comparative genomics [6, and references therein, for instance].

In each case it is of interest to understand the typical shape and structure of the trees that arise. For
example, a cursory examination of permutations that arise in the comparison of mammalian genomes
strongly suggests that not all permutations are equally likely, and in fact this is quite an understatement.
Trees coming from permutations under the uniform distribution are somehow degenerate [6], and do not
adequately represent the trees that arise in genomic comparisons. This has important consequences for
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algorithm analysis. Specifically, in [6], Bouvel et al. considered a subclass of strong interval trees –
selected because they represent what is known as commuting scenarios [3]– that correspond to the class
of separable permutations. This is a first step towards a more relevant model of permutations which arise
in genome comparison. By studying asymptotic enumeration and parameter formulas for separable per-
mutations, they proved that the complexity of the algorithm of [3] solving the perfect sorting by reversals
problem is polynomial time on separable permutations, whereas this problem is NP-complete in general.
Furthermore they were also able to describe some average-case properties of the perfect sorting scenarios
for separable permutations.

Ultimately, a clear understanding of the properties possessed by the strong interval trees that represent
the comparison of actual genomes might tell us something about the evolutionary process. Bouvel et
al. [6] conclude their study on separable permutations with a suggestion for the next step: strong interval
trees with degree restrictions on certain internal nodes. It is a very controlled way to introduce bias in the
distribution of strong interval trees. This is precisely what we do in this work; namely, we study strong
interval trees where the prime nodes have a bounded number of children. This is a class of trees that can be
completely understood combinatorially and analytically, and so we have immediate access to enumeration
and analysis of some tree parameters that are ultimately related to the complexity of computing perfect
sorting scenarios, or to properties of these scenarios.

In this work, we focus on the combinatorial analysis of these restricted sets of trees. This study reveals
a very lush substructure of permutations that is certainly of independent interest. We define nested simple
varieties of trees whose limit is the set of all strong interval trees, recalling they form a class in a size
preserving bijection with permutations. The components are families of trees, hence we are able to apply
a very complete set of tools to all the components: asymptotic analysis, random generation– these tools are
inaccessible to the full class without working through permutations. Thus, we decompose a transcendental
and non-analytic class into neat, algebraic portions, each of which is easily understood.

The organization of this abstract is as follows: First, in Section 2 we present some very general theorems
for asymptotic enumeration and parameter analysis that are widely applicable. Then in Section 3 we
describe strong interval trees as a decomposable combinatorial class. Finally, we describe the class of
prime-degree restricted trees in Section 4, and give tight bounds on values which control the asymptotic
enumeration and the tree parameters.

2 When the size of a tree is the number of leaves
There are many works which consider the study of average case parameters of trees where the size is the
number of internal nodes or of both internal nodes and leaves. The generating functions of these trees
satisfy a functional equation of the form T (z) = z · Φ(T (z)), and when Φ satisfies certain conditions,
such as analyticity, then there are formulas for inversion, resulting in explicit enumerative results. A
class of trees amenable to this treatment is said to be a simple variety of trees. The subject is exhaustively
treated in Section VII.3 of [10]. If, instead, we define size as the number of leaves, the generating function
satisfies a relation of the form T (z) = z + Λ(T (z)). The same general theorems on inversion still work,
and it suffices to apply them and unravel the results. Even though they are less frequent, these have also
been well studied in the literature, and the applicability of the inversion lemmas is noted in Example
VII.13 of [10]. In this section we do this explicitly.

Consider the analytic solutions T (z) of the equation

T (z) = z + Λ(T (z)), (1)



Some simple varieties of trees arising in permutation analysis 857

Asymptotic number of trees with n leaves
√

ρ
2πΛ′′(τ) ·

ρ−n

n3/2

The average number of nodes of arity κ in trees with n leaves λκτ
κ

ρ · n

The average number of internal nodes in trees with n leaves Λ(τ)
ρ · n = τ−ρ

ρ · n

The average subtree size sum in trees with n leaves
√

π
2ρΛ′′(τ) · n3/2

Tab. 1: A summary of parameters of trees given by T = z + Λ(T ). The value τ is the unique solution to Λ′(τ) = 1
between 0 and RΛ < 1, and ρ = τ − Λ(τ).

where Λ(z) =
∑
n≥2 λnz

n is analytic with radius of convergence RΛ, and such that λn ≥ 0 for any
n ≥ 2. Furthermore, assume that Λ is not the null function. Let Ψ(z) := z − Λ(z). Equation (1) rewrites
as Ψ(T (z)) = z, so what we are looking for is precisely an analytic inversion of Ψ.

The Table 1 summarizes the results of this section. We determine asymptotic formulas for number of
trees, and several key parameters. The shape of the formulas are, unsurprisingly, not unlike those that
arise in the study of trees counted by internal nodes.

2.1 Asymptotic number of trees

Our entire analysis is roughly a consequence of the analytic inversion lemma and transfer theorems. The
version to which we appeal is given and proved in [10]. Citations to original sources may be found therein.
The following theorem is a slight adaptation of Proposition IV.5 and Theorem VI.6 to combinatorial
equations of the form T = Z + Λ(T) instead of T = Z · Λ(T).

Theorem 1 Let Λ be a function analytic at 0, with non-negative Taylor coefficients, and such that, near 0,

Λ(z) =
∑

n≥2

λnz
n.

Let RΛ be the radius of convergence of this series. Under the condition limx→R−Λ
Λ′(x) > 1, there exists

a unique solution τ ∈ (0, RΛ) of the equation Λ′(τ) = 1.
Then, the formal solution T (z) of the equation T (z) = z+Λ(T (z)) is analytic at 0, its unique dominant

singularity is at ρ = τ − Λ(τ) and its expansion near ρ is

T (z) = τ −
√

2ρ

Λ′′(τ)

√
1− z/ρ+O(1− z/ρ). (2)

Moreover, if T is aperiodic, then one has

[zn]T (z) ∼
√

ρ

2πΛ′′(τ)
· ρ
−n

n3/2
. (3)
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2.2 Parameter Analysis
In the case of trees counted by internal nodes, the study of recursively defined parameters is very straight-
forward, starting from generating function equations. We can describe analogous versions for trees
counted by leaves. In particular, we consider additive parameters, and describe a Modified Iteration
Lemma, adapted to our notion of size. We illustrate the lemma on number of internal nodes, subtree size
sum and number of nodes of a given arity.

Our focus is on tree parameters that can be computed additively by parameters of subtrees. More
precisely, given a parameter ξ(t) for trees t ∈ T which satisfy the relation

ξ(t) = η(t) +

deg(t)∑

j=1

σ(tj),

where deg(t) is the arity of the root and tj are its children. Let Ξ(z), H(z) and Σ(z) be the associated
cumulative functions of ξ, η and σ. That is, Ξ(z) =

∑
t∈T

ξ(t)z|t|, H(z) =
∑
t∈T

η(t)z|t| and Σ(z) =

∑
t∈T

σ(t)z|t|.

Lemma VII.1 in [10] has an analogue for trees counted by their leaves, and it is proved in a very similar
way.

Lemma 2 (Iteration lemma for trees counted by their leaves) Let T be a class of trees satisfying T =
Z + Λ(T). The cumulative generating functions are related by

Ξ(z) = H(z) + Λ′(T (z)) Σ(z).

In particular, if σ ≡ ξ, one has Ξ(z) = H(z)
1−Λ′(T (z)) = H(z) · T ′(z).

The last equality is a consequence of T ′(z)(1 − Λ′(T (z))) = 1, which is obtained by differentiating
T (z) = z + Λ(T (z)) with respect to z.

We make a remark, that if σ ≡ ξ, we say the parameter is recursive; most basic parameters are recursive,
and in what follows we shall use this case only. Note also that when analytic treatment applies, T (z) has
a square-root singularity, so that T ′(z) has an inverse square-root singularity (by analytic derivation).
Therefore, whenever H(z) tends to a positive real when z → ρ (under some analytic conditions), then
transfer yields an asymptotic equivalent of the mean value of the parameter of the form c · n. This is for
instance the case for the number of nodes of fixed arity and the number of internal nodes.

Number of nodes with exactly κ children We “mark” nodes of arity κ by setting

η(t) =

{
1 if the root of t is of arity κ,
0 otherwise.

Hence if κ ≥ 2, H(z) =
∑
t∈T

η(t)z|t| =
∑

t1,...,tκ∈T
λκz

|t1|+|t2|+...+|tκ| so that H(z) = λκ T (z)κ. And(i) if

κ = 0, H(z) = z which is not interesting since it is counting the number of leaves i.e. the size of the tree.

(i) This is the only other possibility since there can be no unary nodes in a proper specification.
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By Lemma 2, for any κ ≥ 2 one has Ξ(z) = λκT (z)κ · T ′(z). Since the singular expansion of T (z) near
ρ is

T (z) = τ − γ
√

1− z/ρ+ o
(√

1− z/ρ
)
,with γ =

√
2ρ

Λ′′(τ)
(4)

then near ρ, one has T (z)κ = τκ +O
(√

1− z/ρ
)
. Using the singular differentiation theorem we have

T ′(z) =
γ

2ρ
√

1− z/ρ
+ o

(
1√

1− z/ρ

)
, so that Ξ(z) =

λκγτ
κ

2ρ
√

1− z/ρ
+ o

(
1√

1− z/ρ

)
,

from which we get the asymptotics of the cumulative generating function

[zn]Ξ(z) ∼ λκγτ
κρ−n−1

2
√
πn

.

The asymptotics of the average value across all trees of size n is reported in Table 1.

Number of internal nodes For this parameter, just take the following definition for η:

η(t) =

{
0 if t is just one leaf,
1 otherwise.

One has H(z) =
∑
t∈T

η(t)z|t| = T (z)− z, and therefore (with the γ of Equation (4))

Ξ(z) = (T (z)− z) T ′(z) =
γ(τ − ρ)

2ρ
√

1− z/ρ
+ o

(
1√

1− z/ρ

)
and [zn]Ξ(z) ∼ γ(τ − ρ)ρ−n−1

2
√
πn

.

Subtree size sum We are interested in the subtree size sum parameter, defined by η(t) = |t|, hence
H(z) = zT ′(z). So that

Ξ(z) = zT ′(z)2 =
γ2

4ρ(1− z/ρ)
+ o

(
1

1− z/ρ

)
and [zn]Ξ(z) ∼ γ2

4ρ
· ρ−n.

It is not an inverse of square-root singularity, and we find an asymptotic equivalent in n
3
2 for the average

value of the subtree size sum (see Table 1), which is typical for path length related parameters.
There are many other tree parameters that we could consider in a similar fashion.

3 Strong Interval Trees
Our interest in trees counted by leaves is spawned by strong interval trees. They are in a size preserving
bijection with permutations. This particular representation of permutations is a very effective data struc-
ture for algorithms in reconstruction of genome evolution scenarios, as we briefly mentioned in Section 1.
Our analysis builds subclasses that are in fact each a simple variety of trees, and hence are very well
understood, particularly given the generic analysis we have completed in Section 2.
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3.1 Definition and examples
A description of the bijective correspondence between strong interval trees (sometimes also called (sub-
stitution) decomposition trees) and permutations is given in [6]. Truly, it could be viewed as a tree repre-
sentation of the block decomposition of permutations described by Albert and Atkinson [1], the modular
decomposition of permutation graphs of Bérard et al. in [4] and even has origins in the PQ-trees of Booth
and Lueker [5]. The bijection is completely constructive, and can be computed in linear time, although
this is quite difficult to achieve, see [4]. We do not describe the bijection in this work.

The class is a set of trees where some internal nodes are enriched with a simple permutation. A per-
mutation is said to be simple if the only intervals i, i+ 1, . . . , k mapped to an interval are the singletons,
and 1, 2, . . . , n. Because we take the convention that 1 2 and 2 1 are not simple permutations, the shortest
ones are of size 4 and are 3 1 4 2 and 2 4 1 3. An enumerative study is done by Albert et al. [2], and
we make use of their asymptotic enumeration formulas. Let sn be the number of simple permutations of
size n. This is sequence A111111 in the On-Line Encyclopedia of Integer Sequences [13]. The sequence
is not P-recursive, but it does satisfy a simple functional inversion formula, and we have calculated exact
values of for sn for n < 800. Albert et al. determined the following bounds:

n!

e2

(
1− 4

n

)
≤ sn ≤

n!

e2

(
1− 4

n
+

2

n(n− 1)

)
. (5)

Here are the first few terms in the generating function for simple permutations:

S(z) = 2z4 + 6z5 + 46z6 + 338z7 + 2926z8 + 28146z9 + 298526z10 + 3454434z11 + . . . (6)

Theorem 3 (Reformulated [1]) The class of permutations is in a size-preserving bijection with the com-
binatorial class P of enriched trees defined by the following relations, where size is given by the number
of leaves. The class Z is an atomic class with a single element of size 1, and the N classes are all epsilon
classes containing a single element of size 0, marking internal nodes:

P = Z2 + N⊕ · Seq≥2 U⊕ + N	 · Seq≥2 U	 + N• · S(P),

U⊕ = Z2 + N	 · Seq≥2 U	 + N• · S(P),

U	 = Z2 + N⊕ · Seq≥2 U⊕ + N• · S(P).

(7)

The internal nodes N• are called prime nodes and the internal nodes N⊕ and N	 are called linear nodes.
The function S(z) is the generating function for simple permutations from Equation (6).

Figure 1 contains two examples. Figure 1(b) represents a simple permutation. We note that the trees
corresponding to simple permutations contain only a single prime node with n children. The root is
labeled by the permutation itself.

Notice that U⊕ and U	 define combinatorial classes which are in size-preserving bijection. In the
following, in order to deal with one class instead of two, we replace them by the equivalent class U =
Z2 + N◦ · Seq≥2 U + N• · S(P). Doing so, we change the labels of the linear nodes having a linear
parent (replacing them by ◦). This does not affect the enumeration of the class. Indeed, these labels are
determined since a linear node and its linear parent have different labels.

Corollary 4 The following combinatorial equivalences are true:

P ≡ Seq≥1 U and U ≡ Z + Seq≥2 U + S(Seq≥1 U). (8)
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−
+

2413
+

3142
−

(a) σ1 = 6 7 9 10 11 13 8 12 3 1 5 4 2

3 5 7 1 4 2 6

(b) σ2 = 3 5 7 1 4 2 6

Fig. 1: Two permutations and their associated strong interval trees

Consequently, U is in bijection with a class of Λ-trees for Λ(x) = x2

1−x +
∑
j≥4 sj

(
x

1−x

)j
, where sj is

the number of simple permutations of size j.

Proof: This equivalence is derived from Equation (7), the fact that U ≡ U⊕ ≡ U	, and the intermediary
equivalence P ≡ U + Seq≥2 U. 2

Now, neither P nor U are simple varieties of trees because S(z), and hence Λ(x), are not analytic at
the origin. In this case, we can, of course, use the bijection to permutations to have access to enumeration
and random generation tools. However, we propose a different strategy: generate a sequence of analytic
Λk such that as formal power series, limk→∞ Λk = Λ, and consider the set of Λk-trees. Can we describe
conditions so that the limit of the asymptotics of the subclasses tends to the asymptotics of the whole
class? To which extent are the parameter formulas valid under the limit? The example we have in hand is
a particularly instructive one, since the limit is known by other means, and allows us to test the limits of
analytic inversion.

3.2 A filtration for permutations
Next we describe the central filtration on the class of trees P. The limit of the filtration is the entire class,
and each subclass is a simple variety of trees that is very straightforward to analyze. We define the class
P(k) as follows, where S≤k(z) =

∑k
j=4 sjz

j :

P(k) = Z + 2 Seq≥2 U
(k) + S≤k(P(k)) and U(k) = Z + Seq≥2 U

(k) + S≤k(P(k)). (9)

That is, we restrict the degree of the prime nodes. The containment P(k) ⊂ P(k+1) is straightforward,
and since P

(k)
n = Pn when k ≥ n, we can derive the limit of combinatorial classes limk→∞ P(k) = P.

Furthermore, by the same manipulations as for the full class, we derive:

P(k) ≡ Seq≥1 U
(k) and U(k) ≡ Z + Seq≥2 U

(k) + S≤k(Seq≥1 U
(k)). (10)

Remark that U(k) is isomorphic to a Λk-tree with Λk(x) = x2

1−x+
∑k
j=4 sj

(
x

1−x

)j
. This class is certainly

algebraic. It is easy to generate many terms in the enumerative sequence using this algebraic equation.
We call the class denoted by P(k), as prime-degree restricted strong interval trees.

More generally, one goal of this work is to illustrate a strategy for the analysis of classes of trees C that
fail to be a simple variety of trees because the series governing the number of children available is not
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analytic. In such cases, one may look for a parameter such that each subclass of trees C(k), for which that
parameter take value at most k, is algebraic. We can then study the classes C(k) at fixed k, and hopefully
develop techniques to obtain information on C by letting k go to infinity. We study an example of such a
class in the present work, and illustrate some of the challenges of sending the limits of both the parameter
value k and the size n to infinity at the same time.

4 Enumerating Prime-Degree Restricted Strong Interval Trees
The enumerative analysis of Section 2 applies directly to these families of trees. Ideally, we would like to
preserve k as much as possible in the formulas.

4.1 Asymptotic enumeration
The equations (10) allow us to directly apply Theorem 1 to determine asymptotic formulas for the coeffi-
cients of the generating functions.

Theorem 5 For fixed k, the number of prime-degree restricted strong interval trees of size n, denoted
P

(k)
n grows asymptotically like

P (k)
n ∼ γkρ−nk n−3/2 where γk =

√
ρk

2πΛ′′k(τk)
as n→∞. (11)

Here, Λk(x) = x2

1−x +
∑k
j=4 sj(

x
1−x )j , τk satisfies 1− Λ′k(τk) = 0 and ρk = τk − Λk(τk).

Proof: First, we note that since
∑k
j=4 sj(

x
1−x )j is a polynomial in x

1−x , Λk(x) is certainly analytic at

0. Hence, the enumerative formulas of the first section apply, yielding the asymptotic estimate U (k)
n ∼

γkρ
−n
k n−3/2 where γk =

√
ρk

2πΛ′′(τk) .

Next, we note that by the second relation in Equation (10), P (k)(z) = U(k)(z)
1−U(k)(z)

. This is a subcrit-

ical composition, since the value of U (k)(z) at dominant singularity ρk is τk, which is less than 1 by

Theorem 1. Consequently, P (k)
n ∼ U(k)

n

1−U(k)
n

for large n, hence the approximation stated holds. 2

Table 2 contains numeric approximations for τk and ρk in the range k = 4 . . . 13. Using these estimates
gives good asymptotic approximations and the enumerative formulas given in Equation (11) converge
quickly for fixed k. Next we apply some refined analysis to bound the asymptotic estimate of Equa-
tion (11) – see Equation (16) below.

4.2 Bounding the asymptotic estimate of P (k)
n

We can produce an asymptotic estimate for P (k)
n in terms of k from Equation (11) by bounding ρk and

Λ′′k(τk). The first ingredient is a more explicit bound for sn, the number of simple permutations.

Lemma 6 For every n ≥ 4, sn ≤
√

2π nn+1/2 e−n−2.

Proof: This inequality is a consequence of applying the Stirling bound to the bounds of Equation (5). In
particular, we use n! ≤

√
2πnn+ 1

2 e−n e
1

12n and the inequality (1 − 4
n + 2

n(n−1) )e
1

12n ≤ 1 for n ≥ 4,
which can be proved by simple computations. 2
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k τk ρk k τk ρk
4 0.2258458016 0.1454726242 9 0.1463252500 0.1102193554
5 0.2043553556 0.1364583031 10 0.1375961304 0.1057725121
6 0.1841224072 0.1277948168 11 0.1300393555 0.1017629085
7 0.1689470150 0.1210046262 12 0.1234001218 0.09810173382
8 0.1565912704 0.1152312243 13 0.1174959122 0.09472586497

Tab. 2: Computed values for ρk and τk for small values of k. For these values, the bounds of Subsection 4.2 on ρk
and τk are not tight. However, we do note that in the limit, the sequences (τk), and (ρk) tend to 0, which is consistent
with the fact that the ordinary generating function for permutations has zero radius of convergence.

From this estimate, the derivations of the bounds on τk and ρk are straighforward, but technical. Work-
ing with the value τ̃k = τk

1−τk simplifies the expressions. Much of the bounds are then consequences of
the inequalities 0 < ρk < τk < τ̃k < 1.

Proposition 7 (Bounds for τ̃k) For any α < e−2
e−1 , there exists k(α) such that for k > k(α)

(
α

ksk

) 1
k−1

< τ̃k <

(
1

ksk

) 1
k−1

. (12)

Consequently,
e

k

(
αe3

√
2π k5/2

) 1
k−1

< τ̃k <
e

k

(
e3

√
2π k3/2(k − 4)

) 1
k−1

<
e

k
. (13)

Computational evidence suggests that k(α) = 4, for all α near e−2
e−1 .

Proof: (sketch) The starting point is the equation 1 = Λ′k(x), under the change of variables y = x
1−x ⇐⇒

x = y
1+y . We first remark that the equation 1 = Λ′k( y

1+y ) can be rewritten as

1 = (1 + y)2 − 1 + (1 + y)2
k∑

j=4

jsjy
j−1 which implies

2− (1 + y)2

(1 + y)2
=

k∑

j=4

jsjy
j−1. (14)

The next step towards proving the stated inequalities is the fact that for 0 < y < 1, 1−5y ≤ 2−(1+y)2

(1+y)2 ≤ 1.
Indeed, Equation (14) is satisfied at y = τ̃k, and consequently these inequalities yield an upper and a lower
bound for

∑k
j=4 jsj τ̃

j−1
k .

The announced upper bound on τ̃k is easily derived from ksk τ̃
k−1
k ≤∑k

j=4 jsj τ̃
j−1
k ≤ 1.

The lower bound is derived from the upper bound via the inequality 1−5τ̃k−
∑k−1
j=4 jsj τ̃

j−1
k ≤ ksk τ̃k−1

k .

For this purpose, we also need an upper bound on
∑k−1
j=4 jsj τ̃

j−1
k . It is obtained splitting the sum into two

parts, which can be bounded separately. More precisely, setting λk = bk1/3c, we can show that

k−λk−1∑

j=4

jsj τ̃
j−1
k = O

(
1

k3

)
and that

k−1∑

k−λk
jsj τ̃

j−1
k =

1

e− 1
(1 + o(1)) .

Full details are available in the long version [7] of this abstract. 2
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Theorem 8 (Bounds for ρk) For any α < e−2
e−1 , there exist β(α) and k(α) such that for any k ≥ k(α),

e

k

(
e3α√

2π k5/2

) 1
k−1

(
1− β(α)

k

)
< ρk <

e

k

(
e3

√
2π k3/2(k − 4)

) 1
k−1

.

Consequently, ρk = e
k

(
1− 5

2
log k
k + Θ( 1

k )
)

.

Proof: The upper bound is immediate from the bound ρk < τ̃k and Proposition 7.
The lower bound is derived by showing that ρk = τk − Λk(τk) = τ̃k

(
1− 2τ̃k

1+τ̃k
−∑k

j=4 sj τ̃
j−1
k

)
=

τ̃k(1 + Θ( 1
k )). In much the same fashion as the previous proposition, we leverage upper bounds on τ̃k

to build a lower bound. In this case, we use 2τ̃k
1+τ̃k

≤ 2τ̃k ≤ 2 ek , and the summation can be bounded by
splitting the sum at the same place:

k∑
j=4

sj τ̃
j−1
k =

k−λk−1∑
j=4

sj τ̃
j−1
k +

k−1∑
j=k−λk

sj τ̃
j−1
k + sk τ̃

k−1
k .

Even though it is not the same summation, we nonetheless re-use the same bounding process on the
partial summations to recover

k−λk−1∑

j=4

sj τ̃
j−1
k = O

(
1

k3

)
and

k−1∑

j=k−λk
sj τ̃

j−1
k =

1

k − λk

k−1∑

j=k−λk
jsj τ̃

j−1
k = Θ

(
1

k

)
. (15)

Finally, since k sk τ̃k−1
k ≤ 1, we have that 2τ̃k

1+τ̃k
+
∑k
j=4 sj τ̃

j−1
k = Θ

(
1
k

)
, from which it follows that

ρk = τ̃k(1 + Θ( 1
k )). The remaining expressions arise from substituting the lower bounds for τ̃k, bounds

for sk, followed by some basic manipulations. 2

It was known in [8] that ρk = e
k (1 + o(1)), but we are able to produce a more precise estimate. We

require this precision when we consider the limit as k →∞.
From the series expansion of Λ′′(x), we have Λ′′(τk) ≥ 2 + 6τ̃k. We could expand this expression

further, and use lower bounds on τ̃k, but it turns out that for our purposes, the bound Λ′′(τk) ≥ 2 is
sufficient.

Upper bound for the asymptotic estimate of P (k)
n Finally, we have all of the elements to determine an

asymptotic estimate of P (k)
n . We substitute the upper and lower bounds for ρk, and the bound Λ′′(τk) ≥ 2

to obtain:

γkρ
−n
k n−3/2 ≤

√
e

4kπ

(
k

e

)n(
1 +

5

2

log k

k
+ Θ

(
1

k

))n
n−3/2. (16)

In the limit, Stirling’s approximation Our analysis of P brings together two classic asymptotic facts.
The asymptotic growth of a simple variety of trees T is always of the form Tn ∼ γρ−nn−3/2 for some
real valued ρ and γ but the classic Stirling’s approximation of n! gives Pn ∼

(
n
e

)n√
2πn. Subtle analysis

is required to reconcile these two estimates.
The trees for all permutations of size n have prime nodes of arity at most n. Thus, if k ≥ n, P(k)

n

contains all of them, and hence P (k)
n = n! for k ≥ n. Now, consider Equation (16) with k = n. The
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upper bound is a constant times Stirling’s formula(ii). However, when we consider P (2n)
n , which is also

n!, the upper bound gains an unwanted factor of 2n. This does not contradict the correctness of our
asymptotic form, for fixed k, and it rather emphasizes that it is an open problem to develop asymptotic
formulas when k is a function of n, and they go to infinity together. This will require a return to the
analytic inversion and transfer theorems to study how the error terms depend on k(iii).

4.3 Parameter analysis
From Equation (5), simple permutations make up about 1/9 of all permutations, and consequently the
average case analysis of parameters is dominated by their very flat shape. However, the prime-degree
restricted trees are much more rich and parameter analysis follows from Section 2.

We remark that the perfect sorting scenarios for σ are directly related to the number of internal nodes,
and in particular the distribution among prime and linear nodes. The average subtree size is related to
the average reversal size. These two parameters give important insight into the average case analysis
of perfect sorting by reversals. A more elaborate discussion on the links between these parameters and
algorithm analysis is presented in [6].

4.4 Random generation
Since our initial interest is the shape of the trees, and not the particulars of the internal nodes, we have
produced a Boltzmann generator which generates trees of size approximately 10000 for k up to 800
without generating the simple permutation labels. Figure 2 illustrates a randomly generated tree from P(7)

with approximately 1000 leaves. Remark that the structure is dominated by prime nodes of arity 7.

Fig. 2: A tree from P(7) generated uniformly at random

5 Conclusion
On the biological side, our long term goal is to understand random permutations in order to identify the
very specific traits which arise in permutations which encode mammalian genome comparisons. Chauve,

(ii) This constant is
√

e
8π2 obtained replacing k by n in Equation (16).

(iii) The difficulty here lies in Λ being not analytic. Notice however that the same filtration by truncations at order k may also be
defined when Λ is analytic: in this case, it is not difficult to prove that we obtain the correct asymptotic formula when taking the
limit as k tends to infinity, i.e. that limits in n and k commute.
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McCloskey and Mishna [9] have taken some preliminary steps in this direction.
On the analytical side, we would like to describe the parameters as functions of k. This will require

a very delicate treatment of the bounds, and a much stronger understanding of how to take the limit as
k → ∞. This is a much larger undertaking, as essentially we are no longer guided by the inversion
theorems.

Finally, one can ask other permutations properties with respect to this filtration. In particular, the model
we investigate has a strong connection with the pattern avoiding permutation classes that contain a finite
number of simple permutations [1].
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Gelfand Models for Diagram Algebras:
extended abstract

Tom Halverson†

Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN 55105 USA

Abstract. A Gelfand model for a semisimple algebra A over C is a complex linear representation that contains each
irreducible representation of A with multiplicity exactly one. We give a method of constructing these models that
works uniformly for a large class of combinatorial diagram algebras including: the partition, Brauer, rook monoid,
rook-Brauer, Temperley-Lieb, Motzkin, and planar rook monoid algebras. In each case, the model representation is
given by diagrams acting via “signed conjugation” on the linear span of their vertically symmetric diagrams. This
representation is a generalization of the Saxl model for the symmetric group, and, in fact, our method is to use the
Jones basic construction to lift the Saxl model from the symmetric group to each diagram algebra. In the case of the
planar diagram algebras, our construction exactly produces the irreducible representations of the algebra.

Résumé. Un modèle de Gelfand pour une algèbre semi-simple A sur C est une représentation linéaire complexe qui
contient chaque représentation irréductible de A avec multiplicité exactement un. Nous fournissons une méthode
de construction explicite de ces modèles qui fonctionne de manière uniforme pour une grande classe d’algèbres
de schéma combinatoire, y compris: la partition, Brauer, rook-monoid, rook-Brauer, Temperley-Lieb, Motzkin, et
algèbres planaires rook monoid. En chaque cas, la représentation du modèle est donnée par les diagrammes agissant
par “conjugaison signé” sur l’espace engendré par les diagrammes verticalement symétriques. Cette représentation
est une généralisation du modèle Saxl pour le groupe symétrique, et, en fait, notre méthode est d’utiliser le “Jones
basic construction” pour étendre le modèle Saxl du groupe symétrique à chaque algèbre diagramme. Dans le cas des
algèbres de diagrammes planaires, notre construction produit exactement les représentations irréductibles de l’algèbre.

Keywords: Gelfand model; multiplicity-free representation; symmetric group; partition algebra; Brauer algebra;
Temperley-Lieb algebra; Motzkin algebra; rook-monoid

1 Introduction
A famous consequence of Robinson-Schensted-Knuth (RSK) insertion is that the set of standard Young
tableaux with k boxes is in bijection with the set of involutions in the symmetric group Sk (the permuta-
tions σ ∈ Sk with σ2 = 1). Furthermore, these standard Young tableux index the bases for the irreducible
CSk modules, so it follows that the sum of the degrees (dimensions) of the irreducible Sk modules equals
the number of involutions in Sk. This suggests the possibility of a representation of the symmetric group
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on the linear span of its involutions which decomposes into irreducible Sk-modules such that the multiplic-
ity of each irreducible is exactly 1. Indeed, Saxl [22] and Kljačko [13] have constructed such a module.
In this representation, the symmetric group acts on its involutions by a twisted, or signed, conjugation
(see Section 3). A combinatorial construction of this module was studied recently by Adin, Postnikov,
and Roichman [1] and extended to the rook monoid and related semigroups in [14]. A representation
for which each irreducible appears with multiplicity one is called a Gelfand model (or, simply, a model),
because of the work in [3] on models for complex Lie groups.

In [9] the RSK algorithm is extended to work for a large class of well-known, combinatorial diagram
algebras including the partition, Brauer, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, and planar
rook monoid algebras. A consequence [9, (5.5)] of this algorithm is that the sum of the degrees of the
irreducible representations of each of these algebras equals the number of horizontally symmetric basis
diagrams in the algebra. This suggests the existence of a model representation of each of these algebras
on the span of its symmetric diagrams, and the main result of this paper is to produce a such a model.

Let Ak denote one of the following unital associative C-algebras: the partition, Brauer, rook monoid,
rook-Brauer, Temperley-Lieb, Motzkin, or planar rook monoid algebra. Then Ak has a basis of diagrams
and a multiplication given by diagram concatenation. The algebra Ak depends on a parameter x ∈ C
and is semisimple for all but a finite number of choices of x. When Ak is semisimple, its irreducible
modules are indexed by a set ΛAk , and for λ ∈ ΛAk , we let Aλk denote the irreducible Ak-module labeled
by λ. We construct, in a uniform way, an Ak-module MAk which decomposes into irreducibles as MAk

∼=⊕
λ∈ΛAk

Aλk , where the multiplicity of each irreducible module is exactly one.

Our model representation is constructed as follows. For a basis diagram d, we let dT be its reflection
across its horizontal axis and say that a diagram t is symmetric if tT = t. A basis diagram d acts on
a symmetric diagram t by “signed conjugation”: d · t = sign(d, t) dtdT , where sign(d, t) is the sign
on the permutation of the fixed blocks of t induced by conjugation by d (see Section 4 for details). In
each example, our basis diagrams are assigned a rank, which is the number of blocks in the diagram that
propagate from the top row to the bottom row. We let Mr

Ak
be the linear span of the symmetric diagrams

of rank r and our model is the direct sum MAk = ⊕kr=0M
r
Ak

.
The diagram algebras in this paper naturally form a tower A0 ⊆ A1 ⊆ · · · ⊆ Ak, and we are able to use

the structure of the Jones basic construction of this tower to derive our model. Each algebra contains a
basic construction ideal Jk−1 ⊆ Ak such that Ak ∼= Jk−1 ⊕ Ck, where Ck ∼= CSk for nonplanar diagram
algebras and Ck ∼= C1k for planar diagram algebras. The ideal Jk−1 is in Schur-Weyl duality with one of
Ak−1 or Ak−2 (depending on the specific diagram algebra). In this setup, we are able to take a model for
each Cr, 0 ≤ r ≤ k, and lift them to a module for Ak.

For the planar diagram algebras – the Temperley-Lieb, Motzkin, and planar rook monoid algebras –
the algebra C ∼= C1k is trivial and the model is trivial. It follows that Mr

Ak
is irreducible and that signed

conjugation produces a complete set of irreducible modules for the planar algebras. For the nonplanar
diagram algebras, the algebra is C ∼= CSk, and we use the Saxl model for Sr. In this case Mr

Ak
is further

graded as Mr
Ak

= ⊕fMr,f
Ak

, where Mr,f
Ak

is the linear span of symmetric diagrams of rank r having f “fixed
blocks” and Mr,f

Ak
decomposes into irreducibles labeled by partitions λ ` r having f odd parts.

Besides being natural constructions, these model representations are useful in several ways. (1) In
a model representation, isotypic components are irreducible components, so projection operators map
directly onto irreducible modules without being mixed up among multiple isomorphic copies of the same
module. (2) A key feature of our model is that we give the explicit action of each basis element of Ak on
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the basis of Mr,f
Ak

. For small values of k, and for all values of k in the planar case, these representations are
irreducible or have few irreducible components. Thus, in practice, the model provides a natural and easy
way to compute the explicit action of basis diagrams on irreducible representations. (3) Gelfand models
are useful in the study of Markov chains on related combinatorial objects; see, for example, Chapter 3F
of [5] and the references therein, as well as [6], [20].

2 The Partition Algebra and its Diagram Subalgebras
For k ∈ Z>0, let Pk denote the set of set partitions of {1, 2, . . . , k, 1′, 2′, . . . , k′}. We represent a set
partition d ∈ Pk by a diagram with k vertices in the top row, labeled 1, . . . , k, and k vertices in the bottom
row, labeled 1′, . . . , k′. We then assign edges in this diagram so that its connected components equal the
underlying set partition d. For example, the following is a diagram d ∈ P12,

1

1′

2

2′

3

3′

4

4′

5

5′

6

6′

7

7′

8

8′

9

9′

10

10′

11

11′

12

12′

=

{
{1, 3, 4′, 6′}, {2}, {4, 7}, {5, 1′, 5′}, {6, 9′}, {8, 7′},
{9, 10, 12′}, {11}, {12, 10′}, {2′, 3′}, {8′, 11′}

}
.

We refer to the parts of a set partition as blocks, so that the above diagram has 11 blocks. The diagram of
d is not unique, since it only depends on the underlying connected components.

Multiply two set partition diagrams d1, d2 ∈ Pk as follows. Place d1 above d2 and identify each vertex
j′ in the bottom row of d1 with the corresponding vertex j in the top row of d2. Remove any connected
components that live entirely in the middle row and let d1 ◦ d2 ∈ Pk be the resulting diagram. For
example, if

d1 = and d2 =

then

d1 ◦ d2 = = .

Diagram multiplication is associative and makes Pk(x) a monoid with identity 1k =
· · ·
· · · .

Now let x ∈ C, define P0(x) = C, and for k ≥ 1, let Pk(x) be the C-vector space with basis Pk. If
d1, d2 ∈ Pk, let κ(d1, d2) denote the number of connected components that are removed from the middle
row in computing d1 ◦ d2, and define

d1d2 = xκ(d1,d2) d1 ◦ d2. (1)

In the multiplication example of the previous section κ(d1, d2) = 1 and d1d2 = x(d1 ◦ d2). This product
makes Pk(x) an associative algebra with identity 1k.
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We say that a block B in a set partition diagram d ∈ Pk is a propagating block if B contains vertices
from both the top and bottom row of d; that is, both B ∩ {1, 2, . . . , k} and B ∩ {1′, 2′, . . . , k′} are
nonempty. The rank of d ∈ Pk (also called the propagating number) is

rank(d) =
(

the number of propagating blocks in d
)
. (2)

For each k ∈ Z>0, the following are subalgebras of the partition algebra Pk(x):

CSk = C-span{ d ∈ Pk | rank(d) = k},
Bk(x) = C-span{ d ∈ Pk | all blocks of d have size 2},

Rk = C-span
{
d ∈ Pk

∣∣∣∣
all blocks of d have at most one vertex in {1, . . . k}
and at most one vertex in {1′, . . . k′}

}
,

RBk(x) = C-span{ d ∈ Pk | all blocks of d have size 1 or 2}.

Here, CSk is the group algebra of the symmetric group, Bk(x) is the Brauer algebra, Rk is the rook
monoid algebra [23], and RBk(x) is the rook-Brauer algebra [4], [17].

A set partition is planar if it can be represented as a diagram without edge crossings inside of the rectan-
gle formed by its vertices. The planar partition algebra [12] is PPk(x) = C-span{ d ∈ Pk | d is planar }.
The following are the planar subalgebras of Pk(x):

C{1k} = CSk ∩ PPk(x), TLk(x) = Bk(x) ∩ PPk(x),
PRk = Rk ∩ PPk(x), Mk(x) = RBk(x) ∩ PPk(x).

Here, TLk(x) is the Temperley-Lieb algebra, PRk is the planar rook monoid algebra [7], and Mk(x) is
the Motzkin algebra [2]. The parameter x does not arise when multiplying symmetric group diagrams
(as there are never middle blocks to be removed). The parameter is set to be x = 1 for the rook monoid
algebra and the planar rook monoid algebra. Here are examples from each of these subalgebras:

∈ PP10(x) ∈ S10

∈ B10(x) ∈ TL10(x)

∈ RB10(x) ∈ M10(x)

∈ R10 ∈ PR10

3 Saxl’s Model Representation of the Symmetric Group
An involution t ∈ Sk is a permutation such that t2 = 1. In disjoint cycle notation, involutions consist of
2-cycles and fixed points. Let Ik be the set of involutions in Sk and let Ifk be the involutions in Sk which fix
precisely f points. For a fixed involution t ∈ Ifk , let C(t) ⊆ Sn be the centralizer of t in Sk. If w ∈ C(t),
then wtw−1 = t, so w fixes t but possibly permutes the fixed points of t. Let πf be the linear character of
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C(t) such that πf (w) is the sign of the permutation of w on the fixed points of t. Saxl [22] (see also [13]
or [11]) proves the following decomposition of the induced character

ϕfSk := IndSn
C(t)(πf ) =

∑

λ`k
odd(λ)=f

χλSk , and thus ϕSk :=

bk/2c∑

`=0

ϕk−2`
Sk

=
∑

λ`k
χλSk , (3)

where odd(λ) is the number of odd parts of the partition λ. This result generalizes the classic result (see
[24, Theorem IV]) for fixed-point-free permutations, i.e., the case where f = 0. In this case, there are no
fixed points and π0 is the trivial character of C(t).

We can then explicitly construct the corresponding induced model. If w ∈ Sk and t ∈ In,f then
wtw−1 ∈ IfSk is an involution with the same number f of fixed points as t. However, the relative position
of the fixed points are permuted in the map t 7→ wtw−1. Define sign(w, t) to be the sign of the permutation
induced on the fixed points of t under conjugation. That is,

sign(w, t) = (−1)|{ 1≤i<j≤k | t(i)=i, t(j)=j, and w(i)>w(j) }|. (4)

Now, define an action of w ∈ Sk on t ∈ IfSk by w · t = sign(w, t)wtw−1, which we refer to as signed
conjugation. Define Mf

Sk
= C-span{ t | t ∈ IfSk}, and let Sk act on Mf

Sk
by extending the action linearly.

We then prove that Mf
Sk
∼= IndSk

C(t)(Mt), and it follows from (3) that

MSk =
⊕

f

Mf
Sk
∼=
⊕

λ`n
Sλk . (5)

Adin, Postnikov, and Roichman [1] study a slightly different combinatorial model for Sk. In this work,
the sign is computed as sign(w, t) = (−1)|{ 1≤i<j≤k | t(i)=j, t(j)=i, and w(i)>w(j) }|. If we let M

f

k denote

the corresponding Sk module, then we are able to prove that Mf
Sk
∼= M

f

Sk ⊗ S
(1k)
k , where S

(1k)
k is the sign

representation of Sk.

4 Gelfand Models for Diagram Algebras
Let Ak be any one of the diagrams described in Section 2 with the parameter x ∈ C chosen such that Ak
is semisimple. Let Ak be the basis of diagrams which span Ak. For d ∈ Ak, let dT ∈ Ak be the diagram
obtained by reflecting d over its horizontal axis. Note that the map d → dT corresponds to exchanging
i↔ i′ for all i. For example,

d1 = ⇒ dT1 = ,

d2 = ⇒ dT2 = .

We say that a diagram d is symmetric if dT = d, so that d2 is symmetric and d1 is not. If we let
(i′)′ = i and let B′ = { b′ | b ∈ B } for a block B of a partition diagram d, then d is symmetric if it
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satisfies: B ∈ d if and only if B′ ∈ d. If d is a partition diagram, then we say that a block B ∈ d
is a fixed block if B′ = B. In our above examples, d1 has one fixed block, {5, 5′}, and d2 has two
fixed blocks, {8, 8′} and {6, 7, 10, 6′, 7′, 10′}. Note that for a, b ∈ Ak, (ab)T = bTaT , and observe that
(dtdT )T = (dT )T tT dT = dtdT , so t is symmetric if and only if dtdT is symmetric. We say that dtdT is
the conjugate of t by d.

Remark 6 The symmetric diagrams in this paper are the same as the type-B set partitions in [18] Se-
quence A002872 and they are closely related to the type-B set partitions used in [21].

Remark 7 If we restrict our diagrams to Sk, then dT equals d−1, diagram conjugation corresponds to
usual group conjugation, symmetric diagrams are involutions, and fixed blocks are fixed points.

For any of our diagram algebras Ak, we let

Ir,fAk
= { d ∈ Ak | d is symmetric, rank(d) = r, and d has f fixed blocks },

IrAk = { d ∈ Ak | d is symmetric, rank(d) = r },
IAk = { d ∈ Ak | d is symmetric },

(8)

If d ∈ Ak and t ∈ Ir,fAk
, then there are two possibilities for the map t 7→ d◦t◦dT . Either rank(d◦t◦dT ) <

rank(t) or rank(d ◦ t ◦ dT ) = rank(t). In the later case, the fixed blocks of t have been permuted, and
we let sign(d, t) be the sign of the permutation of the fixed blocks of t. and for d ∈ Ak and t ∈ Ir,fAk

, we
define

d · t =

{
xκ(d,t)sign(d, t) d ◦ t ◦ dT , if rank(d ◦ t ◦ dT ) = rank(t)

0, if rank(d ◦ t ◦ dT ) < rank(t)
(9)

where κ(d, t) is the number of blocks removed from the middle row in creating d ◦ t as described in (1).

Example 10 (Signed Conjugation) In the following example, there are two blocks removed in d◦t yielding
x2. Furthermore, the three fixed blocks of t are permuted as (B1, B2, B3) 7→ (B3, B2, B1). Hence,
sign(d, t) = −1.

d =

t = = −x2 = s

dT =

For 0 ≤ f ≤ r ≤ k, define Mr,f
Ak

= C-span{ d | d ∈ Ir,fAk
}, where Mr,f

Ak
= 0 if Ir,fAk

= ∅, and let

Mr
Ak

= C-span{ d | d ∈ IrAk },

=
r⊕

f=0

Mr,f
Ak
, and

MAk = C-span{ d | d ∈ IAk },

=
k⊕

r=0

Mr
Ak =

k⊕

r=0

r⊕

f=0

Mr,f
Ak
.

(11)

Then we prove the following:
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Proposition 12 The action defined in (9) makes Mr,f
Ak

an Ak-module.

The main theorem of this paper is the following.

Theorem 13 For each 0 ≤ f ≤ r ≤ k chosen such that Mr,f
Ak
6= 0, we have

Mr,f
Ak
∼=
⊕

λ∈ΛfCr

Mλ
Ak and thus MAk

∼=
⊕

λ∈ΛAk

Mλ
Ak .

Our method of proof of this theorem is to use the Jones basic construction. We have a natural tower of
algebras, A0 ⊆ A1 ⊆ A2 ⊆ · · · . where Ak−1 is embedded as subalgebra of Ak by placing an identity
edge to the right of any diagram in Ak−1. Let Jk−1 ⊆ Ak be the ideal spanned by the diagrams of Ak
having rank k − 1 or less. Then,

Ak ∼= Jk−1 ⊕ Ck, (14)

where Ck is the span of the diagrams of rank exactly equal to k. For us,

Ck ∼= CSk when Ak is one of the nonplanar algebras Pk(x),Bk(x),RBk(x) or Rk,
Ck ∼= C1k when Ak is one of the planar algebras TLk(x),Mk(x), or PRk, (15)

We then are able to lift model representations from Cr, 0 ≤ r ≤ k, to a model for Ak.

5 Gelfand Models for Diagram Algebras
We now illustrate some of the combinatorial details that come from applying our model construction to
the various diagram algebras.

5.1 The partition algebra Pk(x)

The partition algebra Pk(x) has dimension equal to the Bell number B(2k) and is semisimple for x ∈ C
such that x 6∈ {0, 1, . . . , 2k − 1} (see [16] or [10]). When semisimple, its irreducible representations are
indexed by partitions in the set ΛPk = { λ ` r | 0 ≤ r ≤ k }. Let Pλk denote the irreducible module
indexed by λ ∈ ΛPk .

For each 0 ≤ ` ≤ br/2c there exist symmetric diagrams in Ir,fPk
of rank r with f = r − 2` fixed

blocks and ` blocks which are transposed (i.e., propagating, nonidentity blocks). The model representation
satisfies

Mr,f
Pk

=
∑

λ`k
odd(λ)=f

Pk
λ and MPk =

k∑

r=0

br/2c∑

`=0

Mr,r−2`
Pk

=
∑

λ∈ΛPk

Pk
λ. (16)

We show that

dimMr,r−2`
Pk

=
∣∣∣Ir,r−2`
Pk

∣∣∣ =
k∑

b=r

S(k, b)

(
b

r

)(
r

2`

)
(2`− 1)!! (17)

where S(k, b) is a Stirling number of the second kind. If we let pk = |IPk | =
∑k
r=0

∑br/2c
`=0 |I

r,r−2`
Pk

| =
dimMPk denote the total number of symmetric diagrams in Pk(x), then pk is the sum of the degrees of
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the irreducible Pk(x)-modules (which can be found in [15], [10]). The first few values are

k 0 1 2 3 4 5 6 7 8 9 10
pk = dimMPk 1 2 7 31 164 999 6841 51790 428131 3827967 36738144

.

(18)
The sequence pk is [18] Sequence A002872, which equals the number of type-B set partitions (see Re-
mark 6) and has exponential generating function e(e2x−3)/2+ex =

∑∞
k=0 pk

xk

k! .

5.2 The Brauer algebra Bk(x)

The Brauer algebra has dimension dimBk(x) = (2k − 1)!! and is semisimple for x ∈ C chosen to avoid
{x ∈ Z | 4 − 2k ≤ x ≤ k − 2}. When Bk(x) is semisimple, its irreducible modules are indexed by
partitions in the set ΛBk = { λ ` (k − 2r) | 0 ≤ r ≤ bk/2c }. Let Bλk denote the irreducible Bk(x)
module for λ ∈ ΛBk .

For each 0 ≤ c ≤ bk/2c and each 0 ≤ ` ≤ b(k − 2c)/2c there exist symmetric diagrams in
Ik−2c,k−2c−2`
Bk

of rank r = k − 2c with f = k − 2c − 2` fixed blocks. The Bk(x) model satisfies

Mr,f
Bk
∼=

⊕

λ`r
odd(λ)=f

Bλk and MBk
∼=
bk/2c⊕

c=0

b(k−2c)/2c⊕

`=0

Mk−2c,k−2c−2`
Bk

∼=
⊕

λ∈ΛBk

Bλk . (19)

We show that

dimMr,r−2`
Bk

=
∣∣∣Ir,r−2`
Bk

∣∣∣ =

(
k

r

)
(k − r − 1)!!

(
r

2`

)
(2`− 1)!!. (20)

If we let bk = |IBk | =
∑bk/2c
c=0

∑b(k−2c)/2c
`=0 |Ik−2c,k−2c−2`

Bk
| = dimMBk denote the total number of

symmetric diagrams in Bk(x), then bk is the sum of the degrees of the irreducible Bk(x)-modules (which
can be found in [19]). The first few values of these dimensions are

k 0 1 2 3 4 5 6 7 8 9 10
bk = dimMBk 1 1 3 7 25 81 331 1303 5937 26785 133651

. (21)

The sequence bk is [18] Sequence A047974 and has exponential generating function ex
2+x =

∑∞
k=0 bk

xk

k! .

5.3 The rook monoid algebra Rk

The rook monoid algebra Rk has dimension dimRk =
∑k
`=0

(
k
`

)2
`! (see [15], [8], [14]) and is semisimple

with irreducible modules labeled by ΛRk = { λ ` r | 0 ≤ r ≤ bkc }. Let Rλk denote the irreducible module
labeled by λ ∈ ΛRk .

For each 0 ≤ r ≤ k and each 0 ≤ ` ≤ br/2c there exist symmetric rook monoid diagrams of rank r
and f = r − 2` fixed blocks. The Rk model satisfies

Mr,f
Rk
∼=

⊕

λ`r
odd(λ)=f

Rλk and MRk
∼=

k⊕

r=0

br/2c⊕

`=0

Mr,r−2`
Rk

∼=
⊕

λ∈ΛRk

Rλk . (22)

We show that

dimMr,r−2`
Rk

=
∣∣∣Ir,r−2`
Rk

∣∣∣ =

(
k

r

)(
r

2`

)
(2`− 1)!!, (23)
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If we let rk = |IRk | =
∑k
r=0

∑br/2c
`=0 |I

r,r−2`
Rk

| = dimMRk denote the total number of symmetric diagrams
in Rk, then rk is sum of the degrees of the irreducible Rk-modules (which can be found in [15], [8]). The
first few values of these dimensions are

k 0 1 2 3 4 5 6 7 8 9 10
dimMRk 1 2 5 14 43 142 499 1850 7193 29186 123109

. (24)

The sequence rk gives the number of “self-inverse partial permutations” and is [18] Sequence A005425.
Furthermore, rk is related to the number of involutions sk in the symmetric group by the binomial trans-
form rk =

∑k
i=0

(
k
i

)
si and thus has exponential generating function ex

2/2+2x =
∑∞
k=0 rk

xk

k! .

5.4 The rook-Brauer algebra RBk(x)

The rook-Brauer algebra RBk(x) (see [4] or [17]) has dimension
∑k
`=0

(
2k
2`

)
(2`− 1)!! and is semisimple

for all but finitely many x ∈ C. When semisimple, its irreducible representations are indexed by partitions
in the set ΛRBk = { λ ` r | 0 ≤ r ≤ bkc }. Let RBλk denote the irreducible module indexed by λ ∈ ΛRBk .

For each 0 ≤ r ≤ k and each 0 ≤ ` ≤ br/2c there exist symmetric rook monoid diagrams of rank r
and f = r − 2` fixed blocks. The RBk(x) models satisfy

Mr,f
RBk
∼=

⊕

λ`r
odd(λ)=f

RBλk and MRBk
∼=

k⊕

r=0

br/2c⊕

`=0

Mr,r−2`
RBk

∼=
⊕

λ∈ΛRBk

RBλk . (25)

We show that

dimMr,r−2`
RBk

=
∣∣∣Ir,r−2`
RBk

∣∣∣ =

b(k−r)/2c∑

c=0

(
k

r

)(
k − r

2c

)
(2c− 1)!!

(
r

2`

)
(2`− 1)!!. (26)

If we let rbk = |IRBk | =
∑k
r=0

∑br/2c
`=0 |I

r,r−2`
RBk

| = dimMRBk denote the total number of symmetric dia-
grams in RBk(x), then rbk is the sum of the degrees of the irreducible RBk(x)-modules (these dimensions
can be found in [4] or [17]). The first few values of these dimensions are

k 0 1 2 3 4 5 6 7 8 9 10
rbk = dimMRBk 1 2 6 20 76 312 1384 6512 32400 168992 921184

. (27)

The sequence rbk is [18] Sequence A000898 and it is related to the number of symmetric diagrams bk in
the Brauer algebra (21) by the binomial transform rbk =

∑k
i=0

(
k
i

)
bi and thus has exponential generating

function ex
2+2x =

∑∞
k=0 rbk

xk

k! .

5.5 The Temperley-Lieb algebra TLk(x)

The Temperley-Lieb algebra TLk(x) has dimension equal to the Catalan number Ck = 1
k+1

(
2k
k

)
and is

semisimple for x ∈ C chosen such that x is not the root of the Chebyshev polynomial Uk(x/2) (see [25]
or [2]). When semisimple, its irreducible modules are indexed by the following set of integers ΛTLk =

{ k − 2` | 0 ≤ ` ≤ bk/2c }. We let TL(k−2`)
k denote the irreducible module labeled by (k − 2`) ∈ ΛTLk
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For each 0 ≤ ` ≤ bk/2c, there exist symmetric Temperley-Lieb diagrams of rank r = k − 2` and
f = k − 2` fixed points. The TLk(x) model satisfies

M
(k−2`)
TLk

∼= TL
(k−2`)
k and MTLk

∼=
bk/2c⊕

`=0

M
(k−2`)
TLk

∼=
⊕

(k−2`)∈ΛTLk

TL
(k−2`)
k . (28)

The number of symmetric Temperley-Lieb diagrams of rank r with r = f fixed points is given by

dimMr,f
TLk

=
∣∣Ik−2`
TLk

∣∣ =

{
k
`

}
:=

(
k

`

)
−
(

k

`− 1

)
(29)

If we let tlk = |ITLk | =
∑bk/2c
`=0 |Ik−2`

TLk
| = dimMTLk denote the total number of symmetric diagrams

in TLk(x), then tlk is the sum of the degrees of the irreducible TLk(x)-modules. We give a bijection
between the symmetric Temperley-Lieb diagrams ITLk and subsets of {1, 2, . . . , k} of size bk/2c and thus
tlk =

(
k
bk/2c

)
(the kth central binomial coefficient), which is [18] Sequence A000984.

5.6 The Motzkin algebra Mk(x)

The Motzkin algebra Mk(x) has dimension equal to the Motzkin number M2k (see [2]) and is semisimple
for x ∈ C chosen such that x is not the root of the Chebyshev polynomial Uk((x−1)/2). When semisim-
ple, its the irreducible modules are indexed by ΛMk = {0, 1, . . . , k}. We let M(r)

k denote the irreducible
module labeled by r ∈ ΛMk .

For each 0 ≤ r ≤ k there exist symmetric Motzkin diagrams having rank r and f = r fixed blocks.
The Mk(x) models satisfy

Mr
Mk
∼= M

(r)
k and MMk

∼=
k⊕

r=0

Mr
Mk
∼=
⊕

r∈ΛMk

M
(r)
k . (30)

We show that

dimMr
Mk =

∣∣IrMk
∣∣ =

b(k−r)/2c∑

c=0

(
k

r + 2c

){
r + 2c
c

}
. (31)

If we let mk = |IMk | =
∑k
r=0 |IrMk | = dimMMk denote the total number of symmetric diagrams in

Mk(x), then mk is the degree of ϕMk and is the sum of the degrees of the irreducible Mk(x)-modules.
The first few values of these dimensions are

k 0 1 2 3 4 5 6 7 8 9 10
mk = dimMMk 1 2 5 13 35 96 267 750 2123 6046 17303

. (32)

The sequence mk is [18] Sequence A005773 and it is related to the number of symmetric diagrams tlk
in the Temperley-Lieb algebra by the binomial transform mk =

∑k
i=0

(
k
i

)
tli and thus has exponential

generating function ex(I0(2x) + I1(2x)) =
∑∞
k=0 mk

xk

k! .
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5.7 The planar rook monoid algebra PRk

The planar rook monoid algebra PRk has dimension
(

2k
k

)
and is semisimple with irreducible modules

labeled by ΛPRk = {0, 1, . . . , k} . We let PR(r)
k denote the irreducible PRk-module labeled by r ∈ ΛPRk

For each 0 ≤ r ≤ k there exist
(
k
r

)
symmetric planar rook monoid diagrams having rank r and f = r

fixed blocks. The PRk model satisfies

Mr
PRk
∼= PR

(r)
k and MPRk

∼=
k⊕

r=0

Mr
PRk
∼=

⊕

r∈ΛPRk

PR
(r)
k . (33)

The irreducible modules PR(r)
k are constructed in [7] on a basis of r-subsets of {1, 2, . . . , k}. The action

of PRk on subsets is exactly the same as our conjugation action on symmetric diagrams. If we let prk =

|IPRk | =
∑k
r=0 |IrPRk | = dimMPRk denote the total number of symmetric diagrams in PRk, then prk is

the number of subsets of {1, 2, . . . , k}, so prk = dimMPRk = 2k.
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Moving robots efficiently using the
combinatorics of CAT(0) cubical complexes

Federico Ardila†and Tia Baker and Rika Yatchak
Department of Mathematics, San Francisco State University, USA

Abstract. Given a reconfigurable system X , such as a robot moving on a grid or a set of particles traversing a graph
without colliding, the possible positions of X naturally form a cubical complex S(X). When S(X) is a CAT(0)
space, we can explicitly construct the shortest path between any two points, for any of the four most natural metrics:
distance, time, number of moves, and number of steps of simultaneous moves.

CAT(0) cubical complexes are in correspondence with posets with inconsistent pairs (PIPs), so we can prove that a
state complex S(X) is CAT(0) by identifying the corresponding PIP. We illustrate this very general strategy with one
known and one new example: Abrams and Ghrist’s “positive robotic arm” on a square grid, and the robotic arm in a
strip. We then use the PIP as a combinatorial “remote control” to move these robots efficiently from one position to
another.

Résumé. Etant donné un système X , qui est reconfigurable, par example un robot se déplaçant sur une grille ou
bien un ensemble de particules qui traverse un graphe sans collision, toutes les positions possibles de X forment de
façon naturel un c complexe cubique S(X). Dans le cas ou S(X) est un espace CAT(0), nous pouvons explicitement
construire le chemin le plus court entre deux points quelconques, pour une des quatre mesures les plus naturels: la
distance euclidienne, le temps, le nombre de coups, et le nombre d’étapes de mouvements simultanés.

CAT (0) complexes cubiques sont en correspondance avec les ensembles partiellement ordonnés posets des paires
incompatibles (PPI), et donc nous pouvons demontrer qu’un état complexe S(X) est CAT (0), en identifiant le PPI
correspondant. Nous illustrons cette stratégie très générale avec un example bien connu et un exemple nouveau:
L’example de Abrams et Ghrist du “bras robotique positif” sur une grille carrée, et le bras robotique dans une bande.
Ensuite nous utilisons le PPI come une “télécommande” combinatorique pour efficacement déplacer ces robots d’une
position à une autre.

Keywords: cubical complexes, combinatorial optimization, posets, reconfigurable systems, state complexes

1 Introduction
There are numerous contexts in mathematics, robotics, and other fields where a discrete system changes
according to local, reversible moves. For example, one might consider a robotic arm moving around a
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Award DMS-0956178 (Ardila), and the NSF Grant DGE-0841164 (Baker and Yatchak). This work is based on the Master’s theses
of the second and third authors, written under the supervision of the first author.
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grid, a number of particles moving around a graph, or a phylogenetic tree undergoing local mutations.
Abrams, Ghrist, and Peterson [1, 8] introduced the formalism of reconfigurable systems to model a very
wide variety of such contexts.

Perhaps the most natural and important question that arises is the motion-planning or shape-planning
question: how does one efficiently get a reconfigurable system X from one position to another one?
Abrams, Ghrist, and Peterson observed that the transition graph G(X) is the 1-skeleton of the state com-
plex S(X): a cubical complex whose vertices are the states of X , whose edges correspond to allowable
moves, and whose cubes correspond to collections of moves which can be performed simultaneously. In
fact, S(X) can be regarded as the space of all possible positions of X , including the positions in between
states.

The geometry and topology of the state complex S(X) can help us solve the motion-planning problem
for the system X . More concretely, S(X) is locally non-positively curved for any configuration system.
[1, 8] Furthermore, the state complex of some reconfigurable systems is globally non-positively curved,
or CAT(0). This stronger property implies that for any two points p and q there is a unique shortest path
between them. Ardila, Owen, and Sullivant [3] gave an explicit algorithm to find this path.

It is therefore extremely useful to find out when a state complex S(X) is CAT(0). The first ground-
breaking result in this direction is due to Gromov [9], who gave a topological-combinatorial criterion for
this geometric property. Roller [13] and Sageev [14], and Ardila, Owen, and Sullivant [3] then gave two
completely combinatorial descriptions of CAT(0) cubical complexes. The second descripion is a bijection
between rooted CAT(0) cube complexes and posets with inconsistent pairs (PIPs).

In this paper, we put into practice the paradigm introduced in [3] to prove that a given cubical complex
X is CAT(0). The idea is simple: we identify a PIP whose corresponding (rooted) CAT(0) cubical complex
isX . In principle, this method is completely general, though its implementation in a particular situation is
not trivial. We illustrate this with one known and one new example of robotic arms. We close by showing
how to find the shortest path between states in a CAT(0) state complex S(X) under four natural metrics.

2 Preliminaries
2.1 Reconfigurable systems and cubical complexes
We now sketch the basic definitions for reconfigurable systems due to Abrams, Ghrist, and Peterson and
illustrate them with an example. We refer the reader to [1] and [8] for the details. Let G = (V,E) be a
graph and A be a set of labels. A state u is a labeling of the vertices of G by elements of A. Roughly
speaking, a reconfigurable system is given by a collection of states, together with a given set of local
moves called generators that one can perform to get from one state to another. Given a state s and a
set of moves M which can be applied to s, we say that the moves in M commute if they can be applied
simultaneously to s; that is, they are “physically independent”. In this paper we will study two robotic
arms moving inside a grid. HereGwill represent the grid, and a labelling ofGwith 0s and 1s will indicate
the position of the robot.

Example 2.1 (Metamorphic robots in a hexagonal lattice [7, 8]) Consider a robot made up of identical
hexagonal unit cells in the hexagonal lattice, which has the ability to pivot cells on the boundary whenever
they are unobstructed. Figure 1a. shows one move, and b.-e. shows two commutative moves.

A cubical complex X is a polyhedral complex obtained by gluing cubes of various dimensions, in such
a way that the intersection of any two cubes is a face of both. Such a space X has a natural piecewise
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b. c.

d. e.

a.

Fig. 1: a. A generator for a metamorphic robot in the hexagonal lattice. b-e. Four possible states

Euclidean metric. Any reconfigurable system gives rise to a cubical complex:

Definition 2.2 The state complex S(R) of a reconfigurable systemR is a cubical complex whose vertices
correspond to the states of R. We draw an edge between two states if they differ by an application of a
single move. The k-cubes correspond to k-tuples of commutative moves.

Figure 2 shows the state complex of a robot of 5 cells which moves following the rules of Fig. 1, and is
constrained to stay inside a tunnel of width 3.

Fig. 2: The state complex of a hexagonal metamorphic robot in a tunnel.

Given a reconfigurable systemR and a state u, there is a natural partial order on the states ofR:

Definition 2.3 LetR be a reconfigurable system and let u be any “home” state. Define the poset of states
Ru to be the set of states ordered by declaring that p ≤ q if there is a shortest edge-path from the home
state u to q going through p.

2.2 Combinatorial geometry of CAT(0) cubical complexes
We now define CAT(0) spaces, the spaces of global non-positive curvature that we are interested in. For
more information, see [5, 6]. Let X be a geodesic metric space– that is, a metric space where any two
points x and y are the endpoints of a curve of length d(x, y). Consider a triangle T in X of side lengths
a, b, c, and build a comparison triangle T ′ with the same lengths in the Euclidean plane. Consider a chord
of length d in T which connects two points on the boundary of T ; there is a corresponding comparison
chord in T ′, say of length d′. If d ≤ d′ for any chord in T , we say that T is a thin triangle in X .
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a b

c

d

a b

c

d′

X R2

FIGURE 9. Comparison triangles measure curvature bounds.

4.2. The link condition. There is a well-known combinatorial approach to deter-
mining when a cubical complex is nonpositively curved due to Gromov.

Definition 4.3. Let X denote a cell complex and let v denote a vertex of X . The link
of v, !k[v], is defined to be the abstract simplicial complex whose k-dimensional
simplices are the (k + 1)-dimensional cells incident to v with the natural boundary
relationships.

Certain global topological features of a metric cubical complex are completely de-
termined by the local structure of the vertex links: a theorem of Gromov [26] asserts
that a finite dimensional Euclidean cubical complex is NPC if and only if the link
of every vertex is a flag complex without digons. Recall: a digon is a pair of ver-
tices connected by two edges, and a flag complex is a simplicial complex which
is maximal among all simplicial complexes with the same 1-dimensional skeleton.
Gromov’s theorem permits us an elementary proof of the following general result.

Theorem 4.4. The state complex of any locally finite reconfigurable system is NPC.

PROOF: Gromov’s theorem is stated for finite dimensional Euclidean cubical com-
plexes with unit length cubes. It holds, however, for non-unit length cubes when
there are a finite number of isometry classes of cubes (the finite shapes condition) [6].
Locally finite reconfigurable systems possess locally finite and finite dimensional
state complexes, which automatically satisfy the finite shapes condition (locally).

Let u denote a vertex of S. Consider the link !k[u]. The 0-cells of the !k[u] corre-
spond to all edges in S(1) incident to u; that is, actions of generators based at u. A
k-cell of !k[u] is thus a commuting set of k + 1 of these generators based at u.

We argue first that there are no digons in !k[u] for any u ∈ S. Assume that φ1 and φ2

are admissible generators for the state u, and that these two generators correspond
to the vertices of a digon in !k[u]. Each edge of the digon in !k[u] corresponds to
a distinct 2-cell in S having a corner at u and edges at u corresponding to φ1 and
φ2. By Definition 2.7, each such 2-cell is the equivalence class [u; (φ1,φ2)]: the two
2-cells are therefore equivalent and not distinct.

To complete the proof, we must show that the link is a flag complex. The interpre-
tation of the flag condition for a state complex is as follows: if at u ∈ S, one has
a set of k generators φαi , of which each pair of generators commutes, then the full

Fig. 3: A chord in a triangle in X , and the corresponding chord in the comparison triangle in the plane. The triangle
in X is thin if d ≤ d′ for all such chords.

Definition 2.4 A CAT(0) space is a metric space having a unique geodesic between any two points, such
that every triangle is thin.

A related concept is that of a locally CAT(0) or non-positively curved metric space X . This is a space
where all sufficiently small triangles are thin.

Testing whether a general metric space is CAT(0) is quite subtle. However, Gromov [9] proved that this
is easier if the space is a cubical complex. He showed that a cubical complex is CAT(0) if and only if it is
simply connected and the link of any vertex is a flag simplicial complex.

Ardila, Owen, and Sullivant [3] gave a purely combinatorial description of CAT(0) cube complexes,
which we now describe. If X is a CAT(0) cubical complex and v is any vertex of X , we call (X, v) a
rooted CAT(0) cubical complex. The right side of Figure 4 shows an example.

2

4

6

13

5

v

1 12

123

1235 12345

1234

1246

246

242

23

124

234

Fig. 4: A poset with inconsistent pairs and the corresponding rooted CAT(0) cubical complex.

Recall that a poset P is locally finite if every interval [i, j] = {k ∈ P : i ≤ k ≤ j} is finite, and it has
finite width if every antichain (set of pairwise incomparable elements) is finite.

Definition 2.5 A poset with inconsistent pairs (PIP) is a locally finite poset P of finite width, together
with a collection of inconsistent pairs {p, q}, such that no two comparable elements are inconsistent, and
if p and q are inconsistent and p′ ≥ p and q′ ≥ q, then p′ and q′ are inconsistent.

The Hasse diagram of a poset with inconsistent pairs (PIP) is obtained by drawing the poset and con-
necting each minimal inconsistent pair with a dotted line. An inconsistent pair {p, q} is minimal if there
is no other inconsistent pair {p′, q′} with p′ ≤ p and q′ ≤ q. For example, see the left side of Figure 4.
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Recall that I ⊆ P is an order ideal if a ≤ b and b ∈ I imply a ∈ I . A consistent order ideal is one
which contains no inconsistent pairs.

Definition 2.6 If P is a poset with inconsistent pairs, we construct the cube complex of P , which we
denote X(P ). The vertices of X(P ) are identified with the consistent order ideals of P . There will be a
cube C(I,M) for each pair (I,M) of a consistent order ideal I and a subset M ⊆ Imax, where Imax is
the set of maximal elements of I . This cube has dimension |M |, and its vertices are obtained by removing
from I the 2|M | possible subsets of M . The cubes are naturally glued along their faces according to their
labels.

Figure 4 shows a PIP and the corresponding complex. For example, the compatible order ideal I =
{1, 2, 3, 4} and the subset M = {1, 4} ⊆ Imax give rise to the square with vertices 1234, 123, 234, 23.

Theorem 2.7 (Ardila, Owen, Sullivant) [3] The map P 7→ X(P ) is a bijection between posets with
inconsistent pairs and rooted CAT(0) cube complexes.

2.3 Reconfigurable systems and CAT(0) cubical complexes

The influential paper of Billera, Holmes, and Vogtmann [4] was one of the first to highlight the relevance
of the CAT(0) property in applications. Most relevantly to this paper, the space Tn of phylogenetic trees
was shown in [4] to be a CAT(0) cubical complex. This led to important consequences, such as the
existence of geodesics and of “average trees” in Tn. Furthermore, after numerous partial results by many
authors, Owen and Provan [11] recently gave the first polynomial time algorithm to compute geodesics in
Tn. The work of Billera, Holmes, and Vogtmann was generalized in the following two directions:

Theorem 2.8 (Ardila-Owen-Sullivant) [3] There is an algorithm to compute the geodesic between any
two points in a CAT(0) cubical complex.

Theorem 2.9 (Abrams-Ghrist, Ghrist-Peterson) [1,8] The state complex of a reconfigurable system is
a locally CAT(0) cubical complex; that is, all small enough triangles are thin.

When the state complex of a reconfigurable system is globally CAT(0), we can use the algorithm in
Theorem 2.8 to navigate it. That will allow us to get our system from one position to another one in the
optimal way. This highlights the importance of the following question:

Question 2.10 Is the state complex of a given reconfigurable system a CAT(0) space?

Theorem 2.7 offers a new technique to provide an affirmative answer to Question 2.10: Rooted CAT(0)
cubical complexes are in bijection with PIPs; so to prove that a cubical complex is CAT(0), we “simply”
have to choose a root for it, and find the corresponding PIP! In principle, this technique works for any
reconfigurable system whose state complex X is CAT(0). In practice, it is not always easy to identify the
corresponding PIP. However, we hope to convince the reader that this can be done in many interesting
special cases. We will do it for one old and one new example. We introduce the two relevant robots in
Section 3, and provide combinatorial proofs that their state complexes are CAT(0) in Sections 4 and 5.
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3 The robotic arms
3.1 The positive robotic arm in a quadrant
The following reconfigurable system, which we call QRn, was first introduced in [1] and shown to be
CAT(0) using Gromov’s topological/combinatorial criterion. Consider a robotic arm consisting of n links
of unit length, attached sequentially. The robot lives inside an n × n grid, and its base is affixed to the
lower left corner of the grid. Figure 5.a shows a position of the arm.

a. b.

c.

Fig. 5: a. The robotic arm in position 3568 for n = 9 b. the corresponding particles on a line (to be introduced later),
and c. the local movements of QRn.

The robot is free to move using the two local moves illustrated in Figure 5.c. They are: NE-switching
corners (two consecutive links facing north and east can be switched to face east and north, and vice
versa), and NE-flipping the end (if the last link of the robot is facing east, it can be switched to face north,
and vice versa). It is clear that QRn has 2n possible positions, corresponding to the paths of length n
which start at the southwest corner and always step east or north. We call these simply NE-paths.

Notation 3.1 We will label each state of the robot using the set of its vertical steps: if a position of
the robot has k links facing north at positions a1, . . . , ak (counting from the base), then we label it
{a1, . . . , ak} or simply a1 . . . ak.

Notice that two states of different lengths can have the same label. We assume implicitly that the length
of the robot is specified ahead of time.

3.2 The robotic arm in a strip
Now consider a robotic arm SRn which also consists of n links of unit length, attached sequentially. The
robot lives inside a 1× n grid, and its base is still affixed to the lower left corner of the grid, but the links
do not necessarily have to face north and east. Figure 6 shows a position of the arm, as well as the legal
moves: switching corners and flipping the end.

Again, we label a state using its vertical steps shown in Figure 6. One easily checks that the number of
states of SRn is the Fibonacci number Fn+2. For this reason, we call a state of SRn an F -path.

3.2.1 The systems QRn and SRn as hopping particles.
Consider a board consisting of n slots on a line, and a system of indistinguishable particles hopping around
the board. Any particle can hop to the slot immediately to its left or right whenever that slot is empty.
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Fig. 6: The robotic arm in position 1479 for n = 9, the corresponding particles on a line, and the legal moves.

Particles may enter and leave the board via the rightmost slot. The following proposition is illustrated in
Figure 5; for details, see [2].

Proposition 3.2 The system QRn is equivalent to the system of hopping particles on a board of length n.

Now consider a similar board of n slots on a line, with indistinguishable repellent particles hopping
around the board. The repellent particles must stay at distance at least 2 from each other.

Proposition 3.3 The system SRn is equivalent to the system of hopping repellent particles on a board of
length n.

4 The state complex of QRn is CAT(0)
We now provide combinatorial proofs that the state complexes of the robots QRn and SRn are CAT(0).
In view of Theorem 2.7, our strategy is as follows. We root the complex S(QRn) at a natural vertex v. If
S(QRn) really is CAT(0), then Theorem 2.7 puts it in correspondence with a PIP (poset with inconsistent
pairs) QPn. We identify the candidate PIP QPn, and prove that, under the bijection of Theorem 2.7, the
PIP QPn is mapped to the (rooted) state complex of QRn. Therefore this complex must be CAT(0).

Definition 4.1 Define the PIP QPn to be the set of lattice points inside the triangle y ≥ 0, y ≤ x, and
x ≤ n − 1, with componentwise order (so (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′) and no inconsistent
pairs.

The poset QPn has the triangular shape shown in Figure 7 for n = 6.

Proposition 4.2 There is a bijection between the states of the robot QRn and the order ideals of QPn.

Recall Definition 2.3. We get the following by Birkhoff’s theorem:

Corollary 4.3 If we declare the “home” state of QRn to be the fully horizontal state, then the poset of
states of QRn is a distributive lattice.

Let the word of a subset A = {a1 < a2 < · · · < ak} ⊆ [n] be the length n word w(A) =
(a1, a2, . . . ak, (n+ 1), (n+ 1), . . . , (n+ 1)).

Proposition 4.4 The lattice of states of QRn is isomorphic to the poset on the subsets of [n], where
A ≤ B if w(A) ≥ w(B) coordinatewise.

Having established these results about the 1-skeleton of the state complex, we now extend them to the
higher-dimensional cubes.
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a. b. c.

Fig. 7: a. The poset QP6. b. A state of QRn corresponds to an order ideal in QPn c. The bijection between partial
NE-paths and pairs (order ideal, maximal elements) of QPn

Definition 4.5 A partial NE-path is a path consisting of consecutive links which may be north edges, east
edges, or unit squares, such that each unit square is attached to the rest of the path by its southwest and
northeast corners. The length of a partial NE-path is e+ 2f , where e is the number of edges and f is the
number of squares. The partial NE-paths form a poset by containment, whose minimal elements are the
NE-paths.

To illustrate this definition, Figure 7.c shows a partial NE-path which contains the NE-path in b. Recall
that X(QPn) is the rooted cube complex corresponding to the PIP QPn under the bijection of Theorem
2.7. We use the notation of Definition 2.6.

Lemma 4.6 The partial NE-paths of length n are in order-preserving bijection with the cubes ofX(QPn).

Lemma 4.7 The partial NE-paths of length n are in order-preserving bijection with the cubes of the state
complex S(QRn).

Proof: A k-cube C of S(QRn) is given by a state u and k commutative moves ϕ1, . . . , ϕk that can be
applied to u. The state u is given by an NE-path, and each one of the k moves m1, . . . ,mk corresponds
to a corner of the NE-path that could be switched. The two positions of this corner before and after the
move mi form a square. Since the moves are commutative, two of these squares cannot share an edge.
Adding these k squares to the NE-path u gives rise to a partial NE-path corresponding to the k-cube C.

Conversely, consider a partial NE-path with k squares. There are 2k NE-paths contained in it, obtained
by “resolving” each square into an NE or an EN corner. The resulting 2k NE-paths form a cube of
S(QRn). This bijection is clearly order-preserving. 2

Theorem 4.8 The state complex of the robotic arm in an n× n grid is a CAT(0) cubical complex.

Proof: This is an immediate consequence of Lemmas 4.6 and 4.7 and Theorem 2.7. 2

As a corollary of our combinatorial description of the state complex of QRn, we get:

Corollary 4.9 If qn,d is the number of d-cubes in the state complex of the robot in a quadrant QRn,
∑

n,d≥0
qn,d x

nyd =
1 + xy

1− 2x− x2y .
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5 The state complex of SRn is CAT(0)
Now we carry out the same approach for the robotic arm in a strip SRn.

Definition 5.1 Define the PIP SPn to be the set of lattice points inside the triangle y ≥ 0, y ≤ 2x, and
x ≤ n − 1, with componentwise order (so (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′) and no inconsistent
pairs.

Proposition 5.2 There is a bijection between the states of the robot SRn and the order ideals of SPn.

This is proved similarly to Proposition 4.2. Details are given in [2]. If we declare the “home” state of
SRn to be the fully horizontal state h, then the poset of states of SRn is a distributive lattice. We have,

Proposition 5.3 The lattice of states of SRn is isomorphic to the poset on the spread out subsets of [n],
where A ≤ B if w(A) ≥ w(B) coordinatewise.

Proof: This is clear from the repellent hopping particles model for SRn of Section 3.2.1. 2

Definition 5.4 A partial F-path is a partial NE-path such that the link following any vertical edge or
square must be a horizontal edge.

Recall that X(SPn) is the rooted cube complex corresponding to the PIP SPn under the bijection of
Theorem 2.7. We then have the following results. The proofs are essentially the same as those of Lemmas
4.6 and 4.7, Theorem 4.8.

Lemma 5.5 The partial F-paths of length n are in bijection with the cubes of the state complex of
X(SPn).

Lemma 5.6 The partial F-paths of length n are in bijection with the cubes of the state complex of SRn.

Theorem 5.7 The state complex of the robotic arm in an n× n grid is a CAT(0) cubical complex.

As a corollary of our combinatorial description of the state complex of SRn, we get:

Corollary 5.8 If sn,d is the number of d-cubes in the state complex of the robot in a strip SRn,

∑

n,d≥0
sn,d x

nyd =
1 + x+ xy + x2y

1− x− x2 − x3y ,

6 Finding the optimal path between two states
Consider a robot, or some other reconfigurable system R, whose state complex S(R) is CAT(0). As
in the two examples above, there may be a natural choice of a “home state” u, such that the PIP Pu
corresponding to the rooted complex (S(R), u) has a particularly simple description. Now suppose that
we want to take the robot from state a to state b in an optimal way. Equivalently, we wish to get from
vertex a to vertex b of the state complex S(R).
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6.1 Rerooting the complex

To find the optimal path from a to b, the first step will be to reroot the complex at a, and find the PIP Pa
corresponding to the rooted CAT(0) cubical complex (S(R), a). Fortunately, this is very easy to do.

Notation 6.1 If p and q are an inconsistent pair in a PIP, write p= q.

Proposition 6.2 Let u and a be vertices of the CAT(0) cube complex X and let Pu and Pa be the PIPs
corresponding to the rooted complexes (X,u) and (X, a) respectively. Let I be the consistent order ideal
of Pu corresponding to a, and let J = Pu − I . The PIP Pa has an element p′ corresponding to each
element p ∈ Pu, and it can be described in terms of Pu as follows:

• If j1 < j2 in Pu, then j′1 < j′2 in Pa.

• If i1 < i2 in Pu then i′1 < i′2 in Pa.

• If i < j in Pu then i′ = j′ in Pa.

• If j1 = j2 in Pu, then j′1 = j′2 in Pa.

• If i= j in Pu then i′ < j′ in Pa.

Here the is and the js represent arbitrary elements of I and J , respectively.(i)

J J ′

I ′I

i1

j1 j2

i2

j′1

i′1

j′2

i′2

Fig. 8: The PIPs Pu and Pa before and after rerooting the CAT(0) cube complex.

Corollary 6.3 The Hasse diagram of Pa is obtained from that of Pu by turning I upside down, and
converting all solid edges from I to J into dotted edges, and vice versa.

Note that even if Pu has no inconsistent pairs, the PIP Pa probably will have inconsistent pairs. Now
that we have rerooted the complex, our goal is to get from the root a to the vertex b optimally. There are
at least four notions of “optimality”: we may wish to minimize Euclidean distance, number of moves,
simultaneous moves, or time. We can solve these four problems.

(i) Notice that we never have i > j or i1 = i2 in Pu.
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6.2 Minimizing the Euclidean distance
Suppose we want to find the shortest path from a to b in the Euclidean metric of the cubical complex S(R).
This can be accomplished using Ardila, Owen, and Sullivant’s algorithm [3] to compute the shortest path
from a to b. As explained there, a prerequisite for this is to write down the PIP Pa, which we have done
in Proposition 6.2. This metric is very useful in some applications, particularly when navigating the space
of phylogenetic trees [4, 11]. However, this metric does not seem natural for the robotic applications we
have in mind here. It is probably more natural to consider the following three variants.

6.3 Minimizing the number of moves
Suppose we are only allowed to perform one move at a time. Geometrically, we are looking for a shortest
edge-path from a to b. Let B be the consistent order ideal of Pa corresponding to vertex b in the rooted
complex (S(R), a). We can regard B as a subposet of Pa. The following description makes it clear how
to construct the minimal shortest paths.

Proposition 6.4 The shortest edge-paths from a to b are in one-to-one correspondence with the linear
extensions of the poset B. Their length is |B|.

6.4 Minimizing the sequence of simultaneous moves
Now suppose that we can move the robot in steps, where at each step we can perform several moves at a
time with no penalty. Geometrically, we are looking for a shortest cube path from a to b, where at each
step we cross a cube from the current vertex to the one across the diagonal. Again, let B be the consistent
order ideal of Pa corresponding to b. Let the depth d(B) of B be the size of the longest chain(s) in B.

Definition 6.5 Let the normal cube path from a to b be the cube path given by the sequence of order ideals
M : ∅ = M0 ⊂ M1 ⊂ · · · ⊂ Md(B) = B, where each ideal is obtained from the previous one by adding
to it all the minimal elements that have not yet been added. In other words,Mk+1 :=Mk∪(B−Mk)min.

The previous definition is due to Niblo and Reeves [10] in a different language; the correspondence
with PIPs makes these paths more explicit. It also allows us to give a simple proof of the following result
from Reeves’s Ph.D. thesis [12] in [2]:

Proposition 6.6 The shortest cube paths from a to b have size d(B). In particular, the normal cube path
from a to b is minimal.

6.5 Minimizing time
Perhaps the most realistic model is to allow ourselves to move the robot continuously in time, where we
can perform several moves simultaneously, as long as these moves are physically independent. We can
even perform only part of a move, and perform the rest of the move later. Each move still takes one unit
of time, and there is no time penalty for multitasking.

Geometrically, we are endowing each cube with the `∞ metric: For x,y in a unit d-cube, we let
||x− y|| := max(x1 − y1, . . . , xd − yd). Now we are looking for a shortest path from a to b with respect
to this `∞ metric. The following result, stated without proof in [1], shows that the added flexibility of
performing partial moves does not actually help us move our robots more quickly.

Proposition 6.7 The fastest paths from a to b take d(B) units of time. In particular, the normal cube path
from a to b is a fastest path.
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Abstract. The A2-spider category encodes the representation theory of the sl3 quantum group. Kuperberg (1996)
introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called
webs and the subset of reduced webs forms bases for morphism spaces. A great deal of recent interest has fo-
cused on the combinatorics of invariant webs for tensors powers of V +, the standard representation of the quantum
group. In particular, the invariant webs for the 3nth tensor power of V + correspond bijectively to [n, n, n] standard
Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of
Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result
of this paper is a redefinition of Kuperberg’s map through the representation theory of the symmetric group. In the
classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with
Vogan’s generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg’s map is a direct analogue of
the Robinson–Schensted correspondence.

Résumé. La catégorie d’araignée A2 encode la théorie des représentations du groupe quantique Uq(sl3). Kuperberg
(1996) a introduit une version combinatoire de cette catégorie, dans laquelle les morphismes sont reprśentés par des
graphes planaires appelés toiles dont le sous-ensemble de toiles réduites constitue des bases pour les espaces de
morphismes. Beaucoup d’interêt a été fixé recemment sur le combinatoire des toiles invariantes pour les puissances
tensorielles de V +, la représentation standarde de Uq(sl3). En particulier, les toiles invariantes pour (V +)3n sont
en corresponance bijective au tableaux de Young standards [n, n, n]. L’application original de Kuperberg avait une
définition en termes d’un algorithme graphique, puis des articles de Khovanov–Kuperberg (1999) et Tymoczko (2012)
présentent des algorithmes pour la computation d l’inverse. Le résultat principal de cette article est une redéfinition
de l’application de Kuperberg à travers la théorie de représentations du groupe symétrique. Dans la limite classique,
l’éspace des toiles invariantes porte une action de S3n. On emploie cette structure de concert avec l’invariant tau
généralisé de Vogan et la théorie Kazhdan–Lusztig pour montrer que l’application de Kuperberg est un analogue
direct de la correspondance Robinson–Schensted.

Keywords: Robinson–Schensted, Web basis, Kazhdan–Lusztig theory, Young tableau

1 Introduction
The A2-spider is a category encoding the representation theory of Uq(sl3), the quantum enveloping alge-
bra of the sl3 Lie algebra. The objects in the category are tensor products of V + and V −, the standard
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and dual representations of the quantum group, while the morphisms are intertwining maps. Kuperberg
(1996) defined a diagramatic construction of the A2-spider in which morphism are represented by planar
graphs called webs, with the subset of reduced webs forming bases for each morphism space.

In order to prove that reduced webs span each morphism space, Kuperberg studied quantum invariants,
which may be viewed as morphisms from the trivial representation to other representations. Classical
results require that the invariant space for a tensor product of copies of V + and V − has dimension equal
to the number of dominant lattice paths satisfying certain conditions; Kuperberg developed an explicit
graphical algorithm carrying reduced webs to dominant lattice paths and showed that it was bijective. In
a subsequent paper Khovanov and Kuperberg (1999) introduced a method to compute the inverse via a
recursive growth algorithm. Recent combinatorial interest in Kuperberg’s map has focused on the case
of invariants for tensor powers of V + Petersen et al. (2009); Tymoczko (2012). For (V +)⊗3n, the map
may be interpreted as a bijection between webs on 3n source vertices and standard Young tableaux on the
shape [n, n, n].

In this paper, we reinterpret Kuperberg’s bijection in terms of the representation theory of the symmetric
group. A tensor power of a quantum group representation carries a Hecke algebra action which in the
classical limit reduces to a symmetric group action by permutation of tensor factors. The subspace of
invariants forms a subrepresentation.

Vogan introduced the generalized τ -invariant to study infinite dimensional representations of semisim-
ple Lie algebras Vogan (1979). Generalized τ -invariants are closely related to the combinatorics of stan-
dard Young tableaux (Section 2). The generalized τ -invariant gives a nonalgorithmic way of defining the
Robinson–Schensted correspondence between symmetric group elements and same shape pairs of stan-
dard Young tableaux (Section 3). In Section 4, we discuss an in situ version of the Robinson–Schensted
algorithm for parameterizing Kazhdan–Lusztig left cell basis elements by Young tableaux in terms of the
symmetric group action on the left cell representation. In Sections 6 and 7, we discuss the symmetric
group action on webs and Kuperberg’s bijection between reduced webs and standard tableaux. Our main
result is in Section 8, where we show that Kuperberg’s map can be defined in terms of the Robinson–
Schensted algorithm for Kazhdan–Lusztig left cells.

2 Generalized τ -invariants for Tableaux
In this and subsequent sections, we will rely extensively on standard results from the combinatorics of
tableaux and the symmetric group. Björner and Brenti (2005) provide an excellent exposition of this
material.

Recall that a Young diagram is a collection of finitely many boxes arranged in left justified rows so that
no row has more boxes than the rows above it. Young diagrams with n boxes correspond naturally to
partitions of n by treating the length of each row as an element of a partition. A standard Young tableau
on a Young diagram with n boxes is a labeling of the boxes with the numbers 1, 2, . . . , n in such a way
that the label in each box is less than the labels in the boxes immediately below and immediately to the
right, with each label appearing exactly once.

We indicate the set of all standard Young tableaux on n boxes by Tn. Let si ∈ Sn be the simple
transposition that exchanges i and i+ 1. Given Y ∈ Tn, τ(Y ) is a subset of the simple transpositions in
Sn, where si ∈ τ(Y ) when i + 1 is below the row of i in Y . We refer to τ(Y ) as the τ -invariant of Y .
(Most sources call τ(Y ) the descent set of Y , but we choose our terminology to be consistent with Vogan
(1979).) If si, sj are adjacent simple transpositions in Sn, then DYT

i,j is defined as the set of all Y ∈ Tn
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such that si ∈ τ(Y ) and sj /∈ τ(Y ). Let si · Y be the (not necessarily standard) tableau obtained from Y
by exchanging i and i+ 1.

Lemma 1 Let si, sj be adjacent simple transpositions in Sn. Given Y ∈ DYT
i,j , exactly one of si · Y and

sj · Y , denoted fYT
i,j (Y ), is a standard tableau in DYT

j,i ; fYT
i,j : DYT

i,j → DYT
j,i is a bijection with inverse

fYT
j,i : DYT

j,i → DYT
i,j .

Definition 1 Let Y and Y ′ be elements of Tn. If τ(Y ) = τ(Y ′), then Y and Y ′ are equivalent to order
0, denoted Y ≈

0
Y ′. We say that Y ≈

n
Y ′ (Y and Y ′ are equivalent to order n) if Y ≈

n−1
Y ′ and

fYT
i,j (Y ) ≈

n−1
fYT
i,j (Y ′) whenever Y and Y ′ are in DYT

i,j . If Y ≈
n
Y ′ for all nonnegative integers n, then Y

and Y ′ have the same generalized τ -invariant. (τg(Y ) = τg(Y
′)).

Theorem 1 (Vogan) If Y, Y ′ ∈ Tn and τg(Y ) = τg(Y
′), then Y = Y ′.

In other words, a standard Young tableau on n boxes is completely determined by its generalized τ -
invariant.

3 Generalized τ -invariants and the Robinson–Schensted Corre-
spondence

We can define τ -invariants and generalized τ -invariants for elements of the symmetric group. As we will
see in a moment, these constructions are closely related to the previous definitions for Young tableaux.

Take as a generating set for Sn the simple transpositions s1, s2, . . . Given x, y ∈ Sn, let x ≤ y if some
minimal length expression for x in terms of generators is a subword of some minimal expression for y.
This defines the Bruhat order on Sn. We define the τ -invariant for x ∈ Sn by letting τ(x) be the set of
simple transpositions such that si · x < x.

The set τ(x) is closely related to the one line notation for x. Recall that the one line notation for x ∈ Sn
is a permutation of the integers 1, 2, . . . n; if x has one line notation x1x2x3 · · · then x sends 1 to x1, 2 to
x2, etc. It is a standard fact from the combinatorics of the symmetric group that si ∈ τ(x) if and only if i
and i+ 1 appear out of order in the one line notation for x.

If si and sj are adjacent simple transpositions, let DSn
i,j be the set of all x ∈ Sn such that si ∈ τ(x),

sj /∈ τ(x). One can prove the next lemma by thinking about the one line notation for x.

Lemma 2 If x ∈ DSn
i,j , then exactly one of si ·x, sj ·x is an element of DSn

j,i . Denote this element of DSn
j,i

by fi,j(x). This defines a bijection fSni,j : DSn
i,j → DSn

j,i with inverse fSnj,i : DSn
j,i → DSn

i,j .

This allows us to define a generalized τ -invariant for symmetric group elements by making the appro-
priate substitutions in Definition 1, i.e.,

Definition 2 Let x and y be elements of Sn. If τ(x) = τ(y), then x and y are equivalent to order 0,
denoted x ≈

0
y. We say that x ≈

n
y (x and y are equivalent to order n) if x ≈

n−1
y and fSni,j (x) ≈

n−1
fSni,j (y)

whenever x and y are in DYT
i,j . If x ≈

n
y for all nonnegative integers n, then x and y have the same

generalized τ -invariant. (τg(x) = τg(y)).

Recall that the Robinson-Schensted correspondence gives a bijection between elements of Sn and the
set of same shape ordered pairs of standard Young tableaux with n boxes. (We do not explain the algorithm
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here, but descriptions are available from many sources.) Given w ∈ Sn, let P (w) and Q(w) denote
respectively the left and right tableaux in the pair corresponding to w. One obtains the following by
thinking carefully about the Robinson–Schensted algorithm in terms of one line notation.

Lemma 3 Given x ∈ Sn, si ∈ τ(x) if and only si ∈ τ(P (x)).

One can use dual Knuth relations to prove the next lemma: (See (Björner and Brenti, 2005, Section 6.4)

Lemma 4 Given x ∈ DSn
i,j , P (fSni,j (x)) = fYT

i,j (P (x)) and Q(fSni,j (x)) = Q(x).

Combining the lemmas with Theorem 1 yields:

Theorem 2 Given x, y ∈ Sn, τg(x) = τg(y) if and only if τg(P (x)) = τg(P (y)).

The definition of the generalized τ -invariant we use here differs from the one given in Vogan (1979) and
discussed in Kazhdan and Lusztig (1979); Vogan defines a right generalized τ -invariant by using the right
action of the symmetric group on itself. Our version is the equivalent obtained by using the left action.
Vogan’s right generalized τ -invariant is given in terms of our left version by τg(x−1). Left and right gen-
eralized τ -invariants give a nonalgorithmic means of defining the Robinson–Schensted correspondence
by comparing generalized τ -invariants of tableaux and permutations in the natural way:

Theorem 3 (The Robinson–Schensted Correspondence) Given x ∈ Sn, P (x) is the unique element of
Tn such that τg(P (x)) = τg(x), while Q(x) is the unique tableau in Tn such that τg(Q(x)) = τg(x

−1).

4 Generalized τ -invariants and Kazhdan–Lusztig Theory
We now recall some facts from Kazhdan and Lusztig (1979).

Definition 3 Let A be the ring Z[v1/2, v−1/2]. The Hecke Algebra Hn of the symmetric group is the
associative A-algebra with generators Ts1 , Ts2 , . . . , Tsn−1

and relations

TsiTsj = TsjTsi if |i− j| > 1 (1)

TsiTsjTsi = TsjTsiTsj if |i− j| = 1 (2)

(Tsi + 1)(Tsi − v) = 0. (3)

In addition, given w ∈ Sn, let
Tw = Tsi1Tsi2 . . . , Tsik

where
si1si2 . . . , sik

is some reduced expression for w in terms of the simple transpositions {si}.
Note that Hn reduces to the group algebra of Sn over Z when v is set to 1.

The Hecke algebra has a remarkable basis defined in Kazhdan and Lusztig (1979), whose basis elements
are also parameterized by elements of the symmetric group. We denote the basis element parameterized
by w ∈ Sn as Cw. The Kazhdan–Lusztig basis is encoded in the Kazhdan–Lusztig graph, whose vertices
are labeled with elements of Sn, where the edge between the vertices labeled with x and y has multiplicity
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indicated by µ(x, y). The left action of a generator Tsi on Hn in terms of the basis {Cw}w∈Sn is given
as follows:

TsiCw =





−Cw if si ∈ τ(w),

vCw + v1/2
∑

y∈Sn
si∈τ(y)

µ(w, y)Cy otherwise. (4)

Treating it as a left Hn-module, we wish to decompose Hn into irreducible subquotients. For this, we
need the notion of a left cell.

Definition 4 Define a binary relation �L on Sn by letting x �L x and x �L y whenever µ(x, y) 6= 0
and τ(x) 6⊂ τ(y). (This is equivalent to requiring that Cx appears as a summand in TsiCy for some i.)
Extend �L to a preorder by imposing transitivity. We refer to �L as the left preorder on Sn.

Definition 5 Define an equivalence relation ∼L on Sn by letting x ∼L y if x �L y and y �L x. The
equivalence classes under ∼L are called left cells; �L descends to a partial order on left cells.

Left cells lead us naturally to the definition of left cell modules and left cell representations. Let
Cell(Sn) denote the set of left cells in Sn, ordered by �L. Given C ∈ Cell(Sn), define

spanA C = spanA{Cw|w ∈ C}.

Definition 6 Given C ∈ Cell(Sn), define the left cell module for C by

KLC =

( ⊕

Ci∈Cell(Sn)
Ci�LC

spanA Ci
)/( ⊕

Ci∈Cell(Sn)
Ci≺LC

spanA Ci
)
.

If we set v = 1 and extend scalars to C, then KLC is referred to as the left cell representation correspond-
ing to the cell C.

For a left cell representation KLC , Equation 4 becomes

TsiCw =





−Cw if si ∈ τ(w),

vCw + v1/2
∑

y∈C
si∈τ(y)

µ(w, y)Cy otherwise. (5)

We refer to a Kazhdan-Lusztig graph restricted to a left cell as a left cell graph. Let Ŝn indicate the
set of irreducible representations of Sn over the complex numbers. The following parameterization is a
standard result from algebraic combinatorics:

Theorem 4 The elements of Ŝn are parameterized by partitions of n. In particular, let p = [p1, p2, . . .]

be a partition of n and t = [t1, t2, . . .] its transpose partition. Then, πp is the unique element of Ŝn whose
restriction to Πpi∈pSpi contains a copy of the trivial representation and whose restriction to Πti∈tSti
contains a copy of the sign representation.
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Note that we will often refer to the element of Ŝn corresponding to some Young diagram, obtained by
taking the diagram to its corresponding partition. This parameterization of Ŝn is closely related to the
decomposition of Sn into left cells. As in Section 3, let P (w) and Q(w) denote respectively the left and
right tableaux in the pair corresponding to w ∈ Sn.

Theorem 5 For each left cell C of Sn, there exists some standard Young tableau QC with n boxes such
that

C = {w ∈ Sn|Q(w) = QC}.
Furthermore, KLC is isomorphic as a representation over C to the irreducible representation parameter-
ized by the shape of QC .

With this description of left cells in hand, suppose that Q and Q′ are n-box standard Young tableaux with
the same shape and let CQ and CQ′ be the cells obtained by fixing these as right tableaux. We define a
bijection φQ,Q′ : CQ → CQ′ by

(P,Q) 7→ (P,Q′).

Theorem 6 The map φQ,Q′ is an isomorphism of graphs and preserves τ -invariant data.

Thus, we can refer to the Kazhdan–Lusztig left cell basis for some element of Ŝn without specifying a
particular left cell; elements of the basis are naturally parameterized by their left tableaux.

5 An in situ Robinson–Schensted Algorithm for Left Cells
Suppose that we are given some element of Ŝn with its associated Kazhdan–Lusztig left cell basis but
without the tableaux attached to basis elements. Is it possible to compute these tableaux in terms of the
structure of the (based) representation? In the remainder of this section, we will develop an appropriate
definition of the generalized τ -invariant that allows us to do this. We will subsequently use this structure
to redefine Kuperberg’s map as an analogue of the Robinson–Schensted correspondence.

Observe that if si is not in τ(x), then Csix appears with multiplicity one in TsiCx (Kazhdan and
Lusztig, 1979, p. 171, equation 2.3.a). Since si /∈ τ(x) or si /∈ τ(six), we have the following lemma:

Lemma 5 Given any y, si ∈ Sn, y and siy are connected by an edge of multiplicity one.

Such an edge is often referred to as a Bruhat edge.

Lemma 6 Let x ∈ Sn such that x ∈ DSn
i,j . Then, x is connected to y = fSni,j (x) by an edge of multiplicity

1; furthermore, if z 6= y is any other element of DSn
j,i , then µ(x, z) = 0.

Now, let C ⊂ Sn be some left cell. Then, KLC is the associated left cell representation, with basis
B(KLC) = {Cw|w ∈ C}. We wish to define a τ -invariant for each basis element by using the Sn-action
on KLC (Equation 5).

Definition 7 Given some basis element C ∈ B(KLC), let τ(C) = {si ∈ Sn|Tsi · C = −C}. Given
adjacent simple transpositions si, sj , letDKLC

i,j be the set of basis elementsC in KLC such that si ∈ τ(C),
sj /∈ τ(C).

Observation 1 Notice that τ(Cw) = τ(w) as desired.

Lemma 6 gives rise to the following definition:
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Definition 8 Given C ∈ DKLC
i,j , let fKLC

i,j (C) be the unique basis element C ′ ∈ DKLC
j,i which appears as

a summand of Tsj · C. Note that fKLC
i,j (Cw) = CfSni,j (w).

Now, we immediately have a definition of generalized τ -invariant for each basis element in KLC simply
by substituting fKLC

i,j in Definition 1. In fact we can compare generalized τ -invariant of basis elements and
permutations or tableaux by using the appropriate fi,j maps on each side of the equations in Definition 1.

Theorem 7 (Robinson–Schensted for left cells) Let Cw be a basis element in KLC . Then, P (w), the
left Robinson–Schensted tableau for w, is the unique standard tableau on n boxes such that τg(P (W )) =
τg(Cw).

Thus, suppose that p is some partition of n. (This choice equivalent to the choice of a Young diagram
with n boxes.) Let KLp be the left cell for this shape with permutation and tableau labeling stripped
away. (Recall that KLp is uniquely determined as a based representation due to Theorem 6 regardless
of the particular left cell from which it originally derived.) Then, given some left cell basis element
C ∈ KLp, there is a unique standard tableau YC such that τg(C) = τg(YC). Furthermore, this is the same
tableau that we would have obtained by taking the left tableau for the permutation label of C before it was
removed. The parameterization of left cell basis elements by standard tableaux on the shape p is in this
sense canonical.

6 The Symmetric Group Action on sl3-Webs
The sl3 spider, introduced by Kuperberg (1996) and subsequently studied by many others (Khovanov and
Kuperberg (1999); Kim (2003); Morrison (2007); Murakami et al. (1998)) is a diagrammatic, braided
monoidal category encoding the representation theory of Uq(sl3). The objects in this category are tensor
products of V + and V −, the three-dimensional representations of Uq(sl3), but these are encoded as finite
strings in the alphabet {+,−}, including the empty string. The morphisms are intertwining maps, which
are represented by Z[q, q−1]-linear combinations of certain graphs called webs which we will describe
in a moment. (See Figure 1 for an example of a web.) Webs are oriented trivalent graphs drawn in a

Fig. 1: A web in Hom(+ +++ , −−)

square region with boundary points lying on the top and bottom of that region. Edges incident on the
boundary points have orientations compatible with the source and target words; edges pointing upward
and downward are labeled by + and − respectively. We read webs from bottom to top. All trivalent
vertices are either sources or sinks. Webs are also subject to the relations in Equation (6) below, which
are often referred to as the circle, bigon, and square relations. (Reduced webs are those with no circles,
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squares or bigons. For simplicity, we’ve given these relations in the classical limit.)

= 3, = (−2) , = + (6)

As mentioned in the introduction, there is a Hecke algebra action on invariant webs for tensor powers
of V +. We will work in the classical limit, where this becomes a symmetric group action. In this case, a
crossing in the symmetric group reduces to the morphism given in Equation (7). In other words, to act on
some invariant web by si, we attach the diagram on the right to the i and i + 1 vertices of the web. This
gives a sum of two webs which may or may not be reduced. Reducing summands may give a sum of more
than two reduced webs. Petersen et al. (2009) prove that this action is, up to isomorphism, the irreducible
S3n-representation corresponding to the partition [n, n, n]. (See Theorem 4 above.) For an example of
computing the action of a permutation on a web, see Figure 7 on Page 901. Because this computation
involves two crossings, each of which can be “smoothed” in two ways as per Figure 2, we initially obtain
four web terms. Subsequently, we reduce out squares and bigons and simplify.

〈 〉
=

〈 〉
+

〈 〉
(7)

Fig. 2: The symmetric group crossing morphism in the classical sl3-spider

From now on, we will sometimes omit orientations in our graphs. Orientations are uniquely determined
by the fact that edges point away from the bottom boundary.

7 Kuperberg’s Bijection
Kuperberg introduced a bijection between webs and dominant lattice paths in the weight lattice of sl3. For
webs with 3n source vertices, this may be interpreted as a bijection between standard tableaux of shape
[n, n, n] and reduced webs (Petersen et al. (2009)).

The map sends each web to a Yamanouchi word which is then used to build a standard tableau. Given a
tableau T of shape [n, n, n], the Yamanouchi word yT = y1y2 · · · y3n−1y3n is a string of symbols in the
alphabet {+, 0,−} where

yi =





+ if i is in the top row of T ,
0 if i is in the middle row of T , and
− if i is in the bottom row of T .

As an example, the Yamanouchi word for the tableau T in Figure 4 is yT = +0 + −0−. Yamanouchi
words corresponding to standard fillings of shape [n, n, n] are completely characterized by two properties:
They have n of each symbol, and at any point in the word, the number of +’s is greater than or equal to
the number of 0’s which is greater than or equal to the number of −’s. These words are called balanced.
The algorithm to build Yamanouchi words from webs is as follows:
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Start with a reduced web W on 3n source vertices aligned along a horizontal line with W drawn in
the upper half plane. The horizontal line containing the vertices and edges in the web divides the upper
half plane into faces, with one infinite face; label the infinite face 0. Label each additional face with the
minimum number of edges that a path must cross to reach this face from the infinite face. Under each
base vertex, write +, 0 or − to indicate that the labels on the faces directly above the vertex increase, stay
the same or decrease as we read from left to right. The string under the horizontal line is the Yamanouchi
word of a standard [n, n, n] tableau T . Complete the algorithm by writing down T . We demonstrate this
computation in Figure 3.

0 1 111
121 1 2 1

−0−+0+−0−+0+

1 3 7 9
2 5 8 11
4 6 1012

Fig. 3: A web and its Yamanouchi word obtained from depth labels, with the corresponding standard tableau.

Khovanov and Kuperberg (1999) introduced a method for computing the inverse map, but Tymoczko
(2012) recently developed a much simpler approach in terms ofm-diagrams. Given a tableau T , construct
an m-diagram mT as follows:

Draw a horizontal line with 3n equally spaced dots labeled from left to right with the numbers 1, . . . , 3n.
This line forms the lower boundary for the diagram, and all arcs will lie above it. Starting with the smallest
number j on the second row, draw a semi-circular arc connecting j to its nearest unoccupied neighbor i
to the left that appears in the first row. The arcs (i, j) are the left arcs in the m-diagram. Starting with
the smallest number k on the bottom row, draw a semi-circular arc connecting k to its nearest neighbor
j to the left that appears in the second row and does not already have an arc coming to it from the left.
The arcs (j, k) are the right arcs of the m-diagram. The collection of left arcs is nonintersecting as is the
collection of right arcs, but left arcs can intersect right arcs. Figure 4 shows an example of an m-diagram.

1 3
2 5
4 6

1 2 3 4 5 6 1 2 3 4 5 6

Fig. 4: The m-diagram and web corresponding to a tableau.

From anm-diagrammT for T , the following straightforward process transformsmT into an irreducible
web WT . Figure 4 shows a web corresponding to an m-diagram.

At each boundary vertex where two semi-circular arcs meet, replace the portion of the diagram in a
small neighborhood of the vertex with a ‘Y‘ shape as shown in Figure 5. Orient all arcs away from
the boundary so that the branching point of each ‘Y’ becomes a source. Finally replace any 4-valent
intersection point of a left arc and a right arc with a pair of trivalent vertices as shown in Figure 6. There
is a unique way to do this preserving orientation of incoming arcs.
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Fig. 5: Modifying the middle vertex of an m.

Fig. 6: Replacing a 4-valent vertex with trivalent vertices.

8 Kuperberg’s Bijection as Robinson–Schensted Analogue
Recall that τ(T ) is the set of all simple transpositions si for which i is in a row above i+ 1 in the tableau
T . Our first observation is that τ(T ) is completely determined by looking at WT .

Lemma 7 Given a standard tableau T and its associated web WT , the set τ(T ) consists of all transposi-
tions si for which boundary vertices i and i+ 1 are directly connected to the same internal vertex in WT .
Furthermore, si ∈ τ(T ) if and only if si ·WT = −WT .

Thus, we can define τ(W ) for any web W , and this notion agrees with our existing definitions for
tableaux and Kazhdan–Lusztig left cell basis elements. In addition, we can define the setDweb

i,j as reduced
webs whose τ -invariants contain si but not sj .

Lemma 8 Let T ∈ DYT
i,j . Then sj ·WT = WT + WfYT

i,j (T ) + O where O is a Z-linear combination of

reduced webs, none of which lies in Dweb
j,i .

Using Lemma 8, we get a definition for fweb
i,j , which is essentially the same as Definition 8 from the

Kazhdan–Lusztig left cell setting:

Definition 9 Given a reduced web W ∈ Dweb
i,j , let fweb

i,j (W ) be the unique reduced web in Dweb
j,i which

appears as a summand in sj ·W . This defines a bijection fweb
i,j : Dweb

i,j → Dweb
j,i with inverse fweb

j,i :

Dweb
j,i → Dweb

i,j .

Of course, fweb
i,j (WT ) = WfYT

i,j (T ). We then obtain generalized τ -invariants for reduced webs by replacing

the fYT
i,j maps in Definition 1 with fweb

i,j . Notice that the definition of the generalized τ -invariant for a
reduced web is essentially identical to the in situ version for Kazhdan–Lusztig left cell basis elements in
terms of the Sn-action. Combining Lemmas 7 and 8 with Theorem 1 brings us to the main theorem of the
paper:

Theorem 8 (Robinson–Schensted for Webs) Kuperberg’s bijection carries a reduced web W on 3n
source vertices to the unique [n, n, n] standard tableau T satisfying τg(T ) = τg(W ).
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Let Dσ = and let W =

Then we have W ′Dσ =

σ ·W =< W ′Dσ >=

+ + +

= −


 +




= −


 + +




Fig. 7: Computing the action of a permutation on a web.
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Abstract. The periodic patterns of a map are the permutations realized by the relative order of the points in its
periodic orbits. We give a combinatorial description of the periodic patterns of an arbitrary signed shift, in terms of
the structure of the descent set of a certain transformation of the pattern. Signed shifts are an important family of
one-dimensional dynamical systems. For particular types of signed shifts, namely shift maps, reverse shift maps, and
the tent map, we give exact enumeration formulas for their periodic patterns. As a byproduct of our work, we recover
some results of Gessel and Reutenauer and obtain new results on the enumeration of pattern-avoiding cycles.

Résumé. Les motifs périodiques d’une fonction sont les permutations réalisées par l’ordre relatif des points dans ses
orbites périodiques. Nous donnons une description combinatoire des motifs périodiques d’un shift signé arbitraire, en
termes de la structure de l’ensemble des descentes d’une certaine transformation du motif. Les shifts signés sont une
familie importante de systèmes dynamiques unidimensionnels. Pour des types particuliers de shifts signés, comme
les fonctions de shift, les fonctions de shift inversées, et la fonction de tente, nous donnons des formules exactes pour
l’énumération de leurs motifs périodiques. Comme sous-produit de notre travail, nous retrouvons des résultats de
Gessel et Reutenauer et obtenons de nouveaux résultats sur l’énumération de cycles qui évitent certain motifs.

Keywords: periodic pattern; signed shift; cyclic permutation; descent; pattern avoidance.

1 Introduction
1.1 Background and motivation
Permutations realized by the orbits of a map on a one-dimensional interval have received a significant
amount of attention in the last five years [2]. These are the permutations given by the relative order of the
elements of the sequence obtained by successively iterating the map, starting from any point in the inter-
val. One the one hand, understanding these permutations provides a powerful tool to distinguish random
from deterministic time series, based on the remarkable fact [6] that every piecewise monotone map has
forbidden patterns, i.e., permutations that are not realized by any orbit. Permutation-based tests for this
purpose have been developed in [4]. On the other hand, the set of permutations realized by a map (also
called allowed patterns) has a rich combinatorial structure. The answer to certain enumerative questions,
often involving pattern-avoiding permutations, provides information about the associated dynamical sys-
tems. For example, determining the asymptotic growth of the number of allowed patterns of a map reveals
its so-called topological entropy, an important measure of the complexity of the system.
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1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The dynamical systems most commonly studied from the perspective of forbidden patterns are shifts,
and more generally signed shifts [1], a large family of maps that includes the tent map (which is equivalent
to the logistic map). As we will see, signed shifts have a simple discrete structure which makes them
amenable to a combinatorial approach, yet they include many important chaotic dynamical systems.

Permutations realized by shifts were first considered in [3], and later characterized and enumerated
in [8]. More recently, permutations realized by the more general β-shifts have been studied in [9]. For the
logistic map, some properties of their set of forbidden patterns were given in [10].

If instead of considering an arbitrary initial point in the domain of the map we restrict our attention to
periodic points, the permutations realized by the relative order of the entries in the corresponding orbits
(up until the first repetition) are called periodic patterns. In the case of continuous maps, Sharkovskii’s
theorem [13] gives a beautiful characterization of the possible periods of these orbits. More refined
results that consider which periodic patterns are forced by others are known for continuous maps [7, 12].
However, little is known when the maps are not continuous, as is the case for shifts and, more generally,
signed shifts.

The subject of study of this paper are periodic patterns of signed shifts. Our main result is a charac-
terization of the periodic patterns of an (almost) arbitrary signed shift, given in Theorem 2.1. For some
particular cases of signed shifts we obtain exact enumeration formulas: the number of periodic patterns
of the tent map is given in Theorem 3.2, and the number of periodic patterns of the (unsigned) shift map
is given in Theorem 3.5. For the reverse shift, which is not covered in our main theorem, the number of
periodic patterns is studied in Sections 3.3 and 3.4.

An interesting consequence of our study of periodic patterns is that we obtain new results regarding the
enumeration of cyclic permutations that avoid certain patterns. These are described in Section 4.

1.2 Periodic patterns
Given a linearly ordered set X and a map f : X → X , consider the sequence {f i(x)}i≥0 obtained by
iterating the function starting at a point x ∈ X . If there are no repetitions among the first n elements of
this sequence, called the orbit of x, then we define the pattern of length n of f at x to be

Pat(x, f, n) = st(x, f(x), f2(x), . . . , fn−1(x)),

where st is the operation that outputs the permutation of [n] = {1, 2, . . . , n} whose entries are in the same
relative order as n entries in the input. For example, st(3.3, 3.7, 9, 6, 0.2) = 23541. If f i(x) = f j(x)
for some 0 ≤ i < j < n, then Pat(x, f, n) is not defined. The set of allowed patterns of f is A(f) =
{Pat(x, f, n) : n ≥ 0, x ∈ X}.

We say that x ∈ X is an n-periodic point of f if fn(x) = x but f i(x) 6= x for 1 ≤ i < n. In this case,
the permutation Pat(x, f, n) is denoted PP(x, f), and called the periodic pattern of f at x. Note that if
x is an n-periodic point, then Pat(x, f, i) is not defined for i > n. Let P(f) = {PP(x, f) : x ∈ X} be
the set of periodic patterns of f , and let Pn(f) = P(f) ∩ Sn. For a permutation π = π1π2 . . . πn ∈ Sn,
let [π] = {πiπi+1 . . . πnπ1 . . . πi−1 : 1 ≤ i ≤ n} the set of cyclic rotations of π, which we call the
equivalence class of π. It is clear that if π ∈ P(f), then [π] ⊂ P(f). Indeed, if π is the periodic pattern
at a point x, then the other permutations in [π] are realized at the other points in the periodic orbit of x.
Let Pn(f) = {[π] : π ∈ Pn(f)} denote the set of equivalence classes of periodic patterns of f of length
n, and let pn(f) = |Pn(f)| = |Pn(f)|/n.

Given linearly ordered sets X and Y , two maps f : X → X and g : Y → Y are said to be order-
isomorphic if there is an order-preserving bijection φ : X → Y such that φ ◦ f = g ◦ φ. In this
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case, Pat(x, f, n) = Pat(φ(x), g, n) for every x ∈ X and n ≥ 1. In particular, A(f) = A(g) and
P(f) = P(g).

1.3 Signed shifts
Let k ≥ 2 be fixed, and letWk be the set of infinite words s = s1s2 . . . over the alphabet {0, 1, . . . , k−1}.
Let <lex denote the lexicographic order on these words. We use the notation s[i,∞) = sisi+1 . . . , and
s̄i = k − 1 − si. If q is a finite word, qm denotes concatenation of q with itself m times, and q∞ is an
infinite periodic word.

Fix σ = σ0σ1 . . . σk−1 ∈ {+,−}k. Let T+
σ = {t : σt = +} and T−σ = {t : σt = −}, and note that

these sets form a partition of {0, 1, . . . , k − 1}. We give two definitions of the signed shift with signature
σ, and show that they are order-isomorphic to each other.

The first definition, which we denote by Σ′σ , is the map Σ′σ : (Wk, <lex)→ (Wk, <lex) defined by

Σ′σ(s1s2s3s4 . . . ) =

{
s2s3s4 . . . if s1 ∈ T+

σ ,

s̄2s̄3s̄4 . . . if s1 ∈ T−σ .

It is shown in [1] that Σ′σ is order-isomorphic to the piecewise linear function Mσ : [0, 1]→ [0, 1] defined
for x ∈ [ tk ,

t+1
k ), for each 0 ≤ t ≤ k − 1, as

Mσ(x) =

{
kx− t if t ∈ T+

σ ,

t+ 1− kx if t ∈ T−σ .

As a consequence, the allowed patterns and the periodic patterns of Σ′σ are the same as those of Mσ ,
respectively. A few examples of the function Mσ are pictured in Figure 1.
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Fig. 1: The graphs of Mσ for σ = +−, σ = +++, σ = −−−− and σ = ++−−+, respectively.

The second definition of the signed shift will be more convenient when studying its periodic patterns.
Let ≺σ be the linear order on Wk defined by s = s1s2s3 . . . ≺σ t1t2t3 . . . = t if either s1 < t1,
s1 = t1 ∈ T+

σ and s2s3 . . . ≺σ t2t3 . . ., or s1 = t1 ∈ T−σ and t2t3 . . . ≺σ s2s3 . . .. Equivalently, s ≺σ t
if, letting j ≥ 1 be the smallest such that sj 6= tj , either c := |{1 ≤ i < j : si ∈ T−σ }| is even and
sj < tj , or c is odd and sj > tj . The signed shift is the map Σσ : (Wk,≺σ)→ (Wk,≺σ) defined simply
by Σσ(s1s2s3s4 . . . ) = s2s3s4 . . . .

To show that the two definitions of the signed shift as Σσ and Σ′σ are order-isomorphic, consider the
order-preserving bijection ψσ : (Wk,≺σ) → (Wk, <lex) that maps a word s = s1s2s3 . . . to the word
a = a1a2a3 . . . where

ai =

{
si if |{j < i : sj ∈ T−σ }| is even,
s̄i if |{j < i : sj ∈ T−σ }| is odd.
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It is easy to check that ψσ ◦ Σσ = Σ′σ ◦ ψσ , and so P(Σσ) = P(Σ′σ). From now on we use the second
definition Σσ only. The n-periodic points of Σσ are the words of the form s = (s1s2s3 . . . sn)∞ where
s1s2 . . . sn is a primitive word (sometimes called aperiodic word), that is, not a concatenation of copies of
a strictly shorter word. Counting these words up to cyclic rotation, we obtain the following result, where
µ denotes the Möbius function.

Lemma 1.1 If σ ∈ {+,−}k, where k ≥ 2, the number of periodic orbits of size n of Σσ is

Lk(n) =
1

n

∑

d|n
µ(d)k

n
d .

For example, if σ = + − −, then s = (00110221)∞ is an 8-periodic point of Σσ , and PP(s,Σσ) =
12453786, so 12453786 ∈ P(Σ+−−). One of our main goals is to characterize the sets P(Σσ).

If σ = +k, then ≺σ is the lexicographic order <lex, and Σσ is called the k-shift. When σ = −k, the
map Σσ is called the reverse k-shift. When σ = +−, the map Σσ is the well-known tent map.

1.4 Pattern avoidance
Let Sn denote the set of permutations of [n], and let S =

⋃
n≥0 Sn. We write permutations in one

line notation as π = π1π2 . . . πn ∈ Sn. We say that τ ∈ Sn contains ρ ∈ Sm if there exist indices
i1 < i2 < · · · < im such that st(τi1τi2 . . . τim) = ρ1ρ2 . . . ρm. Otherwise, we say that τ avoids ρ. If
A is a set of permutations, we denote by A (ρ) the set of permutations in A avoiding ρ, and we define
A (ρ(1), ρ(2), . . . ) analogously as the set of permutations avoiding all the patterns ρ(1), ρ(2), . . . . We say
that A is a (permutation) class if it is closed under pattern containment, that is, if τ ∈ A and τ contains
ρ, then ρ ∈ A . Sets of the form S(ρ(1), ρ(2), . . . ) are permutation classes.

Given classes A0,A1, . . . ,Ak−1, their juxtaposition, denoted [A0 A1 . . . Ak−1], is the set of permuta-
tions that can be expressed as concatenations α0α1 . . . αk−1 where st(αt) ∈ At for all 0 ≤ t < k. For ex-
ample, [S(21)S(12)] is the set of unimodal permutations, i.e., those π ∈ Sn satisfying π1 < π2 < · · · <
πj > πj+1 > · · · > πn for some 1 ≤ j ≤ n. The juxtaposition of permutation classes is again a class, and
as such, it can be characterized in terms of pattern avoidance. For example, [S(21)S(12)] = S(213, 312).
Atkinson [5] showed that if At can be characterized by avoidance of a finite set of patterns for each t, then
the same is true for [A0 A1 . . . Ak−1].

Let σ = σ0σ1 . . . σk−1 ∈ {+,−}k as before. We let Sσ = [A0 A1 . . . Ak−1] where, for 0 ≤ t < k,

At =

{
S(21) if σt = +,

S(12) if σt = −.

Let Sσn = Sσ ∩ Sn. Figure 2 shows two permutations in S+−−. Note that since the empty permutation
belongs to S(21) and to S(12), it is trivial that S+−− ⊂ S+−+−, for example.

We denote by Cn (respectively, Cσ , Cσn ) the set of cyclic permutations in Sn (respectively, Sσ , Sσn ). In
Figure 2, the permutation on the right is in Cσ . It will be useful to define the map

θ : Sn → Cn
π 7→ π̂,

where if π = π1π2 . . . πn in one-line notation, then π̂ = (π1, π2, . . . , πn) in cycle notation, that is, π̂
is the cyclic permutation that sends π1 to π2, π2 to π3, and so on. Writing π̂ = π̂1π̂2 . . . π̂n in one-line
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Fig. 2: Two permutations 3 5 8 9 11 7 6 1 12 10 4 2 and 2 5 9 10 11 8 4 3 1 12 7 6 in S+−− and their cycle structure.

notation, we have that π̂πi
= πi+1 for 1 ≤ i ≤ n, with the convention that πn+1 := π1. The map θ also

plays an important role in [8]. Note that if π ∈ Sn, then θ−1(π̂) = [π], the set of cyclic rotations of π.

2 Description of periodic patterns of the signed shift
The main theorem of this paper is the following characterization of the periodic patterns of the signed
shift Σσ , except in the case of the reverse shift. Throughout the paper we assume that k ≥ 2.

Theorem 2.1 Let σ ∈ {+,−}k, σ 6= −k. Then π ∈ P(Σσ) if and only if π̂ ∈ Cσ .

This theorem, whose proof will require a few lemmas, states that the map θ gives a bijection between
Pn(Σσ) and Cσn . The following lemma describes some conditions satisfied by the periodic patterns of Σσ ,
proving the forward direction of Theorem 2.1.

Lemma 2.2 Let σ ∈ {+,−}k, let π ∈ Pn(Σσ), and let s = (s1 . . . sn)∞ ∈ Wk be such that π =
PP(s,Σσ). For 1 ≤ t ≤ k, let dt = |{i ∈ [n] : si < t}|, and let d0 = 0. The following statements hold.

(a) For every i and t, we have dt < πi ≤ dt+1 if and only if si = t.

(b) If dt < πi < πj ≤ dt+1, then πi+1 < πj+1 if t ∈ T+
σ , and πi+1 > πj+1 if t ∈ T−σ , where

πn+1 := π1.

(c) For 0 ≤ t < k, π̂dt+1 . . . π̂dt+1 is increasing if t ∈ T+
σ and decreasing if t ∈ T−σ . In particular,

π̂ ∈ Cσ .

Proof: Since PP(s,Σσ) = π, it is clear for all a, b ∈ [n], πa < πb implies sa ≤ sb, from where (a)
follows. To prove (b), suppose that dt < πi < πj ≤ dt+1, and so s[i,∞) ≺σ s[j,∞). By part (a), we have
si = sj = t. If t ∈ T+

σ , then s[i+1,∞) ≺σ s[j+1,∞), and so πi+1 < πj+1. Similarly, if t ∈ T−σ , then
s[j+1,∞) ≺σ s[i+1,∞), and so πi+1 > πj+1.

Now let 0 ≤ t < k, and suppose that the indices j such that sj = t are j1, . . . , jm, ordered in such a way
that πj1 < πj2 < · · · < πjm , wherem = dt+1−dt. Then part (a) implies that πj` = dt−1 +` for 1 ≤ ` ≤
m, and part (b) implies that πj1+1 < πj2+1 < · · · < πjm+1 if t ∈ T+

σ , and πj1+1 > πj2+1 > · · · > πjm+1

if t ∈ T−σ . Using that πj`+1 = π̂πj`
= π̂dt+`, this is equivalent to π̂dt+1 < π̂dt+2 < · · · < π̂dt+m if

t ∈ T+
σ , and π̂dt+1 > π̂dt+2 > · · · > π̂dt+m if t ∈ T−σ . Note that dt + m = dt+1. Since π̂ is a cyclic

permutation, this proves that π̂ ∈ Cσ . 2

The next two lemmas will be used in the proof of the backward direction of Theorem 2.1.
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Lemma 2.3 Let σ ∈ {+,−}k, let π ∈ Sn, and suppose that π̂ = π̂e0+1 . . . π̂e1 π̂e1+1 . . . π̂e2 . . . π̂ek ,
where each segment π̂et+1 . . . π̂et+1

is increasing if t ∈ T+
σ and decreasing if t ∈ T−σ (and so π̂ ∈ Cσ).

Suppose that et < πi < πj ≤ et+1 for some 1 ≤ i, j ≤ n. Then πi+1 < πj+1 if t ∈ T+
σ , and πi+1 > πj+1

if t ∈ T−σ , where πn+1 := π1.

Proof: Since et < πi < πj ≤ et+1, both π̂πi
and π̂πj

lie in the segment π̂et+1 . . . π̂et+1
. If t ∈ T+

σ , this
segment is increasing, so πi+1 = π̂πi

< π̂πj
= πj+1. The argument is analogous if t ∈ T−σ . 2

Lemma 2.4 Let σ ∈ {+,−}k be arbitrary. If σ = −k, additionally assume that n 6= 2 mod 4. Let
π ∈ Sn be such that π̂ ∈ Cσ . Then there exist 0 = e0 ≤ e1 ≤ · · · ≤ ek = n such that

(a) each segment π̂et+1 . . . π̂et+1 is increasing if t ∈ T+
σ and decreasing if t ∈ T−σ ; and

(b) the word s1 . . . sn, defined by si = t whenever et < πi ≤ et+1, is primitive, and s = (s1 . . . sn)∞

satisfies PP(s,Σσ) = π.

Furthermore, if σ = +k or σ = −k, then any choice of 0 = e0 ≤ e1 ≤ · · · ≤ ek = n satisfying (a) also
satisfies (b).

Proof: Since π̂ ∈ Cσ , there is some choice of 0 = e0 ≤ e1 ≤ · · · ≤ ek = n such that each segment
π̂et+1 . . . π̂et+1 is increasing if t ∈ T+

σ and decreasing if t ∈ T−σ . Pick one such choice and define
s1 . . . sn as above. In this proof we take the indices of π mod n, that is, we define πi+jn = πi for i ∈ [n].

Suppose that s1 . . . sn is not primitive, so it can be written as qm for some m ≥ 2 and some primitive
word q with |q| = r = n/m. Then, si = si+r for all i. Let g = |{i ∈ [r] : si ∈ T−σ }|. Fix i, and let
t = si = si+r. Because of the way that s1 . . . sn is defined, we must have et < πi, πi+r ≤ et+1, so we
can apply Lemma 2.3 to this pair.

Suppose first that g is even. If πi < πi+r, then applying Lemma 2.3 r times we get πi+r < πi+2r, since
the inequality involving πi+` and πi+r+` switches exactly g times as ` increases from 0 to r. Starting with
i = 1 and applying this argument repeatedly, we see that if π1 < π1+r, then π1 < π1+r < π1+2r < · · · <
π1+(m−1)r < π1+mr = π1, which is a contradiction. A symmetric argument shows that if π1 > π1+r,
then π1 > π1+r > π1+2r > · · · > π1+(m−1)r > π1+mr = π1.

It remains to consider the case that g is odd. If m is even and m ≥ 4, then letting q′ = qq we have
s1s2 . . . sn = (q′)

m
2 . Letting r′ = |q′| = 2r and g′ = |{i ∈ [2r] : si ∈ T−σ }| = 2g, the same argument

as above using r′ and g′ yields a contradiction. If m is odd, suppose without loss of generality that
π1 < π1+r. Applying Lemma 2.3 r times to the inequality πi < πi+r (respectively πi > πi+r) yields
πi+r > πi+2r (respectively πi+r < πi+2r) in this case, since the inequality involving πi+` and πi+r+`
switches an odd number of times. Consider two cases:

• If π1 < π1+2r, then Lemma 2.3 applied repeatedly in blocks of 2r times yields π1 < π1+2r <
π1+4r < · · · < π1+(m−1)r. Applying now Lemma 2.3 r times starting with π1 < π1+(m−1)r gives
π1+r > π1+mr = π1, which contradicts the assumption π1 < π1+r.

• If π1 > π1+2r, applying Lemma 2.3 r times we get π1+r < π1+3r, and by repeated application
of the lemma in blocks of 2r times it follows that π1+r < π1+3r < π1+5r < · · · < π1+(m−2)r <
π1+mr = π1, contradicting again the assumption π1 < π1+r.
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The only case left is when g is odd and m = 2, that is, when s1s2 . . . sn = q2 and q has an odd number
of letters in T−σ . Note that this situation does not happen when σ = +k (since in this case g = 0) and,
although it can happen when σ = −k, in this case we would have that T−σ = {0, 1, . . . , k − 1}, and so
n = 2r = 2g = 2 mod 4, which we are excluding in the statement of the theorem.

Thus, we can assume that there exists some 1 ≤ ` < k such that σ`−1σ` is either +− or −+. We will
show that there is a choice of 0 = e′0 ≤ e′1 ≤ · · · ≤ e′k = n that satisfies the conditions of the lemma, and
the resulting word s′1s

′
2 . . . s

′
n is primitive.

Suppose that σ`−1σ` = +− (the case σ`−1σ` = −+ is very similar). Then, π̂e`−1+1 < · · · < π̂e`
and π̂e`+1 > · · · > π̂e`+1

. If π̂e` < π̂e`+1 (respectively, π̂e` > π̂e`+1), let e′` := e` + 1 (respectively,
e′` := e` − 1), and e′t := et for all t 6= `. Clearly, the values e′t satisfy part (a) of the lemma. Additionally,
the word s′1 . . . s

′
n that they define using part (b) differs from the original word s1s2 . . . sn = q2 by one

entry, making the number of `s that appear in s′1 . . . s
′
n be odd instead of even. Thus, s′1 . . . s

′
n can no

longer be written as (q′)2 for any q′, so it is primitive by the above argument.
Finally, we prove that if we let s = (s1 . . . sn)∞, then PP(s,Σσ) = π. Let 1 ≤ i, j ≤ n with πi < πj .

We need to show that s[i,∞) ≺σ s[j,∞). Let a ≥ 0 be the smallest such that si+a 6= sj+a, and let
h = |{0 ≤ ` ≤ a−1 : s` ∈ T−σ }|. If h is even, then Lemma 2.3 applied a times shows that πi+a < πj+a.
Since si+a 6= sj+a, we must then have si+a < sj+a, by construction of s. Thus, s[i,∞) ≺σ s[j,∞) by
definition of ≺σ , since the word sisi+1 . . . si+a−1 = sjsj+1 . . . sj+a−1 has an even number of letters in
T−σ . Similarly, if h is odd, then Lemma 2.3 shows that πi+a > πj+a. Since si+a 6= sj+a, we must have
si+a > sj+a, and thus s[i,∞) ≺σ s[j,∞) by definition of ≺σ . 2

We can now combine the above lemmas to prove our main theorem.

Proof of Theorem 2.1: If π ∈ P(Σσ), then π̂ ∈ Cσ by Lemma 2.2(c). Conversely, π ∈ Sn is such that
π̂ ∈ Cσ , then the word s given by Lemma 2.4(b) satisfies PP(s,Σσ) = π, and so π ∈ P(Σσ). 2

For σ = −k, the same proof yields the following weaker result.

Proposition 2.5 Let σ = −k. If π ∈ Pn(Σσ), then π̂ ∈ Cσn . Additionally, the converse holds if n 6=
2 mod 4.

Define the reversal of σ = σ0σ1 . . . σk−1 to be σR = σk−1 . . . σ1σ0. If π ∈ Sn, then the complement
of π is the permutation πc where πci = n + 1 − πi for 1 ≤ i ≤ n. The following result, whose proof is
omitted, relates periodic patterns of Σσ and ΣσR .

Proposition 2.6 For every σ ∈ {+,−}k, π ∈ P(Σσ) if and only if πc ∈ P(ΣσR).

3 Enumeration for special cases
For particular values of σ, we can give a formula for the number of periodic patterns of Σσ . This is the
case when σ = +−, σ = +k, and σ = −k, for any k ≥ 2.

3.1 The tent map
We denote the tent map by Λ = Σ+−. The characterization of the periodic patterns of Λ follows from
Theorem 2.1.

Corollary 3.1 π ∈ P(Λ) if and only if π̂ is unimodal.
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Next we give an exact formula for the number of periodic patterns of the tent map.

Theorem 3.2
pn(Λ) =

1

2n

∑

d|n
d odd

µ(d)2
n
d .

Proof: Let On be the set of binary words s = (s1 . . . sn)∞ where s1 . . . sn is primitive and has an odd
number of ones. We will show that the map s 7→ PP(s,Λ) is a bijection between On and Pn(Λ). It is
clear that this map is well defined. We will prove that for each π ∈ Pn(Λ) there are either one or two
periodic binary words s such that PP(s,Λ) = π, and that exactly one of them is in On.

Fix π ∈ Pn(Λ), and recall from Corollary 3.1 that π̂1 < π̂2 < · · · < π̂m > π̂m+1 > · · · > π̂n for
some m. Let s = (s1 . . . sn)∞ be such that PP(s,Λ) = π, and let d = |{1 ≤ i ≤ n : si = 0}|. By
Lemma 2.2(a), we have that si = 0 if and only if πi ≤ d. Suppose now that si = sj and πi < πj .
If si = sj = 0, then πi+1 < πj+1 by Lemma 2.2(b), and so π̂πi

< π̂πj
. Since this holds whenever

1 ≤ πi < πj ≤ d, we see that π̂1 < π̂2 < · · · < π̂d. Similarly, if si = sj = 1, then πi+1 > πj+1 and so
π̂πi > π̂πj . Thus, π̂d+1 > π̂d+2 > · · · > π̂n.

It follows that m = d or m = d + 1, depending on whether π̂d > π̂d+1 or π̂d < π̂d+1. Thus, since
π was fixed, there are two choices for d, namely d = m or d = m − 1. This corresponds to setting si,
where i is such that πi = m, equal to 1 or to 0, respectively. The above argument shows that the rest of
the entries of s are forced by π. For exactly one of these two choices, s1 . . . sn will have an odd number
of ones.

However, as shown in the proof of Theorem 2.1, it is possible for s1 . . . sn constructed as above not to
be primitive. This can only happen when n is even and s1 . . . sn = q2, in which case s1 . . . sn has an even
number of ones. Thus, the choice where s1 . . . sn has an odd number of ones is primitive, so s ∈ On and
it satisfies PP(s,Λ) = π.

Using the Möbius inversion formula, it can be shown that the number of primitive binary words of
length n with an odd number of ones is |On| =

∑
d µ(d)2n/d−1, where the sum is over all odd divisors

of n. Since pn(Λ) = |On|/n, the formula follows. 2

3.2 The k-shift
Recall that the k-shift is the map Σσ where σ = +k. We denote this map by Σk for convenience. The
allowed patterns of the k-shift were characterized and enumerated by Elizalde [8], building up on work
by Amigó et al. [3].

In this section we describe and enumerate the periodic patterns of the k-shift. Denote the descent set of
π ∈ Sn by Des(π) = {i ∈ [n− 1] : πi > πi+1}, and by des(π) = |Des(π)| the number of descents of π.
In the case of the k-shift, Theorem 2.1 states that π ∈ P(Σk) if and only if π̂ is a cyclic permutation that
can be written as a concatenation of k increasing sequences. The following corollary follows from this
description.

Corollary 3.3 π ∈ P(Σk) if and only if des(π̂) ≤ k − 1.

An equivalent statement is that θ gives a bijection between Pn(Σk) and permutations in Cn with at
most k − 1 descents. It will be convenient to define, for 1 ≤ i ≤ n,

C(n, i) = |{τ ∈ Cn : des(τ) = i− 1}|.
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In the rest of this section we assume that n ≥ 2. We start by giving a formula for the number of periodic
patterns of the binary shift. Recall the formula for Lk(n) given in Lemma 1.1.

Theorem 3.4 For n ≥ 2, we have pn(Σ2) = C(n, 2) = L2(n).

Proof: When n ≥ 2, there are no permutations in Cn with no descents, so Corollary 3.3 states that
π ∈ P(Σ2) if and only if des(π̂) = 1. It follows that Pn(Σ2) is in bijection with permutations in Cn with
exactly one descent, so pn(Σ2) = C(n, 2).

Next we show that Pn(Σ2) is also in bijection with the set of periodic orbits of size n of Σ2, and thus
pn(Σ2) = L2(n) by Lemma 1.1. Clearly, to each n-periodic point s = (s1 . . . sn)∞ one can associate the
periodic pattern π = PP(s,Σ2) ∈ Pn(Σ2), so that the n points in the orbit of s give rise to the patterns
in [π]. Conversely, for each π ∈ Pn(Σ2) there is some s ∈ W2 such that PP(s,Σ2) = π. It remains to
show that s is unique. Suppose that Des(π̂) = {j} and that PP(s,Σ2) = π. Letting d be the number of
zeros in s1 . . . sn, we have by Lemma 2.2(c) that π̂1 < · · · < π̂d and π̂d+1 < · · · < π̂n. Thus, d = j, and
so the word s1 . . . sn is uniquely determined by Lemma 2.2(a). 2

Theorem 3.5 For k ≥ 3 and n ≥ 2,

pn(Σk)− pn(Σk−1) = C(n, k) = Lk(n)−
k−1∑

i=2

(
n+ k − i
k − i

)
C(n, i).

Proof: It is clear from Corollary 3.3 that C(n, k) = 1
n |Pn(Σk) \ Pn(Σk−1)| = pn(Σk)− pn(Σk−1).

To prove the recursive formula for C(n, k), we count periodic orbits of size n of Σk in two ways.
On one hand, this number equals Lk(n) by Lemma 1.1. On the other hand, to each such orbit one can
associate an equivalence class [π] ∈ Pn(Σk), consisting of the periodic patterns at the n points of the
orbit.

Fix π ∈ Pn(Σk). We now count how many words s ∈ Wk satisfy PP(s,Σk) = π (equivalently, how
many periodic orbits are associated with [π]). By Lemma 2.4, for each choice of 0 = e0 ≤ e1 ≤ · · · ≤
ek = n such that π̂et+1 . . . π̂et+1

is increasing for all 0 ≤ t < k, the word s defined in part (b) of the
lemma satisfies PP(s,Σk) = π. Conversely, if s = (s1 . . . sn)∞ ∈ Wk is such that PP(s,Σk) = π,
then, by Lemma 2.2(c), each block π̂dt+1 . . . π̂dt+1

is increasing, with dt defined as in the lemma, for
0 ≤ t < k. Thus, finding all the words s ∈ Wk such that PP(s,Σk) = π is equivalent to finding all the
ways to choose 0 = e0 ≤ e1 ≤ · · · ≤ ek = n such that π̂et+1 . . . π̂et+1 is increasing for all 0 ≤ t < k. If
des(π̂) = i − 1, it is a simple exercise to show that there are

(
n+k−i
k−i

)
such choices, since Des(π̂) has to

be a subset of {e1, . . . , ek−1}.
By Corollary 3.3, for each 2 ≤ i ≤ k, the number of equivalence classes [π] ∈ Pn(Σk) where

des(π̂) = i− 1 is C(n, i). It follows that

Lk(n) =
k∑

i=2

(
n+ k − i
k − i

)
C(n, i),

which is equivalent to the stated formula. 2

It follows immediately from Theorem 3.5 that pn(Σk) =
∑k
i=2 C(n, i) for n ≥ 2.
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Let us show an example that illustrates how, in the above proof, the words s ∈ Wk with PP(s,Σk) = π
are constructed for given π. Let k = 5, and let π = 165398427 ∈ P9(Σ5). Then π̂ = 679235148, which
has descent set Des(π̂) = {3, 6}. Choosing e1 = 3, e2 = 6, e3 = e4 = 9, Lemma 2.4 gives the word
s1 . . . s9 = 011022102. Choosing e1 = 2, e2 = 3, e3 = 6, e4 = 7, we get s1 . . . s9 = 022144203.

The second equality in Theorem 3.5 also follows from a result of Gessel and Reutenauer [11, Theorem
6.1], which is proved using quasi-symmetric functions.

3.3 The reverse k-shift, when n 6= 2 mod 4

The reverse k-shift is the map Σσ where σ = −k. We denote this map by Σ−k in this section. Denote
the ascent set of π ∈ Sn by Asc(π) = {i ∈ [n − 1] : πi < πi+1}, and the number of ascents of π by
asc(π) = |Asc(π)| = n− 1− des(π).

Proposition 2.5 gives a partial characterization of the periodic patterns of Σ−k . For patterns of length
n 6= 2 mod 4, it states that π ∈ Pn(Σ−k ) if and only if π̂ can be written as a concatenation of k decreasing
sequences. The next corollary follows from this description. The case n = 2 mod 4 will be discussed in
Section 3.4.

Corollary 3.6 Let π ∈ Sn, where n 6= 2 mod 4. Then π ∈ P(Σ−k ) if and only if asc(π̂) ≤ k − 1.

To enumerate periodic patterns of Σ−k of length n 6= 2 mod 4, we use an argument very similar to the
one we used for Σk. For 1 ≤ i ≤ n, let C ′(n, i) = |{τ ∈ Cn : asc(τ) = i − 1}|. By definition, we have
C ′(n, i) = C(n, n−i+1). The proofs of the following two theorems are similar to those of Theorems 3.4
and 3.5, and thus omitted from this extended abstract.

Theorem 3.7 For n ≥ 3 with n 6= 2 mod 4, we have pn(Σ−2 ) = C ′(n, 2) = L2(n).

Theorem 3.8 For n ≥ 3 with n 6= 2 mod 4 and k ≥ 3,

pn(Σk)− pn(Σk−1) = C ′(n, k) = Lk(n)−
k−1∑

i=2

(
n+ k − i
k − i

)
C ′(n, i).

Combining Theorems 3.4, 3.5, 3.7 and 3.8, we obtain the following.

Corollary 3.9 For n 6= 2 mod 4 and 2 ≤ k ≤ n, we have C(n, k) = C ′(n, k).

This equality is equivalent to the symmetry C(n, k) = C(n, n− 1− k), which is not obvious from the
recursive formula in Theorem 3.5. Corollary 3.9 also follows from a more general result of Gessel and
Reutenauer [11, Theorem 4.1], which states that if n 6= 2 mod 4, then for any D ⊆ [n− 1],

|{τ ∈ Cn : Des(τ) = D}| = |{τ ∈ Cn : Asc(τ) = D}|. (1)

Their proof involves quasi-symmetric functions. Even though describing a direct bijection proving Eq. (1)
remains an open problem, our construction can be used to give the following bijection between {τ ∈ Cn :
Des(τ) ⊆ D} and {τ ∈ Cn : Asc(τ) ⊆ D}.

Given π̂ ∈ Cn such that Des(π̂) ⊆ D = {d1, d2, . . . , dk−1}, let π ∈ Sn be such that θ(π) = π̂ and
π1 = 1. Let s = (s1 . . . sn)∞ ∈ Wk be defined by si = t if dt < πi ≤ dt+1, for 1 ≤ i ≤ n, where we let
d0 = 0 and dk = n. Let π′ = PP(s,Σ−k ). Then π̂′ = θ(π′) ∈ Cn, Asc(π̂′) ⊆ D, and the map π̂ 7→ π̂′

gives the desired bijection.
Another consequence of Theorem 3.8 is that pn(Σ−k ) =

∑k
i=2 C

′(n, k) = pn(Σk) when n 6= 2 mod 4.
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3.4 The reverse k-shift, when n = 2 mod 4

When n = 2 mod 4, the results in Section 3.3 no longer hold. Corollary 3.6 fails in that there are certain
permutations π ∈ Sn with asc(π̂) ≤ k − 1 that are not periodic patterns for Σ−k . For the binary case, the
number of periodic patterns of Σ−2 is given next.

Theorem 3.10 For n ≥ 3 with n = 2 mod 4,

pn(Σ−2 ) = L2(n) = C ′(n, 2)− C ′(n/2, 2).

The proof of this theorem, which we omit due to lack of space, is based in the following idea. By
Proposition 2.5, the map θ gives an injection from Pn(Σ−2 ) to the set {τ ∈ Cn : asc(τ) = 1}. To show
that the number of cycles with one ascent that are not in the image of this map is precisely C ′(n/2, 2),
we give a bijection with primitive binary necklaces of length r, constructed by analyzing how Lemma 2.4
fails when n = 2 mod 4. From Theorems 3.4, 3.7 and 3.10, we get the following.

Corollary 3.11

C ′(n, 2) =

{
C(n, 2) + C(n/2, 2) n = 2 mod 4

C(n, 2) n 6= 2 mod 4

For k ≥ 3, the number of periodic patterns is given in the next theorem, whose proof is omitted.

Theorem 3.12 For n ≥ 3 with n = 2 mod 4 and k ≥ 3,

pn(Σ−k ) =

k∑

i=2

C ′(n, i)− C ′(n/2, k).

Since n/2 is odd in this case, C ′(n/2, k) is easily computed by the recurrence in Theorem 3.8. To
compute C ′(n, i), one can use the following recurrence.

Theorem 3.13 For n ≥ 3 with n = 2 mod 4 and k ≥ 3,

C ′(n, k) = Lk(n)−
k−1∑

i=2

[(
n+ k − i
k − i

)
C ′(n, i)−

(
n/2 + k − i

k − i

)
C ′(n/2, i)

]
+ C ′(n/2, k).

4 Pattern-avoiding cyclic permutations
The enumeration of pattern-avoiding cycles is a wide-open problem, part of its difficulty stemming from
the fact that it combines two different ways to look at permutations: in terms of their cycle structure and
in terms of their one-line notation. The question of finding a formula for |Cn(σ)| where σ is a pattern of
length 3 was proposed by Richard Stanley and is still open. However, using Theorem 2.1, the formulas
that we have found for the number of periodic patterns of the tent map, the k-shift and the reverse k-shift
translate into the following related results.

Theorem 4.1 For n ≥ 2,

|Cn(213, 312)| = 1

2n

∑

d|n
d odd

µ(d)2n/d, |Cn(321, 2143, 3142)| = 1

n

∑

d|n
µ(d)2n/d,
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|Cn(123, 2413, 3412)| =





1

n

∑

d|n
µ(d)2n/d if n 6= 2 mod 4,

1

n

∑

d|n
µ(d)2n/d +

2

n

∑

d|n2

µ(d)2n/2d if n = 2 mod 4.

Proof: The formula for |Cn(213, 312)| is a consequence of Theorem 3.2 and Corollary 3.1, together
with the fact that a permutation is unimodal if and only if it avoids 213 and 312. The second for-
mula follows from Theorem 3.4, using that the set of permutations with at most one descent is S++ =
S(321, 2143, 3142) (see [5]). Finally, the third formula is a consequence of Corollary 3.11 and Theo-
rem 3.4, noting that the class of permutations with at most one ascent is S(123, 2413, 3412). 2
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Abstract. We study the binomial and monomial ideals arising from linear equivalence of divisors on graphs from the
point of view of Gröbner theory. We give an explicit description of a minimal Gröbner basis for each higher syzygy
module. In each case the given minimal Gröbner basis is also a minimal generating set. The Betti numbers of IG and
its initial ideal (with respect to a natural term order) coincide and they correspond to the number of “connected flags”
in G. Moreover, the Betti numbers are independent of the characteristic of the base field.

Résumé. Nous étudions les idéaux monômiaux et binomiaux résultant de l’équivalence linéaire de diviseurs sur les
graphes du point de vue de la théorie de Gröbner. Nous donnons une description explicite d’une base de Gröbner
minimale pour chaque module engendré par une syzygie d’ordre supérieur. Dans chaque cas, cette base de Gröbner
minimale est aussi une ensemble generateur minimal. Les nombres de Betti de IG et son idéal initial coı̈ncident et
correspondent au nombre de � drapeaux connexes� de G. En particulier, les nombres de Betti sont indépendants de
la caractéristique du corps de référence.

Keywords: Graph, divisors, chip-firing, Gröbner bases, Betti numbers, connected flags.

1 Introduction
The theory of divisors on finite graphs can be viewed as a discrete version of the analogous theory on

Riemann surfaces. This notion arises in different fields of research including the study of “abelian sand-
piles” ([Dha90, Gab93]), the study of component groups of Néron models of Jacobians of algebraic curves
([Ray70, Lor89]), and the theory of chip-firing games on graphs ([Big97]). Riemann-Roch theory for finite
graphs (and generalizations to tropical curves) is developed in this setting ([BN07, GK08, MZ08]).

We are interested in the linear equivalence of divisors on graphs from the point of view of commutative
algebra. Associated to every graphG there is a canonical binomial ideal IG which encodes the linear equi-
valences of divisors on G. Let R denote the polynomial ring with one variable associated to each vertex.
For any two effective divisors D1 ∼ D2 there is a binomial xD1 −xD2 . The ideal IG ⊂ R is generated by
all such binomials. Two effective divisors are linearly equivalent if and only if their associated monomials
are equal in R/IG. This ideal is already implicitly defined in Dhar’s seminal statistical physics paper
[Dha90] ; R/IG is the “operator algebra” defined there. To our knowledge, this ideal (more precisely, an

†Supported by the Mathematical Sciences Research Institute and the Alexander von Humboldt Foundation.
‡Partially supported by NSF grants DMS-0901487

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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affine piece of it) was first introduced in [CRS02] to address computational questions in chip-firing dyna-
mics using Gröbner basis. From a purely computational point of view there are now much more efficient
methods available (see, e.g., [BS13] and references therein). However this ideal seems to encode a lot of
interesting information about G and its linear systems. Some of the algebraic properties of IG (and its
generalization for directed graphs) are studied in [PPW11]. In [MS13a], Manjunath and Sturmfels relate
Riemann-Roch theory for finite graphs to Alexander duality in commutative algebra using this ideal.

In this paper we study the syzygies and free resolutions of the ideals IG and in(IG) from the point of
view of Gröbner theory. Here in(IG) denotes the initial ideal with respect to a natural term order which is
defined after distinguishing a vertex q (see Definition 2.1). When G is a complete graph, the syzygies and
Betti numbers of the ideal in(IG) are studied by Postnikov and Shapiro in [PS04]. Again for complete
graphs, Manjunath and Sturmfels in [MS13a] study the ideal IG and show that the Betti numbers coincide
with the Betti numbers of in(IG). Finding minimal free resolutions for a general graph G was stated as an
open problem in both [PS04] and [MS13a] (also in [PPW11], where a conjecture is formulated). It was
not even known whether the Betti numbers for a general graph depend on the characteristic of the base
field or not.

We construct free resolutions for both in(IG) and IG for a general graph G. Indeed we describe, com-
binatorially, the minimal Gröbner bases for all higher syzygy modules of IG and in(IG). In each case the
minimal Gröbner basis is also a minimal generating set and the given resolution is minimal. In particu-
lar the Betti numbers of in(IG) and IG coincide. This gives a positive answer to [CHT06, Question 1.1]
for ideal IG. For a complete graph the minimal free resolution for in(IG) is nicely structured by a Scarf
complex. The resolution for IG when G a tree is given by a Koszul complex since IG is a complete
intersection. A more conceptual and geometric proof for a general graph G will be given in [MS13b].

The description of the generating sets and the Betti numbers is in terms of the “connected flags” of G.
Fix a vertex q ∈ V (G) and an integer k. A connected k-flag of G (based at q) is a strictly increasing
sequence U1 ( U2 ( · · · ( Uk = V (G) such that q ∈ U1 and all induced subgraphs on vertex sets Ui
and Ui+1\Ui are connected. Associated to any connected k-flag one can assign a “partial orientation” on
G (Definition 3.3). Two connected k-flags are considered equivalent if the associated partially oriented
graphs coincide. The Betti numbers correspond to the numbers of the connected flags up to this equiva-
lence. We give a bijective map between the connected flags ofG and the minimal Gröbner bases for higher
syzygy modules of IG and in(IG). For a complete graph all flags are connected and all distinct flags are
inequivalent. So in this case the Betti numbers are simply the face numbers of the order complex of the
poset of those subsets of V (G) that contain q (ordered by inclusion). These numbers can be described
using classical Stirling numbers (see Example 4.6). Hence our results directly generalize the analogous
results in [PS04] and [MS13a]. Analogous results with different methods were obtained independently in
[MSW12] and in [DS12].

The paper is structured as follows. In § 2 we fix our notation and provide the necessary background from
the theory of divisors on graphs. We also define the ideal IG and the natural Pic(G)-grading and a term
order < on the polynomial ring relevant to our setting. In § 2.2 we quickly recall some basic notions from
commutative algebra. Our main goal is to fix our notation for Schreyer’s algorithm for computing higher
syzygies, which is slightly different from what appears in the existing literature but is more convenient for
our application. In § 3 we define connected flags and their equivalence relation. In § 4 we study the free
resolution and higher syzygies of our ideals from the point of view of Gröbner theory, and as a corollary
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we give our description of the graded Betti numbers. In § 5 we describe some connections with the theory
of reduced divisors. We refer to [MS12] for proofs and more details.

2 Definitions and background
2.1 Graphs and divisors

Throughout this paper, a graph means a finite, connected, unweighted multigraph with no loops. As
usual, the set of vertices and edges of a graph G are denoted by V (G) and E(G). We set n = |V (G)|. A
pointed graph (G, q) is a graph together with a choice of a distinguished vertex q ∈ V (G).

Let Div(G) be the free abelian group generated by V (G). An element of Div(G) is written as
∑
v∈V (G) av(v)

and is called a divisor on G. The coefficient av in D is also denoted by D(v). A divisor D is called ef-
fective if D(v) ≥ 0 for all v ∈ V (G). The set of effective divisors is denoted by Div+(G). We write
D ≤ E if E −D ∈ Div+(G). For D ∈ Div(G), let deg(D) =

∑
v∈V (G)D(v). For D1, D2 ∈ Div(G),

the divisor E = max(D1, D2) is defined by E(v) = max(D1(v), D2(v)) for v ∈ V (G).

We denote by M(G) the group of integer-valued functions on the vertices. For A ⊆ V (G), χA ∈
M(G) denotes the {0, 1}-valued characteristic function of A. The Laplacian operator ∆ : M(G) →
Div(G) is defined by

∆(f) =
∑

v∈V (G)

∑

{v,w}∈E(G)

(f(v)− f(w))(v) .

The group of principal divisors is defined as the image of the Laplacian operator and is denoted by
Prin(G). It is easy to check that Prin(G) ⊆ Div0(G) where Div0(G) denotes the set consisting of
divisors of degree zero. The quotient Pic0(G) = Div0(G)/Prin(G) is a finite group whose cardinality is
the number of spanning trees of G (see, e.g., [BS13] and references therein). The full Picard group of G
is defined as

Pic(G) = Div(G)/Prin(G)

which is isomorphic to Z⊕Pic0(G). Since principal divisors have degree zero, the map deg : Div(G)→
Z descends to a well-defined map deg : Pic(G) → Z. Two divisors D1 and D2 are called linearly
equivalent if they become equal in Pic(G). In this case we write D1 ∼ D2. The linear system |D| of D is
defined as the set of effective divisors that are linearly equivalent to D.

To an ordered pair of disjoint subsets A,B ⊆ V (G) we assign an effective divisor

D(A,B) =
∑

v∈A
|{w ∈ B : {v, w} ∈ E(G)}|(v) .

In other words, the support of D(A,B) is a subset of A and for v ∈ A the coefficient of (v) in D(A,B)
is the number of edges between v and B.

Let K be a field and let R = K[x] be the polynomial ring in the n variables {xv : v ∈ V (G)}. Any
effective divisor D gives rise to a monomial

xD :=
∏

v∈V (G)

xD(v)
v .
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Associated to every graphG there is a canonical ideal which encodes the linear equivalences of divisors
on G. Our main object study is the ideal

IG := 〈xD1 − xD2 : D1 ∼ D2 both effective divisors〉

which was introduced in [CRS02].
Once we fix a vertex q, there is a natural monomial order that gives rise to a particularly nice Gröbner

basis for IG. This term order was first introduced in [CRS02]. Fix a pointed graph (G, q). Consider a total
ordering of the set of variables {xv : v ∈ V (G)} compatible with the distances of vertices from q in G :

dist(w, q) < dist(v, q) =⇒ xw < xv . (1)

Here, the distance between two vertices in a graph is the number of edges in a shortest path connecting
them. The above ordering can be thought of an ordering on vertices induced by running the breadth-first
search algorithm starting at the root vertex q.

Definition 2.1 We denote by < the degree reverse lexicographic ordering on R = K[x] induced by the
total ordering on the variables given in (1).

Throughout this paper in(IG) denotes the initial ideal of IG with respect to this term order. Note that
in(IG) is denoted by MG in [PS04].

2.2 Syzygies and Betti numbers
In this subsection we quickly recall some basic notions from commutative algebra in order to fix our

notation. We refer to standard books (e.g. [Eis95, GP08]) for more details.

Let K be any field and let R = K[x] be the polynomial ring in n variables graded by an abelian group
A. The degree map will be denoted by deg. Let M be a graded submodule of a free module and fix a
module ordering <0 extending the monomial ordering < on R. Assume that the finite totally ordered
set (G,≺) forms a Gröbner basis for (M,<0) consisting of homogeneous elements. Let F0 be the free
module generated by G. For g ∈ G we let the formal symbol [g] denote the corresponding generator for
F0 ; each element of F0 can be written as a sum of these formal symbols with coefficients in R. There is
a natural surjective homomorphism

ϕ0 : F0 −→M

sending [g] to g for each g ∈ G. Moreover, we enforce this homomorphism to be graded (or homogeneous
of degree 0) by defining deg([g]) := deg(g) for all g ∈ G.

By definition the syzygy module of M with respect to G, denoted by syz(G), is the kernel of this
map. Let syz0(G) := M and syz1(G) := syz(G). For i > 1 the higher syzygy modules are defined as
syzi(G) := syz(syzi−1(G)).

We now discuss a method to compute a Gröbner basis for syz(G). One can “pull back” the module
ordering <0 along ϕ0 to get a compatible module ordering <1 on F0 ; for f, h ∈ G define

xβ [h] <1 xα[f ]⇔





LM(xβh) <0 LM(xαf)

or
LM(xβh) = LM(xαf) ∧ f ≺ h.

(2)
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To simplify the notation we assume the leading coefficients of all elements of G are 1. For a pair of
elements f ≺ h of G assume

LM(f) = xα(f)[e] and LM(h) = xα(h)[e]

for some e ∈ E. Since G is a Gröbner basis, setting γ(f, h) := max(α(f), α(h)), we have the “standard
representation” :

spoly(f, h) = xγ(f,h)−α(f)f − xγ(f,h)−α(h)h =
∑

g∈G
a(f,h)g g (3)

for some polynomials a(f,h)g ∈ R. We set

s(f, h) = xγ(f,h)−α(f)[f ]− xγ(f,h)−α(h)[h]−
∑

g∈G
a(f,h)g [g] ∈ F0 . (4)

Theorem 2.2 (Schreyer [Sch80], [Eis95]) The set

S(G) = {s(f, h) : f, h ∈ G , f ≺ h , LM(f) = xα(f)[e] , LM(h) = xα(h)[e] for some e ∈ E}

forms a homogeneous Gröbner basis for (syz(G), <1).

To read the Betti numbers for M one needs to find a minimal generating set for the syzygy modules. In
general the set S(G) is far from being even a minimal Gröbner basis. However there exist some criterions
to find a subset Smin(G) of S(G) which forms a minimal Gröbner basis for (syz(G), <1) ; see, e.g.,
[MS12, Lemma 3.4]. Moreover, Theorem 2.2 gives rise to Algorithm 1 for computing free resolutions.
The following result gives a general sufficient criterion for an ideal to have the same Betti numbers as its
initial ideal.

Theorem 2.3 If the constructed resolution by Schreyer’s algorithm is a minimal graded free resolution
then βi,j(M) = βi,j(in(M)) for all i ≥ 0 and j ∈ A.

3 Connected flags on graphs
3.1 Connected flags, partial orientations, and divisors

From now on we fix a pointed graph (G, q) and we let n = |V (G)|. Consider the poset

C(G, q) := {U ⊆ V (G) : q ∈ U}

ordered by inclusion. The following special chains of this poset arise naturally in our setting.

Definition 3.1 Fix an integer 1 ≤ k ≤ n. A connected k-flag of (G, q) is a (strictly increasing) sequence
U of subsets of V (G)

U1 ( U2 ( · · · ( Uk = V (G)

such that q ∈ U1 and, for all 1 ≤ i ≤ k − 1, both G[Ui] and G[Ui+1\Ui] are connected.

The set of all connected k-flags of (G, q) will be denoted by Fk(G, q).
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Input:
Graded polynomial ring R = K[x] ,
Monomial ordering < on R ,
Graded submodule M of the free R-module F−1 generated by formal symbols {[e]}e∈E ,
Module ordering <0 on F−1 extending the monomial ordering < ,
Finite set G forming a homogeneous Gröbner basis for (M,<0) .
Output:
A free resolution : 0→ · · · → Fi

ϕi−→ Fi−1 → · · · → F0
ϕ0−→M → 0 .

Initialization :
G0 := G ;
F0 := free R-module generated by formal symbols {[g]}g∈G0

; Output F0 ;
ϕ0 : F0 →M ⊆ F−1 defined by [g] 7→ g for each g ∈ G0 ; Output ϕ0 ;
i = 0 ;
while Fi 6= 0 do
≺i : arbitrary total ordering on Gi ;
<i+1 : module ordering on Fi obtained from <i on Fi−1 (as in (2)) ;
Gi+1 := Smin(Gi) ⊂ Fi, a minimal Gröbner basis of (syzi+1(G), <i+1) (as in Theorem 2.2) ;
Fi+1 := free R-module generated by formal symbols {[u]}u∈Gi+1 ; Output Fi+1 ;
ϕi+1 : Fi+1 → Fi defined by [u] 7→ u for each u ∈ Gi+1 ; Output ϕi+1 ; i← i+ 1 ;

end
Algorithm 1: Algorithm for computing a free resolution of M (Schreyer’s algorithm)

Remark 3.2 For a complete graph, Fk(G, q) is simply the order complex of C(G, q), but in general
Fk(G, q) is not a simplicial complex.

Definition 3.3 Given U ∈ Fk(G, q) we define :
(a) a “partial orientation” of G by orienting edges from Ui to Ui+1\Ui (for all 1 ≤ i ≤ k − 1) and

leaving all other edges unoriented. We denote the resulting partially oriented graph by G(U).
(b) an effective divisor D(U) ∈ Div(G) given by D(U) :=

∑k−1
i=1 D(Ui+1\Ui, Ui).

Remark 3.4 It is easy to check that D(U) =
∑
v∈V (G) (indegG(U)(v))(v), where indegG(U)(v) denotes

the number of oriented edges directed to v in G(U).

3.2 Total ordering on Fk(G, q)

We endow each Fk(G, q) with a total orderings ≺k for all 1 ≤ k ≤ n. These total orderings are
compatible with each other for different values of 1 ≤ k ≤ n.

Let � denote the ordering on Cop(G, q) given by reverse inclusion :

U � V ⇐⇒ U ⊇ V .

Definition 3.5 We fix, once and for all, a total ordering extending �. By a slight abuse of notation, �
will be used to denote this total ordering extension. In particular ≺ will denote the associated strict total
order.
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We consider one of the natural “lexicographic extensions” of ≺ to the set of connected k-flags.

Definition 3.6 For U 6= V in Fk(G, q) written as

U : U1 ( U2 ( · · · ( Uk = V (G)

V : V1 ( V2 ( · · · ( Vk = V (G)

we say U ≺k V if for the maximum 1 ≤ ` ≤ k − 1 with U` 6= V` we have U` ≺ V`.
As usual, we write U �k V if and only if U ≺k V or U = V .

Lemma 3.7 (Fk(G, q),�k) is a totally ordered set.

It is easy to find two different connected k-flags having identical associated partially oriented graphs.
This motivates the following definition.

Definition 3.8 Two k-flags U ,V ∈ Fk(G, q) are called equivalent if the associated partially oriented
graphs G(U) and G(V) coincide.

Notation 1 The set of all equivalence classes in Fk(G, q) will be denoted by Ek(G, q). The set Sk(G, q)
denotes the collection of minimal representatives of the classes in Ek(G, q) with respect to ≺k.

Given an element in Sk(G, q) there is a canonical way to obtain two related elements in Sk−1(G, q).

Definition 3.9 Given U ∈ Fk(G, q), the elements U (1),U (2) ∈ Fk−1(G, q) are obtained from U by
removing the 1st and 2nd elements in the following appropriate sense. Let

U : U1 ( U2 ( · · · ( V (G) .

(a) U (1) will denote
U2 ( U3 ( U4 ( · · · ( V (G) .

(b) U (2) will denote




U1 ( U3 ( U4 ( · · · ( V (G), if G[U3\U1] is connected ;
or
(U1 ∪ (U3\U2)) ( U3 ( U4 ( · · · ( V (G), if G[U3\U1] is not connected.

Remark 3.10 [MS12, Section 6.1] Assume that U ∈ Sk(G, q). Let G/U be the graph obtained from
G by contracting the unoriented edges of G(U) and let φ : G → G/U be the contraction map. More
precisely, G/U is the graph on the vertices u1, . . . , uk corresponding to the collection (Ui\Ui−1)ki=1, i.e.
ui = φ(Ui\Ui−1). For any edge between Ui\Ui−1 and Uj\Uj−1 there is an edge between ui and uj . The
contraction map φ : G→ G/U induces the maps

(i) φ∗ : Div(G) → Div(G/U ) with φ∗(
∑
v∈V (G) av(v)) =

∑
v∈V (G) av(φ(v)). In particular, a total

ordering u1, . . . , uk of V (G/U ) gives a total ordering on the collection of subsets (Ui\Ui−1)ki=1 of
V (G). By Definition 3.3 we get a divisor D′ on G/U and a divisor D on G, and φ∗(D) = D′. In
other words, such a divisor D′ has a canonical section.

(ii) φ∗ : Ss(G/U , u1)→ Ss(G, q) with φ∗(V ′) = V where Vj =
⋃
ui∈V ′j (Ui\Ui−1).
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4 Minimal free resolution and Betti numbers for IG and in(IG)
Let K be a field and let R = K[x] be the polynomial ring in n variables {xv : v ∈ V (G)}. Recall that

K[x] has a natural A-grading, where A = Z or A = Pic(G) and IG is also A-graded. Let the monomial
ordering < on R be as in Definition 2.1.

The following theorem gives a generalization of [CRS02, Theorem 14]. Indeed [CRS02, Theorem 14]
can be rephrased as providing a bijection between S2(G, q) and G(G, q).

Theorem 4.1 Fix a pointed graph (G, q) and let A = Z or A = Pic(G). For each k ≥ 0 there exists a
natural injection

ψk : Sk+2(G, q) ↪→ syzk(G(G, q))

such that
(i) For some module ordering <k, the set Gk(G, q) := Image(ψk) forms a minimal A-homogeneous

Gröbner basis of (syzk(G(G, q)), <k),
(ii) For U ∈ Sk+2(G, q) of the form U1 ( U2 ( · · · ( V (G) we have

LM(ψk(U)) = xD(U2\U1,U1)[ψk−1(U (1))] , (5)

(iii) The set ψk(Sk+2(G, q)) minimally generates syzk(G(G, q)).

Sketch of proof : Here we list the key steps of the proof. For a complete proof we refer to [MS12]. For
consistency in the notation we define syz−1(G(G, q)) = {0} and the map

ψ−1 : S1(G, q) ↪→ {0}

sends the canonical connected 1-flag V (G) to 0. The proof is by induction on k ≥ 0.

Base case. For k = 0 the result is proved in [CRS02, Theorem 14]. Here G0(G, q) = G(G, q) and <0

is <, and
ψ0 : S2(G, q) ↪→ syz0(G(G, q)) = IG

(U1 ( U2) 7→ (xD(U2\U1,U1) − xD(U1,U2\U1))[0]

and LM(ψk(U)) = xD(U2\U1,U1)[0].

Induction hypothesis. Now let k > 0 and assume that there exists a bijection

ψk−1 : Sk+1(G, q)→ Gk−1(G, q) ⊆ syzk−1(G(G, q))

such that Gk−1(G, q) forms a minimal homogeneous Gröbner basis of syzk−1(G(G, q)) with respect to
<k−1), and (5) for the leading monomials holds.

Via the bijection ψk−1, the set Gk−1(G, q) inherits a total ordering≺′k−1 from the total ordering≺k+1

on Sk+1(G, q), i.e.

f ≺′k−1 h in Gk−1(G, q) ⇔ ψ−1k−1(f) ≺k+1 ψ
−1
k−1(h) in Sk+1(G, q).

Inductive step. Given U ∈ Sk+2(G, q) let U (1) and U (2) be as defined in Definition 3.9. We define

ψk : Sk+2(G, q)→ syzk(G(G, q)) (6)
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U 7→ s(ψk−1(U (1)), ψk−1(U (2))) .

In the following U ,V ∈ Sk+2(G, q) are of the form

U1 ( U2 ( · · · ( V (G)

V1 ( V2 ( · · · ( V (G) .

The result is follows from a series of claims.

Claim 1. ψk is a well-defined and Gk(G, q) := Image(ψk) consists of homogeneous elements.

Sinceψk−1(U (1)) andψk−1(U (2)) are homogeneous by induction hypothesis, it follows that s(ψk−1(U (1)), ψk−1(U (2)))
is also homogeneous.

Claim 2. LM(ψk(U)) = xD(U2\U1,U1)[ψk−1(U (1))] .

It suffices to show that D(U2\U1, U1) = max(α, β)− α where

LM(ψk−1(U (1))) = xα[ψk−2(U (1,1))] , LM(ψk−1(U (2))) = xβ [ψk−2(U (2,1))] .

Claim 3. ψk is injective.

If U ,V ∈ Sk+2(G, q) be such that ψk(U) = ψk(V) then their leading terms are equal :

xD(U2\U1,U1)[ψk−1(U (1))] = xD(V2\V1,V1)[ψk−1(V(1))] .

Therefore ψk−1(U (1)) = ψk−1(V(1)) and D(U2\U1, U1) = D(V2\V1, V1). By induction hypothesis
ψk−1 is injective which implies U (1) = V(1) and D(U2\U1, U1) = D(V2\V1, V1). Therefore U1 = V1
and U = V .

The following claim (proved in [MS12]) will finish the inductive step.

Claim 4. Image(ψk) forms a minimal homogeneous Gröbner basis of syzk(G(G, q)) with respect to <k
obtained from <k−1 according to (2).

These all together show that Image(ψk) ⊆ S(Gk−1(G, q)). In order to show the reverse inclusion by
Theorem 2.2 it remains to show that

(I) 0 6∈ Image(ψk).
(II) For any element s(f, h) ∈ S(Gk−1(G, q)) there exists an element g ∈ Image(ψk) such that

LM(g) | LM(s(f, h)).
(III) For any two elements g, g′ ∈ Image(ψk), if LM(g) | LM(g′) then g = g′.

Claim 5. For U ∈ Sk+2(G, q) we have ψk(U) =
∑
W∈Sk+1(G,q)

c(U ,W)xθ(U,W)[ψk−1(W)] where
c(U ,W) ∈ {−1, 0, 1} and θ(U ,W) = D(Ui\Ui−1, Uj\Uj−1) ifW differs from U by merging Ui\Ui−1
and Uj\Uj−1 for some i, j.

Note that this proves (III) which is equivalent to the minimality of the resolution. 2

From Theorem 4.1 we obtain the following important corollaries.



924 Fatemeh Mohammadi and Farbod Shokrieh

Corollary 4.2 The Betti numbers of the ideals IG and in(IG) are independent of the characteristic of the
base field K.

Corollary 4.3 For all i ≥ 0, βi(R/IG) = βi(R/ in(IG)) = |Si+1(G, q)| = |Ei+1(G, q)|.
Let A = Z or A = Pic(G). Recall that IG and in(IG) are graded (or homogeneous) with respect to the

Z and Pic(G) gradings. One can also read the graded Betti numbers from Theorem 4.1.

Corollary 4.4 For all i ≥ 0 and j ∈ A we have βi,j = |Si+1,j(G, q)| where Sk,j(G, q) = {U ∈
Sk(G, q) : degA(xD(U)) = j}.

We conclude this section with some examples.

Example 4.5 It follows from above descriptions that βn−1(R/IG) = βn−1,m(R/IG) is equal to the
number of acyclic orientations of G with unique source.

Example 4.6 Let G be the complete graph Kn on n vertices. Then βk−1(R/IG) = |Sk(G, q)| = (k −
1)!S(n, k) where S(n, k) denotes the Stirling number of the second kind (i.e. the number of ways to
partition a set of n elements into k nonempty subsets).

Example 4.7 Let G be a tree on n vertices. Then βk−1(R/IG) = |Sk(G, q)| =
(
n−1
k−1
)
.

Example 4.8 For the cycle Cn on n vertices and k ≥ 2 we have βk−1(R/ICn
) = |Sk(Cn, q)| = (k −

1)×
(
n
k

)
.

5 Relation to maximal reduced divisors
Recall the definition of reduced divisors.

Definition 5.1 Let (Γ, v0) be a pointed graph. A divisor D ∈ Div(Γ) is called v0-reduced if it satisfies
the following two conditions :

(i) D(v) ≥ 0 for all v ∈ V (Γ)\{v0}.
(ii) For every non-empty subset A ⊆ V (Γ)\{v0}, there exists a vertex v ∈ A such that D(v) <

outdegA(v).

These divisors arise precisely from the normal forms with respect to the Gröbner basis given in Theo-
rem 4.1. There is a well-known algorithm due to Dhar for checking whether a given divisor is reduced
(see, e.g., [BS13] and references therein).

Lemma 5.2 For U ∈ Sk(G, q), φ∗(D(U)) = E+1, where E is a maximal (φ(U1))-reduced divisor and
1 is the all-one divisor.

Since different acyclic orientations with unique source at q′ give rise to inequivalent q′-reduced divisors
we deduce that if U ,V ∈ Sk(G, q) and the graphs G/U and G/V coincide, then φ∗(D(U)) − 1 and
φ∗(D(V)) − 1 are two inequivalent maximal reduced divisors. These observations lead to the following
formula for Betti numbers which was conjectured in [PPW11] for IG :

βi =
∑

G/U

|{D : D is a maximal v0-reduced divisors on G/U}|

=
∑

G/U

|{acyclic orientations of G/U with unique source at v0}|
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where the sum is over all distinct contracted graphs G/U as U varies in Si+1(G, q), and v0 is an arbitrary
vertex of G/U .

Here is another connection with reduced divisors. Hochster’s formula for computing the Betti numbers
topologically (see, e.g., [MS05, Theorem 9.2]), when applied to IG and the “nice” grading by Pic(G),
says that for each j ∈ Pic(G) the graded Betti number βi,j(R/IG) is the dimension of the ith reduced
homology of the simplicial complex ∆j = {supp(E) : 0 ≤ E ≤ D′ ∈ | j |} where | j | denotes the linear
system of j ∈ Pic(G).

Remark 5.3
(i) For j ∈ Pic(G), we have βn−1,j(R/IG) = 1 if and only if j ∼ E + 1 where E is a maximal
q-reduced divisor.

(ii) One can use Corollary 4.3 to read all dimensions of the reduced homologies of ∆j. Although we
now know all the Betti numbers, giving an explicit bijection between connected flags and the bases
of the reduced homologies of ∆j is an intriguing problem. In a recent work, Horia Mania in [Man12]
studies the number of connected components of ∆j.
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Counting Strings over Z2d with Given
Elementary Symmetric Function Evaluations
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Abstract. Let α be a string over Zq , where q = 2d. The j-th elementary symmetric function evaluated at α is
denoted ej(α). We study the cardinalities Sq(m; τ1, τ2, . . . , τt) of the set of length m strings for which ei(α) = τi.
The profile k(α) = 〈k1, k2, . . . , kq−1〉 of a string α is the sequence of frequencies with which each letter occurs.
The profile of α determines ej(α), and hence Sq . Let hn : Z(q−1)

2n+d−1 7→ Z2d [z] mod z2
n

be the map that takes
k(α) mod 2n+d−1 to the polynomial 1 + e1(α)z + e2(α)z

2 + · · · + e2n−1(α)z
2n−1. We show that hn is a

group homomorphism and establish necessary conditions for membership in the kernel for fixed d. The kernel is
determined for d = 2, 3. The range of hn is described for d = 2. These results are used to efficiently compute
S4(m; τ1, τ2, . . . , τt) for d = 2 and the number of complete factorizations of certain polynomials.

Résumé. Soit α un mot sur Zq , où q = 2d. La j−ième fonction symmétrique élémentaire évaluée à α est dénotée
ej(α). Nous étudions les cardinalités Sq(m; τ1, τ2, . . . , τt) de l’ensemble des mots de longueur m pour lesquels
ei(α) = τi. Le profil k(α) = 〈k1, k2, . . . , kq−1〉 d’un mot α est la suite de fréquences d’apparition de chaque
lettre. Le profil de α détermine ej(α) et donc Sq . Soit hn : Z(q−1)

2n+d−1 7→ Z2d [z]mod z2
n

la fonction qui associe à
k(α)mod 2n+d−1 le polynôme 1 + e1(α)z + e2(α)z

2 + · · · + e2n−1(α)z
2n−1. Nous démontrons que hn est un

homomorphisme de groupe et nous établissons des conditions nécessaires à l’appartenance au noyau pour un d fixé.
Le noyau est déterminé pour d = 2, 3. L’image de hn est décrite pour d = 2. Ces résultats sont utilisés pour calculer
de manière efficace S4(m; τ1, τ2, . . . , τt) pour d = 2 ainsi que le nombre de factorisations complètes de certains
polynômes.

Keywords: elementary symmetric function, monomial factorization, integers mod 2d, group homomorphism, kernel.

1 Introduction and motivation
Before getting too deeply into the abstract and technical details let us illustrate the types of computations
that we will be able to easily carry out after proving our results. Let [[P ]] be 1 or 0 depending of whether
the proposition P is true or false, respectively. Consider the problem below.
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EXAMPLE 1 How many strings are there of length 100 over the alphabet 0, 1, 2, 3 that satisfy the follow-
ing six conditions, with arithmetic done mod 4? Conditions: (a) The sum of the characters is 0 and, (b)
the sum of the products of all pairs of characters is 3 and, (c) the sum of the products of all 4-tuples of
characters is 3, (d) the sum of the products of all 8-tuples of characters is 2, (e) the sum of the products of
all 16-tuples of characters is 3, (f) the sum of the products of all 32-tuples of characters is 3. The answer
is approximately 2.33× 1058, or exactly

23283888738988446954113680611180557044216386182393836339200, (1)

which is the value of the sum

∑

k0+k1+k2+k3=100

(
100

k0, k1, k2, k3

)
[[k1, k3 even, k2 odd, k1 + k3 ≡ 54 mod 64]].

That is, the answer is the sum of 667 multinomial coefficients. Furthermore, the sum above applies for
strings of length m; one need only replace the 100 by m.

There are several natural questions that should occur to the reader at this point. Firstly, why are the
“tuples” involved all powers of two? The reason is that, for example, the sum of products of all 3-tuples
is determined already by the value of the sum of products of 1-tuples and 2-tuples. Secondly, why do the
mysterious parity and modular conditions arise; in particular why is it some condition mod 64 and not
just mod 4? We will answer all these questions in due course, generalizing from arithmetic done mod 4 to
arithmetic done mod 2d.

EXAMPLE 2 In this example all computations are done mod 8. The following equation illustrates the
non-unique factorization of a polynomial into monomials.

(1 + z)3(1 + 5z)5 = (1 + 3z)9(1 + 7z)1 (2)

Given a polynomial factored into monomials, we do not know a nice or efficient way to express the number
of its other such factorizations, but we can count them mod z2

n

(simply meaning that we ignore all terms
involving z2

n

for k ≥ 2n). For example,

(1 + z)6(1 + 2z)1(1 + 4z)1(1 + 6z)3 = (1 + 3z)20(1 + 5z)14(1 + 7z)4 mod z8 (3)

and we will show that the total number of possible distinct right hand sides in (3) is 222 if the exponents
on the monomials (1 + jz)k (j = 1, 2, . . . , 7) are restricted so that 0 ≤ k < 32; here 32 is the minimum
value required to ensure “periodicity.”

One aim of this paper is to explain this example and to generalize it to other powers of 2. We hope that
these examples entice the reader to keep reading.

The theory of symmetric functions has long been a basic tool of combinatorial enumeration. In some
combinatorial settings it is useful to enumerate the number of variable substitutions to symmetric func-
tions so that the functions achieve given values. Stanley discusses some of these issues in Section 7.8
of [6]. Our initial interest in the elementary symmetric functions stems from the counting of degree n
monic irreducible polynomials over finite fields with prescribed coefficients for xn−1 and xn−2. If such
a polynomial is factored in a splitting field, these coefficients can be interpreted as the first and second
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elementary symmetric functions evaluated at the (circular) string of coefficients occurring in the factor-
ization.

If a string α has its alphabet in a finite commutative ring R, we can evaluate the j-th elementary
symmetric function ej at α. This evaluation depends on the profile k = 〈k1, k2, . . .〉 of α where ki is the
frequency with which the ring element xi occurs in α. The relationship between strings, polynomials, an
elementary symmetric functions is contained in the mapEk(z) :=

∏
(1+jz)kj since ej(α) = [zj ]Ek(z).

This relationship can be refined to give a sequence of mappings hn : Z(|R|−1)
m → G, where G is an

appropriate multiplicative subgroup of Z`[[z]] where m and ` depend on n.
In [3] we studied the the case R = Zp, where p is prime. These results were then used in [4] in order

to enumerate certain circular strings. Here we choose the substitutions to come from the ring of integers
mod 2d. A fundamental difference between the case considered in [3] is that in the Zp case the hn are
one-to-one, whereas in the Z2d case, they are not. However, there is an underlying group homomorphism
and a periodic repetition which will allow us to provide much structural information and a complete
characterization for specific small values of d. As a byproduct, we are able to enumerate the number of
non-unique factorizations of certain types of polynomials in Z2d [z].

A primary aim in this extended abstract is to state/prove some basic facts about hn, particularly about its
kernel; most proofs have been omitted, although a few proof sketches are given. In doing so we will make
use of some binomial coefficient congruences and manipulations of formal power series. Interestingly,
it will prove useful to allow the profiles contain negative integers and to use the infinite version of the
homomorphism which we call h∞. In the final part of the paper we apply the necessary conditions
established earlier to determine the kernel for d = 2 and d = 3 and give the range for d = 2. In principle,
the same approach would work for higher values of d, but the computations required become prohibitive.

2 Notation and Preliminaries
In this section we carefully define the problem and introduce some of the basic tools. All computations
are done mod q. We set Zq = Z/qZ to denote the ring of integers mod q.

2.1 Strings
Consider a string α = a1a2 · · · am where each ai ∈ Zq . The j-th elementary symmetric function evalu-
ated at α, denoted ej(α), is the sum

ej(α) :=
∑

1≤i1<i2<···<ij≤m
ai1ai2 · · · aij (mod q).

Clearly, (−1)jej(α) is the coefficient of zn−j in the polynomial (z − a1)(z − a2) · · · (z − am).
By Sq(m; τ1, τ2, . . . , τt) we denote the number of strings α over Zq of length m for which ei(α) = τi

for i = 1, 2, . . . , t. Obviously if t = 0, then Sq(m) = qm. It is also true that Sq(m; s) = qm−1 for any
s ∈ Zq , since e1(αx) takes on distinct values for each x ∈ Zq . The numbers Sq(m; τ1, τ2, . . . , τt) satisfy
the following recurrence relation. If n = 1, then Sq(m; τ1, τ2, . . . , τt) = [[τ2 = · · · = τt = 0]], and for
m > 0,

Sq(m; τ1, τ2, . . . , τt) =
∑

x∈Zq

Sq(m− 1; ρ1, ρ2, . . . , ρt), (4)

where ρ0 = 1, and ρi = τi − ρi−1x for i = 1, 2, . . . , t.
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Recurrence relation (4) implies that the power series
∑
m≥0 Sq(m; τ1, τ2, . . . , τt)z

m is rational. We
can evaluate Sq(m; τ1, τ2, . . . , τt) by creating a table of size mqt consisting of Sq for all strings of length
at most m and over the first t elementary symmetric functions. Each table entry requires Θ(qt) ring oper-
ations and Θ(q) arithmetic operations, for a total of Θ(mtqt+1) ring operations and Θ(mqt+1) arithmetic
operations. An aim of this paper is to reduce the number of ring and arithmetic operations required to
evaluate Sq .

2.2 Profiles
Suppose that the string α has kx occurrences of the symbol x for x ∈ Zq . We refer to the (q− 1)-tuple of
natural numbers k = 〈k1, k2, . . . , kq−1〉 as the profile of the string. The elementary symmetric function
ej() depends only on the profile. Note that k0 is omitted since it does not affect ej(). It will prove useful
to have profiles consisting of integers, positive or negative; and to have profiles consisting of integers mod
a natural number. Which case is in effect will usually be obvious from context. From now on, a bold letter
will only denote a profile. We add profiles componentwise and define xk = 〈xk1, xk2, . . . , xkq−1〉.

For k = 〈k1, k2, . . . , kq−1〉 ∈ Zq−1, define in Zq[[z]] the formal power series

Ek(z) :=

q−1∏

j=1

(1 + jz)kj (5)

We make no assumption here that the ki are positive.
Observe that ej(α) = [zj ]Ek(z), where the notation [zj ]A(z) means the coefficient of zj in the gener-

ating function A(z). Clearly,
Ea+b(z) = Ea(z)Eb(z) (6)

We also denote the ej(α) by ej(k) or ej(〈k1, k2, . . . , kq−1〉) when we wish to emphasize the role of
profiles.

The evaluation of Sq in terms of profiles is given by

Sq(m; τ1, τ2, . . . , τt) =
∑

k0+k1+···+kq−1=m

k:=〈k1,...,kq−1〉

(
m

k0, k1, . . . , kq−1

) t∏

i=1

[[ei(k) = τi]]. (7)

In order to evaluate (7) efficiently we need to be able to determine efficiently those profiles k for which
ei(k) = τi for i = 1, 2, . . . , t. We do this by recasting the conditional as

t∏

i=1

[[ei(k) = τi]] = [[Ek(z) mod zt+1 =

t∑

i=0

τiz
i]],

where τ0 is defined to be 1.
This approach to the problem was established in [3] in the case where p = q is prime. There it is proven

that there is a bijection between the set of all polynomials
∑

0≤i<p τiz
i in Zp[z] andEk(z) mod zp where

k ∈ Z(p−1)
p . This bijection is then extended to a bijection between polynomials

m−1∑

j=0

p−1∑

i=0

τipjz
ipj where τipj ∈ Zp
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and Ek(z) mod zp
m

where k ∈ Z(p−1)
pm . For q = 2d the situation is considerably more complicated. Our

first goal is to determine the algebraic structure of those k for which Ek(z) = 1.

3 General Results
3.1 Periodicity and group structure
Our initial aim is to establish the periodic nature of the profiles k when used to determine Ek(z). In this
section all computation is done mod 2d unless noted otherwise.

THEOREM 1 If 0 ≤ s ≤ d− 1, then as polynomials in two variables y and z,

(1 + (y + 2d−s)z)2
s

= (1 + yz)2
s

mod 2d.

LEMMA 1 With arithmetic mod 2d and 0 < t ≤ d, where b, t, d,m are integers,

(1 + 2tbz)m = (1 + 2tbz)m mod 2d−t

.

THEOREM 2 With arithmetic mod 2d, for any n ≥ 1, we have E2d+n−1k(z) = E2d−1k(z2
n

).

Proof: Our proof is by induction on n; details omitted. 2

COROLLARY 1 (PERIODICITY) In Z2d [[z]] mod z2
n

,

Ea+2d+n−1b(z) = Ea(z).

Proof: Follows from (6) and Theorem 2. 2

This last corollary implies that if we are only considering ej() with j < 2n, then we need only consider
values of the profile taken mod 2d+n−1.

THEOREM 3 The set Mn = {Ea(z) mod z2
n | a ∈ Z(2d−1)

2d+n−1} is a multiplicative group in Z2d [[z]] mod

z2
n

, where the multiplication operation is polynomial multiplication mod z2
n

.

For each n ∈ Z+, define the map hn : Z(2d−1)
2d+n−1 7→Mn that takes a to Ea(z) (mod z2

n

). We also define
the set M∞ = {Ea(z) ⊆ Z2d [[z]] | a ∈ Z(2d−1)} and the map h∞ : Z(2d−1) 7→ M∞ that takes a to
Ea(z) (no mod-ing by z2

n

). Clearly M∞ is also a group, where the operation is multiplication of power
series in Z2d [[z]].

THEOREM 4 For each n > 0, the map hn is a group homomorphism. The map h∞ is also a group
homomorphism.
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The fact that hn is a homomorphism can be used to garner information about certain polynomials. In
general the kernel, Ker h of a homomorphism h is the set of elements in the domain that are mapped to
the identity element in the range. In our case Ker hn = {a ∈ Z(2d−1)

2d+n−1 | 1 = Ea(z)}. Since there are
2(2

d−1)(d+n−1) elements in the domain of hn, the number of distinct polynomials of the form Ea(z) in
the range of hn is

2(2
d−1)(d+n−1)

|Ker hn|
. (8)

Note also that |Ker hn| is the number of distinct complete factorizations of any polynomial Ek(z) in
Z2d [[z]] mod z2

n

. The value of |Ker hn| is computed for d = 2, 3 later in the paper.
Since Ker h∞ is closed under component-wise addition and scalar multiplication by integers, Ker h∞

is a Z-module. Similarly, Ker hn is a Z2d+n−1 -module. We will show below that Ker h∞ has a basis but
Ker hn does not, and determine the rank of Ker h∞ for d = 2, 3 in later sections of the paper.

THEOREM 5 A profile k ∈ Ker h∞ if and only if k mod 2d+n−1 ∈ Ker hn for all n ≥ 0.

For example, with d = 2, the identity 1 = (1 + z)−2(1 + 3z)2 holds and thus 〈−2, 0, 2〉 ∈ Ker h∞.
Hence, with n = 3 we have 〈14, 0, 2〉 ∈ Ker h3 and so 1 = (1 + z)14(1 + 3z)2 mod z8.

We will need a variant of Theorem 5 which says that if k is in the kernel of hn and n is large enough,
then k, appropriately normalized, is also in the kernel of h∞. Before stating that result we need to define
some notation and prove a small technical lemma. Let uj denote the unit profile whose i-th entry is equal
to [[i = j]]. For 0 ≤ s ≤ d− 1 and x, y ∈ Z2d we define the profile

u(s;x, y) := 2sux − 2sux+y2d−s ,

and the set of profiles
Us := {u(s;x, y) | x, y ∈ Z2d}.

By Theorem 1Us ⊆ Ker h∞ for each s. For example, with d = 3 we have u(2; 1, 3) = 〈4, 0, 0, 0, 0, 0,−4〉 ∈
Ker h∞ since (1 + z)4 = (1 + 3z)4 = (1 + 5z)4 = (1 + 7z)4 by Theorem 1.

LEMMA 2 For all n, d ≥ 1, if 2n−1 ≤ k < 2d+n−1, then
(

k
2n−1

)
6≡ 0 mod 2d.

THEOREM 6 There is a smallest value N(d), dependent only on d, with the following property: If n ≥
N(d) and k ∈ Ker hn, then there is a k′ ≡ k mod 2d+n−1 such that k′ ∈ Ker h∞.

Proof: (sketch) Assume that 1 = Ek(z) mod z2
n

for some n. The main idea of the proof is to apply an
“exponent reduction” of the ki with i > 1 using the sets Us for s = d − 1, d − 2, . . . , 2, 1 for the odd
i and Lemma 1 for the even i. At the end of the reduction process, we can express k = a + v where
v ∈ Ker h∞ is a linear combination of the u(s;x, y) and the ui. In addition

∑2d−1
i=2 ai ≤ Dd, where

Dd := (2d + 2d−1 − 2d− 1) + (d− 1) = 2d + 2d−1 − d− 2.

We can thus write
(1 + z)a1 mod 2d+n−1

= P (z) +O(z2
n

) (9)

where P (z) is a polynomial of degree at most Dd.
Below is a table of the values of Dd. Note that 1 + dlg(Dd+1)e = d+ 2 for d ≥ 4.
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d 2 3 4 5 6 7 8 9 10 11 12
Dd 2 7 18 41 88 183 374 757 1524 3059 6130

1 + dlg(Dd+1)e 3 4 6 7 8 9 10 11 12 13 14
We now want to show that (a1 mod 2d+n−1) ≤ 2n for large enough n. It then follows that (1 + z)a =

P (z) where a = a1 mod 2d+n−1, which will prove the theorem. Let n be such that deg(P (z)) ≤ Dd <

2n−1. By Lemma 2, [z2
n−1

](1 + z)a 6= 0 for any a in the range 2n−1 ≤ a < 2d+n−1. Thus a < 2n−1

and so
(1 + z)a = P (z) in Zd[[z]].

Taking n = 1 + dlg(Dd+1)e the theorem is proven, 1 + dlg(Dd+1)e is an upper bound on N(d). 2

EXAMPLE 3 We illustrate the proof technique of the preceding theorem. In this example we take d = 3
(so arithmetic is mod 8). Consider the profile k = 〈63, 67, 3, 1, 61, 5, 65〉. A Maple calculation reveals
that

(1+z)63(1+2z)67(1+3z)3(1+4z)1(1+5z)61(1+6z)5(1+7z)65 = 1 +O(z16)

Thus we want n = 4, and so d+ n− 1 = 6. The even indexed factors give

(1 + 2z)67(1 + 4z)1(1 + 6z)5 = (1 + 2z)3(1 + 4z)1(1 + 6z)1 = 1.

We can write the linear combination

k = 16 · 〈4, 0, 0, 0, 0, 0,−4〉+ 30 · 〈2, 0, 0, 0,−2, 0, 0〉+ 〈187, 3, 3, 1, 1, 1, 1〉
= 16 · u(2; 1, 3) + 30 · u(1; 1, 1) + 4 · u6 + 〈187, 3, 3, 1, 1, 1, 1〉

Thus
(1 + z)−187 = (1 + 3z)3(1 + 5z)1(1 + 7z)1 mod z16,

from which it follows that (1 + z)−5(1 + 3z)3(1 + 5z)(1 + 7z) = 1 and so 〈−5, 3, 3, 1, 1, 1, 1〉 ∈ Ker h∞
and k′ = 〈−129, 3, 3, 1, 61, 5, 65〉 ∈ Ker h∞, where k′ ≡ k mod 2d+n−1.

3.2 An even-odd decomposition of the kernel
Define

En := {(k2, k4, . . . , k2d−2) | 1 =
2d−1∏

j=1

(1 + jz)kj [[j even]] in Z2d [[z]] mod z2
n},

On := {(k1, k3, . . . , k2d−1) | 1 =
2d−1∏

j=1

(1 + jz)kj [[j odd]] in Z2d [[z]] mod z2
n}.

The sets E∞ and O∞ are defined analogously by removing the modz2
n

.

THEOREM 7 The kernels can be decomposed into the following cartesian products

Ker h∞ = E∞ ×O∞, and

Ker hn = En ×On, if n ≥ N(d),

subject to a shuffling of the indices.
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Proof: (Sketch.) We first treat h∞. By Lemma 1 we may assume that all the even indexed profile
numbers k2i are non-negative. Re-arranging the equation Ek(z) = 1, we have the following equality of
polynomials

2d−1∏

j=1

(1 + jz)kj [[j even]]
2d−1∏

j=1

(1 + jz)kj [[kj>0]][[j odd]] =

2d−1∏

j=1

(1 + jz)−kj [[kj<0]][[j odd]].

The leading coefficient,
∏
j odd j

−kj , of the polynomial on the right must be odd. The leading coefficient

of the polynomial on the left will be even unless 1 =
∏2d−1
j=1 (1+jz)kj [[j even]]. Thus (k2, k4, . . . , k2d−2) ∈

E∞ and hence (k1, k3, . . . , k2d−1) ∈ O∞.
If k ∈ Ker hn, then by Theorem 6 there is a k′ ∈ Ker h∞ such that k′ ≡ k mod 2d+n−1. By our

previous discussion k′ = e′ × o′ where e′ ∈ E∞ and o′ ∈ O∞. By Theorem 5, it follows that e ∈ En
and o ∈ On, where e and o are defined as expected.

The hn case follows from Theorem 6. 2

LEMMA 3 The following two conditions are necessary for membership in the respective kernels.

• If k ∈ Ker h∞, then
∑2d−1
j=1 kj [[j odd]] = 0. This is an integer sum.

• If k ∈ Ker hn and n ≥ N(d), then
∑2d−1
j=1 kj [[j odd]] = 0 mod 2d+n−1.

COROLLARY 2 The Z-module Ker h∞ has a basis.

Proof: (Sketch.) Show that Ker h∞ is finitely-generated and torsion-free. Any finitely-generated torsion-
free module has a basis. 2

The rank of Ker h∞ is at most 2d − 1 since it is a sub-module of Z(2d−1). After proving the following
technical lemma, we will establish a useful necessary condition for membership in Ker h.

LEMMA 4 For all j ∈ Z2d , where d ≥ 4,

j2
d−2 ≡ [[jodd]] (mod 2d)

If d = 2 exceptions occur for j = 2, 3, since 22
0 ≡ 2 and 32

0 ≡ 3 mod 4. If d = 3 exceptions occur for
j = 2, 6, since 22

1 ≡ 62
1 ≡ 4 mod 8.

LEMMA 5 The logarithmic derivative of Ek(z) can be written as

d

dz
logEk(z) =

d−2∑

k=0

(−z)k
2d−1∑

j=1

kjj
k+1[[j even]] +

∑

k≥0
(−z)k

2d−1∑

j=1

kjj
(k+1) mod P [[j odd]],

where P = 2d−2 if d ≥ 3 and P = 2 if d = 2.

Proof: (Sketch.) Expand. The left part of the sum is a polynomial since if j is even and k + 1 ≥ d, then
jk+1 = 0 mod 2d. The right part of the sum has periodic coefficients by Lemma 4. 2
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LEMMA 6 The conditions listed below are necessary for a profile k to be in Ker h∞ or in Ker hn if
n ≥ N(d).

0 =
2d−1∑

j=1

kjj
k+1[[j even]] mod 2d, for k = 0, 1, . . . , d− 2 (10)

0 =
2d−1∑

j=1

kjj
k+1[[j odd]] mod 2d for k = 0, 1, . . . , P − 1, (11)

where P = 2d−2 if d ≥ 3 and P = 2 if d = 2.

Proof: Omitted. 2

The k = d − 2 condition in (10) is implied by the k = d − 3 condition. In a similar vein, when
k = 2d−2 − 1 condition (11) becomes 0 =

∑2d−1
j=1 kj [[j odd]].

To finish this section we will determine the cardinality of Ker h1. In the case where n = 1 the condition
0 = [z]Ek(z) =

∑
j jkj is both necessary and sufficient since mod2d+n−1 = 2d. Since we can solve

for k1 for any values of k2, k3, . . . , k2d−1,

|Ker h1| = 2d(2
d−2). (12)

4 The kernel for small values of d
In this section we determine the kernels of h∞ and hn for d = 2 and d = 3.

4.1 The kernel when d = 2

THEOREM 8 Ker h∞ = {k | k1 ≡ k2 ≡ k3 ≡ 0 mod 2 and k1 + k3 = 0}.
COROLLARY 3 For the Z-module Ker h∞, {〈−2, 0, 2〉, 〈0, 2, 0〉} is a basis.

THEOREM 9 If n = 1, then

Ker h1 = {〈0, 0, 0〉, 〈0, 2, 0〉, 〈2, 0, 2〉, 〈2, 2, 2〉, 〈1, 1, 3〉, 〈3, 1, 1〉, 〈1, 3, 3〉, 〈3, 3, 1〉,
〈0, 0, 2〉, 〈0, 2, 2〉, 〈2, 0, 0〉, 〈2, 2, 0〉, 〈1, 0, 1〉, 〈3, 0, 3〉, 〈1, 2, 1〉, 〈3, 2, 3〉}.

If n > 1, then

Ker hn = {a | a1 = a2 = a3 = 0 mod 2 and a1 + a3 = 0 mod 2n+1}

Proof: An exhaustive computation can be used to verify the result for n = 1 and n = 2. Assume that
n > 2. The result follows from applying Theorem 6 to the kernel of h∞ as expressed in Theorem 8.
Theorem 6 can be used for any n ≥ N(2) = 3. 2
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LEMMA 7

|Ker hn| =
{

16 if n = 1

22n if n > 1

Proof: The n = 1 result is clear from the previous theorem. Use Theorem 9. Mod 2n+1 the value of k3
is determined by the value of k1. There are 2n even elements in Z2n+1 . Thus there are 2n choices for k1
and 2n choices for k2, for a total of 22n choices. 2

Since there are 22n elements in the kernel of hn, by the properties of homomorphisms, the number of
distinct polynomials in the range of hn is 23n+3/22n = 2n+3 if n > 1. Another consequence is that the
number of distinct factorizations of Ek(z) mod z2

n

in Z4[z] is 22n if n > 1.

4.2 The kernel when d = 3

The necessary conditions from Lemma 6 imply the following for the even indexed profile numbers:

k2 + 2k4 + 3k6 ≡ 0 mod 4. (13)

For the odd indexed profile numbers we have

k1 + k3 + k5 + k7 = 0

k1 + 3k3 + 5k5 + 7k7 ≡ 0 mod 8

k1 + k3 + k5 + k7 ≡ 0 mod 8

These conditions are not sufficient, but the changes required to make them sufficient are small.

THEOREM 10 The set E∞, is a Z-module with basis B = {(4, 0, 0), (2, 0, 2), (3, 1, 1)}.

Proof: By Lemma 1, we have with arithmetic mod 8, (1 + 2z)k = (1 + 2z)k mod 4, (1 + 6z)k =
(1 + 6z)k mod 4, and (1 + 4z)k = (1 + 4z)k mod 2.

The profiles that satisfy the necessary condition (13) can therefore be classified as (k2 mod 4, k4 mod
2, k6 mod 4), where an exhaustive listing gives

{(0, 0, 0), (2, 0, 2), (1, 1, 3), (3, 1, 1)} ∪ {(1, 0, 1), (3, 0, 3), (0, 1, 2), (2, 1, 0)}.

A routine calculation shows that the left set is in the kernel, but the right set is not. To show that B is a
basis, we first note that it is linearly independent, since the system of equations (14) has only the solution
n1 = n2 = n3 = 0. 


0
0
0


 =




4 2 3
0 0 1
0 2 1





n1
n2
n3


 (14)

To show that B spans E∞ note that (0, 2, 0) = 2 · (3, 1, 1)− (4, 0, 0)− (2, 0, 2), (0, 0, 4) = 2 · (2, 0, 2)−
(4, 0, 0), and (1, 1, 3) = (3, 1, 1) + (2, 0, 2)− (4, 0, 0). 2

COROLLARY 4 A profile k = 〈k2, k4, k6〉 is in E∞ if and only if k2 ≡ k4 ≡ k6 mod 2 and k2 + 2k4 +
3k6 ≡ 0 mod 4.
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We now turn our attention to the odd indexed profile numbers.

THEOREM 11 The set O∞ is a Z-module with basis B = {(1, 1,−1,−1), (−1, 1, 1,−1), (4,−4, 0, 0)}.
By Theorems 10 and 11, the rank of Ker h∞ is 6.

LEMMA 8 The value of |En| · |On| over Z8 is

23n+3 ·





512 if n = 1,

1024 if n = 2,

23n+3 if n ≥ 3.

Proof: The number of kernel elements in En is 23n+3.
In the case where operations are done mod 2d+n−1 = 2n+2, a certain linear system, used in the proof

of the previous theorem, has 8 distinct solutions, namely

n1 = n2 ∈ {0, 2n+1} and n3 ∈ {0, 2n, 2n+1, 3 · 2n}.

Note that these solutions are the submodule with basis {〈2n+1, 2n+1, 0〉, 〈0, 0, 2n〉}. The number of
kernel elements in On is therefore 23(n+2)/8 = 23n+3, since there are three basis elements and any
kernel element can be written in exactly 8 distinct ways as linear combination of basis elements, where
the coefficients of the combination come from Z2d+n−1 = Z2n+2 . 2

LEMMA 9 The value of |Ker hn| over Z8 is




218 = 262144 if n = 1,

219 = 524288 if n = 2,

222 = 4194304 if n = 3,

26n+6 if n ≥ 4.

Proof: The value for |Ker h1| is from (12). The value for |Ker h2| and |Ker h3| is from an exhaustive
computer listing [5]. Since N(3) ≤ 4, the value for n ≥ 4 follows from Lemma 8. Note that N(3) = 4
since 22 6= 24 = 6 · 3 + 6. 2

4.3 The range of the kernel when d = 2

In this subsection all computation is done mod 4. We will show that the indices of certain “critical”
elementary symmetric functions determine the remaining elementary symmetric function values. These
critical indices occur at the powers of two. We can use this information to get fast algorithms for convert-
ing between a profile and elementary symmetric function evaluations.

LEMMA 10 Let k′ = 2n + k. Then

[z2
n−1

]Ek′,x,y(z) = 2 + [z2
n−1

]Ek,x,y(z).
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It is easy to see, for example, by an exhaustive listing, that there is a bijection between profiles in
Z16 × Z(2)

2 and triples (e1, e2, e4) ∈ Z(3)
4 .

EXAMPLE 4 This is an explanation of Example 2 from the Introduction. What is the profile, if any,
that corresponds to the sequence of six elementary symmetric function values e1, e2, e4, e8, e16, e32 =
0, 3, 3, 2, 3, 3? Consider first e1, e2, e4 = 0, 3, 3 which corresponds to profile 6, 1, 0 mod 16. Here
e8(6, 1, 0) = 0, so Lemma 10 tells us to add 16 to k1 to get e8(22, 1, 0) = 2, while preserving the
values of e1, e2, e4. In a similar manner, since e16(22, 1, 0) = 1, we add 32 to k1 to get e16(54, 1, 0) = 3.
Now e32(54, 1, 0) = 3, so we are done. Any profile that has k1 and k3 even, k2 odd, and k1 + k3 ≡ 54
mod 64 has the required trace values. Furthermore, these determine all traces ej where j = 1, 2, . . . , 63
as per the theorem stated below.

We can extrapolate this example to an algorithm whose running time is O(n). The running time of this
algorithm is clearlyO(n) so long as the values of e2j (k) can be computed in constant time. We show how
to do this, essentially by a table lookup, in the full paper.

THEOREM 12 The values of e2i for i = 0, 1, . . . , n−1 determine the values of ej for j = 1, 2, . . . , 2n−1.
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Patterns in matchings and rook placements
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Abstract. Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc
diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings
and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers
boards. We enumerate 312-avoiding matchings and partitions, obtaining algebraic generating functions, unlike in the
321-avoiding (i.e., 3-noncrossing) case. Our approach also provides a more direct proof of a formula of Bóna for the
number of 1342-avoiding permutations. Additionally, we give a bijection proving the shape-Wilf-equivalence of the
patterns 321 and 213 which simplifies existing proofs by Backelin–West–Xin and Jelı́nek.

Résumé. Étendant la notion de motifs exclus dans des permutations, nous étudions des appariements et partitions
dont le diagramme d’arc évite une configuration donnée de trois arcs. Ces configurations, qui généralisent les 3-
croissements et les 3-emboı̂tements, ont une interprétation, dans le cas d’appariements, en termes de motifs dans des
placements pleins de tours sur des tables de Ferrers. Nous énumérons les appariements et les partitions qui évitent
312, obtenant des séries génératrices algébriques, contrairement au cas du motif 321. Notre approche fournit aussi
une démonstration plus directe d’une formule de Bóna pour le nombre de permutations qui évitent 1342. En plus,
nous donnons une preuve bijective de l’équivalence au sens de la forme et de Wilf des motifs 321 et 213 qui simplifie
les preuves de Backelin–West–Xin et Jelı́nek.

Keywords: matching, set partition, bijection, pattern avoidance, shape-Wilf-equivalence, rook placement, Dyck path.

1 Introduction
Pattern avoidance in matchings is a natural extension of pattern avoidance in permutations. Indeed, a
permutation of [n] = {1, 2, . . . , n} can be thought of as matching of [2n] where each element of [n] is
paired up with an element of [2n]\ [n]. The natural translation of the definition of patterns in permutations
to this type of matchings extends to all perfect matchings, and more generally, to set partitions —which,
when all the blocks have size 2, are just perfect matchings. We will use the term matching to refer
to a perfect matching, when it creates no confusion. On the other hand, the well-studied notions of
k-crossings and k-nestings in matchings and set partitions, in our language, are simply occurrences of
the patterns k . . . 21 and 12 . . . k, respectively. Additionally, by viewing matchings as certain fillings
of Ferrers boards, patterns in matchings relate to patterns in Ferrers boards, and thus to the concept of
shape-Wilf-equivalence of permutations.
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Motivated by these connections and by the recent work on crossings, nestings, permutation patterns,
and shape-Wilf-equivalence, we study matchings and partitions that avoid patterns of length 3. We con-
solidate and simplify recent work on the classification of these patterns, and we obtain new results on the
enumeration of matchings and partitions that avoid some of these patterns.

1.1 Background
We represent a matching of [2n] as an arc diagram as follows: place 2n equally spaced points on a hori-
zontal line, numbered from left to right, and draw an arc between the two vertices of each of the n pairs.
The picture on the left of Fig. 2 corresponds to the matching (1, 6), (2, 12), (3, 4), (5, 7), (8, 10), (9, 11). If
i < j < k < `, two arcs (i, k), (j, `) form a crossing, and two arcs (i, `), (j, k) form a nesting. Similarly, a
partition of [n] is represented by drawing, for each block {i1, i2, . . . , ia} of size awith i1 < i2 < · · · < ia,
a − 1 arcs (i1, i2), (i2, i3), . . . , (ia−1, ia). A crossing in the partition is then a pair of arcs (i, k), (j, `),
and a nesting is a pair of arcs (i, `), (j, k), where i < j < k < `.

Crossings and nestings in matchings and partitions have been studied for decades. It is well known that
the number of perfect matchings on [2n] with no crossings (or with no nestings) is the n-th Catalan number
Cn, which also equals the number of partitions of [n] of with no crossings, and the number of those with
no nestings. More generally, attention has focused on the study of k-crossings (k-nestings), which are sets
of k pairwise crossing (respectively, nesting) arcs. For set partitions, the above definition, which we use
throughout the paper, is the same given by Chen, Deng, Du, Stanley and Yan [7] and Krattenthaler [16].
However, we point out that different definitions of pattern avoidance for partitions have been introduced
by Klazar [14] and Sagan [17].

The number of 3-nonnesting matchings of [2n] (viewed as fixed-point-free involutions with no decreas-
ing sequence of length 6) was found by Gouyou-Beauchamps [12], who recursively constructed a bijection
onto pairs of noncrossing Dyck paths with 2n steps, counted by CnCn+2−C2

n+1. More recently, Chen et
al. [7] showed that the number of k-noncrossing matchings (i.e., containing no k-crossing) of [2n] equals
the number of k-nonnesting (i.e., containing no k-nesting) ones, for all k, and that the analogous results
for partitions hold as well. Their proof, which uses vacillating tableaux and a variation of Robinson-
Schensted insertion and deletion, also provides a bijection between k-noncrossing matchings and certain
(k − 1)-dimensional closed lattice walks, from where a determinant formula for the generating function
in terms of hyperbolic Bessel functions follows.

Less is known about the enumeration of k-noncrossing set partitions. Bousquet-Mélou and Xin [5]
settled the case k = 3 using a bijection into lattice paths to derive a functional equation for the generating
function, which then is solved by the kernel method. They showed that the generating function for 3-
noncrossing set partitions is D-finite, that is, it satisfies a linear differential equation with polynomial
coefficients. This is conjectured not to be the case for k > 3. For k-nonnesting set partitions, additional
functional equations for the generating functions have been obtained by Burrill et al. [6] using generating
trees for open arc diagrams.

By interpreting matchings and partitions as rook placements on Ferrers boards and using the growth
diagram construction of Fomin, Krattenthaler [16] gave a simpler description of the bijections in [7]
proving the symmetry of crossing and nesting number on matchings and partitions. He extended the
results to fillings of Ferrers boards with nonnegative integers. Other extensions have been given by de
Mier [9] to fillings with prescribed row and column sums.

As mentioned before, k-crossings (respectively, k-nestings) in matchings have a simple interpretation
as occurrences of the monotone decreasing (respectively, increasing) pattern of length k. In this paper we
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study and enumerate matchings that avoid other patterns of length 3, and in some cases, we extend our
results to the enumeration of pattern-avoiding partitions. The translation of crossings and nestings to the
language of permutation patterns becomes natural via a bijection between matchings and certain fillings
of Ferrers boards, called full rook placements, described in Section 2.2. For such fillings, the definitions
of pattern containment and avoidance in permutations generalize routinely, and they have been widely
studied in the literature. In this setting, Stankova and West [19] introduced the concept of shape-Wilf-
equivalence, and they showed that the patterns 231 and 312 are shape-Wilf-equivalent. A simpler proof
of this fact was later given by Bloom and Saracino [3]. As we will see, if two patterns are shape-Wilf-
equivalent, then the number of matchings avoiding one is the same as the number of those avoiding the
other, and the same is true for partitions. Backelin, West and Xin [1] showed that 12 . . . k and k . . . 21
are shape-Wilf-equivalent. A more direct proof of their result, which implies again that k-nonnesting and
k-noncrossing matchings are equinumerous, was given by Krattenthaler [16]. It also follows from [1] that
123 and 213 are shape-Wilf-equivalent. Thus, there are three shape-Wilf-equivalence classes of patterns
of length 3, namely 123 ∼ 321 ∼ 213, 231 ∼ 312, and 132.

Jelı́nek [13] reproved some of these results independently in the context of matchings, by giving bijec-
tions between 231-avoiding matchings and 312-avoiding ones, and between 213-avoiding matchings and
123-avoiding (i.e. 3-nonnesting) ones.

Finally, let us mention that Stankova [18] compared, for each one of the three shape-Wilf-equivalence
classes of patterns of length 3, the number of full rook placements on any given Ferrers board avoiding
each a pattern in the class. She showed that the number of 231-avoiding placements is no larger than
the number of 321-avoiding placements (this is also proved in [13]), which is in turn no larger than the
number of 132-avoiding ones.

1.2 Structure of the paper
In Section 2 we define patterns in matchings, in set partitions, and in rook placements on Ferrers boards,
and we set the notation for the rest of the paper. In Sections 3 and 4 we study two of the three shape-Wilf-
equivalence classes of patterns of length 3. In Section 3 we give a new simple bijection between 123-
avoiding matchings and 213-avoiding ones, as well as an extension of work of Gouyou-Beauchamps [12]
for matchings with fixed points (i.e., not necessarily perfect). In Section 4 we enumerate 231-avoiding
(equivalently, 312-avoiding) matchings and partitions, and we show that their generating functions are
algebraic, in contrast to the case of 123-avoiding matchings [12] and partitions [5]. We then use our
techniques for matchings to obtain a new proof of Bóna’s formula enumerating 1342-avoiding permuta-
tions [4]. This leaves one pattern of length 3, namely 132, for which we have been unable to find a formula
for the number of 132-avoiding matchings or partitions. We argue in [2] that this question is related to the
outstanding open problem of enumerating 1324-avoiding permutations [4, 8]. Finally, Section 5 summa-
rizes some results about matchings and partitions that avoid pairs of patterns of length 3. The proofs that
are omitted in this extended abstract can be found in [2].

2 Matchings, partitions, and rook placements
2.1 Ferrers boards
A Ferrers board is a left-justified array of unit squares so that the number of squares in each row is less
than or equal to the number of squares in the row below. To be precise, consider an n × n array of unit
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squares in the xy-plane, whose bottom left corner is at the origin (0, 0). The vertices of the unit squares
are lattice points in Z2. For any vertex V = (a, b), let Γ(V ) be the set of unit squares inside the rectangle
[0, a]× [0, b]. Then, a subset F of the n× n array with the property that Γ(V ) ⊆ F for each vertex in F
is a Ferrers board. Equivalently, F is bounded by the coordinate lines and by a lattice path from (0, n) to
(n, 0) with east steps (1, 0) and south steps (0,−1). We call this path the border of F , and we denote its
vertices by V0, . . . , V2n, where V0 = (0, n), Vn = (n, 0) and Vi+1 is immediately below or to the right
of Vi. An example of these definitions appears in [2, Fig. 1].

Definition 1 A full rook placement is a pair (R,F ) where F is a Ferrers board and R is a subset of
squares of F (marked by placing a rook in each one of them) such that each row and each column of F
contains exactly one rook. LetRF denote the set of full rook placements on F .

In this paper, the term placement will always refer to a full rook placement. For a Ferrers board F to
admit a full rook placement, the number or nonempty rows must equal the number of nonempty columns,
and the coordinates (x, y) of the vertices in the border of F must satisfy x ≥ y. We denote by Fn the
set of Ferrers boards satisfying this condition and having n nonempty rows and columns. The border of
F ∈ Fn, which we denote by DF , is a lattice path from (0, n) to (n, 0) with steps east (e = (1, 0)) and
south (s = (0,−1)) that remains above the line y = n− x. We denote by Dn the set of such paths, which
we call Dyck paths of semilength n (despite being rotated from other standard ways of drawing them).
The map F 7→ DF is a trivial bijection between Fn and Dn. A peak on a Dyck path is an occurrence of
es (as consecutive steps), and a valley is an occurrence of se.

We let
Rn =

⋃

F∈Fn

RF

be the set of all placements on boards in Fn. Denote by Sn the set of permutations of {1, 2, . . . , n}. To
each full rook placement (R,F ) where F ∈ Fn, one can associate a permutation πR ∈ Sn by letting
πR(i) = j if R has a rook in column i and row j (our convention is to number the columns of F from left
to right and its rows from bottom to top, as in the usual cartesian coordinates). In the case that F ∈ Fn
is the square Ferrers board, this map is a bijection betweenRF and Sn. More generally, given a vertex V
of the border of F , the restriction of the placement R to the rectangle Γ(V ), which consists of the squares
R ∩ Γ(V ), determines a unique permutation in Sk, where k = |R ∩ Γ(V )|. This permutation is obtained
by disregarding empty rows and columns, and then applying the above map. Under this correspondence
it makes sense to consider concepts such as the longest increasing sequence in R ∩ Γ(V ).

Recall that a permutation π ∈ Sn avoids another permutation τ ∈ Sk (usually called a pattern) if there
is no subsequence π(i1) . . . π(ik) with i1 < · · · < ik that is order-isomorphic to τ(1) . . . τ(k). The num-
ber of τ -avoiding permutations in Sn is denoted by Sn(τ). Viewing permutations as full rook placements
on the square Ferrers board, π avoids τ if the placement corresponding to τ cannot be obtained from the
placement corresponding to π by removing rows and columns. This definition has been generalized [1] to
rook placements as follows.

Definition 2 A full rook placement (R,F ) avoids τ ∈ Sk if and only if for every vertex V on the border
of F , the permutation given by R ∩ Γ(V ) avoids τ . Let RF (τ) be the set of full rook placements on F
that avoid τ . Similarly, let

Rn(τ) =
⋃

F∈Fn

RF (τ).
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Definition 3 Two patterns σ and τ are said to be shape-Wilf-equivalent, denoted σ ∼ τ , if for any Ferrers
board F we have |RF (σ)| = |RF (τ)|.

Clearly, if two patterns are shape-Wilf-equivalent, then they are also Wilf-equivalent, meaning that
they are avoided by the same number of permutations. The converse is not true, as shown by the fact
that there is one Wilf-equivalence class for patterns of length 3, but three shape-Wilf-equivalence classes:
123 ∼ 321 ∼ 213, 231 ∼ 312, and 132.

Regarding shape-Wilf-equivalence of patterns of arbitrary length, two important results are due to Back-
elin, West and Xin [1]. One states that 12 . . . k ∼ k . . . 21 for all k, and the other one is the following.

Proposition 2.1 ([1]) Let σ, τ ∈ Sk and ρ ∈ S`. If σ ∼ τ , then σρ′ ∼ τρ′, where ρ′ is obtained from ρ
by adding k to each of its entries.

Denote by D2
n the set of pairs (D0, D1) of Dyck paths D0, D1 ∈ Dn such that D0 never goes above

D1. We say that D0 and D1 are noncrossing, and we call D0 the bottom path and D1 the top path. For
any F ∈ Fn, we denote by D2

F the set of pairs (D0, DF ) ∈ D2
n, that is, those where the top path is the

border of F .

2.2 Matchings
Denote byMn the set of perfect matchings on [2n]. If (i, j) is a matched pair with i < j, we call i an
opener and j a closer. The following natural bijection between Mn and Rn, which we denote κ, has
been used in [9, 13]. Given a matching M ∈ Mn, construct a path from (0, n) to (n, 0) by reading the
vertices ofM in increasing order, and adding an east step for each opener, and a south step for each closer.
This path is clearly a Dyck path, so it is the border of a Ferrers board F ∈ Fn, which we call the shape
of M . Each column of F is naturally associated to an opener of M (the vertex that produced the east
step at the top of the column), and similarly each row is naturally associated to a closer. Now define a
full rook placement on F by placing a rook in the column associated to i and the row associated to j for
each matched pair (i, j). Two examples of the bijection κ are given in Fig. 2. For fixed F ∈ Fn, denote
by MF = κ−1(RF ) the set of matchings of shape F . Note that Mn =

⋃
F∈Fn

MF . In light of this
bijection, the definition of pattern avoidance in Ferrers boards translates naturally to matchings.

Definition 4 We say that a matching M ∈ Mn avoids the pattern τ ∈ Sk if the corresponding rook
placement κ(M) does. Equivalently, M avoids τ if there are no 2k vertices 1 ≤ i1 < . . . < i2k ≤ n such
that M contains all the pairs (ia, i2k+1−τ(a)) for 1 ≤ a ≤ k. LetMF (τ) = κ−1(RF (τ)) be the set of
τ -avoiding matchings of shape F , and letMn(τ) =

⋃
F∈Fn

MF (τ).

This definition extends the notions of k-noncrossing and k-nonnesting matchings studied in [7, 16].
Recall that a matching is k-noncrossing if it contains no k mutually crossing arcs. In our terminology,
this is equivalent to avoiding the pattern k . . . 21. Similarly, a matchings is k-nonnesting if it contains no
k mutually crossing arcs, which is equivalent to avoiding 12 . . . k.

For patterns τ ∈ S3, which are the focus of this paper, we can describeMn(τ) as the set of matchings
M ∈ Mn containing no three arcs whose endpoints occur in the same order as in the corresponding
configuration in Fig. 1.

Since κ is a bijection, it is clear that |MF (τ)| = |RF (τ)| for any τ . Thus, shape-Wilf-equivalence
can be interpreted in terms of pattern-avoiding matchings: σ ∼ τ if and only if |MF (σ)| = |MF (τ)|
for every Ferrers board F . In particular, if σ ∼ τ , then |Mn(σ)| = |Mn(τ)| for all n. The converse
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321 123 132 231 312 213

Fig. 1: Forbidden configurations corresponding to τ ∈ S3.

statement is false in general. For example, it is trivial by symmetry that |Mn(2341)| = |Mn(4123)| for
all n, but the patterns 2341 and 4123 are not shape-Wilf-equivalent, since |MF (2341)| 6= |MF (4123)|
for the Ferrers boards in F6 consisting of a 6× 6 square with two missing boxes.

2.3 Set partitions
Denote by Pn the set of partitions of [n]. For each block {i1, i2, . . . , ia} with i1 < i2 < · · · < ia and
a ≥ 2, we call i1 an opener, ia a closer, and we say that i2, . . . , ia−1 are transitory vertices. If a = 1,
the vertex i1 is called a singleton. We will use the term partition to refer to a set partition when it creates
no confusion. Note that matchings are partitions where all blocks have size 2. The definition of pattern
avoidance for matchings extends to partitions as follows.

Definition 5 We say that a partition P ∈ Pn avoids the pattern τ ∈ Sk if there are no 2k vertices
1 ≤ i1 < . . . < i2k ≤ n such that P contains all the arcs (ia, i2k+1−τ(a)) for 1 ≤ a ≤ k. Denote by
Pn(τ) the set of τ -avoiding partitions of [n].

Note that in the above definition, singleton blocks of P do not contribute to occurrences of any pattern τ .

3 The patterns 123 ∼ 321 ∼ 213

The equivalence 123 ∼ 321 was first proved in [1], and later simplified by Chen et al [7] and by Krat-
tenthaler [16]. The equivalence 321 ∼ 213 was proved by Backelin, West and Xin [1], and later by
Jelı́nek [13]. In this section we provide a short bijective proof of the fact that 321 ∼ 213, greatly sim-
plifying the proofs in [1, 13]. For the rest of this section, we fix a Ferrers board F ∈ Fn, and we let Vi
denote the ith vertex on the border of F .

Theorem 3.1 There are explicit bijections ∆321 : MF (321) → D2
F and ∆213 : MF (213) → D2

F .
Therefore, 321 ∼ 213.

This theorem will follow from Theorems 3.2 and 3.3 below. In a different form, the bijection ∆321

was constructed by Chen et al. [7] using vacillating tableaux. Here we provide a short description of this
bijection in our language. Recall that matchings can be viewed as full rook placements via the bijection
κ :MF → RF described in Section 2.2.

It will be convenient to identify a Dyck path D ∈ Dn with the sequence d0d1 . . . d2n that records
the distances from its vertices to the main diagonal y = n − x. More precisely, if Vi = (a, b), then
di = a+b−n. We call d0d1 . . . d2n the height sequence ofD. Fix h0h1 . . . h2n to be the height sequence
of DF .

For (R,F ) ∈ RF , define the sequence j0 . . . j2n by letting ji = 2`i − hi, where `i is the length of the
longest increasing sequence in R ∩ Γ(Vi). A straightforward argument (see [2]) shows that j0 . . . j2n is
a height sequence for some Dyck path, which we denote by DR,F . Additionally, we show that ji ≤ hi
for all i, and so (DR,F , DF ) ∈ D2

F . Define the map δ321 : RF (321) → D2
F by letting δ321(R,F ) =
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(DR,F , DF ). Then define ∆321 = δ321 ◦ κ. The proof of following theorem is omitted in this extended
abstract, but it may be found in [2].

Theorem 3.2 The map δ321 : RF (321)→ D2
F is a bijection, and thus so is ∆321 :MF (321)→ D2

F .

Now we turn to the second part of the proof of Theorem 3.1. Even though a different bijection between
MF (213) and D2

F has already been given by Jelı́nek in [13], here we present a much simpler bijection
∆213 through a short pictorial argument.

As in the case of 321-avoiding matchings, it is convenient to let ∆213 = δ213 ◦ κ, where the map δ213 :
RF (213) → D2

F is defined as δ213(R,F ) = (D,DF ), with D given by the following construction. As
the pattern 213 ends with its largest entry, the fact that (R,F ) is 213-avoiding implies that πR ∈ Sn(213).
Let FR be the minimal Ferrers board that contains R. In a different language, the bijection between
Sn(213) and Dn that sends πR to DFR

appears in [15]. We define the bottom path in δ213(R,F ) to be
D = DFR

. Note that FR ⊆ F by definition, so DFR
and DF are noncrossing Dyck paths. The following

theorem is now clear.

Theorem 3.3 The map δ213 : RF (213)→ D2
F is a bijection, and thus so is ∆213 :MF (213)→ D2

F .

Examples of the maps δ321 and δ213, together with the complete bijection from betweenMF (321) and
MF (213), is given in Fig. 2.

κ

MF (321)

×

×

×
×××

δ321

RF (321) D2
F

κ

MF (213)

××

×

×××

δ213

RF (213)

Fig. 2: An example of the bijection betweenMF (321) andMF (213). The bold path on the Ferrers board on the
right represents the border of FR.

In the particular case that F ∈ Fn is the square board, the composition ∆−1213 ◦∆321 gives a bijection
between Sn(321) and Sn(213) which coincides, up to symmetry, with a bijection of Elizalde and Pak [10].

We end this section by mentioning that ∆321 and ∆213 can be generalized to bijections between
pattern-avoiding matchings with fixed points and pairs of noncrossing Dyck paths satisfying a certain
condition. These generalizations, which we describe in the full paper [2], extend the results of Gouyou-
Beauchamps [12] involving Young tableaux with at most 4 or 5 rows and 54321-avoiding involutions,
which in our language become 123-avoiding matchings with fixed points.

4 The patterns 231 ∼ 312

The first proof of the equivalence 231 ∼ 312 was given by Stankova and West [19]. Later, Bloom and
Saracino [3] gave a more direct proof. The main ingredient in Bloom and Saracino’s construction is
a bijection between 231-avoiding full rook placements of a given Ferrers board F ∈ Fn and certain
labelings of the vertices on the border of F . Recall that the vertices V0V1 . . . V2n are ordered from (0, n)
to (n, 0).
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We define a labeled Dyck path of semilength n to be a pair (D,α) where D ∈ Dn, and α =
α0α1 . . . α2n is an integer sequence with the following monotonicity property: if Vi+1 is to the right
of Vi, then αi ≤ αi+1 ≤ αi + 1, else αi ≥ αi+1 ≥ αi − 1. We think of αi as the label of vertex Vi.

We say that two vertices Vi = (xi, yi) and Vj = (xj , yj) of D are aligned if xi − xj = yi − yj and
the line segment connecting the points Vi and Vj lies strictly below D (except for the endpoints of the
segment, which are on D). We say that a labeled Dyck path (D,α) has the diagonal property if for any
two aligned vertices Vi and Vj with i < j, we have αi ≥ αj . We say (D,α) satisfies the 0-condition if for
each i, one has αi = 0 if and only if Vi lies on the diagonal y = n−x. For F ∈ Fn, we denote by LF the
set of labelings (DF , α) of the boundary of F that satisfy both the diagonal property and the 0-condition.
We also let Ln =

⋃
F∈Fn

LF .
Bloom and Saracino’s bijection in [3] between placements and labeled Dyck paths is the map Π :
RF (312)→ LF that sends (R,F ) ∈ RF (312) to the pair (DF , α) where, for 0 ≤ i ≤ 2n, the label αi is
the length of the longest increasing sequence in R ∩ Γ(Vi). In a slight abuse of notation, we also denote
by Π the bijection induced by Π fromRn(312) =

⋃
F∈Fn

RF (312) to Ln =
⋃
F∈Fn

LF .

4.1 312-avoiding matchings
In this section we enumerate 312-avoiding matchings, or equivalently, 231-avoiding ones.

Theorem 4.1 The generating function for 312-avoiding matchings is

∑

n≥0
|Mn(312)|zn =

54z

1 + 36z − (1− 12z)3/2
. (1)

The asymptotic behavior of its coefficients is given by

|Mn(312)| ∼ 33

25
√
πn5

12n. (2)

Proof: We first translate the problem into an enumeration of labeled Dyck paths. The composition Π ◦ κ
is a bijection betweenMn(312) and Ln, so we have L(z) :=

∑
n≥0 |Mn(312)|zn =

∑
n≥0 |Ln|zn.

We will find an expression for L(z) using the recursive structure of Dyck paths: every D ∈ Dn with
n ≥ 1 uniquely decomposes as eD1sD2 where e is an east step, s is a south step, andD1 andD2 are Dyck
paths. Even though this decomposition can be extended to deal with labeled Dyck paths by transferring
the label on each vertex of D to the corresponding vertex of eD1s or D2, the fact that the labels on eD1s
satisfy the 0-condition does not guarantee that the labels onD1 do, even if their values are decreased by 1.

To deal with this problem, we relax the 0-condition and consider the larger set Kn consisting of all
labeled Dyck paths (D,α) of semilength n that have the diagonal property and satisfy α2n = 0. Let
K =

⋃
n≥0Kn, and denote by K(u, z) =

∑
n≥0

∑
(D,α)∈Kn

uα0zn the generating function for such
paths according to the value of the first label.

To obtain an equation for K(u, z), first consider the following operation: given (A,α) ∈ Ki, (B, β) ∈
Kj , let (A,α) ⊕ (B, β) ∈ Ki+j be the concatenation of Dyck paths AB with labels (α0 + β0)(α1 +
β0) . . . (α2i + β0)β1 . . . β2j . In other words, the labels along A are increased by β0, and the labels along
B do not change. Every nonempty (D, γ) ∈ K can be decomposed uniquely as (D, γ) = (eD1s, α) ⊕
(D2, β) where (eD1s, α), (D2, β) ∈ K. Whereas (D2, β) is an arbitrary element of K, the labeling α of
the elevated Dyck path eD1s can be of four different types, according to whether α0 = α1 and whether
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α2i−1 = α2i, where i is the semilength of eD1s. Analyzing these four possibilities, the decomposition
translates into the functional equation

K(u, z) = 1 + zK(u, z)

(
2K(u, z) + uK(u, z) +

K(u, z)−K(0, z)

u

)
.

We solve this equation using the quadratic method, due to Tutte, as described in [11, p. 515]. Doing so
yields an expression for K(0, z) (see [2] for details).

Finally, to findL(z), observe that for any (D,α) ∈ Ln, the pathD can be decomposed uniquely asD =
eA1seA2s . . . , where each Aj is a Dyck path, and if we let α(j) be its sequence of labels decreased by
one, then (Aj , α

(j)) is an arbitrary element of K with α(j)
0 = 0. It follows that L(z) = 1/(1− zK(0, z)),

which gives Eq. (1).
To find the asymptotic behavior of the coefficients, note that the singularity of L(z) nearest to the origin

is a branch point at z = 1/12. By [11, Corollary VI.1], its coefficients satisfy Eq. (2). 2

It is interesting to observe that the generating function in Theorem 4.1 is algebraic, in contrast with the
fact that the generating function for 123-avoiding matchings is D-finite but not algebraic [12, 7]. Compare
also the growth rate in Eq. (2) with |Mn(123)| = Cn+2Cn − C2

n+1 ∼ 24
πn5 16n.

4.2 312-avoiding partitions
A refinement of the methods from Section 4.1 can be used to enumerate 312-avoiding partitions, or
equivalently, 231-avoiding ones. For any pattern τ , the set of τ -avoiding set partitions can be gener-
ated from the set of all τ -avoiding matchings as follows. Given a matching M , one can first choose,
for each closer immediately followed by an opener, either to merge them into one transitory vertex or
to leave them as they are; then one can insert singleton vertices in any position. If we let val(M) de-
note the number of closers immediately followed by openers in M (we call these valleys of M ), and
A(v, z) =

∑
n≥0

∑
M∈Mn(τ)

uval(M)zn is the generating function for τ -avoiding matchings with re-
spect to the number of valleys, then

∑

n≥0
|Pn(τ)|zn =

1

1− z A
(

1

z
,

z2

(1− z)2
)
. (3)

If two patterns satisfy σ ∼ τ , then |MF (σ)| = |MF (τ)| for every F , and so the above generating
function A(v, z) is the same for σ-avoiding as for τ -avoiding matchings. It follows that |Pn(σ)| =
|Pn(τ)| for all n. In particular, since 312 ∼ 231, we have |Pn(312)| = |Pn(231)|.
Theorem 4.2 The generating function B(z) =

∑
n≥0 |Pn(312)|zn for 312-avoiding partitions is a root

of the cubic polynomial

(z − 1)(5z2 − 2z + 1)2B3 + (−9z5 + 54z4 − 85z3 + 59z2 − 14z + 3)B2

+ (−9z4 + 60z3 − 64z2 + 13z − 3)B + (−9z3 + 23z2 − 4z + 1). (4)

The asymptotic behavior of its coefficients is given by

|Pn(312)| ∼ δn−5/2 ρn, (5)
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where

ρ =
3(9 + 6

√
3)1/3

2 + 2(9 + 6
√

3)1/3 − (9 + 6
√

3)2/3
≈ 6.97685

and δ ≈ 0.061518.

Proof sketch: To apply Eq. (3), we need to count 312-avoiding matchings while keeping track of the
number of closers immediately followed by an opener. Via the bijection Π ◦ κ : Mn(312) → Ln, this
is equivalent to counting labeled paths in Ln with respect to the number of valleys. Proceeding as in the
proof of Theorem 4.1, the generating function K(u, v, z) for paths in K that refines K(u, z) by marking
the number of valleys with the variable v satisfies

K(u, v, z) = 1 + z(vK(u, v, z)− v + 1)

(
2K(u, v, z) + uK(u, v, z) +

K(u, v, z)−K(0, v, z)

u

)
.

Applying the quadratic method, we obtain an expression for K(0, v, z). Then, letting L(v, z) be the
generating function for paths in Ln where v marks the number of valleys, we have

L(v, z) =
1/v

1− vzK(0, v, z)
− 1

v
+ 1.

Using now Eq. (3) to relate B(z) and L(v, z), it follows that B(z) is a root of the polynomial (4).
To describe the asymptotic growth of its coefficients, we use the method described in [11, Section

VII.7.1] to compute the singularities of algebraic functions (see [2] for details). 2

Again, the generating function in Theorem 4.2 is algebraic, in contrast with the fact that the generating
function for 123-avoiding (namely, 3-noncrossing) partitions is D-finite but not algebraic [5]. Compare
also Eq. (5) with the growth of the number of 3-noncrossing partitions [5], given by

|Pn(123)| ∼ 39 5
√

3

25 π

9n

n7
.

4.3 An application to 1342-avoiding permutations
The method involving labeled Dyck paths that we have developed to enumerate 312-avoiding matchings
can be used to recover the following generating function due to Bóna [4] for the number of 1342-avoiding
permutations (which, by symmetry, equals the number of 3124-avoiding ones).

Theorem 4.3 ([4]) ∑

n≥0
|Sn(1342)|zn =

32z

1 + 20z − 8z2 − (1− 8z)3/2
.

Bóna [4] obtained this formula by constructing a bijection between so-called indecomposable 1342-
avoiding permutations and certain labeled trees, called β(0, 1)-trees. He then used the fact that the gen-
erating function for β(0, 1)-trees had already been found by Tutte [20]. Our approach provides a more
direct method to enumerate 1342-avoiding permutations without using β(0, 1)-trees.

Denote by R×n (312) the set of placements (R,F ) ∈ Rn(312) with the property that F is the smallest
Ferrers board that contains R. There is a straightforward bijection χ : Sn(3124) → R×n (312) defined
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by χ(π) = (Rπ, Fπ), where Rπ is the placement consisting of the squares (i, π(i)) for 1 ≤ i ≤ n, and
Fπ is the smallest board containing Rπ . To enumerate R×n (312), we use the fact (proved in [2]) that the
image of the map Π : Rn(312) → Ln, when restricted to R×n (312), is the set of labeled Dyck paths
(D,α) ∈ Ln such that for every peak Vi, the labels around it satisfy αi−1 = αi + 1 = αi+1. We denote
this set by L×n .

Using the same framework as in the proof of Theorem 4.1, we can obtain the generating function for
these paths. LetK×n be the set of labeled Dyck paths (D,α) that have the diagonal property, satisfy α2n =
0, and such that αi−1 = αi + 1 = αi+1 if Vi is a peak. Letting K×(u, z) =

∑
n≥0

∑
(D,α)∈K×

n
uα0zn be

the generating function for such paths according to the value of the first label, we obtain

K×(u, z) = 1 + zK×(u, z)

(
K×(u, z) + (u+ 1)(K×(u, z)− 1) +

K×(u, z)−K×(0, z)

u

)
.

The quadratic method yields a formula for K×(0, z), from where

∑

n≥0
|Sn(3124)|zn =

∑

n≥0
|L×n |zn =

1

1− zK×(0, z)
=

32z

1 + 20z − 8z2 − (1− 8z)3/2
.

5 Pairs of patterns
Tab. 1 summarizes the results from the full paper [2] on matchings and set partitions that avoid a pair of
patterns of length 3. The notions of pattern-avoidance and shape-Wilf-equivalence defined in Section 2
have a straightforward generalization to pairs of patterns. We establish that the 15 pairs of patterns in
S3 are partitioned into 7 shape-Wilf-equivalence classes. Further, we provide enumeration results for
matchings and set partitions avoiding a pair of patterns in many cases.

132 213 231 312 321
123 VI I II III IV
132 I I I VII
213 I I V
231 I I
312 I

Class Matchings Set partitions

I
4

3 +
√

1− 8z

2− 3z + z2 − z
√

1− 6z + z2

2(1− 3z + 3z2)

II, III Solutions of a cubic Solutions of a cubic

IV
1− 5z + 2z2

1− 6z + 5z2
1− 10z + 32z2 − 37z3 + 12z4

(1− z)(1− 10z + 31z2 − 30z3 + z4)

V Functional equation Unknown

VI, VII Unknown Unknown

Tab. 1: The 7 shape-Wilf-equivalence classes of pairs of patterns, and a summary of our enumeration results.
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Abstract. In 2007 Sami Assaf introduced dual equivalence graphs as a method for demonstrating that a quasisymmetric
function is Schur positive. The method involves the creation of a graph whose vertices are weighted by Ira Gessel’s
fundamental quasisymmetric functions so that the sum of the weights of a connected component is a single Schur
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de mots de Yamanouchi. Cette famille inclut tous les polynô mes indexé s par des formes de moins de quatre cellules
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1 Introduction
Dual equivalence was developed and applied by Mark Haiman in (Haiman, 1992) as an extension of work
done by Donald Knuth in (Knuth, 1970). Sami Assaf then introduced the theory of dual equivalence graphs
in her Ph.D. dissertation Assaf (2007) and subsequent preprint Assaf (2011). In these papers, she is able
to associate a number of symmetric functions to dual equivalence graphs and each component of a dual
equivalence graph to a Schur function, thus demonstrating Schur positivity. More recently, variations of
dual equivalence graphs are given for k-Schur functions in Assaf and Billey (2012) and for the product of a
Schubert polynomial with a Schur polynomial in Assaf et al. (2012).

A key connection between dual equivalence graphs and symmetric functions is the ring of quasisymmet-
ric functions. The quasisymmetric functions were introduced by Ira Gessel (1984) as part of his work on
P -partitions. Currently there are a number of functions that are easily expressible in terms of Gessel’s fun-
damental quasisymmetric functions that are not easily expressed in terms of Schur functions. For example,
such an expansion for plethysms is described in Loehr and Warrington (2012), for Lascoux-Leclerc-Thibon
(LLT) polynomials in Haglund et al. (2005b), and for Macdonald polynomials in Haglund et al. (2005a).
An expressed goal of developing the theory of dual equivalence graphs is to create a tool for turning such
quasisymmetric expansions into explicit Schur expansions.

Previously, dual equivalence graphs were defined by five dual equivalence axioms that are locally testable
and one that is not. In attempting to apply the theory of dual equivalence graphs, it is often a challenge
to demonstrate that this nonlocal axiom is satisfied. The main results of this paper is to give an equivalent
definition using only local conditions, as is stated in Theorem 2.9.

The paper concludes by applying the above result to LLT polynomials. LLT polynomials were first in-
troduced in Lascoux et al. (1997) as a q-analogue to products of Schur functions and were later given a
description in terms of tuples of skew tableaux in Haglund et al. (2005b). LLT polynomials can, in turn, be
used to give an explicit combinatorial description of modified Macdonald polynomials by using the results
of Haglund et al. (2005a). First introduced in Macdonald (1988), Macdonald polynomials are often defined
as the set of q, t-symmetric functions that satisfy certain orthogonality and triangularity conditions, as is
well described in Macdonald (1995). Part of the importance of Macdonald polynomials derives from the
fact that they specialize to a wide array of well known functions, including Hall-Littlewood polynomials and
Jack polynomials (see Macdonald (1995) for details). In Haiman (2001), Mark Haiman used geometric and
representation-theoretic techniques to prove that Macdonald polynomials are Schur positive.

In some cases, nice Schur expansions for LLT and Macdonald polynomials are already known. In par-
ticular, the set of LLT polynomials indexed by two skew shapes was described in Carré and Leclerc (1995)
and van Leeuwen (2000), and modified Macdonald polynomials indexed by shapes with strictly less than
three columns was described in Haglund et al. (2005a) (which in turn drew on the earlier work in Carré and
Leclerc (1995), van Leeuwen (2000)). The first combinatorial description of the two column case was given
in Fishel (1995), but others were subsequently given in Zabrocki (1998), Lapointe and Morse (2003), and
Assaf (2008/09).

This paper is broken into sections as follows. Section 2 is dedicated giving a new axiomatization for
dual equivalence graphs in Theorem 2.9. Section 3 applies the results of Section 2 to LLT polynomials
and Macdonald polynomials. The graph structure given to LLT polynomials in Assaf (2011) is reviewed.
Theorem 3.9 states that the set of LLT polynomials corresponding to said graphs have a Schur expansion
indexed by standardized Yamanouchi words. This set strictly contains the set of LLT polynomials indexed
by two skew shapes. Corollary 3.10 then gives a Schur expansion for modified Macdonald polynomials
indexed by partition shapes with strictly less than four boxes in the first row and strictly less than three boxes
in the second row. For a fuller account of all of these results, see Roberts (2013).
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2 The Structure of Dual Equivalence Graphs
2.1 Preliminaries
In this section we provide the necessary definitions and results from Assaf (2011). We begin by recalling
Mark Haiman’s dual to the fundamental Knuth equivalences.

Definition 2.1 Given a permutation in Sn expressed in one-line notation, define an elementary dual equiv-
alence as an involution di that interchanges the values i− 1, i, and i+ 1 as

di(. . . i . . . i− 1 . . . i+ 1 . . .) = (. . . i+ 1 . . . i− 1 . . . i . . .),

di(. . . i− 1 . . . i+ 1 . . . i . . .) = (. . . i . . . i+ 1 . . . i− 1 . . .),
(2.1)

and acts as the identity if i occurs between i− 1 and i+ 1. Two words are dual equivalent if one may be
transformed into the other by successive elementary dual equivalences.

For example, 21345 is dual equivalent to 41235 because d3(d2(21345)) = d3(31245) = 41235.
We may also let di act on the entries of a tableau via the row reading word. It is simple to check that the

result is again a tableau of the same shape. The transitivity of this action is described in the next theorem.

Theorem 2.2 ((Haiman, 1992, Prop. 2.4)) Two standard Young tableaux on partition shapes are dual equiv-
alent if and only if they have the same shape.

The signature of a permutation is a string of 1’s and -1’s, or +’s and−’s for short, where there is a + in the
ith position if and only if i comes before i + 1 in one-line notation. We may then define the signature of a
tableau T , denoted σ(T ), as the signature of the row reading word of T . If we wish to be explicit about this
definition of σ, we will refer to the signature function as being given by inverse descents.

By definition, di is an involution, and so we define a graph on standard Young tableaux by letting each
nontrivial orbit of di define an edge colored by i. By Theorem 2.2, the graph on SYT(n) with edges labeled
by 1 < i < n has connected components with vertices in SYT(λ) for each λ ` n. We may further label each
vertex with its signature to create a standard dual equivalence graph that we will denote Gλ. See Figure 1
for examples.
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Fig. 1: The standard dual equivalence graphs on partitions of 5 up to conjugation.
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Here, Gλ is an example of the following broader class of graphs.

Definition 2.3 An edge colored graph consists of the following data:

1. a finite vertex set V ,

2. a collection Ei of unordered pairs of distinct vertices in V for each i ∈ {m+1, . . . , n− 1}, where m
and n are positive integers.

A signed colored graph is an edge colored graph with the following additional data:

3. a signature function σ : V → {±1}N−1, for some positive integer N ≥ n.

We denote a signed colored graph by G = (V, σ,Em+1 ∪ · · · ∪ En−1) or simply G = (V, σ,E). If a signed
colored graph has m = 1, then it is said to have type (n,N) and is termed an (n,N)-signed colored graph.

We may also restrict signed colored graphs. If G is an (n,N)-signed colored graph, M ≤ N , and m ≤ n,
then the (m,M)-restriction of G is the result of excluding Ei for i ≥ m and projecting each signature onto
its first M − 1 coordinates.

In order to present structural results about signed colored graphs, we first need to define isomorphisms.

Definition 2.4 A map φ : G → H between edge colored graphs G = (V,Em+1 ∪ . . . ∪ En−1) and
H = (V ′, E′m+1 ∪ . . . ∪ E′n−1) is called a morphism if it preserves i-edges. That is, {v, w} ∈ Ei implies
{φ(v), φ(w)} ∈ E′i for all v, w ∈ V and all m < i < n.

A map φ : G → H between signed colored graphs G = (V, σ,Em+1∪. . .∪En−1) andH = (V ′, σ′, E′m+1∪
. . . ∪ E′n−1) is called a morphism if it is a morphism of edge colored graphs that also preserves signatures.
That is, σ′(φ(v)) = σ(v).

In both cases, a morphism is an isomorphism if it admits an inverse morphism.

Notice that in a standard dual equivalence graph, a vertex v is included in an i-edge if and only if
σ(v)i−1 = −σ(v)i, motivating the following definition.

Definition 2.5 Let G = (V, σ,E) be a signed colored graph. We say that w ∈ V admits an i-neighbor if
σ(w)i−1 = −σ(w)i.

We are now ready to present an axiomatization of the structure inherent in a standard dual equivalence
graph.

Definition 2.6 A signed colored graph G = (V, σ,Em+1 ∪ . . . ∪ En−1) is a dual equivalence graph if the
following hold:

(ax1): For m < i < n, each Ei is a complete matching on the vertices of V that admit an i-neighbor.
(ax2): If {v, w} ∈ Ei, then σ(v)i = −σ(w)i, σ(v)i−1 = −σ(w)i−1, and σ(v)h = σ(w)h for all h < i− 2

and all h > i+ 1.
(ax3): For {v, w} ∈ Ei, if σi−2 is defined, then v or w (or both) admits an (i − 1)-neighbor, and if σi+1 is

defined, then v or w (or both) admits an (i+ 1)-neighbor.
(ax4): For allm+1 < i < n, any component of the edge colored graph (V,Ei−2∪Ei−1∪Ei) is isomorphic

to a component of the restriction of some Gλ = (V ′, σ′, E′) to (V ′, E′i−2 ∪ E′i−1 ∪ E′i), where Ei−2
is omitted if i = m+ 2 (see Figure 2).

(ax5): For all 1 < i, j < n such that |i − j| > 2, if {v, w} ∈ Ei and {w, x} ∈ Ej , then there exists y ∈ V
such that {v, y} ∈ Ej and {x, y} ∈ Ei.

(ax6): For all m < i < n, any two vertices of a connected component of (V, σ,Em+1 ∪ · · · · ∪ Ei) may be
connected by some path crossing at most one Ei edge.
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A dual equivalence graph that is also an (n,N)-signed colored graph is said to have type (n,N) and is
termed an (n,N)-dual equivalence graph.

• • i−1
i−2 •

i • i−2 • i

i−1 •

• i−2 • i−1 • i •

•
i

@@@@@@@

• i−1 •

i−2 �������

i @@@@@@@ • i−1 •

•
i−2

�������

Fig. 2: Allowable Ei−2 ∪ Ei−1 ∪ Ei components of Axiom 4.

The next theorem links the definitions of dual equivalence graphs and standard dual equivalence graphs.

Theorem 2.7 ((Assaf, 2011, Theorems 3.5 and 3.9)) A connected component of an (n, n)-signed colored
graph is a dual equivalence graph if and only if it is isomorphic to a unique Gλ.

2.2 Local Conditions for Axiom 6
Axiom 6 is the only dual equivalence axiom that cannot be tested locally, and in practice it is often a barrier
to applying the theory of dual equivalence graphs. In this section, we show how to replace Axiom 6 with a
locally testable axiom.

Definition 2.8 A signed colored graph G = (V, σ,Em+1 ∪ . . . ∪En−1) is said to obey Axiom 4+ if for all
m+ 1 < i < n, any component of the edge colored graph (V,Ei−3 ∪ Ei−2 ∪ Ei−1 ∪ Ei) is isomorphic to
a component of the restriction of some Gλ = (V ′, σ′, E′) to (V ′, E′i−3 ∪ E′i−2 ∪ E′i−1 ∪ E′i), where Ei−3,
Ei−2, or Ei−1 is omitted if i ≤ m+ 3, i ≤ m+ 2, or i = m+ 1, respectively.

Notice that Axiom 4+ is just an extension of Axiom 4 to components with 4 consecutive edge colors.
The next theorem states that this extension to Axiom 4+ allows for the omission of Axiom 6 in the dual
equivalence axioms.

Theorem 2.9 A signed colored graph satisfies Axioms 1, 2, 3, 4+, and 5 if and only if it is a dual equivalence
graph.

Proof Sketch: The crux of the proof is to show that Axioms 1, 2, 3, 4+, and 5 imply Axiom 6. We provide
a sketch of this argument here, proceeding by induction on n. For n ≤ 6 the result is largely a consequence
of the definition of Axiom 4+. We may then assume the result when n − 1 ≤ 6 and prove that an arbitrary
(n, n)-signed colored graph G satisfying Axioms 1, 2, 3, 4+, and 5 must also satisfy Axiom 6.

It follows from the proof of Theorem 2.7 that G admits a morphism onto some standard dual equivalence
graph Gλ and that each (n − 1, n − 1)-component of G is connected in G to exactly one (n − 1, n − 1)-
components of each possible isomorphism type. We may then show that every (n− 1, n− 1)-component of
G has a unique isomorphism type, establishing Axiom 6.

To prove this last point, we consider two cases. In the first case, we assume that λ is not a staircase.
In the second case, we assume that λ has at least four Northeast corners. In both cases, induction is used
to provide the required connectivity result. Finally, the only cases that are staircases but have less than four
Northeast corners have at most six cells, and so are covered in our base case. �



956 A. Roberts

Remark 2.10 We may readily classify the set of edge colored graphs described in Definition 2.8, i.e.,
the set of edge colored graphs that arise as components of the restriction of some Gλ = (V ′, σ′, E′) to
(V ′, E′i−3∪E′i−2∪E′i−1∪E′i). Each such edge colored graph is the result of restricting some Gλ = (V, σ,E)
to (V,E) and adding h to each edge label, where λ ` 6 and h is some nonnegative integer.

Let F be the set of edge colored graphs with edge sets Ei−3 ∪ . . . ∪ Ei that satisfy Axioms 4 and 5
but not Axiom 6. A canonical graph in F is presented in Figure 3. The following corollary reformulates
Theorem 2.9 in terms of F .

Corollary 2.11 Let G = (V, σ,Em+1 ∪ . . .∪En−1) be a signed colored graph satisfying Axioms 1, 2, 3, 4,
and 5. Then G is a dual equivalence graph if and only if for all m + 4 < i < n, the restriction of G to the
edge colored graph (V,Ei−4 ∪ . . . ∪ Ei) has no components isomorphic to an element of F .
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Fig. 3: A generic graph in F with edge labels in {2, 3, 4, 5}.

Remark 2.12 For any edge colored graph in F , every vertex shares an edge with at least two other vertices.
We may then give yet another characterization of dual equivalence graphs. Let G = (V, σ,Em+1 ∪ . . . ∪
En−1) be a signed colored graph obeying Axioms 1, 2, 3, 4, and 5. Choose C to be any component of the
restriction of G to the edge colored graph (V,Ei−3 ∪ Ei−2 ∪ Ei−1 ∪ Ei) such that m+ 3 < i < n and the
vertices of C all have at least two adjacent vertices in C. Then G is a dual equivalence graph if and only if
C is not in F for any choice of C. This characterization of dual equivalence graphs is used in the computer
verification of Theorem 3.7.

3 LLT and Macdonald Polynomials
In this section, we demonstrate the utility of the results in Section 2 by applying them to LLT Polynomials.

3.1 Symmetric Functions
We begin by recalling the definitions of the necessary symmetric functions. Crucial to our definitions will
be the definition of the fundamental quasisymmetric function.
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Definition 3.1 Given any signature σ ∈ {±1}n−1, define the fundamental quasisymmetric function Fσ(X)
∈ Z[x1, x2, . . .] by

Fσ(X) :=
∑

i1≤...≤in
ij=ij+1⇒σj=+1

xi1 · · ·xin .

We take the unorthodox approach of using a result by Gessel (1984) to give our next definition.

Definition 3.2 Gessel (1984) Given any skew shape λ/ρ, define

sλ/ρ(X) :=
∑

T∈SYT(λ/ρ)

Fσ(T )(X), (3.1)

where sλ/ρ is termed a Schur function if λ/ρ is a straight shape and a skew Schur function in general.

Definition 3.2 and Theorem 2.2 determine the connection between Schur functions and dual equiv-
alence graphs as highlighted in (Assaf, 2011, Cor. 3.10). Given any standard dual equivalence graph
Gλ = (V, σ,E), ∑

v∈V
Fσ(v) = sλ. (3.2)

Given a a diagram of shape λ/ρ in French notation, the content of cell x, denoted c(x), is j − i, where
j is the column of x and i is the row of x in Cartesian coordinates. Here, the lower left corner of λ is
assumed to be at the origin. Given a k-tuple of skew shapes ν = (ν(0), . . . , ν(k−1)), we write |ν| = n if∑k−1
i=0 |ν(i)| = n. A standard filling T = (T (0), . . . , T (k−1)) of ν is a bijective filling of the diagram of ν

with entries in [n] such that each T (i) is strictly increasing up columns and across rows from left to right.
Denote the set of standard fillings of ν as SYT(ν). Define the shifted content of cell x in ν(i) as,

c̃(x) = k · c(x) + i, (3.3)

where c(x) is the content of x in ν(i). The shifted content word of T is defined as the word retrieved from
reading off the values in the cells from lowest shifted content to highest, reading northeast along diagonals
of constant shifted content. We may then define σ(T) as the signature of the shifted content word of T.

Letting T(x) denote the entry in cell x, the set of k-inversions of T is

Invk(T) := {(x, y) | k > c̃(y)− c̃(x) > 0 and T(x) > T(y)}. (3.4)

The k-inversion number of T is defined as

invk(T) := |Invk(T)|. (3.5)

Now define the set of LLT polynomials by

G̃ν(X; q) :=
∑

T∈SYT(ν)

qinvk(T)Fσ(T)(X). (3.6)

We now move on to the definition of the modified Macdonald polynomials H̃µ/ρ(X; q, t). We will use
(Haglund et al., 2005a, Theorem 2.2) to give a strictly combinatorial definition, using the statistics “inv”,
“maj”, and “a” from this paper without defining them here. We will, however, need one new definition.

Given any skew shape µ/ρ with each cell represented by a pair (i, j) in Cartesian coordinates, let
TR(µ/ρ) be the set of tuples of ribbons ν = (ν(0), . . . , ν(k−1)), such that ν(i) has a cell with content j if
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(
3
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4 , 7 9

)
←−−−−−−−−−→

3
2 8
5 6 7
1 4 9

Fig. 4: An example of the bijection between standard fillings of shapes in TR(µ/ρ) and bijective fillings of µ/ρ. At left,
the cells labeled 1, 4, and 9 have content 0 in their respective ribbons.

and only if (i,−j) is a cell in µ/ρ. There is then a bijection between standard fillings of shapes in TR(µ/ρ)
and bijective fillings of µ/ρ given by turning each ribbon into a column of µ/ρ as demonstrated in Figure 4.

We are now able to define the modified Macdonald polynomials and show their relationship with LLT
polynomials.

H̃µ/ρ(X; q, t) :=
∑

ν∈TR(µ/ρ)
T∈SYT(ν)

qinv(T)tmaj(T)Fσ(T) =
∑

ν∈TR(µ/ρ)

q−a(ν)tmaj(ν)G̃ν(X; q) (3.7)

By using this definition, results about LLT polynomials can be easily translated into results about Macdonald
polynomials.

3.2 LLT graphs
We follow Assaf (2011) in defining an involution that will provide the edge sets of a signed colored graph.
In this section, ν will always denote a k-tuple of skew shapes whose sizes sum to |ν| = n. Also, w will
always denote a permutation in Sn.

Let the involution d̃i : Sn → Sn act by permuting the entries i− 1, i, and i+ 1 as defined by,

d̃i(. . . i . . . i− 1 . . . i+ 1 . . .) = (. . . i− 1 . . . i+ 1 . . . i . . .),

d̃i(. . . i . . . i+ 1 . . . i− 1 . . .) = (. . . i+ 1 . . . i− 1 . . . i . . .),
(3.8)

and by acting as the identity if i occurs between i− 1 and i+ 1. For instance, d̃3 ◦ d̃2(4123) = d̃3(4123) =
3142.

To decide when to apply di and when to use d̃i, we appeal to the shifted content. Numbering the cells
of a fixed ν from 1 to n in shifted content reading order, let c̃i be the shifted content of the ith cell. Define
the weakly increasing word τ = τ1τ2 . . . τn by

τi = max{j ∈ [n] : c̃j − c̃i ≤ k}. (3.9)

See Figure 5 for an example. To emphasize the relationship between τ and ν, we will sometimes write
τ = τ(ν). Notice that there are finitely many possible τ of any fixed length n. Specifically, τ will always
satisfy τn = n and i ≤ τi ≤ τi+1 for all i < n. Next, letm(i) be the index of the the value in {i−1, i, i+1}
that occurs first in w, and let M(i) be the index of the the value in {i− 1, i, i+ 1} that occurs last in w. We
now define the desired involution,

D
(τ)
i (w) :=

{
di(w) τm(i) < M(i)

d̃i(w) τm(i) ≥M(i).
(3.10)

As an example, we may take τ = 456667899 and w = 534826179, as in Figure 5. Then D(τ)
3 (w) =

d̃i(w) = 542836179 and D(τ)
5 (w) = di(w) = 634825179.
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Fig. 5: On the left, the shifted contents of a pair of skew diagrams with τ = 456667899. On the right, a standard filling
of the same tuple with shifted content word 534826179.

Direct inspection shows that if τ = τ(ν), then D(τ)
i takes shifted content words of standard fillings of

ν to shifted content words of other standard fillings of ν. Thus, D(τ)
i has a well defined action on SYT(ν)

inherited from the action of D(τ)
i on shifted content words. We may then define the following.

Definition 3.3 Given some tuple of skew shapes ν, the LLT graph Lν = (V, σ,E) is defined to be the
(n, n)-signed colored graph with the following data:

1. V = {w ∈ Sn : w is the shifted content word of some T ∈ SYT(ν)},
2. The signature function σ is given by the inverse descents of w ∈ V ,

3. The edge sets Ei are defined by the nontrivial orbits of D(τ)
i for all 1 < i < |ν|, where τ = τ(ν).

Example 3.4 Consider ν = ((2), (2), (1), (1)). A portion of the LLT graph Lν is presented in Figure 6.
Here, Lν is a subgraph of G(τ)6 with τ = 566666. In the figure, the edge {312654, 412653} is defined by the
action of d3 and d4, while all other edges are defined by the action of d̃i for 1 < i < 6.

2
135624

4

5

143625

5

2
241635

4

5
3

LLLLLLLLLL 231654
2

312654

43
3

136425 153426
2

251436 321645
5

412653
5

2
3 3

4 3

Fig. 6: A portion of Lν with signatures omitted. Here ν = ((2), (2), (1), (1)).

While LLT graphs do not necessarily satisfy Axiom 4 or Axiom 6, they do satisfy a subset of the dual
equivalence axioms. This is made precise in the following proposition.

Proposition 3.5 (Assaf (2011) Prop. 4.6) Any LLT graph Lν obeys Axioms 1, 2, 3, and 5. Furthermore,
the inv statistic is constant on each connected component of Lν .

To state the main theorem of this section, we will also need the following definition.

Definition 3.6 Given a k-tuple of skew shapes ν, let S(ν) be the set of distinct shifted contents of the cells
in ν. Define the diameter of ν, denoted diam(ν), as

diam(ν) := max{|R| : R ⊂ S(ν) and |x− y| ≤ k for all x, y ∈ R}.

See Figure 7 for an example.
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Fig. 7: The first two tuples of skew shapes have diameter 3. The third tuple of skew shapes has diameter 4.

Theorem 3.7 The LLT graph Lν is a dual equivalence graph if and only if diam(ν) ≤ 3.

The proof of this theorem is primarily an application of Proposition 3.5, followed by a computer verifi-
cation using Corollary 2.11. This computer verification can be found at

<http://www.math.washington.edu/∼austinis/Proof LLTandDEG.sws>.

Finally, we give a lemma that allows us to find a representative vertex in each component of an LLT
graph. It is crucial to results in the following section.

Lemma 3.8 Let ν be a tuple of skew shapes such that |ν| = n and diam(ν) ≤ 3. Let C be any connected
component of Lν , and let φ : C → Gλ be an isomorphism, where λ ` n. Then there is exactly one
standardized Yamanouchi word w in C, and P (w) = φ(w) = Uλ.

3.3 The Schur Expansion when diam(ν) ≤ 3

The goal of this section is to apply Theorem 3.7 to get specific Schur expansions for a family of LLT
polynomials and a family of Macdonald polynomials.

Theorem 3.9 Let ν be any tuple of skew shapes with diam(ν) ≤ 3. Further, let T(λ) be the set of standard
fillings in SYT(ν) whose shifted content words are in SYam(λ). Then

G̃ν(X; q) =
∑

λ`|ν|

∑

T∈T(λ)

qinv(T)sλ.

In particular, the set of ν such that diam(ν) ≤ 3 properly contains the set of ν that are 2-tuples.

Proof Sketch: We begin by reducing Theorem 3.9 to a statement about signed colored graphs. Let V1, V2, . . . , Vm
be the vertex sets of the connected components of Lν = (V, σ,E). Then

G̃ν(X; q) =
∑

T∈SYT(ν)

qinvk(T)Fσ(T)(X) =
∑

v∈V
qinvν(v)Fσ(v)(X) =

m∑

j=1

∑

v∈Vj
qinvν(v)Fσ(v)(X), (3.11)

We may then apply Theorem 3.7, (3.2), and Lemma 3.8 to express G̃ν(X; q) in terms of standardized
Yamanouchi words as given in the statement of the theorem. �

The next corollary follows immediately by applying Theorem 3.9 to the definition of modified Macdon-
ald polynomials in (3.7). We also use the easily verified fact that tuples of ribbons in TR(µ/ρ) have diameter
less than or equal to three if and only if µ/ρ does not contain (3,3) or (4) as a subdiagram.

Corollary 3.10 Let µ/ρ be a skew shape not containing (3, 3) or (4) as a subdiagram, and let T (λ) be the
set of bijective fillings of µ/ρ whose row reading words are in SYam(λ). Then

H̃µ/ρ(X; q, t) =
∑

λ`|µ/ρ|

∑

T∈T (λ)

qinv(T )tmaj(T )sλ.
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In particular, Corollary 3.10 applies to all H̃µ(X; q, t) with µ1 ≤ 3 where µ2 ≤ 2.

Remark 3.11 The conditions on ν and µ/ρ in Theorem 3.9 and Corollary 3.10, respectively, are sharp in the
following sense. Let λ = (2, 2) and ν = ((1), (1), (1, 1)) or ((1), (1), (1), (1)). In particular, diam(ν) = 4.
Then

G̃ν(X; q)
∣∣
q4sλ

= 1 and
∑

T∈T (λ)

qinv(T )sλ
∣∣
q4sλ

= 2. (3.12)

If λ = (2, 2) and µ/ρ = (4), then

H̃µ/ρ(X; q, t)
∣∣
q4sλ

= 1 and
∑

T∈T (λ)

qinv(T )tmaj(T )sλ
∣∣
q4sλ

= 2. (3.13)

If λ = (2, 2, 2) and µ/ρ = (3, 3), then

H̃µ/ρ(X; q, t)
∣∣
q3t3sλ

= 1 and
∑

T∈T (λ)

qinv(T )tmaj(T )sλ
∣∣
q3t3sλ

= 2. (3.14)

By using a symmetry of Macdonald polynomial, we also have the following immediate corollary.

Corollary 3.12 Let µ/ρ be a skew shape not containing (2, 2, 2) or (1, 1, 1, 1) as a subdiagram, and let
T̃ (λ) be the set of bijective fillings of µ̃/ρ̃ whose row reading words are in SYam(λ). Then

H̃µ/ρ(X; q, t) =
∑

λ`|µ/ρ|

∑

T∈T̃ (λ)

qmaj(T )tinv(T )sλ.

In particular, Corollary 3.10 applies to all H̃µ(X; q, t) where µ has at most three rows and µ3 ≤ 1.
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C. Carré and B. Leclerc. Splitting the square of a Schur function into its symmetric and antisymmetric parts.
J. Algebraic. Combin., 4(3), 1995.

S. Fishel. Statistics for special q,t-Kostka polynomials. Proc. Amer. Math. Soc, 123(10):2961–2969, 1995.

I. M. Gessel. Multipartite P-partitions and inner products of skew Schur functions. Contemp. Math, 34:
289–317, 1984.

J. Haglund, M. Haiman, and N. Loehr. A combinatorial formula for Macdonald polynomials. J. Amer. Math.
Soc, 18(3), 2005a.

J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov. A combinatorial formula for the character
of the diagonal coinvariants. Duke Math. J, 126(2):195–232, 2005b.

M. Haiman. Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Amer. Math. Soc, 14
(4):941–1006, 2001.

M. D. Haiman. Dual equivalence with applications, including a conjecture of Proctor. Discrete Math, (1-3):
79–113, 1992.

D. E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J. Math., 34:709–727, 1970.

L. Lapointe and J. Morse. Tableaux statistics for two part Macdonald polynomials. Algebraic combinatorics
and quantum groups, pages 61–84, 2003.

A. Lascoux, B. Leclerc, and J.-Y. Thibon. Ribbon tableaux, Hall-Littlewood functions, quantum affine
algebras, and unipotent varieties. J. Math. Phys, 38(2):1041–1068, 1997.

N. A. Loehr and G. S. Warrington. Quasisymmetric expansion of Schur function plethysms. Proc. Amer.
Math. Soc, 140(4):1159–1171, 2012.

I. G. Macdonald. A new class of symmetric functions. Actes du 20e Séminaire Lotharingien, 372:131–171,
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Associahedron
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Abstract. Each positive rational number x > 0 can be written uniquely as x = a/(b − a) for coprime positive
integers 0 < a < b. We will identify x with the pair (a, b). In this extended abstract we use rational Dyck paths to
define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It
is a pure simplicial complex of dimension a− 2, and its maximal faces are counted by the rational Catalan number

Cat(x) = Cat(a, b) :=
(a+ b− 1)!

a! b!
.

The cases (a, b) = (n, n + 1) and (a, b) = (n, kn + 1) recover the classical associahedron and its Fuss-Catalan
generalization studied by Athanasiadis-Tzanaki and Fomin-Reading. We prove that Ass(a, b) is shellable and give
nice product formulas for its h-vector (the rational Narayana numbers) and f -vector (the rational Kirkman numbers).
We define Ass(a, b) .

Résumé. Tout nombre rationnel positif x > 0 peut être exprimé de façon unique par x = a/(b− a) avec 0 < a < b
deux entiers positifs premiers entre eux. Nous identifierons x avec la paire (a, b). Dans cet article, nous utilisons les
chemins de Dyck rationnels pour définir pour tout rationnel positif x > 0 un complexe simplicial Ass(x) = Ass(a, b)
que nous appelons l’associahedron rationnel. Il s’agit d’un complexe simplicial pur de dimension a− 2, et ses faces
maximales sont comptées par le nombre rationnel de Catalan

Cat(x) = Cat(a, b) :=
(a+ b− 1)!

a! b!
.

Les cas (a, b) = (n, n+1) et (a, b) = (n, kn+1) permettent de retrouver l’associhedron classique et sa généralisation
Fuss-Catalan, étudiée par Athanasiadis-Tzanaki et Fomin-Reading. Nous démontrons que Ass(a, b) est shellable et
nous donnons des formules de produits simples pour son h-vecteur (les nombres rationnels de Narayana) et son
f -vecteur (les nombres rationnels de Kirkman).
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1 Motivation
This extended abstract is one of a pair of papers (see also [ALW]) that initiate the research program of ra-
tional Catalan combinatorics. The motivation for this program is both combinatorial and representation-
theoretic.

The classical Catalan numbers(i)

Cat(n, n+ 1) =
1

n+ 1

(
2n

n

)

are among the most important sequences in combinatorics. As of this writing, they are known to count
at least 201 distinct families of combinatorial objects [Stan]. For our current purpose, the following three
are the most important:

1. Dyck paths from (0, 0) to (n, n),

2. Triangulations of a convex (n+ 2)-gon, and

3. Noncrossing partitions of a cycle (1, 2, . . . , n).

There are two observations that have spurred recent progress in this field. The first is that Catalan
objects are revealed to be type A phenomena (corresponding to the symmetric group) when properly
interpreted in the context of reflection groups. The second is that many definitions of Catalan objects can
be further generalized to accommodate an additional parameter, so that the resulting objects are counted
by Fuss-Catalan numbers (see [Arm, Chapter 5]).

Both of these generalizations can be motivated from Garsia’s and Haiman’s [GH] observation that
the Catalan numbers play a deep role in representation theory. The symmetric group Sn acts on the
polynomial ring DSn := Q[x1, . . . , xn, y1, . . . , yn] by permuting variables diagonally. That is, for w ∈
Sn we define w.xi = xw(i) and w.yi = yw(i). Weyl [W] proved that the subring of diagonal invariants
is generated by the polarized power sums pr,s =

∑
i x

r
i y
s
i for r + s ≥ 0 with 1 ≤ r + s ≤ n. The

quotient ring of diagonal coinvariants DRn := DSn/(pr,s) inherits the structure of an Sn-module which
is bigraded by x-degree and y-degree. Garsia and Haiman conjectured that dimDRn = (n + 1)n−1 (a
number famous from Cayley’s formula [Cay]) and that the dimension of the sign-isotypic component is
the Catalan number Cat(n, n+1). These conjectures turned out to be difficult to resolve, and were proved
about ten years later by Haiman using the geometry of Hilbert schemes.

An excellent introduction to this subject is Haiman’s paper [Hai1], in which he laid the foundation for
generalizing the theory of diagonal coinvariants to other reflection groups. Let W be a Weyl group, so
that W acts irreducibly on R` by reflections and stabilizes a full-rank lattice Z` ≈ Q ⊆ R`, called the
root lattice. The group also comes equipped with special integers d1 ≤ · · · ≤ d` called degrees, of which
the largest h := d` is called the Coxeter number. Haiman showed that number of orbits of W acting on
the finite torus Q/(h+ 1)Q is equal to

Cat(W ) :=
∏

i

h+ di
di

,

which we now refer to as the Catalan number of W .
From this modern perspective, our three examples above become:

(i) This notation will we justified shortly.
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1. W -orbits of the finite torus Q/(h+ 1)Q [Shi1, Hai1, Ath1, CP],

2. Clusters in Fomin and Zelevinsky’s finite type cluster algebras [FZ], and

3. Elements beneath a Coxeter element c in the absolute order on W [Rei, Arm].

More generally, given any positive integer p coprime to the Coxeter number h, Haiman showed that
the number of orbits of W acting on the finite torus Q/pQ is equal to

Cat(W,p) :=
∏

i

p+ di − 1

di
, (1)

which we now refer to as a rational Catalan number.
The cases p = mh + 1 have been extensively studied as the Fuss-Catalan analogues, which further

generalize our initial three examples to:

1. Dominant regions in the m-Shi arrangement [Ath2, FV],

2. Clusters in the generalized cluster complex [FR], and

3. m-multichains in the noncrossing partition lattice. [Edel, Arm].

The broad purpose of rational Catalan combinatorics is to complete the generalization from
p = +1 mod h to all parameters p. That is, we wish to define and study Catalan objects such as parking
functions, Dyck paths, triangulations, and noncrossing partitions for each pair (W,p), where W is a finite
reflection group and p is a positive integer coprime to the Coxeter number h. We may think of this as a two-
dimensional problem with a “type axis”W and a “parameter axis” p. The level set p = h+1 is understood
fairly well, and the Fuss-Catalan cases p = +1 mod h are discussed in Chapter 5 of Armstrong [Arm].
However, it is surprising that the type A level set (i.e. W = Sn) is an open problem. This could have
been pursued fifty years ago, but no one has done so in a systematic way.

Thus, we propose to begin the study of rational Catalan combinatorics with the study of classical
rational Catalan combinatorics corresponding to a pair (Sa, b) with b coprime to a. In this case, we have
the classical rational Catalan number

Cat(Sa, b) =
1

a+ b

(
a+ b

a, b

)
=

(a+ b− 1)!

a! b!
. (2)

Note the surprising symmetry between a and b; i.e. that Cat(Sa, b) = Cat(Sb, a). This will show up as
a conjectural Alexander duality in our study of rational associahedra.

First we will set down notation for the rational Catalan numbers Cat(Sa, b) in Section 2. Then in
Section 3 we will define the rational Dyck paths which are the heart of the theory. In Section 4 we will
use the Dyck paths to define and study rational associahedra. (In the full version of this paper we will
also study the closely related rational noncrossing partitions.) In a separate paper [ALW] the Dyck paths
will be used to define and study rational parking functions and q, t-statistics on these. The project of
generalizing these constructions to reflection groups beyond Sn is left for the future.
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2 Rational Catalan Numbers
Given a rational number x ∈ Q outside the range [−1, 0], there is a unique way to write x = a/(b − a)
where a 6= b are coprime positive integers. We consider this a canonical form, and we will identify x ∈ Q
with the ordered pair (a, b) ∈ N2 when convenient.

Inspired by the formulas (1) and (2) above, we define the rational Catalan number:

Cat(x) = Cat(a, b) :=
1

a+ b

(
a+ b

a, b

)
=

(a+ b− 1)!

a! b!
.

The most important feature of the rational Catalan numbers is that they are backwards-compatible:

Cat(n) = Cat(n/1) = Cat(n, n+ 1) =
1

2n+ 1

(
2n+ 1

n, n+ 1

)
=

1

n+ 1

(
2n

n

)
.

But note also that Cat(a, b) is symmetric in a and b. This, together with the fact that a/(b − a) = x if
and only if b/(a− b) = −x− 1, gives us

Cat(x) = Cat(a, b) = Cat(b, a) = Cat(−x− 1).

That is, the function Cat : Q\ [−1, 0]→ N is symmetric about x = −1/2. Now observe that− 1
x−1−1 =

x
1−x , and hence Cat(1/(x− 1)) = Cat(x/(1− x)). We call this value the derived Catalan number:

Cat′(x) := Cat(1/(x− 1)) = Cat(x/(1− x)).

Furthermore, note that 1
(1/x)−1 = x

1−x , hence

Cat′(x) = Cat′(1/x). (3)

We call this equation rational duality and it will play an important role in our study of rational associahe-
dra. Equation (3) can also be used to extend the domain of Cat′ from Q \ [−1, 0] to Q \ {0}, but we don’t
know if this holds combinatorial significance. In terms of a and b we can write

Cat′(x) = Cat′(a, b) =

{(
b
a

)
/b if a < b,(

a
b

)
/a if b < a.

The “derivation” of Catalan numbers can be viewed as a “categorification” of the Euclidean algorithm.
For example, consider x = 5/3 (that is, a = 5 and b = 8). The continued fraction expansion of x is

5

3
= 1 +

1

1 +
1

1 +
1

1
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Fig. 1: This is a (5, 8)-Dyck path.

with “convergents” (that is, successive truncations) 1
1 ,

2
1 ,

3
2 ,

5
3 . Thus we have

Cat(5/3) = 99,

Cat′(5/3) = Cat(3/2) = 7,

Cat′′(5/3) = Cat′(3/2) = Cat(2) = 2,

Cat′′′(5/3) = Cat′′(3/2) = Cat′(2) = Cat(1) = 1.

The process stabilizes because Cat′(1) = 1.

3 Rational Dyck Paths
At the heart of our constructions lies a family of lattice paths called rational Dyck paths. A rational Dyck
path is a path from (0, 0) to (b, a) in the integer lattice Z2 using steps of the form (1, 0) and (0, 1) and
staying above the diagonal y = a

bx. (Because a and b are coprime, it will never touch the diagonal.)
More specifically, we call this an x-Dyck path or an (a, b)-Dyck path. For example, Figure 1 displays a
(5, 8)-Dyck path. When a and b are clear from context, we will sometimes refer to (a, b)-Dyck paths as
simply Dyck paths.

Note that the final step of an (n, n+1)-Dyck path must travel from (n, n) to (n, n+1). Upon removing
this step we obtain a path from (0, 0) to (n, n) that stays weakly above the line of slope 1; that is, we obtain
a classical Dyck path. The following result generalizes the fact that there are Cat(n, n + 1) classical
Dyck paths, can be proven using the Cycle Lemma of Dvorestky and Motzkin [DM], and is perhaps best
attributed to ‘folklore’.

Theorem 1 For a 6= b coprime positive integers, the number of (a, b)-Dyck paths is the Catalan number
Cat(a, b) = 1

a+b

(
a+b
a,b

)
.

The following refinement from [ALW] can also be proven using the Cycle Lemma.

Theorem 2 The number of (a, b)-Dyck paths with i nontrivial vertical runs is the Narayana number

Nar(a, b; i) :=
1

a

(
a

i

)(
b− 1

i− 1

)
,
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and the number of (a, b)-Dyck paths with rj vertical runs of length j is the Kreweras number

Krew(a, b; r) :=
1

b

(
b

r0, r1, . . . , ra

)
=

(b− 1)!

r0!r1! · · · ra!
.

Equivalently, the first formula counts the (a, b)-Dyck paths with i− 1 valleys. We include trivial vertical
runs of length 0 in the second formula for aesthetic reasons. For example, the path in Figure 1 has 3
nontrivial vertical runs (i.e. 2 valleys) and r = (5, 1, 2, 0, 0, 0). The rational Narayana numbers will
appear below as the h-vector of the rational associahedron.

4 Rational Associahedra
4.1 Simplicial Complexes
We recall a collection of definitions related to simplicial complexes. A simplicial complex ∆ on a finite
ground set E is a collection of subsets of E such that if S ∈ ∆ and T ⊆ S, then T ∈ ∆. The elements
of ∆ are called faces, the maximal elements of ∆ are called facets, and ∆ is called pure if all of its facets
have the same cardinality. The dimension of a face S ∈ ∆ is dim(S) := |S| − 1 and the dimension of ∆
is the maximum dimension of a face in ∆. Observe that the ‘empty face’ ∅ has dimension −1.

If ∆ is a d-dimensional simplicial complex, the f -vector of ∆ is the integer sequence
f(∆) = (f−1, f0, . . . , fd), where f−1 = 1 and fi is the number of i-dimensional faces in ∆ for 0 ≤
i ≤ d. The reduced Euler characteristic χ(∆) is given by χ(∆) :=

∑d
i=−1(−1)ifi. The h-vector

of ∆ is the sequence h(∆) = (h−1, h0, . . . , hd) defined by the following polynomial equation in t:∑d
i=−1 fi(t − 1)d−i =

∑d
k=−1 hkt

k. The sequences f(∆) and h(∆) determine one another completely
for any simplicial complex ∆.

Shellability is a key property possessed by some pure simplicial complexes which determines the ho-
motopy type and h-vector of the complex. Let ∆ be a pure d-dimensional simplicial complex. A total
order F1 ≺ · · · ≺ Fr on the facets F1, . . . , Fr of ∆ is called a shelling order if for 2 ≤ k ≤ r, the
subcomplex of the simplex Fk defined by Ck := (

⋃k−1
i=1 Fi)∩Fk is a pure (d− 1)-dimensional simplicial

complex. The complex ∆ is called shellable if there exists a shelling order on its facets; it can be shown
that any pure d-dimensional shellable simplicial complex is homotopy equivalent to a wedge of spheres,
all of dimension d.

The number of the spheres in the homotopy type of a shellable complex can be read off from the
shelling order. More precisely, let ∆ be a pure d-dimensional simplicial complex which is shellable and
let F1 ≺ · · · ≺ Fr be a shelling order on its facets. For 1 ≤ k ≤ r, there exists a unique minimal face Mk

of the simplex Fk which is not contained in the union
⋃k−1
i=1 Fi of the facets which appear earlier in the

shelling order. The multiset of dimensions {dim(M1),dim(M2), . . . ,dim(Mk)} of these minimal added
faces is independent of the shelling order. In fact, we have that ith entry hi of the h-vector h(∆) equals
the number of minimal faces Mk with dim(Mk) = i. Moreover, the complex ∆ is homotopy equivalent
to a wedge of hd copies of the d-dimensional sphere. For future use, we recall the well-known fact that
adding a unique minimal face at each stage characterizes shelling orders.

Lemma 3 Let ∆ be a pure simplicial complex and let F1 ≺ · · · ≺ Fr be a total order on the facets of ∆.
The order ≺ is a shelling order if and only if for 1 ≤ k ≤ r there exists a unique minimal face Mk of the
simplex Fk which is not contained in

⋃k−1
i=1 Fi.
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4.2 Construction, Basic Facts, and Conjectures
For n ≥ 3, let Pn denote the regular n-gon. Recall that the (dual of the) classical associahedron Ass(n, n+
1)consists of all (noncrossing) collections of diagonals of Pn+2—the dissections of Pn+2—ordered by
inclusion. The diagonals of Pn+2 are therefore the vertices of Ass(n, n+1) and the facets of Ass(n, n+1)
are labeled by the maximal dissections—the triangulations of Pn+2. Associahedra were introduced by
Stasheff [St] in the context of nonassociative products arising in algebraic topology. Since its introduction,
the associahedron has become one of the most well-studied complexes in geometric combinatorics, with
connections to the permutohedron and exchange graphs of cluster algebras.

The classical associahedron has a Fuss analog defined as follows. Let m ≥ 1 be a Fuss parameter.
The Fuss associahedron Ass(n,mn + 1) has as its facets the collection of all dissections of Pmn+2 into
(m + 2)-gons. Fuss associahedra arise in the study of the generalized cluster complexes of Fomin and
Reading.

We define our further generalization Ass(a, b) of the classical associahedron as follows. The vertices of
Ass(a, b) will correspond to certain diagonals in Pb+1 and the faces will correspond to certain dissections
of Pb+1. Label the vertices of Pb+1 clockwise with 1, 2, . . . , b+ 1.

Given any Dyck path D and any lattice point P = (i, j) which is the bottom of a north step in D, we
associate a diagonal e(P ) in Pb+2 as follows. Consider the line ` with equation (y − j) = a

b (x− i). This
line intersects the path D in the lattice point P and in at least one other point to the right of P . Let Q be
the leftmost such point to the right of P and let (r, s) be the coordinates of Q. By coprimality and the fact
that b > a, we have that i+ 1 < s < b and s is not an integer. Let e(P ) be the diagonal (i, dse) in Pb+1,
where dse is the smallest integer ≥ s. Define a subset F (D) of diagonals of Pb+1 by

F (D) := {e(P ) : P is the bottom of a north step in D}. (4)

The right of Figure 2 shows the collection F (D) of diagonals corresponding to the given Dyck path D on
P9. It is topologically clear that the collection F (D) of diagonals in Pb+1 is noncrossing for any Dyck
path D. The sets F (D) form the facets of our simplicial complex.

Definition 4 For a < b, the simplicial complex Ass(a, b) has as its ground set the collection of diagonals
of Pb+1 and facets {F (D) : D is an (a, b)-Dyck path }.

The following basic facts about Ass(a, b) can be proven directly from its definition.

Proposition 5 1. The simplicial complex Ass(a, b) is pure and has dimension a− 2.

2. The number of facets in Ass(a, b) is Cat(a, b).

3. Define a subset S(a, b) of [b−1] by S(a, b) = {b iba c : 1 ≤ i < a}, where bsc is the greatest integer
≤ s. A diagonal of Pb+1 which separates i vertices from b − i − 1 vertices appears as a vertex in
the complex Ass(a, b) if and only if i ∈ S(a, b).

We will call a diagonal e of Pb+1 which satisfies the hypothesis in Part 3 of Proposition 5 (a, b)-
admissible. The vertex set of Ass(a, b) consists precisely of the (a, b)-admissible diagonals in Pb+1.

Proof: Part 1 follows from the fact that an (a, b)-Dyck path contains a north steps. For Part 2, observe
that if D and D′ are distinct Dyck paths, the multisets of x-coordinates of the bottoms of the north steps
of D and D′ are distinct. In particular, this means that F (D) and F (D′) are distinct sets of diagonals in
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Fig. 2: A (5,8)-Dyck path and the corresponding dissection of P9.

Pb+1. Part 2 follows from the fact that there are Cat(a, b) Dyck paths. Part 3 is a geometric observation
about lines of slope a

b . 2

In the classical case b = a + 1 and the Fuss case b = ka + 1, the faces of the associahedron Ass(a, b)
are given by collections of (a, b)-admissible diagonals in Pb+1 which are mutually noncrossing. Given
this characterization, it is clear that the associahedron carries an action of the cyclic group Zb+1 given by
rotation in these cases. Neither of these statements remains true at the rational level of generality. Indeed,
when (a, b) = (3, 5), the diagonals (1, 5) and (3, 5) of P6 are 3, 5-admissible and mutually noncrossing.
However, the set {(1, 5), (3, 5)} is not a face of Ass(3, 5). It can also be checked that Ass(3, 5) is not
closed under rotation of P6.

In spite of the last paragraph, we conjecture that Ass(a, b) carries a rotation action ‘up to homotopy’.
More precisely, let Ass′(a, b) denote the simplicial complex whose faces are collections of mutually non-
crossing (a, b)-admissible diagonals in Pb+1. It is clear that Ass′(a, b) carries a rotation action and that
Ass(a, b) is a subcomplex of Ass′(a, b).

Before stating our conjecture, we recall what it means for a complex to collapse onto a subcomplex; this
is a combinatorial deformation retraction. Let ∆ be a simplicial complex, F ∈ ∆ be a facet, and suppose
F ′ ⊂ F satisfies |F ′| = |F | − 1. If F ′ is not contained in any facet of ∆ besides F , we can perform an
elementary collapse by replacing ∆ with ∆ − {F, F ′}. A simplicial complex is said to collapse onto a
subcomplex if the subcomplex can be obtained by a sequence of elementary collapses.

Conjecture 6 The complexes Ass(a, b) and Ass′(a, b) are homotopy equivalent. In fact, the complex
Ass′(a, b) collapses onto the subcomplex Ass(a, b).

Figure 3 displays Ass(2, 5) (shown in blue) and Ass(3, 5) (shown in red) as subcomplexes of the sphere
Ass(4, 5). The complex Ass′(2, 5) coincides with Ass(2, 5) and the complex Ass′(3, 5) is obtained from
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Fig. 3: Ass(2, 5) and Ass(3, 5) are Alexander dual within Ass(4, 5).

the complex Ass(3, 5) by adding the middle and exterior triangles to the red complex. Observe that
Ass(3, 5) can be obtained by performing two elementary collapses on Ass′(3, 5).

Conjecture 6 would also have implications regarding Alexander duality. Recall that two topological
subspaces X and Y of a fixed sphere S are said to be Alexander dual to one another if Y is homotopy
equivalent to the complement of X in S. With b > 1 fixed, we have that a and b are coprime for
1 ≤ a < b if and only if b − a and b are coprime. Both of the complexes Ass(a, b) and Ass(a − b, b) sit
within the classical associahedron Ass(b − 1, b). The proof of Conjecture 6 would imply that Ass(a, b)
and Ass(a− b, b) are Alexander dual.

Proposition 7 Let a < b be coprime for b > 1. The subcomplexes Ass(a, b) and Ass(b − a, b) are
Alexander dual within the sphere Ass(b − 1, b). If Conjecture 6 is true, then the subcomplexes Ass(a, b)
and Ass(b− a, b) are also Alexander dual within Ass(b− 1, b).

Proof: It is routine to check that any diagonal of Pb+1 is either (a, b)-admissible or ((b−a), b)-admissible,
but not both. This means that the vertex sets of Ass′(a, b) and Ass′(b − a, b) partition the vertex set of
the simplicial sphere Ass′(b− 1, b). By definition, the faces of Ass′(a, b) and Ass′(b− a, b) are precisely
the faces of Ass(b − 1, b) whose vertex sets are contained in Ass′(a, b) and Ass′(b − a, b), respectively.
It follows that the complement of Ass′(a, b) inside Ass(b− 1, b) deformation retracts onto Ass′(b− a, b).
This proves the first statement. The second statement is clear. 2

4.3 Shellability and f- and h-vectors
We will prove that the simplicial complex Ass(a, b) is shellable by giving an explicit shelling order on its
facets. This shelling order will be induced by lexicographic order on the partitions whose Ferrers diagrams
lie to the northwest of (a, b)-Dyck paths.
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Theorem 8 The simplicial complex Ass(a, b) is shellable, hence homotopy equivalent to a wedge of
spheres. Moreover, there is a total order D1 ≺ D2 ≺ · · · ≺ DCat(a,b) on the set of (a, b)-Dyck paths
which induces a shelling order on the facets of Ass(a, b) such that the dimension of the minimal face
added upon addition of the facet F (Di) equals the number of nonempty vertical runs in Di, less one.

Proof: (Sketch.) We will find it convenient to identify the facets of Ass(a, b) with both Dyck paths and
partitions. We define a family of concepts which will be used for this proof only.

A partition λ is a weakly decreasing sequence (λ1 ≥ · · · ≥ λk > 0) of positive integers. The Ferrers
diagram associated with λ consists of λi left justified boxes in row i (we are using English notation). We
will use the lexicographic total order ≺ on partitions defined by λ ≺ µ if there exists an i ≥ 1 such that
λj = µj for 1 ≤ j < i and λi < µi. (We append an infinite string of zeros to the ends of λ and µ, if
necessary, for these relations to make sense.)

Given any (a, b)-Dyck path D, let λ(D) be the partition whose Ferrers diagram consists of the lattice
boxes to the northwest of D in the rectangle with corners (0, 0) and (b, a). For example, if (a, b) = (5, 8)
andD is the path in Figure 2, then λ(D) = (5, 2, 2). It is clear that distinct Dyck paths give rise to distinct
partitions, so the facets of Ass(a, b) are labeled by either (a, b)-Dyck paths or by partitions λwhich satisfy
λi ≤ max(b (a−i)ba c, 0) for all i.

Let λ(1) ≺ · · · ≺ λ(Cat(a,b)) be the restriction of lexicographic order to set of partitions which satisfy
λi ≤ max(b (a−i)ba c, 0) for all i. In particular, we have that λ(1) is the empty partition and λ(Cat(a,b))i =

max(b (a−i)ba c, 0). The total order ≺ induces a total order D1 ≺ · · · ≺ DCat(a,b) on (a, b)-Dyck paths and
a total order F (D1) ≺ · · · ≺ F (DCat(a,b)) on the facets of Ass(a, b).

In the case (a, b) = (3, 5), our order on partitions is

(0, 0) ≺ (1, 0) ≺ (1, 1) ≺ (2, 0) ≺ (2, 1) ≺ (3, 0) ≺ (3, 1).

The corresponding order on facets of Ass(3, 5) (written as diagonal sets in P6) is

{(1, 3), (1, 5)} ≺ {(2, 4), (1, 5)} ≺ {(2, 4), (2, 6)} ≺
{(1, 3), (3, 5)} ≺ {(2, 6), (3, 5)} ≺ {(1, 3), (4, 6)} ≺ {(2, 4), (4, 6)}.

We will prove that ≺ is a shelling order on the facets of Ass(a, b) and that the minimal added faces
corresponding to ≺ have the required dimensions. In fact, we will be able to describe these minimal
added faces explicitly. Given any Dyck path D, recall that the corresponding facet F (D) in Ass(a, b) is
given by F (D) = {e(P ) : P is the bottom of a north step in D}. We define the valley face V (D) to be
the subset of F (D) given by V (D) := {e(P ) : P is a valley in D}.

Claim: 1 ≤ k ≤ Cat(a, b), the valley face V (Dk) is the unique minimal face of F (Dk) which is not
contained in

⋃k−1
i=1 F (Di).

By Lemma 3 and the discussion preceding it, this claim implies that ≺ is a shelling order with the
dimension of the minimal added face as described (observe that in any Dyck path, the number of valleys
equals the number of vertical runs), completing the proof of the theorem. The proof of this claim is
omitted in this extended abstract. 2

As a corollary to the above result, we get product formulas for the f - and h-vectors of Ass(a, b), as well
as its reduced Euler characteristic. Define the rational Kirkman numbers by

Kirk(a, b; i) :=
1

a

(
a

i

)(
b+ i− 1

i− 1

)
. (5)
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Corollary 9 Let (f−1, f0, . . . , fa−2) and (h−1, h0, . . . , ha−2) be the f - and h-vectors of Ass(a, b). For
1 ≤ i ≤ a we have that fi−1 = Kirk(a, b; i) and hi−1 = Nar(a, b; i). The reduced Euler characteristic of
Ass(a, b) is the derived Catalan number Cat′(a, b).

Proof: By Theorem 8 and Lemma 3, we have that hi−1 equals the number of (a, b)-Dyck paths which
have exactly i vertical runs. By Theorem 2, this equals the Narayana number Nar(a, b; i).

To prove the statement about the f -vector, one must check that

a−2∑

i=−1
Kirk(a, b; i+ 1)(t− 1)a−i−2 =

a−2∑

k=1

Nar(a, b; k + 1)tk.

The statement about the Euler characteristic reduces to proving that

a−2∑

i=−1
(−1)i+1Kirk(a, b; i+ 1) = Cat′(a, b).

Both of these identities are left to the reader. 2

Conjecture 6 and Proposition 7 assert that the symmetry (a < b) ↔ (b − a < b) on pairs of coprime
positive integers shows up in rational associahedra as an instance of Alexander duality. Corollary 9 shows
that the categorification Cat(x) 7→ Cat′(x) of the Euclidean algorithm presented in Section 2 sends the
number of facets of Ass(a, b) to the reduced Euler characteristic of Ass(a, b). This ‘categorifies’ the
number theoretic properties of rational Catalan numbers to the context of associahedra.
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des probabilités, C. R. Acad. Sci. Paris, 240 (1955), 1188–1189.

[Rei] V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1-3) (1997),
195–222.

[Shi1] J.-Y. Shi, Sign types corresponding to an affine Weyl group, J. London Math. Soc., 35 (1987),
56–74.

[Som] E. Sommers, B-stable ideals in the nilradical of a Borel subalgebra, Canad. Math. Bull. 48 (2005),
460–472.

[Stan] R. Stanley, Catalan addendum. http://www-math.mit.edu/ rstan/ec/catadd.pdf

[St] J. D. Stasheff, Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108 (1963), 275–
292; ibid. 293–312.

[W] H. Weyl, The classical groups, Princeton University Press, (1939).



FPSAC 2013 Paris, France DMTCS proc. AS, 2013, 975–986

Homomesy in products of two chains
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Abstract. Many cyclic actions τ on a finite set S of combinatorial objects, along with a natural statistic f on S,
exhibit “homomesy”: the average of f over each τ -orbit in S is the same as the average of f over the whole set
S. This phenomenon was first noticed by Panyushev in 2007 in the context of antichains in root posets; Armstrong,
Stump, and Thomas proved Panyushev’s conjecture in 2011. We describe a theoretical framework for results of this
kind and discuss old and new results for the actions of promotion and rowmotion on the poset that is the product of
two chains.

Résumé. Plusieurs actions cycliques τ sur un ensemble fini S d’objets combinatoires muni d’une statistique naturelle
f sur S démontrent une “homomesie”: la moyenne de f sur une orbite de τ en S est la même que la moyenne de f
sur la totalité de l’ensemble S. Ce phénomène a été d’abord remarqué par Panyushev en 2007 dans le contexte des
anti-chaı̂nes dans des posets de racine; Armstrong, Stump, et Thomas ont demontré la conjecture de Panyushev en
2011. On décrit un contexte de travail pour énoncer des résultats de ce genre et on discute de nouveaux et d’anciens
résultats pour des actions de “promotion” et “rowmotion” sur le poset qui est le produit de deux chaı̂nes.

Keywords: antichains, combinatorial ergodicity, homomesy, orbit, order ideals, poset, product of chains, promotion,
rowmotion, sandpile, toggle group.

1 Introduction
We begin with the definition of our main unifying concept, and supporting nomenclature.

Definition 1. Given a finite set S of combinatorial objects, an invertible map τ from S to itself, and a
function (or “statistic”) f : S → K taking values in some field K of characteristic zero, we say the triple
(S, τ, f) exhibits homomesy iff there exists a constant c ∈ K such that for every τ -orbit O ⊂ S

1

#O
∑

x∈O
f(x) = c. (1)

In this situation we say that the function f : S → K is homomesic (Greek for “same middle”) relative to
the action of τ on S. If c is 0, we say that f is 0-mesic.

†Partially supported by NSF Grant #1001905

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



976 J. Propp and T. Roby

We also apply the term “homomesic” more broadly to situations in which S is not a set of combinatorial
objects or the statistic f takes values in a vector space over a field of characteristic 0 (as in sections 2.2
and 2.3). Homomesy can be restated equivalently as all orbit-averages being equal to the global average:

1

#O
∑

x∈O
f(x) =

1

#S
∑

x∈S
f(x). (2)

This is the form in which Panyushev [Pan08] stated his conjecture.
We have found many instances of (2) where the actions τ and the statistics f are natural ones. Many (but

far from all) situations that support examples of homomesy also support examples of the cyclic sieving
phenomenon of Reiner, Stanton, and White [RSW04]. Examples of homomesy are given starting with
Section 2.

At the stated level of generality this notion appears to be new, but specific instances can be found in
earlier literature. In particular, in 2007, Panyushev [Pan08] conjectured and in 2011, Amstrong, Stump,
and Thomas [AST11] proved that if S is the set of antichains in the root poset of a finite Weyl group, Φ is
the operation variously called the Brouwer-Schrijver map [BS74], the Fon-der-Flaass map [Fon93, CF95],
the reverse map [Pan08], Panyushev complementation [AST11], and rowmotion [SW12], and f(A) is the
cardinality of the antichain A, then (S,Φ, f) satisfies (2).

Our main results for this paper involve studying the action of this rowmotion operator and also the
promotion operator on the poset P = [a] × [b], the product of two chains. (Here and throughout this
article we use [n] to denote the set {1, 2, . . . , n} and the associated n-element poset.) We show that the
statistic f := #A, the size of the antichain, is homomesic with respect to the promotion operator, and that
the statistic f = #I(A), the size of the corresponding order ideal, is homomesic with respect to both the
promotion and rowmotion operators.

Although these results are of intrinsic interest, we think the main contribution of the paper is its iden-
tification of homomesy as a phenomenon that (as we expect future articles to show) occurs quite widely.
Within any linear space of functions on S, the functions that are homomesic under τ , like the functions
that are invariant under τ , form a subspace, and there is a loose sense in which the notions of invariance
and homomesy (or, more strictly speaking, 0-mesy) are dual; an extremely clean case of this duality is
outlined in subsection 2.2. This extended abstract gives a general overview of the broader picture as well
as a few specific examples done in more detail for the operators of promotion and rowmotion on the poset
[a]× [b].

The authors are grateful to Drew Armstrong, Anders Björner, Barry Cipra, Karen Edwards, Robert Ed-
wards, Darij Grinberg, Shahrzad Haddadan, Svante Linusson, Vic Reiner, Ralf Schiffler, Richard Stanley,
Jessica Striker, Peter Winkler and Ben Young for useful conversations. Mike LaCroix wrote fantastic
postscript code to generate animations and pictures that illustrate our maps operating on order ideals on
products of chains. Ben Young also provided a diagram which we modified for Figure 6. Two anony-
mous referees made very helpful suggestions for improving this abstract. Several of our ideas were first
incubated at meetings of the long-running Cambridge Combinatorial Coffee Club (CCCC), organized by
Richard Stanley.

2 Examples of Homomesy
2.1 Rotation of bit-strings
We begin with a simple concrete example to clarify the definition.
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. . .
τ→ 0011

τ→ 0110
τ→ 1100

τ→ 1001
τ→ . . .

f ↓ f ↓ f ↓ f ↓
0 2 4 2

. . .
τ→ 1010

τ→ 0101
τ→ . . .

f ↓ f ↓
3 1

Fig. 1: The two orbits of the action of the cyclic shift τ = CL on binary strings consisting of two 0’s and two 1’s.
The average value of the inversion statistic f is (0 + 2 + 4 + 2)/4 = 2 on the orbit of size 4 and (3 + 1)/2 = 2 on
the orbit of size 2.

Example 1. Let S :=
(
[n]
k

)
, thought of as the set of length n binary strings with k 1’s and n− k 0’s. Set

f(b) := inv(b) := #{i < j : bi > bj} and τ := CL : S → S the leftward cyclic shift operator given by
b = b1b2 · · · bn 7→ b2b3 · · · bnb1. Then over any orbit O we have

1

#O
∑

s∈O
f(s) =

k(n− k)

2
=

1

#S
∑

s∈S
f(s).

This fact can be proved in isolation, but it also follows from one of our results from Section 3, with
a = k and b = n−k. More specifically, we have a bijection between order-ideals in the poset P = [a]×[b]
and strings consisting of a−1’s and b+1’s (which in turn correspond to bit strings, if one replaces the−1’s
by 0’s). Then promotion on J(P ) is equivariant with leftward cyclic shift on strings, and the cardinality
of an order ideal is equal to the number of inversions in the associated string. Theorem 11 then yields the
claimed result on bit-strings.

In the specfic case n = 4, k = 2, the six-element set decomposes into two orbits, shown in Figure 1.
As frequently happens, not all orbits are the same size; however, one could also view the orbit of size 2 as
a “multiset orbit” of size 4, cycling through the same set of elements twice. This perspective, where we
view all orbits as multiset orbits of the same size, facilitates the discussion of certain comparisons.

2.2 Linear actions on vector spaces
Let V be a (not necessarily finite-dimensional) vector space over a field K of characteristic zero, and
define f(v) = v (that is, our “statistic” is just the identity function). Let T : V → V be a linear map such
that Tn = I (the identity map on V ) for some fixed n ≥ 1 (i.e., I − Tn is the 0-map). Say v is invariant
under T if Tv = v (i.e., v is in the kernel of I−T ) and 0-mesic under T if (v+Tv+ · · ·+Tn−1v)/n = 0
(i.e., v is in the kernel of I+T +T 2 + · · ·+Tn−1). Every v ∈ V can be written uniquely as the sum of an
invariant vector v and a 0-mesic vector v̂ (specifically, one can check that v = (v+Tv+ · · ·+Tn−1v)/n
and v̂ = v − v work, and no other solution is possible because that would yield a nonzero vector that
is both invariant and 0-mesic, which does not exist). In representation-theoretic terms, we are applying
symmetrization to v to extract from it the invariant component v associated with the trivial representation
of the cyclic group, and the homomesic (0-mesic) component v̂ consists of everything else.

This picture relates more directly to our earlier definition if we use the dual space V ∗ of linear func-
tionals on V as the set of statistics on V . As a concrete example, let V = Rn and let T be the cyclic
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shift of coordinates sending (x1, x2, ..., xn) to (xn, x1, ..., xn−1). The T -invariant functionals form a 1-
dimensional subspace of V ∗ spanned by the functional (x1, x2, ..., xn) 7→ x1 + x2 + ... + xn, while the
homomesic functionals form an (n − 1)-dimensional subspace of V ∗ spanned by the n − 1 functionals
(x1, x2, ..., xn) 7→ xi − xi+1 (for 1 ≤ i ≤ n− 1).

2.3 Sandpile dynamics

Let G be a directed graph with vertex set V . For v ∈ V let outdeg(v) be the number of directed edges
emanating from v, and for v, w ∈ V let deg(v, w) be the number of directed edges from v to w (which we
will permit to be larger than 1, even when v = w). Define the combinatorial Laplacian of G as the matrix
∆ (with rows and columns indexed by the vertices of V ) whose v, vth entry is outdeg(v)−deg(v, v) and
whose v, wth entry for v 6= w is −deg(v, w). Specify a global sink t with the property that for all v ∈ V
there is a forward path from v to t, let V − = V \ {t}, and let ∆′ (the reduced Laplacian) be the matrix ∆
with the row and column associated with t removed. By the Matrix-Tree theorem, ∆′ is nonsingular. A
sandpile configuration onG (with sink at t) is a function σ from V − to the nonnegative integers. (For more
background on sandpiles, see Holroyd, Levine, Mészáros, Peres, Propp, & Wilson [HLMPPW08].) We
say σ is stable if σ(v) < outdeg(v) for all v ∈ V −. For any sandpile-configuration σ, Dhar’s least-action
principle for sandpile dynamics (see Levine & Propp [LP10]) tells us that the set of nonnegative-integer-
valued functions u on V − such that σ − ∆′u is stable has a minimal element φ = φ(σ) in the natural
(pointwise) ordering; we call φ the firing vector for σ and we call σ−∆′φ the stabilization of σ, denoted
by σ◦. If we choose a source vertex s ∈ V −, then we can define an action on sandpile configurations
via τ(σ) = (σ + 1s)

◦, where 1v denotes the function that takes the value 1 at v and 0 elsewhere. Say
that σ is recurrent (relative to s) if τm(σ) = σ for some m > 0. (This notion of recurrence is slightly
weaker than that of [HLMPPW08]; they are equivalent when every vertex is reachable by a path from
s.) Then τ restricts to an invertible map from the set of recurrent sandpile configurations to itself. Let
f(σ) = φ(σ+ 1s). Since τ(σ) = σ+ 1s−∆′f(σ) we have τ(σ)− σ = 1s−∆′f(σ); if we average this
relation over all σ in a particular τ -orbit, the left side telescopes, giving 0 = 1s −∆′f , where f denotes
the average of f over the orbit. Hence:

Proposition 2. For the action of τ on recurrent sandpile configurations, the function f : σ 7→ φ(σ + 1s)
is homomesic, and its orbit-average is the function f∗ on V − such that ∆′f∗ = 1s (unique because ∆′ is
nonsingular).

Example 2. Figure 2 shows an example of the τ -orbits for the case where G is the bidirected cycle graph
with vertices 1, 2, 3, and 4, with a directed edge from i to j iff i − j = ±1 mod 4; here the discrete
Laplacian is

∆ =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


 .

Let the source be s = 2 and global sink be t = 4. The sandpile configuration σ is represented by the triple
(σ(1), σ(2), σ(3)). The four recurrent configurations σ are (1, 0, 1), (1, 1, 1), (0, 1, 1), and (1, 1, 0), and
the respective firing vectors f(σ) are (0, 0, 0), (1, 2, 1), (0, 1, 1), and (1, 1, 0). The average value of the
firing vector statistic f is f∗ = ( 1

2 , 1,
1
2 ) on each orbit. Treating f∗ as a column vector and multiplying



Homomesy in products of two chains 979

. . .
τ→ (1, 0, 1)

τ→ (1, 1, 1)
τ→ . . .

f ↓ f ↓
(0, 0, 0) (1, 2, 1)

. . .
τ→ (0, 1, 1)

τ→ (1, 1, 0)
τ→ . . .

f ↓ f ↓
(0, 1, 1) (1, 1, 0)

Fig. 2: The two orbits in the action of the sandpile map τ on recurrent configurations on the cycle graph of size 4, with
source at 2 and sink at 4. There are two orbits, each of size 2, and the average of f along each orbit is (1/2, 1, 1/2).

on the left by ∆′ gives the column vector (0, 1, 0) = 1s:



2 −1 0
−1 2 −1

0 −1 2






1/2
1

1/2


 =




0
1
0


 .

Similar instances of homomesy were known for a variant of sandpile dynamics called rotor-router
dynamics; see Holroyd-Propp [HP10]. It was such instances of homomesy that led the second author to
seek instances of the phenomenon in other, better-studied areas of combinatorics.

3 Promotion and rowmotion in products of two chains
For a finite poset P , we let J(P ) denote the set of order ideals (or down-sets) of P , F (P ) denote the
set of (order) filters (or up-sets) of P , and A(P ) be the set of antichains of P . (For standard definitions
and notation about posets and ideals, see Stanley [EC1].) There is a bijection J(P ) ↔ A(P ) given
by taking the maximal elements of I ∈ J(P ) or conversely by taking the order ideal geneated by an
antichain A ∈ A(P ). Similarly, there is a bijection F (P ) ↔ A(P ). Composing these with the comple-
mentation bijection between J(P ) and F (P ) leads to an interesting map that has been studied in several
contexts [BS74, Fon93, CF95, Pan08, AST11, SW12], namely ΦA := A(P )→ J(P )→ F (P )→ A(P )
and the companion map ΦJ := J(P )→ F (P )→ A(P )→ J(P ), where the subscript indicates whether
we consider the map to be operating on antichains or order ideals. We often drop the subscript and just
write Φ when context makes clear which is meant. Following Striker and Williams [SW12] we call this
map rowmotion.

Let [a] × [b] denote the poset that is a product of chains of lengths a and b. Figure 5 shows an orbit
of the action of ΦJ starting from the ideal generated by the antichain {(2, 1)}. Note that the elements of
[4] × [2] here are represented by the squares rather than the points in the picture, with covering relations
represented by shared edges. One can also view this as an orbit of ΦA if one just considers the maximal
elements in each shaded order ideal.

This section contains our main specific results, namely that the following triples exhibit homomesy:

(J([a]× [b]),ΦJ ,#I) ; (A([a]× [b]),ΦA,#A) ; and (J([a]× [b]), ∂J ,#I) .

Here ∂J is the promotion operator to be defined in the next subsection, and #I (resp. #A) denotes the
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statistic on J(P ) (resp. A(P )) that is the cardinality of the order ideal I (resp. the antichain A). All maps
operate on the left (e.g., we write ∂JI , not I∂J ).

3.1 Background on the toggle group
Several of our examples arise from the toggle group of a finite poset (first explicitly defined in [SW12]; see
also [CF95, Sta09, SW12]). We review some basic facts and provide some pointers to relevant literature.

Definition 3. Given x ∈ P , we define the toggle operation σx : J(P )→ J(P ) (“toggling at x”) via

σx(I) =

{
I 4 {x} if I 4 {x} ∈ J(P );
I otherwise.

Proposition 4 ([CF95]). (a) For every x ∈ P , σx is an involution, i.e., σ2
x = 1.

(b) For every x, y ∈ P where neither x covers y nor y covers x, the toggles commute, i.e., σxσy = σyσx.

Proposition 5 ([CF95]). Let x1, x2, . . . , xn be any linear extension (i.e., any order-preserving listing of
the elements) of a poset P with n elements. Then the composite map σx1σx2 · · ·σxn coincides with the
rowmotion operator ΦJ .

Corollary 6 ([SW12], Cor. 4.9). Let P be a graded poset of rank r, and set Tk :=
∏
|x|=k σx, the product

of all the toggles of elements of fixed rank k. (This is well-defined by Proposition 4.) Then the composition
T1T2 · · ·Tr coincides with ΦJ , i.e., rowmotion is the same as toggling by ranks from top to bottom.

We focus on the case P = [a]× [b], whose elements we write as (k, `); the Hasse diagram of P consists
of the points (i, j) := (`−k, `+k−2) (1 ≤ k ≤ a, 1 ≤ ` ≤ b) so that the poset-elements (k, `) = (1, 1),
(a, 1), (1, b), and (a, b) are respectively the bottom, left, right, and top elements of the Hasse diagram.

Definition 7. In this situation, we call the sets with constant j ranks (in accordance with standard poset
terminology), sets with constant i files, sets with constant j− i positive fibers, and sets with constant j+ i
negative fibers. (The words “positive” and “negative” indicate the slopes of the lines on which the fibers
lie in the Hasse diagram.) More specifically, the element (k, `) ∈ [a] × [b] belongs to rank k + ` − 2, to
file `− k, to positive fiber k, and to negative fiber `.

To each order ideal I ∈ J([a]× [b]) we associate a lattice path of length a+b joining the points (−a, a)
and (b, b) in the plane, where each step is of type (i, j)→ (i+ 1, j+ 1) or of type (i, j)→ (i+ 1, j− 1),
as follows. Given 1 ≤ k ≤ a and 1 ≤ ` ≤ b, represent (k, `) ∈ [a] × [b] by the square centered
at (` − k, ` + k − 1) with vertices (` − k, ` + k − 2), (` − k, ` + k), (` − k − 1, ` + k − 1), and
(`− k + 1, `+ k − 1). Then the squares representing the elements of the order ideal I form a “Russian-
style” Young diagram whose upper border is a path joining some point on the line of slope −1 to some
point on the line of slope +1. Adding extra edges of slope−1 at the left and extra edges of slope +1 at the
right, we get a path joining (−a, a) to (b, b). See Figure 5 for several examples of this correspondence.

Definition 8. We can think of this path as the graph of a (real) piecewise-linear function hI : [−a, b] →
[0, a+ b]; we call this function (or its restriction to [−a, b]∩Z) the height function representation of the
ideal I . To this height function we can in turn associate a word consisting of a −1’s and b +1’s, whose
ith term (for 1 ≤ i ≤ a + b) is hI(i − a) − hI(i − a − 1) = ±1; we call this the sign-word associated
with the order ideal I .

Note that the sign-word simply lists the slopes of the segments making up the path, and that either the
sign-word or the height-function encodes all the information required to determine the order ideal.
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Proposition 9. Let I ∈ J([a]× [b]) correspond with height function hI : [−a, b]→ R. Then

b∑

k=−a
hI(k) =

a(a+ 1)

2
+
b(b+ 1)

2
+ 2#I .

So to prove that the cardinality of I is homomesic, it suffices to prove that the function hI(−a) +
hI(−a + 1) + · · · + hI(b) is homomesic (where our combinatorial dynamical system acts on height
functions h via its action on order ideals I).

3.2 Promotion in products of two chains
In general a ranked poset P may not have an embedding in Z×Z that allows files to be defined; when they
are, however, then all toggles corresponding to elements within the same file commute by Proposition 4,
so their product is a well defined operation on J(P ). This allows one to define an operation on J(P ) by
successively toggling all the files from left to right, in analogy to Corollary 6.

Theorem 10 (Striker-Williams [SW12, § 6.1]). Let x1, x2, . . . , xn be any enumeration of the elements
(k, `) of the poset [a] × [b] arranged in order of increasing ` − k. Then the action on J(P ) given by
∂ := σxn

◦ σxn−1
◦ · · · ◦ σx1

viewed as acting on the paths (or binary strings representing them) is just a
leftward cyclic shift.

Striker and Williams call this well-defined composition ∂ promotion (since it is related to Schützenberger’s
notion of promotion on linear extensions of posets). They show that it is conjugate to rowmotion in the
toggle group, obtaining a much simpler bijection to prove Panyushev’s conjecture in Type A, and gen-
eralizing an equivariant bijection for [a] × [b] of Stanley [Sta09, remark after Thm 2.5]. This definition
and their results apply more generally to the class they define of rc-posets, whose elements fit neatly into
“rows” and “columns” (which we call here “ranks” and “files”). As with Φ, we can think of ∂ as operating
either on J(P ) or A(P ), adding subscripts ∂J or ∂A if necessary. Since the cyclic left-shift has period
a+ b, so does ∂.

Theorem 11. The cardinality of order ideals is homomesic under the action of promotion ∂J .

Proof: To show that #I is homomesic, by Proposition 9 it suffices to show that hI(k) is homomesic for all
−a ≤ k ≤ b. Note that here we are thinking of I as varying over J(P ), and hI as being a function-valued
function on J(P ).

We can write hI(k) as the telescoping sum hI(−a)+(hI(−a+1)−hI(−a))+(hI(−a+2)−hI(−a+
1)) + · · · + (hI(k) − hI(k − 1)); to show that hI(k) is homomesic for all k, it will be enough to show
that all the increments hI(k) − hI(k − 1) are homomesic. Note that these increments are precisely the
terms of the sign-word of I . Create a square array with a+ b rows and a+ b columns, where the rows are
the sign-words of I and its successive images under the action of ∂; each row is just the cyclic left-shift
of the row before. Since each row contains a −1’s and b +1’s, the same is true of each column. Thus, for
all k, the average value of the kth terms of the sign-words of I , ∂I , ∂2I , . . . , ∂a+b−1I is (b− a)/(b+ a).
This show that the increments are homomesic, as required, which suffices to prove the theorem. 2

Our proof actually shows the more refined result that the restricted cardinality functions #(I∩S) where
S is any file of [a]× [b] are homomesic with respect to the action of ∂J .

The next example shows that the cardinality of the antichain AI associated with the order ideal I is not
homomesic under the action of promotion ∂.
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1

Area = 0

2

Area = 2

3

Area = 4

4

Area = 6

5

Area = 3

(0+2+4+6+3) / 5 = 3

Fig. 3: One promotion orbit in J([3]× [2])

Example 3. Consider the two promotion orbits of ∂A shown in Figures 3 and 4. Although the statistic #I
is homomesic, giving an average of 3 in both cases, the statistic #A averages to 1

5 (0 + 1 + 1 + 1 + 1) =
4
5 in the first orbit and to 1

5 (1 + 2 + 2 + 1 + 2) = 8
5 in the second.

3.3 Rowmotion in products of two chains
Unlike promotion, the rowmotion operator turns out to exhibit homomesy with respect to both the statistic
that counts the size of an order ideal and the statistic that counts the size of an antichain.

3.3.1 Rowmotion on order ideals in J([a]× [b])

We can describe rowmotion nicely in terms of the sign-word. We define blocks within the sign-word as
occurrences of the subword −1,+1 (that is, a −1 followed immediately by a +1). Once we have found
all the blocks, we identify all the gaps between the blocks, where a gap is bounded by two consecutive
blocks, or between the beginning of the word and the first block, or between the last block and the end
of the word. (In the case where there are no blocks at all, the entire word is considered a gap.) To apply
rowmotion to a sign-word, reverse all the blocks and all the gaps. For example, consider the binary word
−1,+1,+1,−1,−1,−1,+1,+1. To apply rowmotion to it, we first divide it into blocks and gaps as
−1,+1, | +1,−1,−1, | −1,+1, | +1, and then reverse each block and gap in place, obtaining +1,−1, |
−1,−1,+1, | +1,−1, | +1, or (dropping the dividers) +1,−1,−1,−1,+1,+1,−1,+1. Note that the
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1

Area = 1

2

Area = 3

3

Area = 5

4

Area = 2

5

Area = 4

(1+3+5+2+4) / 5 = 3

Fig. 4: The other promotion orbit in J([3]× [2])

dividers correspond to the red dots in Figure 5, so one can visualize ΦJ as reversing (180◦ rotation of)
each lattice-path segment that corresponds to a block or a gap in the sign-word. (See animations within
talk slides at http://www.math.uconn.edu/˜troby/combErg2012kizugawa.pdf.)

It turns out that all we really need to know for purposes of proving homomesy is that the sign-word for
I has −1,+1 in a pair of adjacent positions if and only if the sign-word for ΦI has +1,−1 in the same
two positions. This can be seen directly for J([a] × [b]) from the description of ΦJ given at the start of
Section 3. (See also Figure 5.) This situation occurs if and only if the antichain A(Φ(I)) contains an
element in the associated file of [a]× [b].

Theorem 12. The cardinality of order ideals is homomesic under the action of rowmotion ΦJ .

Proof: As in the previous section, to prove that #I is homomesic under rowmotion, it suffices to prove
that all the increments hI(k) − hI(k − 1) are homomesic. A result of Fon-der-Flaass [Fon93, Theorem
2], states that the size of any Φ-orbit in [a]× [b] is a divisor of a+ b, so this is equivalent to showing that
for all k, the kth element of the sign-word of

∑a+b−1
m=0 ΦmI under the action of rowmotion is independent

of I .
Create a square array with a + b rows and a + b columns, where the rows are the sign-words of I and

its successive images under the action of Φ. Consider any two consecutive columns of the array, and the
width-2 subarray they form. There are just four possible combinations of values in a row of the subarray:
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1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4

Fig. 5: A rowmotion orbit in J([4]× [2])

(+1,+1), (+1,−1), (−1,+1), and (−1,−1). However, we have just remarked that a row is of type
(−1,+1) if and only if the next row is of type (+1,−1) (where we consider the row after the bottom
row to be the top row). Hence the number of rows of type (−1,+1) equals the number of rows of type
(+1,−1). It follows that any two consecutive column-sums of the full array are equal, since other row
types contribute the same value to each column sum. That is, within the original square array, every two
consecutive columns have the same column-sum. Hence all columns have the same column-sum. This
common value of the column-sum must be 1/(a+b) times the grand total of the values of the square array.
But since each row contains a−1’s and b+1’s, each row-sum is b−a, so the grand total is (a+ b)(b−a),
and each column-sum is b − a. Since this is independent of which rowmotion orbit we are in, we have
proved homomesy for elements of the sign-word of I as I varies over J([a] × [b]), and this gives us the
desired result about #I , just as in the proof of Theorem 11. 2

3.3.2 Rowmotion on antichains in A([a]× [b])

In his survey article on promotion and evacuation, Stanley [Sta09, remark after Thm 2.5] gave a concrete
equivariant bijection between rowmotion ΦA acting on antichains in A([a] × [b]) and cyclic rotation of
certain binary strings. Armstrong (private communication) gave a variant description that clarified the
correspondence, which he learned from Thomas and which we use in what follows.
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7

6

5

4

3

2

1 8

9

10

11
12

-1+1-1-1-1 -1 -1 -1+1+1 +1 +1

Fig. 6: The Stanley-Thomas word for a 3-element antichain in A([7]× [5]).

Definition 13. Fix a, b, and n = a+ b. Call sets in [a]× [b] of the form {(k, `) : ` ∈ [b]} (with k fixed)
rows and sets of the form {(k, `) : k ∈ [a]} (with ` fixed) columns. Define the Stanley-Thomas word
w(A) of an antichain A in [a]× [b] to be w1w2 · · ·wa+b ∈ {−1,+1}a+b with

wi :=

{
+1, if A has an element in row i (i ∈ [a]) or A has NO element in column i (a+ 1 ≤ i ≤ n);
−1 otherwise.

Example 4. As illustrated in Figure 6, let A = {(1, 5), (5, 3), (6, 2)}. By definition, the Stanley-
Thomas word w(A) should have +1 in entries 1, 5, and 6 (rows where A appears) and in entries 8
and 11 (columns where A does not appear, with indices shifted by 7 = a). Indeed one sees that
w(A) = +1,−1,−1,−1,+1,+1,−1, | +1,−1,−1,+1,−1 (where the divider between a and a + 1
is just for ease of reading). Note that applying rowmotion gives A′ = Φ(A) = {(2, 4), (6, 3), (7, 1)}
with Stanley-Thomas word w(A′) = −1,+1,−1,−1,−1,+1,+1, | −1,+1,−1,−1,+1 = CRw(A),
the rightward cyclic shift of w(A).

Proposition 14 (Stanley-Thomas). The correspondence A ←→ wA is a bijection from A([a] × [b]) to
binary wordsw ∈ {−1,+1}a+b with exactly a−1’s and b+1’s. Furthermore, this bijection is equivariant
with respect to the actions of rowmotion ΦA and rightward cyclic shift CR.

Note that the classical result that Φa+bA is the identity map follows immediately.

Theorem 15. The cardinality of antichains is homomesic under the action of rowmotion ΦA.

Proof: It suffices to prove a more refined claim, namely, that if S is any row or column of [a] × [b], the
cardinality ofA∩S is homomesic under the action of rowmotion onA. By the previous result, rowmotion
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corresponds to cyclic shift of the Stanley-Thomas word, and the entries in the Stanley-Thomas word tell
us which fibers (rows or columns) contain an element of A and which do not. Specifically, for 1 ≤ k ≤ a,
if S is the kth row, then A intersects S iff the kth symbol of the Stanley-Thomas word is a +1. Since
the Stanley-Thomas word contains a −1’s and b +1’s, the multiset orbit of A of size a + b has exactly b
elements that are antichains that intersect S. That is, the sum of #(A ∩ S) over the multiset orbit of size
a + b is exactly b, for each of the a rows of [a] × [b]. Summing over all the rows, we see that the sum of
#A over the multiset orbit is ab. Hence #A is homomesic with average ab/(a+ b). 2

References
[Arm06] D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem.

Amer. Math. Soc. 202 (2006), no. 949.

[AST11] D. Armstrong, C. Stump and H. Thomas, A uniform bijection between nonnesting and non-
crossing partitions, preprint, available at arXiv:math/1101.1277v2 (2011).

[BS74] A. Brouwer and A. Schrijver, On the period of an operator, defined on antichains, Math. Centrum
report ZW 24/74 (1974).

[CF95] P. Cameron and D.G. Fon-Der-Flaass, Orbits of Antichains Revisited, Europ. J. Comb. 16 (1995),
545–554.

[Fon93] D.G. Fon-Der-Flaass, Orbits of Antichains in Ranked Posets, Europ. J. Comb. 14 (1993), 17–22.

[HP10] A. Holroyd and J. Propp, Rotor walks and Markov chains, in Algorithmic Probability and Com-
binatorics, American Mathematical Society (2010), 105–126.
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The height of the Lyndon tree

Lucas Mercier and Philippe Chassaing
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Abstract. We consider the set Ln of n-letters long Lyndon words on the alphabetA = {0, 1}. For a random uniform
element Ln of the set Ln, the binary tree L(Ln) obtained by successive standard factorization of Ln and of the
factors produced by these factorization is the Lyndon tree of Ln. We prove that the height Hn of L(Ln) satisfies

lim
n

Hn

lnn
= ∆,

in which the constant ∆ is solution of an equation involving large deviation rate functions related to the asymptotics
of Eulerian numbers (∆ ' 5.092 . . .). The convergence is the convergence in probability of random variables.

Résumé. Pour un mot Ln choisi au hasard uniformément dans l’ensemble des mots de Lyndon de longueur n sur
l’alphabet {0, 1}, on montre que la hauteur Hn de l’arbre de Lyndon associé possède le comportement asymptotique
suivant

lim
n

Hn

lnn
= ∆.

La constante ∆ est définie à l’aide de fonctions de taux liées au comportement asymptotique des nombres eulériens
(incidemment, ∆ ' 5.092 . . .). La convergence est la convergence en probabilité des variables aléatoires.

Keywords: Lyndon word, Lyndon tree, branching random walk, Galton-Watson tree, Yule process, binary search tree

1 Introduction
1.1 Lyndon words and Lyndon trees
We recall some notations of Lothaire (1997) for readability. For an alphabet A, An is the set of n-letters
words, and the language, i.e. the set of finite words,

{∅} ∪ A ∪ A2 ∪ A3 ∪ . . . ,

is denoted by A?. The length of a word w ∈ A? is denoted by |w|. A total order, ≺, on the alphabet A,
induces a corresponding lexicographic order, again denoted by ≺, on the language A? : the word w1 is
smaller than the word w2 (for the lexicographic order, w1 ≺ w2) at one of the following conditions: either
w1 is a prefix of w2, or there exist words p, v1, v2 in A? and letters a1 ≺ a2 in A, such that w1 = pa1v1

and w2 = pa2v2.
The notion of Lyndon word has many equivalent definitions, to be found, for instance, in Lothaire

(1997). For any factorization w = uv of w, vu is called a rotation of w, and the set 〈w〉 of rotations of w
is called the necklace of w. A word w is primitive if |w| = #〈w〉.
1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



988 L. Mercier and Ph. Chassaing

Definition 1 A word w is Lyndon if it is primitive and if it is the smallest element of its necklace.

Example 1 The word w = aabaab is the smallest in its necklace

〈w〉 = {aabaab, abaaba, baabaa}

but is not Lyndon; baac is not Lyndon, nor acba or cbaa, but aacb is Lyndon.

Here is a recursive characterization of Lyndon words:

Proposition 1 One-letter words are Lyndon. A word w with length n ≥ 2 is a Lyndon word if and only if
there exists two Lyndon words u and v such that w = uv and u ≺ v.

Among such decompositions of w, the decomposition with the longest second factor (or suffix) v is called
the standard decomposition.

Example 2 0011 = (001)(1) = (0)(011) is a Lyndon word with two such decompositions. The latter is
the standard decomposition.

The set of Lyndon words is denoted by L, and we set Ln = L ∩ An. The Lyndon tree (or standard
bracketing tree, cf. Barcelo (1990)) of the Lyndon word w is a binary tree obtained by iteration of the
standard decomposition:

Definition 2 (Lyndon tree) For w ∈ L, the Lyndon tree L(w) of w is a labelled finite binary tree defined
as follows:

• if |w| = 1, L(w) has a unique node labelled w, and no edges;

• if (u, v) is the standard decomposition of w, then L(w) is the binary tree with label w at its root,
L(u) as its left subtree and L(v) as its right subtree.

Remark 1 Note that the labels of the leaves of a Lyndon tree are letters. Also, the label of an internal
node is the concatenation of the labels of its two children, and, if |w| = n, L(w) is a binary tree with n
leaves, and n− 1 internal nodes.

1.2 Context
The asymptotic behavior of the size of the right and left subtrees of L(Ln), for n large, have been studied
in Bassino et al. (2005); Chassaing and Zohoorian Azad (2010), for Ln a random element of Ln. The
height h(L(Ln)) of L(Ln) is of interest for the analysis of algorithms, cf. Sawada and Ruskey (2003),
but it seems to have resisted analysis up to now.

a
a

a

b
b

b
b 1 7

4 3 5
2

6 9
8

Fig. 1: a. A = {a, b} and L(a3b4), b. A = {1, 2, . . . , 9} and L(174352698).
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1.3 Result

For a 2-letter alphabet, say A = {0, 1}, and for n ≥ 1, let Ln denote a uniform random word in Ln. Let
(A(n, k))n,k denote the Eulerian numbers, i.e. A(n, k) is the number of permutations σ of n symbols
having exactly k descents (k places where σ(i) ≥ σ(i+ 1)) . Set

Ξ(θ) = lim
n

1

n
ln(A(n, bθnc)/n!), (1)

Ψ(λ, µ, ν) = ln

(
(1 + µ)1+µ

µµ
(eλ ln 2)ν ln 2

νν2λ

)
+ Ξ(λ− µ), (2)

∆ = sup
λ,µ,ν>0

1 + ν + µ

λ
+

Ψ(λ, µ, ν)

λ ln 2
= 5.092 . . . (3)

See Lemma 1 for an expression of Ξ (Giladi and Keller, 1994, p. 299). We shall prove that:

Theorem 1
h(L(Ln))

lnn

P−→ ∆. (4)

The two factors of the standard decomposition of a uniform Lyndon word are not uniform Lyndon words,
and they are not even independent, which seems to preclude a recursive approach to the proof of this The-
orem. We shall rather use a coupling method: in Section 2 we sketch the main steps of the construction,
on the same probability space, of a random Lyndon tree, and of two well-known trees, the binary search
tree of a random uniform permutation, and a Yule tree, in such a way that the height of the Lyndon tree
is closely related to some statistics of the two other trees. Then Theorem 1 follows from a large deviation
result presented in Section 3.

2 Coupling results
2.1 Reduction to a Bernoulli source

The Lyndon tree of a non-Lyndon word u is defined as the Lyndon tree of the unique Lyndon word in the
necklace of u, if u is primitive. If u is periodic, we define the Lyndon word of u as the word 0|u|−11, and
the Lyndon tree of u is defined accordingly. Then the following algorithm:

• let W∞ be a infinite word of uniformly random characters, obtained through the binary expansion
of a number U uniformly distributed on [0, 1];

• let Wn be the word W∞ truncated after n letters, and let Ln be the Lyndon word of Wn.

produces a n-letter long random Lyndon word Ln, that fails to be uniform due to the small probability that
Wn is periodic. However, the total variation distance between the probability distribution of Ln and the
uniform distribution on Ln is O

(
2−n/2

)
(cf. e.g. (Chassaing and Zohoorian Azad, 2010, Lemma 2.1)),

thus any property that holds true asymptotically almost surely with respect to either distribution, holds
true a.a.s. for both. We shall, from now on, consider that Ln is produced by the previous algorithm.
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2.2 Exponential transform
In the first steps of the recursive construction of L(Ln), the sizes of the factors of the successive standard
decompositions are predicted by the positions of the longest runs of 0’s, and the structure of the top levels
of L(Ln) is given by the lexicographic comparisons between the suffixes of Ln beginning at these longest
runs. But when n is large, the number of runs of 0’s is typically n/4, and several among these runs are
tied for the title of the longest run. Actually the lengths of the runs behave pretty much as a sample of
n/4 i.i.d. geometric random variables with parameter 1/2, and, according to Brands et al. (1994), for any
strictly increasing sequence nk such that limk log2 nk−blog2 nkc = α ∈ [0, 1), the probability p`,nk that
m ≥ 1 among the nk elements of such a sample are tied for the maximum is given, approximately, by

pm,nk '
∑

j∈Z
e−2α+j (2α+j−1)m

m!
. (5)

Thus the number of ties does not converge in distribution, but has a set of limit distributions indexed by
α ∈ R/Z. Such a complex behavior does not bode well, so we shall rather analyze a transform of this
problem, in the form of the Lyndon tree of a word with random length. Consider the finite word W `

formed by a letter 1 followed by the truncation of W∞ at the position τ` of the `th 0 in the first run of `
consecutive 0’s of W∞. Then W ` is primitive, and L` denotes the Lyndon word of W `, i.e.:

W ` = 1 010110 . . . 1

`0s︷ ︸︸ ︷
000000︸ ︷︷ ︸

prefix of W∞

and L` =

`0s︷ ︸︸ ︷
000000 1 010110 . . . 1︸ ︷︷ ︸

prefix of W∞

.

If σ` is the position of the last 1 before τ`, L` is the concatenation of 0`1 and of the truncation of the word
W∞ at position σ`.

Now, there exists a unique longest run of 0’s in W ` as well as in L`, and this run is ` letters long, to
be compared with the behavior revealed by (5). Moreover, if Zk denotes the number of runs longer than
`−k−1, then Z0 = 1 and (Zj)0≤j≤`−1 is a Galton-Watson process with offspring distribution 2−k11k≥1,
so that Zj has a geometric distribution with parameter 2−j , see for instance Devroye (1992). The family
tree of this Galton-Watson process gives a lot of information on L(L`), leading to the proof of Theorem
2 below. Note that the typical length of L` grows exponentially fast with `:

E[|L`|] = 2`+1 − 1. (6)

Thus, expectedly, the typical height of the Lyndon tree of L` grows linearly with `:

Theorem 2 h(L(L`))
`

P−→
`→∞

∆ ln 2.

Due to space requirements, let us mention briefly how we obtain Theorem 1 using Theorem 2: we choose
`(n) = log2 n− εn in such a way that P

(
τ`(n) ≥ n

)
is small, so that, with a large probability, W `(n) is a

factor of Wn. Then we compare carefully L(W `(n)) and L(Wn). In the rest of the paper, we give more
details about the proof of Theorem 2.

2.3 Reduction to a skeleton
In the top levels of the tree L(L`), the successive standard decompositions of the Lyndon word L`, at the
smallest suffixes of L`, split the word L` at the longest runs of 0’s. For ` large enough, the longest runs
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are sparse enough to preserve some degree of independence between the factors. This is not true anymore
at the lowest levels of the tree L(L`). For this reason, it is easier to split the study of the Lyndon tree in
two parts: the first one focuses on the top of the tree, where the runs of 0’s are still above a threshold a`,
and the second part studies a forest of shrubs at the bottom of the tree, each of them labeled with a factor
of L` that contains only runs of 0’s shorter than the treshold. The top part is a tree itself (a subtree of
L(L`)), and each shrub of the forest at the bottom of L(L`) is rooted at (or grafted on) a leaf of the top
tree. We follow here the same path as Broutin and Devroye (2008), our shrubs playing the same rôle as
their spaghetti-like subtrees. Let us define by induction the tree above the threshold k, with k ≥ 1:

Definition 3 (Top tree) If w denotes a Lyndon word, Lk(w) is a finite labelled binary tree defined by:

• if w has one factor 0k or less (thus 0k+1 is not a factor of w), Lk(w) is a single node, labelled w;

• otherwise, let (u, v) be the standard decomposition of w. Then the root of Lk(w) has label w, the
left subtree of Lk(w) is Lk(u) and the right subtree is Lk(v).

Lk(w) is called the top tree associated to w, with threshold k.

Since we focus on L(L`), the threshold a` depends on `. It has to be large enough for the top tree to
retain the independence properties between the factors, but small enough that we can handle the shrubs,
though they lack these nice independence properties. We set

a` = blog2 `c = Θ
(
log logE

[
|L`|

])
and T` = La`(L`). (7)

2.4 A binary search tree

Fig. 2: For L5 = 051303101404180212, the tree T5 = L2(L5) has 6 needles and 4 blades. In brown, its contour
traversal.

Let us take a closer look at T`: observe that if w ∈ L, then 0w ∈ L, and the two factors of the standard
factorization of 0w are 0 and w. Thus either a leaf v of T` has label 0, and v is called a needle, or the
label of v is a factor of w beginning with 0a`1, and v is called a blade. The number N` of blades of T`
has a geometric distribution with parameter 2−`+a` , and the set of blades has a natural order related to the
contour traversal (see Figure 2), that allows to identify it to [[1, N`]]. The number of needles has a simple
expression in terms of a Galton-Watson process with geometric offspring distribution. In the analysis of
the shape of T`, the configuration of the needles is a special concern.
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We shall need some notations: in the contour traversal of T`, there is a sequence of nv−a` ≥ 0 needles
between a blade v and the previous blade (or between v and the root, if there exists no previous blade).
The concatenation, starting at this sequence of needles, included, of the labels of the leaves in the order
of the contour traversal of T`, is a suffix of L` that can be written 0nv1 tv , the run 0nv being maximal in
the sense that 0nv+11 tv is not a suffix of L`.

The words of the sequence (tv)1≤v≤N` have different lengths, being proper suffixes of each other, so
they are all different, and we can give a reformulation of the algorithm that produces T`, or more generally
Lk(w), in terms of the family T` = ((nv, tv))1≤v≤N` of the blades (with labels 0k1 tv), in which only the
nv’s and the relative order of the tv’s matter. With this reformulation of the algorithm, a slight perturbation
of the tv’s produces a new tree, S`, that is easier to handle than T` due to its property of independence of
labels, but that has essentially the same profile as T` (i.e. it has the same repartition of blades with respect
to the height). Let ε(j) denote the sequence of integers defined, for j ∈ I , by

ε
(j)
i = δi,j .

For R a totally ordered set, N0 ×R inherits a lexicographic order, ≺, from R: (n, t) ≺ (m,u) if n > m
or if n = m and t < u. Let B = (li, ri)1≤i≤N (resp. L = (li)1≤i≤N , R = (ri)1≤i≤N ) be a finite
sequence of elements of N0×R (resp. N0,R), with no repetitions in the sequenceR. Assume that lj ≥ k
for each j, and that (l1, r1) is the smallest element of B, for ≺.

Definition 4 The Lyndon tree Lk(B) is defined by induction by:

1. If N = 1 and l1 = k, Lk(B) has no edge and its unique vertex, with label (k, r1), is a blade.

2. Otherwise, consider the new sequence B′ formed from L − ε(1) and R and let i0 denote the index
of the smallest element in B′, for ≺.

(a) If i0 = 1, then Lk(B) is the binary tree with a needle (labelled 0) as its left child and Lk(B′)
as its right child.

(b) If i0 ≥ 2, then the left subtree of the binary tree Lk(B) is Lk((li, ri)1≤i≤i0−1) while the right
subtree of Lk(B) is Lk((li+i0 , ri+i0)0≤i≤N−i0).

Remark 2 Since
∑

(li+1) is strictly decreasing at each step, and the li’s are not allowed to drop under k,
Lk(B) is well-defined as long as the ri’s are distinct. The N blades of Lk(B) are labelled (k, ri)1≤i≤N ,
and, during the contour traversal, they appear in this order.

Remark 3 ForR = {tv | 1 ≤ v ≤ N`} and T` = ((nv, tv))1≤v≤N` defined in this section,

La`(T`) = T`,

or more precisely, the shapes are the same, but the labels are different. When the label of some node of
La`(T`) is (k, tv), the corresponding label of T` is the prefix of 0k1tv that stops before the beginning of
the next occurrence of 0k.

For the analysis of T`, the fact that the tv’s are suffixes of t1, precluding any form of independence, is
bothering. In order to fix the problem, in T`, we replace the sequence (tv)1≤v≤N` with a new sequence
(sv)1≤v≤N` of infinite binary words, close to the tv’s but independent, defined as follows: let (ζi)i∈N be
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an i.i.d. sequence of uniform infinite words, independent of T` and let sv be the concatenation of pv , the
prefix formed by the first a` letters of tv , with ζv . When tN` is shorter than a` letters, it is completed with
the appropriate number of 0’s, before the concatenation with ζN` . This way, we obtain a new sequence
S` = ((nv, sv))1≤v≤N` , and we set

S` = La` (S`) .

Differences between T` and S` occurs scarcely, only when at least a` letters are used to distinguish two
suffixes, so that T` and S` are close in some sense, see Proposition 3. The probability distribution of S`
is given by:

Proposition 2 The sequence of words S̃` = (0nv−a`1sv)2≤v≤N` , followed by the word 0n1−a`1s1, is
distributed as a sequence of uniform infinite random words observed until the first occurrence of the
prefix 0`−a` , this first occurrence 0n1−a`1s1 being eventually truncated of any 0 in excess of 0`−a`1 . . .,
so that n1 = `.

Remark 4 By properties of repeated coin flipping, equivalently, n1 = ` and for v ≥ 2, nv − a` is a
geometric random variable with parameter 1

2 , conditioned to be smaller than ` − a`, sv is an infinite
uniform random word, for all v nv and sv are independent, N` is geometric with parameter 2a`−`, and
the sequence (nv, sv)v∈N is independent of N`.

Remark 5 When ` grows, with a large probability the prefix pv is short compared to tv and the corre-
sponding, much longer suffix of tv determines, with pv , the shape of the corresponding shrub at the bottom
of L`. These suffixes are independent of S`, and for that matter, independent of S`, which happens to be
crucial in the study of the bottom of the tree.

For a blade v ∈ [[1, N`]], let hv (resp. h̃v) be its height in S` (resp. in T`). Set

dv =
∣∣∣hv − h̃v

∣∣∣ , D` = max
1≤v≤N`

dv.

Then

Proposition 3

lim
`

P
(
D` ≥

`√
ln `

)
= 0.

Due to space requirements, we omit the proof, that uses branching random walks arguments, as in Biggins
(1977). We shall now be interested in the height of leaves of S`. Due to Proposition 2, conditionally given
N`, the ranks of the terms of the sequence S̃` = (0nv−a`1sv)2≤v≤N` with respect to the lexicographic
order form a uniform permutation onN`−1 symbols. As a consequence, the subtree A` of S` induced by
the root and the blades, once the needles and the first blade erased, forms a binary search tree. With the
help of a coupling of A` with a Yule process, Chauvin et al. (2005) provides a very precise analysis of the
depths of the leaves of a binary search tree. Though, the depths of blades in S`, though they depend on
their depths in A`, are also affected by the positions of the needles, and we need to tweak the arguments
of Chauvin et al. (2005) in order to include the needles in their analysis.
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2.5 A Yule process
A Yule process Y (Athreya and Ney, 1972, page 109) models a population in which each individual lives
forever, and gives birth to new individuals at the times of a Poisson process with rate λ. We assume
that the population starts at time 0 with a single individual, called the ancestor. One can keep track of
the genealogy of the population through the Yule tree Y (cf. Chauvin et al. (2005)), a family tree of the
population: for each individual, a vertical life line is drawn downward, on the right of the life line of its
father, and starting at an ordinate given by minus the date of birth of this individual ; this vertical life
line is connected to the life line of its father by a dotted horizontal line. Let Yt denote the family tree Y
truncated at time t, i.e. at ordinate −t.

The Yule tree has yet another construction, starting from a sample Y = (Yn)n≥1 of i.i.d. exponential
random variables with rate λ: consider the sequence Z(t) defined by

Tt = inf{n ≥ 1 |Yn ≥ t}, Z(t) = (Z
(t)
k )0≤k≤Tt−1 = (t, Y1, Y2, . . . , YTt−1) ; (8)

now, picture each term Z
(t)
k of the sequence Z(t) by a vertical line of the corresponding length Z(t)

k , drawn
at abscissa Tt − k, and connect with an horizontal line the top of the kth line, but the first, to the next line
on its left whose height exceeds Z(t)

k , to obtain a family tree Et. Then Et and Yt have the same probability
distribution, by the lack of memory of the exponential distribution, and, from now on, we shall retain the
notation Yt for both of them.

Let us denote by Uv the real number whose dyadic development is 0nv−a`1sv . Then, as a consequence
of Proposition 2, (U2, U3, . . . , UN` , U1) is distributed as a sequence of uniform random variables observed
until the first term smaller than 2−`+a` occurs, this last term U1 being eventually multiplied by a power of
2, so as to belong to [2−`+a`−1, 2−`+a` [. Equivalently, the sequence (X2, X3, . . . , XN` , X1) defined by

Xi = − log2 Ui

is distributed as a sequence of exponential random variables observed until the first term larger than `−a`
occurs, this last termX1 being eventually shifted by an integer, so as to belong to [`−a`, `−a`+1[. Then
the construction of Figure 3, based on the sequence (` − a`, X2, X3, . . . , XN`), gives a Yule family tree
Y`−a` with lifetime `−a`, and with intensity ln 2. Now, as observed for instance in Chauvin et al. (2005),
Y`−a` seen as a planar tree, with no edge length, or with edge length 1, is the binary search tree A`: their
planar tree structure depends only on the relative order of the words 0nv−a`1sv for A`, and of the real
numbers Xv , through the same algorithm, and the mapping 0nv−a`1sv −→ Xv is monotone. Thus the
depth of the blade v in the binary search tree A` induced by S` is the depth of the leaf v corresponding to

a b c d e f g h i j k l m n o p a b c d e f g h i j k l m n o p

Fig. 3: A sample of exponential random variables, until hitting t, and the related tree Et, distributed as Yt (in which
the pink horizontal lines are to be seen as vertices rather than as edges).
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Xv in Y`−a` . The difference between the depth of the blade v in A` and its depth in S` is the number of
needles on the path to the root, whose expression is given by Proposition 4 below.

a b c d e f g h i j k l m n o p

Fig. 4: Trees S` and Y`. The sign +1 marks the presence of a needle.

For a given blade v of S`, consider the marked point process Πv formed by the vertices of Y`−a` on the
path from v to the root, the leaf v and the root excluded. This path is naturally identified with [0, `− a`],
the leaf being at 0 and the root at ` − a`, for instance, and the mark being 0 or 1, respectively, according
to the side of the branching, say left or right, leading to a decomposition

Πv = Π(0)
v ∪Π(1)

v .

By convention, the mark for both points 0 and `− a` is one, and unless mentioned otherwise, they are not
included in the point processes. For a point process π = {ξ1 < ξ2 < . . . < ξk−1 < ξk} in some interval
[0,m], G(π) denotes

G(π) =
k+1∑

s=1

bξr − ξr−1c, (9)

in which ξk+1 = m and ξ0 = 0. We have

Proposition 4 For 1 ≤ v ≤ N`,
0 ≤ hv − (#Πv + 1 +G(Π(1)

v )) ≤ 1.

Here #Πv + 1 accounts for the depth of v in A`, bξ1c is nv − a`, and one can check that bξr − ξr−1c = k
if the corresponding labels satisfy (nwr − k, swr ) ≺ (nwr−1 − k, swr−1) but (nwr − k − 1, swr ) �
(nwr−1 − k, swr−1), in which case the corresponding edge in A` is obtained by erasing k needles of S`.
The special rôle of Π

(1)
v in Proposition 4 reflects the asymmetry of the Lyndon tree. Since G(Π

(1)
v ) tends

to be large when #Π
(1)
v is small, and small when #Π

(1)
v is large, the difference between the height and

the saturation level should be smaller for the Lyndon tree than for the binary search tree.

3 Large deviations and final result
3.1 The many-to-one formula
A leaf v of Y` is said to be of type (m,n,A) if its left (resp. right) depth in Y` is m (resp. n) and if
Π

(1)
v belongs to A. Let π`,m,n,A denote the average number of leaves of type (m,n,A) in Y` and let Un,`

denote the uniform probability distribution on the simplex {0 < ξ1 < ξ2 < . . . < ξn < `}. Then
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Proposition 5
π`,m,n,A = (` ln 2)m+n2−` Un,`(A)/m!n!. (10)

Up to a factor 2`, the right hand of (10) is the probability that two independent Poisson processes with
intensity ln 2 on [0, `], Π(0) (resp. Π(1)), have m (resp. n) points, and that Π(1) belongs to A. This is an
instance of the many-to-one formula for branching random walks.

When Ak (resp. AI ) is the set of point processes Π on [0, `] such that G(Π) = k (resp. such that
G(Π) ∈ I) , we set

π`,m,n,Ak = π`,m,n,k, resp. π`,m,n,I .

3.2 Final argument and expression of ∆
For the final argument, it will be convenient to think of Ψ(λ, µ, ν) as the following limit:

Ψ(λ, µ, ν) = lim
n
n−1 ln (πλnn,νnn,n,µnn) , (11)

when the sequence (λn, νn, µn) = (`/n,m/n, k/n) converges to (λ, µ, ν), though we do not really
need the existence of this limit for the proof of Theorem 2. We follow Broutin and Devroye (2008):
roughly, the average number of blades of type (ν, 1, µ)`/λ in Y` or in S` is approximately e`Ψ(λ,µ,ν)/λ,
and their depth is approximately 1+ν+µ

λ `. On each of these blades we graft shrubs that are Lyndon
trees for Lyndon words that contain approximately 2a` runs of 0’s, all shorter than a`, and the same
number of runs of 1’s, whose lengths are independent geometric random variables with parameter 1/2.
We prove that the maximum height of a set of k such shrubs behaves like the maximum of a sample of k
independent geometric random variables with parameter 1/2, i.e. the maximum is essentially log2 k. As a
consequence, the total height of the highest leaf in any shrub that is grafted on a blade of type (ν, 1, µ)`/λ
in S` is approximately

1 + ν + µ

λ
` + log2

(
e`Ψ(λ,µ,ν)/λ

)
=

1 + ν + µ

λ
` + `

Ψ(λ, µ, ν)

λ ln 2
.

Thus the highest leaf in such a tree is ∆` high, in which

∆ = sup
λ,µ,ν>0

((1 + ν + µ) ln 2 + Ψ(λ, µ, ν))/λ ln 2. (12)

Due to Proposition 3, the same is true when the shrubs are grafted on the blades of T`, producing L(L`).

3.3 Large deviations for G under Un,`

Let us compute Ψ. For a sequence b of positive numbers, set

|b| =
∑

j∈I
bj , 〈b〉 =

∑

j∈I
jbj , and H(b) = −

∑

j∈I
bj ln(bj),

and if the entries are integers, set:

b! =
∏

bi! and
(|b|
b

)
=
|b| !∏
bi!
,
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whenever they are defined. If |b| = 1,H(b) is the Shannon entropy of b. Under Un,`, rather than the ξj’s,
we shall consider the vector γ = (γj)1≤j≤n+1 of gaps between the order statistics, defined by

γj = ξj − ξj−1, 1 ≤ j ≤ n+ 1,

with the usual convention, ξ0 = 0 and ξn+1 = `. The random vector γ is uniformly distributed on

Dn,` = {
n+1∑

j=1

xj = ` and ∀j, xj ≥ 0},

and its distribution is denoted Un,` again. Also, set ρ = (ρj)1≤j≤n+1, in which ρj = bγjc. Then
G = |ρ|. The probability Un,`(ρ = r) depends only on |r| and is given by:

Un,` (ρ = r) = n! `−nP(`− |r| − 1 <
n∑

j=1

Uj < `− |r|), (13)

in which the Ui’s are a sequence of i.i.d. uniform random variables on [0, 1], P (. . .) is the volume of the
domain {ρ = r}, and `n/n! is the volume of Dn,`. Consider the sequence β = (βj)j≥0 defined by

βj = # {1 ≤ i ≤ n+ 1 | ρi = j} , satisfying |β| = n+ 1, and 〈β〉 = |ρ| = G(ξ),

in order to take advantage of the symmetric rôle of the ρj’s. Then

Un,` (β = b) =
n!

`n

(|b|
b

)
P(`− 〈b〉 − 1 <

n∑

j=1

Uj < `− 〈b〉).

For distributions b such that bj = cjn+ o(n), |c| = 1, and 〈c〉 = µ, we find that

1

n
ln

(
n!

`n

(|b|
b

) )
= −1− lnλ+H (c) + o(1), (14)

and we know (i) that

lim
n
n−1 lnP(θn− 1 <

n∑

j=1

Uj < θn) = Ξ(θ). (15)

According to formulas (6.12) to (6.16) (Giladi and Keller, 1994, p. 299), Ξ is given by

Lemma 1 For 0 < θ < 1,

Ξ(θ) = ln sinhα− α cothα+ 1− lnα,

in which α is given implicitly by −α−1 + 1 + cothα = 2θ.

(i) Due to an interpretation of A(n, k) in terms of uniform random variables going back to Tanny (1973).
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Now, if |c| = 1 and 〈c〉 = µ,

H (c) ≤ (1 + µ) ln(1 + µ)− µ lnµ, (16)

with equality only if
ck = µk(1 + µ)−k−1 11k≥0 = d

(µ)
k ,

cf. Lemma 8.3.1 in (Ash, 1965, p. 238). As usual in large deviation theory, only the leading term,
provided by (16), contributes, so that, using (13), (14) and (15), we obtain

n−1 ln (Un,` (G = µn)) = n−1 ln (Un,` (〈β〉 = µn))

' n−1 ln
(
Un,`

(
β = d(µ)n

))

= −1− lnλ+H
(
d(µ)

)
+ Ξ(λ− µ).

Together with (10), this leads to the expression of Ψ given in (2).
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A Murnaghan-Nakayama Rule for
Generalized Demazure Atoms
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Abstract. We prove an analogue of the Murnaghan-Nakayama rule to express the product of a power symmetric
function and a generalized Demazure atom in terms of generalized Demazure atoms.

Résumé. Nous prouvons un analogue de la règle Murnaghan-Nakayama à exprimer le produit d’une fonction de
puissance symétrique et un Demazure généralisée atomes en termes de généralisées atomes de Demazure.

Keywords: generalized Demazure atoms, nonsymmetric Macdonald polynomials, permuted basement fillings

1 Introduction
Haglund, Mason, and Remmel [HMR12] introduced a family of polynomials Êσγ (x1, . . . , xn) indexed by
weak compositions γ of n and permutations σ in the symmetric group Sn that they called generalized
Demazure atoms. The Êσγ (x1, . . . , xn) interpolate between the Schur functions and the Demazure atoms
studied by Mason [Mas08]. The main goal of this paper is to develop a generalization of the Murnaghan-
Nakayama rule to express the product of a power symmetric function pr(x1, . . . , xn) and a generalized
Demazure atom Êσγ (x1, . . . , xn) as a sum of generalized Demazure atoms Êσδ (x1, . . . , xn). That is, we

shall give a combinatorial definition of the coefficients c(r)γ,σ,δ where

pr(x1, . . . , xn)Êσγ (x1, . . . , xn) =
∑

δ

c
(r)
γ,σ,δÊ

σ
δ (x1, . . . , xn). (1)

Let N denote the set of natural numbers, {0, 1, 2, . . . }, and let P denote the set of positive integers,
{1, 2, . . . }. We say that λ = (λ1, λ2, . . . , λn) is a partition of m into n parts if each λi ∈ N with
λ1 ≥ λ2 ≥ · · · ≥ λn and

∑n
i=1 λi = m. We say that γ = (γ1, γ2, . . . , γn) is a weak composition of m

into n parts if each γi ∈ N and
∑n
i=1 γi = m. A composition of m is a weak composition which has no

zeros. The diagram of γ, dg(γ), is the set of m cells arranged in n columns so that there are γi cells in
the ith column and all the columns are flush with the bottom of the diagram. For example, the diagram of
γ = (2, 0, 1, 0, 3) is pictured in Figure 1. The augmented diagram of γ, d̂g(γ), consists of dg(γ) plus a
row of n cells attached below. This lowest row is called the basement. Let λ(γ) be the rearrangement of
the parts of γ into weakly decreasing order. Thus, λ(γ) produces the partition associated with each weak
composition. For example, λ(2, 0, 1, 0, 3) = (3, 2, 1, 0, 0).

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Fig. 1: The diagram of γ = (2, 0, 1, 0, 3)

Macdonald’s well-known symmetric polynomials [Mac79], denoted Pλ(x1, x2, . . . , xn; q, t) for λ a
partition with n parts, have certain defining characteristics, including an orthogonality condition. Mac-
donald [Mac95] showed that many of these same characteristics were shared by a family of nonsymmetric
polynomials indexed by weak compositions with n parts, denoted Eγ(x1, x2, . . . , xn; q, t). These poly-
nomials were given a combinatorial interpretation by Haglund, Haiman, and Loehr [HHL08] as the gen-
erating functions for fillings of the diagram of γ with positive integer entries satisfying some conditions.

Mason [Mas08], [Mas09] studied a slight variation of the Eγ(x1, x2, . . . , xn; q, t) polynomials, called
Êγ(x1, x2, . . . , xn; q, t). The polynomial Êγ is obtained from Eγ by reversing the order of the xi’s and
sending q and t to their reciprocals. Mason considered the specialization arising from setting q = t = 0 in
Êγ(x1, x2, . . . , xn; q, t), hereafter referred to as Êγ(x1, x2, . . . , xn). These polynomials arise in [LS90]
as “standard bases” and are also called Demazure atoms. Using the work of [HHL08], Mason showed that
Êγ(x1, x2, . . . , xn) can be interpreted as the sum of the weights of certain fillings of d̂g(γ), which she
called semi-standard augmented fillings. An important outcome of Mason’s work is a generalization of the
Robinson-Schensted-Knuth (RSK) insertion algorithm for semi-standard augmented fillings that she used
to give combinatorial proofs of many results involving Demazure atoms. For example, this generalization
of RSK was used to exhibit a bijection that showed that, for any partition β, the Schur function sβ could
be expressed as

sβ(x1, . . . , xn) =
∑

λ(γ)=β

Êγ(x1, . . . , xn). (2)

Mason’s work has led to several lines of further research. Using Mason’s extension of RSK, Haglund,
Luoto, Mason, and van Willigenburg [HLMvW11a] developed the theory for the quasisymmetric Schur
functions, a new basis for the ring of quasisymmetric functions. In [HLMvW11b], they developed ana-
logues of the Littlewood-Richardson rule to express the product of a Schur function and a Demazure atom
(quasisymmetric Schur function) in terms of Demazure atoms (quasisymmetric Schur functions).

Haglund, Mason, and Remmel [HMR12] further generalized Mason’s work by viewing semi-standard
augmented fillings as fillings of augmented diagrams with entries in the basement equal to the identity
permutation, εn. They also viewed reverse row-strict tableaux as fillings of augmented diagrams with
entries in the basement equal to the reverse of the identity permutation, εn. Their work further generalizes
Mason’s extension of RSK to apply to fillings of diagrams with arbitrary permutations in the basement
cells, called permuted basement fillings, or PBFs. The permuted basement fillings with basement σ gen-
erate the polynomials called generalized Demazure atoms and denoted Êσγ (x1, x2, . . . , xn). The Êσγ ’s
can be viewed as intermediates between the Schur functions and the Demazure atoms. In fact, Haglund,
Mason, and Remmel [HMR12] showed that for any permutation σ,

sβ(x1, . . . , xn) =
∑

λ(γ)=β

Êσγ (x1, . . . , xn). (3)

They also showed that Êσγ (x1, x2, . . . , xn) = 0 unless γi ≥ γj whenever i < j and σi > σj . Note that
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when σ = εn, we can recover (2) from (3). Also, when σ = εn, there is only one nonzero term in (3), so
sβ = Êεnβ . We shall see that in the special case where σ = εn, our generalized Murnaghan-Nakayama
rule reduces to the classical Murnaghan-Nakayama rule.

One of the motivations for studying the Êσγ (x1, . . . , xn) is an unpublished result of Haiman and
Haglund which can be described briefly as follows. Let Êσγ (x1, . . . , xn; q, t) denote the polynomial ob-
tained by modifying Êγ(x1, . . . , xn; q, t) in the following way. Under the interpretation of [HHL08]
which associates Êγ(x1, . . . , xn; q, t) with fillings of d̂g(γ), replace the basement permutation εn with
σ = σ1σ2 · · ·σn, and change nothing else. Then if i+1 occurs to the left of i in the basement σ1σ2 · · ·σn,
we have

TiÊ
σ
γ (x1, . . . , xn; q, t) = tAÊσ

′
γ (x1, . . . , xn; q, t). (4)

Here A equals one if the height of the column of d̂g(γ) above i + 1 in the basement is greater than or
equal to the height of the column above i in the basement, and equals zero otherwise. Also, σ′ is the
permutation obtained by interchanging i and i+1 in σ. The Ti are generators for the affine Hecke algebra
which act on monomials in the {x1, x2, . . . , xn} by

Tix
λ = txsi(λ) + (t− 1)

xλ − xsi(λ)
1− xαi ,

with xαi = xi/xi+1. See [HHL08] for a more detailed description of the Ti and their relevance to
nonsymmetric Macdonald polynomials. The Êσγ (x1, . . . , xn) can be obtained by setting q = t = 0 in
Êσγ (x1, . . . , xn; q, t), and hence are a natural generalization of the Êγ(x1, . . . , xn) to investigate. If we set
q = t = 0 in the Hecke operator Ti, it reduces to a divided difference operator similar to those appearing
in the definition of Schubert polynomials. By (4), Êσγ (x1, . . . , xn) can be expressed, up to a power of t,
as a series of the divided difference operators applied to Êεnγ (x1, . . . , xn).

Haglund, Mason, and Remmel [HMR12] proved analogues of the Pieri rules for generalized Demazure
atoms. Let hr(x1, . . . , xn) denote the rth homogeneous symmetric function and er(x1, . . . , xn) denote
the rth elementary symmetric function. Then Haglund, Mason, and Remmel gave combinatorial interpre-
tations to the coefficients a(r)γ,σ,δ and b(r)γ,σ,δ where

hr(x1, . . . , xn)Êσγ (x1, . . . , xn) =
∑

δ

a
(r)
γ,σ,δÊ

σ
δ (x1, . . . , xn). (5)

and
er(x1, . . . , xn)Êσγ (x1, . . . , xn) =

∑

δ

b
(r)
γ,σ,δÊ

σ
δ (x1, . . . , xn). (6)

We will indicate how we can derive our combinatorial interpretation of the coefficients c(r)γ,σ,δ from these
two rules. The same technique can be used to derive an analogue of the Murnaghan-Nakayama rule to
express the product of a power symmetric function pr and a quasisymmetric Schur function in terms of
quasisymmetric Schur functions, but we will not pursue this topic in this paper.

The outline of this paper is as follows. In the next section, we will define permuted basement fillings
and the generalized RSK insertion algorithm as well as introduce some results from [HMR12]. In section
3, we will state and prove our refinement of the Murnaghan-Nakayama rule.
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2 PBFs and the Insertion Procedure
In this section, we shall formally define permuted basement fillings (PBFs) and the generalization of the
RSK insertion algorithm due to Haglund, Mason, and Remmel [HMR12]. Let γ = (γ1, γ2, . . . , γn) be a
weak composition of m into n parts. We will denote the cell in column i and row j of d̂g(γ) by (i, j).
The basement is row zero, and row indices increase from bottom to top. The leftmost column is column
1, and column indices increase moving from left to right. This way, it is easy to think of d̂g(γ) as dg(γ)
augmented by row zero.

A filling F of an augmented diagram is a function F : d̂g(γ) → P, which can be pictured as an
assignment of positive integers to the cells of d̂g(γ). We will use F (i, j) to denote the integer assigned
to cell (i, j) by the function F . We will be interested only in fillings where the basement entries are
a permutation σ = σ1σ2 . . . σn of {1, 2, . . . , n} and the column entries weakly decrease reading from
bottom to top.

A set of cells (i, k), (j, k), (i, k − 1) in d̂g(γ) is a type A triple if i < j, k > 0, and γi ≥ γj . A type A
triple is an inversion triple in F if F (j, k) < F (i, k) ≤ F (i, k − 1) or F (i, k) ≤ F (i, k − 1) < F (j, k).
A set of cells (j, k + 1), (i, k), (j, k) in d̂g(γ) is a type B triple if i < j, k ≥ 0, and γi < γj . A type B
triple is an inversion triple in F if F (i, k) < F (j, k + 1) ≤ F (j, k) or F (j, k + 1) ≤ F (j, k) < F (i, k).

A filling F is said to satisfy the B-increasing condition if, whenever i < l and γi < γl, it is true that
F (i, j − 1) < F (l, j) for all j ≥ 1.

A PBF Fσ of shape γ and basement σ is a filling of d̂g(γ) with positive integer entries such that

1. the basement is filled with σ1, σ2, ..., σn from left to right,

2. column entries weakly decrease reading from bottom to top,

3. every triple of type A or B is an inversion triple in Fσ , and

4. the B-increasing condition is satisfied.

It was observed in [HMR12] that the B-increasing condition plus the fact that column entries are weakly
decreasing automatically implies that all type B triples are inversion triples.

The weight of a PBF Fσ with shape γ and basement σ is defined to be

wt(Fσ) =
∏

(i,j)∈dg(γ)
xFσ(i,j). (7)

Note that the basement cells do not contribute to the weight of the PBF. The nonsymmetric polynomials
Êσγ (x1, x2, . . . , xn) are then defined by

Êσγ (x1, x2, . . . , xn) =
∑

Fσ

wt(Fσ) (8)

where the sum is over PBFs Fσ of shape γ and basement σ.
We say that a shape γ is σ-compatible if γi ≥ γj whenever i < j and σi > σj . In [HMR12], it is shown

that Êσγ (x1, x2, . . . , xn) = 0 unless γ is σ-compatible. Thus, there are no PBFs of shape γ and basement
σ if γ is not σ-compatible.
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When σ is the identity permutation, εn, a PBF is a semi-standard augmented filling as defined by Mason
[Mas08], [Mas09]. When σ is the reverse of the identity permutation, εn, a PBF is strictly decreasing from
left to right and weakly decreasing from bottom to top. The only εn-compatible shapes are partition shapes
λ, so that PBFs can be described as “reverse row-strict tableaux.” It is not hard to see that these reverse
row-strict tableaux are in one-to-one correspondence with column-strict tableaux, so that for λ a partition,
Êεnλ = sλ.

The reading order of the cells of d̂g(γ) is obtained by moving across the rows from left to right,
beginning with the highest row. Formally, (a, b) comes before (c, d) in reading order if b > d or b = d and
a < c. As mentioned above, Mason defined an insertion procedure k → F analogous to the RSK insertion
procedure that inserts a positive integer k into a semi-standard augmented filling to produce another semi-
standard augmented filling. Haglund, Mason, and Remmel [HMR12] generalized this procedure to PBFs
with arbitrary basements. To define this insertion k → Fσ , let Fσ be the filling that extends the basement
permutation by first adding a j in each cell (j, 0) with n < j ≤ k and then adding an extra cell filled
with a 0 on top of each column. Let (x1, y1), (x2, y2), . . . be the cells of Fσ listed in reading order.
To insert k into Fσ , go through the cells of Fσ in reading order looking for the first (xi, yi) such that
Fσ(xi, yi) < k ≤ Fσ(xi, yi − 1). Replace Fσ(xi, yi) with k and insert the cell’s previous value into
the remaining cells in reading order, beginning with (xi+1, yi+1). Continue in this way until some 0
is replaced by a positive integer. Finally, remove any zeros from the tops of the columns. Notice that
k → Fσ creates a new cell at the top of some column in Fσ .

A fundamental result of [HMR12], used to prove many properties about PBFs, is the fact that this
insertion procedure k → Fσ is well-defined and produces a PBF. Also, in the case that σ = εn, this
insertion algorithm reduces to a reverse row-strict version of the usual RSK algorithm.

Another important question addressed in [HMR12] is whether this insertion procedure can be reversed.
To answer this question, the authors define the term removable cell. Let γ and δ be weak compositions
with n parts such that dg(γ) ⊆ dg(δ). We use dg(δ/γ) to denote the cells of dg(δ) which are not in
dg(γ). Suppose dg(δ/γ) consists of a single cell c = (x, y). Then c is a removable cell from δ if there
is no cell to the right of c that is at the top of a column in dg(δ). That is, there is no j with x < j ≤ n
and δj = y. It is shown that if Fσ is a PBF of shape γ and basement σ, and Gσ = k → Fσ is a PBF
of shape δ, then the cell c in dg(δ/γ) is a removable cell. This terminology is used because it means that
the insertion procedure can be reversed starting with c. That is, begin with the entry, say a, in cell c and
read through the cells of Gσ in reverse reading order starting with c until an entry, say b, is found which is
greater than a and positioned below an number less than or equal to a. Now replace b with a and continue
reversing the insertion procedure with b. The entry that emerges from the first cell in reading order is the
k which was originally inserted into Fσ to produce Gσ . So long as cell c is removable, the insertion can
be reversed in this way.

A lemma used in [HMR12] to prove the Pieri rules for the products hrÊσγ and erÊσγ will also be useful
for our version of the Murnaghan-Nakayama rule. It is reproduced below:

Lemma 1 Suppose that Fσ is a PBF, Gσ = a → Fσ , and Hσ = b → Gσ . Suppose Fσ is of shape α,
Gσ is of shape β, and Hσ is of shape γ. Suppose A is the cell in dg(β/α) and B is the cell in dg(γ/β).
Then

a. if b ≤ a, then B is strictly above A, and

b. if b > a, then B is after A in reading order.
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h v
h v

h
6 2 1 4 3 5

Fig. 2: A satisfactory labeling of dg((3, 3, 0, 2, 1, 2)/(2, 1, 0, 1, 0, 2))

3 Murnaghan-Nakayama Rule
The power symmetric function pr(x1, x2, . . . , xn) is defined as

∑n
i=1 x

r
i . Our goal is to express the

product pr(x1, x2, . . . , xn)Êσγ (x1, x2, . . . , xn) as a sum of Êσδ ’s. In particular, we would like to find the

coefficients c(r)γ,σ,δ in the expansion

pr(x1, x2, . . . , xn)Êσγ (x1, x2, . . . , xn) =
∑

δ

c
(r)
γ,σ,δÊ

σ
δ (x1, x2, . . . , xn). (9)

Let γ be a weak composition of m with n parts, and let σ ∈ Sn. Let δ = (δ1, . . . , δn) be a weak
composition of m+ r such that dg(γ) ⊆ dg(δ). Define a satisfactory labeling of dg(δ/γ) to be a labeling
of the cells in dg(δ/γ) with v’s and h’s that is consistent with the following four rules:

(a) Assign an h to all but the rightmost cell in each row of dg(δ/γ).

(b) Assign a v to any cell above another cell of dg(δ/γ).

(c) Assign an h to any cell above a cell of dg(γ) and having a cell of dg(δ/γ) one row below and
anywhere to the left.

(d) Assign an h to the cells of the lowest row of dg(δ/γ).

For an example of a satisfactory labeling, see Figure 2
The following lemma gives a characterization for when dg(δ/γ) has a satisfactory labeling.

Lemma 2 Let γ and δ be weak compositions such that dg(γ) ⊆ dg(δ). Then dg(δ/γ) has a satisfactory
labeling if and only if there is no cell (x, y) in dg(δ/γ) such that (x+ j, y) and (x, y − 1) are both cells
in dg(δ/γ) for some j > 0. In other words, dg(δ/γ) has a satisfactory labeling if and only if it avoids the
configuration .

A satisfactory labeling of dg(δ/γ) is called a satisfactory k-hook labeling if it produces k + 1 h’s
and r − (k + 1) v’s and meets the following two additional conditions. Let c1 = (x1, y1), . . . , ck+1 =
(xk+1, yk+1) be the cells labeled h listed in reading order. Let ck+2 = (xk+2, yk+2), . . . , cr = (xr, yr)
be the cells labeled v listed in reverse reading order. Let dg(δ(i)) be the diagram of γ plus the cells
c1, c2, . . . , ci. A satisfactory k-hook labeling must also satisfy, for i = 1, 2, . . . , r,

1. δ(i) is a σ-compatible weak composition shape and

2. ci is a removable cell from δ(i).
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3 1 2

h
v
v

3 1 2

h v
h

Fig. 3: Unique satisfactory labelings of dg((5, 0, 1)/(2, 0, 1)) and dg((3, 0, 3)/(2, 0, 1))

Note that rule (d) in the definition of a satisfactory labeling requires that there is at least one h, so a
satisfactory k-hook labeling has k ≥ 0.

We say that the shape δ/γ is a γ-transposed k-hook relative to basement σ if rules (a)-(d) can be used
to assign v and h labels to all of the cells of dg(δ/γ) in a unique way and that labeling is a satisfactory
k-hook labeling. With these definitions, we can state the main theorem.

Theorem 1 If γ = (γ1, . . . , γn) is a weak composition of m and σ ∈ Sn, then

pr(x1, x2, . . . , xn)Êσγ (x1, x2, . . . , xn) =
∑

δ

(−1)kÊσδ (x1, x2, . . . , xn) (10)

where the sum is over all weak compositions δ = (δ1, . . . , δn) of m+ r such that dg(γ) ⊆ dg(δ) and δ/γ
is a γ-transposed k-hook relative to basement σ.

Theorem 1 says that the nonzero coefficients c(r)γ,σ,δ in (9) are ±1, depending on the number of h’s in
the unique satisfactory k-hook labeling of dg(δ/γ).

For example, consider the product p3(x1, x2, x3)Ê312
(2,0,1)(x1, x2, x3). The shapes δ that appear on the

right hand side of (10) must be 312-compatible compositions of 6 into 3 parts containing (2, 0, 1). Since
the first and second basement entries are out of order, we require δ1 ≥ δ2. Similarly, we require δ1 ≥ δ3.
Take dg(2, 0, 1) and consider all the ways to add three cells around the outside of the diagram. Adding
three cells to the first column creates the 312-compatible shape (5, 0, 1). Moreover, this shape has a unique
satisfactory labeling as shown in Figure 3, and it is easy to check that this is a satisfactory 0-hook labeling.
Thus, Ê312

(5,0,1)(x1, x2, x3) appears on the right hand side of (10) with coefficient (−1)0 = 1. If instead
we add two cells to the first column and one cell to another column, the lower of the two cells in the first
column will not be assigned a v or h label by rules (a)-(d). Thus, there will be more than one satisfactory
labeling of the diagram of such a shape, and it will not contribute to the sum. If one cell is added to the
first column and two cells are added elsewhere, note that rules (b) through (d) will not apply to the highest
cell in the first column. Therefore, in order to get a unique satisfactory labeling, one where each cell’s
label is forced by rules (a) through (d), we must make sure that the highest cell in the first column is not
the rightmost cell in its row. The only shape that achieves this requirement is (3, 0, 3). This shape has a
unique satisfactory labeling as shown in Figure 3, and this labeling is a satisfactory 1-hook labeling. So
Ê312

(3,0,3)(x1, x2, x3) appears on the right hand side of (10) with coefficient (−1)1 = −1. Finally, if we
add no cells to the first column, the only way to keep the height of the first column greater than or equal
to the heights of the other columns, as required by the basement permutation 312, is to create the shape
(2, 2, 2). In this case, however, dg((2, 2, 2)/(2, 0, 1)) contains the configuration . Lemma 2 says there
is no satisfactory labeling, so this shape will not contribute to the sum. Putting this all together gives
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h h v
v
v
h h

7 6 5 4 3 2 1

Fig. 4: A rim hook and its satisfactory labeling

p3(x1, x2, x3)Ê312
(2,0,1)(x1, x2, x3) = Ê312

(5,0,1)(x1, x2, x3)− Ê312
(3,0,3)(x1, x2, x3), which can be verified by

direct computation.
Note that in the special case where σ = εn and γ is actually a partition shape, Êσγ = sγ by (3). Our

rule then reduces to the reverse row-strict version of the classical Murnaghan-Nakayama rule, which says

pr(x1, x2, . . . , xn)sγ(x1, x2, . . . , xn) =
∑

λ

(−1)w(λ/γ)−1sλ(x1, x2, . . . , xn) (11)

Here, the sum is over all partition shapes λ such that dg(λ/γ) is a rim hook of size r, that is a connected
skew shape with no 2× 2 square. Also, the width of λ/γ, w(λ/γ), is the number of columns over which
the cells of dg(λ/γ) stretch.

First, if λ is a shape that appears on the right hand side of (11), then it also appears on the right hand
side of (10) with the same coefficient. If dg(λ/γ) is a connected skew shape around the outside of dg(γ)
avoiding the 2 × 2 square, then every cell of dg(λ/γ) either has another cell of dg(λ/γ) to its right or
below it, with the exception of the last cell in reading order. This means that rule (d) labels the last
cell in reading order, and rules (a) and (b) label all the other cells of dg(λ/γ) in a unique way, as in
Figure 4. Let c1 = (x1, y1), . . . , ck+1 = (xk+1, yk+1) be the cells labeled h listed in reading order.
Let ck+2 = (xk+2, yk+2), . . . , cr = (xr, yr) be the cells labeled v listed in reverse reading order. Let
dg(λ(i)) be the diagram of γ plus the cells c1, c2, . . . , ci. Clearly, each λ(i) is a partition shape, making
it compatible with basement εn. Also, each ci is on the rightmost column of its height in λ(i), making
each ci a removable cell. This means the unique labeling is a satisfactory k-hook labeling, so λ/γ is a
γ-transposed k-hook relative to basement εn. Then this sλ appears as a term in the sum with coefficient
(−1)k. This coefficient is the same as that given in the classical Murnaghan-Nakayama rule, because
the width of λ/γ is the number of cells labeled h. The labeling assigns an h to k + 1 cells so that
(−1)w(λ/γ)−1 = (−1)k.

Now, if λ is not counted by (11), it is also not counted by (10). If dg(λ/γ) is not a connected skew
shape, then consider the first connected component of dg(λ/γ) in reading order. The last cell in reading
order of this component will not have its label forced by rules (a) through (d). It is neither above nor
to the left of another cell. It is not in the lowest row of dg(λ/γ) because there is another component
following this one, and the situation described by rule (c) does not apply to partition shapes. Thus, there
is not a unique satisfactory of labeling of dg(λ/γ), meaning δ/γ is not a γ-transposed k-hook relative to
basement εn, so sλ will not appear as a term in the sum. Similarly, if dg(λ/γ) contains a 2 × 2 square,
Lemma 2 says that dg(λ/γ) has no satisfactory labeling. In this case, clearly λ/γ is not a γ-transposed
k-hook relative to basement εn. Thus the shapes λ for which λ/γ is a γ-transposed k-hook relative to
basement εn are exactly the shapes λ such that dg(λ/γ) is a rim hook.
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To prove Theorem 1, we start with a well-known result from symmetric function theory, which says
that the power symmetric functions can be expressed as an alternating sum of hook Schur functions:

pr(x1, x2, . . . , xn) =

r−1∑

k=0

(−1)ks(r−k,1k). (12)

Using (12) allows us to write

pr(x1, x2, . . . , xn)Êσγ (x1, x2, . . . , xn) =

r−1∑

k=0

(−1)ks(r−k,1k)Ê
σ
γ (x1, x2, . . . , xn) (13)

thereby reducing the problem to one of multiplying a hook Schur function and a generalized Demazure
atom.

If Ak(δ/γ) is the number of satisfactory k-hook labelings of dg(δ/γ), the following lemma answers
the question of how to multiply a hook Schur function and a generalized Demazure atom. While it is
possible to give a proof of this lemma using the Pieri rules of [HMR12], we have chosen to give a direct
proof here.

Lemma 3 If γ = (γ1, . . . , γn) is a weak composition of m and σ ∈ Sn, then

s(r−k,1k)(x1, x2, . . . , xn)Êσγ (x1, x2, . . . , xn) =
∑

δ

Ak(δ/γ)Êσδ (x1, x2, . . . , xn) (14)

where the sum is over all weak compositions δ = (δ1, . . . , δn) of m+ r such that dg(γ) ⊆ dg(δ) and δ/γ
has a satisfactory k-hook labeling.

Proof: The left hand side of (14) can be interpreted as the sum of the weights of all pairs (w,Fσ), where
Fσ is a PBF of shape γ with basement σ andw = w1w2 . . . wr satisfies 1 ≤ w1 < · · · < wk < wk+1 ≤ n
and n ≥ wk+1 ≥ · · · ≥ wr ≥ 1. This condition on w comes from interpreting s(r−k,1k) as the sum of the
weights of all reverse row-strict tableaux of shape (r− k, 1k) read by columns. Here, the weight of a pair
(w,Fσ) is defined to be wt(Fσ)

∏r
i=1 xwi . The right hand side of (14) can be interpreted as the sum of

the weights of all pairs (L,Gσ) where Gσ is a PBF with basement σ and shape δ = (δ1, . . . , δn) of size
m+ r such that dg(γ) ⊆ dg(δ) and L is a satisfactory k-hook labeling of dg(δ/γ). Here, the weight of a
pair (L,Gσ) is just wt(Gσ).

Let Θ be the function which takes such a (w,Fσ) pair to the pair (L,Gσ) where Gσ is the PBF that
results from the insertion of w into Fσ and L is the labeling induced by this insertion, defined below. Let
δ be the shape of this resulting PBF Gσ . Let Gσ0 = Fσ and Gσi = w1 . . . wi → Fσ for i = 1, . . . , r.
Let δ(i) be the shape of Gσi , and let ci be the cell in dg(δ(i)/δ(i−1)). To obtain the induced labeling L of
dg(δ/γ), simply label cells c1, . . . , ck+1 with h, and label cells ck+2, . . . , cr with v. Note that by Lemma
1, c1, . . . , ck+1 appear in reading order because w1 < · · · < wk < wk+1, and ck+2, . . . , cr appear in
reverse reading order because wk+2 ≥ · · · ≥ wr. Also, L produces the correct number of h’s and v’s to
be a satisfactory k-hook labeling. We must check that the two additional conditions are met, as well as
that L is a satisfactory labeling.

We know that for each i = 1, . . . , r, δ(i) is a σ-compatible weak composition of m+ i because it arises
from insertion. Also, insertion creates only removable cells, so each ci is a removable cell. This means
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conditions 1 and 2 in the definition of a satisfactory k-hook labeling hold. It remains to show that the
labeling L satisfies the definition of a satisfactory labeling.

First, note that none of {ck+2, . . . , cr} have another cell in dg(δ/γ) to their right in the same row.
Suppose that some cl with k + 2 ≤ l ≤ r has another cell ci to its right. Since cl is removable, it must
be the case that i > l. This means that wi ≤ wl so by Lemma 1, ci should be strictly above cl. Since the
assumption is that ci and cl are in the same row, it must not be possible for any of {ck+2, . . . , cr} to have
another cell in dg(δ/γ) to the right. This means every cell with another cell to the right must be among
{c1, . . . , ck+1}, and our labeling L assigns them all h. Thus, part (a) of the definition holds.

Next, note that none of {c1, . . . , ck+1} have another cell in dg(δ/γ) immediately below. Suppose that
some cl with 1 ≤ l ≤ k + 1 is directly above some other ci. For δ(l) to be a weak composition shape,
it must be the case that i ≤ l. This means wi < wl so that cl should come after ci in reading order by
Lemma 1. This contradicts the fact that cl is above ci, which means all cells with another cell directly
below must be among {ck+2, . . . , cr} and our labeling assigns them all v, as required by part (b) of the
definition.

Now suppose that some cl with k+2 ≤ l ≤ r is above a cell of dg(γ) and has some other ci ∈ dg(δ/γ)
one row below and to the left. Then i > l otherwise ci would not be removable. Then wl ≥ wi so ci
should be strictly above cl. Since this is not the case, it must not be possible for one of {ck+2, . . . , cr} to
be above a cell in dg(γ) and have some other cell dg(δ/γ) one row below and to the left. Any such cell
must therefore be among {c1, . . . , ck+1}, and L assigns them all h. Thus, part (c) of the definition holds.

Finally, we show that none of {ck+2, . . . , cr} can end up in the lowest row of dg(δ/γ). For any wl with
k + 2 ≤ l ≤ r, wl ≤ wk+1 so cl must fall strictly above ck+1 in dg(δ/γ). Since each such cl must fall
strictly above another cell in the diagram, none can be in the bottom row. Therefore, all cells in the bottom
row of the diagram are among {c1, . . . , ck+1}. The labeling L assigns them all h, thereby satisfying part
(d) of the definition.

We have shown that Gσ is a PBF with basement σ and shape δ = (δ1, . . . , δn) of size m+ r such that
dg(γ) ⊆ dg(δ) and L is a satisfactory k-hook labeling. Also, the weight of the pair (w,Fσ) is clearly the
same as the weight of Gσ . Since the insertion procedure can be reversed, the map Θ is one-to-one.

It remains to show that Θ is surjective, or that for each Gσ with a given satisfactory k-hook labeling,
there is a pair (w,Fσ) that maps to it under Θ. Suppose Gσ is a PBF with basement σ and shape
δ = (δ1, . . . , δn) of size m + r such that dg(γ) ⊆ dg(δ) and L is a satisfactory k-hook labeling of
dg(δ/γ). Label the cells with v’s and h’s according to L. Then label the h’s in reading order with
c1, . . . , ck+1 and the v’s in reverse reading order with ck+2, . . . , cr. Since cr is a removable cell, we
can reverse the insertion procedure to produce a PBF which we will call Fσr−1 and a letter wr such that
Gσ = wr → Fσr−1. Since each ci is removable, we can continue to reverse the insertion procedure starting
with cr−1 next, all the way down to c1. Each step in this reversal produces a new PBF Fσi and a letter
wi+1 such that Gσ = wi+1 . . . wr → Fσi . The shape of Fσi is δ with the cells ci+1, . . . , cr removed. This
means Fσ0 is a PBF of shape γ and basement σ such that w = w1 . . . wr inserted into Fσ0 produces Gσ

and induces the labeling L.
We must show, however, that the resulting word w = w1 . . . wr satisfies 1 ≤ w1 < · · · < wk <

wk+1 ≤ n and n ≥ wk+1 ≥ · · · ≥ wr ≥ 1. It is clear that each wi satisfies 1 ≤ wi ≤ n, as wi
was an element of a PBF with basement σ ∈ Sn. Suppose for a contradiction that some wi ≥ wi+1 for
1 ≤ i ≤ k. Then Lemma 1 says that ci+1 should be strictly above ci, which contradicts the fact that
{c1, . . . , ck+1} were labeled in reading order. So 1 ≤ w1 < · · · < wk < wk+1 ≤ n. Now suppose that
some wi < wi+1 for k+ 1 ≤ i ≤ r. Then Lemma 1 says that ci+1 should appear after ci in reading order,
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which contradicts the fact that {ck+1, . . . , cr} were labeled in reverse reading order. Thus, it is also true
that n ≥ wk+1 ≥ · · · ≥ wr ≥ 1. Therefore, Θ is a bijection, which proves (14).

2

Replacing 14 in 13 allows us to write

pr(x1, x2, . . . , xn)Êσγ (x1, x2, . . . , xn) =
r−1∑

k=0

(−1)k
∑

δ

Ak(δ/γ)Êσδ (x1, x2, . . . , xn) (15)

where the sum is over all weak compositions δ = (δ1, . . . , δn) of m + r such that dg(γ) ⊆ dg(δ) and
dg(δ/γ) has a satisfactory k-hook labeling. Next we state a technical lemma for which we will not supply
a proof due to lack of space. This lemma will help us define an involution which will allow us to simplify
the right hand side of (15).

Lemma 4 Suppose δ is a shape such that dg(δ/γ) has a satisfactory j-hook labeling for some j and rules
(a) through (d) cannot be used to assign labels to all cells of dg(δ/γ). Then every satisfactory labeling of
dg(δ/γ) is a satisfactory k-hook labeling for some k.

Using these lemmas, we can prove Theorem 1.

Proof of Theorem 1: We have from (15) an expression for prÊσγ in terms of Êσδ ’s. Suppose δ is a shape
such that Êσδ appears on the right hand side of (15). By Lemma 3, δ is a shape such that dg(δ/γ) has a
satisfactory j-hook labeling for some j. Suppose also that δ/γ is not a γ-transposed k-hook relative to
basement σ, so that there is more than one way to label its cells in accordance with rules (a) through (d).

We will associate with each satisfactory labeling L of dg(δ/γ) the sign (−1)k if L is a satisfactory
k-hook labeling. Note that Lemma 4 implies that each satisfactory labeling L is a satisfactory k-hook
labeling for some value of k, so this notion of sign is well-defined. Now define an involution I on the set
of satisfactory labelings of dg(δ/γ). Take any satisfactory labeling L of dg(δ/γ). By Lemma 4, L is a
satisfactory k-hook labeling for some k. To define I(L), take the first cell c in reading order of dg(δ/γ)
which was not forced to be a v or an h by rules (a) through (d). If L labeled cell c with an h, change it to
a v. Otherwise, change it from a v to an h. This new labeling is I(L). I(L) is still a satisfactory labeling
because we have not changed the label of any cell to which rules (a) through (d) apply. The number of h’s
in I(L) is either one fewer or one more than the number of h’s in L. By Lemma 4, I(L) is a satisfactory
k + 1-hook or k − 1-hook labeling. Furthermore the sign of I(L) is the opposite of the sign of L. I is an
involution because I applied to I(L) will change the label of the same cell c.

Applying this involution to the labelings of dg(δ/γ) when δ/γ is not a γ-transposed k-hook relative
to basement σ gives a way to pair Êσδ terms with opposite signs on the right hand side of (15). Since I
has no fixed points, all such Êσδ terms will cancel. This means that if δ is a shape for which any cells of
dg(δ/γ) are left undetermined by rules (a)-(d), then Êσδ will not appear in the expansion of pnÊσγ . The
terms that do appear are for those δ’s for which rules (a)-(d) assign a v or h label to every cell of dg(δ/γ),
which are exactly γ-transposed k-hooks relative to basement σ. 2

If λ = (λ1, . . . , λs) is a partition, this theorem can be used to multiply pλÊσγ by first writing pλ =
pλ1pλ2 . . . pλs and then repeatedly applying 10.

In conclusion, we note that one can define a quasisymmetric Schur function QSα and a row-strict qua-
sisymmetric Schur function RSα for each composition α of n; see [HLMvW11a] and [MR11], respec-
tively. The methods of this paper can easily be modified to prove analogues of the Murnaghan-Nakayama
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rule for quasisymmetric Schur functions and row-strict quasisymmetric Schur functions. That is, we can
give combinatorial interpretations to the coefficients u(r)α,β and v(r)α,β where

pr(x1, . . . , xn)QSα(x1, . . . , xn) =
∑

β

u
(r)
α,βQSβ(x1, . . . , xn) and

pr(x1, . . . , xn)RSα(x1, . . . , xn) =
∑

β

v
(r)
α,βRSβ(x1, . . . , xn).

This work will appear in a subsequent paper.
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Schensted–Knuth algorithm. Séminaire Lotharingien de Combinatoire, 57: B57e, 2008.

[Mas09] S. Mason. An explicit construction of type A Demazure atoms. Journal of Algebraic
Combinatorics, 29(3):295–313, 2009.

[MR11] S. Mason and J.B. Remmel. Row-strict quasisymmetric Schur functions. Discrete Math-
ematics and Theoretical Computer Science, 119:657–668, 2011.



FPSAC 2013 Paris, France DMTCS proc. AS, 2013, 1011–1022

Semi-skyline augmented fillings and
non-symmetric Cauchy kernels for stair-type
shapes
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Abstract. Using an analogue of the Robinson-Schensted-Knuth (RSK) algorithm for semi-skyline augmented fillings,
due to Sarah Mason, we exhibit expansions of non-symmetric Cauchy kernels

∏
(i,j)∈η(1 − xiyj)

−1, where the
product is over all cell-coordinates (i, j) of the stair-type partition shape η, consisting of the cells in a NW-SE
diagonal of a rectangle diagram and below it, containing the biggest stair shape. In the spirit of the classical Cauchy
kernel expansion for rectangle shapes, this RSK variation provides an interpretation of the kernel for stair-type shapes
as a family of pairs of semi-skyline augmented fillings whose key tableaux, determined by their shapes, lead to
expansions as a sum of products of two families of key polynomials, the basis of Demazure characters of type A,
and the Demazure atoms. A previous expansion of the Cauchy kernel in type A, for the stair shape was given by
Alain Lascoux, based on the structure of double crystal graphs, and by Amy M. Fu and Alain Lascoux, relying on
Demazure operators, which was also used to recover expansions for Ferrers shapes.

Résumé. En utilisant an analogue de l’algorithme de Robinson-Schensted-Knuth (RSK) pour remplissages des lignes
d’horizon augmentées, proposé par Sarah Mason, nous donnons des développements d’un noyau de Cauchy non
symétrique,

∏
(i,j)∈η(1 − xiyj)−1, dans le cas où les paires (i, j) sont les coordonnées des cellules d’une partition

η du type escalier dans un rectangle, contenant la plus grande partition escalier de ce rectangle. Dans l’esprit du
développement classique sur les diagrammes rectangulaires, cette variation de RSK fournit une somme des produits
de deux familles de polynômes clefs, engendrée par paires de remplissages des lignes d’horizon augmentées dont les
formats définissent tableaux clefs, à savoir, la base des caractères de Demazure du type A et les Demazure atomes.
Un développement du noyau de Cauchy non symétrique pour le type A, dans le cas de la partition escalier, a été donné
par Alain Lascoux en employant la structure des graphes cristallins doublés, et par Amy M. Fu et Alain Lascoux, en
se basant aux opérateurs de Demazure, qui a été aussi utilisé pour obtenir des expansions sur diagrammes de Ferrers.

Keywords: Non-symmetric Cauchy kernels, Demazure character, key polynomial, Demazure operator, semi-skyline
augmented filling, RSK analogue.
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‡This work was partially supported by the Centro de Matemática da Universidade de Coimbra (CMUC), funded by the European

Regional Development Fund through the program COMPETE and by the Portuguese Government through the FCT - Fundação para
a Ciência e a Tecnologia under the project PEst-C/MAT/UI0324/2011, and Fundação para a Ciência e a Tecnologia, Grant SFRH /
BD / 33700 / 2009.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



1012 Olga Azenhas, Aram Emami

1 Introduction
Given the general Lie algebra gln(C), and its quantum group Uq(gln), finite-dimensional representations
of Uq(gln) are also classified by the highest weight. Let λ be a dominant integral weight (that is, a
partition) and V (λ) the integrable representation with highest weight λ and uλ the highest weight vector.
For a given permutation w in the symmetric group Sn, minimum for the Bruhat order in the class modulo
the stabilizer of λ, the Demazure module is defined to be Vw(λ) := Uq(g)>0.uwλ, and the Demazure
character is the character of Vw(λ). Kashiwara (1991) has associated with λ a crystal graph Bλ, which
can be realised as a coloured directed graph whose vertices are all semi-standard Young tableaux (SSYTs)
of shape λ in the alphabet [n], and the edges are coloured with a colour i, for each pair of crystal operators
fi, ei, such that there exists a coloured i-arrow from the vertex P to P ′ if and only if fi(P ) = P ′,
equivalently, ei(P ′) = P , for 1 ≤ i ≤ n − 1. Littelmann (1995) conjectured and Kashiwara (1993)
proved that the intersection of a crystal basis of Vλ with Vw(λ) is a crystal basis for Vw(λ). The resulting
subset Bwλ ⊆ Bλ is called Demazure crystal, and the Demazure character corresponding to λ and w, is
the sum of the monomial weights of SSYTs in the Demazure crystal Bwλ.

Demazure characters (or key polynomials) are also defined through Demazure operators (or isobaric
divided differences). They were introduced by Demazure (1974) for all Weyl groups and were studied
combinatorially, in the case of Sn, by Lascoux and Schützenberger (1990) who produce a crystal struc-
ture. The simple transpositions si of Sn act on vectors v ∈ Nn by siv := (v1, . . . , vi+1, vi . . . , vn),
for 1 ≤ i ≤ n − 1, and induce an action of Sn on Z[x1, . . . , xn] by considering vectors v as exponents
of monomials xv := xv11 x

v2
2 · · ·xvnn . Two families of Demazure operators πi, π̂i on Z[x1, . . . , xn] are

defined by πif = xif−xi+1si(f)
xi−xi+1

and π̂if = πif − f, for 1 ≤ i ≤ n − 1. For the partition λ and
w = siN · · · si2si1 a reduced decomposition in Sn, one defines the type A key polynomials indexed by
wλ, κwλ(x) = πiN · · ·πi2πi1xλ and κ̂wλ(x) = π̂iN · · · π̂i2 π̂i1xλ, the latter consisting of all monomi-
als in κwλ which do not appear in κσλ for any σ < w in the Bruhat order. Thereby key polynomials
can be decomposed into non intersecting pieces κwλ(x) =

∑
ν≤w κ̂νλ(x), where the ordering on per-

mutations is the Bruhat order in Sn. In Lascoux and Schützenberger (1990) they are called standard
basis and in Mason (2009) Demazure atoms. The Demazure character corresponding to w and λ can
be expressed in terms of the Demazure operator and is equivalent to the key polynomial κwλ. Lascoux
and Schützenberger (1990) have given a combinatorial interpretation for Demazure operators in terms of
crystal operators to produce a crystal graph structure. Let P be a SSYT of shape λ and define the set
fsi(P ) := {fmi (P ) : m ≥ 0} \ {0}. If P is the head of an i-string of the crystal graph Bλ, πi(xP ) is the
sum of the monomial weights of all SSYTs in fsi(P ). In particular, when Y is the Yamanouchi tableau of
shape λ, the set fw(Y ) := {fmN

iN
. . . fm1

i1
(Y ) : mk ≥ 0} \ {0} constitutes the vertices of the Demazure

crystal Bwλ, and κwλ is the sum of all monomial weights over the Demazure crystal. The top of this
crystal graph B̂wλ := Bwλ \

⋃
σ<wBσλ defines the Demazure atom κ̂wλ(x) which is combinatorially

characterised by Lascoux and Schützenberger (1990) as the sum of the monomial weights of all SSYTs
whose right key is key(wλ).

As the sum of the monomial weights over all crystal graph Bλ gives the Schur polynomial sλ, each
SSYT of shape λ appears in precisely one such polynomial, henceforth, the Demazure atoms form a de-
composition of Schur polynomials. Specialising the combinatorial formula for nonsymmetric Macdonald
polynomials Eγ(x; q; t), given in Haglund et al. (2008), by setting q = t = 0, implies that Eγ(x; 0; 0) is
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the sum of the monomial weights of all semi-skyline augmented fillings (SSAF) of shape γ which are fill-
ings of composition diagrams with positive integers, weakly decreasing upwards along columns, and the
rows satisfy an inversion condition. These polynomials are also a decomposition of the Schur polynomial
sλ, with γ+ = λ. Semi-skyline augmented fillings are in bijection with semi-standard Young tableaux of
the same content whose right key is the unique key with content the shape of the SSAF, Mason (2006/08).
Therefore, Demazure atoms κ̂wλ(x) and Ewλ(x; 0; 0) are equal, Mason (2009). Semi-skyline augmented
fillings also satisfy a variation of the Robinson-Schensted-Knuth algorithm which commutes with the
usual RSK and retains its symmetry. We are, therefore, endowed with a machinery to exploit expansions
of non-symmetric Cauchy kernels

∏
(i,j)∈η (1 − xiyj)−1, where the product is over all cell-coordinates

(i, j) of the diagram η in the French convention. Our main Theorem 4.2 exhibits a bijection between
biwords in lexicographic order, whose biletters are cell-coordinates in a NW-SE diagonal of a rectangle
and below it, containing the biggest stair shape, and pairs of SSAFs whose shapes satisfy an inequality
in the Bruhat order. This allows to apply this variation of RSK for SSAFs to provide expansions for the
green diagram η = (mn−m+1,m− 1, . . . , n− k+ 1), 1 ≤ m, k ≤ n, n+ 1 ≤ m+ k, depicted below.
The formulas are explicit in the tableaux generating them.

k
n

m

The paper is organised as follows. In Section 2, we recall the tableau criterion for the Bruhat order in
Sn, and its extension to weak compositions. In Section 3, we review the necessary theory of SSAFs, the
variation of Schensted insertion and RSK for SSAFs. In Section 4, we give our main result, Theorem 4.2,
and, in the last section, we apply it to the expand the Cauchy kernel for stair-type shapes.

2 Key tableaux a criterion for the Bruhat order in Sn

Let N denote the set of non-negative integers. Fix a positive integer n, and define [n] the set {1, . . . , n}.
A weak composition γ = (γ1 . . . , γn) is a vector in Nn. If γi = · · · = γi+k−1, for some k ≥ 1, then
we also write γ = (γ1 . . . , γi−1, γ

k
i , γi+k, . . . , γn). A partition is a weak composition whose entries are

in weakly decreasing order, that is, γ1 ≥ · · · ≥ γn. Every composition γ determines a unique partition
γ+ obtained by arranging the entries of γ in weakly decreasing order. A partition λ = (λ1, . . . , λn) is
identified with its Young diagram dg(λ) in French convention, an array of left-justified cells with λi cells
in row i from the bottom, for 1 ≤ i ≤ n. The cells are located in the diagram dg(λ) by their row and
column indices (i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ λi. A filling of shape λ is a map T : dg(λ)→ [n]. A
semi-standard Young tableau (SSYT) of shape λ is a filling of dg(λ) weakly increasing in each row from
left to right and strictly increasing up in each column. The content or weight of SSYT T is the weak
composition c(T ) = (α1, . . . , αn) such that T has αi cells with entry i. A key is a SSYT such that the set
of entries in the (j + 1)th column is a subset of the set of entries in the jth column, for all j. There is a
bijection in Reiner and Shimozono (1995) between weak compositions in Nn and keys in the alphabet [n]
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given by γ → key(γ), where key(γ) is the key such that for all j, the first γj columns contain the letter
j. Any key tableau is of the form key(γ) with γ its content and γ+ the shape.

Suppose u and v are two rearrangements of a partition λ. We write u ≤ v in the (strong) Bruhat order
whenever key(u) ≤ key(v) for the entrywise comparison. If σ and β are in Sn, σ ≤ β in the Bruhat
order if and only if σ(n, n− 1, . . . , 1) ≤ β(n, n− 1, . . . , 1) as weak compositions.

3 Semi-skyline augmented fillings
3.1 Definitions and properties
We follow most of the time the conventions and terminology in Haglund et al. (2005, 2008) and Ma-
son (2006/08, 2009). A weak composition γ = (γ1, . . . , γn) is visualised as a diagram consisting of n
columns, with γj boxes in column j. Formally, the column diagram of γ is the set dg′(γ) = {(i, j) ∈
N2 : 1 ≤ j ≤ n, 1 ≤ i ≤ γj} where the coordinates are in French convention, the abscissa i indexing
the rows, and the ordinate j indexing the columns. (The prime reminds that the components of γ are the
columns.) The number of cells in a column is called the height of that column and a cell a in a column dia-
gram is denoted a = (i, j), where i is the row index and j is the column index. The augmented diagram
of γ, d̂g(γ) = dg′(γ) ∪ {(0, j) : 1 ≤ j ≤ n}, is the column diagram with n extra cells adjoined in row
0. This adjoined row is called the basement and it always contains the numbers 1 through n in strictly
increasing order. The shape of d̂g(γ) is defined to be γ. For example, the column diagram dg′(γ) and the
augmented diagram d̂g(γ) for γ = (1, 0, 3, 0, 1, 2, 0) are respectively,

1 2 3 4 5 6 7

An augmented filling F of an augmented diagram d̂g(γ) is a map F : d̂g(γ) → [n], which can be
pictured as an assignment of positive integer entries to the non-basement cells of d̂g(γ). Let F (i) denote
the entry in the ith cell of the augmented diagram encountered when F is read across rows from left to
right, beginning at the highest row and working down to the bottom row. This ordering of the cells is
called the reading order. A cell a = (i, j) precedes a cell b = (i′, j′) in the reading order if either i′ < i
or i′ = i and j′ > j. The reading word of F is obtained by recording the non-basement entries in reading
order. The content of an augmented filling F is the weak composition c(F ) = (α1, . . . , αn) where αi
is the number of non-basement cells in F with entry i, and n is the number of basement elements. The
standardization of F is the unique augmented filling that one obtains by sending the ith occurrence of j

in the reading order to i +
∑j−1
m=1 αm. Let a, b, c ∈ d̂g(γ) three cells situated as follows, b

a c. . .

where
a and c are in the same row, possibly the first row, possibly with cells between them, and the height of
the column containing a and b is greater than or equal to the height of the column containing c. Then the
triple a, b, c is an inversion triple of type 1 if and only if after standardization the ordering from smallest to
largest of the entries in cells a, b, c induces a counterclockwise orientation. Similarly, consider three cells

a, b, c ∈ d̂g(γ) situated as follows, a c
b

. . . where a and c are in the same row (possibly the basement) and
the column containing b and c has strictly greater height than the column containing a. The triple a, b, c
is an inversion triple of type 2 if and only if after standardization ordering from smallest to largest of the
entries in cells a, b, c induces a clockwise orientation.



Non-symmetric Cauchy kernels 1015

Define a semi-skyline augmented filling (SSAF) of an augmented diagram d̂g(γ) to be an augmented
filling F such that every triple is an inversion triple and columns are weakly decreasing from bottom to
top. The shape of the semi-skyline augmented filling is γ and denoted by sh(F ). The picture below is
an example of a semi-skyline augmented filling with shape (1, 0, 3, 2, 0, 1), reading word 1321346 and
content (2, 1, 2, 1, 0, 1).

1 2 3 4 5 6
1 3

3
1

4
2

6

The entry of a cell in the first row of a SSAF is equal to the basement element where it sits and, thus, in
the first row the cell entries increase from left to the right. For any weak composition γ in Nn, there is at
least one SSAF with shape γ, by putting γi cells with entries i in the top of the basement element i.

In Mason (2006/08) a sequence of lemmas provide several conditions on triples of cells in a SSAF.
We recall a property regarding an inversion triple of type 2 which will be used in the proof of our main
theorem. Given a cell a in SSAF F define F (a) to be the entry in a.

Remark 3.1 1. If {a, b, c} is a type 2 inversion triple in F then F (a) < F (b) ≤ F (c).

3.2 An analogue of Schensted insertion and RSK for SSAF.
The fundamental operation of the Robinson-Schensted-Knuth (1970) (RSK) algorithm is Schensted in-
sertion which is a procedure for inserting a positive integer k into a SSYT T . Mason (2006/08) defines a
similar procedure for inserting a positive integer k into a SSAF F , which is used to describe an analogue
of the RSK algorithm. If F is a SSAF of shape γ, we set F := (F (j)), where F (j) is the entry in the jth

cell in reading order, with the cells in the basement included, and j goes from 1 to n+
∑n
i=1 γi. If ĵ is the

cell immediately above j and the cell is empty, set F (ĵ) = 0. The operation k → F, for k ≤ n, is defined
as follows.
Procedure. The insertion k → F :

1. Set i := 1, set x1 := k, set p0 = ∅, and set j := 1.
2. If F (j) < xi or F (ĵ) ≥ xi, then increase j by 1 and repeat this step. Otherwise, set xi+1 := F (ĵ)

and set F (ĵ) := xi. Set pi = (b+ 1, a), where (b, a) is the jth cell in reading order. (This means that the
entry xi ”bumps” the entry xi+1 from the cell pi.)

3. If xi+1 6= 0 then increase i by 1, increase j by 1, and repeat step 2.
4. Set tk equal to pi, which is the termination cell, and terminate the algorithm.
The procedure terminates in finitely many steps and the result is a SSAF. Based on this Schensted

insertion analogue, it is given a weight preserving and a shape rearranging bijection Ψ between SSYT
and SSAF over the alphabet [n]. The bijection Ψ is defined to be the insertion, from right to left, of
the column word which consists of the entries of each column, read top to bottom from columns left to
rigth, of a SSYT into the empty SSAF with basement [n]. The bijection together with the shape of Ψ(T )
provides the right key of T , K+(T ), a notion due to Lascoux and Schützenberger (1990).

Theorem 3.1 [Mason (2009)] Given an arbitrary SSYT T , let γ be the shape of Ψ(T ). Then K+(T ) =
key(γ).

It should be observed that Willis (2011) gives another way to calculate the right key of a SSYT.
Given the alphabet [n], the RSK algorithm is a bijection between biwords in lexicographic order

and pairs of SSYT of the same shape over [n]. Equipped with the Schensted insertion anlogue Mason
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(2006/08) applies the same procedure to find an analogue Φ of the RSK for SSAF. This bijection has an
advantage over the classical RSK because it comes along with the extra pair of right keys.

The two line array w =

(
i1 i2 · · · il
j1 j2 · · · jl

)
, ir < ir+1, or ir = ir+1 & jr ≤ jr+1,

1 ≤ i, j ≤ l − 1, with ir, jr ∈ [n], is called a biword in lexicographic order over the alphabet [n]. The
map Φ defines a bijection between the set A of all biwords w in lexicographic order in the alphabet [n],
and pairs of SSAFs whose shapes are rearrangements of the same partition in Nn and the contents are
respectively those of the second and first rows of w. Let SSAF be the set of all SSAFs with basement [n].
Procedure. The map Φ : A −→ SSAF× SSAF. Let w ∈ A.

1. Set r := l, where l is the number of biletters in w. Let F = ∅ = G, where ∅ is the empty SSAF.
2. Set F := (jr → F ). Let hr be the height of the column in (jr → F ) at which the insertion procedure

(jr → F ) terminates.
3. Place ir on top of the leftmost column of height hr − 1 in G such that doing so preserves the

decreasing property of columns from bottom to top. Set G equal to the resulting figure.
4. If r − 1 6= 0, repeat step 2 for r := r − 1. Else terminate the algorithm.

Remark 3.2 1. The entries in the top row of the biword are weakly increasing when read from left to
right. Henceforth, if hr > 1, placing ir on top of the leftmost column of height hr − 1 in G preserves the
decreasing property of columns. If hr = 1, the ithr column of G does not contain an entry from a previous
step. It means that number ir sits on the top of basement ir.
2. Let h be the height of the column in F at which the insertion procedure (j → F ) terminates. Remark
3.1, implies that there is no column of height h+ 1 in F to the right.

Corollary 3.2 [ Mason (2006/08, 2009)] The RSK algorithm commutes with the above analogue Φ. That
is, if (P,Q) is the pair of SSYT produced by RSK algorithm applied to biword w, then (Ψ(P ),Ψ(Q)) =
Φ(w), and K+(P ) = key(sh(Ψ(P ))), K+(Q) = key(sh(Ψ(Q))).

This result is summarised in the following scheme from which, in particular, it is clear the RSK analogue
Φ also shares the symmetry of RSK.

(P,Q)

w

(F,G)

RSK Φ

Ψ

sh(F )+ = sh(G)+ = sh(P ) = sh(Q),

K+(P ) = key(sh(F )), K+(Q) = key(sh(G)).

c(P ) = c(Q) = c(F ) = c(G),

4 Main Theorem
We give a bijection between biwords, in lexicographic order, whose biletters are cell-coordinates in a
NW-SE diagonal of a rectangle diagram, and below it, containing the biggest stair shape, and pairs of
SSAFs whose shapes satisfy an inequality in the Bruhat order.

Lemma 4.1 Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) be two weak compositions in Nn,
rearrangements of each other, with key(β) ≤ key(α). Given k ∈ {1, . . . , n}, let k′ ∈ {1, . . . , n} be such
that βk′ is the left most entry of β satisfying αk = βk′ . Then if α̃ = (α1, α2, . . . , αk + 1, . . . , αn) and
β̃ = (β1, β2, . . . , βk′ + 1, . . . , βn), it holds key(β̃) ≤ key(α̃).
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Proof: Let k, k′ ∈ {1, . . . , n} as in the lemma, and put αk = βk′ = m ≥ 1. (The proof for m = 0 is left
to the reader. The case of interest for our problem is m > 0 which is related with the procedure of map
Φ.) This means that k appears exactly in the firstm columns of key(α), and k′ is the smallest number that
does not appear in column m + 1 of key(β) but appears exactly in the first m columns. Let t be the row
index of the cell with entry k′ in column m of key(β). Every entry less than k′ in column m of key(β)
appears in column m+ 1 as well, and since in a key tableau each column is contained in the previous one,
this imply that the first t rows of columns m and m+ 1 of key(β̃) are equal. The only difference between
key(β̃) and key(β) is in columns m+ 1, from row t to the top. Similarly if z is the row index of the cell
with entry k in column m + 1 of key(α̃), the only difference between key(α̃) and key(α) is in columns
m + 1 from row z to the top. To obtain column m + 1 of key(β̃), shift in the column m + 1 of key(β)
all the cells with entries > k′ one row up, and add to the position left vacant (of row index t) a new cell
with entry k′. The column m + 1 of key(α̃) is obtained similarly, by shifting one row up in the column
m + 1 of key(α) all the cells with entries > k and adding a new cell with entry k in the vacant position.
Put p = min{t, z} and q = max{t, z}. We divide the columns m + 1 in each pair key(β), key(β̃) and
key(α), key(α̃) into three parts: the first, from row one to row p − 1; the second, from row p to row q;
and the third, from row q + 1 to the top row. The first parts of column m + 1 of key(β̃) and key(β) are
the same, equivalently, for key(α̃) and key(α). The third part of column m+ 1 of key(β̃) consists of row
q plus the third part of key(β), equivalently, for key(α̃) and key(α). As columns m + 1 of key(β) and
key(α) are entrywise comparable, the same happens to the third parts of columns m + 1 in key(β̃) and
key(α̃). It remains to analyse the second parts of the pair key(β̃), key(α̃) which we split into two cases
according to the relative magnitude of p and q.

Case 1. p = t < q = z. Let k′ < bt < · · · < bz−1 and dt < · · · < dz−1 < k be respectively
the cell entries of the second parts of columns m + 1 in the pair key(β̃), key(α̃). By construction
k′ < bt ≤ dt < dt+1, bi < bi+1 ≤ di+1, t < i < z− 2, and bz−1 ≤ dz−1 < k, and, therefore, the second
parts are also comparable.

Case 2. p = z ≤ q = t. In this case, the assumption on k′ implies that the first q rows of columns
m and m + 1 of key(β̃) are equal. On the other hand, since column m of key(β) is less or equal than
column m of key(α), which is equal to the column m of key(α̃) and in turn is less or equal to column
m + 1 of key(α̃), forces by transitivity that the second part of column m + 1 of key(β̃) is less or equal
than the corresponding part of key(α̃). 2

We illustrate the lemma with β = (3, 22, 1, 02, 1), α = (2, 0, 3, 0, 1, 2, 1), β̃ = (3, 23, 02, 1), and
α̃ = (2, 0, 3, 0, 22, 1),

key(β) = ≤ key(α) =

1
2
3
4
7

1
2
3

1 1
3
5
6
7

1
3
6

3

key(β̃) = ≤ key(α̃) =

1
2
3
4
7

1
2
3
4

1 1
3
5
6
7

1
3
5
6

3 .

Theorem 4.2 Let w be a biword in lexicographic order in the alphabet [n], and let Φ(w) = (F,G). For

each biletter
(

i
j

)
in w one has i+ j ≤ n+ 1 if and only if key(sh(G)) ≤ key(ωsh(F )), where ω is

the longest permutation of Sn. Moreover, if the first [respectively the second ] row of w is a word in the
alphabet [m], with 1 ≤ m ≤ n, the shape of G [respectively F ] has the last n−m entries equal to zero.
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Proof: ”Only if part”. We prove by induction on the number of biletters ofw. Ifw is the empty word then

F and G are the empty semi-skyline and there is nothing to prove. Let w′ =

(
ip+1 ip · · · i1
jp+1 jp · · · j1

)

be a biword in lexicographic order such that p ≥ 0 and it + jt ≤ n + 1 for all 1 ≤ t ≤ p + 1, and

w =

(
ip · · · i1
jp · · · j1

)
such that Φ(w) = (F,G). Let F ′ := (jp+1 → F ) and h the height of the column in

F ′ at which the insertion procedure terminates. There are two possibilities for h which the third step of
the algorithm procedure of Φ requires to consider.
• h = 1. It means jp+1 is sited on the top of the basement element jp+1 in F and therefore ip+1 goes to

the top of the basement element ip+1 in G. Let G′ be the semi-skyline obtained after placing ip+1 in G.
As ip+1 ≤ it, for all t, ip+1 is the bottom entry of the first column in key(sh(G′)) whose remain entries
constitute the first column of key(sh(G). Suppose n+1−jp+1 is added to the row z of the first column in
key(ωsh(F )) by shifting one row up all the entries above it. Let ip+1 < a1 < · · · < az < az+1 < · · · <
al and b1 < b2 < · · · < n+ 1− jp+1 < bz < · · · < bl be respectively the cell entries of the first columns
in the pair key(sh(G′)), key(ωsh(F ′)), where a1 < · · · < az < · · · < al and b1 < · · · < bz < · · · < bl
are respectively the cell entries of the first columns in the pair key(sh(G)), key(ωsh(F )). If z = 1, as
ip+1 ≤ n + 1 − jp+1 and ai ≤ bi for all 1 ≤ i ≤ l, then key(sh(G′)) ≤ key(ωsh(F ′)). If z > 1, as
ip+1 < a1 ≤ b1 < b2, we have ip+1 ≤ b1 and a1 ≤ b2. Similarly ai ≤ bi < bi+1, and ai < bi+1, for all
2 ≤ i ≤ z − 2. Moreover az−1 ≤ bz−1 < n + 1− jp+1, therefore, az−1 < n + 1− jp+1. Also ai ≤ bi
for all z ≤ i ≤ l. Hence. key(sh(G′)) ≤ key(ωsh(F ′)).
• h > 1. Place ip+1 on the top of the leftmost column of height h − 1. This means by Lemma 4.1

key(sh(G′)) ≤ key(ωsh(F ′)).

”If part”. We prove the contrapositive statement. If there exists a biletter
(
i
j

)
in w such that

i + j > n + 1, then at least one entry of key(sh(G)) is strictly bigger than the corresponding entry

of key(ωsh(F )). Let w =

(
ip · · · i1
jp · · · j1

)
be a biword in lexicographic order on the alphabet [n], and

(
it
jt

)
the first biletter inw, from right to left, with it+jt > n+1. Set F0 = G0 := ∅, and for d ≥ 1, let

(Fd, Gd) be the pair of SSAFs obtained by the procedure of map Φ applied to
(

id
jd

)
and (Fd−1, Gd−1).

First apply the map Φ to the biword
(

it−1 · · · i1
jt−1 · · · j1

)
to obtain the pair (Ft−1, Gt−1) of SSAFs whose

right keys satisfy, by the ”only if part” of the theorem, key(sh(Gt−1)) ≤ key(ωsh(Ft−1)). Now insert
jt to Ft−1. As ik + jk ≤ n+ 1, for 1 ≤ k ≤ t− 1, ik + jk ≤ n+ 1 < it + jt and it ≤ ik, 1 ≤ k ≤ t− 1,
then jt > jk, 1 ≤ k ≤ t− 1 and since w is in lexicographic order it implies it < it−1. Therefore jt sits
on the top of the basement element jt in Ft−1 and it sits on the top of the basement element it in Gt−1. It
means that n+ 1− jt is added to the first row and first column of key(ωsh(Ft−1)) and all entries in this
column are shifted one row up. Similarly it is added to the first row and first column of key(sh(Gt−1))
and all the entries in this column are shifted one row up. As it > n + 1 − jt then the first columns of
key(sh(Gt)) and key(ωsh(Ft)) respectively, are not entrywise comparable, and we say that we have a
”problem” in the key-pair (key(sh(Gt)), key(ωsh(Ft))). From now on ”problem” means it > n+ 1− jt
in some row of a pair of columns in the key-pair (key(sh(Gd)), key(ωsh(Fd))), with d ≥ t. Let d ≥ t
and denote by J the column with basement jt in Fd, and by I the column with basement it in Gd. Let
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|J | and |I| denote respectively the height of J and I , and let ri and ki denote the number of columns of
height ≥ i ≥ 1, respectively, to the right of J and to the left of I .

Classification of the ”problem”: For any d ≥ t, either there exists s ≥ 1 such that |J |, |I| ≥ s,
rs = ks > 0; or 1 ≤ |J | ≤ |I|, and there exists 1 ≤ f ≤ |J |, such that ki > ri, for 1 ≤ i < f , and
ki = ri = 0, for i ≥ f . In the first case, one has a ”problem” in the (rs + 1)th rows of the sth columns in
the key-pair (key(sh(Gd)), key(ωsh(Fd))). In the second case, one has a problem in the bottom of the
|J |th columns.

The proof of this classification is mainly based on the Remark 3.2 which says that no insertion can
terminate, to the left of J , on the top of a column of height |J | − 1 or h − 1 such that rh > rh+1, and,
on the fact, that an insertion terminating to the right of J or on the top of J will contribute with a cell to
the left or to the top of I . Therefore the original ”problem” in the key-pair (key(sh(Gt)), key(ωsh(Ft)))
will appear in another row or column in (key(sh(Gd)), key(ωsh(Fd))) but will never disappear with new
insertions. Finally, if the second row of w is over the alphabet [m], there is no cell on the top of the
basement of F greater than m. Therefore, the shape of F has the last n −m entries equal to zero. The
other case is similar. 2

Remark 4.1 In the previous theorem if the rows of w are swapped, one obtains the biword w̃ such that
Φ(w̃) = (G,F ) with key(sh(F ) ≤ key(ωsh(G)). Moreover, given ν ∈ Nn and β ≤ ων, there exists
always a pair (F,G) of SSAFs with shapes ν and β respectively.

Two examples are now given to illustrate Theorem 4.2.

1. Given w =

(
4 6 6 7
4 1 2 1

)
, Φ(w) and the key-pair key(sh(G)) ≤ key(ωsh(F )) are calcu-

lated.

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 7

sh(F1) = (1, 06) sh(G1) = (06, 1)

key(sh(G1)) = 7 = key(ωsh(F1))

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 2 76

sh(F2) = (1, 1, 05) sh(G2) = (05, 1, 1)

key(sh(G2)) = 67 = key(ωsh(F2))

, ; ,

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 2 76
1 6

sh(F3) = (2, 1, 05) sh(G3) = (05, 2, 1)

key(sh(G3)) =
7
6 6

≤ 7
6 7

= key(ωsh(F3))

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 2 76
1 6

4 4

sh(F4) = (2, 1, 0, 1, 03) sh(G4) = (03, 1, 0, 2, 1)

key(sh(G4)) =
7
6
4 6

≤
7
6
4 7

= key(ωsh(F4))

2. Let w =

(
1 2 3 3 5 6
6 3 2 4 3 1

)
, with n = 6, i2 = 5 > 6 + 1 − 3. We calculate Φ(w) whose

key-pair key(sh(G)), key(ωsh(F )) is not entrywise comparable.
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1 2 3 4 5 6 1 2 3 4 5 6
1 6

sh(F1) = (1, 05) sh(G1) = (05, 1)

key(sh(G1)) = 6 = key(ωsh(F1))

1 2 3 4 5 6 1 2 3 4 5 6
1 3 65

sh(F2) = (1, 0, 1, 03) sh(G2) = (04, 1, 1)

key(sh(G2)) =
6
5
� 6

4
= key(ωsh(F2))

, ; ,

1 2 3 4 5 6 1 2 3 4 5 6
1 3 634 5

sh(F3) = (1, 0, 1, 1, 02)sh(G3) = (02, 1, 0, 1, 1)

key(sh(G3)) =
6
5
3
�

6
4
3

= key(ωsh(F3))

1 2 3 4 5 6 1 2 3 4 5 6
1 3

2
4 3

3
5 6

sh(F4) = (1, 0, 2, 1, 02) sh(G4) = (02, 2, 0, 1, 1)

key(sh(G4)) =
6
5
3 3

�
6
4
3 4

= key(ωsh(F4))

, ; ,

3 2 3 2

1 2 3 4 5 6 1 2 3 4 5 6
1 3 634 5

sh(F5) = (1, 0, 2, 2, 02)sh(G5) = (02, 2, 0, 2, 1)

key(sh(G5)) =
6
5 5
3 3

�
6
4 4
3 3

= key(ωsh(F5))

1 2 3 4 5 6 1 2 3 4 5 6
1 3

3 2
4 6 3

3
5 6
2

1

sh(F6) = (1, 0, 22, 0, 1) sh(G6) = (1, 0, 2, 0, 2, 1)

key(sh(G6)) =

6
5
3 5
1 3

�

6
4
3 4
1 3

= key(ωsh(F6))

, ; ,

5 Expansions of Cauchy kernels in stair-type shapes
The well-known Cauchy identity expresses the product

∏n
i=1

∏m
j=1(1− xiyj)−1 as a sum of products of

Schur functions in x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym),

∏

(i,j)∈(mn)

(1− xiyj)−1 =
n∏

i=1

m∏

j=1

(1− xiyj)−1 =
∑

λ

sλ(x)sλ(y), (1)

over all partitions λ of length ≤ min{n,m}. Using either the RSK correspondence or the Φ correspon-
dence, the Cauchy formula (1) can be interpreted as a bijection between monomials on the left hand side
and pairs of SSYTs or SSAFs on the right. Now we replace in the Cauchy kernel the rectangle (mn) by
the stair-type shape λ = (mn−m+1,m− 1, . . . , n− k + 1), with 1 ≤ m, k ≤ n, and n+ 1 ≤ m+ k. In
particular, when m = n = k, one has the stair-partition λ = (n, n − 1, . . . , 1), that is, the cells (i, j) in
the NW-SE diagonal of the square diagram (nn) and below it. Thus (i, j) ∈ λ if and only if i+j ≤ n+1.
Lascoux (2003) has given the following expansion for the non-symmetric Cauchy kernel in the stair shape,
using double crystal graphs, and also Fu and Lascoux (2009), based on algebraic properties of Demazure
operators, ∏

i+j≤n+1

(1− xiyj)−1 =
∑

ν∈Nn

κ̂ν(x)κων(y), (2)
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where κ and κ̂ are the two families of key polynomials, and ω is the longest permutation of Sn. Theorem
4.2 allows us to give an expansion of the non-symmetric Cauchy kernel for λ = (mn−m+1,m − 1,m −
2, . . . , 1), for 1 ≤ m ≤ n, and its conjugate λ, which includes, in particular, the stair case shape (2),

∏

(i,j)∈λ
(1− xiyj)−1 =

∑

ν∈Nn

ν=(ν1,...,νm,0
n−m)

κ̂ν(y)κων(x), (3)

∏

(i,j)∈λ

(1− xiyj)−1 =
∑

ν∈Nn

ν=(ν1,...,νm,0
n−m)

κ̂ν(x)κων(y). (4)

Write
∏

(i,j)∈λ(1− xiyj)−1 =
∑
c≥0 xi1yj1 · · ·xicyjc , where (il, jl) ∈ λ, il + jl ≤ n+ 1, 1 ≤ i ≤ n,

1 ≤ j ≤ m, 1 ≤ l ≤ c. Each monomial xi1yj1 · · ·xicyjc is in correspondence with the biword(
ic ··· i1
jc ··· j1

)
, whose image by Φ is the pair (F,G) of SSAFs. That is, xi1yj1 · · ·xicyjc = yFxG, where

sh(F ) has the last n−m entries equal zero, and sh(G) ≤ ωsh(F ). Therefore,

∏

(i,j)∈λ
(1− xiyj)−1 =

∑

ν∈Nn

ν=(ν1,...,νm,0
n−m)

∑

(F,G)∈SSAF
sh(F )=ν
sh(G)≤ων

yFxG =
∑

ν∈Nn

ν=(ν1,...,νm,0
n−m)

∑

F∈SSAF
sh(F )=ν

yF
∑

G∈SSAF
sh(G)≤ων

xG

=
∑

ν∈Nn

ν=(ν1,...,νm,0
n−m)

(
∑

P∈SSY T
sh(P )=ν+

K+(P )=key(ν)

yP )(
∑

Q∈SSY T
sh(Q)=ν+

K+(Q)=key(β)
β≤ων

xQ) =
∑

ν∈Nn

ν=(ν1,...,νm,0
n−m)

κ̂ν(y)κων(x). (5)

The Cauchy kernel expansion (4) for the conjugate shape λ = (n, n−1, . . . , n−m+1),with 1 ≤ m ≤ n,
is a consequence of (3), since (i, j) ∈ λ if and only if (j, i) ∈ λ, and the symmetry of Φ. When n =
m, λ = (n, n−1, . . . , 1) = λ, and the symmetry of Φ means the two identities (2) and (3) are equivalent.
Finally, as a refinement of (5), we obtain the expansion for the shape λ = (mn−m+1,m−1, . . . , n−k+1),
where 1 ≤ m ≤ k ≤ n, and n+ 1 ≤ m+ k,

∏

(i,j)∈λ
(1− xiyj)−1 =

∑

ν∈Nn

ν=(ν1,...,νm,0
n−m)

∑

sh(F )=ν

yF
∑

β∈Nn

β=(β1,...,βk,0
n−k)

β≤ων

∑

sh(G)=β

xG

=
∑

ν∈Nn

ν=(ν1,...,νm,0
n−m)

κ̂ν(y)π−1
>kκων(x), (6)

where π−1
>kκων is the polynomial weight of the crystal subgraph defined by the colours 1, . . . , k−1, in the

Demazure crystal graph Bων . It means we are considering all the tableaux in the Bων with entries less or
equal than k, and so all the tableaux in Bων with right key such that the entries are less or equal than k.
It is equivalent to all SSAFs with content in Nk, and shape rearrangement of ων with zeros in the n − k



1022 Olga Azenhas, Aram Emami

last entries. For λ = (mn−m+1,m− 1, . . . , n− k+ 1), where 1 ≤ k ≤ m ≤ n, and n+ 1 ≤ m+ k, one
has from (6),

∏

(i,j)∈λ

(1− xiyj)−1 =
∏

(j,i)∈λ
(1− xiyj)−1 =

∑

ν∈Nn

ν=(ν1,...,νk,0
n−k)

κ̂ν(x)π−1
>mκων(y),

where π−1
>mκων(y) is defined similarly as above, swapping k with m. All these identities are equivalent

to those obtained by Lascoux (2003) regarding the shapes discussed here.
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A Divided Difference Operator for the Highest
root Hessenberg variety
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Abstract. We construct a divided difference operator using GKM theory. This generalizes the classical divided
difference operator for the cohomology of the complete flag variety. This construction proves a special case of a
recent conjecture of Shareshian and Wachs. Our methods are entirely combinatorial and algebraic, and rely heavily
on the combinatorics of root systems and Bruhat order.

Résumé. Nous construisons un opérateur de différence divisée par la théorie GKM. Cette construction généralise
l’opérateur de différence divisée pour la cohomologie de la variété de drapeaux. Cette construction s’avère un cas par-
ticulier d’une conjecture récente de Shareshian et Wachs. Nos méthodes sont entièrement combinatoire et algébrique,
dèpendent en grande partie de combinatoire des systèmes de racines et de l’ordre de Bruhat.

Keywords: Weyl groups, Bruhat order, root systems, Schubert calculus.

1 Intoduction
This article is an extended abstract of the article [Tef] of the same title. Most of the details of the proofs
are omitted.

A classical problem of Schubert calculus is to define explicit classes S [w] to represent Schubert varieties
in cohomology rings of a partial flag variety. For geometric reasons these classes form an additive basis for
the cohomology. In equivariant cohomology this problem reduces to finding the polynomials S [w]([v])
which are nonzero only if [v] ≥ [w] in Bruhat order. For more general spaces the uniqueness or even
existence of generalized Schubert classes named flow-up classes is not guaranteed. When they exist it is
natural to ask for some combinatorial formula defining the polynomials. This is the type of question we
adress here.

A motivating example for our work is the complete flag variety G/B. By a combinatorial construc-
tion called GKM theory (named after Goresky, Kottwitz and MacPherson) the equivariant cohomology
is computed directly from the Bruhat graph ΓW of the Weyl group W (for definitions see Section 2)
[GKM98, Tym08]. The Schubert classes classes are constructed by divided difference operators

∂i : Sw(u) 7−→ S
w(u)− siSw(siu)

αi
.
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These operators were first introduced by Berstein, Gelfand, and Gelfand; and Demazure for ordinary
cohomology, and Konstant and Kumar generalized them to equivariant cohomology [BGG73, Dem73,
KK86]. More recently, employing GKM theory Tymoczko uses a left action of W and defines new
divided difference operators [Tym08]. Flow-up classes for G/B are unique, so this construction agrees
with the earlier work.

A benefit of divided difference operators is that they are recursive maps. This means if Sw is known
and siw < w, then Ssiw := ∂iSw. Billey uses this recursion of the Konstant and Kumar operators to
define a closed combinatorial formula for the polynomial Sw(v) [Bil99]. Billey’s formula is a positive
formula involving the reduced expressions of w obtained as a subexpression of a fixed reduced expression
for v [Bil99, Theorem 3].

In this paper GKM rings (a combinatorial analog of equivariant cohomology) are defined for certain
subgraphs of the Bruhat graph. As with the Bruhat graph these rings construct the equivariant cohomology
of algebraic varieties called the regular semisimple Hessenberg varieties. Two important examples of
regular semisimple Hessenberg varieties are the complete flag varietyG/B and the toric variety associated
to the Coxeter complex [DMPS92].

Hessenberg varieties were first arose in numerical analysis in the context of calculating the Hessenberg
form of a matrix, and have received recent attention in the work of Tymoczko generalizing Springer
theory to nilpotent Hessenberg varieties [Spr76, Tym07]. The cohomology ring of regular semisimple
Hessenberg varieties carry a representation of W , of which little is known. In fact, it remains an open
question when W ∼= Sn the symmetric group. In this case your author has provided an irreducible
decomposition of this representation for a large family called parabolic Hessenberg varieties [Tef11].

In another direction, the representation for Sn has appeared in a recent conjecture of Shareshian and
Wachs in their work on chromatic quasisymmetric functions [SW11, Conjecture 5.3]. They conjecture that
the under the Frobenius isomorphism between the representation ring of Sn and the ring of symmetric
functions that the image of the ordinary cohomology ring is the chromatic symmetric function they study.

Our main result (Theorem 3.3) generalizes the divided difference operator for G/B to what we call the
highest root Hessenberg variety. This result is a model first step toward defining bases which would allow
us to investigate the representation on the cohomology (ordinary and equivariant). With this basis in hand
we end this paper by announcing that for the highest root Hessenberg variety the Shareshian and Wachs
conjecture is true (Theorem 3.12).

Our problem originates in algebraic geometry, but our methods are combinatorial and algebraic, a
primary advantage of GKM theory. We will see the construction of divided difference operators and
the flow-up classes relies heavily on Bruhat order and root systems. In this abstract to emphasize the
combinatorial nature of this construction we have left out the formal definitions of Hessenberg varieties
and GKM theory. The curious reader is directed to [DMPS92, Tef11, Tym07] for Hessenberg varieties
and to [GKM98, GT09, GZ03, Tym08] for GKM theory.

2 Hessenberg graphs
We begin with the definition of a Weyl group W [Hum90]. Let V be a k-dimensional real vector space
with a symmetric positive definite bilinear form ( , ). A reflection in V is a linear map which negates a
non-zero vector α ∈ V and fixes point-wise the hyperplane orthogonal to α. A formula for the reflection
through α is sα(v) = v − 2(α, v)(α, α)

−1
α.
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A (crystalographic) root system in V is a finite set of vectors Φ (called roots) which satisfy the follow-
ing axioms

(1.) Rα ∩ Φ = ±α for all α ∈ Φ;

(2.) sαΦ = Φ for all α ∈ Φ;

(3.) 2(α,β)
(α,α) ∈ Z for all α, β ∈ Φ.

The integer cαβ := 2(α,β)
(α,α) is called a Cartan integer. A base ∆ ⊂ Φ is a basis of V such that for each

α ∈ Φ the coefficients of the expansion α =
∑

∆ ciαi are either all non-negative or all non-positive.
With a fixed base ∆ the positve roots Φ+ are those with all non-negative coefficients and respectively

call Φ− = −Φ+ the negative roots. There is a partial order (≺) on Φ where α ≺ β means β − α is a sum
of positive roots. We say I ⊂ Φ is an ideal if whenever β ∈ I and β ∈ Φ with β ≺ α, then α ∈ I.

The Weyl group W is the group generated by the simple reflections si := sαi for αi ∈ ∆. For w ∈ W
the length `(w) is the length of a reduced expressionw = si1si2 · · · sij . Finally, the Bruhat graph ΓW has
vertices W and edges u −→ w if w = sαu for α ∈ Φ+ and w−1α ∈ Φ− (or equivalently `(w) > `(u)),
and the Bruhat order < is the transitive closure of the edge relations.

Example 2.1 (The type An root system.) Consider Rn+1 with dot product defined on the standard co-
ordinate basis ti for i = 1, · · · , n+ 1. Let V be the span of the roots Φ = {ti − tj : i 6= j}. The simple
roots are the ti− ti+1 and the positive roots are the ti− tj for i < j. The reflection in ti− tj, denoted
s(ij), interchanges ti and tj and fixes the other tk. Hence, mapping this reflection to the transposition
(ij) defines an isomporism of the Weyl group with Sn+1.

BRIEF ARTICLE

THE AUTHOR

h = {t1 − t2} h = ∆ h = Φ+

= t1 − t2

= t2 − t3

= t1 − t3

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

1

Fig. 1: Hessenberg graphs in type A2

Definition 2.2 Let (V,Φ,∆,W ) be as defined above. A Hessenberg set h is the complement of an ideal
of Ih ⊂ Φ+. The Hessenberg graph Γh has vertices W and edges u −→ w if w = sαu for α ∈ Φ+ and
w−1α ∈ −h. The GKM ring of h is the subring of Maps(W, R[αi, · · · , αk]) defined from Γh by
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H∗T (h) =

{
P : W −→ R[α1, · · · , αk] :

for each edge w −→ sαw
P(w)− P(sαw) ∈ 〈α〉

}
.

The relations P(w) − P(sαw) ∈ 〈α〉 are the GKM conditions. The GKM ring is a graded ring; we
say P ∈ Hk

T (h) if each non-zero polynomial P(w) is homogeneous of degree k. Elements of H∗T (h) are
represented by labeling the vertices of Γh by polynomials (cf Figure 2).

The GKM rings carry an action ofW obtained by first extending the action ofW on Φ to the polynomial
ring R[∆] := R[α1, · · · , αk] from which we obtain an action on Maps(W, R[∆]) by the rule

(w · P)(u) = wP(w−1u) (1)

where on the right w is the acting on the polynomial P(w−1u) ∈ R[∆].

Proposition 2.3 The GKM ring H∗T (h) is W -stable with respect to the action defined in Equation 1.

Proof: Let P ∈ H∗T (h) and w ∈ W . We must check the GKM conditions, i.e. for every edge u −→ sαu
is (w ·P)(u)− (w ·P)(sαu) ∈ 〈α〉. The undirected edge u←→ sαu is in Γh if and only if the undirected
edge w−1u ←→ sw−1αw

−1u (= w−1sαu) is too. The GKM conditions ignore the edge orientation,
so P(w−1u) − P(w−1sαu) ∈

〈
w−1α

〉
is equivalent to wP(w−1u) − wP(w−1sαu) ∈ 〈α〉. The last

expression is (w · P)(u)− (w · P)(v) proving the claim. 2

This action is easily describe on the graph when w = sα a reflection; the action of sα interchanges
polynomials across edges corresponding to sα (some may have been deleted) and permutes the roots.

BRIEF ARTICLE

THE AUTHOR

0 [s1s2s1]

t3 − t2 [s1s2] [s2s1] 0

t1 − t2 [s1] [s2] 0

[e] 0

0 [s1s2s1]

0 [s1s2] [s2s1] 0

0 [s1] [s2] t3 − t1

[e] t2 − t1

1

Fig. 2: A class and its image under s1·

In order to study this representation we need to construct a basis ofH∗T (h). For the GKM ringH∗T (Φ+),
this basis consists of Schubert classes Sw [Tym08]. These are homogenous classes of degree `(w) and the
polynomial Sw(v) is nonzero only if v > w in Bruhat order, i.e. there is exists a path w −→ · · · −→ v in
the Bruhat graph.

These notions are generalized as follows. Fix h a Hessenberg set. The flow-up of x ∈ W are all the
vertices y such that there is a path x −→ · · · −→ y in Γh. If y is in the flow up we denote this by x <h y,
and `h(x) = k if there are k edges ending at x.
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Definition 2.4 Px ∈ H`h(x)
T (h) is a flow-up class at x ∈W if

(1) Px(x) =
∏

sαx−→x
α, where the product is over the edges ending at x; and

(2) if Px(y) 6= 0, then y ≥h x.

These classes have been studied previously by Guillemin and Zara for a general construction of GKM
rings [GZ03]. If for every w ∈ W flow-up classes exist (which is not always true) the family forms a
basis of H∗T (h) as a free-R[α1, · · · , αk] module [GZ03]. Fortunately, for H∗T (h) flow-up classes always
exist.

Theorem 2.5 Let h be a Hessenberg set, then the GKM ring H∗T (h) has a basis of flow-up classes.

Proof: This follows because the GKM rings H∗T (h) are the equivariant cohomology of the regular
semisimple Hessenberg variety [Tef11], and [DMPS92, Theorem 8] proves for each i that rankR[∆]H

i
T (h)

satisfy [GZ03, Theorem 2.1]. 2

A drawback of this Theorem (besides its intentionally opaque nature) is that it only guarantees the
existence of a flow-up basis. We are still left with the problem of constructing the basis elements. The
construction of flow-up classes for GKM rings is important for several reasons. First, an open problem of
Schubert calculus is to determine the coefficients cwuv defined in the expansion of the product of Schubert
classes SuSv =

∑
cwuvSw, so constructing generalized Schubert classes presents a new context to study

this problem. Second, flow-up classes form a basis of the representation of W and without knowing a
basis it will be essentially impossible to study the representation.

BRIEF ARTICLE

THE AUTHOR

0 [s1s2s1]

t3 − t2 [s1s2] [s2s1] 0

t1 − t2 [s1] [s2] 0

[e] 0

t1 − t2 [s1s2s1]

t1 − t2 [s1s2] [s2s1] 0

t1 − t2 [s1] [s2] 0

[e] 0

h = {t2 − t1} h = −∆ h = Φ−

= t1 − t2

= t2 − t3

= t1 − t3

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

[s1s2s1]

[s1s2] [s2s1]

[s1] [s2]

[e]

1

Fig. 3: Non-unique flow-classes

There do exist algorithms for the polynomials Px(y) in general GKM rings [GZ03, GT09]. We adopt
an alternative approach which emulates the construction of Schubert classes. We use the representation of
W on H∗T (h) (defined in Equation (1)) to recursively build a new flow-up class. This allows us to define
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a divided difference operator which as in the classical case recursive defines the flow-up class, i.e. if Pw
is know and siw < w, then ∂γi Pw = Psiw. A fundamental difficulty for us is that for a fixed w ∈ W a
flow-up class at w is not unique (cf Figure 3), a property enjoyed by Schubert classes.

2.1 h-inversions
The inversions of w i.e. Nw :=

{
α ∈ Φ+ | w−1α ∈ Φ−

}
describe the edges ending at w in the Bruhat

graph. This motivates the following

Definition 2.6 Let h be a Hessenberg set. For w ∈ W the set Nh
w :=

{
α ∈ Φ+ | w−1α ∈ −h

}
is called

the h-inversions of w.

The roots in Nh
w describe the edges ending at w in Γh, so knowing only Nh

w for all w ∈ W alone
determines the GKM ring. Therefore, it is important to understand how h-inversions change as w ∈ W
varies.

Definition 2.7 Let w, v ∈W , we say v is a cover of w if w −→ v ∈ ΓW and

(1) `(v) = `(w) + 1 and

(2) v = sαw

The following Proposition determines how the set Nw and Nv differ when v is a cover of w (cf.
[Tym08]).

Proposition 2.8 Suppose v is a cover of w, then

Nv = {α} ∪ (sαNw ∩ Φ+) ∪ (Nw ∩ sαΦ−).

This Proposition generalizes to h-inversions.

Proposition 2.9 Suppose v is a cover of w. For β ∈ Nv and

(1) if β ∈ sαNw ∩ Φ+ it follows β ∈ Nh
v if and only if sαβ ∈ Nh

w or

(2) if β ∈ Nw ∩ sαΦ− it follows when β ∈ Nh
v then β ∈ Nh

w.

Proof: For Part (1) if sαβ ∈ Nw the equivalence follows because v−1β = w−1sαβ.
For Part (2) we show v−1β ≺ w−1β which by definition of h implies w−1β ∈ h because v−1β ∈ h.

The hypothesis β ∈ Nw ∩ sαΦ− implies sαβ = β − cαβα ∈ Φ−, so the Cartan integer cαβ > 0.
Therefore, since v = sαw we have w−1β − v−1β = cαβw

−1α. Since v is a cover of w and v = sαw it
follows w−1α ∈ Φ+ which implies v−1β ≺ w−1β. 2

Corollary 2.10 Let v be a cover of w. If α ∈ ∆ and α ∈ Nh
v , then Nh

v = {α} ∪ sαNh
w, otherwise if

α 6∈ Nh
v , then Nh

v = sαN
h
w.

Corollary 2.11 Let v be a cover of w, then |Nv| − |Φ− \ h| ≤ |Nh
v | ≤ |Nh

w|+ 1

The next Proposition determines the values of flow-up classes at the covers in the Bruhat order. It is
key to constructing a family of flow-up classes later.
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Proposition 2.12 Let P be any flow-up class at w. Suppose v is a cover of w, then P(v) can be deter-
mined as follows

(1) if v−1(α) 6∈ h then P(v) = 0 (i.e. the edge w −→ v ∈ ΓW is deleted in Γh); otherwise

(2) if α ∈ ∆ ∩Nh
v then P(v) = sαP(w);

(3) if |Nh
v | = |Nh

w|+ 1 then

P(v) =
∏

β∈Nh
v \{α}

β; or

(4) if |Nh
v | ≤ |Nh

w| then

P(v) = f
∏

β∈Nh
v \{α}

β

for some f ∈ R[∆] of degree |Nh
w| − |Nh

v \ {α}| with f ≡∏µ∈(Nh
w∩Nv)−Nh

v
µ (mod 〈α〉).

Proof: Use Proposition 2.9 and the GKM conditions to determine these values. 2

3 Highest root Hessenberg sets
Suppose Φ is an irreducible root system, i.e. Φ cannot be expressed as a disjoint union Φ = Ψ ∪Ψ′ both
of which are root systems. For Φ irreducible there exists a unique highest root γ ∈ Φ+ such that α ≺ γ
for all α ∈ Φ [Hum90, Section 2.9(3)]. If hγ = Φ+ \ {γ}, then hγ is a Hessenberg set.

Forw ∈W letNγ
w = N

hγ
w and `γ(w) = `hγ (w). We will be working with both the partial order defined

by the flow-up <γ and the Bruhat order <. Working with the highest root Hessenberg set simplifies much
of the variation which occurs between Nw and Nγ

w. For example

Lemma 3.1 Suppose v > w ∈ W. We have `γ(w) = `γ(v) if and only if v is a cover of w; Nw = Nγ
w;

and there exists β ∈ Nv such that v−1β = −γ.

Proof: The converse follows by definition. Therefore, suppose `γ(w) = `γ(v). Since |h| = |Φ+| − 1
we have inequality `(v) − 1 ≤ `γ(v) = `γ(w) < `(v), which implies `γ(v) = `(v) − 1. Therefore,
there exists a β ∈ Nv such that v−1β = −γ. Further, the equality `γ(v) = `γ(w) forces equality in
`γ(v) = `(v)− 1 ≥ `(w) ≥ `γ(w). Hence, `(v) = `(w) + 1, i.e. v is a cover of w and Nw = Nγ

w. 2

This Lemma with Proposition 2.9 identifies an inversion β ∈ Nγ
w ∩ Nv such that v−1β = −γ. For a

fixed β, the v of Lemma 3.1 is unique.

Corollary 3.2 Suppose v > w and β ∈ Nγ
w ∩Nv . If `γ(w) = `γ(v) and v−1β = −γ, then v is unique.

We are now ready to state the main Theorem of this paper.

Theorem 3.3 These exist R[∆]-module divided difference operators ∂γi : H∗T (hγ) −→ H∗T (hγ) and a
family of flow-up classes {Pw}w∈W such that
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∂γi Pw =

{
Psiw if siw < w;

0 if siw > w.

Further, if w = si1 · · · sin is any reduced expression for w ∈ W , then the operator ∂w := ∂i1 · · · ∂in is
well-defined. In other words, if w = sj1 · · · sjn is another reduced expression for w, then

∂i1 · · · ∂in = ∂j1 · · · ∂jn .

3.1 Proof of Theorem 3.3
In order to prove Theorem 3.3 we give an explicit formula for the divided difference operator. With this we
work by induction on the length function `(w) to define simultaneously the action of the simple reflection
si· on the previously defined flow-up classes AND define a new flow-up class satisfying Theorem 3.3.

The base case of our induction is the longest element w◦ ∈ W (cf [Hum90, Theorem 1.8]) for which
it is straightforward to define a flow-up class. Since Nw◦ = Φ+ it follows Nh

w◦ = h, so Pw◦ is the class
whose value at w◦ is the product of the roots in h and 0 otherwise. Proceeding by induction, suppose for
all w ∈W with `(w) ≥ k that flow-up classes satisfying Theorem 3.3 have been defined.

First a bit of notation, we say sαw l w if sαw < w in Bruhat order and the edge sαw −→ w has been
deleted in Γh, or in other words w−1α = −γ.

Definition 3.4 (Formula for ∂γi ) Letw ∈W with `(w) = k and suppose {Pu}`(u)≥k are flow-up classes
in H∗T (hγ). For each si ∈ ∆ define the ith divided difference operator by

∂γi Pw =





si · Pw if siw l w;
Pw − si · Pw + cααi (Pv − Psiv)

αi
if siw < w;

0 if siw > w,

(2)

where cααi is the Cartan integer of sα(αi), and when v ∈ W exists it is the unique cover of w such that
`γ(w) = `γ(v) and v−1αi = −γ.

Example 3.5 For the type A2 root system the highest root set is h = ∆. The family of flow-up classes
constructed by Definition 3.4 is described in Table 3.5. The reader is encouraged to replicate this data,
for guidance Γ∆ is given in Figure 1.

Pv(w) w = e s1 s2 s1s2 s2s1 s1s2s1

Pe 1 1 1 1 1 1
Ps1 0 t1 − t2 0 t3 − t2 0 0
Ps2 0 0 t2 − t3 0 t2 − t1 0
Ps1s2 0 0 0 t1 − t3 0 t1 − t2
Ps2s1 0 0 0 0 t1 − t3 t2 − t3
Ps1s2s1 0 0 0 0 0 (t1 − t2)(t2 − t3)

Tab. 1: The family of flow-up classes for h = ∆ in type A2.
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It is not obvious that ∂γi is a R[∆]-module homorphism, this is a consequence of the next theorem. We
prove this in [Tef], its proof requires a careful case-by-case analysis.

Theorem 3.6 Suppose Theorem 3.3 has uniquely determined Pw for w ∈W with `(w) ≥ k, then

si · Pw =





P if siw l w or siw m w

Pw if siw > w

Pw − αiP + cααi(Pv − Psiv) if siw < w

where P is a flow-up class at siw and when v ∈ W exists it is the unique cover of w such that `γ(w) =
`γ(v) and v−1αi = −γ.

This provides the inductive step to Theorem 3.3. The consequence is that the class P is a new flow-up
class at siw where `(siw) = k − 1. Repeating this process for all w′ with `(w′) = k − 1 proves the
induction. In fact this process uniquely defines a flow-up class at siw. Before proving the uniqueness
we show ∂γi is a module map. Since, R[∆] is a UFD over R[α1, · · · , α̂i, · · · , αk], where α̂i means αi
is removed, dividing by αi is well-defined. Therefore, in the third case of Theorem 3.6 there exists a
well-defined flow-up class such that

∂γi Pw :=
Pw − si · Pw + cααi (Pv − Psiv)

αi
= P.

This proves

Corollary 3.7 The divided difference operator ∂γi : H∗T (hγ) −→ H∗T (hγ) is a R[∆]-module homorphism.

The next is a technical Lemma we need frequently (cf. [Hum90, Lemma 5.11]). It is important because
it says that left multiplication by a simple transposition si preserves the flow-up, i.e. if v is a cover of w,
and w −→ siw if and only if siv is a cover of siw.

Lemma 3.8 (Diamond Lemma) Let v be a cover ofw. Suppose `(siw) = `(w)+1 = `(v) and siw 6= v,
then both siv > v and `(siv) = `(siw) + 1. Further, w −→ v is in Γh if and only if siw −→ siv is in Γh.

Next, we prove the flow-up class P defined in Theorem 3.3 is uniquely determined. This requires a
new induction, which again our base case is w◦ which is uniquely defined. Suppose by induction that
if `(v) > k that the flow-up classes are uniquely determined, and let `(w) = k. This next Proposition
determines the polynomials at all the covers of w for the flow-up class P defined in Definition 3.4. We
include the proof as an example of how to prove these results.

Proposition 3.9 Suppose P is a flow-up classes at w ∈ W defined by Definition 3.4, i.e. P = ∂γi Psiw
for `(siw) = `(w) + 1. Whenever v covers w, then

P(v) =





sαµ
∏

β∈Nγv \{α}
β if α ∈ Nγ

v ,

0 if α 6∈ Nγ
v

(3)

where µ ∈ (Nγ
w ∩Nv) \Nγ

v or µ = 1 otherwise.
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Proof: When µ exists it is the root associated to the edge sµv −→ v missing in Γhγ . Define the polynomial
q = sαµ

∏
β∈Nγv \{α} β. When α 6∈ Nγ

v or `γ(v) = `γ(w) + 1 (when µ does not exist) this is proved in
Proposition 2.12(1)-(3).

Therefore, we may assume `γ(v) = `γ(w), α ∈ Nγ
v , and µ ∈ (Nγ

w ∩ Nv) \ Nγ
v exists. We work by

induction, for w = w◦ there is nothing to prove. Suppose by induction for w′ ∈ W with `(w′) > k
the result is true, and let w ∈ W with `(w) = k. In this case, there exists a simple reflection si so that
`(siw) = `(w)+1. By Lemma 3.8, siv > v, and siv = ssiαw, therefore Psiw(siv) satisfies the inductive
hypothesis.

If siw m w, then by Equation (2) P := si · Psiw. It follows from Corollary 2.10 that Nγ
siv = siN

γ
v , so

deduce Psiw(siv) = siq. This shows P(v) = siPsiw(siv) = q as desired.
If siw > w, Equation (2) gives αiP = Psiw − si · Psiw + cβαi(Pv

′ − Psiv′) where v′ may or may
not exist. Evaluating both sides of this expression at v we claim

αiP(v) = −siPsiw(siv).

To prove this first note Psiw(v) = Pv′(v) = 0 since v is not in the flow-up. Next, when Psiv′(v) 6= 0
since `(siv′) = `(v) it must be that siv′ = v. This leads to a contradiction. The hypothesis on v′ is that
siv
′ l v′, but siv′ = v and `γ(v) = `(v)− 1. This means at vertex v in Γhγ there are two edges deleted

from the Γhγ , i.e. v−1 maps two roots to −γ, a contradiction since v is invertible.
Therefore, αiP(v) = −siPsiw(siv), and the inductive hypothesis shows Psiw(siv) is the product

ssiαsiµ = sisαµ times the product of the roots in Nγ
siv = {αi} ∪ siNγ

v except siα. Equivalently P(v) is
the product of sαµ and the roots in Nγ

v except α, which is q as desired. 2

This will prove no matter how you arrive at w the class P is uniquely determined.

Corollary 3.10 The flow-up classes defined by Definition 3.4 are unique, i.e. if sv = w = tu where s, t
are simple reflections, then ∂sPsv = P = ∂tPtu.

Proof: Let ∂sPsv = P and ∂tPsu = P ′. We want to show P = P ′. Since P ′ is non-zero only on
x >γ w and homogeneous of degree `γ(w) we have a R[∆]-linear combination

P ′ =
∑

x >γ w
`γ (x) ≤ `γ (w)

fxPx + fwP.

Evaluating both sides of this expression at w we have P ′(w) = fwP(w), but P ′(w) = P(w) which
determines that fw = 1. Next, evaluation at any x >γ w in the summation gives

P ′(x) = fxPx(x) + P(x).

Since Px(x) 6= 0 and P ′(x) = P(x) by Proposition 3.9 we conclude all the fx = 0. Therefore P ′ = P .
2

As a consequence we can define a unique class Psiw := ∂γi Pw, and by induction this proves the
first half of Theorem 3.3; that is there exists a family of flow-up classes {Pw}W and divided difference
operators ∂γi . Next, we prove the second half, that is if w = si1 · · · sin is a reduced expression, then
∂w = ∂i1 · · · ∂in is independent of the reduced expression.
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Theorem 3.11 Ifw ∈W andw = si1 · · · sin a reduced expression, then ∂w := ∂i1 · · · ∂in is independent
of the reduced expression, that is if w = sj1 · · · sjn , then

∂i1 · · · ∂in = ∂ji · · · ∂n .

Proof Sketch: Since any two expressions for w ∈ W can obtained by a sequence of braid relations
[Hum90, Theorem 1.9] it suffices to check if the Theorem is true for the braid relations. Therefore,
suppose that v = stst · · · = tsts · · · and let u and u′ be suffixes of v, i.e. su = v = tu′ such that
`(u) = `(v)− 1 = `(u′). Then, ∂u and ∂u′ are well-defined since they have unique expressions in terms
of the simple reflections. To show ∂v is well-defined it suffices to show ∂s∂u = ∂t∂u′ by acting on the
basis {Pw}w∈W .

Now, we need only check the x ∈W such that `(vx) = `(x)− `(v) or else by induction with Definiton
3.4

∂s∂uPx = 0 = ∂t∂u′Px.
In this case, we have `(ux) = `(x) − `(u) and ∂uPx = Pux (respectively for u′). The product vx is
well-defined, so conclude sux = vx < ux if and only if tu′x = vx < u′x. An application of Corollary
3.10 proves ∂s∂uPx = ∂sPux = Pvx = ∂tPu

′x = ∂t∂u′Px. 2

3.2 Future work
This work provides a model construction of divded difference operators and flow-up classes for all the
GKM rings H∗T (h). A difficulty which needs to be overcome before we can obtain the equivalent of
Theorem 3.6 we need a better understanding of flow-up classes then Proposition 2.12 provides. Namely,
here we take advantage that covers of w essential determine Pw. In general, we will need to understand
flow-up classes further up the flow of w then just at the covers.

An advantage of this approach is that it does determine the representation on H∗T (h) when Φ is simply-
laced, i.e. all the Cartan integers cαβ = ±1. This next result will appear in [Tef].

Theorem 3.12 Suppose Φ is simply-laced. LetmV = |W |
|Φ| andmR = |W |−|∆|mV , then as aW -module

H∗T (h) = (V ⊕mV
⊕

R⊕mR)
⊗

R
R[∆],

where V is the reflection representation (cf. Section 2) , R is the trivial representation and R[∆] is the
polynomial representation of W .

In the case where Φ is the type A root system we have

Theorem 3.13 If Φ is the type An−1 root system, then as a Sn-module

H∗T (h) = (V ⊕(n−2)!
⊕

R⊕(n−1)!(n−1))
⊗

R
R[∆].

Furthermore, this proves the Shareshian-Wachs conjecture [SW11, Conjecture 5.3].
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A Parking Function Setting for Nabla Images
of Schur Functions

Yeonkyung Kim†

University of California, San Diego, Mathematics Department, 9500 Gilman Drive # 0112, La Jolla, CA 92093-0112,
United States

Abstract. In this article, we show how the compositional refinement of the “Shuffle Conjecture” due to Jim Haglund,
Jennifer Morse, and Mike Zabrocki can be used to express the image of a Schur function under the Bergeron-Garsia
Nabla operator as a weighted sum of a suitable collection of “Parking Functions.” The validity of these expressions
is, of course, going to be conjectural until the compositional refinement of the Shuffle Conjecture is established.

Résumé. Dans cet article, nous montrons comment le raffinement compositionel de la “Conjecture Shuffle” due
à Jim Haglund, Jennifer Morse et Mike Zabrocki peut être utilisé pour exprimer l’image d’une fonction de Schur
sous l’opérateur Nabla de Bergeron-Garsia comme une somme pondérée d’un ensemble convenable de “fonctions
parking.” La validité de ces expressions, bien sûr, va être conjecturale jusqu’à ce que le raffinement de la composition
de la “Conjecture Shuffle” est établie.

Keywords: Parking Function, Nabla, Hall-Littlewood operators

1 Introduction
Parking Functions in the n× n lattice square are represented in the computer by two line arrays

PF =

[
v1 v2 · · · vn
u1 u2 · · · un

]

with u1, u2, . . . , un integers satisfying

u1 = 0 and 0 ≤ ui ≤ ui−1 + 1

and V = (v1, v2, . . . , vn) a permutation in the symmetric group Sn satisfying

ui = ui−1 + 1 =⇒ vi > vi−1.

We will denote by σ(PF ) the permutation obtained by successive right to left readings of the components
of the vector V = (v1, v2, . . . , vn) according to decreasing values of u1, u2, . . . , un. We will call σ(PF )
the “diagonal word” of PF . We will also let ides(PF ) denote the descent set of the inverse of σ(PF ).

†work accomplished with NSF support

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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This given, each Parking Function is assigned the “weight”

w(PF ) = tarea(PF )qdinv(PF )Qides(PF )[X]

where

area(PF ) =
n∑

i=1

ui, (1)

dinv(PF ) =
∑

1≤i<j≤n
χ(ui = uj & vi < vj) +

∑

1≤i<j≤n
χ(ui = uj + 1 & vi > vj),

and, for a subset S ⊂ {1, 2, · · · , , n−1},QS [X] denotes Gessel’s fundamental quasi-symmetric function.

In the figure below we have a Parking Function as we usually conveniently depict it. The vector U =
(u1, u2, . . . , un) is on its left and the vector V = (v1, v2, . . . , vn) is on its right. The shaded cells give
the “main diagonal” (or 0-diagonal) of PF . The numbers in the lattice cells are the “cars”. The path
along whose vertical steps we have set the cars is the supporting “Dyck path” of PF . The components of
U = (u1, u2, . . . , un) give the orders of the diagonals containing the cars. Note that reading the cars by
diagonals from right to left starting with the highest diagonal gives

σ(PF ) = 3 1 8 5 7 6 2 4.

Thus
ides(PF ) = {2, 4, 6, 7}. (2)

It is easily seen that the sum in (1) gives the total number of cells between the supporting Dyck path and
the main diagonal. Note that two cars in the same diagonal with the car on the left smaller than the car
on the right will contribute a unit to dinv(PF ) called a “primary dinv”. Likewise, a car on the left that is
bigger than a car on the right with the latter in the adjacent lower diagonal contributes a unit to dinv(PF )
called a “secondary dinv”.

PF =

[
4 6 8 1 3 2 7 5
0 1 2 2 3 0 1 1

]
⇐⇒ (3)

Thus for the Parking Function in (3) we have

area(PF ) = 10, dinv(PF ) = 4,

which together with (2) give
w(PF ) = t10q4Q{2,4,6,7}[X].
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In Haglund et al. (2012) Haglund, Morse and Zabrocki introduce an additional statistic, the “diagonal
composition” of a Parking function, which we denote by “p(PF ).” This is the composition whose parts
determine the position of the zeros in the vector U = (u1, u2, . . . , un), or equivalently give the lengths of
the segments between successive diagonal touches of its Dyck path. For the present example we have

p(PF ) = (5, 3).

Denoting by PFn the collection of Parking Functions in the n×n lattice square, one of the compositional
refinements of the Shuffle conjecture due to Haglund-Morse-Zabrocki in Haglund et al. (2012) states that
for any composition p = (p1, p2, . . . , pk) of n we have

∇Cp1Cp2 · · ·Cpk1 =
∑

PF∈PF
p(PF )=(p1,p2,...,pk)

tarea(PF )qdinv(PF )Qides(PF )[X] (4)

where “ ∇ ” is the Bergeron-Garsia operator introduced in [1] and, for each integer a, Ca is the operator
plethystically defined by setting for any symmetric function P [X]

CaP [X] =
(−1
q

)a−1∑
k≥0 P

[
X − 1−1/q

z

]
zkhk[X]

∣∣∣
za
.

Using the device θi which acts on the operator Cp = Cp1Cp2 · · ·Cpk according to the formula

θiCp = Cp−ei

where ei is the coordinate vector with 1 in the ith position, we will show that

Theorem 1 For any composition (p1, p2, . . . , pk) we have

sp1,p2,...,pk [X] = (−q)p1+···+pk−k
∏

1≤i<j≤n

(
1− θj/qθi

)
Cp 1 (5)

where “sp1,p2,...,pk [X]” denotes the Schur function indexed by the composition (p1, p2, . . . , pk).

To get across the significance of this identity it is best to have a close look at a few special cases. To
begin, for k = 2 with a ≥ b ≥ 1, p1 = a and p2 = b, (5) becomes

sa,b[X] = (−q)a+b−2(1− θ2/qθ1)C[a,b]1 = (−q)a+b−2(C[a,b]1− C[a+1,b−1]1/q). (6)

Similarly, for k = 3 with a ≥ b ≥ c ≥ 1, p1 = a, p2 = b and p3 = c, we get

sa,b,c[X] = (−q)a+b+c−3(1− θ2/qθ1)(1− θ3/qθ1)(1− θ3/qθ2)CaCbCc1 =

= (−q)a+b+c−3
(

C[a,b,c]1 − C[a,b+1,c−1]1/q − C[a+1,b,c−1]1/q − C[a+1,b−1,c]1/q

+ C[a+1,b,c−1]1/q2 + C[a+1,b+1,c−2]1/q2

+ C[a+2,b−1,c−1]1/q2 − C[a+2,b,c−2]1/q3
)
. (7)

These identities suggest that it may be possible to obtain a Parking Function interpretation for ∇ of a
Schur function via the compositional refinement of the Shuffle conjecture in (4).
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For example, from (6) we obtain that

∇s4,3 = q4
(
∇C5C21 − q∇C4C31

)
.

From the Haglund-Morse-Zabrocki conjectures, it follows that the sum of the weights of the collection
Π[5, 2] of Parking Functions with diagonal composition [5, 2] should be given by the polynomial∇C5C2

and the sum of the weights of the collection Π[4, 3] of Parking Functions with diagonal composition [4, 3]
should be given by∇C4C3. This given, to obtain a combinatorial setting for∇s4,3 it suffices to construct
an injection φ of Π[4, 3] into Π[5, 2] that preserves area and ides but increases dinv by one unit, and then
identify the complementary collection Π[5, 2] \ φ(Π[4, 3]): thereby obtaining the identity

∇s[4,3] = q4
∑

PF∈Π[5,2]\(φΠ[4,3])

tarea(PF )qdinv(PF )Qides(PF )[X]

A look at the identity in (7) suggests that a combinatorial setting for∇sa,b,c may be obtained by carrying
out an “inclusion-exclusion” process on the collections of Parking Functions with diagonal compositions
the indices of the operators occurring in (7).

The task of carrying out the injections yielding such Parking Function settings for the Nabla image of
Schur functions is the topic of the author’s doctoral thesis which is still in progress. In this article we
show how this can be systematically carried out in a variety of examples of Schur functions such as those
indexed by two-row or two-column partitions.

We should mention that in Loehr and Warrington (2008) another combinatorial model is conjectured
for Nabla Schurs by means of labeled nested Dyck paths. The Loehr-Warrington model stems naturally
from the Jacobi-Trudi formula for Schur functions, while the present model stems naturally from Theorem
(1) which may be viewed as a q-analogue of Jacobi-Trudi. It would make an interesting combinatorial
project to see how their model relates to ours, in particular whether their nested labeled Dyck paths can be
naturally unraveled into collections of Parking Functions. Even more importantly, if the latter unraveling
is carried out, any progress in the resolution of the Loehr-Warrington conjecture may be conducive to
significant progress in the resolution of the Haglund-Morse-Zabrocki conjectures.

This writing is divided into three sections. In the first section we give a proof of Theorem (1), in the
second section we give some examples in the two part partition cases, in the third and final section we
show how the B operators of Haglund et al. (2012) can be used to give a Parking Function setting to the
Nabla image of two-column Schur functions.

2 A q-analogue of the Jacobi-Trudi identity
In this section it will be convenient to use plethystic notation in dealing with symmetric function identities.
A brief introduction to this notational device can be found in the first section of Garsia et al. (2011). Recall
that the “row adder” for Schur functions is the operator

SaP [X] = P [X − 1
z ]Ω[zX]

∣∣∣
za

(8)

where
Ω[zX] =

∑

m≥0

zmhm[X]

is the generating function of the homogeneous symmetric functions in the alphabet X .
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Proposition 1 For any integral vector p = (p1, p2, . . . , pk) we have

sp1,p2,...,pk [X] = Ω[ZkX]
∏

1≤i<j≤k
(1− zj/zi)

∣∣∣
z
p1
1 ,z

p2
2 ,...,z

pk
k

(9)

where Zk = z1 + z2 + · · ·+ zk.

Proof:
It is well known (see Macdonald (1995)) that

sp1,p2,...,pk [X] = Sp1Sp2 · · · Spk 1 (10)

From the definition in (8), with F [X] = 1, we get,

Sp1Sp2 1 = Sp1Ω[z2X]
∣∣∣
z
p2
2

= Ω
[
z2(X − 1

z1
)
]
Ω[z1X]

∣∣∣
z
p1
1 ,z

p2
2

= Ω[(−z2/z1)]Ω[z1X + z2X]
∣∣∣
z
p1
1 ,z

p2
2

= (1− z2/z1)Ω[z1X + z2X]
∣∣∣
z
p1
1 ,z

p2
2

and by iteration we obtain

Sp1Sp2 · · · Spk 1 = Ω[ZkX]
∏

1≤i<j≤k
(1− zj/zi)

∣∣∣
z
p1
1 ,z

p2
2 ,...,z

pk
k

.

Therefore (9) follows from (10).
2

We are now in a position to give our

Proof of Theorem 1:
Recall that by definition we have set for any symmetric function F [X]

CaF [X] = (− 1
q )a−1F

[
X − 1−1/q

z

]
Ω[zX]

∣∣∣
za
.

Then

(−q)p1+p2−2Cp1Cp2F [X] = (−q)p1−1Cp1F
[
X − 1−1/q

z2

]
Ω[z2X]

∣∣∣
z
p2
2

= F
[
X − 1−1/q

z1
− 1−1/q

z2

]
Ω
[
z2(X − 1−1/q

z1
)
]
Ω[z1X]

∣∣∣
z
p1
1 ,z

p2
2

= F
[
X − 1−1/q

z1
− 1−1/q

z2

]
Ω[−z2

1−1/q
z1

]Ω[z1X + z2X]
∣∣∣
z
p1
1 ,z

p2
2

.

Since Ω[−z2
1−1/q
z1

] = 1−z2/z1
1−z2/qz1 , we finally have that

(−q)p1+p2−2Cp1Cp2F [X] = F
[
X − 1−1/q

z1
− 1−1/q

z2

]
Ω[z1X + z2X] 1−z2/z1

1−z2/qz1

∣∣∣
z
p1
1 ,z

p2
2

.
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By iteration we obtain

(−q)p1+···+pk−kCp1 · · ·CpkF [X] = F
[
X −∑k

i=1
1−1/q
zi

]
Ω[ZkX]

∏
1≤i<j≤k

1−zj/zi
1−zj/qzi

∣∣∣
z
p1
1 ,...,z

pk
k

with

Zk = z1 + z2 + · · ·+ zk.

Now note that for F [X] = 1 and for any vector a = (a1, a2, . . . ak) we get

(−q)p1−a1+···+pk−ak−k Cp1−a1 · · ·Cpk−ak 1 =

=
∏

1≤i<j≤k

1− zj/zi
1− zj/qzi

Ω[XZk]
∣∣∣
z
p1−a1
1 z

p2−a2
2 ···zpk−ak

k

=
∏

1≤i<j≤k

1− zj/zi
1− zj/qzi

Ω[XZk] za11 za22 · · · zakk
∣∣∣
z
p1
1 z

p2
2 ···z

pk
k

.

(11)

Recalling that the device θi acts on the operator Cp = Cp1Cp2 · · ·Cpk , according to the formula

θiCp = Cp−ei

we can rewrite (11) as

(−q)p1+···+pk−k(−θ1/q)
a1(−θ2/q)

a2 · · · (−θk/q)akCp 1 =

=
∏

1≤i<j≤k

1− zj/zi
1− zj/qzi

Ω[XZk]za11 za22 · · · zakk
∣∣∣
z
p1
1 z

p2
2 ···z

pk
k

.

Thus

(−q)p1+···+pk−k
∏

1≤i<j≤n

(
1− θj/qθi

)
Cp 1 =

∏

1≤i<j≤n

(
1− zj/zi

)
Ω[XZk]

∣∣∣
z
p1
1 z

p2
2 ···z

pk
k

.

This identity combined with (9) gives

(−q)p1+···+pk−k
∏

1≤i<j≤n

(
1− θj/qθi

)
Cp 1 = sp1,2,...,pn [X]

as desired. 2
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3 The two row Schur function case
To illustrate the combinatorial reasoning that is needed to give a Parking Function setting to the Nabla
image of a two row Schur function we will carry out in full detail the case of ∇(s[n−3,3]) which is the
simplest non trivial case.

Let n > 5. Let NS3 denote the collections of Parking Functions with diagonal composition [n− 2, 2]
whose Dyck path terminates according to one of the following three patterns and the cars adjacent to the
north steps are required to satisfy the inequalities indicated by the arrows.

Fig. 1: In the second pattern vn−2 < vn and in the third pattern vn−2 < vn and vn−3 < vn−1 .

Theorem 2 Assume that the compositional refinement of the Shuffle conjecture in (4) holds. Then,

∇(−1)ns[n−3,3] = qn−3
∑

PF∈NS3

tarea(PF )qdinv(PF )Qides(PF )[X]

Proof:
We start by constructing an injection φ3 from the collection Π[n − 3, 3] of Parking Functions with

diagonal composition [n−3, 3] to Π[n−2, 2], those Parking Functions with diagonal composition [n−2, 2].
Furthermore, this injection will preserve the area and ides of the Parking Functions while increasing the
dinv by exactly 1.

Let PF be a Parking Function with diagonal composition [n− 3, 3]. There are two possible shapes for
the rightmost three columns of the Dyck path of PF .

Fig. 2: The rightmost possible columns.

In either shape, since n > 5, PF does not hit the diagonal twice in a row. Hence the two steps preceding
the last three columns must both be going east.

Between these two shapes, we will have five cases for defining φ3(PF ). For the first, suppose that
the last four columns of PF are as in the left side of the figure below. Suppose also that a < c. Then
replacing the last four columns of PF with the right side of this figure gives a legal Parking Function. Let
this be denoted by PF ′

Notice that area(PF ) = area(PF ′). Furthermore, these two Parking Functions have the same diago-
nal word and hence ides(PF ) = ides(PF ′). Notice also that all pairs contributing to the dinv (primary
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or secondary) are unchanged except that the pair (b, a) now also contributes to the secondary dinv. Hence
dinv(PF ′) = dinv(PF ) + 1. Therefore we will set φ3(PF ) = PF ′.

For the second case, suppose that the last four columns of PF are as in the left side of the figure below
with a > c. Again, let PF ′ be the Parking Function obtained by replacing the last four columns of PF
with the columns of the right side of the figure below.

We have that c < a < b, so PF ′ is a valid Parking Function. The area is unchanged. However,
the diagonal word has changed. In particular, b and c have switched places and we need to show that
ides(PF ) has not been changed. To see this recall that the descent of the inverse of a permutation is the
set of all j such that j + 1 occurs before j in the permutation. This given, the interchange of the order of
c and b alters ides(PF ) only if c and b are consecutive but this is excluded by the inequalities c < a < b.

It remains to show that dinv(PF ′) = dinv(PF ) + 1. But this is true since the pair (c, b) contributes
to dinv(PF ′), though it did not contribute to dinv(PF ), and the pair (c, a) is not contributing to the
secondary dinv since c < a. Hence we can again let φ3(PF ) = PF ′.

We have exhausted the cases corresponding to the right side of Fig. 2. Therefore we will move on to
the left side. As we noted before, the two steps preceeding the last three columns must both be east steps.
However the step preceeding that could be either north or east.

Note that on the right side of the figure above, the step directly before the ones shown must be an east
step since n > 5 and another north step would result in hitting the diagonal.

For the third case, suppose the last three columns of PF are as on the left. Then we can construct PF ′

in the usual way corresponding to the diagram below.

Note area(PF ) = area(PF ′). Also the diagonal word is unchanged for ides(PF ) = ides(PF ′).
Furthermore, the only change to the dinv is that (c, b) contributes to the secondary dinv in PF ′. Hence
dinv(PF ′) = dinv(PF ) + 1. Therefore we again set φ3(PF ) = PF ′.

For the fourth case, suppose that the last three columns of PF are as on the left side of the figure below.
Suppose also that c > d. Let PF ′ be the Parking Function obtained by replacing the last five columns
with those on the right side of the figure below.
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We have area(PF ) = area(PF ′), and ides(PF ) = ides(PF ′) since the diagonal word is unchanged.
As in the last case, the only change to the dinv being that (c, b) contributes to dinv(PF ′) but not to
dinv(PF ). Hence φ3(PF ) = PF ′.

Now for the fifth and final case, suppose that PF is as in the left side of the figure below and c < d.
Then a < b < c < d, so replacing the last 5 columns with those of the right side of the figure gives a
Parking Function PF ′

Clearly area(PF ) = area(PF ′). The diagonal word has changed however. As in the second case,
two labels have switched places in the diagonal word, namely b and d. Again, these two labels are not
consecutive (b < c < d) so, arguing in just the same way as in the second case, we see that ides(PF ) =
ides(PF ′). It remains to consider the change to the dinv. Since no labels have been moved to a different
diagonal, the only changes to dinv must occur due to pairs of the labels a, b, c, d. In PF , the pair (b, d)
does not contribute to the primary dinv while the pair (a, d) contributes 1 to the secondary dinv. In PF ′,
the pairs (b, d) and (b, a) contribute to the primary and secondary dinv, respectively, but the pair (a, d)
no longer contributes. Hence dinv(PF ′) = dinv(PF ) + 1 as desired. Therefore we let φ3(PF ) = PF ′.

The following display summarizes the action of φ3 in each of the five cases

We can thus see that φ3 is an injection Π[n − 3, 3] into Π[n − 2, 2] since the images are disjoint sub
collections of Π[n− 2, 2]. Moreover note that Π[n− 2, 2] may be partitioned as follows

We can thus deduce that
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Now by (6), and the Haglund-Morse-Zabrocki conjectures we finally obtain that

(−1)n∇(s[n−3,3]) = qn−3
( ∑

PF∈Π[n−2,2]

w(PF ) − q
∑

PF∈Π[n−3,3]

w(PF )
)

= qn−3
( ∑

PF∈Π[n−2,2]

w(PF ) −
∑

PF∈Π[n−3,3]

w(φ3(PF ))
)

= qn−3
∑

PF∈NS3

tarea(PF )qdinv(PF )Qides(PF )[X].
2

4 The Two Column Schur function case
In the Haglund-Morse-Zabrocki paper Haglund et al. (2012) another Hall-Littlewood type operator “Bb”
is introduced whose action on a symmetric function F [X] is defined by setting

Bb = ωB̃bω (12)
with

B̃bF [X] = F
[
X − 1−q

z

]
Ω[zX]

∣∣∣
zb

(13)

The significance of these operators in the present context stems from the following identity

Proposition 2 For any integral pair of integers a > b ≥ 1 we have

s2b,1a−b [X] = BaBb 1 − q Ba+1Bb−1 1 (14)

Proof: Note that from (13) for F = 1 we get

B̃b 1 = hb[X]

Thus, again from (13) it follows that

B̃aB̃b 1 = hb
[
X − 1−q

z

]
Ω[zX]

∣∣∣
za

=

b∑

r=0

hb−r[X]hr[q − 1]hr+a[X]

Likewise we get

B̃a+1B̃b−1 1 =
b−1∑

r=0

hb−1−r[X]hr[q − 1]hr+1+a[X] =
b∑

r=1

hb−r[X]hr−1[q − 1]hr+a[X]

Now it can easily be shown that we have hr[q− 1] = qr − qr−1 if r > 0 and hr[q− 1] = 1 if r = 0.
Thus using these identities we may write

B̃aB̃b 1 = hb[X]ha[X] +

b∑

r=1

hb−r[X](qr − qr−1)hr+a[X]

and

qB̃a+1B̃b−1 1 = qhb−1[X]h1+a[X] +
b∑

r=2

hb−r[X](qr − qr−1)hr+a[X]
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By subtraction we get

B̃aB̃b 1 − q B̃a+1B̃b−1 1 = hb[X]ha[X] + hb−1[X](q − 1)h1+a[X] − qhb−1[X]h1+a[X]

= hb[X]ha[X] − hb−1[X]h1+a[X] = s[a,b][X]

and since ω 1 = 1 from (12) we derive that

BaBb 1 − q Ba+1Bb−1 1 = ωs[a,b][X] = s2b,1a−b [X]

as desired. 2

In Haglund et al. (2012) it is shown s that the Bb and Ca operators satisfy the commutativity relation

BbCa = qCaBb (15)

and it is also shown that

Bb 1 =
b∑

k=1

∑

(p1,p2,...,pk)|=b
Cp1Cp2 · · ·Cpk 1 (16)

By combining (15) with (16) and (14) we can then easily derive that

s2b,1a−b [X] =
∑

α|=a

∑

β|=b
ql(β)CβCα 1 − q

∑

γ|=a+1

∑

δ|=b−1

ql(δ)CδCγ 1

with l(β) and l(δ) denoting the lengths of the compositions β and δ respectively.

The number of summands on the right side of this identity can be further reduced and better organized to
facilitate the combinatorial steps needed to obtain the desired Parking function setting for∇s2b,1a−b [X].

To begin by breaking up the sums according as the sizes of the last part of β is 1 and first part of γ are
equal to 1 or not gives

s2b,1a−b [X] =
∑

α|=a

∑

β̃|=b−1

ql(β̃)+1Cβ̃C1Cα 1 +
∑

α|=a

∑

β|=b ;l βl(β)>1

ql(β)CβCα 1

−
∑

γ̃|=a

∑

δ|=b−1

ql(δ)+1CδC1Cγ̃ 1 − q
∑

γ|=a+1 ; γ1>1

∑

δ|=b−1

ql(δ)CδCγ 1

Canceling the common terms we obtain

s2b,1a−b [X] =
∑

α|=a

∑

β|=b
βl(β)>1

ql(β)CβCα 1 − q
∑

γ|=a+1

γ1>1

∑

δ|=b−1

ql(δ)CδCγ 1

Now splitting once more the sums according to the sizes of the first part of α and the last part of β which
we will denote u and v respectively, setting γ = u+ 1, γ̃ and δ = δ̃, v − 1 we get

s2b,1a−b [X] =
∑

2≤u≤a
1≤v≤b

( ∑

α̃|=a−u

∑

β̃|=b−v

ql(β̃)+1Cβ̃CvCuCα̃ 1− q
∑

γ̃|=a−u

∑

δ̃|=b−v

ql(δ̃)+1Cδ̃Cv−1Cu+1Cγ̃ 1
)
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This can be rewritten in the form

s2b,1a−b [X] =
∑

2≤u≤a
1≤v≤b

∑

α̃|=a−u

∑

β̃|=b−v

ql(β̃)+1Cβ̃
(
CvCu − qCv−1Cu+1

)
Cα̃ 1

and the Haglund-Morse-Zabrocki conjectures give

∇s2b,1a−b [X] =
∑

2≤u≤a
1≤v≤b

∑

α̃|=a−u

∑

β̃|=b−v

ql(β̃)+1
(
W [β̃, v, u, α̃] − qW [β̃, v, u, α̃]

)

where for convenience we have let W [β̃, v, u, α̃] and W [β̃, v, u, α̃] denote the sum of the weight of the
collections Π[β̃, v, u, α̃] and Π[β̃, v, u, α̃].

This identity shows that to obtain a Parking Function setting for ∇s2b,1a−b [X] we need to construct an
injection of Π[β̃, v, u, α̃] into Π[β̃, v, u, α̃] which preserves area and ides and increases dinv by 1. Now it
is not difficult to see that to construct this injection it suffices to be able to carry it out for Π[v, u, ] into
Π[v, u] and then appropriately transfer the resulting injection to the pairs Π[β̃, v, u, α̃] and Π[β̃, v, u, α̃].
and the desired properties will be automatically satisfied as long as all moved cars remain in their diagonal
as we have illustrated in the example worked out in section 3.

The general case can be obtained as an inclusion-exclusion of Parking Functions based on the identity

ωsp1,p2,...,pk =
∏

1≤i≤j≤n
(1− q θj/θi)Bp1Bp2 . . .Bpk1

which can be established in a manner analogous to our proof of (5). The realization of this plan is part of
the author’s ongoing thesis research.

Acknowledgements
The author is grateful to Angela Hicks for her support and advice during this research.

References
A. M. Garsia, G. Xin, and M. Zabrocki. Hall-Littlewood operators in the theory of parking functions.

International Mathematical Research Notices, V. 2011(11), 2011.

J. Haglund, J. Morse, and M. Zabrocki. A compositional refinement of the shuffle conjecture specifying
touch points of the Dyck path. Canadian J. Math, 64:822–844, 2012.

N. A. Loehr and G. Warrington. Nested quantum Dyck paths and ∇(sλ). International Mathematical
Research Notices, Vol 2008, 2008.

I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, New
York, 2 edition, 1995.



FPSAC 2013 Paris, France DMTCS proc. AS, 2013, 1047–1058
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Abstract. The set of n by n upper-triangular nilpotent matrices with entries in a finite field Fq has Jordan canonical
forms indexed by partitions λ ` n. We study a connection between these matrices and non-attacking q-rook place-
ments, which leads to a combinatorial formula for the number Fλ(q) of matrices of fixed Jordan type as a weighted
sum over rook placements.

Résumé. L’ensemble des matrices triangulaires supérieures nilpotentes d’ordre n sur un corps fini Fq a des formes
canoniques de Jordan indexées par les partitions λ ` n. Nous étudions une connexion entre ces matrices et les
placements de tours, et nous présentons une formule combinatoire pour le nombre Fλ(q) des matrices comme une
somme sur les placements de tours.

Keywords: q-rook placements, Jordan canonical form, nilpotent matrices, set partitions

1 Introduction
In the beautiful paper Variations on the Triangular Theme, Kirillov (1995) studied various structures on
the set of triangular matrices. Denote by Gn(Fq), the group of n by n upper-triangular matrices over the
field Fq having q elements, and let gn(Fq) = Lie(Gn(Fq)) denote the corresponding Lie algebra of n
by n upper-triangular nilpotent matrices over Fq . It is known, for example, that the conjugacy classes
of Gn(Fq) are in bijection with the adjoint orbits in gn(Fq). To study the adjoint orbits we consider the
Jordan canonical form. Each matrix X ∈ gn(Fq) is similar to a block diagonal matrix consisting of
elementary Jordan blocks with eigenvalue zero:

Ji =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0



i×i

.

If the Jordan canonical form of X has block sizes λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, then X is said to have
Jordan type λ, where λ is a partition of n. The Jordan type of X depends only on its adjoint orbit, so the
similarity classes of nilpotent matrices are indexed by the partitions of n.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Let gn,λ(Fq) ⊆ gn(Fq) be the set of matrices of fixed Jordan type λ. It was shown by Springer that
gn,λ(Fq) an algebraic manifold with fλ irreducible components, each of which has the same dimension(
n
2

)
− nλ. Here, fλ is the number of standard Young tableaux of shape λ, and nλ is given in Equation 9.

Let
Fλ(q) = |gn,λ(Fq)| (1)

be the number of matrices of Jordan type λ. We note that
∑
λ`n Fλ(q) = |gn(Fq)| = q(

n
2). The cases

F(1n)(q) = 1 and F(n)(q) = (q−1)n−1q(
n−1
2 ) are readily computed, since the matrix of Jordan type (1n)

is the matrix of rank zero, and the matrices of Jordan type (n) are the matrices of rank n− 1.
In Section 2, we present a simple recurrence equation for Fλ(q) (see Proposition 2). As a consequence

of the recurrence equation, it follows that Fλ(q) is a polynomial in q with nonnegative integer coefficients,
degFλ(q) =

(
n
2

)
− nλ, and the coefficient of the highest degree term in Fλ(q) is fλ.

A connection with q-Rook placements
In their study of a formula of Frobenius, Garsia and Remmel (1986) introduced the q-rook polynomial

Rk(q,B) =
∑

c∈C(B,k)
qinv(c), (2)

which is a sum over the set C(B, k) of non-attacking placements of k rooks on the Ferrers board B,
and inv(c), defined in Equation 11, is the number of inversions of c. In the case when B = δn is the
staircase-shaped board, Garsia and Remmel showed that Rk(q, δn) = Sn,n−k(q) is a q-Stirling number
of the second kind. These numbers are defined by the recurrence

Sn,k(q) = qk−1Sn−1,k−1(q) + [k]qSn−1,k(q) for 0 ≤ k ≤ n, (3)

with initial conditions S0,0(q) = 1, and Sn,k(q) = 0 for k < 0 or k > n.
It was shown by Solomon (1990) that non-attacking placements of k rooks on rectangularm×n boards

are naturally associated to m by n matrices with rank k over Fq . By identifying a Ferrers board B inside
an n by n grid with the entries of an n by n matrix, Haglund (1998) generalized Solomon’s result to the
case of non-attacking placements of k rooks on Ferrers boards, and obtained a formula for the number of
n by n matrices with rank k whose support is contained in the Ferrers board region. As a special case of
Haglund’s formula, the number of nilpotent matrices of rank k is

Pk(q) = (q − 1)kq(
n
2)−kRk(q−1, δn). (4)

Now, a matrix in gn,λ(Fq) has rank n− `(λ), where `(λ) is the number of parts of λ, so the number of
matrices in gn(Fq) with rank k is

Pk(q) =
∑

λ`n: `(λ)=n−k
Fλ(q). (5)

Given Equations 4 and 5, it is natural to ask whether it is possible to partition the placements C(δn, k)
into disjoint subsets so that the sum over each subset of placements gives Fλ(q). The goal of this paper
is to study the connection between upper-triangular nilpotent matrices over Fq and non-attacking q-rook
placements on the staircase-shaped board δn.
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Section 3 forms the heart of this paper. Inspired by Equation 7 for Fλ(q), we define a graph Z closely
related to Young’s lattice. The main result is Theorem 9, which states that there is a weight-preserving
bijection between rook placements and paths in Z . As a result, we obtain a formula for Fλ(q) as a sum
over certain weighted q-rook placements (see Corollary 10), which can be viewed as a generalization of
Haglund’s formula in Equation 4.

There is a well-known bijection between rook placements on the staircase-shaped board δn with k
rooks, and set partitions of {1, . . . , n} with n− k blocks. In Section 4, we describe how paths in Z gives
a new bijection between these sets, and how this gives a definition of a lattice of compositions which
appears to be new. Finally, in Section 5, we mention some further problems to pursue. In this article, the
proofs are either omitted or briefly sketched. Full details can be found in the preprint Yip (2013).

2 The recurrence equation for Fλ(q)
We define a partition λ of a nonnegative integer n, denoted by λ ` n, is a non-increasing sequence of
nonnegative integers λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 with |λ| = ∑n

i=1 λi = n. If λ has k positive parts, write
`(λ) = k. Represent a partition λ by its Ferrers diagram in the English notation, which is an array of λi
boxes in row i, with the boxes justified upwards and to the left. Let λ′j denote the size of the jth column
of λ.

Example 1 The partition

λ = (4, 2, 2, 1) ` 9 has diagram

and columns λ′1 = 4, λ′2 = 3, λ′3 = 1, λ′4 = 1.

Young’s lattice Y is the lattice of partitions ordered by the inclusion of their Ferrers diagrams. In
particular, write µ ≺ λ if µ ⊆ λ and |λ| = |µ| + 1. In other words, µ is covered by λ in Y if the Ferrers
diagram of λ can be obtained by adding a box to the Ferrers diagram of µ. If this box is added in the ith
row and jth column of the diagram, assign a weight cµλ(q) to the edge between µ and λ, where

cµλ(q) =

{
q|µ|−µ

′
j , if j = 1,

q|µ|−µ
′
j−1

(
qµ
′
j−1−µ′j − 1

)
, if j ≥ 2.

(6)

See Figure 1 for an illustration.
The following recurrence formula for Fλ(q) can be found in Borodin (1995), where he considers the

matrices as particles of a certain mass. An elementary proof of a different flavour is outlined below.

Proposition 2 Let λ ` n. The number of n by n upper-triangular nilpotent matrices over Fq of Jordan
type λ is

Fλ(q) =
∑

µ≺λ
cµλ(q)Fµ(q), with F∅(q) = 1.

Proof: Proceed by induction on n. Given λ ` n, first notice that any matrix in gn,λ(Fq) has a leading
principal submatrix of type µ where µ ≺ λ. Furthermore, let Jµ denote the Jordan matrix which is the
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∅

1 ��>
>>

>>
>>

>

q−1 //

1
��

(q−1)q//

q

��

(q−1)q2//

q2

��
q2−1 //

1
��

(q−1)q2//

q

��

(q−1)q

��?
??

??
??

?

q3−1 //

1
��

Fig. 1: Young’s lattice with edge weights cµλ(q), up to n = 4.

direct sum of elementary nilpotent Jordan blocks of sizes µ1, . . . , µk. There are cµλ(q) matrices of Jordan
type λ having Jµ as its leading principal submatrix, and by similarity, this result continues to hold if the
matrix Jµ is replaced by any matrix Y of Jordan type µ. Summing over all µ ≺ λ gives the desired
formula. 2

The formula for Fλ(q) in Proposition 2 can be rephrased as a sum over the set P(λ) of paths in the
Young lattice Y from the empty partition ∅ to λ. Suppose

$ : ∅ ε1 // λ(1)
ε2 // λ(2)

ε3 // · · · εn // λ(n) = λ

is a path in Y , where the weight of the path

w($) =

n∏

r=1

cλ(r−1)λ(r)(q) (7)

is the product of the weights on it edges. Then Proposition 2 is equivalent to the statement

Fλ(q) =
∑

$∈P(λ)
w($). (8)

Example 3 There are two partitions of 4 with 2 parts, namely (3, 1) and (2, 2). There are three paths
from ∅ to (3, 1), giving

F(3,1)(q) = (q − 1) · (q − 1)q · q2 + (q − 1) · q · (q − 1)q2 + ·(q2 − 1) · (q − 1)q2

= (q − 1)2
(
3q3 + q2

)
,
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and there are two paths from ∅ to (2, 2), giving

F(2,2)(q) = (q − 1) · q · (q − 1)q + (q2 − 1) · (q − 1)q
= (q − 1)2(2q2 + q).

Two observations about Fλ(q) now follow readily from Proposition 2. For λ ` n, let

nλ =
∑

i≥1
(i− 1)λi. (9)

Suppose$ : ∅ // λ(1) // λ(2) // · · · // λ(n) = λ is a path in Y such that λ(r) is obtained
by adding a box to λ(r−1) in row i and column j. Then deg cλ(r−1)λ(r)(q) = r − i, and therefore,

degw($) =
n∑

r=1

deg cλ(r−1)λ(r)(q) =
n∑

r=1

r −
∑

i≥1
iλi =

(
n

2

)
− nλ.

In particular, each polynomial w($) arising from a path $ ∈ P(λ) has the same degree, so

degFλ(q) =

(
n

2

)
− nλ. (10)

Moreover, each w($) is monic, so the coefficient of the highest degree term in Fλ(q) is the number of
paths in Y from ∅ to λ, which is the number fλ of standard Young tableaux of shape λ.

Second, the edge weight cλ(r−1)λ(r)(q) corresponding to the rth step in the path $ contributes a factor
of q − 1 to w($) if and only if the rth box added along the path is in column j ≥ 2. Therefore, the
multiplicity of q − 1 in each w(π) is n − λ′1 = n − `(λ), and so, the multiplicity of q − 1 in Fλ(q) is
n− `(λ).

3 Jordan canonical forms and q-rook polynomials
A board B is a subset of an n by n grid of squares. We follow Haglund (1998), and index the squares
following the convention for the entries of a matrix. A Ferrers board is a board B where if a square
s ∈ B, then all squares lying north and/or east of s is also in B. Let δn denote the staircase-shaped board
with n columns of sizes 0, 1, . . . , n− 1. Let area(B) be the number of squares in B, so area(δn) =

(
n
2

)

in particular.
A placement of k rooks on a board B is non-attacking if there is at most one rook in each row and

each column of B. Let C(B, k) be the set of non-attacking placements of k rooks on B. For a placement
γ ∈ C(B, k), let ne(γ) be the number of squares in B lying directly north or directly east of a rook. Also
define the inversion of the placement to be the number

inv(γ) = area(B)− k − ne(γ). (11)

See Example 4 for an illustration. As noted in Garsia and Remmel (1986), the statistic inv(γ) is a gen-
eralization of the number of inversions of a permutation, since permutations can be identified with non-
attacking placements of rooks on a square-shaped board. In terms of the rook placement, inv(γ) is the
number of squares left blank.
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Define the weight of a rook placement γ ∈ C(B, k) by

w(γ) = (q − 1)kqne(γ). (12)

Example 4 We use × to mark a rook and use • to mark squares lying directly north or directly east of
a rook. (These squares shall be referred to as the north-east squares of the placement.) The following
illustration is a non-attacking placement of four rooks on the staircase-shaped board δ7.

........................................................................................................................................................................................................

...........................................................................................................................................................................

...............................................................................................................................................

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

...............................................................................................................................................

...........................................................................................................................................................................

........................................................................................................................................................................................................

×
×

×
×

•

• •

•

•

•

• •

•

•

•

This rook placement has ne(γ) = 11, inv(γ) = 6, and weight w(γ) = (q − 1)4q11.

For k ≥ 0, the q-rook polynomial of a Ferrers board B is defined in (Garsia and Remmel, 1986, I.4) by

Rk(q,B) =
∑

c∈C(B,k)
qinv(c). (13)

The following result is due to (Haglund, 1998, Theorem 1).

Proposition 5 IfB is a Ferrers board, then the number PB,k(q) of n by n matrices of rank k with support
contained in B is

PB,k(q) = (q − 1)kqarea(B)−kRk(q−1, B).

2

Looking ahead, it will be convenient to consider Theorem 5 in the following equivalent form:

PB,k(q) =
∑

γ∈C(B,k)
(q − 1)kqne(γ) =

∑

γ∈C(B,k)
w(γ). (14)

Example 6 There are seven non-attacking placements on δ4 with two rooks:
..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×
• •

•

(q − 1)2q3

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×

×

• •

•

(q − 1)2q3

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×

• •

•

(q − 1)2q3

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×

×

•

•

(q − 1)2q2

(15)

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×

• •

(q − 1)2q2

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×
•

•

(q − 1)2q2

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×
•

(q − 1)2q

(16)

This gives P2(q) = (q − 1)2(3q3 + 3q2 + q).
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Recall that if λ ` n is obtained from µ by adding a box in row i and column j, then the edge in Y from
µ to λ has weight

cµλ(q) =

{
q|µ|−µ

′
j , if j = 1,

(q − 1)q|µ|−µ
′
j−1 + · · ·+ (q − 1)q|µ|−µ

′
j−1 , if j ≥ 2.

(17)

Thus each edge weight is a sum of terms of the form (q − 1)dqe where d = 1 − δj1 (δj1 denotes the
Kronecker delta function), and e ∈ Z≥0. This observation inspires the following definitions.

Based on the Young lattice Y , we construct a graph Z (see Figure 2). The vertices of Z are partitions.
If there is an edge from µ to λ in Y of weight q|µ|−µ

′
j−1(qµ

′
j−1−µ′j − 1), then in Z the edge is replaced by

µ′j−1 − µ′j edges with weights

(q − 1)q|µ|−µ
′
j−1, . . . , (q − 1)q|µ|−µ

′
j−1 .

A primitive path π

∅ ε1 // π(1)
ε2 // π(2)

ε3 // · · · εn // π(n)

is a path in the graph Z . The weight w(π) of a primitive path is the product of its edge weights.
Let PP(λ) denote the set of primitive paths from ∅ to λ. Then each path in Young’s lattice corresponds

to a set of primitive paths, and
Fλ(q) =

∑

π∈PP(λ)
w(π). (18)

Remark 7 Let µ ` n−1 where `(µ) = `. Let π′ : ∅ // λ(1) // λ(2) // · · · // λ(n−1) = µ

be a primitive path. If λ is obtained by adding a box to the first column of µ, then there is a unique way to
extend the primitive path π′ by one edge, and by Equation 17, that edge has weight

q|µ|−`.

Furthermore, consider all possible λ which can be obtained by adding a box to µ in a column j ≥ 2.
Then by Equation 17, there are

`(µ′)+1∑

j=2

µ′j−1 − µ′j = `

ways to extend the primitive path π′ by one edge.
In summary, the out-degree of µ in Z is `+ 1. Moreover, the weights

q|µ|−`, (q − 1)q|µ|−`, (q − 1)q|µ|−`+1, . . . , (q − 1)q|µ|−1,

for the edges have unique degrees |µ| − ` ≤ d ≤ |µ|. This observation is crucial for the proof of the next
lemma.

Lemma 8 Let n ≥ 1 and 0 ≤ k ≤ n − 1. Suppose γ ∈ C(δn, k) is a rook placement with columns
γ(1), . . . , γ(n). Then the sequence of weights w(γ(1)), . . . , w(γ(n)) determines a unique primitive path

π : ∅ ε1 // π(1)
ε2 // π(2)

ε3 // · · · εn // π(n) such that εr = w(γ(r)). Moreover, `(π(n)) = n− k.
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Fig. 2: The graph Z , up to n = 4.

Proof: Proceed by induction on n+k. Suppose γ ∈ C(δn, k) and let γ′ be the placement consisting of the
first n − 1 columns of γ. By induction, the sequence ε1 = w(γ(1)), . . . , εn−1 = w(γ(n−1)) determines

a unique primitive path π′ : ∅ ε1 // π(1)
ε2 // · · · εn−1 // π(n−1) . There are two cases to consider; γ′

has either k or k − 1 rooks.
If γ′ has k rooks, then the column γ(n) then has k north-east squares only and weight qk = q|µ|−`. By

the previous remark, there is a unique way to extend the primitive path corresponding to γ′ by adding a
box to the first column of π(n−1), and that edge has weight q|µ|−`.

In the second case, if γ′ has k − 1 rooks, then there are n − 1 − k available boxes in column γ(n) to
place a rook. The placement of the rook uniquely determines the degree of the weight w(γ(n)) of the
column, which ranges from k + 1, . . . , n− 1. From the remark, there are precisely ` = n− 1− k edges
emanating from µ in Z with weights having degrees |µ| − `+ 1, . . . , |µ|. 2

Let PP(n, n − k) = {π ∈ PP(λ) | λ ` n and `(λ) = n− k} be the set of primitive paths in Z from
∅ to a partition with n− k parts. Define a map Θ : C(δn, k)→ PP(n, n− k) as follows. Suppose a rook
placement γ has columns γ(1), . . . , γ(n). Let Θ(γ) be the primitive path

∅ ε1 // π(1)
ε2 // π(2)

ε3 // · · · εn // π(n) with εr = w(γ(r)).

Theorem 9 The map Θ : C(δn, k)→ PP(n, n− k) is a weight-preserving bijection. 2
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It follows from Theorem 9 that we may associate a partition type to each rook placement on δn. The
partition type of a rook placement γ is the partition at the endpoint of the primitive path Θ(γ). Let C(λ) be
the set of rook placements of partition type λ. As a Corollary, we obtain a formula for Fλ(q) as a sum over
rook placements, and the equation can be viewed as a generalization of Haglund’s result in Equation 4.

Corollary 10 Let λ ` n be a partition with `(λ) = n− k parts. Then

Fλ(q) =
∑

γ∈C(λ)
(q − 1)kqne(γ).

Proof: The result follows from Equation 18 and the bijection Θ in Theorem 9. 2

Example 11 There are four primitive paths from ∅ to λ = (3, 1).

∅ 1 // q−1 // (q−1)q// q2 //

∅ 1 // q−1 // q // (q−1)q2//

∅ 1 // 1 // (q−1)q// (q−1)q2//

∅ 1 // 1 // q−1 // (q−1)q2//

Respectively, they correspond to the following rook placements, each having partition type (3, 1).
..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×
• •

•

(q − 1)2q3

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×

×

• •

•

(q − 1)2q3

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×

• •

•

(q − 1)2q3

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×

×

•

•

(q − 1)2q2

Therefore,
F(3,1)(q) = (q − 1)2(3q3 + q2).

4 A refinement to compositions
A set partition is a set σ = {B1, . . . , Bk} of nonempty disjoint subsets of Nn such that

⋃k
i=1Bi = Nn.

The Bis are the blocks of σ. Let Π(n, k) be the set of set partitions of Nn with k blocks. We adopt the
convention of listing the blocks in order so that minBi < minBj if i < j. This allows us to represent a
set partition with a diagram similar to that of a Young tableau; the ith row of the diagram consists of the
elements in block Bi listed in increasing order. A composition α of a nonnegative integer n is a sequence
of positive integers (α1, . . . , αk) such that |α| = ∑k

i=1 αi = n. If α has k positive parts, write `(α) = k.
A set partition σ = {B1, . . . , Bk} has composition type α if α = (|B1|, . . . , |Bk|).

The number of set partitions ofNn with k blocks is the Stirling number Sn,n−k(1) (see Equation 3). In
addition, Sn,n−k(1) is also the number of placements of k rooks on the staircase board δn. This follows
from the following well-known bijection (see Stanley (1999)); given a placement γ ∈ C(δn, k), construct
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a set partition ofNn where the integers i and j are in the same block if and only if there is a rook in square
(i, j) ∈ γ.

We shall give another bijection Ψ : C(δn, k) → Π(n, n − k) that arises from the primitive paths in
the graph Z . Let γ ∈ C(δn, k) be a rook placement. Construct a diagram for a set partition using the
following procedure (also see Example 14).

• Let λ(1) be the diagram with a single box labelled 1 placed in the first row and the first column.

• For k ≥ 2, if the weight of the kth column in γ has degree d, then place the box labelled k in the
(k − d)th row of λ(k−1), and rearrange the rows of the diagram into a partition shape λ(k), so that
the rows of the same length have first column entries in increasing order.

Note that if π = Θ(γ) is the primitive path in Z which corresponds to the placement γ, then π(k) = λ(k).
Let λ(n) be the partition shape of the diagram after the nth box has been placed. Let order

(
λ(n)

)
be the

diagram of the set partition resulting from ordering the rows of λ(n) so that the first column entries are
increasing. Define Ψ(γ) = order

(
λ(n)

)
.

Proposition 12 Ψ : C(δn, k)→ Π(n, n− k) is a bijection. 2

The composition type of a rook placement γ ∈ C(δn, k) is the composition type of Ψ(γ). Let C(α) be
the set of rook placements with composition type α. For a composition α of n with `(α) = n − k parts,
define

Fα(q) =
∑

c∈C(α)
(q − 1)kqne(c). (19)

Let rearr(α) be the partition resulting from the rearrangement of the parts of the composition α so that
they are nondecreasing.

Corollary 13 Let λ ` n. Then
Fλ(q) =

∑

λ=rearr(α)

Fα(q).

2

We extend the definition of nλ to compositions and let nα =
∑
i≥1(i − 1)αi. Then degFα(q) =(

n
2

)
− nα, the multiplicity of the factor q − 1 in Fα(q) is n = `(α), and the coefficient of the highest

degree term is the number of set partitions whose diagrams are increasing along rows and columns.

Example 14 Consider the rook placement γ ∈ C(δ8, 5) :

....................................................................................................................................................................................................................................

........................................................................................................................................................................................................

...........................................................................................................................................................................

...............................................................................................................................................

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

...............................................................................................................................................

...........................................................................................................................................................................

........................................................................................................................................................................................................

....................................................................................................................................................................................................................................

×
×

×

×

×

• •

•

•

•

•

•

•

•

•

•

•

•

•

1 2 3 4 5 6 7 8



q-Rook placements and Jordan forms of upper-triangular nilpotent matrices 1057

The set partition diagrams λ(1), . . . , λ(n) correspond to the following primitive path in Z .

1
ε2 // 1

2

ε3 //
1

2

3

ε4 //
2 4

1

3

ε5 //
1 5

2 4

3

ε6 //
1 5 6

2 4

3

ε7 //
1 5 6

2 4

3 7

ε8 //
1 5 6

3 7 8

2 4

The edge weights of this primitive path are the same as the column weights in the rook placement. Order-
ing the rows of the diagram of the endpoint of the primitive path so that the entries in the first column are
increasing gives the set partition

Ψ(γ) = order ·
1 5 6
3 7 8
2 4

=
1 5 6
2 4
3 7 8

Therefore, the rook placement γ has partition type λ = (3, 3, 2) and composition type α = (3, 2, 3).

Remark 15 We can define a lattice X of compositions by requiring that each path from ∅ to α encodes a
rook configuration of composition type α. The paper of Björner and Stanley (2005) considers two different
lattices of compositions, but X is different from the two presented in their paper. It may be interesting to
investigate the combinatorial properties of X , particularly as paths in X are equivalent to set partitions,
and they are known to play a crucial role in the supercharacter theory of unipotent upper-triangular
matrices (see Thiem (2010) for example).

5 Closing remarks
5.1 Inverse Kostka-polynomials
Let Pλ(x; t) denote the Hall-Littlewood function indexed by the partition λ, and let mµ(x) denote the
monomial symmetric function indexed by µ. See (Macdonald, 1995, Ch. III) for definitions. For λ, µ ` n,
the transition coefficients Lλ,µ(t) are defined by

Pλ(x; t) =
∑

µ

Lλ,µ(t)mµ(x). (20)

The recurrence formula for Fλ(q) in Proposition 2 is essentially the same as the one for Lλ,1n(t) (Mac-
donald, 1995, Equation 5.9’), so that Lλ,1n(t) = t(

n
2)−nλFλ(t−1). It would be interesting to see if other

entries in the transition matrix can be obtained as sums over rook placements on boards of another shape.

5.2 Matrices satisfying X2 = 0

Kirillov and Melnikov (1995) considered the number An(q) of n by n upper-triangular matrices over
Fq satisfying X2 = 0. In their first characterization of these polynomials, they considered the number
Arn(q) of matrices of a given rank r, so that An(q) =

∑
r≥0A

r
n(q), and observed that Arn(q) satisfies the

recurrence
Arn(q) = qrArn−1(q) +

(
qn−r − qr

)
Arn(q), A0

n(q) = 1.

We may think of An(q) as the sum of Fλ(q) over λ ` n with at most two columns, so Proposition 2 is, in
a sense, a generalization of this recurrence.
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It was also conjectured by Kirillov and Melnikov that the same sequence of polynomials arise in a
number of different ways. Ekhad and Zeilberger (1996) proved that one of the conjectured alternate
definitions of An(q), namely

Cn(q) =
∑

s

cn+1,sq
n2

4 + 1−s2
12 ,

is a sum over all s ∈ [−n− 1, n+ 1] which satisfy s ≡ n+ 1 mod 2 and s ≡ (−1)n mod 3, and cn+1,s

are entries in the signed Catalan triangle, is indeed the same as An(q). It would be interesting to see what
other combinatorics may arise from considering the sum of Fλ(q) over λ ` n with at most k columns for
a fixed k.
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On the poset of weighted partitions

Rafael S. González D’León † and Michelle L. Wachs ‡

Department of Mathematics, University of Miami, Coral Gables, FL 33124

Abstract. In this extended abstract we consider the poset of weighted partitions Πw
n , introduced by Dotsenko and

Khoroshkin in their study of a certain pair of dual operads. The maximal intervals of Πw
n provide a generalization

of the lattice Πn of partitions, which we show possesses many of the well-known properties of Πn. In particular,
we prove these intervals are EL-shellable, we compute the Möbius invariant in terms of rooted trees, we find com-
binatorial bases for homology and cohomology, and we give an explicit sign twisted Sn-module isomorphism from
cohomology to the multilinear component of the free Lie algebra with two compatible brackets. We also show that
the characteristic polynomial of Πw

n has a nice factorization analogous to that of Πn.

Résumé. Dans ce résumé étendu, nous considèrons l’ensemble ordonné des partitions pondérées Πw
n , introduit par

Dotsenko et Khoroshkin dans leur étude d’une certaine paire d’opérades duales. Les intervalles maximaux de Πw
n

généralisent le treillis Πn des partitions et, comme nous le montrons, possèdent beaucoup de propriétés classiques de
Πn. En particulier, nous prouvons que ces intervalles sont “EL-shellable”, nous exprimons leur invariant de Möbius
en fonction d’arbres enracinés, nous trouvons des bases combinatoires pour l’homologie et la cohomologie et nous
donnes un morphisme explicite de Sn-modules gauches entre la cohomologie et la composante multilinéaire de
l’algèbre de Lie libre avec deux crochets de Lie compatibles. Nous montrons aussi que le polynôme caractéristique
de Πw

n admet une factorisation sympathique, analogue à celle de Πn.

Keywords: poset topology, partitions, free Lie algebra, rooted trees

1 Introduction
We recall some combinatorial, topological and representation theoretic properties of the lattice Πn of
partitions of the set [n] := {1, 2, . . . , n} ordered by refinement. The Möbius invariant of Πn is given by
µ(Πn) = (−1)n−1(n−1)! and the characteristic polynomial by χΠn(x) = (x−1)(x−2) . . . (x−n+1)
(see [18, Example 3.10.4]). The order complex ∆(P ) of a poset P is the simplicial complex whose faces
are the chains of P ; and the proper part P̄ of a bounded poset P is the poset obtained by removing the
minimum element 0̂ and the maximum element 1̂. It was proved by Björner [2], using an edge labeling
of Stanley [16], that Πn is EL-shellable; consequently the order complex ∆(Πn) has the homotopy type
of a wedge of (n− 1)! spheres of dimension n− 3. The falling chains of the EL-labeling provide a basis
for cohomology of ∆(Πn) called the Lyndon basis. See [21] for a discussion of this basis and other nice
bases for the homology and cohomology of the partition lattice.
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The symmetric group Sn acts naturally on Πn and this induces isomorphic representations of Sn

on the unique nonvanishing reduced simplicial homology H̃n−3(Πn) of the order complex ∆(Πn) and
on the unique nonvanishing simplicial cohomology H̃n−3(Πn). (Throughout this paper homology and
cohomology are taken over C.) Joyal [12] observed that a formula of Stanley [17] for the character of
this representation is a sign twisted version of an earlier formula of Brandt [5] for the character of the
representation of Sn on the multilinear component Lie(n) of the free Lie algebra on n generators. Hence
the following Sn-module isomorphism holds,

H̃n−3(Πn) 'Sn Lie(n)⊗ sgnn, (1.1)

where sgnn is the sign representation of Sn. Joyal [12] gave a species theoretic proof of the isomor-
phism. The first purely combinatorial proof was obtained by Barcelo [1] who gave a bijection between
known bases for the two Sn-modules (Björner’s NBC basis for H̃n−3(Π̄n) and the Lyndon basis for
Lie(n)). Later Wachs [21] gave a more general combinatorial proof by providing a natural bijection be-
tween generating sets of H̃n−3(Πn) and Lie(n), which revealed the strong connection between the two
Sn-modules.

In this paper we explore analogous properties for a weighted version of Πn, introduced by Dotsenko and
Khoroshkin [6] in their study of Koszulness of certain quadratic binary operads. A weighted partition of
[n] is a set {Bv11 , Bv22 , ..., Bvtt } where {B1, B2, ..., Bt} is a partition of [n] and vi ∈ {0, 1, 2, ..., |Bi| − 1}
for all i. The poset of weighted partitions Πw

n is the set of weighted partitions of [n] with covering relation
given by {Aw1

1 , Aw2
2 , ..., Aws

s }l {Bv11 , Bv22 , ..., Bvtt } if the following conditions hold

• {A1, A2, . . . , As}l {B1, B2, . . . , Bt} in Πn

• if Bk = Ai ∪Aj , where i 6= j, then vk − (wi + wj) ∈ {0, 1}.

In Figure 1 below the set brackets and commas have been omitted.

1232

130|20

10|20|30

1231

120|30 131|20

1230

10|230 121|30 231|10

Fig. 1: Weighted partition poset for n = 3

We remark that Πw
n resembles, but is not the same as, a Rees product poset introduced by Björner and

Welker [4] and studied in [15].
The poset Πw

n has a minimum element 0̂ = 10|20| . . . |n0 and nmaximal elements [n]0, [n]1, . . . , [n]n−1.
Note that for all i, the maximal intervals [0̂, [n]i] and [0̂, [n]n−1−i] are isomorphic to each other, and the
two maximal intervals [0̂, [n]0] and [0̂, [n]n−1] are isomorphic to Πn.
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In this paper(i) we prove that the augmented weighted partition poset Π̂w
n := Πw

n ∪ {1̂} is EL-shellable
by providing an interesting weighted analog of the Björner-Stanley EL-labeling of Πn. In fact our labeling
restricts to the Björner-Stanley EL-labeling on the intervals [0̂, [n]0] and [0̂, [n]n−1]. A consequence of
shellability is that Π̂w

n is Cohen-Macaulay, which implies a result of Dotsenko and Khoroshkin [7], ob-
tained through operad theory, that all maximal intervals [0̂, [n]i] of Πw

n are Cohen-Macaulay. (Two prior
attempts [6, 19] to establish Cohen-Macaulayness of [0̂, [n]i] are discussed in Remark 2.3.) The falling
chains of our EL-labeling also provide a generalization of the Lyndon basis for cohomology of Πn.

It follows from an operad theoretic result of Vallette [20] and the Cohen-Macaulayness of each maximal
interval [0̂, [n]i] that the following Sn-module isomorphism holds:

n−1⊕

i=0

H̃n−3((0̂, [n]i)) 'Sn
Lie2(n)⊗ sgnn, (1.2)

where Lie2(n) is the representation of Sn on the multilinear component of the free Lie algebra on n
generators with two compatible brackets (defined in Section 3.2) and H̃n−3((0̂, [n]i)) is the reduced sim-
plicial homology of the order complex of the open interval (0̂, [n]i). A graded version of this isomor-
phism, which can also be proved using Vallette’s technique, implies (1.1). In Section 3.3 we reveal the
connection between these graded modules by providing an explicit bijection between generating sets of⊕n−1

i=0 H̃
n−3((0̂, [n]i)) and Lie2(n), which generalizes the bijection that Wachs [21] used to prove (1.1).

In [13] Liu proves a conjecture of Feigin that dimLie2(n) = nn−1 by constructing a combinatorial
basis for Lie2(n) indexed by rooted trees. (It is well-known that nn−1 is the number of rooted trees on
node set [n].) An operad theoretic proof of Feigin’s conjecture was obtained by Dotsenko and Khoroshkin
[6], but with a gap pointed out in [19] and corrected in [7].

Liu and Dotsenko/Khoroshkin obtain a more general graded version of Feigin’s conjecture. In this paper
we take a different path to proving the graded version. In Section 2.2 we compute the Möbius invariant
of the maximal intervals of Πw

n by exploiting the recursive nature of Πw
n and applying the compositional

formula. From our computation and the fact that Π̂w
n is Cohen-Macaulay we conclude that

n−1∑

i=0

dim H̃n−3((0̂, [n]i))ti =

n−1∏

i=1

((n− i) + it). (1.3)

The Liu and Dotsenko/Khoroshkin result is a consequence of this and (1.2). Since, as was proved by
Drake [8], the right hand side of (1.3) is the generating function for rooted trees on [n] with i descents,
it follows that dim H̃n−3((0̂, [n]i)) is equal to the number of rooted trees on [n] with i descents. In
Section 4 we construct a nice combinatorial basis for H̃n−3((0̂, [n]i)) indexed by such rooted trees, which
generalizes Björner’s basis for H̃n−3(Π̄n). A generalization of the comb basis for cohomology of Πn and
the generalization of the Lyndon basis for cohomology of Πn given by the falling chains of the EL-labeling
of [0̂, [n]i] are also presented in Section 4.

In the final section of this paper, we show that the characteristic polynomial of Πw
n equals (x− n)n−1

and present some consequences. Finally we mention some generalizations of what is presented here.

(i) i.e., the full version of this paper [11]
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2 The topology of the poset of weighted partitions
2.1 EL-Shellability
We assume familiarity with basic terminology and results in poset topology; see [22].

For each i ∈ [n], let Pi := {(i, j)u|i < j ≤ n + 1, u ∈ {0, 1}}. We partially order Pi by letting
(i, j)u ≤ (i, k)v if j ≤ k and u ≤ v. Note Pi is isomorphic to the direct product of the chain i + 1 <
i+2 < · · · < n+1 and the chain 0 < 1. Now define Λn to be the ordinal sum Λn := P1⊕P2⊕· · ·⊕Pn.

The Hasse diagram of the poset Λn when n = 3 is given in Figure 2(b).

Theorem 2.1 The labeling λ : E(Π̂w
n )→ Λn defined by:

λ(Aw1
1 |Aw2

2 | · · · |Awl

l lAw1
1 |Aw2

2 | · · · |(Ai ∪Aj)wi+wj+u| · · · |Awl

l ) := (minAi,minAj)
u ,

and
λ̃([n]r l 1̂) = (1, n+ 1)0,

where minAi < minAj , is an EL-labeling of Πw
n .

The proof is given in the full version of this paper. In Figure 2(a) we give an example.

1̂

1232

130|20

10|20|30

1231

120|30 131|20

1230

10|230 121|30 231|10

(1, 2)0 (1, 3)0 (2, 3)0 (1, 2)1 (1, 3)1 (2, 3)1

(1, 3)0

(1, 2)0 (1, 2)0

(1, 3)1 (1, 2)1 (1, 2)1 (1, 3)0 (1, 2)0 (1, 2)0

(1, 2)1

(1, 2)1(1, 3)1

(1, 4)0 (1, 4)0 (1, 4)0

(a) Labeling λ

(1, 2)0

(1, 3)0

(1, 4)0

(1, 2)1

(1, 3)1

(1, 4)1

(2, 3)0

(2, 4)0 (2, 3)1

(2, 4)1

(3, 4)0

(3, 4)1

(b) Λ3

Fig. 2: EL-labeling of the poset Π̂w
3

In [7] Dotsenko and Khoroshkin use operad theory to prove that all intervals of Πw
n are Cohen-Macaulay.

We have the following extension of their result.

Corollary 2.2 The poset Π̂w
n is Cohen-Macaulay.

Remark 2.3 In a prior attempt to establish Cohen-Macaulayness of each maximal interval [0̂, [n]i] of Πw
n ,

it is argued in [6] that the intervals are totally semimodular (and hence CL-shellable). In [19] it is noted
that this is not the case and a proposed recursive atom ordering of each maximal interval [0̂, [n]i] is given
in order to establish CL-shellability. We note here that one of the requisite conditions in the definition of
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recursive atom ordering fails to hold when n = 4 and i = 2. Indeed, assuming (without loss of generality)
that the first two atoms in the atom ordering of [0̂, [4]2] given in [19] are 120 and 121 (the singleton blocks
have been omitted), it is not difficult to see that the proposed atom ordering of the interval [121, [4]2] given
in [19] will fail to satisfy the condition that the covers of 120 come first.

2.2 Möbius Invariant
Since each maximal interval of Πw

n is Cohen-Macaulay, we can determine the dimension of the top (unique
nonvanishing) (co)homology of the interval by the use of the Möbius invariant. We use the recursive
definition of the Möbius function and the compositional formula to derive the following result.

Proposition 2.4 For all n ≥ 1,

n−1∑

i=0

µΠw
n

(0̂, [n]i)ti = (−1)n−1
n−1∏

i=1

((n− i) + it). (2.1)

Consequently,
n−1∑

i=0

µΠw
n

(0̂, [n]i) = (−1)n−1nn−1.

Let T be a rooted tree on node set [n]. A descent of T is a node that is smaller than its parent. We
denote by Tn,i the set of rooted trees on node set [n] with exactly i descents. In [8] Drake proves that

n−1∑

i=0

|Tn,i|ti =
n−1∏

i=1

((n− i) + it). (2.2)

The following result is a consequence of this and Proposition 2.4.

Corollary 2.5 For all n ≥ 1 and i ∈ {0, 1, . . . , n− 1},

µΠw
n

(0̂, [n]i) = (−1)n−1|Tn,i|.

Recall that if P is an EL-shellable poset of length ` then ∆(P̄ ) has the homotopy type of a wedge of
|µ(P )| spheres of dimension ` − 2. The following result is therefore a consequence of Theorem 2.1 and
Corollary 2.5.

Theorem 2.6 For all n ≥ 1 and i ∈ {0, 1, . . . , n − 1}, the simplicial complex ∆((0̂, [n]i)) has the
homotopy type of a wedge of |Tn,i| spheres of dimension n− 3.

Corollary 2.7 ([6, 7]) For all n ≥ 1 and i ∈ {0, 1, . . . , n− 1},

dim H̃n−3((0̂, [n]i)) = |Tn,i| and dim

n−1⊕

i=0

H̃n−3((0̂, [n]i)) = nn−1.

In the full version of the paper we also obtain the following result by using the same methods.

Theorem 2.8 For all n ≥ 1, the simplicial complex ∆(Πw
n \ {0̂}) has the homotopy type of a wedge of

(n− 1)n−1 spheres of dimension n− 2.
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3 Connection with the doubly bracketed free Lie algebra
3.1 The doubly bracketed free Lie algebra
Recall that a Lie bracket on a vector space V is a bilinear binary product [·, ·] : V × V → V such that for
all x, y, z ∈ V ,

[x, y] = −[y, x] (Antisymmetry) (3.1)
[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity) (3.2)

The free Lie algebra on [n] is the complex vector space generated by the elements of [n] and all the
possible bracketings involving these elements subject only to the relations (3.1) and (3.2). Let Lie(n)
denote the multilinear component of the free Lie algebra on [n], ie., the subspace generated by bracketings
that contain each element of [n] exactly once. For example [[2, 3], 1] is an element of Lie(3), while
[[2, 3], 2] is not.

Now let V be a vector space equipped with two Lie brackets [·, ·] and 〈·, ·〉. The brackets are said to be
compatible if any linear combination of them is a Lie bracket. As pointed out in [6, 13], compatibility is
equivalent to the condition that for all x, y, z ∈ V

[x, 〈y, z〉] + [z, 〈x, y〉] + [y, 〈z, x〉] + 〈x, [y, z]〉+ 〈z, [x, y]〉+ 〈y, [z, x]〉 = 0 (Mixed Jacobi) (3.3)

Let Lie2(n) be the multilinear component of the free Lie algebra on [n] with two compatible brackets
[·, ·] and 〈·, ·〉, that is, the multilinear component of the vector space generated by (mixed) bracketings of
elements of [n] subject only to the five relations given by (3.1) and (3.2), for each bracket, and (3.3). We
will call the bracketed words that generate Lie2(n) bracketed permutations.

It will be convenient to refer to the bracket [·, ·] as the blue bracket and the bracket 〈·, ·〉 as the red
bracket. For each i, let Lie2(n, i) be the subspace of Lie2(n) generated by bracketed permutations with
exactly i red brackets and n− 1− i blue brackets.

A permutation τ ∈ Sn acts on the bracketed permutations by replacing each letter i by τ(i). For
example (1, 2) 〈[〈3, 5〉, [2, 4]], 1〉 = 〈[〈3, 5〉, [1, 4]], 2〉. Since this action respects the five relations, it
induces a representation of Sn on Lie2(n). Since this action also preserves the number of blue and red
brackets, we have the following decomposition into Sn-submodules: Lie2(n) = ⊕n−1

i=0 Lie2(n, i). Note
that Lie2(n, i) 'Sn

Lie2(n, n− 1− i) for all i, and that Lie2(n, 0) 'Sn
Lie2(n, n− 1) 'Sn

Lie(n).
A bicolored binary tree is a complete planar binary tree (i.e., every internal node has a left child and a

right child) for which each internal node has been colored blue or red. For a bicolored binary tree T with
n leaves and σ ∈ Sn, define the labeled bicolored binary tree (T, σ) to be the tree T whose jth leaf from
left to right has been labeled σ(j). We denote by BT n the set of labeled bicolored binary trees with n
leaves and by BT n,i the set of labeled bicolored binary trees with n leaves and i red internal nodes. It will
also be convenient to allow the leaf labeling σ to be a bijection from [n] to any subset of Z+ of size n.

We can represent the bracketed permutations that generate Lie2(n) with labeled bicolored binary trees.
More precisely, let (T1, σ1) and (T2, σ2) be the respective left and right labeled subtrees of the root r of
(T, σ) ∈ BT n. Then define recursively

[T, σ] =





[[T1, σ1], [T2, σ2]] if r is blue and n > 1
〈[T1, σ1], [T2, σ2]〉 if r is red and n > 1
σ(1) if n = 1

(3.4)

Clearly (T, σ) ∈ BT n,i if and only if [T, σ] is a bracketed permutation of Lie2(n, i). See Figure 3.
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1

2

3

4

5

67

8 1

23 4

56

7

8

9

〈[〈[3, 4], 6〉, [1, 5]], 〈〈[2, 7], 9〉, 8〉〉

Fig. 3: Example of a tree (T, [346152798]) ∈ BT 9,4 and [T, [346152798]] ∈ Lie2(9, 4)

3.2 A generating set for H̃n−3((0̂, [n]i))

The top dimensional cohomology of a pure poset P , say of length `, has a particularly simple description.
LetM(P ) denote the set of maximal chains of P and letM′(P ) denote the set of chains of length `− 1.
We view the coboundary map δ as a map from the chain space of P to itself, which takes chains of length
d to chains of length d+ 1 for all d. Since the image of δ on the top chain space (i.e. the space spanned by
M(P )) is 0, the kernel is the entire top chain space. Hence top cohomology is the quotient of the space
spanned byM(P ) by the image of the space spanned byM′(P ). The image ofM′(P ) is what we call
the coboundary relations. We thus have the following presentation of the top cohomology

H̃`(P ) = 〈M(P )| coboundary relations〉.

Recall that the postorder listing of the internal nodes of a binary tree T is defined recursively as follows:
first list the internal nodes of the left subtree in postorder, then list the internal nodes of the right subtree
in postorder, and finally list the root.

The postorder listing of the internal nodes of the binary tree of Figure 3 is illustrated in Figure 4(a) by
labeling the internal nodes.

Definition 3.1 For (T, σ) ∈ BT n, let xk be the kth internal node in the postorder listing of the internal
nodes of T . The chain c(T, σ) ∈M(Πw

n ) is the one whose rank k weighted partition πk is obtained from
the rank k − 1 weighted partition πk−1 by merging the blocks Lk and Rk, where k ≥ 1, Lk is the set of
leaf labels in the left subtree of the node xk, and Rk is the set of leaf labels in the right subtree of the node
xk. The weight attached to the new block Lk ∪ Rk is the sum of the weights of the blocks Lk and Rk in
πk−1 plus u, where u = 0 if xk is colored blue and u = 1 if xk is colored red. See Figure 4.

Not all maximal chains inM(Πw
n ) are of the form c(T, σ). It can be shown, however, that any maximal

chain c ∈ M(Πw
n ) is cohomology equivalent to a chain of the form c(T, σ); more precisely, in cohomol-

ogy c̄ = ±c̄(T, σ), where c̄ is the chain obtained from c by removing the top and bottom elements.
Let I(Υ) denote the number of internal nodes of a labeled bicolored binary tree Υ. Let Υ1

col
∧Υ2 denote

a labeled bicolored binary tree whose left subtree is Υ1, right subtree is Υ2 and root is colored col, where
col ∈ {blue, red}. If Υ is a labeled bicolored binary tree then α(Υ)β denotes a labeled bicolored binary
tree with Υ as a subtree. The following result generalizes [21, Theorem 5.3].
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8

7

6

5

4

32

1 1

23 4

56

7

8

9

(a) (T, σ) ∈ BT 9

10|20|30|40|50|60|70|80|90

10|20|340|50|60|70|80|90

10|20|3461|50|70|80|90

150|20|3461|70|80|90

134561|20|70|80|90

134561|270|80|90

134561|2791|80

134561|27892

1234567894

(b) c(T, σ)

Fig. 4: Example of postorder labeling of the binary tree T of Figure 3 and the chain c(T, σ)

Theorem 3.2 The set {c̄(T, σ)|(T, σ) ∈ BT n,i} is a generating set for H̃n−3((0̂, [n]i)), subject only to
the relations

• c̄(α(Υ1
col
∧Υ2)β) = (−1)I(Υ1)I(Υ2)c̄(α(Υ2

col
∧Υ1)β) where col ∈ {blue, red}.

• c̄(α(Υ1
col
∧ (Υ2

col
∧Υ3))β) + (−1)I(Υ3)c̄(α((Υ1

col
∧Υ2)

col
∧Υ3)β)

+ (−1)I(Υ1)I(Υ2)c̄(α(Υ2
col
∧ (Υ1

col
∧Υ3))β) = 0, where col ∈ {blue, red}.

• c̄(α(Υ1
red
∧ (Υ2

blue
∧ Υ3))β) + (−1)I(Υ3)c̄(α((Υ1

blue
∧ Υ2)

red
∧ Υ3)β)

+ (−1)I(Υ1)I(Υ2)c̄(α(Υ2
red
∧ (Υ1

blue
∧ Υ3))β) + c̄(α(Υ1

blue
∧ (Υ2

red
∧ Υ3))β)

+ (−1)I(Υ3)c̄(α((Υ1
red
∧ Υ2)

blue
∧ Υ3)β) + (−1)I(Υ1)I(Υ2)c̄(α(Υ2

blue
∧ (Υ1

red
∧ Υ3))β) = 0

The proof is given in the full version of this paper. The bicolored comb basis of Theorem 4.1 and the
formula for the Möbius function given in Proposition 2.4 play a key role in showing that these relations
generate all the relations.

3.3 The isomorphism

Define the sign of a bicolored binary tree T recursively by sgn(T ) = 1 if I(T ) = 0 and sgn(T1
col
∧ T2) =

(−1)I(T2) sgn(T1) sgn(T2) otherwise.

Theorem 3.3 For each i ∈ {0, 1, . . . , n − 1}, there is an Sn-module isomorphism φ : Lie2(n, i) →
H̃n−3((0̂, [n]i))⊗ sgnn determined by

φ([T, σ]) = sgn(σ) sgn(T )c̄(T, σ),

for all (T, σ) ∈ BT n,i.
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The map φ maps generators to generators and clearly respects the Sn action. In the full version of the
paper we prove that the map φ is a well-defined Sn-module isomorphism by showing that the relations
for Lie2(n) given in (3.1), (3.2), (3.3) map to the relations in Theorem 3.2.

4 Combinatorial bases
4.1 The bicolored comb basis and Lyndon basis for cohomology
In this section we present generalizations of both the comb basis and the Lyndon basis for cohomology
of Πn (see [21]). Define a normalized tree to be a labeled bicolored binary tree in which the leftmost
leaf of each subtree has the smallest label in the subtree. A bicolored comb is a normalized tree in which
each internal node with an internal right child is colored red and the right child is colored blue. Note
that if a bicolored comb is monochromatic then the right child of every internal node is a leaf. Hence the
monochromatic ones are the usual combs in the sense of [21].

Given a normalized tree, we can extend the leaf labeling to the internal nodes by labeling each internal
node with the smallest leaf label in its right subtree. A bicolored Lyndon tree is a normalized tree in which
each internal node that has an internal left child with a smaller label is colored blue and the left child is
colored red. It is easy to see that the monochromatic ones are the classical Lyndon trees.

Let Comb2
n,i ⊆ BT n,i be the set of all bicolored combs with label set [n] and i red internal nodes and

let Lyn2
n,i ⊆ BT n,i be the set of all bicolored Lyndon trees with label set [n] and i red internal nodes.

Theorem 4.1 The sets Cn,i := {c̄(T, σ)|(T, σ) ∈ Comb2
n,i} and Ln,i := {c̄(T, σ)|(T, σ) ∈ Lyn2

n,i} are
bases for H̃n−3((0̂, [n]i)).

The proof for Cn,i is obtained by “straightening” via the relations in Theorem 3.2 and counting bicolored
combs. The proof for Ln,i follows from the observation that Ln,i is the falling chain basis coming from
the EL-labeling of [0̂, [n]i] given in Section 2.1.

It is a consequence of Theorem 3.3 then that the sets {[T, σ]|(T, σ) ∈ Comb2
n,i} and {[T, σ]|(T, σ) ∈

Lyn2
n,i} are bases for Lie2(n, i). The bicolored comb basis for Lie2(n, i) was first obtained in [6]. The

bicolored Lyndon basis for Lie2(n, i) is not the same as a bicolored Lyndon basis obtained in [13].
It follows from Theorem 4.1 that |Comb2

n,i| = |Lyn2
n,i|. In [9] an explicit color preserving bijection be-

tween the bicolored combs and bicolored Lyndon trees is given. These trees also provide a combinatorial
interpretation of γ-positivity of the tree analog of the Eulerian polynomials,

∑
T∈Tn t

des(T ) (see [9]).

4.2 The tree basis for homology
We now present a generalization of an NBC basis of Björner for the homology of Πn (see [3, Proposi-
tion 2.2]). Let T be a rooted tree on node set [n]. For each subset A of the edge set E(T ) of T , let TA
be the subgraph of T with node set [n] and edge set A. Clearly TA is a forest on [n] consisting of rooted
trees T1, T2, . . . , Tk.

Consider the weighted partition π(TA) := {N(Ti)
des(Ti) | i ∈ [k]}, where N(Ti) is the node set of

the tree Ti and des(Ti) is the number of descents of Ti. We define ΠT to be the induced subposet of
Πw
n on the set {π(TA) | A ⊆ E(T )}. The poset ΠT is clearly isomorphic to the boolean algebra Bn−1.

Hence ∆(ΠT ) is the barycentric subdivision of the boundary of the (n− 2)-simplex. We let ρT denote a
fundamental cycle of the spherical complex ∆(ΠT ). See Figure 5 for an example of ΠT .
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3

4 1

2

(a) T

12342

131|241 1341|20 10|2341

131|20|40 10|241|30 10|20|340

10|20|30|40

(b) ΠT

Fig. 5: Example of a tree T with two descents (in red) and the corresponding poset ΠT

Theorem 4.2 Let Tn,i be the set of rooted trees on node set [n] with i descents. Then {ρT |T ∈ Tn,i} is
a basis for H̃n−3((0̂, [n]i)).

To prove this theorem we only need to show that the set {ρT | T ∈ Tn,i} is linearly independent since
we know from Corollary 2.7 that dim H̃n−3((0̂, [n]i)) = |Tn,i|. We prove linear independence (in the
full version of the paper) by showing that the the fundamental cycles in {ρT |T ∈ Tn,i} have a triangular
incidence relationship with a basis of maximal chains corresponding (under Theorem 3.3) to a bicolored
version of the Lyndon basis for Lie2(n, i) proposed by Liu [13].

5 Other combinatorial and algebraic properties
5.1 The characteristic polynomial and rank generating polynomial
Recall that the characterstic polynomial of Πn factors nicely. In the full version of this paper we prove
that the same is true for Πw

n .

Theorem 5.1 For all n ≥ 1, the characteristic polynomial of Πw
n is given by

χΠw
n

(x) :=
∑

α∈Πw
n

µΠw
n

(0̂, α)xn−1−ρ(α) = (x− n)n−1,

where ρ(α) is the rank of α, and the rank generating function is given by

F(Πw
n , x) :=

∑

α∈Πw
n

xρ(α) =
n−1∑

k=0

(
n

k

)
(n− k)kxk.

Recall that for a poset P of length r the Whitney number of the first kind wk(P ) is the coefficient of
xr−k in the characteristic polynomial χP (x) and the Whitney number of the second kind Wk(P ) is the
coefficient of xk in the rank generating function F(P, x); see [18]. It follows from Theorem 5.1 that

wk(Πw
n ) = (−1)k

(
n− 1

k

)
nk and Wk(Πw

n ) =

(
n

k

)
(n− k)k.
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A pure bounded poset P , with rank function ρ, is said to be uniform if there is a family of posets {Pi}
such that for all x ∈ P with ρ(1̂P )− ρ(x) = i, the intervals [x, 1̂] and Pi are isomorphic. It is easy to see
that Πn and Π̂w

n are uniform.

Proposition 5.2 ([18, Exercise 3.130(a)]) Let P be a uniform poset of length r. Then the matrices
[wi−j(Pi)]0≤i,j≤r and [Wi−j(Pi)]0≤i,j≤r are inverses of each other.

From this and the uniformity of Π̂w
n , we have the following corollary of Theorem 5.1.

Corollary 5.3 The matrices [(−1)i−j
(
i−1
j−1

)
ii−j ]1≤i,j≤n and [

(
i
j

)
ji−j ]1≤i,j≤n are inverses of each other.

This result is not new and an equivalent dual version was already obtained by Sagan in [14], also by
using essentially Proposition 5.2, but with a completely different poset. So we can consider this to be a
new proof of that result.

5.2 Further work
In [10] one of the authors discusses some of the results presented here in greater generality. The author
considers partitions with blocks weighted by k-tuples of nonnegative integers that sum to one less the
cardinality of the block, and shows that the resulting poset of weighted partitions is EL-shellable. Then
he finds the dimensions of the top cohomology of the maximal intervals and gives generalizations of the
Lyndon basis and comb basis for these modules. The analogue of the explicit sign twisted isomorphism
from the direct sum of the cohomology of the maximal intervals to the multilinear component of the free
Lie algebra then can be constructed, this time with k linearly compatible brackets.
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The Gaussian free field and strict plane
partitions

Mirjana Vuletić

University of Massachusetts Boston, Mathematics Department, Boston, MA 02125, USA

Abstract. We study height fluctuations around the limit shape of a measure on strict plane partitions. It was shown in
our earlier work that this measure is a Pfaffian process. We show that the height fluctuations converge to a pullback
of the Green’s function for the Laplace operator with Dirichlet boundary conditions on the first quadrant. We use a
Pfaffian formula for higher moments to show that the height fluctuations are governed by the Gaussian free field. The
results follow from the correlation kernel asymptotics which is obtained by the steepest descent method.

Résumé. Nous étudions les fluctuations de la hauteur autour de la forme limite d’une mesure sur les partitions planes
strictes. Nous avons déjà montré que cette mesure est un processus Pfaffien. Nous montrons que les fluctuations
convergent vers un “pullback” de la fonction de Green pour l’opérateur de Laplace avec des conditions de bord de
Dirichlet sur le premier quadrant. Nous utilisons une formule Pfaffienne pour les moments d’ordre supérieur pour
montrer que les fluctuations sont gouvernées par le champ libre gaussien. Ces résultats découlent de l’asymptotique
du noyau de corrélation qui est obtenue par la méthode du col.

Keywords: Gaussian free field, Pfaffian process, limit shape, height function fluctuations, plane partitions, correlation
function asymptotics

1 Introduction
In this paper we study fluctuations of the height function around the limit shape of a measure on strict
plane partitions that was introduced in our earlier paper [V]. In that earlier paper, we found the correlation
function for this measure and showed that it is given in terms of a Pfaffian. We used the correlation
function to obtain the limit shape of large strict plane partitions. In this paper, we study fluctuations
around the limit shape. We show that the fluctuations are governed by the Gaussian free field. We do
this by finding the leading term in the asymptotic expansion of the correlation kernel using the steepest
descent method.

Kenyon was the first to show that the Gaussian free field describes height fluctuations of two random
surface models, see [K1, K2]. After that there have been other similar results [BF, D, Ku, P, RV]. All
these processes are determinantal. Here we present a Pfaffian process whose fluctuations are given by the
Gaussian free field.

We start by explaining our results in more detail.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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1.1 Measure on strict plane partitions
A plane partition is a filling of a Young diagram with positive integers in such a way that each row and each
column is a non-increasing sequence of integers, see the left part of Figure 1. A plane partition π can be
represented as a 3-dimensional diagram (object), by stacking πi,j cubes above the (i, j)-box of its Young
diagram, see the right part of Figure 1. The weight of a plane partition π, denoted with |π|, is the sum of

0

5
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4 4
4

4
3

3
3

3
3

3
3

3
3

3
3 3 3

3

3

3

3
3 3

32
2 22 21

1

1 1

2

11 67
. . .

2
2

3

. . .

3

2

2

1

Fig. 1: A plane partition and its 3-dimensional diagram

all entries, or alternatively, the volume of the 3-dimensional diagram. A connected component of a plane
partition is a set of rook-wise connected boxes filled with a same integer. In the 3-dimensional diagram
connected components are white terraces seen from the above. The number of connected components of a
plane partition π is denoted with k(π). For the plane partition shown in Figure 1 the number of connected
components is 10.

Diagonals of a plane partition are all (ordinary) partitions. A (diagonally) strict plane partition is a
partition whose all diagonals are strict partitions. A strict plane partition π can be represented with a
2-dimensional diagram, which is a subset of

X = {(t, x) ∈ Z× Z | x > 0}

containing points (j−i, πi,j), where (i, j) is a box in the Young diagram of π and πi,j is its filling number,
see Figure 2.

x

t

Fig. 2: A strict plane partition and its 2-dimensional diagram

A probability measure Mq on the set of strict plane partitions is defined by

Mq(π) ∝ 2k(π)q|π|.
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The normalization constant is given by the shifted MacMahon formula, see [V]:

∑

π is a strict
plane partition

2k(π)q|π| =
∞∏

n=1

(
1 + qn

1− qn
)n

.

The limit shape of large strict plane partitions distributed according to Mq is shown in Figure 3, see
[V]. It is parameterized on the domain D representing a half of the amoeba of the polynomial P (z, w) =
−1 + z + w + zw, see (1) for the definition.

0
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5
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3

4
5
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4

6
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2

3
4

5

-4 -2 2 4

-3

-2

-1

1

2

3

Fig. 3: The limit shape and the half-amoeba (the domain of the limit shape parametrization)

The limit shape for τ ≥ 0 (symmetrically for τ < 0) is given by

x(τ, χ) = R(τ, χ),

y(τ, χ) = R(τ, χ) + τ,

z(τ, χ) = χ,

for (τ, χ) ∈ D, where

D = {(ξ, ω) = (log |z|, log |w|) ∈ R2, ω ≥ 0 | (z, w) ∈ (C\{0})2,−1 + z + w + zw = 0}. (1)

and R(τ, χ) is the Ronkin function of −1 + z + w + zw at (τ/2,−χ/2), i.e.

R(τ, χ) =
1

2π2

∫ 2π

0

∫ 2π

0

log |1− eτ/2+iu − e−χ/2+iv − eτ/2+iu−χ+iv|dudv.

The limit shape was obtained using the correlation function that can be written as a Pfaffian of a certain
skew-symmetric matrix, more precisely, we exploit the fact that the process is Pfaffian, see below for a
definition.

1.2 Determinantal and Pfaffian processes
Let X be a discrete space. A random point process P on X is a probability measure on the set 2X of all
subsets of X . For x1, x2, . . . , xn ∈ X , the correlation function ρ is

ρ(x1, x2, . . . , xn) = Pr(X ∈ 2X |{x1, x2, . . . , xn} ⊂ X).
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P is called a determinantal process if there exists a function K(x, y) such that for any finite set
{x1, x2, . . . , xn} ⊂ X one has

ρ(x1, x2, . . . , xn) = det(K(xi, xj))
n
i,j=1.

K is called the correlation kernel of the determinantal point process P .
P is called a Pfaffian process if there exists a 2×2 matrix valued kernel such thatK(x, y) = −KT (y, x)

and such that for any finite set (x1, x2, . . . , xn) ⊂ X one has

ρ(x1, x2, . . . , xn) = Pf(K(xi, xj))
n
i,j=1.

The explicit formula for the correlation kernel of Mq is given in Section 2 and was derived in our earlier
paper. In that paper, we started asymptotic analysis of the correlation kernel and computed the limit shape
as a result. Here, we continue with the asymptotic analysis and obtain that the height fluctuations around
the limit shape are given by a pullback of the Gaussian free field on the first quadrant. We define the
Gaussian free field below.

1.3 The Gaussian free field
Continuous Gaussian free field is a random field (collection of random variables) over a domain D ∈ Rd.
The collection consists of zero mean Gaussians with the covariance

E[GFF (z1)GFF (z2)] = G(z1, z2),

where G(z1, z2) is the Green’s function for the Laplacian on D (i.e. ∆G(z1, z2) = δz1(z2)) satisfying the
Dirichlet boundary conditions (i.e. G vanishes on ∂D).

In the case d = 1 the Gaussian free field is either the Brownian motion or Brownian bridge. In higher
dimensions we need to define it as a random generalized function. Let C1

0 (D) be the set of test functions
on D, i.e. smooth compactly supported functions on D, and let H(D) be its Hilbert space closure under
the Dirichlet inner product

〈ϕ1, ϕ2〉 =

∫

D

∇ϕ1(z) · ∇ϕ2(z)|dz|2 = 〈ϕ1, ϕ2〉 =

∫

D

∫

D

ϕ1(z1)ϕ2(z2)G(z1, z2)|dz1|2|dz2|2.

The Gaussian free field GFF is the formal sum
∑
i αifi, where {fi} is an orthonormal basis for H(D)

and αi are i.i.d. standard Gaussians.
The higher moments of GFF (in the generalized function sense) are

E [GFF (z1) · · ·GFF (zn)] =

{∑
σ

∏n/2
i=1G(zσ(2i−1), zσ(2i)) n is even

0 n is odd
,

where the sum is taken over all fixed point free involutions σ on {1, 2, . . . , n} .
Any process whose higher moments are given by the formula above is the Gaussian free field. In this

paper we use this property to show that height fluctuations are governed by the Gaussian free field on
the first quadrant Q ⊂ R2. The Green’s function for the Laplace operator with the Dirichlet boundary
conditions on Q is given by

G(z1, z2) =
1

2π
log

∣∣∣∣
|z1 − z2| |z1 + z2|
|z1 − z2| |z1 + z2|

∣∣∣∣ . (2)
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1.4 Results

The Gaussian free field is a random object that has been associated with many determinantal processes:
uniform planar domino tilings [K1], a honeycomb dimer model [K2], a KPZ class model [BF], interlacing
particles [D, Ku], uniformly random lozenge tilings of polygons [P], and a random matrix model [RV].
For all these models it has been shown that certain fluctuations behave like the Gaussian free field.

In this paper, we show that this holds for our model too. As far as we know, this is the first time where
the Gaussian free field is associated with a Pfaffian process.

For a plane partition π and (t, x) ∈ X, we define the height function hπ(t, x) by

hπ(t, x) = #{(t, y) ∈ π|y ≥ x}.

In the 3-dimensional diagram of π, the height function represents the distance between the top surface
and the right wall for t ≥ 0 and the left wall for t < 0, see Figure 2.

For (t, x) ∈ X, we define the height fluctuation by

H(t, x) =
√
π [h(t, x)− E(h(t, x))] .

The main result of this paper is that there is a map between the domain X, representing strict plane
partitions, and the quadrant Q under which the pushforward of H converges to the Gaussian free field on
Q.

In this paper we only give an outline of the proofs. The full version of the paper with details will be
published somewhere else. The paper is organized as follows. In Section 2 we recall the correlation func-
tion of Mq which was derived in [V]. In Section 3 we derive the main terms in the asymptotic expansion
of the correlation kernel. In Section 4 we use the asymptotic formula to obtain that the covariance of the
height fluctuation is given by the Green’s function (2). In Section 5 we show that the fluctuations are given
by the pullback of the Gaussian free field on the first quadrant. We finish with some possible directions in
which this work can be continued. This is given in Section 6.

2 Background
The correlation kernel for the measure Mq was derived in [V].

Let

Jq(t, z) =





(q1/2z−1; q)∞(−qt+1/2z; q)∞
(−q1/2z−1; q)∞(qt+1/2z; q)∞

t ≥ 0,

(−q1/2z; q)∞(q−t+1/2z−1; q)∞
(q1/2z; q)∞(−q−t+1/2z−1; q)∞

t < 0,

(3)

where

(z; q)∞ =

∞∏

n=0

(1− qnz)

is the quantum dilogarithm function.
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Theorem 2.1 [V] Let X = {(ti, xi) : i = 1, . . . , n} ⊂ X. The correlation function has the form

ρ(X) = Pf(MX)

where MX is a skew-symmetric 2n× 2n matrix

MX(i, j) =





Ki,j
++ = Kxi,xj (ti, tj) 1 ≤ i < j ≤ n,

Ki,j′

+− = (−1)xj′Kxi,−x′
j
(ti, tj′) 1 ≤ i ≤ n < j ≤ 2n,

Ki′,j′

−− = (−1)xi′+xj′K−xi′ ,−xj′ (ti′ , tj′) n < i < j ≤ 2n,

where i′ = 2n− i+ 1 and Kx,y(ti, tj) is the coefficient of zxwy in the formal power series expansion of

z − w
2(z + w)

Jq(z, ti)Jq(w, tj)

in the region |z| > |w| if ti ≥ tj and |z| < |w| if ti < tj .

By the definition,

Ki,j
++ =

1

(2πi)2

∫∫

|z|=1±ε
|w|=1∓ε

z − w
2(z + w)

Jq(ti, z)Jq(tj , w)
1

zxi+1wxj+1
dzdw,

Ki,j
+− =

(−1)xj

(2πi)2

∫∫

|z|=1±ε
|w|=1∓ε

z − w
2(z + w)

Jq(ti, z)Jq(tj , w)
1

zxi+1w−xj+1
dzdw,

Ki,j
−− =

(−1)xi+xj

(2πi)2

∫∫

|z|=1±ε
|w|=1∓ε

z − w
2(z + w)

Jq(ti, z)Jq(tj , w)
1

z−xi+1w−xj+1
dzdw,

where we take the upper signs if ti ≥ tj and the lower signs otherwise.
Observe that Jq(−z) = 1/Jq(z). If we make the change of variables w 7→ −w in the second kernel

and z 7→ −z and w 7→ −w in the third one we obtain

Ki,j
++ =

1

(2πi)2

∫∫

|z|=1±ε
|w|=1∓ε

z − w
2(z + w)

Jq(ti, z)Jq(tj , w)
1

zxi+1wxj+1
dzdw,

Ki,j
+− =

1

(2πi)2

∫∫

|z|=1±ε
|w|=1∓ε

z + w

2(z − w)

Jq(ti, z)

Jq(tj , w)

1

zxi+1w−xj+1
dzdw,

Ki,j
−− =

1

(2πi)2

∫∫

|z|=1±ε
|w|=1∓ε

z − w
2(z + w)

1

Jq(ti, z)Jq(tj , w)

1

z−xi+1w−xj+1
dzdw.
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3 Asymptotics of the correlation kernel
Let (τi, χi) and (τj , χj) be two different fixed points in D and r = − log q. We are interested in finding
the first terms in the asymptotic expansion of the kernelsKi,j

++,Ki,j
+− andKi,j

−− where rti → τi, rtj → τj ,
rxi → χi and rxj → χj when r → +0. We do this using the steepest descent method.

We start with a simpler problem first. Let rt→ τ and rx→ χ when r → +0 for (τ, χ) ∈ D. We want
to find the main term in the asymptotic expansion of

I =
1

2πi

∫

|z|=eτ/2

1

z
Jq(t, z)

( z

eτ/2

)−x
dz. (4)

This integral contains terms of the form

exp [log(z; q)∞] ,

see (3), so we need the asymptotic behavior of log(z; q)∞. We have that

log(z; q)∞ = −1

r
dilog(z)− 1

2
log(1− z) +O(r), r → +0,

where

dilog(z) =
∞∑

k=1

zk

k2

is the dilogarithm function which is an analytic function everywhere in C2\(1,+∞).
Then the exponentially large term in (4) that determines the asymptotics is

exp
[
log[Jq(t, z)(z/e

τ/2)−x]
]

= exp

[
1

r
S(z, τ, χ)

]
[G(z, τ) +O(r)] , r → +0,

where

S(z, τ, χ) = −dilog(−e−τz)− dilog(z−1) + dilog(e−τz) + dilog(−z−1)− χ(log z − τ/2)

and

G(z, τ) =

√
(1 + e−τz)(z − 1)

(1− e−τz)(z + 1)
,

with branch cuts (−∞,−eτ ), (−1, 0), (0, 1) and (eτ ,∞) .
So, we need to find the main term in the asymptotic expansion of

1

2πi

∫

|z|=eτ/2

1

z
G(z, τ) exp

[
1

r
S(z, τ, χ)

]
dz.

We deform the contour |z| = eτ/2 to a new contour γ such that ReS(z, τ, χ) < 0 except at the two
critical points that lie on |z| = eτ/2. In addition, we choose γ that passes through two line segments in
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the direction of the steepest descent of ReS, which we denote with γloc and −γloc. The main asymptotic
term will come from the portion of the integral obtained by the integration over these line segments.

The two critical points are zc = z(τ, χ) and zc = z(τ, χ), where

z(τ, χ) = exp

[
τ/2 + i arccos

(eτ + 1)(eχ − 1)

2eτ/2(eχ + 1)

]
. (5)

The two line segments in the direction of the steepest descent of ReS, γloc and −γloc, are given by

γloc = zc + θ̂zcx, θ̂zc = eiγzc , x ∈ [−δ, δ], δ > 0,

where

γzc =
π

2
− argS′′(zc, τ, χ)

2
=
π

4
+ arg(zc).

Let γ1 be the portion of γ without γloc and −γloc. Let M > 0 be such that Re(S(z, τ, χ)) ≤ −M on
γ1. Then the portion of the integral coming from the integration over γ1 is

I1 =
1

2πi

∫

γ1

1

z
G(z, τ) exp

[
1

r
S(z, τ, χ)

]
= O (exp [−M/r]) .

Now, for

Iloc =
1

2πi

∫

γloc

1

z
G(z, τ) exp

[
1

r
S(z, τ, χ)

]

=
1

2πi

∫ δ

−δ

1

zc
(G(zc, τ) +O(x)) exp

[
1

r
S(zc, τ, χ)− 1

2r
x2|S′′(zc, τ, χ)|+ 1

r
O(x3)

]
θ̂zcdx

we get (using Gaussian integral)

Iloc =
1

2πi
exp

[
1

r
S(zc, τ, χ)

]
θ̂zc

zc
G(zc, τ)

√
2πr

|S′′(zc, τ, χ)|
(
1 +O(

√
r)
)
.

Similarly, the integral over −γloc is

1

2πi
exp

[
1

r
S(zc, τ, χ)

]
θ̂zc

zc
G(zc, τ)

√
2πr

|S′′(zc, τ, χ)|
(
1 +O(

√
r)
)
.

Finally, combining

I = Re

(
1

πi
exp

[
1

r
ImS(zc, τ, χ)

]
θ̂zc

zc
G(zc, τ)

√
2πr

|S′′(zc, τ, χ)|

)
(
1 +O(

√
r)
)
.
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3.1 Correlation kernel asymptotics
Now, we are ready to find the main terms in the asymptotic expansions of the kernels Ki,j

++, Ki,j
+− and

Ki,j
−−. For convenience, we take out exponential terms in the expressions for the kernels (they cancel out

in the Pfaffian formula for the correlation function). For example,

Ki,j
++ = e(−τixi−τjxj)/2 · Ii,j++,

where

Ii,j++ =
1

(2πi)2

∫∫
z − w

2zw(z + w)
Jq(ti, z)Jq(tj , w)

( z

eτi/2

)−xi ( w

eτj/2

)−xj
dzdw,

with integration contours |z| = eτi/2 and |w| = eτj/2.
The main term in the asymptotics of Ii,j++ will be the same as the main term in the asymptotics of

1

(2πi)2

∫∫
z − w

2zw(z + w)
G(z, τi)G(w, τj) exp

[
1

r
[S(z, τi, χi) + S(w, τj , χj)]

]
dzdw,

with integration contours |z| = eτi/2 and |w| = eτj/2.
Using the same steepest descent analysis as for I we get the following:

Theorem 3.1 When r → 0+

Iij++ ≈ r

4π

∑zc − wc
zc + wc

1

zcwc

1√
S′′(zc)S′′(wc)

F (zc)F (wc)

Iij+− ≈ ri

4π

∑zc + wc
zc − wc

1

zcwc

1√
S′′(zc)S′′(wc)

F (zc)

F (wc)
(−1)1(wc)

Iij−− ≈ r

4π

∑zc − wc
zc + wc

1

zcwc

1√
S′′(zc)S′′(wc)

1

F (zc)F (wc)
(−1)1(zc)+1(wc),

where ∑
f(z, w) = f(z, w) + f(z, w) + f(z, w) + f(z, w),

F (z) = G(z, τ) exp

[
1

r
S(z, τ, χ)

]
, 1(z) =

{
0 Rez > 0

1 Rez < 0.

zc = z(τi, χi), wc = z(τj , χj).

4 Covariance
Recall, the height function hπ(t, x) is defined by hπ(t, x) = #{(t, y) ∈ π|y ≥ x} and fluctuations by
H(t, x) =

√
π [h(t, x)− E(h(t, x))]. We want to show

Theorem 4.1
lim
r→0+

E (H(t1, x1)H(t2, x2)) = G(z1, z2)

when rti → τi and rxi → χi for (τi, χi) ∈ D, where zi = z(τi, χi), see (5). G is the Green’s function
given by (2).
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We start with

E(h(t1, x1)h(t2, x2))− E(h(t1, x1))E(h(t2, x2))

=
∑

y1≥x1

∑

y2≥x2

ρ2 ((t1, y1), (t2, y2))−
∑

y1≥x1

ρ1 (t1, y1)
∑

y2≥x2

ρ1 (t2, y2)

=
∑

y1≥x1

∑

y2≥x2


Pf




0 Ky1,y2
++ Ky1,y2

+− Ky1,y1
+−

0 Ky2,y2
+− Ky2,y1

+−
0 Ky2,y1

−−
0


− Pf

[
0 Ky1,y1

+−
0

]
Pf

[
0 Ky2,y2

+−
0

]



=
∑

y1≥x1

∑

y2≥x2

Ky1,y2
++ Ky2,y1

−− −Ky1,y2
+− Ky2,y1

+−

Since, K1,2
++K

2,1
−− −K1,2

+−K
2,1
+− = I1,2++I

2,1
−− − I1,2+−I

2,1
+− we start with

lim
r→+0

∑

ry1≥χ1
y1∈N

∑

ry2≥χ2
y2∈N

I++((t1, y1), (t2, y2))I−−((t1, y1), (t2, y2)). (6)

By Theorem 3.1 we have that this is equal to

lim
r→+0

∑

ry1≥χ1
y1∈N

∑

ry2≥χ2
y2∈N

r

4π

∑zc − wc
zc + wc

1

zcwc

1√
S′′(zc)S′′(wc)

F (zc)F (wc)

· r
4π

∑zc − wc
zc + wc

1

zcwc

1√
S′′(zc)S′′(wc)

1

F (zc)F (wc)
(−1)1(zc)1(wc),

where zc = z(τ1, χ1) and wc = z(τ2, χ2), see (5). When we expand the product, there are 16 terms in
the above expression and in the limit only 4 terms survive. We get that the above limit is equal to

lim
r→+0

∑

ry1≥χ1
y1∈N

∑

ry2≥χ2
y2∈N

r2

(4π)2

∑(
zc − wc
zc + wc

)2
1

z2cw
2
c

1

S′′(zc)S′′(wc)
(−1)1(zc)1(wc),

The above sum can be written as an integral
∫ b(χ1)

χ1

∫ b(χ2)

χ2

1

4π2

∑(
zc − wc
zc + wc

)2
1

(zcwc)2
1

S′′(zc)S′′(wc)
(−1)1(zc)1(wc)dχ1dχ2,

where b gives the boundary of D. Because S′′(z) =
1

z

∂z

∂χ
, this integral is equal to

1

4π2

∫

|z|=eτ/2
zc→zc

∫

|w|=eτ/2
wc→wc

1

zw

(
z − w
z + w

)2

dzdw

=
1

4π2

[
log

zc
zc

log
wc
wc

+ 2 log

∣∣∣∣
zc + wc
zc + wc

∣∣∣∣
]
.



The Gaussian free field and strict plane partitions 1081

Similarly,

lim
r→+0

∑

ry1≥χ1
y1∈N

∑

ry2≥χ2
y2∈N

I+−((t1, y1), (t2, y2))I+−((t1, y1), (t2, y2))

=
1

4π2

[
log

zc
zc

log
wc
wc
− 2 log

∣∣∣∣
zc − wc
zc − wc

∣∣∣∣
]
. (7)

When we combine both limits (6) and (7) we get

1

2π2
log
|zc + wc||zc − wc|
|zc + wc||zc − wc|

=
1

π
G(zc, wc).

5 Higher moments. The Gaussian free field
We now show that the height fluctuations are given by the pullback of the Gaussian free field on the first
quadrant Q by z = z(τ, χ) (defined by (5)):

Theorem 5.1 Let rti → χi and rxi → τi when r → 0+ then

lim
r→0+

E[H(t1, x1) · · ·H(tn, xn)] =

{∑
σ

∏n/2
i=1G(zσ(2i−1), zσ(2i)) n is even

0 n is odd
,

where the sum is taken over all fixed point free involutions σ on {1, 2, . . . , n} and G is given by (2).

In order to prove the theorem we first derive a Pfaffian formula for the higher moments.

Lemma 5.2 Let X = {(ti, xi) : i = 1, . . . , n} ⊂ X.

E[H(t1, x1) · · ·H(tn, xn)] = (
√
π)nPf[M0

X ]

where M0
X is the same as MX in Theorem 2.1 except it has zeros on the minor diagonal too (they both

have zeros on the main diagonal).

The formula is derived in a similar way as in the case n = 2 which was done in Section 4.
It remains to show that higher moments are given by the sum over fixed point free involutions of the

products of the Green’s function. This is done using the following lemma.

Lemma 5.3 Let M = (Ki,j)i,j=1...n

Ki,j =




zi − zj
zi + zj

zi + zj
zi − zj

zi + zj
zi − zj

zi − zj
zi + zj




Then

Pf [M ] =

{∑
σ

∏n/2
i=1Gσ(2i−1),σ(2i) n is even

0 n is odd
,

where Gi,j = −
8zizj(z

2
i + z2j )

(z2i − z2j )2
.
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6 Concluding Remarks
We have found that the Gaussian free field arises from Mq which is a Pfaffian process. Previously, this
was found only for determinantal processes. We could generalize this result to a class of Pfaffian processes
whose kernel possesses certain properties. The properties arise from technical requirements. It would be
interesting to construct physical models with these kernels.

We would like to draw attention to Lemma 5.3. As was said before, several determinantal processes
were studied that gave rise to the Gaussian free field. The proofs require a small lemma similar to Lemma
5.3. It is interesting that although the models are very different, and that kernels have different asymptotics
they all need the same small lemma to transform the determinantal formula for higher moments into the
sum of products over different fixed point free involutions. We plan to study other Pfaffian processes in
the future and see if they give rise to the Gaussian free field. It would be interesting to see if we would
need Lemma 5.3 for the proof. If yes, can we understand why this is the case?
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Abstract. We study convolution powers id∗n of the identity of graded connected Hopf algebras H . (The antipode
corresponds to n = −1.) The chief result is a complete description of the characteristic polynomial—both eigenvalues
and multiplicity—for the action of the operator id∗n on each homogeneous component Hm. The multiplicities are
independent of n. This follows from considering the action of the (higher) Eulerian idempotents on a certain Lie
algebra g associated to H . In case H is cofree, we give an alternative (explicit and combinatorial) description in
terms of palindromic words in free generators of g. We obtain identities involving partitions and compositions by
specializing H to some familiar combinatorial Hopf algebras.

Résumé. Nous étudions les puissances de convolution id∗n de l’identité d’une algèbre de Hopf graduée et connexe
H quelconque. (L’antipode correspond à n = −1.) Le résultat principal est une description complète du polynôme
caractéristique (des valeurs propres et de leurs multiplicités) de l’opérateur id∗n agissant sur chaque composante
homogène Hm. Les multiplicités sont indépendants de n. Ceci résulte de l’examen de l’action des idempotents
eulériens (supérieures) sur une algèbre de Lie g associé à H . Dans le cas où H est colibre, nous donnons une
description alternative (explicite et combinatoire) en termes de mots palindromes dans les générateurs libres de g.
Nous obtenons des identités impliquant des partitions et compositions en choisissant comme H certaines algèbres de
Hopf combinatoires connues.

Keywords: Hopf power, antipode, Eulerian idempotent, graded connected Hopf algebra, Schur indicator.
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1 Introduction
As the practice of algebraic combinatorics often involves breaking and joining like combinatorial struc-
tures (planar trees, permutations, set partitions, etc.), it is right to say that bialgebras are ubiquitous in the
theory. This was the argument put forth by G.C. Rota and others, and increasingly, researchers are taking
it to heart. On the other hand, the defining property of “Hopf algebra”—the existence of the antipode—is
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less often explicitly considered. To be sure, there is a general result stating that the bialgebras built within
algebraic combinatorics are automatically Hopf algebras (see Section 2).

The antipode problem (Aguiar and Mahajan, 2013, Section 5.4) asks for explicit knowledge of the
antipode. This can be a source of interesting combinatorial results. Consider Lam et al. (2011), where
the antipode plays a crucial role in proving a skew-Littlewood Richardson rule conjectured in Assaf and
McNamara (2011). Here is a small illustration of the utility of the antipode (an application we obtain
in Section 6.1). If pk(n) denotes the number of partitions of length k of a positive integer n, and c(n)
denotes the number of self-conjugate partitions of n, then

(−1)n c(n) =
n∑

k=1

(−1)k pk(n).

If a Hopf algebra H is commutative or cocommutative, then it is well-known that its antipode S : H →
H is an involution: S2 = id. In particular, its eigenvalues are ±1. We prove in Corollary 5 that in case H
is graded connected, the eigenvalues of the antipode are always±1, regardless of (co)commutativity, even
if S may have infinite order on any homogeneous component. This is a consequence of our main result
(Theorem 4), which provides a complete description of the characteristic polynomial for the convolution
power id∗n acting on each homogeneous component of H . (The antipode satisfies S = id∗(−1).)

This note is organized as follows. In Section 2, we introduce the Hopf and Lie preliminaries needed to
state and prove Theorem 4, which is carried out in Section 3. In Section 4, we give two refinements of
our main result in the presence of additional (co)freeness assumptions. Section 5 applies the preceding to
higher Schur indicators, and Section 6 provides illustrations of the results and derives some applications.

2 Hopf and Lie preliminaries
Throughout, we assume k is a field of characteristic zero. A Hopf algebra is a vector space H over k
with a host of maps—product (µ : H ⊗ H → H), unit (ι : k → H), coproduct (∆: H → H ⊗ H),
counit (ε : H → k), and antipode (S : H → H)—satisfying various compatibility axioms, e.g., ∆ and ε
are algebra maps. The convolution product of two linear maps P,Q : H → H is defined by P ∗ Q :=
µ ◦ (P ⊗Q) ◦∆. This is an associative product, making End(H) into a k-algebra, with unit element ιε.
The antipode is the convolution-inverse of the identity map id; that is, S ∗ id = ιε = id ∗ S.

2.1 Coradical filtration and primitive elements
Let H(0) denote the coradical of a Hopf algebra H . This is the sum of the simple subcoalgebras of H .
Given any two subspaces U, V of H , define their wedge by

U ∧ V := ∆−1(U ⊗H +H ⊗ V ). (1)

Putting H(n) = H(0) ∧H(n−1) for all n ≥ 1 affords H with the coradical filtration:

H(0) ⊆ H(1) ⊆ · · · ⊆ H(n) ⊆ · · ·H and H =
⋃

n≥0

H(n). (2)

The unit element (as well as any other group-like element) of H belongs to H(0). The Hopf algebra H
is connected if H(0) is spanned by the unit element. In this case, H(1) = H(0) ⊕ P(H), where

P(H) = {x ∈ H | ∆(x) = 1⊗ x+ x⊗ 1}
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is the space of primitive elements of H . It is a Lie subalgebra of H under the commutator bracket.
If g is a Lie algebra, its universal enveloping algebra U(g) is a Hopf algebra for which the space

of primitive elements is g. If H is connected and cocommutative, the Cartier–Milnor–Moore (CMM)
theorem states that H is isomorphic as Hopf algebra to U(P(H)). The Poincaré–Birkhoff–Witt (PBW)
identifies the vector space U(g) with S(g), the symmetric algebra on g.

We associate a commutative Hopf algebra to any connected Hopf algebra. This will enable us to use
the above Lie machinery in a wider class of algebras. Given a Hopf algebra with coradical filtration
H =

⋃
n≥0H(n), let grH denote the associated graded space

grH = H(0) ⊕
(
H(1)

/
H(0)

)
⊕
(
H(2)

/
H(1)

)
⊕
(
H(3)

/
H(2)

)
⊕ · · · . (3)

It is a graded Hopf algebra for which the component of degree n is H(n)

/
H(n−1) (Montgomery, 1993,

Ch. 5). If H is connected, then grH is commutative by a result of Foissy (Aguiar and Sottile, 2005b,
Proposition 1.6 and Remark 1.7).

The Hopf algebra H is graded if there is given a vector space decomposition H =
⊕

m≥0Hm such
that µ(Hp ⊗Hq) ⊆ Hp+q , ∆(Hm) ⊆⊕p+q=mHp ⊗Hq , S(Hm) ⊆ Hm, 1 ∈ H0, and ε(Hm) = 0 for
all m > 0. In this situation, H(0) ⊆ H0. It follows that if dimH0 = 1, then H is connected. In this case
we say that H is graded connected and we have that Hm ⊆ H(m) for all m.

If H is graded, then so is each subspace H(n) with (H(n))m = H(n) ∩ Hm. Hence, grH inherits a
second grading for which (grH)m is the direct sum of the spaces (H(n))m

/
(H(n−1))m.

2.2 Antipode and Eulerian idempotents
LetH be a connected Hopf algebra. We introduce some notation useful for discussing convolution powers.
Put ∆(0) = id, ∆(1) = ∆, and ∆(n) = (∆⊗ id⊗(n−1)) ◦∆(n−1) for all n ≥ 2. So the superscript is one
less than the number of tensor factors in the codomain. Similarly, µ(n) denotes the map that multiplies
n+ 1 elements of H , with µ(0) = id. Convolution powers of any P ∈ End(H) can be written as follows:

P ∗0 = ιε and P ∗n = µ(n−1) ◦ P⊗n ◦∆(n−1) (for n ≥ 1).

Proposition 1 Any connected bialgebra is a Hopf algebra with antipode

S =
∑

k≥0

(
ιε− id

)∗k
. (4)

This basic result can be traced back to Sweedler (Sweedler, 1969, Lemma 9.2.3) and Takeuchi (Takeuchi,
1971, Lemma 14); see also Montgomery (Montgomery, 1993, Lem. 5.2.10). It follows by expanding
x−1 = 1

1−(1−x) =
∑
k(1 − x)k in the convolution algebra, with x = id and 1 = ιε. Connectedness

guarantees that the sum in (4) is finite when evaluated on any h ∈ H . More precisely, if h ∈ H(m), then
(id− ιε)∗k(h) = 0 for all k > m. In particular, this holds if H is graded connected and h ∈ Hm.

We will also need the series expansions of log(id) in the convolution algebra:

log(id) = −
∑

k≥1

1

k
(ιε− id)∗k. (5)
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Definition 2 To any connected Hopf algebra H are associated (higher) Eulerian idempotents e(k) for
k ≥ 0, given by

e(0) = ιε , e(1) = log(id) , e(k) =
1

k!

(
e(1)
)∗k

(for k > 1). (6)

The “first” Eulerian idempotent is e(1). In case H is commutative and cocommutative, the e(k) form a
complete orthogonal system of idempotent operators on H . That is,

id =
∑

k≥0

e(k), e(k) ◦ e(k) = e(k), and e(j) ◦ e(k) = 0 (for j 6= k). (7)

In addition, if H is cocommutative, e(k) projects onto the subspace spanned by k-fold products of primi-
tive elements of H (Section 2.1). In particular, e(1) projects onto P(H). For proofs of these results, see
(Loday, 1992, Ch. 4). It follows from (6) and the identity x∗n = exp(n log(x)) that

id∗n =
∑

k≥0

nk e(k) (for all n ∈ Z). (8)

Some instances of these operators in the recent literature include Aguiar and Mahajan (2013), Diaconis
et al. (2012), Novelli et al. (2011), and Patras and Schocker (2006). For references to earlier work, see
(Aguiar and Mahajan, 2013, §14).

3 Characteristic polynomials for convolution powers
We need two standard results from linear algebra.

Lemma 3 Fix finite-dimensional spaces U ⊆ V , and suppose U is Θ-invariant for some Θ ∈ End(V ).

(i) If Θ̄ denotes the element of End(V/U) induced by Θ, and ΘU denotes the restriction of Θ to U ,
then the characteristic polynomials of these three maps satisfy χΘ(x) = χΘU

(x)χΘ̄(x).

(ii) The characteristic polynomials of Θ and of the dual map Θ∗ ∈ End(V ∗) are equal. 2

We are now ready to prove our main result. From now on we assume thatH is a graded connected Hopf
algebra for which the homogeneous components Hm are finite-dimensional. We consider the associated
graded Hopf algebra grH and its graded dual H̃ = (grH)∗. Here grH is endowed with the grading
inherited from that of H (as discussed at the end of Section 2.1), and the dual is with respect to this
grading: H̃m =

(
(grH)m

)∗
.

Theorem 4 For every n ∈ Z and m ∈ N, the characteristic polynomial of id∗n
∣∣
Hm

takes the form

χ
(
id∗n

∣∣
Hm

)
=

m∏

k=0

(x− nk)eul(k,m) (9)

for some nonnegative integers eul(k,m), independent of n. More precisely, we have

eul(k,m) = dim e(k)
(
H̃m

)
.

Moreover, these integers depend only on the graded vector space underlying P(H̃).
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Corollary 5 The eigenvalues of the antipode for any graded connected Hopf algebra are ±1.

This holds since S = id∗(−1).
Remarks: 1. The previous result fails for general Hopf algebras. Let ω be a primitive cube root of
unity and consider Taft’s Hopf algebra T3(ω) Taft (1971), with generators {g, x}, and relations {g3 = 1,
x3 = 0, gx = ω xg}. The coproduct and antipode are determined by ∆(g) = g ⊗ g, S(g) = g−1,
∆(x) = 1⊗ x+ x⊗ g, and S(x) = −xg−1. Here x2 + ω x2g is an eigenvector of S with eigenvalue ω.

2. Corollary 5 implies that the antipode of a graded connected Hopf algebra is diagonalizable if and
only if it is an involution.

3. The antipode of a graded connected Hopf algebra need not be an involution (hence diagonalizable).
Take for example the Malvenuto–Reutenauer Hopf algebra, (Aguiar and Sottile, 2005a, Remark 5.6).

Proof of Theorem 4: Since id∗n preserves both the grading and the coradical filtration of H , it preserves
the filtration

(H(0))m ⊆ (H(1))m ⊆ · · · ⊆ (H(m))m = Hm

for each m. By repeated application of Lemma 3(i) we deduce that

χ
(
id∗n

∣∣
Hm

)
= χ

(
id∗n

∣∣
(grH)m

)
.

The map Θ 7→ Θ∗ is an isomorphism of convolution algebras End(H) ∼= End(H∗) (where duals and
endomorphisms are in the graded sense). Together with Lemma 3(ii) this implies that

χ
(
id∗n

∣∣
(grH)m

)
= χ

(
id∗n

∣∣
H̃m

)
.

Thus, we may work with the cocommutative graded connected Hopf algebra H̃ instead of H .
In this setting the Eulerian idempotents are available, and from (8) we have that

χ
(
id∗n

∣∣
H̃m

)
=
∑

k≥0

nkχ
(
e(k)

∣∣
H̃m

)
.

It thus suffices to calculate the characteristic polynomial of the e(k).
Let g = P(H̃). By CMM, H̃ ' U(g), and by PBW, grU(g) ∼= S(g). The former is the associated

graded Hopf algebra with respect to the coradical filtration of U(g).
If f and g are filtration-preserving maps, then gr(f ∗ g) = (gr f) ∗ (gr g). Together with gr id = id,

this implies that gr e(k) = e(k), or more precisely, that the following diagram commutes.

grU(g)
gr e(k)

// grU(g)

S(g)

∼=
OO

e(k)

// S(g)

∼=
OO

Since by Lemma 3(i) characteristic polynomials (of filtration-preserving maps) are also invariant under
gr, we are reduced to computing the characteristic polynomial of e(k) acting on S(g).
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The action of e(k) on S(g) is just projection onto gk, the subspace spanned by k-fold products of
elements of g. This follows from the easily verified fact that, for xi ∈ g,

id∗n(x1 · · ·xk) = nkx1 · · ·xk.

It follows that
χ
(
e(k)

∣∣
S(g)m

)
= (x− nk)eul(k,m),

where
eul(k,m) = dim e(k)

(
S(g)m

)
= dim (gk)m.

and this completes the proof. 2

Remark: Since gk = Sk(g) (the k-th symmetric power of g), one can be more explicit about the integers
eul(k,m). Let gm = dim gm be the dimension of the homogeneous component of degree m of g. Given
a partition λ of the form λ = 1k12k2 · · · rkr , put

(
g

λ

)
:=

(
g1 + k1 − 1

k1

)
· · ·
(
gr + kr − 1

kr

)
.

If |λ| and ` (λ) denote the size and number of parts of λ, respectively, then we have

eul(k,m) =
∑

|λ|=m
`(λ)=k

(
g

λ

)
. (10)

We record an easy corollary to the proof of Theorem 4.

Corollary 6 If H is graded, connected, then

trace
(
id∗n

∣∣
Hm

)
=
∑

k≥0

nk eul(k,m) (11)

for all n ∈ Z and m ∈ N. In particular,

trace
(
S
∣∣
Hm

)
=
∑

k≥0

(−1)k eul(k,m). (12)

4 The trace of the antipode and palindromic words
In this section we assume that the graded connected Hopf algebra H is cofree. Let V = P(H). The
first observation is that the integers eul(k,m) in Theorem 4 depend only on the dimensions of the ho-
mogeneous components of V . This holds since the dimensions of the homogeneous components of H
determine and are determined either by those of V or those of g. As a result, these two are related by

1−
∑

n≥1

vnx
n =

∏

i≥1

(
1− xi

)gi
,

where vn := dimVn for each positive integer n. This is Witt’s formula (Reutenauer, 1993, Cor. 4.14).
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Let pal(k,m) be the number of palindromic words of length k and weight m in an alphabet with vn
letters of weight n. (A word’s length is its number of letters; its weight is the sum of its letters’ weights.)

Let epal(m) and opal(m) denote the number of palindromes of weight m with even and odd length,
respectively. (A palindrome is a word that equals its reversal.) Let hm be the dimension of Hm, and put
npal(m) = hm − epal(m)− opal(m).

In case H is graded connected and cofree, we have an alternative description of the characteristic
polynomial for S = id∗(−1) acting on Hm.

Theorem 7 In the above situation,

χ
(
S
∣∣
Hm

)
= (x+ 1)opal(m)(x− 1)epal(m)(x2 − 1)npal(m)/2 . (13)

In particular, the trace of the antipode is given by the formula

trace
(
S
∣∣
Hm

)
=

m∑

k=0

(−1)k pal(k,m) . (14)

Proof: By arguments similar to those in used in the proof of Theorem 4, one may take H to be the shuffle
algebra T (V ), with its canonical Hopf structure. The antipode then acts on a word w in a basis for V by
reversing letters: S(w1w2 · · ·wr) = (−1)rwr · · ·w2w1 and (13) follows. Finally, note that

epal(m)− opal(m) =

m∑

k=0

(−1)k pal(k,m)

to deduce (14) and finish the proof. 2

We deduce from (9) and (14) that

m∑

k=0

(−1)k pal(k,m) =
m∑

k=0

(−1)k eul(k,m) , (15)

though these two triangles of integers are generally different.

Example 8 Consider the Malvenuto–Reutenauer Hopf algebra. The alphabet is the set of permutations
without global descents. See (Aguiar and Sottile, 2005a, Cor. 6.3) and sequence A003319 in Sloane
(OEIS). Looking at the degree three component SSym3, we have

length (k) 1 2 3
permutations 123, 132, 213 231, 312 321
descent words 123, 132, 213 12|1, 1|12 1|1|1
pal(k, 3) 3 0 1

(Beneath each permutation, we have recorded its expression in terms of letters in the alphabet. On the
last line, we count only those words that are palindromic.) The integers eul(k, 3) are computed from (10),
where g is the free Lie algebra on V and v(x) = x+x2 +3x3 +13x4 +71x5 + · · · . From Witt’s formula,
we have g(x) = x+ x2 + 4x3 + 17x4 + 92x5 + 572x6 + · · · See A112354 in Sloane (OEIS). So we get
eul(k, 3) = 4, 1, 1 as k = 1, 2, 3.
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If we move to the degree four component of SSym, one checks that there are 13 permutations without
any global descents, and one palindromic permutation with each of 1, 2, and 3 global descents:

3412 ≡ 12|12, 4231 ≡ 1|12|1, and 4321 ≡ 1|1|1|1.

Once again, the integers eul(k,m) are quite different:

pal(k, 4) 13 1 1 1
eul(k, 4) 17 5 1 1

One checks that (15) holds for m = 3 and m = 4.

5 Schur indicators
A theme occurring in the recent Hopf algebra literature involves a generalization of the Frobenius–Schur
indicator function of a finite group. If ρ : G → End(V ) is a complex representation of G, then the
(second) indicator is

ν2(G, ρ) =
1

|G|
∑

g∈G
trace ρ(g2).

The only values this invariant can take are 0, 1,−1, and this occurs precisely when V is a complex, real
or pseudo-real representation, respectively. In Linchenko and Montgomery (2000), a reformulation of the
definition was given in terms of convolution powers of the integral(i) in CG. This extended the notion of
(higher) Schur-indicators to all finite-dimensional Hopf algebras, and has since become a valuable tool for
the study of these algebras Kashina et al. (2002); Ng and Schauenburg (2008); Shimizu (2012). In case
ρ is the regular representation (and H is semisimple), it is shown in Kashina et al. (2006) that the higher
Schur indicators can be reformulated further, removing all mention of the integral:

νn(H) = trace(S ◦ id∗n) for n ≥ 0.

See also Kashina et al. (2012). These invariants are not well-understood at present. Indeed, the possible
eigenvalues of id∗n are not even known, much less their multiplicities. Our results lead to the following
formula for νn in case H is graded, connected (instead of finite-dimensional).

Corollary 9 If H is a graded connected Hopf algebra, then

νn(Hm) =
∑

k≥0

(−n)k eul(k,m),

where eul(k,m) is as in Theorem 4.

Proof: As in the proof of Theorem 4, we may assume that H is commutative. Then S is an algebra map,
and we have S ◦ id∗n = S ◦µ(n) ◦∆(n) = µ(n) ◦S⊗n ◦∆(n) = S∗n. Finally, observe that S∗n = id∗(−n)

and apply Theorem 4. 2

(i) A construct present for finite-dimensional Hopf algebras that is unavailable for general graded connected Hopf algebras.
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6 Examples and applications
6.1 Symmetric functions
Take H = Sym, the Hopf algebra of symmetric functions. On the Schur function basis, the antipode acts
by S(sλ) = (−1)|λ|sλ′ , where λ′ is the partition conjugate to λ. Therefore,

trace
(
S
∣∣
Hm

)
= (−1)mc(m),

where c(m) is the number of self-conjugate partitions of m.
We turn to Corollary 6. For this Hopf algebra, gi = 1 for all i ≥ 1. Hence

(
g
λ

)
= 1 for all λ, and

eul(k,m) = pk(m), the number of partitions of m into k parts. From (12) we deduce

(−1)mc(m) =
m∑

k=0

(−1)kpk(m), (16)

the identity announced in the introduction. (Note that p0(m) = 0 for m > 0.)
We point out that it is possible to obtain this result by considering the power sum basis of Sym. Since

S(pλ) = (−1)`(λ)pλ, we have

trace(S|Hm
) = #

{
partitions of m of even length

}
−#

{
partitions of m of odd length

}
.

Equating to the former expression for the trace gives (16).
We further illustrate Corollary 6 by deriving certain identities involving the Littlewood–Richardson

coefficients cλµ,ν . Recall that the latter are the structure constants for the product and coproduct on the
Schur basis of Sym:

sµ · sν =
∑

λ

cλµ,ν sλ and ∆(sλ) =
∑

µ,ν

cλµ,ν sµ ⊗ sν .

Formula (11) (with n = ±2) yields the following identities, for all m ≥ 1:

∑

λ,µ,ν`m
(cλµ,ν)2 =

m∑

k=1

2k pk(m) and
∑

λ,µ,ν`m
cλµ,νc

λ
µ′,ν′ =

m∑

k=1

(−1)m−k 2k pk(m).

Note, incidentally, that the fact that the antipode preserves (co)products says that cλµ,ν = cλ
′

µ′,ν′ .

6.2 Schur P -functions
Let Γ denote the subalgebra of Sym generated by the Schur P -functions, Pλ. See (Macdonald, 1995,
III.8) for definitions, as well as the results used below. A partition is strict if its parts are all distinct. A
basis for Γm consists of those Pλ with λ a strict partition of m. Let d(m) denote the number of such
partitions. For λ strict, S(Pλ) = (−1)|λ|Pλ. Therefore,

trace(S|Γm
) = (−1)md(m).

It is well-known that d(m) is also the number of odd partitions of m (partitions into odd parts). In fact, Γ
is the Q-subalgebra of Sym generated by the odd power sums p2i+1, i ≥ 0. It also follows from this that(
g
λ

)
= 1 when λ is odd and

(
g
λ

)
= 0 otherwise. Therefore, eul(k,m) is the number of odd partitions of m

of length k. In an odd partition, the parities of m and k are the same. Thus, identity (12) simply counts
odd partitions according to their length.
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6.3 Quasisymmetric functions
Let us turn to the Hopf algebra H = QSym of quasisymmetric functions, and consider the two standard
homogeneous bases for Hm, the fundamental Fα and monomial Mα quasisymmetric functions, with α a
composition of m. The antipode has the following descriptions:

S(Fα) = (−1)mFα̃′ and S(Mα) = (−1)`(α)
∑

β≤α
Mβ̃ ,

where γ̃ is the reversal of the word γ and γ′ is the transpose (when drawn as a ribbon-shaped skew-
diagram). Note that α = α̃′ if and only if α is symmetric with respect to reflection across the anti-diagonal
(when drawn as a ribbon). There are precisely 2(m−1)/2 of these whenm is odd, and zero whenm is even.
Calculating the trace on the fundamental basis we thus obtain

trace(S|Hm
) =

{
−2(m−1)/2 if m is odd,
0 otherwise.

(17)

The compositions α that contribute to the trace on the monomial basis satisfy α̃ ≤ α. Since reversal is
an order-preserving involution, this happens if and only if α̃ = α, that is if and only if α is palindromic.
Let pal(m) denote the number of palindromic compositions of m. In m is even, exactly half of the
palindromes of length m have odd length; if m is odd, all of them do. We conclude that

trace(S|Hm
) =

{
− pal(m) if m is odd,
0 otherwise.

(18)

Comparing (17) and (18) we deduce that, for all odd m,

pal(m) = 2(m−1)/2.

This simple fact can also be deduced by establishing the recursion pal(m) = 2 pal(m−1) for m even and
pal(m) = pal(m− 1) for m odd.

QSym is cofree, so Theorem 7 applies. We have that

pal(k,m) =





(dm/2e − 1

dk/2e − 1

)
, if m is even, or if m is odd and k is odd,

0, if m is odd and k is even.

Formula (14) boils down in this case to the basic formula 2h =
∑h
j=0

(
h
j

)
.

6.4 Peak quasisymmetric functions
Let H denote the peak Hopf algebra. It is a subalgebra of QSym. As QSym, it is cofree, and a basis
for Hm is indexed by compositions α of m into odd parts. The number of odd compositions of m is the
Fibonacci number fm (with f1 = f2 = 1).
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In Stembridge (1997) and Billera et al. (2003), an analog of the fundamental basis of QSym is devel-
oped, θα. The antipode is S(θα) = (−1)mθα̃. It follows that

trace(S|Γm
) =

{
fm/2, if m is even,
−fdm/2e+1, if m is odd,

(as palindromic odd compositions of m come from odd compositions of m/2). A little more work shows
that

pal(k,m) =





(
(m+ k)/4− 1)

(m− k)/4

)
, if m is even and 4 | (m− k),

(b(m+ k − 1)/4c
b(m− k + 1)/4c

)
, if m and k are odd,

0, otherwise.

Formula (14) yields the following basic identities:

fh =

bh/2c∑

j=0

(
h− j − 1

j

)
(for h ≥ 1) and fh =

h−2∑

j=0

(b(h+ j)/2c
b(h− j)/2c

)
(for h ≥ 2).
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1 Introduction
The theory of context-free grammars and its relationship with combinatorics was initiated by the article of
Noam Chomsky and Marcel-Paul Schützenberger in 1963 [CS63], where it is shown that the generating
function of the number of words generated by a non ambiguous context-free grammar is algebraic. Since
then, there has been much use of algebraic functions in combinatorics, see e.g. [Sta99, BM06, FS09].

Quite often, they come from a tree-like structure (dissections of polygons: a result going back to Eu-
ler in 1751, one of the founding problems of analytic combinatorics!), or from a grammar description
(polyominoes [DV84], lattice paths [Duc00]), or from the ”diagonal” of rational functions [BH12], or as
solution of functional equations (solvable by the kernel method and its variants, e.g. for avoiding-pattern
permutations [Knu98]). Their asymptotics is crucial for establishing (inherent) ambiguity of context-free
languages [Fla87], for the analysis of lattice paths [BF02], walks with an infinite set of jumps [Ban02]
(which are thus not coded by a grammar on a finite alphabet), or planar maps [BFSS01].

Plan of this article:

• In Section 2, we give a few definitions, mostly illustrating the link between context-free grammars,
solutions of positive algebraic systems and N-algebraic functions.

• In Section 3, we survey some closure properties of algebraic functions and give a closed form for
their coefficients.

• In Section 4, we state and sketch a proof of our main theorem on the possible asymptotics of
algebraic functions (associated to a context-free grammar with positive weights).

• We end with a conclusion pinpointing some extensions (limit laws, algorithmic considerations,
extension to infinite systems, or systems involving entire functions).

2 Definitions: N-algebraic functions, context-free grammars and
pushdown automata

For the notions of automata, pushdown automata, context-free grammars, we refer to the survey [PS09].
Another excellent compendium on the subject is the handbook of formal languages [RS97] and the
Lothaire trilogy. We now consider S-algebraic functions, that is, a function y1(z) that is solution of a
system(i): 




y1 = P1(z, y1, . . . , yd)
...
yd = Pd(z, y1, . . . , yd)

(1)

where each polynomial Pi has coefficients in any set S (in this article, we consider S = N, Z, Q+, or
R+). We restrict (with only minor loss of generality) to systems satisfying: Pi(0, . . . , 0) = 0, each Pi
is involving at least one yj , the coefficient of yj in Pi(0, . . . , 0, yj , 0 . . . , 0) is 0, and there is at least one
Pi(z, 0, . . . , 0) which is not 0. Such systems are called ”well defined” (or ”proper” or ”well founded” or
”well posed”, see [BD13]), and correspond to proper context-free grammars for which one has no ”infinite
(i) In this article, we will often summarize the system (1) via the convenient short notation y = P(z,y), where bold fonts are used

for vectors.
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chain rules”. On the set of power series, d(F (z), G(z)) := 2−val(F(z)−G(z)) is an ultrametric distance, this
distance extends to vectors of functions, and allows to apply the Banach fixed-point theorem: it implies
existence and uniqueness of a solution of the system as a d-tuple of power series (y1, . . . , yd) (and they
are analytic functions in 0, as we already know that they are algebraic by nature). A common mistake is
to forget that there exist situations for which the system (1) can admit several solutions as power series
for y1 (nota bene: there is no contradiction with our previous claim, which is considering tuples). By
elimination theory (resultant or Gröbner bases), S-algebraic functions are algebraic functions.

We give now few trivial/folklore results: N-algebraic functions correspond to generating functions of
context-free grammars (this is often called the Chomsky–Schützenberger theorem), or, equivalently, push-
down automata (via e.g. a Greibach normal form). Z-algebraic functions have no natural simple combi-
natorial structures associated to them, but they are the difference of two N-algebraic functions (as can be
seen by introducing new unknowns splitting in two the previous ones, and writing the system involving
positive coefficients on one side, and negative coefficients on the other side). They also play an important
rôle as any algebraic generating with integer coefficients can be considered as a Z-algebraic function. An
N-rational function is a function solution of a system (1) where each polynomial Pi has coefficients in
N and only linear terms in yj . Such functions correspond to generating functions of regular expressions
or, equivalently, automata (a result essentially due to Kleene), and formula for their coefficients and their
asymptotics are well-known, so we restrict from now on our attention to N-algebraic functions which are
not rational.

3 Closed form for coefficient of algebraic function

A first natural question is how can we compute the n-th coefficient fn of an algebraic power series? An
old theorem due to Abel states that algebraic functions are D-finite functions. A function F (z) is D-
finite if it satisfies a differential equation with coefficients which are polynomials in z; equivalently, its
coefficients fn satisfy a linear recurrence with coefficients which are polynomials in n. They are numerous
algorithms to deal with this important class of functions, which includes a lot of special functions from
physics, number theory and also combinatorics [Sta99]. The linear recurrence satisfied by fn allows to
compute in linear time all the coefficients f0, . . . , fn.

A less known fact is that these coefficients admit a closed form expression as a finite linear combination
of weighted multinomial numbers. More precisely, one has the following theorem:

Theorem 1 (The Flajolet–Soria formula for coefficients of algebraic function) LetP (z, y) be a bivari-
ate polynomial such that P (0, 0) = 0, Py(0, 0) = 0 and P (z, 0) 6= 0. Consider the algebraic function
implicitly defined(ii) by f(z) = P (z, f(z)) and f(0) = 0. Then, the Taylor coefficients of f(z) are given
by the following finite sum

fn =
∑

m≥1

1

m
[znym−1]Pm(z, y). (2)

(ii) If an algebraic function f(z) with f(0) = 0 satisfies Q(z, f(z)) = 0, where Q(z, y) is a polynomial with Q(0, 0) = 0
and Qy(0, 0) 6= 0 then f(z) satisfies the equation f(z) = P (z, f(z)), where P (z, y) = y − Q(y, z)/Qy(0, 0) satisfies
P (0, 0) = 0 and Py(0, 0) = 0.
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Accordingly, applying the multinomial theorem on P (z, y) =
∑d
i=1 aiz

biyci leads to

fn =
∑

m≥1

1

m

∑

m1+···+md=m
b1m1+···+bdmd=n

c1m1+···+cdmd=m−1

(
m

m1, . . . ,md

)
a1
m1 . . . ad

md . (3)

Proof: Consider y = P (z, y) as the perturbation at u = 1 of the equation y = uP (z, y). Then, applying
the Lagrange inversion formula (considering u as the main variable, and z as a fixed parameter) leads to
the theorem. The second formula comes from the definition of the multinomial number, which is is the
number of ways to divide m objects into d groups, of cardinality m1, . . . ,md (with m1+ · · ·+md = m):
[u1

m1 . . . ud
md ](u1 + · · ·+ ud)

m =
(

m
m1,...,mk

)
= m!

m1!...md!
. 2

This Flajolet–Soria formula was first published in the habilitation thesis of Michèle Soria in 1990 (and
was later rediscovered independently by Gessel and Sokal).

As it is an alternating sign nested sum (indeed, as one reduces the set of positive equations describing
our N-algebraic function to a single equation, the elimination process will lead to some non positive ai’s),
it is not suitable to get general asymptotics from this formula, so we now proceed with another approach,
which leads to a nice universal result for the critical exponents, but to the price of a rather technical proof.

4 Asymptotics for coefficients of algebraic function
A Puiseux series f = f(z) is a series of the form f =

∑∞
k=k0

ak(z − z0)k/N , where k0 is an integer, N
a positive integer. Let kc := min{k ∈ Z − {0}|ak 6= 0}, then α = kc/N is called the critical exponent
(loosely speaking, α is the “first non zero exponent” appearing in the series, and if z0 is not precised,
it is by default the radius of convergence of f(z)). The theory of Puiseux expansions (or the theory of
G-functions) implies that every algebraic function has a Puiseux series expansion and, thus, the critical
exponents are rational numbers. The following proposition shows that all rational numbers are reached.

Theorem 2 (Q is the set of critical exponents) For every rational number α that is not a positive integer
there exists an algebraic power series with positive integer coefficients for which its Puiseux expansion at
the radius of convergence has exactly the critical exponent α.

Proof: First consider F (z) := 1−(1−a2z)1/a
z , where a is any positive or negative integer. Accordingly, its

coefficients are given by fn =
(
1/a
n+1

)
a2n+1(−1)n. The proof that the fn are positive integers was proven

in [Lan00], via a link with a variant of Stirling numbers. We give here a simpler proof: first, via the Newton
binomial theorem, the algebraic equation for F (z) is F (z) = 1 +

∑a
k=2

(
a
k

)
ak−2 (−1)k zk−1 (F (z))

k
.

Then, if one sees this equation as a fixed point equation (as a rewriting rule in the style of context-free
grammars), it is obvious that the fn’s belong to Z. But as fn+1 = a (an+(a−1))fn

n+2 , it is clear that the
fn’s are finally positive integers. Finally, if b is any positive integer (such that b is not a multiple of a),
considering G(z) = e(zF (z) − 1)b (where e = 1 if a > b mod (2a) and e = −1 elsewhere) leads to
a series with integer coefficients (because of the integrality of the coefficients of F ), positive coefficients
(excepted a few of its first coefficients, for some monomials of degree less than b, as it comes from
the Newton binomial expansion). Removing these negative coefficients gives a power series with only
positive integer coefficients, with a Puiseux expansion of the form (1− a2z)b/a. 2
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One may then wonder if there is something stronger. For example, is it the case that for any radius
of convergence, any critical exponent is possible? It happens not to be the case, as can be seen via a
result of Fatou: a power series with integer coefficients and radius of convergence 1 is either rational or
transcendental. However, one has the following neat generic behavior:

Theorem 3 (First main result: dyadic critical exponents for N-algebraic function) The critical expo-
nent of an N-algebraic (or even R+-algebraic) function is either 2−k for some k ≥ 1 or−m2−k for some
m ≥ 1 and some k ≥ 0.

If f1(z) is aperiodic, that is, the radius of convergence ρ is the only singularity on the circle of convergence
|z| = ρ then the transfer principle of Flajolet and Odlyzko [FO90] implies that the coefficients fn =
[zn] f1(z) are asymptotically given by fn ∼ Aρ−nn−1−α, when α is the critical exponent. In the general
(non-aperiodic) case, we have to distinguish between residue classes but the asymptotics are still of the
same form (when we restrict to these residue classes).

Theorem 4 (Second main result: asymptotics for coefficients of N-algebraic function) Let f1(z) be the
power series expansion of a well defined N-algebraic (or even R+-algebraic) system y = P(z,y). Then
there is an integer M ≥ 1 such that for every j ∈ {0, 1, . . . ,M − 1} we either have fn = 0 for all (but
finitely many) n with n ≡ j modM or there exist positive numbers Aj , ρj and βj that is either−1−2−k

for some k ≥ 1 or −1 +m2−k for some m ≥ 1 and some k ≥ 0 such

fn ∼ Ajρ−nj nβj , (n→∞, n ≡ j modM).

It is easy to see that all possible exponents actually appear.

Proposition 1 All the dyadic numbers of Theorem 3 appear as critical exponents of N-algebraic func-
tions.

Proof: Let us first consider the system of equations y1 = z(y2 + y21), y2 = z(y3 + y22), y3 = z(1 + y23)
has the following (explicit) solution

f1(z) =
1− (1− 2z)1/8

√
2z
√

2z
√
1 + 2z +

√
1− 2z + (1− 2z)3/4

2z

f2(z) =
1− (1− 2z)1/4

√
2z
√
1 + 2z +

√
1− 2z

2z
and f3(z) =

1−
√
1− 4z2

2z
.

Here f1(z) has dominant singularity (1 − 2z)1/8 and it is clear that this example can be generalized:
indeed, consider the system yi = z(yi+1+y

2
i ) for i = 1, . . . , k−1, and yk = z(1+y2k), it leads to behavior

(1 − 2z)2
−k

for each k ≥ 1. Now, taking the system of equations y = z(ym0 + y), y0 = z(1 + 2y0y1)

leads to a behavior (1 − 2z)−m2−k

for each m ≥ 1 and k ≥ 0. See also [TB12] for another explicit
combinatorial structure (a family of colored tree related to a critical composition) exhibiting all these
critical exponents. 2

On the other hand, we can use the result of Theorems 3 and 4 to identify classes that cannot be counted
with the help of an N- (or R+-)algebraic system.

Proposition 2 Planar maps and several families of lattice paths (like Gessel walks) are not N-algebraic
(i.e., they can not be generated by an unambiguous context-free grammar).
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Proof: This comes as a nice consequence of our Theorem 3: all the families of planar maps of [BFSS01]
cannot be generated by an unambiguous context-free grammar, because of their critical exponent 3/2.
Also, the tables [BK09] of lattice paths in the quarter plane and their asymptotics (where some of the
connection constants are guessed, but all the critical exponents are proved, and this is enough for our
point) allow to prove that many sets of jumps are giving a non algebraic generating function, as they
lead to a critical exponent which is a non-negative integer or involving 1/3. One very neat example are
Gessel walks (their algebraicity were a nice surprise [BK10]), where the hypergeometric formula for their
coefficients leads to an asymptotic in 4n/n2/3 not compatible with N-algebraicity. (iii) 2

The critical exponents −1/4,−3/4,−5/4 which appear for walks on the slit plane [BMS02] and other
lattice paths questions [BK10] are compatible with N-algebraicity, but these lattice paths are in fact not
N-algebraic (it is possible to use Ogden’s pumping lemma, to prove that these walks can be not generated
by a context-free grammar). To get a constructive method to decide N-algebraicity (input: a polynomial
equation, output: a context-free specification, whenever it exists) is a challenging task.

We now dedicate the two next subsections to the proof of Theorem 3. The proof of Theorem 4 is a
considerable extension, where (at least) all singularities on the circle of convergence have to identified
(see [BD13]). Due to space limitation we do not work out the latter proof in this extended abstract.

4.1 Dependency graph and auxiliary results
A main ingredient of the proof of Theorem 3 is the analysis of the dependency graph G of the system
yj = Pj(z, y1, . . . , yK), 1 ≤ j ≤ K. The vertex set is {1, . . . ,K} and there is a directed edge from i to
j if Pj depends on yi (see Figure 1). If the dependency graph is strongly connected then we are in very
special case of Theorem 3, for which one has one the following two situations (see [Drm97]):

Lemma 1 (rational singular behavior) Let y = A(z)y+B(z) a positive and well defined linear system
of equations, where the dependency graph is strongly connected. Then the functions fj(z) have a joint
polar singularity ρ or order one as the dominant singularity, that is, the critical exponent is −1:

fj(z) =
cj(z)

1− z/ρ ,

where cj(z) is non-zero and analytic at z = ρ.

Lemma 2 (algebraic singular behavior) Let y = P(z,y) a positive and well defined polynomial system
of equations that is not affine and where the dependency graph is strongly connected. Then the functions
fj(z) have a joint square-root singularity ρ as the dominant singularity, that is, the critical exponent is
1/2:

fj(z) = gj(z)− hj(z)
√
1− z

ρ
,

where gj(z) and hj(z) are non-zero and analytic at z = ρ.

In the proof of Theorem 3 we will use in fact extended version of Lemma 1 and 2, where we intro-
duce additional (polynomial) parameters, that is, we consider systems of functional equations of the form

(iii) The fact that critical exponents involving 1/3 were not possible was an informal conjecture in the community for years. We thank
Philippe Flajolet, Mireille Bousquet-Mélou and Gilles Schaeffer, who encouraged us to work on this question.
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y1 = P1(z, y1, y2, y5)

y2 = P2(z, y2, y3, y5)

y3 = P3(z, y3, y4)

y4 = P4(z, y3, y4)

y5 = P5(z, y5, y6)

y6 = P6(z, y5, y6).

2 5 6

3 4

1

2 5,6

3,4

1

Fig. 1: A positive system, its dependency graph G and its reduced dependency graph G̃. None of these graphs
are here strongly connected: e.g. the state 1 is a sink; it is thus a typical example of system not covered by the
Drmota–Lalley–Woods theorem, but covered by our new result implying dyadic critical exponents.

y = P(z,y,u), where P is now a polynomial in z,y,u with non-negative coefficients and where the de-
pendency graph (with respect to y) is strongly connected. We also assume that u is strictly positive such
that the spectral radius of the Jacobian Py(0, f(0,u),u) is smaller than 1.(iv) Hence, we can consider the
solution that we denote by f(z,u).

If we are in the affine setting (y = A(z,u)y+B(z,u)) it follows that y(z,u) has a polar singularity:

fj(z,u) =
cj(z,u)

1− z/ρ(u) , (4)

where the functions ρ(u) and cj(z,u) are non-zero and analytic. We have to distinguish two cases. If
A(z,u) = A(z) does not depend on u then ρ(u) = ρ is constant and the dependence from u just comes
from B(z,u). Of course, if A(z,u) depends on u then ρ(u) is not constant. More precisely it depends
exactly on those parameters that appear in A(z,u).

Similarly in the non-affine setting we obtain representations of the form

fj(z,u) = gj(z,u)− hj(z,u)
√

1− z

ρ(u)
, (5)

where the functions ρ(u), gj(z,u), and hj(z,u) are non-zero and analytic. In this case ρ(u) is always
non-constant and depends on all parameters.

We denote by D0 the set of positive real vectors u, for which r(Py(0, f(z,0),u)) < 1. It is easy to
show that ρ(u) tends to 0 when u approaches the boundary of D0.

4.2 Proof of our Theorem 3 on dyadic critical exponents
We fix some notation. Let G denote the dependency graph of the system and G̃ the reduced dependency
graph. Its vertices are the strongly connected components C1, . . . CL of G. We can then reduce the
dependency graph to its components (see Figure 1).

Let y1, . . . ,yL denote the system of vectors corresponding to the components C1, . . . CL and let
u1, . . . ,uL denote the input vectors related to these components. In the above example, we have C1 =

(iv) This condition assures that we have a unique analytic solution z 7→ f(z,u) locally around z = 0.
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{1}, C2 = {2}, C3 = {3, 4}, C4 = {5, 6}, y1 = y1, y2 = y2, y3 = (y3, y4), y4 = (y5, y6), and
u1 = (y2, y5), u2 = (y3, y5), u3 = ∅, u4 = ∅.

Finally, for each component C` we define the set D` of real vectors u` for which the spectral radius of
the Jacobian of `-th subsystem evaluated at z = 0, y` = 0 is smaller than 1.

The first step we for each strongly connected component C` we solve the corresponding subsystem
in the variables z and u` and obtain solutions f(z,u`), 1 ≤ ` ≤ L. In our example these are the
functions f1(z,u1) = f1(z, y2, y5), f2(z,u2) = f2(z, y3, y5), f3(z,u3) = (f3(z), f4(z)), f4(z,u4) =
(f5(z), f6(z)).

Since the dependency graph G̃ is acyclic, there are components C`1 , . . . , C`m with no input, that is,
they corresponding functions y`1(z), . . . ,y`m(z) can be computed without any further information. By
Lemma 1 and 2 they either have a polar singularity or a square-root singularity, that is, they are are
precisely of the types that are stated in Theorem 3.

Now we proceed inductively. We consider a strongly connected component C` with the function
f`(z,u`) and assume that all the functions fj(z) that are contained in u` are already known and and
that their leading singularities of the two types stated in Theorem 3: the solutions fj(z) have positive and
finite radii of convergence ρj . Furthermore, the singular behavior of fj(z) around ρj is either of algebraic
type

fj(z) = fj(ρj) + cj(1− z/ρj)2
−kj

+ c′j(1− z/ρj)2·2
−kj

+ · · · , (6)

where cj 6= 0 and where kj is a positive integer or of type

fj(z) =
dj

(1− z/ρj)mj2
−kj

+
d′j

(1− z/ρj)(mj−1)2−kj
+ · · · , (7)

where dj 6= 0, mj are positive integers and kj are non-negative integers.
By the discussion following Lemma 1 and 2 it follows that functions contained in f`(z,u`) have either

a common polar singularity or a common square-root singularity ρ(u`).
We distinguish between three cases:

1. f`(z,u`) comes from an affine system and is, thus, of the form (4) but the function ρ(u`) is constant.

2. f`(z,u`) comes from an affine system and the function ρ(u`) is not constant.

3. f`(z,u`) comes from an non-affine system and is, thus, of the form (5).

ad 1. The first case is very easy to handle. We just have to observe that c(z,u`) is a polynomial with
non-negative coefficients in u` and that the class of admissible functions (that is, functions, where
the critical exponent at the radius of convergence is either 2−k for some k ≥ 1 or −m2−k for some
m ≥ 1 and some k ≥ 0) is closed under addition and multiplication. Hence the resulting function
f`(z) is of admissible form.

ad 2. In the second, we have to be more careful. Let J ′` denote the set of j for which the function ρ(u`)
really depends on.

First we discuss the denominator. For the sake of simplicity we will work with the difference
ρ(uj) − z. Let ρ′ denote the smallest radius of convergence of the functions fj(z), j ∈ J ′`. Then
we consider the difference δ(z) = ρ((fj(z))j∈J′`)− z. We have to consider the following cases for
the denominator:
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2.1. δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ′′))j∈J′` ∈ D`:
First we note that δ(z) has at most one positive zero since ρ((fj(z))j∈J′`) is decreasing and
z is increasing. Furthermore, the derivative satisfies δ′(ρ′′) > 0. Consequently, we have a
simple zero ρ′′ in the denominator.

2.2. We have δ(ρ′) = 0 such that (fj(ρ′))j∈J′` ∈ D`:
In this case all functions fj(z), j ∈ J ′`, with ρj = ρ′ have to be of type (6). Consequently

δ(z) behaves like c(1− z/ρ′)2−k̃

+ . . ., where c > 0 and k̃ is the largest appearing kj (among
those functions fj(z) with ρj = ρ′).

2.3. We have δ(ρ′) > 0 such that (fj(ρ′))j∈J′` ∈ D`:
In this case, all functions fj(z), j ∈ J ′`, with ρj = ρ′ have to be (again) of type (6). Conse-

quently δ(z) behaves like c0 − c1(1− z/ρ′)2
−k̃

+ . . ., where c0 > 0 and c1 > 0 and k̃ is the
largest appearing kj (among those functions fj(z) with ρj = ρ′).

Finally, we have to discuss the numerator. Since the numerator c(z,uj) is just a polynomial in those
uj for which j 6∈ J ′`, we can handle them as in the first case.

Summing up leads to a function fj(z) that is either of type (6) or type (7).

ad 3. In the last case the function f`(z,u`) has an representation of the form (5), where In this case
ρ(u`) depends on all components of u`. As above we will study the behavior of the square-root√
ρ(u`)− z instead of

√
1− z/ρ(u`) since the non-zero factor

√
ρ(u`) can be put to h(z,u`).

Let ρ′ denote the smallest radius of convergence of the functions fj(z) that correspond to u`. Here,
we have to consider the following cases:

(3.1) δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ′′)) ∈ D`:
This means that ρ((fj(z))− z has a simple zero. By the Weierstrass preparation theorem we
can, thus, represent this function as ρ((fj(z))− z = (ρ′′ − z)H(z), where H(z) is non-zero
and analytic at ρ′′. Consequently, we observe that f(z) has a (simple) square-root singularity.

(3.2) We have δ(ρ′) = 0 such that (fj(ρ′)) ∈ D`:
In this case all functions fj(z) with ρj = ρ′ have to be of type (6). Hence the square-root of
δ(z) behaves as

√
c(1− z/ρ′)2−k̃ + . . . =

√
c(1− z/ρ′)2−k̃−1

+ . . . ,

where the corresponding k equals the largest appearing kj plus 1. Thus, f(z) is of type (6).
(3.3) We have δ(ρ′) > 0 such that (fj(ρ′))j∈J′` ∈ D`:

In this case all functions fj(z), with ρj = ρ′ have to be (again) of type (6). Consequently the
square-root of δ(z) behaves like

√
c0 − c1(1− z/ρ′)2−k̃ + . . . =

√
c0

(
1− c1

2c0
(1− z/ρ′)2−k̃

+ . . .

)
,

where c0 > 0 and c1 > 0 and k̃ is the largest appearing kj (among those functions fj(z) with
ρj = ρ′). Hence, f(z) is of type (6).

This completes the induction proof of Theorem 3.
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5 Conclusion
Now that we have a better picture of the behavior of algebraic coefficients, several extensions are possible
and in the full version of this article [BD13], we say more on

• Algorithmic aspects: In order to automatize the asymptotics, one has to follow the right branch
of the algebraic equations, this is doable by a disjunction of cases following the proof of our main
theorem, coupled with an inspection of the associated spectral radii, this leads to a more ”algebraic”
approach suitable for computer algebra, shortcutting some numerical methods like e.g. the Flajolet–
Salvy ACA (analytic continuation of algebraic) algorithm [FS09]. Giving an algorithm to decide
in a constructive way if a function is N-algebraic would be nice. (This is doable for N-rational
functions). With respect to the Pisot problem (i.e., deciding if one, or an infinite number of fn are
zeroes), finding the best equivalent for N-algebraic functions of the Skolem–Lerch–Mahler theorem
for N-rational functions is also a nice question. The binomial formula of Section 3 leads to many
identities, simplifications of the corresponding nested sums are related to fascinating aspects of
computer algebra.

• Extension to entire functions system: Most parts of the analysis of positive polynomial systems
of equations also works for positive entire systems, however, one quickly gets ”any possible asymp-
totic behavior” as illustrated by the system of equations y1 = z(ey2 +y1), y2 = z(1+2y2y3), y3 =

z(1 + y23), as it has the following explicit solution f1(z) = z
1−z exp

(
z√

1−4z2
)

, which exhibits a

non-algebraic behavior. However, adding the constraints ∂2Pj

∂y2j
6= 0 or if Pj is affine in yj leads

to the same conclusion as Theorem 3, with a smaller set of possible critical exponents (now, all
mj = 1).

• Extension to infinite systems: If one considers systems having an infinite (but countable) number
of unknowns yi(z), it is proved in [Mor10] that strongly connected systems also lead to a square-
root behavior. The fact that the limit law is Gaussian (as soon as a Jacobian operator associated to
the system is compact) is proved in [DGM12]. When the conditions of strong connectivity or of
compactness are dropped, a huge diversity of behavior appears, but it is however possible to give
interesting subclasses having a regular behaviors.

• Extension to attributed grammars: Attribute grammars were introduced by Knuth. Many in-
teresting parameters (like internal paths length in trees or area below lattice paths [BG06, Duc99,
Ric09]) are well captured by such grammars. They lead to statistics with a mean which is no more
linear. For a large class of strongly connected positive systems, it leads to the Airy function, and it
is expected that it is also the case for a class of functional equations with non positive coefficients.

• Extension to limit laws: Philippe Flajolet called Borges’ theorem the principle that motif statistics
follow a Gaussian limit law [FS09]. They are however some technical conditions to ensure such a
Gaussian behavior, like a strong connectivity of the associated system of equations; indeed, in the
non strongly connected case, even very simple motifs in rational languages can then follow any limit
law [BBPT12]. For algebraic systems, the strongly connected case leads to a Gaussian distribution,
as illustrated by the limit law version of the Drmota–Lalley–Woods theorem [Drm97, BKP09]. In
the full version of our article, we give an extension of this result to non strongly connected cases.
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Long Cycle Factorizations : Bijective
Computation in the General Case

Ekaterina A. Vassilieva
Laboratoire d’Informatique de l’Ecole Polytechnique, 91128 Palaiseau Cedex, France

Abstract. This paper is devoted to the computation of the number of ordered factorizations of a long cycle in the
symmetric group where the number of factors is arbitrary and the cycle structure of the factors is given. Jackson
(1988) derived the first closed form expression for the generating series of these numbers using the theory of the
irreducible characters of the symmetric group. Thanks to a direct bijection we compute a similar formula and provide
the first purely combinatorial evaluation of these generating series.

Résumé. Cet article est dédié au calcul du nombre de factorisations d’un long cycle du groupe symétrique pour
lesquels le nombre de facteurs est arbitraire et la structure des cycles des facteurs est donnée. Jackson (1988) a dérivé
la première expression compacte pour les séries génératrices de ces nombres en utilisant la théorie des caractères
irréductibles du groupe symétrique. Grâce à une bijection directe nous démontrons une formule similaire et donnons
ainsi la première évaluation purement combinatoire de ces séries génératrices.

Keywords: Jackson’s formula, factorizations, symmetric group, connection coefficients

1 Introduction
For integer n we note Sn the symmetric group on n elements and γn the permutation in Sn defined by
γn = (12 . . . n). If r is an integer we call strictly increasing subsequence of 1 . . . r any sequence of the
form (i1, i2, . . . iu) where 1 ≤ i1 < i2 < . . . < iu ≤ r. Given such a subsequence t containing i, we
define succt(i) the index following i in t. If no such index exists succt(i) is the first index of the sequence
or i itself if t = (i).
This paper is devoted to the computation of the numbers knp1,p2,...,pr of factorizations of γn as an ordered
product of permutations α1α2 . . . αr = γn such that for 1 ≤ i ≤ r, αi belongs to Sn and is composed of
exactly pi disjoint cycles. More precisely, we use a direct bijection to show the following formula:

Theorem 1 (Main result)
1

(n− 1)!r−1
∑

p1,p2,...,pr

knp1,p2,...,pr

∏

1≤i≤r
xpii =

∑

p1,p2,...,pr

∑

a

∆r(a)

(
n

a

) ∏

1≤i≤r

(
xi
pi

)
(1)

The last sum runs over sequences a = (at) of 2r − 1 non-negative integers at with the index t being any
non empty strictly increasing subsequence of integers of 1 . . . r such that

∑

t

at = n,
∑

t;l/∈t
at = pl for 2 ≤ l ≤ r,

∑

t;1/∈t
at = p1 − 1 (2)

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Furthermore, the multinomial coefficient is defined by
(
n

a

)
=

n!∏
t at!

Finally, ∆r(a) is the determinant of the r × r matrix with coefficients mi,j , 1 ≤ i, j ≤ r, where

mi,i = pi (1 ≤ i ≤ r),
for j 6= i (modulo r), mi,j = −∑t;i∈t,succt(j)−j≥j−i+1 at

(the subtractions on indices are modulo r).

Let λ = (λ1, λ2, ..., λp) ` n an integer partition of n with `(λ) = p parts sorted in decreasing order.
We note Cλ the conjugacy class of Sn containing the permutations of cycle type λ and mλ(x) and pλ(x)
the monomial and power sum symmetric functions respectively indexed by λ on indeterminate x. Given
r integer partitions λ1, λ2, . . . , λr of n, a more refined problem is to compute the numbers knλ1,λ2,...,λr of
ordered factorizations α1α2 . . . αr of γn such that for for 1 ≤ i ≤ r, αi belongs to Cλi . As a corollary of
Theorem 1 we have:

Theorem 2 (Corollary)

1

(n− 1)!r−1
∑

λ1,λ2,...,λr`n
knλ1,λ2,...,λr

∏

1≤i≤r
mλi(xi) =

∑

λ1,λ2,...,λr`n

∑
a ∆r(a)

(
n
a

)
∏
i

(
n−1

`(λi)−1
)
∏

1≤i≤r
pλi(xi) (3)

where `(λi) is substituted to pi in the definition of a in (2).

1.1 Background
Despite the attention the problem received over the past twenty years no closed formulas are known for the
coefficients knp1,...,pr and knλ1,...,λr except for very special cases. Using characters of the symmetric group
and a combinatorial development, Goupil and Schaeffer [4] derived an expression for knλ1,λ2 (r = 2) as a
sum of positive terms. This work has been later generalized by Poulalhon and Schaeffer [8] and Irving [5]
but, as a rule, the formulas obtained are rather complicated. Using the theory of the irreducible characters
of the symmetric group, Jackson [6] computed an elegant expression for the generating series in the LHS
of (1) for arbitrary r and an arbitrary permutation of Sn instead of γn. This later result shows that the
coefficients in the expansion of this generating series in the basis of

(
xi

pi

)
can be derived as closed form

formulas but fails to provide a combinatorial interpretation. Schaeffer and Vassilieva in [9], Vassilieva in
[10] and Morales and Vassilieva in [7] provided the first purely bijective computations of the generating
series in (1) and (3) for r = 2, 3. In a recent paper, Bernardi and Morales [1] addressed the problem
of finding a general combinatorial proof of Jackson’s formula for the factorizations of γn. Using an
argument based on several successive bijections and a probabilistic puzzle, they provide a complete proof
for the cases r = 2, 3 and a sketch for r = 4. In the present paper we generalize and put together all
the ideas developed in our previous articles ([9], [10] and [7]) and make them work in the general context
of r-factorizations of γn. We prove theorems (1) and (2) thanks to a direct (single step) bijection. The
combinatorial ingredients we use and the bijection itself are described in sections 2 and 3. Section (4)
proves that the bijection is indeed one-to-one. While (1) is similar to Jackson’s formula in [6], the two
expressions are different. We address their equivalence in section 5.
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2 Cacti, partitioned cacti and cactus trees
2.1 Cacti
Factorizations of γn can be represented as r-cacti (short cacti), i.e 2−cell decompositions of an oriented
surface of arbitrary genus into a finite number of vertices (0−cells), edges (1−cells) and faces (2−cells)
homeomorphic to open discs, with n black and one white face such that all the black faces are r-gons
and not adjacent to each other. They are defined up to an homeomorphism of the surface that preserves
its orientation, the type of cells and incidences in the graph. We consider rooted cacti, i.e. cacti with a
marked black face. We assume as well that within each r-gon the r vertices are colored with r distinct
colors so that moving around the r-gons counter-clockwise the vertex of color i + 1 (modulo r) follows
the vertex of color i. Each black r-gon is labeled with an index in {1, 2, . . . , n} such that the marked
r-gon is labeled 1 and that moving around the white face starting from the edge linking the vertex of color
1 and the vertex of color r in this marked r-gon, the i-th edge connecting a vertex of color 1 and a vertex
of color r belongs to the black r-gon of index i.

Proposition 1 ([10]) Cacti as defined above are in bijection with r-tuples of permutations (α1, α2, . . . , αr)
such that α1α2 . . . αr = γn. Each vertex of color i corresponds to a cycle of αi defined by the sequence
of the indices of the r-gons incident to this vertex.

As a consequence, r-cacti with pi vertices of color i are counted by knp1,p2,...,pr .

Example 1 Figure 1 depicts a 5-cactus corresponding to the factorizations of α1α2α3α4α5 = γ6 with
α1 = (12)(3)(4)(5)(6), α2 = (1)(24)(3)(56), α3 = (1)(2)(3)(4)(5)(6), α4 = (1)(23)(46)(5), α5 =
(1)(2)(3)(4)(5)(6) and a 4-cactus described by α1 = (12)(3), α2 = (13)(2), α3 = (12)(3), α4 =
(13)(2).

4 3 
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2
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2 
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3
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4 2 

1 
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44 
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3 
1 6
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1 5
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3 

2 

3 1 

4 

2 1
2
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Fig. 1: A 5-cactus embedded on a surface of genus 0 (left) and a 4-cactus embedded on a surface of genus 1 (right)

Remark 1 Alternatively, a cactus can be seen as a set of n r-tuples of integers such that each integer of
1 . . . n is used exactly once in the i-th positions of the r-tuples (1 ≤ i ≤ r). Moving around the white face
of the cactus according to the surface orientation and starting with the edge linking the vertices of color
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1 and r of the root r-gon, we define a labeling of the edges. We assign label i to the i-th edge linking
vertices of color 1 and r during the traversal. The j-th edge linking vertices of color r and r − 1 during
the same traversal is indexed by j and so on for all the colors. The n r-tuples defined by the edge labeling
of the n r-gons is an equivalent description of the initial cactus.

Lemma 1 One can show that if the label of an r-gon of a cacti described by (α1, α2, . . . , αr) is i then the
index (as defined in Remark 1) of the edge linking the vertices of color l and l − 1 is α−1r α−1r−1 . . . α

−1
l (i)

for 2 ≤ l ≤ r and i for l = 1.

Example 2 The edge labeling defined above for the 5-cactus of Example 1 is shown on Figure 2.

2.2 Partitioned cacti
Cacti are non planar non recursive objects intractable to compute directly in the general case. Our bijective
construction relies on the use of partitioned cacti that we define as follows:

Definition 1 (Partitioned cacti) Let Cn(p1, p2, . . . , pr) be the set of couples composed of a cactus (as
defined in Section 2.1) and a r-tuple of partitions (π̃1, . . . , π̃r) such that π̃i is a partition with pi blocks
on the set of vertices of color i.

Remark 2 Using Proposition 1, we state that partitioned cacti in Cn(p1, p2, . . . , pr) are in bijection with
the 2r-tuples (α1, . . . , αr, π1, . . . , πr) where α1 . . . αr = γn and πi is a partition on the set of integers
1..n composed of exactly pi blocks stable by αi. (As such the blocks of πi are unions of cycles of αi).
Two vertices u and v of color i in the partitioned cactus belong to the same block if and only if the
corresponding cycles of αi belong to the same block of πi.

Example 3 We use geometric shapes in Figure 2 to represent an example of partitions on the sets of
vertices of the 5-cactus in Example 1. The equivalent numeric set partitions are π1 = {1, 2, 6}{3}{4, 5},
π2 = {1, 2, 3, 4}{5, 6}, π3 = {1, 2, 4}{3}{5, 6}, π4 = {1, 2, 3, 5}{4, 6}, and π5 = {1, 2, 3}{4}{5}{6}.

Similarly to [10], the numbers knp1,p2,...,pr and the cardinalities | Cn(p1, p2, . . . , pr) | are linked by the
relation:

∑

p1,p2,...,pr

knp1,p2,...,pr

∏

1≤i≤r
xpii =

∑

p1,p2,...,pr

| Cn(p1, p2, . . . , pr) |
∏

1≤i≤r
(xi)pi (4)

where (x)p = x(x− 1) . . . (x− p+ 1). Partitioned cacti are actually one-to-one with decorated recursive
tree structures that we define in the next section.

2.3 Cactus trees
We look at non classical tree-like structures with colored vertices and various types of children. More
specifically we work with recursive non cyclic graphs rooted in a given vertex such that all the vertices
are colored with 1, 2, . . . , r. The ordered set of children of a given vertex v of color i may contain:

• half edges (later called 1-gons) linking v to no other vertex.

• full edges (later called 2-gons) linking v to a vertex of color i + 1 (modulo r). This later vertex is
the root of a descending subtree.
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Fig. 2: A partitioned cactus with the additional edge labeling defined in Remark 1.

• j-gons linking v to j − 1 vertices v1, v2, . . . , vj−1 of respective colors i + 1, i + 2, . . . , i + j − 1
(modulo r). Each vk is the root of a descending subtree. When the size j of the j-gons is not
determined, we simply call them polygons.

Now we are ready to give the full definition of the considered structure:

Definition 2 (Cactus trees) For any sequence a = (at) of 2r − 1 non-negative integers at whith the
index t being any non empty strictly increasing subsequence of integers of 1 . . . r, we define the set T (a)
of cactus trees with vertices of r distinct colors as follows:

(i) the root vertex of the cactus tree is of color 1,

(ii) the ordered set of children of a given vertex v of color i is composed of j-gons (1 ≤ j ≤ r) linking
v to j− 1 vertices (and subsequent subtrees) of respective colors i+ 1, i+ 2, . . . , i+ j− 1 (modulo
r),

(iii) symbolic labels β1, β2, . . . , βn (where n =
∑
t at) are assigned to the polygons such that the set of

polygons indexed with the same given label contains exactly one vertex of each color and that all
the polygons in the tree are labelled,

(iv) for t = (i1, i2, . . . , il) (1 ≤ i1 < i2 < . . . < il ≤ r), at is the number of those sets composed
of a (i2 − i1)-gon child of a vertex of color i1, a (i3 − i2)-gon child of a vertex of color i2, . . ., a
(il − il−1)-gon child of a vertex of color il−1 and a (r − il + i1)-gon child of a vertex of color il
with the same symbolic label.
(One can easily check that exactly one vertex of each color is contained in such sets.)

Example 4 The cactus tree depicted on the left hand side of Figure 3 has 10 1-gons, 4 2-gons, 1 3-gon,
1 4-gon and 1 5-gon. The corresponding non zero parameters (at) are a2 = 1, a1,2 = 1, a2,4 = 1,



1112 Ekaterina A. Vassilieva

a1,3,4,5 = 1, a1,3,4 = 1, a1,2,3,4,5 = 1. The cactus tree on the right hand side has 4 1-gons, 1 2-gon and
2 3-gons. The (at) non equal to zero are a1,4 = 2, a1,2,3 = 1.
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Fig. 3: Two examples of cactus trees.

Remark 3 Point (iii) in Definition 2 restricts the number of possible cactus trees. In this paper, we
consider only the cactus trees for which such a labeling is possible.

Remark 4 If we note pi the number of vertices of color i (1 ≤ i ≤ r) in a given cactus tree of T (a), we
have

∑
t;l/∈t at = pl for 2 ≤ l ≤ r and

∑
t;1/∈t at = p1 − 1.

Proposition 2 Let a = (at), n, (pi)1≤i≤r be such that n =
∑
t at and

∑
t;i/∈t at = pi−δi,1. The number

| T (a) | of cactus trees is given by:

| T (a) |= (n− 1)!
r−1

∏
1≤i≤r pi!

∆r(a)

(
n

a

)
(5)

The proof of Proposition 2 can be obtained by using the Lagrange theorem in order to compute the
number of cactus trees without the labeling and the 1-gons. Then, counting the number of ways to add
the 1-gons and the symbolic labeling leads to the desired result. Combining Equations (1), (4) and (5), we
notice that Theorem 1 is equivalent to the following statement:

Theorem 3 The set of partitioned cacti Cn(p1, p2, . . . , pr) is in bijection with the union of sets of cactus
trees T (a) with a verifying the properties n =

∑
t at and

∑
t;i/∈t at = pi − δi,1.

According to the symmetry property proved in [1], Theorem 2 is implied by Theorem 1. As a result,
Theorem 2 is also a consequence of Theorem 3.
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3 Bijection between partitioned cacti and cactus trees
We start with a partitioned cactus κ of Cn(p1, p2, . . . , pr). The edges of the black r-gons in κ are la-
beled according to Remark 1. We note π̃1, . . . , π̃r the partitions of the vertices in κ. Moreover, let
(α1, . . . , αr, π1, . . . , πr) be the 2r-tuple corresponding to κ within the bijection described in Remark 2.
We proceed with the following construction.
First, we define a set containing pi tree-vertices (not to be confused with the vertices of κ) of color i
(1 ≤ i ≤ r) with an ordered set of children composed of labeled half edges. Each tree-vertex of color
i is associated to a block of π̃i (or equivalently πi). The children are indexed by the labels of the edges
linking a vertex of color i belonging to the considered block of π̃i in κ and a vertex of color i−1 (modulo
r) sorted in ascending order. We assume that for all tree-vertices, the resulting labels of the half edges
are increasing when we traverse them from left to right.
Then, we look at maximum length sequences of labels mi, mi+1, . . ., mi+l (indices are taken modulo r)
such that :

(i) mt is the greatest label (and therefore the rightmost) of a half edge child of a tree-vertex of color t
and

(ii) mt’s for i ≤ t ≤ i + l are also the respective labels of the edges linking the vertices of color t
and t − 1 in the same r-gon of κ. If such a sequence contains a label m1, maximum index around
the tree-vertex of color 1 that is also parent of a half edge labeled by 1, we split the sequence into
two subsequences mi, . . ., mr and m2, . . ., mi+l. If the initial sequence was the singleton m1, we
simply remove it.

Lemma 2 The maximum length of the sequences defined above is r − 1.

Next we build a cactus tree by connecting the tree-vertices using j-gons (j ≥ 2). The tree-vertex of color
1 connected to the half-edge labeled 1 is the root of the cactus tree. For any sequence mi, mi+1, . . .,
mi+l corresponding to the same r-gon in κ, let t be the label of the edge linking the vertex of colors i− 1
and i − 2 in this r-gon. By definition, t is not the maximum label around a tree-vertex of color i − 1.
We connect the tree-vertices with maximum child labels mi, mi+1, . . ., mi+l thanks to a l + 2-gon. We
substitute this l + 2-gon to the half edge labeled t in the children set of the corresponding tree-vertex of
color i − 1. We assign the labels mi, mi+1, . . ., mi+l, t to it so that the edge linking the tree-vertices of
colors i and i − 1 is labeled mi, the edge linking the tree-vertices of colors i + 1 and i is labeled mi+1,
and so on, the edge linking the tree-vertices of colors i + l and i + l − 1 is labeled mi+l and the edge
linking the tree-vertices of colors i + l and i − 1 is labeled t. In what follows, we use the term u-color
numeric label of the considered l + 2-gon for mu (i ≤ u ≤ i+ l) and i− 1-color numeric label for t.
Finally, we allocate a symbolic label from β1, . . . , βn to each polygon and each of the remaining half
edges (1-gons) such that all the j-gons (1 ≤ j ≤ r) with numeric labels corresponding to the same r-gon
of κ have the same symbolic label. At this stage, we remove all the numeric labels.

Example 5 We apply the construction above to the partitioned cactus depicted on Figure 2. The definition
of the set of tree-vertices and their connections by polygons is shown on Figure 4. The final step of
symbolic labeling leads to the cactus on the left hand side of Figure 3.

Lemma 3 The construction above defines a cactus tree τ in T (a) for some a verifying the properties
n =

∑
t at and

∑
t;i/∈t at = pi − δi,1.
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Fig. 4: Application of the bijective construction to the partitioned cactus of Figure 2

4 Proof of the bijection
4.1 Injectivity
Assume τ is a cactus tree of T (a) obtained by the construction of Section 3. We show that at most one
2r-tuple (α1, . . . , αr, π1, . . . , πr) (or equivalently at most one partitioned cactus) is mapped to τ . To this
purpose we show by induction that the numeric labels removed at the end of the procedure can be uniquely
recovered.
First step is to notice that 1 is necessarily (one of) the numeric label(s) of the leftmost child of the root of
τ (of color 1).
Now assume that the u-color (resp. 1-color) numeric labels 1, . . . , i− 1 (resp. 1, . . . , i) have been recov-
ered for u = 2, 3, . . . , r and i < n.

• Let β be the symbolic label of the polygon in τ with recovered numeric 1-color label i (this polygon
is by assumption connected to a vertex of color 1). Then, β is also the symbolic label of exactly
one polygon (possibly the one with recovered numeric 1-color label i) connected to a vertex v of
color r. But as noticed in Lemma 1, if the 1-color numeric label is i, the r-color numeric label
corresponding to the same r-gon in the initial partitioned cactus is α−1r (i). As a result, α−1r (i)
is the numeric r-color label of the polygon connected to v. The blocks of πr are stable by αr
so αr(i) belongs to the same block of πr. According to the order of the r-color labels around v,
i = α−1r αr(i) is necessarily the r-color numeric label of the leftmost polygon connected to v with
non recovered r-color label.

• Assume that we have recovered the polygon with u-color label i (2 < u). The index of the corre-
sponding black r-gon in the partitioned cactus is necessarily αuαu+1 . . . αr(i). Integers
αuαu+1 . . . αr(i) and αu−1αuαu+1 . . . αr(i) belong to the same block of πu−1. As the (u − 1)-
color labels have been sorted according to α−1r . . . α−1u−1 around the vertices of color (u − 1), i is
necessarily the (u− 1)-color numeric label of the leftmost polygon (for which such a label has not
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been recovered yet) around the vertex of color u−1 incident to the polygon with the same symbolic
label as the one incident to the polygon of u-color label i.

• Finally assume that we have recovered the polygon with 2-color label i. The index of the corre-
sponding black r-gon in the partitioned cactus is necessarily α2α3 . . . αr(i). We use the symbolic
label to identify the vertex v of color 1 incident to the polygon of 1-color label α2α3 . . . αr(i). With
a similar argument as above i+1 = α1α2α3 . . . αr(i) is necessarily the 1-color label of the leftmost
polygon (with no recovered 1-color numeric label) incident to v.

The knowledge of τ uniquely determines the numeric labels of the polygons. But it is easy to see that
combining symbolic and numeric labels uniquely determines α−1r , . . . , α−1r . . . α−1u , . . . , α−1r . . . α−12 and
the αi themselves. Then the knowledge of the numeric labels around the same vertices of τ uniquely
determines the partitions π1, . . . , πr. As a result, the partitioned cactus is uniquely determined.

Example 6 We apply this inverse procedure to the cactus tree on the right hand side of Figure 3. Figure 5
shows how the numeric labels are iteratively recovered. The resulting numerically labeled cactus tree cor-
responds to the cactus on the right hand side of Figure 1 with partitions π1 = {1, 2, 3}, π2 = {1, 3}{2},
π3 = {1, 2}{3} and π4 = {1, 2, 3}.
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Fig. 5: Application of the inverse procedure to the cactus tree on the right hand side of Figure 3.

4.2 Surjectivity

We show that the reconstruction procedure defined in Section 4.1 always ends with a valid output. The
procedure would be interrupted before the full recovery of the numeric labels if and only if no leftmost
polygon around a vertex v of color i with non recovered i-color numeric label is available. Two cases are
to be considered.

(i) If v is not the root, this situation is clearly impossible. If the number of polygons incident to v is
c, we traverse exactly c times the vertex v to allocate i-color labels (the symbolic labels link the
polygons around v to exactly c polygons incident to vertices of color i+ 1).
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(ii) If v is the root, then an additional difficulty occurs as 1-color label 1 is recovered out of the main
procedure. However for any vertex u of color j + 1 in the cactus tree, the rightmost polygon
connecting it to a vertex w of color j is obviously the last one to be recovered. The symbolic
label of this polygon naturally links u and w. As a result, all the j-color labels of w are recovered
necessarily after all the j + 1 - labels are recovered around u. This extends to all the children of w
and the vertex of color j + 1 in the rightmost polygon of w if any. Since v is the root all the 1-color
labels of v are recovered necessarily after all the labels of all the other vertices in the cactus tree are
recovered. Finally the procedure ends in the proper way.

5 Equivalence of the main theorem and Jackson’s formula

A natural question is the equivalence between the formula of Theorem 1 and Jackson’s formula of [6]
addressing the factorizations of γn. The result of Jackson for the factorizations of the long cycle can be
stated as follows:

1

(n!)r−1
∑

p1,p2,...,pr

knp1,p2,...,pr

∏

1≤i≤r
xpii = φ



∏

1≤i≤r
xi


 ∏

1≤i≤r
(1 + xi)−

∏

1≤i≤r
(xi)



n−1
 (6)

where φ is the mapping defined by φ(
∏
i x

pi
i ) =

∏
i

(
xi

pi

)
and extended linearly. One can show that this

formula is equivalent to:

1

(n!)r−1
∑

p1,p2,...,pr

knp1,p2,...,pr

∏

1≤i≤r
xpii =

∑

p1,p2,...,pr

∑

a

(
n− 1

a

) ∏

1≤i≤r

(
xi
pi

)
(7)

where the sequences a = (at) of 2r − 1 non-negative integers (at) satisfy
∑
t at = n− 1,

∑
t;l∈t at =

pl − 1 for 1 ≤ l ≤ r.
For r = 2 the equivalence is obvious as in Equation (1) the only sequence a fitting the conditions is
a1 = p2, a2 = p1 − 1, a1,2 = n+ 1− p1 − p2 and ∆2(a) = p2 in this case. The summand for indices p1
and p2 in our formula reads

(n− 1)! p2

(
n

p1 − 1, p2

)
= n!

(
n− 1

p1 − 1, p2 − 1

)
(8)

This shows that the two results are identical in this case.
For r = 3, the determinant is ∆3(a) = p2p3 − a3(p3 − a1). For given p1, p2 and p3 the equivalence
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between the two formulas can be shown in two steps. First we have:

(p2p3 − a3(p3 − a1))

(
n

a1, a2, a3, p1 − 1− a2 − a3, p2 − a3 − a1, p3 − a1 − a2

)

= ((p2 − a3 − a1)(p3 − a2 − a1) + a1(p2 + p3 − a1) + a2(p2 − a3 − a1))

×
(

n

a1, a2, a3, p1 − 1− a2 − a3, p2 − a3 − a1, p3 − a1 − a2

)

= n(n+ 2 + a1 + a2 + a3 − p1 − p2 − p3)

×
(

n− 1

a1, a2, a3, p1 − 1− a2 − a3, p2 − 1− a3 − a1, p3 − 1− a1 − a2

)

+ n(p1 − a3 − a2)

(
n− 1

a1, a2 − 1, a3, p1 − a2 − a3, p2 − 1− a3 − a1, p3 − a1 − a2

)

+ n(p2 + p3 − a1)

(
n− 1

a1 − 1, a2, a3, p1 − 1− a2 − a3, p2 − a3 − a1, p3 − a1 − a2

)

Then summing over a1, a2, a3 with the proper shifts of variable to get the same multinomial coefficient
brings us to

(n− 1)!2
∑

a1,a2,a3

(p2p3 − a3(p3 − a1))

(
n

a1, a2, a3, p1 − 1− a2 − a3, p2 − a3 − a1, p3 − a1 − a2

)

= n!2
∑

a1,a2,a3

(
n− 1

a1, a2, a3, p1 − 1− a2 − a3, p2 − 1− a3 − a1, p3 − 1− a1 − a2

)

that proves the equivalence of the two formulas also in the case r = 3.
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Kazhdan-Lusztig basis elements
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Abstract. For irreducible characters {χλq |λ ` n} and induced sign characters {ελq |λ ` n} of the Hecke algebra
Hn(q), and Kazhdan-Lusztig basis elements C′

w(q) with w avoiding the pattern 312, we combinatorially interpret
the polynomials χλq (q

`(w)
2 C′

w(q)) and ελq (q
`(w)

2 C′
w(q)). This gives a new algebraic interpretation of q-chromatic

symmetric functions of Shareshian and Wachs. We conjecture similar interpretations and generating functions corre-
sponding to other Hn(q)-traces.

Résumé. Pour les caractères irreductibles {χλq |λ ` n} et les caractères induits du signe {ελq |λ ` n} du algèbre de
Hecke, et les élémentsC′

w(q) du base Kazhdan-Lusztig avecw qui évite le motif 312, nous interprétons les polinômes
χλq (q

`(w)
2 C′

w(q)) et ελq (q
`(w)

2 C′
w(q)) de manière combinatorielle. Cette donne une nouvelle interprétation aux fonc-

tionnes symétriques q-chromatiques de Shareshian et Wachs. Nous conjecturons des interprétations semblables et des
foncionnes generatrices qui correspondent aux autres applications centrales de Hn(q).

Keywords: Hecke algebra, trace, Kazhdan-Lusztig basis, tableau

1 Introduction
The symmetric group algebra CSn and the (Iwahori-) Hecke algebra Hn(q) have similar presentations
as algebras over C and C[q

1
2 , q¯

1
2 ] respectively, with multiplicative identity elements e and Te, generators

s1, . . . , sn−1 and Ts1 , . . . , Tsn−1
, and relations

s2
i = e T 2

si = (q − 1)Tsi + qTe for i = 1, . . . , n− 1,

sisjsi = sjsisj TsiTsjTsi = TsjTsiTsj for |i− j| = 1,

sisj = sjsi TsiTsj = TsjTsi for |i− j| ≥ 2.

Analogous to the natural basis {w |w ∈ Sn} of CSn is the natural basis {Tw |w ∈ Sn} of Hn(q),
where we define Tw = Tsi1 · · ·Tsi` whenever si1 · · · si` is a reduced expression for w in Sn. We call
` the length of w and write ` = `(w). (See [Hum90].) The specialization of Hn(q) at q

1
2 = 1 is

isomorphic to CSn. In addition to the natural bases of CSn and Hn(q), we have the (signless) Kazhdan-
Lusztig bases [KL79] {C ′w(1) |w ∈ Sn}, {C ′w(q) |w ∈ Sn}, defined in terms of certain Kazhdan-Lusztig

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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polynomials {Pu,v(q) |u, v ∈ Sn} in N[q] by

C ′w(1) =
∑

v≤w
Pv,w(1)v, C ′w(q) = q−1

e,w

∑

v≤w
Pv,w(q)Tv, (1)

where ≤ denotes the Bruhat order and we define qv,w = q
`(w)−`(v)

2 . (See, e.g., [BB96].)
Representations of CSn and Hn(q) are often studied in terms of characters. The C-span of the Sn-

characters is called the space of Sn-class functions, and has dimension is equal to the number of integer
partitions of n. (See [Sag01].) Three well-studied bases are the irreducible characters {χλ |λ ` n},
induced sign characters {ελ |λ ` n}, and induced trivial characters {ηλ |λ ` n}, where λ ` n denotes that
λ is a partition of n. The C[q

1
2 , q¯

1
2 ]-span of theHn(q)-characters, called the space ofHn(q)-traces, has the

same dimension and analogous character bases {χλq |λ ` n}, {ελq |λ ` n}, {ηλq |λ ` n}, specializing at
q

1
2 = 1 to the Sn-character bases. Each of the two spaces has a fourth basis consisting of monomial class

functions {φλ |λ ` n} or traces {φλq |λ ` n}, and a fifth basis consisting of power sum class functions
{ψλ |λ ` n} or traces {ψλq |λ ` n}. These are defined via the inverse Kostka numbers {K−1

λ,µ |λ, µ ` n}
and the numbers {L−1

λ,µ |λ, µ ` n} of row-constant Young tableaux of shape λ and content µ by

φλ =
def

∑

µ

K−1
λ,µχ

µ, φλq =
def

∑

µ

K−1
λ,µχ

µ
q , ψλ =

def

∑

µ

Lλ,µφ
µ, ψλq =

def

∑

µ

Lλ,µφ
µ
q . (2)

These functions are not characters. (See [BRW96], [Hai93], [Ste92].) In each space, the five bases
are related to one another by the same transition matrices which relate the Schur, elementary, complete
homogeneous, monomial, and power sum bases of the homogeneous degree n symmetric functions. (See,
e.g., [Sta99].)

It is known that irreducible Sn-characters {χλ |λ ` n} satisfy χλ(w) ∈ Z for all w ∈ Sn. Thus
for any integer linear combination θ of these and any element z ∈ ZSn, we have θ(z) ∈ Z as well. In
some cases, we may associate sets R, S to the pair (θ, z) to combinatorially interpret the integer θ(z) as
(−1)|S||R|. We summarize known results and open problems in the following table.

θ θ(w) ∈ N?
interpretation of

θ(w) as (−1)|S||R|? θ(C ′w(1)) ∈ N?
interpretation of

θ(C ′w(1)) as |R| for
w avoiding 312?

ηλ yes yes yes yes
ελ no yes yes yes
χλ no open yes yes
ψλ yes yes yes yes
φλ no yes conj. by Stembridge, Haiman open

For known combinatorial interpretations of θ(w), see [BRW96]. The number χλ(w) may be computed
by the well-known algorithm of Murnaghan and Nakayama. (See, e.g., [Sta99].) Otherwise, χλ(w) has
no conjectured expression of the type stated above. Interpretations of θ(C ′w(1)) are not known for general
w ∈ Sn, but nonnegativity follows from work of Haiman [Hai93] and Stembridge [Ste91]. Interpreta-
tions of ηλ(C ′w(1)), ελ(C ′w(1)), χλ(C ′w(1)) for w avoiding the pattern 312 follow via straightforward
arguments from results of various authors, notably Gasharov [Gas96], Karlin-MacGregor [KM59], Lind-
ström [Lin73], Littlewood [Lit40], Merris-Watkins [MW85], Stanley-Stembridge [SS93], [Ste91]. These
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will be discussed in Section 3. There is no conjectured combinatorial interpretation of φλ(C ′w(1)), even
for w avoiding the pattern 312 although interpretations have been given for particular partitions λ by
Stembridge [Ste92] and several of the authors [CSS11].

It is known that irreducible Hn(q)-characters {χλq |λ ` n} satisfy χλq (Tw) ∈ Z[q] for all w ∈ Sn.
Thus for any integer linear combination θq of these and any element z ∈ spanZ[q]{Tw |w ∈ Sn}, we
have θq(z) ∈ Z[q] as well. In some cases, we may associate sequences (Sk)k≥0, (Rk)≥0 of sets to the
pair (θq, z) to combinatorially interpret θq(z) as

∑
k(−1)|Sk||Rk|qk. We summarize known results and

open problems in the following table.

θq θq(Tw) ∈ N[q]?
interpretation of
θq(Tw) as∑

k(−1)|Sk||Rk|qk?
θ(qe,wC

′
w(q)) ∈ N[q]?

interpretation of
θq(qe,wC

′
w(q)) as∑

k |Rk|qk for
w avoiding 312?

ηλq no open yes conj. in Section 4
ελq no open yes stated in Section 4
χλq no open yes stated in Section 4
ψλq no open conj. by Haiman conj. in Section 4
φλq no open conj. by Haiman open

The polynomial χλq (Tw), and therefore all polynomials θq(Tw), may be computed via a q-extension of
the Murnaghan-Nakayama algorithm. (See, e.g., [KV84], [KW92], [Ram91].) Otherwise, θλq (w) has no
conjectured expression of the type stated above. Interpretations of θq(qe,wC ′w(q)) are not known for gen-
eralw ∈ Sn, but results concerning containment in N[q] follow principally from work of Haiman [Hai93].
For w avoiding the pattern 312, a formula for ελq (qe,wC

′
w(q)) is given by the authors in Section 4. Work

of Gasharov [Gas96] and Shareshian-Wachs [SW12] then implies a formula for χλq (qe,wC
′
w(q)). Conjec-

tures for ψλq (qe,wC
′
w(q)) are due to the authors and Shareshian-Wachs. These results and conjectures will

also be discussed in Section 4. There is no conjectured combinatorial interpretation of φλq (qe,wC
′
w(q)),

even for w avoiding the pattern 312.
Another way to understand the evaluations θ(w) is to define a generating function Immθ(x) in the

polynomial ring C[x1,1, . . . , xn,n] for {θ(w) |w ∈ Sn}. Similarly, we may define a generating func-
tion Immθq (x) in a certain noncommutative ring A(n; q) for {θ(Tw) |w ∈ Sn}. In some cases these
generating functions have simple forms. We summarize known results in the following tables.

θ nice expression for Immθ(x)?

ηλ yes

ελ yes

χλ open

ψλ yes

φλ open

θq nice expression for Immθq (x)?

ηλq yes

ελq yes

χλq open

ψλq conj. in Section 2

φλq open

Nice expressions for Immηλ(x) and Immελ(x) are due to Littlewood [Lit40] and Merris-Watkins [MW85],
and a nice expression for Immψλ(x) follows immediately from the usual definition of ψ. An expression
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for Immχλ(x) as a coefficient of a generating function in two sets of variables was given by Goulden-
Jackson [GJ92]. There is no conjectured nice formula for Immφλ(x), although a nice formula for par-
ticular partitions λ was stated by Stembridge [Ste92]. These results will be discussed in Section 2. Nice
expressions for Immηλq

(x) and Immελq
(x) are due to the fourth author and Konvalinka [KS11], as is an

expression for Immχλq
(x) as a coefficient in a generating function in two sets of variables. A nice ex-

pression for Immψλq
(x) is conjectured by the authors. These results and conjecture will be discussed in

Section 2.
In Section 2 we discuss known descriptions of the class functions in terms of generating functions in

the ring C[x1,1, . . . , xn,n] and in a certain quantum analog A(n; q) of C[x1,1, . . . , xn,n] known as the
quantum matrix bialgebra. We also give a combinatorial interpretation of the entries of the transition
matrices relating certain bases of A(n; q). In Section 3 we give combinatorial interpretations, using
results in the previous section. In Section 4 we give new descriptions of the class functions in terms of
generating functions in the rings C⊗Λ and C[q

1
2 , q¯

1
2 ]⊗Λ of symmetric functions having coefficients in C

and C[q
1
2 , q¯

1
2 ]. Finally, in Section 5 we draw connections to posets and to the chromatic quasisymmetric

functions of Shareshian and Wachs.

2 Generating functions for θ(w) and θq(Tw) when θ is fixed
For a fixed Sn-class function θ, we create a generating function for {θ(w) |w ∈ Sn} by writing x =
(xi,j), C[x] =

def
C[x1,1, . . . , xn,n], and defining

Immθ(x) =
def

∑

w∈Sn
θ(w)x1,w1

· · ·xn,wn ∈ C[x].

We call this polynomial the θ-immanant. The sign character (w 7→ (−1)`(w)) immanant and trivial
character (w 7→ 1) immanant are the determinant and permanent. Nice formulas for the ελ-immanants
and ηλ-immanants employ determinants and permanents of submatrices of x,

xI,J =
def

(xi,j)i∈I,j∈J , I, J ⊂ [n] =
def
{1, . . . , n}.

In particular, for λ = (λ1, . . . , λr) ` n we have Littlewood-Merris-Watkins identities [Lit40], [MW85]

Immελ(x) =
∑

(I1,...,Ir)

det(xI1,I1) · · · det(xIr,Ir ), Immηλ(x) =
∑

(I1,...,Ir)

per(xI1,I1) · · · per(xIr,Ir ), (3)

where the sums are over all sequences of pairwise disjoint subsets of [n] satisfying |Ij | = λj . A formula
for the ψλ-immanant relies upon a sum over all permutations of cycle type λ,

Immψλ(x) = zλ
∑

w
cyc(w)=λ

x1,w1
· · ·xn,wn ,

where zλ is the product 1α12α2 · · ·nαnα1! · · ·αn!, and λ has αi parts equal to i for i = 1, . . . , n. No
such nice formulas are known for the χλ-immanants or φλ-immanants in general, although we do have a
formula [Ste92, Thm. 2.8] for Immφλ(x) when λ1 = · · · = λr = k,

Immφkr (x) =
∑

(I1,...,Ik)

det(xI1,I2) det(xI2,I3) · · · det(xIk,I1),
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where the sum is over all sequences of pairwise disjoint subsets of [n] = [kr] satisfying |Ij | = r.
For a fixed Hn(q)-trace θq , we create a generating function for {θq(Tw) |w ∈ Sn} as before, but

interpreting polynomials in x = (xi,j) as elements of the quantum matrix bialgebra A(n; q), the non-
commutative C[q

1
2 , q¯

1
2 ]-algebra generated by n2 variables x = (x1,1, . . . , xn,n), subject to the relations

xi,`xi,k = q
1
2xi,kxi,`, xj,kxi,` = xi,`xj,k

xj,kxi,k = q
1
2xi,kxj,k xj,`xi,k = xi,kxj,` + (q

1
2 − q¯1

2 )xi,`xj,k,
(4)

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n. As a C[q
1
2 , q¯

1
2 ]-module, A(n; q) has a basis of

monomials x`1,m1
· · ·x`r,mr in which index pairs appear in lexicographic order. The relations (4) allow

one to express other monomials in terms of this natural basis.
As a generating function for {θq(Tw) |w ∈ Sn}, we define

Immθq (x) =
def

∑

w∈Sn
θq(Tw)q−1

e,wx1,w1
· · ·xn,wn

in A(n; q), and call this the θq-immanant. The Hn(q) sign character (Tw 7→ (−1)`(w)) immanant and
trivial character (Tw 7→ q`(w)) immanant are called the quantum determinant and quantum permanent,

detq(x) =
∑

w∈Sn
(−q¯1

2 )`(w)x1,w1 · · ·xn,wn , perq(x) =
∑

w∈Sn
(q

1
2 )`(w)x1,w1 · · ·xn,wn .

Specializing A(n; q), detq(x), and perq(x) at q
1
2 = 1, we obtain the commutative polynomial ring C[x]

and the classical determinant det(x) and permanent per(x).
Nice formulas for the ελq -immanants and ηλq -immanants employ quantum determinants and quantum

permanents of submatrices of x. In particular, the fourth author and Konvalinka [KS11, Thm. 5.4] proved
quantum analogs of the Littlewood-Merris-Watkins identities in (3),

Immελq
(x) =

∑

(I1,...,Ir)

detq(xI1,I1) · · · detq(xIr,Ir ), Immηλq
(x) =

∑

(I1,...,Ir)

perq(xI1,I1) · · · perq(xIr,Ir ), (5)

where the sums are as in (3).
To state a nice form for the ψλq -immanant, we introduce the following definitions. Given a sequence

c = (i1, . . . , ik) of distinct elements of [n] with i1 = min{i1, . . . , ik}, define the element d(i1,...,ik)(x) of
A(n; q) to be the sum of all cyclic rearrangements of the monomial xi1,i2xi2,i3 · · ·xik,i1 , each weighted
by qj−(k+1)/2, where xi1,i2 appears in position j,

dc(x) = q¯
(k−1)

2 xi1,i2xi2,i3 · · ·xik,i1 + q¯
(k−3)

2 xik,i1xi1,i2 · · ·xik−1,ik + · · ·+ q
(k−1)

2 xi2,i3 · · ·xik,i1xi1,i2 .

For w ∈ Sn having cycle type λ = (λ1, . . . , λr), define the polynomial gw(x) to be the sum, over all
cycle decompositions (c1, . . . , cr) ofw with |cj | = λj , of dc1(x) · · · dcr (x). For example, the permutation
w = (1, 4, 3)(2, 7)(5, 6) = (1, 4, 3)(5, 6)(2, 7) with its (exactly) two admissible cycle decompositions
leads to the element gw(x) =

(q−1x1,4x4,3x3,1 + x3,1x1,4x4,3 + qx4,3x3,1x1,4)(q¯
1
2x2,7x7,2 + q

1
2x7,2x2,7)(q¯

1
2x5,6x6,5 + q

1
2x6,5x5,6)+

(q−1x1,4x4,3x3,1 + x3,1x1,4x4,3 + qx4,3x3,1x1,4)(q¯
1
2x5,6x6,5 + q

1
2x6,5x5,6)(q¯

1
2x2,7x7,2 + q

1
2x7,2x2,7).
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Conjecture 2.1 Fix λ = (λ1, . . . , λr) ` n. Then in A(n; q) we have Immψλq
(x) =

∑

w
cyc(w)=λ

gw(x).

For example, when n = 5 and λ = (3, 2), we represent each permutation having cycle type (3, 2) as a
product of a 3-cycle with least letter written first and a 2-cycle with least letter written first, (1, 2, 3)(4, 5),
(1, 4, 2)(3, 5), . . . , (3, 5, 4)(1, 2), and we have

Immψ32
q

(x) = (q−1x1,2x2,3x3,1 + x3,1x1,2x2,3 + qx2,3x3,1x1,2)(q¯
1
2x4,5x5,4 + q

1
2x5,4x4,5)

+ (q−1x1,4x4,2x2,1 + x2,1x1,4x4,2 + qx4,2x2,1x1,4)(q¯
1
2x3,5x5,3 + q

1
2x5,3x3,5)

+ · · ·+ (q−1x3,5x5,4x4,3 + x4,3x3,5x5,4 + qx5,4x4,3x3,5)(q¯
1
2x1,2x2,1 + q

1
2x2,1x1,2).

No such nice formulas are known for the χλq - or φλq - immanants.
To obtain values of ελq (Tw) and ηλq (Tw) from (5), one must use the relations (4) to expand in the

natural basis of (the zero-weight space span{x1,w1
· · ·xn,wn |w ∈ Sn} of) A(n; q). For this purpose,

it is helpful to combinatorially interpret the coefficients arising as entries in the transition matrix relating
the bases Bu = {xu1,v1 · · ·xun,vn | v ∈ Sn} and the natural basis {x1,w1 · · ·xn,wn |w ∈ Sn}. These
were obtained by Lambright and the fourth author in [LS10]. To combinatorially interpret the evaluations
{ελq (qe,wC

′
w(q)) |λ ` n} when w avoids the pattern 312, we prove a stronger result.

Theorem 2.2 Fix u,w ∈ Sn with u ≤ w, and let si1 · · · si` be the right-to-left lexicographically greatest
reduced expression for u. Choose an index k ≤ `+ 1 and define u′ = sik−1

· · · si1u, w′ = sik−1
· · · si1w.

Then we have
xu1,w1

· · ·xun,wn =
∑

v∈Sn
tu,w′,v(q

1
2 − q¯1

2 )xu′1,v1 · · ·xu′n,vn ,

where {tu,w′,v(q) | v ∈ Sn} are polynomials in N[q]. Moreover, the coefficient of qb in tu,w′,v(q) is equal
to the number of sequences (π(0), . . . , π(k−1)) of permutations satisfying

1. π0 = w, π(k−1) = v,

2. π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , k − 1,

3. π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1),

4. π(j) = π(j−1) for exactly b values of j.

Proof: Omitted. 2

We may think of each sequence (π(0), . . . , π(k−1)) in the above proof as a (k − 1)-step walk from w to
v in the weak order on Sn. After visiting π(j) ∈ Sn, we may either revisit this permutation or move to
sijπ

(j), with the latter option being mandatory if sij is a left ascent for π(j).

3 Descending star networks and interpretations of class functions
Call a directed planar graph G a planar network of order n if it is acyclic and may be embedded in a
disc so that 2n boundary vertices labeled clockwise as source 1, . . . , source n (with indegrees of 0) and
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sink n, . . . , sink 1 (with outdegrees of 0). In figures, we will draw sources on the left and sinks on the
right, implicitly labeled 1, . . . , n from bottom to top. Given a planar network G, define the path matrix
B = B(G) = (bi,j) of G by

bi,j = number of paths in G from source i to sink j. (6)

It is known that the path matrix of any planar network is totally nonnegative (TNN), i.e., that every minor
of this matrix is nonnegative. This fact is known as Lindström’s Lemma.

Call a sequence π = (π1, . . . , πn) of source-to-sink paths in a planar network a bijective path family
if for some w ∈ Sn with one-line notation w1 · · ·wn, each component path πi begins at source i and
terminates at sink wi. We will say also that π has type w. Call a planar network a bijective skeleton if it
is a union of n source-to-sink paths. Clearly a bijective path family can cover an entire planar network G
only ifG is a bijective skeleton. For [a, b] a subinterval of [n], letG[a,b] be the bijective skeleton consisting
of a− 1 horizontal edges, a “star” of b− a+ 1 edges from sources a, . . . , b to an intermediate vertex, and
b−a+ 1 more edges from this vertex to sinks a, . . . , b, and n− b more horizontal edges. For n = 4, there
are seven such networks: G[1,4], G[2,4], G[1,3], G[3,4], G[2,3], G[1,2], G[1,1] = · · · = G[4,4], respectively,

.

Define GI ◦ GJ to be the concatenation of planar networks GI and GJ , and consider a sequence
([c1, d1], . . . , [cr, dr]) of subintervals of [n] satisfying c1 > · · · > cr and d1 > · · · > dr, and the
concatenation G[c1,d1] ◦ · · · ◦G[cr,dr] of corresponding star networks. For n = 4, these are

. (7)

For each such planar network G, we define a related planar network F by modifying G as follows. For
i = 1, . . . , r − 1, if the intersection [ci+1, di+1] ∩ [ci, di] has cardinality k > 1, then collapse the k paths
from the central vertex ofG[ci+1,di+1] to the central vertex ofG[ci,di], creating a single path between these
vertices. Call F a descending star network. For n = 4, the decending star networks are

. (8)

Proposition 3.1 There are 1
n+1

(
2n
n

)
descending star networks of order n.

Proof: (Idea.) Let F be the descending star network which corresponds as before (7) to the concatenation
G = G[c1,d1] ◦ · · · ◦G[cr,dr]. Modify G to create the related network

G′=
def
G[c1,d1] ◦G[c1,d1]∩[c2,d2] ◦G[c2,d2] ◦ · · · ◦G[cr−1,dr−1] ◦G[cr−1,dr−1]∩[cr,dr] ◦G[cr,dr]

by insertingG[ci,di]∩[ci+1,di+1] betweenG[ci,di] andG[ci+1,di+1] for i = 1, . . . , r−1. Now visually follow
paths from sources to sinks, passing “straight” through each intersection, to complete a bijection to 312-
avoiding permutations in Sn. For example, when n = 4 and F corresponds to G = G[2,4] ◦ G[1,3], we
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construct G′ = G[2,4] ◦G[2,3] ◦G[1,3] and obtain the 312-avoiding permutation w = w(F ) = 3421:

F = , G = , G′ = 3

4

2

1

4

3

2

1

, w =

(
1234

3421

)
.

�
For each 312-avoiding permutation w ∈ Sn, let Fw denote the descending star network corresponding
to w by the bijection in the proof of Proposition 3.1. Every descending star network Fw is a bijective
skeleton, and for every v ≤ w in the Bruhat order, there is exactly one bijective path family π of type v
which covers Fw.

In a planar network G of order n, the source-to-sink paths have a natural partial order Q = Q(G). If πi
is a path originating at source i, and ρj is a path originating at source j, then we define πi <Q ρj if i < j
and πi and ρj never intersect. Observe that these conditions imply the index of the sink of πi to be less
than the index of the sink of ρj . Let P (G) be the subposet of Q(G) induced by paths whose source and
sink indices are equal. For each descending star network Fw, the poset P (Fw) has exactly n elements:
there is exactly one path from source i to sink i, for i = 1, . . . , n.

To combinatorially interpret evaluations of Sn-class functions and Hn(q)-traces, we will fill (French)
Young diagrams with path families (π1, . . . , πn) covering a descending star network Fw, and will call the
resulting structures F -tableaux. If an Fw-tableau U contains a path family π of type v, then we also say
that U has type v. We say that an Fw-tableau U has shape λ for some partition λ = (λ1, . . . , λr) if it has
λi cells in row i for all i. If U has λi cells in column i for all i, we say that U has shape λ>. In this case
we define λ> to be the partition whose ith part is equal to the number of cells in row i of U . Let L(U)
and R(U) be the Young tableaux of integers obtained from U by replacing paths π1, . . . , πn with their
corresponding source and sink indices, respectively.

We define several properties of an F -tableau in terms of the poset Q and the tableaux L(U) and R(U).

1. Call U column-strict if whenever paths πi1 , . . . , πir appear from bottom to top in a column, then
we have πi1 <Q · · · <Q πir .

2. Call U row-semistrict if whenever paths πi1 , πi2 appear consecutively (from left to right) in a row,
we have πi1 <Q πi2 or πi1 is incomparable to πi2 in Q.

3. Call U cyclically row-semistrict if it is row-semistrict and the condition above applies also to paths
πi1 , πi2 appearing last and first (respectively) in the same row.

4. Call U standard if it is column-strict and row-semistrict.

5. Call U cylindrical if for each row of L(U) containing indices i1, . . . , ik from left to right, the
corresponding row of R(U) contains i2, . . . , ik, i1 from left to right.

6. Call U row-closed if L(U) is row-strict (entries increase to the right) and if each row of R(U) is a
permutation of the corresponding row of L(U).

For some Sn-class functions θ, and all 312-avoiding permutations w, we may combinatorially interpret
θ(C ′w(1)) in terms of a star network Fw as follows.

Proposition 3.2 Let w avoid the pattern 312, and let Fw be the corresponding descending star network.
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1. ηλ(C ′w(1)) equals the number of row-semistrict Fw-tableaux of type e and shape λ. It also equals
the number of row-closed Fw-tableaux of shape λ.

2. ελ(C ′w(1)) equals the number of column-strict Fw-tableaux of type e and shape λ>.

3. χλ(C ′w(1)) equals the number of semistandard Fw-tableaux of type e and shape λ.

4. ψλ(C ′w(1)) equals the number of cyclically row-semistrict Fw-tableaux of type e and shape λ. It
also equals the number of cylindrical Fw-tableaux of shape λ.

5. For λ1 ≤ 2, φλ(C ′w(1)) equals zero if there exists a column-strict Fw-tableaux of type e and shape
µ ≺ λ; otherwise it equals the number of column-strict Fw-tableaux of type e and shape λ.

6. For λ = kr, φλ(C ′w(1)) equals the number of column-strict cylindrical Fw-tableaux of shape rk.

Proof: (Idea.) For w avoiding 312, the path matrix B = (bi,j) of Fw satisfies θ(C ′w(1)) = Immθ(B). 2

Haiman [Hai93] and Stembridge [Ste91] have shown that we have χλ(C ′w(1)) ≥ 0 for all λ ` n and all
w ∈ Sn. However, there is no conjectured combinatorial interpretation for χλ(C ′w(1)) unless w avoids
312. Haiman [Hai93] and Stembridge [Ste92] have also conjectured that we have φλ(C ′w(1)) ≥ 0 for all
λ ` n and all w ∈ Sn. There is no general conjectured combinatorial interpretation for φλ(C ′w(1)), even
in the case that w avoids 312, unless λ has the special form stated in Proposition 3.2.

4 Statistics on F -tableaux and interpretations of Hn(q)-traces
For θ an Sn-class function and w avoiding 312, Proposition 3.2 interprets θ(C ′w(1)) as the cardinality of
a set of certain Fw-tableaux. For each of these sets of Fw-tableaux, we define a statistic mapping tableaux
to nonnegative integers, and show (or conjecture) that θq(qe,wC ′w(q)) is a generating function for tableaux
on which the statistic takes the values k = 0, 1, . . . . In each case, our statistic is based upon the number
of inversions of a permutation in Sn. Specifically, let F be a descending star network, and let U be an
F -tableau containing path family π = (π1, . . . , πn) of type w. (Thus πi begins at source vertex i and
terminates at sink vertex wi for i = 1, . . . , n.) Let (πi, πj) be a pair of intersecting paths in F such that
πi appears in a column of U to the left of the column containing πj . Call (πi, πj) a left inversion in U
if we have i > j and a right inversion in U if we have wi > wj . Let INV(U) denote the number of left
inversions in U , and let RINV(U) denote the number of right inversions in U .

Proofs of the validity of the tableaux interpretations in Proposition 3.2 depend upon a relationship
between immanants and path matrices. To state a q-analog of this relationship, we define a map for each
n× n complex matrix B by

σB : A(n; q)→ C[q
1
2 , q¯

1
2 ]

x1,w1 · · ·xn,wn 7→ qe,wb1,w1 · · · bn,wn .

Proposition 4.1 Let θq be an Hn(q)-trace and let w ∈ Sn avoid the pattern 312. Then the path matrix
B of Fw satisfies θq(qe,wC ′w(q)) = σB(Immθq (x)).

Proof: Omitted. 2
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Theorem 4.2 Let w ∈ Sn avoid the pattern 312. For λ ` n we have

ελq (qe,wC
′
w(q)) =

∑
qINV(U), (9)

where the sum is over all column-strict Fw-tableaux U of type e and shape λ>. We also have

χλq (qe,wC
′
w(q)) =

∑
qINV(U), (10)

where the sum is over all standard Fw-tableaux U of type e and shape λ.

Proof: Omitted. The proof of (10) depends upon a result of Shareshian and Wachs [SW12]. 2

Let U be an F -tableau of shape λ = (λ1, . . . , λr) containing a path family π, and let Ui be the ith
row of U . Let U1 ◦ · · · ◦ Ur and Ur ◦ · · · ◦ U1 be the F -tableaux of shape n consisting of the rows of U
concatenated in increasing and decreasing order, respectively.

Conjecture 4.3 Let w ∈ Sn avoid the pattern 312. For λ ` n we have

ηλq (qe,wC
′
w(q)) =

∑
qRINV(U1◦···◦Ur), (11)

where the sum is over all row-closed Fw-tableaux U of shape λ. We also have

ψλq (qe,wC
′
w(q)) =

∑
qINV(Ur◦···◦U1), (12)

where the sum is over all cylindrical Fw-tableaux U of shape λ.

Haiman [Hai93] has shown that we have χλq (qe,wC
′
w(q)) ∈ N[q] for all λ ` n and all w ∈ Sn. He has

also conjectured that we have φλq (qe,wC
′
w(q)) ∈ N[q] for all λ ` n and all w ∈ Sn. There is no general

conjectured combinatorial interpretation for φλq (qe,wC
′
w(q)), even in the case that w avoids 312.

5 Generating functions for θ(C ′w(1)), θq(qe,wC ′w(q)) when w is fixed
For each w ∈ Sn, we define a symmetric generating function for values of θ(C ′w(1)) by

Xw =
∑

λ`n
ελ(C ′w(1))mλ ∈ Λn =

def
spanZ{mλ |λ ` n}. (13)

Expanding Xw in various bases of the space of homogeneous degree-n symmetric functions, including
the forgotten basis {fλ |λ ` n}, we have

Xw =
∑

λ`n
ηλ(C ′w(1))fλ =

∑

λ`n
χλ
>
(C ′w(1))sλ =

∑

λ`n
(−1)n−`(λ)ψλ(C ′w(1))

pλ
zλ

=
∑

λ`n
φλ(C ′w(1))eλ,

where `(λ) is the number of (nonzero) parts of λ.
The function Xw is related to the chromatic symmetric functions {XP |P a poset } of Stanley and

Stembridge [Sta95], [SS93]: if w avoids the pattern 312, then Xw is equal to the Stanley-Stembridge
chromatic symmetric functionXP (Fw). On the other hand, not all chromatic symmetric functionsXP can
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be expressed as Xw for appropriate w ∈ Sn, nor can all generating functions Xw be expressed as XP for
an appropriate poset P . Stanley and Stembridge [Sta95], [SS93] have conjectured that XP is elementary
nonnegative when P has no induced subposet isomorphic to the disjoint union (3 + 1) of a three element
chain and a single element. Call such a poset (3 + 1)-free. A special case of this conjecture is that
Xw is elementary nonnegative for w avoiding 312. Haiman [Hai93] conjectured that Xw is elementary
nonnegative for all w ∈ Sn.

For each w ∈ Sn, we define a Z[q]-symmetric generating function for values of θq(qe,wC ′w(q)) by

XTw =
∑

λ`n
ελq (qe,wC

′
w(q))mλ ∈ Z[q]⊗ Λn = spanZ[q]{mλ |λ ` n}. (14)

Expanding XTw in various bases of the homogeneous degree-n graded component of Z[q]⊗Λn, we have

XTw =
∑

λ`n
ηλq (qe,wC

′
w(q))fλ =

∑

λ`n
χλ
>
q (qe,wC

′
w(q))sλ =

∑

λ`n

ψλq (qe,wC
′
w(q))

(−1)n−`(λ)

pλ
zλ

=
∑

λ`n
φλq (qe,wC

′
w(q))eλ.

The function XTw specializes at q = 1 to Xw, and is related to the chromatic quasisymmetric functions
{XP,q |P a labeled poset } of Shareshian and Wachs [SW12], which specialize at q = 1 to XP . The
function XP,q is itself symmetric (i.e., it belongs to Z[q]⊗Λn) when P is (3+ 1)-free, (2+ 2)-free, and
labeled strategically. If w avoids the pattern 312, then by Theorem 4.2, XTw is equal to the Shareshian-
Wachs chromatic symmetric function XP (Fw),q , with each element of P (Fw) labeled according to the
source and sink of the path in Fw it represents. Again, not all chromatic symmetric functions XP,q can
be expressed as XTw for appropriate w ∈ Sn, nor can all generating functions XTw be expressed as
XP,q for an appropriate labeled poset P . Shareshian and Wachs [SW12] conjectured that XP,q belongs
to spanN[q]{eλ |λ ` n} when P is (3 + 1)-free, (2 + 2)-free, and labeled appropriately. By Theo-
rem 4.2, this is equivalent to the conjecture that XTw belongs to spanN[q]{eλ |λ ` n} for w avoiding 312.
Haiman [Hai93] conjectured that XTw belongs to spanN[q]{eλ |λ ` n} for all w ∈ Sn.
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Counting words with Laguerre polynomials

Jair Taylor
Department of Mathematics, University of Washington, Seattle, WA, USA

Abstract. We develop a method for counting words subject to various restrictions by finding a combinatorial inter-
pretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function
for k-ary words avoiding any vincular pattern that has only ones. We also give generating functions for k-ary words
cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as
well as the analogous results for compositions.

Résumé. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une
interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette
méthode pour trouver la série génératrice pour les mots k-aires évitant les motifs vinculars consistant uniquement
de uns. Nous présentons en suite les séries génératrices pour les mots k-aires évitant de façon cyclique les motifs
vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous
présentons aussi les résultats analogues pour les compositions.

Keywords: Laguerre polynomial, orthogonal polynomial, combinatorics on words, vincular pattern

1 Introduction
Define a factorization of a wordW to be an ordered list of words that, when concatenated, giveW . Given
a set of factoriations A and a weight w, we will define a power series fA,w(t), the associated Laguerre
series for A, in terms of the generalized Laguerre polynomials with parameter α = −1. The key fact we
will use is the rule (Theorem 2.4)

fA1∗A2,w(t) = fA1,w(t) · fA2,w(t).

Here A1 and A2 are factorizations with disjoint alphabets and ∗ is a combinatorial operation that, roughly
speaking, interlaces the factorizations in A1 and A2. For example, if φ1 = (aaa)(a)(a) ∈ A1 and
φ2 = (bb)(b)(b)(b) ∈ A2 then φ = (aaabb)(babab) ∈ A1 ∗A2.

Let Φ denote the linear operator on R[t] mapping tk to k!. It has the integral representation Φ(f(t)) =∫∞
0
e−tf(t) dt. We will show in Proposition 2.3 that Φ(fA(t)) gives the weight of all words in A, which

we define to be factorizations with one or no parts. By applying Φ to a product of Laguerre series we may
count a variety of sets of restricted words, especially when the restrictions are on the length of runs of
particular letters. For example, the number of arrangements of the word “WALLAWALLA” with no LLL,
AAA or WW as consecutive subwords is

∫ ∞

0

e−t
(

1

24
t4 − t2 + t

)2(
1

2
t2 − t

)
dt = 1584

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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as we will see.
In Section 3, we describe the transformation T that turns certain ordinary generating functions into

Laguerre series. The transformation can be described in terms of the Laplace transform, and so can be
easily implemented in mathematical software packages. We can use T to determine the Laguerre series
for a variety of sets of factorizations A, and use them to derive formulas and generating functions to count
words that obey various restrictions.

In particular, we use this technique to analyze certain pattern avoidance problems. A vincular, or
generalized, pattern is a pattern with dashes such as 13-2. This is a generalization of classical permutation
patterns where the dashes are used to indicate that the numbers on either side are not required to be
adjacent, but all others are. We will only study patterns that have only ones, such as 111− 1− 11, so we
define pattern avoidance only in this context. A word W = s1 · · · sl, with each si in some alphabet S,
contains a vincular pattern τ = 1k1 - · · · -1kn if there is a subsequence ofW consisting ofm = k1+. . .+kn
identical letters of which the first k1 are consecutive, the next k2 are consecutive, and so on. Formally,
we require that there are indices 1 ≤ i1 < i2 < . . . < im ≤ l with si1 = . . . = sim and ij+1 − ij = 1
for j 6= k1, k1 + k2, . . . , k1 + . . . + kn−1. Otherwise, we say that W avoids τ . These patterns were first
studied by Babson and Steingrı́msson (Babson and Steingrı́msson, 2000), who showed that many statistics
of interest can be classified in terms of vincular patterns. The term vincular itself was coined by Claesson
in (Bousquet-Mélou et al., 2010), from the Latin vinculare, to bind. Words avoiding vincular patterns are
studied in (Bernini, Ferrari, and Pinzani, 2009; Burstein, 1998; Burstein and Mansour, 2003a; Heubach
and Mansour, 2009; Burstein and Mansour, 2003b; Mansour, 2006). In this paper we will study vincular
patterns with all ones, such as τ = 111-11. A word avoids this pattern if it does not have five appearances
of the same letter in the word, of which the first three and the last two are consecutive. Although such
patterns are useless in the context of permutations, where only the pattern 1 can be contained, they are
meaningful in the context of general words on the alphabet N where letters may be repeated.

In Section 4, we give a formula to calculate the generating function for the number of words avoiding
any such vincular pattern with only ones. This formula involves the use of the maps T and Φ, but these can
be easily calculated. For example, we can use Sage to compute the the generating function

∑
W xlen(W )

where the sum is taken over all ternary words W avoiding the pattern 11-11, where len(W ) is the length
of W , the number of letters counting multiplicity:

6x7 − 6x6 + 6x5 − 2x4 − 5x3 + 9x2 − 5x+ 1

16x4 − 32x3 + 24x2 − 8x+ 1
= 1 + 3x+ 9x2 + 27x3 + 78x4 + 222x5 + . . . .

Finally, we give a cyclic version of this result for the case of patterns 1m-1m- · · · -1m, where all runs of
ones are the same length. This gives the generating functions for words so that any cyclic permutation of
their letters avoids such a pattern. This generalizes a result of Burstein and Wilf (Burstein and Wilf, 1997)
who give the generating function for the number of words cyclically avoiding 1m.
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2 Laguerre series
Define the polynomials lk(t) by their generating function

∞∑

k=0

lk(t)xk = e
tx

1+x .

These polynomials are a form of Laguerre polynomial. Specifically, lk(t) = (−1)kL
(−1)
k (t) where

L
(α)
k (t) =

k∑

i=0

(−1)i
(
k + α

k − i

)
ti

i!

defines the generalized Laguerre polynomials. They have been found to have a number of interesting
combinatorial properties, beginning with their use by Even and Gillis to count generalized derangements
when α is set to 0 in (Even and Gillis, 1976). This was later extended by Foata and Zeilberger who use
α to keep track of the number of cycles (Foata and Zeilberger:i, 1988). For our purpose, we may assume
α = −1.

Define a word W on an alphabet S to be an ordered list s1 · · · sn of letters si ∈ S. A subword of W
is a word sksk+1 · · · sk+m. Note that we require the indices in a subword to be consecutive, while some
authors do not. A word using letters from the alphabet [k] = {1, 2, . . . , k} is called k-ary, and a word in
which no two adjacent letters are the same is called a Carlitz word, after Leonard Carlitz.

Our work is based on the following remarkable result of Ira Gessel (Gessel, 1989, Section 6), which he
found in the context of a generalization of rook theory. We present an unlabeled version.

Theorem 2.1. Let Φ be the linear functional on polynomials in t given by Φ(tn) = n!. Given nonnegative
integers k1, . . . , km, the number of Carlitz words on an alphabet of m symbols with the ith symbol used
ki times is

Φ

(∏

i

lki(t)

)
.

For example, in (Blom et al., 1998) the authors consider the “Mississippi Problem”. How many ar-
rangements of the letters in the word “MISSISSIPPI” have no adjacent letters the same? We can use the
preceding theorem to calculate this directly. There is one M , four I’s, four S’s, and two P ’s. So the
solution is

Φ(l1(t)l4(t)l4(t)l2(t)) =

∫ ∞

0

e−t
(
t
) ( 1

24
t4 − 1

2
t3 +

3

2
t2 − t

)2(
1

2
t2 − t

)
dt = 2016.

Using Theorem 2.1, it is easy to see combinatorially that

Φ(li(t)lj(t)) =





2 if i = j
1 if |i− j| = 1
0 if |i− j| > 1

(1)

and so the polynomials lk(t) are “almost” orthogonal with respect to Φ.
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Note that lk(t) is a polynomial of degree k; so the matrix of lk’s expanded into powers of t is triangular
with no zeroes on the diagonal, and so {lk}k forms a basis of R[t]. It is natural to ask, then, what is
the expansion of li(t)lj(t) in this basis? These are known as linearization coefficients. The linearization
coefficients of general Laguerre polynomials, with α indeterminate, is known (Foata and Zeilberger:i,
1988; Zeng, 1992), but we will need a combinatorial interpretation of the case α = −1. To give it, we
need a few more definitions.

Definition. A factorization φ is a finite, ordered list of nonempty words (φ1) · · · (φn), and φ1, . . . , φn are
the parts or factors of φ. If the concatenation of these words is a word W , we say that φ is a factorization
of W . We take the convention that the empty word has exactly one factorization, namely the empty
factorization which has no factors. Abusing notation, we identify a word W with the factorization (W )
in one part, and the empty word with the empty factorization, writing ∅ for both. We write par(φ) = n,
the number of factors, and len(φ) for the length of φ, that is, the length of the word W when φ is a
factorization of W .

For example, φ = (MISS)(IS)(IPPI) is a factorization of “MISSISSIPPI”, with par(φ) = 3 and
len(φ) = 11. Frequently, we will be interested in the factorization itself without thinking of it as a
factorization of a particular word. Rather, the spaces between the factors should be thought of as slots to
be filled with nonempty words.

Denote by ni,j,k the number of factorizations over the alphabet {a, b} with k parts and exactly i a’s
and j b’s so that each part is Carlitz. For example, n2,5,3 = 6: the possibilities are (bab)(bab)(b),
(babab)(b)(b) and the different permutations of these sets of factors.

Lemma 2.2. We have, for all i, j ∈ N,

li(t)lj(t) =
∑

k

ni,j,klk(t).

Proof. Note that if p(t) = a0 + a1t+ . . .+ ant
n is a polynomial and Φ(tmp(t)) = 0 for all m, then

a0m! + a1(m+ 1)! + . . .+ an(n+m)! = 0.

This is a homogenous linear recurrence relation with constant coefficients for the factorial sequence,
which is impossible unless a0 = a1 = . . . = an = 0 since it grows superexponentially. Since {lk(t)}k
forms a basis for R[t], if Φ(p(t)lk(t)) = 0 for all k then we can still conclude p(t) = 0. So it is enough to
show that

Φ (li(t)lj(t)lm(t)) = φ

(∑

k

ni,j,klk(t)lm(t)

)
.

We know that the left hand side counts the number of Carlitz arrangements of i a’s, j b’s, and m c’s,
while the right hand side gives the total number of pairs (φ,W ) where φ is a factorization in k parts with
i a’s and j b’s with each part Carlitz, and W is a Carlitz word with k x’s and m c’s. There is a simple
bijection between these sets. Given such a pair (φ,W ), we can get a Carlitz arrangement of i a’s, j b’s and
m c’s by replacing the ith x of W with the ith part of φ. For example, if φ = (ab)(bab) and W = cxcx,
we get the Carlitz word cabcbab. This process is reversible: given a Carlitz word on a, b, c we replace the
c’s by parentheses to make a factorization φ with only the letters a and b, and to get W we replace each
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maximal subword that does not contain c by a single x, getting a word with only c’s and x’s. For example,
given the word abcbcab, we get the pair W = xcxcx, and φ = (ab)(b)(ab). The maximality condition
guarantees that W will be Carlitz.

Let S be an alphabet, not necessarily finite, and let A be any set of factorizations of words on S. We
say that a word W is an allowed word of A if the factorization of W in one part (or zero for the empty
word) is in A. We think of A as some set of factorizations on S we are interested in investigating. For
example, in the above proof we might have defined A to be those factorizations of words on S = {a, b}
so that each part is Carlitz.

Definition. Let φ be a factorization of a word W on an alphabet S. For T ⊆ S and a word W on S, let
φ|T be the factorization created from φ whose parts are the maximal subwords in each part of φ that have
only letters in T listed in the same order they appeared in φ. The resulting factorization will have only
letters from T , with parts of φ possibly split up into multiple parts of φ|T . We call φ|T the restriction of
the factorization to T . For example, if S = {a, b} and T = {a}, then the restriction of the factorization
(aabba)(aab)(b)(aaab) to T is φ|T = (aa)(a)(aa)(aaa). If φ contains no letters from T , we define φ|T
to be the empty factorization.

Definition. Let A1 and A2 be two sets of factorizations so that the alphabets of symbols S1, S2 used in
A1 and A2, respectively, are disjoint. Let S = S1 ∪ S2, and denote by A1 ∗A2 the set of factorizations φ
of words on S so that φ|S1 ∈ A1 and φ|S2 ∈ A2.

Thus the factorizations in A1 ∗ A2 are obtained by interlacing the parts of factorizations in A1 and
A2. The factors of φ1 and φ2 must appear in the correct order in φ, but a factor of φ may be a word
that is concatenated from factors that alternate between φ1 and φ2. For example, if (a)(aa)(a) ∈ A1 and
(b)(bb) ∈ A2 then φ = (abaa)(abb) ∈ A1∗A2 since its restrictions to {a} and {b} are φ|{a} = (a)(aa)(a)
and φ|{b} = (b)(bb).

It is easy to see that ∗ is associative and commutative. Note also that A1, A2 ⊆ A1 ∗ A2 if A1 and
A2 contain the empty factorization. If φ ∈ A1, for example, then φ|S1

= φ ∈ A1 and φ|S2
= ∅ ∈ A2

when S1, S2 are the disjoint alphabets of A1, A2. The allowed words in A1 ∗A2 are often of interest; for
example, if we have singleton alphabets Si = {i} for i = 1, . . . , n, and Ai consists of those factorizations
with all parts having length one, then the factorizations in A1 ∗ · · · ∗ An are those so that each factor is
Carlitz, and the words of A1 ∗ · · · ∗An are exactly the Carlitz words.

Definition. Given a set of factorizations A on an alphabet S, a weight is a function w from A and all of
the restrictions of factorizations in A into a polynomial ring R[x1, x2, . . .] that commutes with restriction
in the sense that if φ ∈ A and T ⊆ S, then w(φ) = w(φ|T )w(φ|S\T ).

Note that in particular, if A = A1 ∗A2 for some sets of factorizations A1, A2 then w is also a weight on
A1 and A2. Also note that taking T to be empty forces w(∅) = 1. Typically we will take the weight w(φ)

to be a monomial xn1(φ)
1 x

n2(φ)
2 · · ·xnm(φ)

m where each ni(φ) is a statistic so that xni(φ)
i is multiplicative

in the above sense. Examples include the length of φ, len(φ); the number of distinct symbols in φ; the
number of appearances of a particular symbol; the sum of φ, sum(φ), if the symbols in φ are nonnegative
integers; or simply w = 1 if we wish to enumerate a finite set. We will write par(φ) for the number of
parts of φ; but xpar(φ) is not a weight.
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Definition. LetA be a set of factorizations on an alphabet S andw be a weight onA. Define the Laguerre
series of A with respect to w to be the formal power series

fA,w(t) =
∑

φ∈A
w(φ)lpar(φ)(t)

when this sum is well-defined as a formal power series. For convenience we will omit the w in the
subscript when w = 1, writing fA,1(t) as fA(t).

Note that our definition of Laguerre series uses a different normalization of Laguerre polynomials than
the sum ∑

n

λ(α)n L(α)
n (t)

as defined in, e.g., Pollard (1948); Szász and Yeardley (1948); Weniger (2008).

Proposition 2.3. Assume A is a set of factorizations and w is a weight on A. Let Φ be the linear operator
so that Φ(tn) = n! and Φ fixes any other variables. Then

Φ(fA,w(t)) =
∑

W

w(W )

when both sides are defined, where the sum is over allowed words W ∈ A (factorizations with one or no
parts.)

Proof. We have

Φ(fA,w(t)) =
∑

φ∈A
w(φ)Φ(lpar(φ)(t))

and Φ(lpar(φ)(t)) is 1 when φ has 0 or 1 part and is 0 otherwise by (1) since l0(t) = 1 and l1(t) = t.

Now we are ready to state our main theorem on the combinatorial properties of Laguerre series.

Theorem 2.4.

1. Let A1 and A2 be disjoint sets of allowed factorizations on a common alphabet S, and let w be a
weight on A1 ∪A2. Then

fA1∪A2,w(t) = fA1,w(t) + fA2,w(t).

2. Let S1 and S2 be disjoint alphabets with sets of allowed factorizations A1,A2 respectively, and let
w be a weight on A1 ∗A2 (and hence on A1 and A2.) Then

fA1∗A2,w(t) = fA1,w(t) · fA2,w(t).
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Proof. The proof of the first part is evident from the definition. We will prove the second. By Lemma 2.3,

fA1,w(t) · fA2,w(t) =
∑

φ1∈A1

∑

φ2∈A2

w(φ1)w(φ2)lpar(φ1)(t)lpar(φ1)(t)

=
∑

φ1∈A1,φ2∈A2,k≥0
npar(φ1),par(φ2),kw(φ1)w(φ2)lk(t).

Fix φ1 ∈ A1, φ2 ∈ A2. It is enough to show that npar(φ1),par(φ2),k is the number of factorizations with
k parts on S1 ∪ S2 whose restrictions to S1 and S2 are φ1 and φ2, respectively. Then each allowed word
of A1 ∗A2 will then be represented exactly once in the series fA1,w(t) · fA2,w(t), giving

fA1∗A2,w(t) =
∑

φ∈A1∗A2

w(φ)lpar(φ) = fA1,w(t) · fA2,w(t).

For fixed k, we will construct a simple bijection from the set of triples (φ, φ1, φ2) where φ1, φ2 are
factorizations in A1, A2 respectively and φ is a factorization on the alphabet {a, b} with par(φ1) a’s and
par(φ1) b’s so that each part is Carlitz, and the set of factorizations φ3 of A1 ∗ A2 with k parts. Let φ3
be the factorization created by replacing the nth a in φ with the nth part of φ1, and the nth b with the
nth part of φ2. Then by construction φ3 ∈ A1 ∗ A2: its restrictions are φ1 and φ2. Furthermore, given
an allowed factorization φ3 ∈ A1 ∗ A2 with k parts so that φS1 = φ1, φS2 = φ2, we can reconstruct the
factorization φ of a word on {a, b} by replacing each subword of a factor of φ3 that uses only the letters of
S1, and is maximal with respect to this condition, by an a and each maximal subword using only letters of
S2 by a b. For example, if S1 = {1, 2} and S2 = {3, 4}, with φ3 = (123, 2213, 34413), we get the word
φ = (ab, ab, bab). No part of φ can have aa or bb by the maximality condition. These two algorithms are
inverse to each other, establishing the theorem.

Inductively, we see that if A1, . . . , An are sets of factorizations on disjoint alphabets and w is a weight
on A1 ∗ · · · ∗An, then fA1∗···∗An,w(t) = fA1,w(t) · · · fAn,w(t).

3 Computing Laguerre series
The Laguerre series for a set of factorizations would not be especially useful if it was difficult to compute.
Fortunately, there is an efficient method to calculate them in some situations. It may be difficult to find a
convenient formula for the coefficients of lk(t) in a given Laguerre series fA,w(t), but this is not needed
to find an expression for fA,w(t). It is enough to find the ordinary generating function. Specifically, we
define

gA,w(u) =
∑

φ∈A
w(φ)uk.

If a nice form of gA,w(u) is known, we may obtain the Laguerre series fA,w(t) by applying the linear
transformation T that sends uk to lk(t). As it happens, T can be easily computed in many situations using
the inverse Laplace transform. We have

L{lk(t)} =
1

s(1− s)

(
1− s
s

)k
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for k ≥ 1, where L is the Laplace transform; this is easily proved from the formula for lk(t) in terms of
the generalized Laguerre polynomials, the fact that L{ti} = i!

si+1 , and the binomial theorem.
Therefore, if gA,w(0) = 0, we have by linearity

T{gA,w(u)} = fA,w(t) = L−1
{
gA,w( 1−s

s )

s(1− s)

}

when the right-hand side is well-defined. If gA,w(0) 6= 0, we can calculate

fA,w(t) = T{gA,w(u)− gA,w(0)}+ gA,w(0) = L−1
{
gA,w( 1−s

s )− gA,w(0)

s(1− s)

}
+ gA,w(0)

since l0(t) = 1. The use of the inverse Laplace transform here is not central to the theory, but it is
convenient since many software packages provide symbolic calculation of the inverse Laplace transform,
making it easy to implement the transformation T . However, the function T itself should not be thought
of as an integral transform as we do not consider questions of convergence.

For example, consider the problem of counting words that have no subword consisting of m identical
letters. These are words that avoid the subword pattern 1m, and are sometimes called m-Carlitz words;
when m = 2 we have the ordinary Carlitz words. To find the generating function, let A be the set
of factorizations on a one-letter alphabet with each part having length smaller than m, and again let
w(φ) = xlen(φ). We see that

gA,w(u) =

∞∑

n=0

un(x+ . . .+ xm−1)n =
1− x

1− x− u(x− xm)

and so we compute

fA,w(t) = T{gA,w(u)} = exp

(
t · x− x

m

1− xm
)
. (2)

Taking the coefficient of xn in (2) gives the Laguerre series for the set of factorizations with length n so
that each part is smaller than m. This gives a generalization of Theorem 2.1. If m1, . . . ,mk, n1, . . . , nk

are nonnegative integers, and pm,n(t) are polynomials defined by
∑∞
n=0 pm,n(t)xn = exp

(
t(x−xm)
1−xm

)
,

we see that

Φ

(
k∏

i=1

pmi,ni(t)

)

is the total number of k-ary words that use the letter i exactly ni times and do not contain the subwords
imi . Thus the number of arrangements of the word “WALLAWALLA” with no LLL, AAA or WW as
consecutive subwords is

∫ ∞

0

e−tp3,4(t) · p3,4(t) · p2,2(t) dt =

∫ ∞

0

e−t
(

1

24
t4 − t2 + t

)2

·
(

1

2
t2 − t

)
dt

= 1584.
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Recalling again the formula

Φ(etf ) =
1

1− f ,

we see that the generating function for the number of k-ary m-Carlitz words of length n is given by

Φ

(
exp

(
kt · x− x

m

1− xm
))

=
1− xm

1− kx− (k − 1)xm
.

Another derivation of this formula is given by Burstein and Mansour (Burstein and Mansour, 2003a,
Example 2.2).

More generally, we might count the number of times the pattern 1m occurs. We define the weight
w(W ) of a word W to be xnyl, where n is the length of W and l is the number of times W contains the
pattern 1m. Letting A be the set of all factorizations on a one-letter alphabet, it is not difficult to compute
the generating function gA,w. A formula for the generating function for k-ary words by the number of
times they avoid a pattern 1m can also be found in Burstein and Mansour (2003a).

4 Vincular patterns
We are now ready to state a general formula for k-ary words avoiding vincular patterns with ones. We
say that a k-ary factorization φ contains a vincular pattern τ with only ones if the word made from φ by
inserting a single 0 between each pair of adjacent factors contains τ , and this copy of τ does not use 0.
Using the transformations T and Φ, we can reduce the problem to finding ordinary generating functions
for factorizations that only use one symbol and avoid the given vincular pattern.

Theorem 4.1. Let k1, . . . , kn be positive integers. Letw be the weight on k-ary words withw(a1 · · · al) =
xa1xa2 · · ·xal , so that the power of xi represents the number of times i appears in W , and let A be the
set of k-ary words avoiding the pattern τ = 1k1 -1k2 - · · · -1kn . Then

∑

W∈A
w(W ) = Φ

(
k∏

i=1

[
etxi − T {Gτ (xi, u)}

]
)

where T is the operator defined in Section 3, and

Gτ (x, u) =
uxk1(1− x)

(1− x− u(x− xki))(1− x− ux)

n∏

i=2

[
xki +

uxki(1− xki)
1− x− u(x− xki)

]
. (3)

We say that a word W cyclically avoids a vincular pattern τ if W avoids τ no matter how its letters are
cycled. More formally, let r be the function that cycles W , moving the last letter into the first position:
r(a1 · · · an) = ana1 · · · an−1. Then W cyclically avoids τ if rk(W ) avoids τ for each k.

In order to find the generating function for the number of words cyclically avoiding the pattern τ =
1m-1m- · · · -1m, we will need a little more information than provided by the generating functionGτ (x, u)
defined by (3). Let H(x, u, v) = gA,w(u) where A is the set of factorizations on the alphabet {1}
avoiding the pattern τ , where w is the weight w(φ) = xlen(φ)upar(φ)vfst(φ) where fst(φ) is the size of
the first factor of φ. Note that in this case w is trivially a weight by our definition since we are using a
singleton alphabet, but generally is not. We will find a closed-form expression for H(x, u, v), although it
is rather unwieldy.
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Lemma 4.2. The generating function H(x, u, v) is given by

H(x, u, v) = 1 +

[
1− x

(1− vx)(1− x− ux)

] [
u(vx− (vx)mn) +

u2xm
(
(1− vx)(z − (vx)m)zn−1 − (1− (vx)m)(zn − (vx)mn)

)

(z − (vx)m)(1− x− u (x− xm))

]

where

z = xm +
uxm(1− xm)

1− x− u(x− xm)
.

Theorem 4.3. LetA be the set of words cyclically avoiding the pattern 1m-1m- · · · -1m, with n−1 dashes,
and let w be the weight on k-ary words with w(s1 . . . sl) = xs1xs2 · · ·xsl . Then the generating function∑
W∈A w(W ) is given by

1 +

k∑

i=1

Φ

(
t−1 · T

{
u

d2

dv du

∣∣∣∣
v=1

H(xi, u, v)

}(
−1 +

k∏

j=1
j 6=i

T{H(xj , u, 1)}
))

+

k∑

i=1

xi − xmni
1− x .

In particular, letting xi = x for each i gives:

∑

W∈A
xlen(W ) = 1 + k ·Φ

(
t−1 ·T{u d2

dv du

∣∣∣∣
v=1

H(x, u, v)}
(

(T{H(x, u, 1)})k−1− 1
))

+
k(x− xmn)

1− x .

If we set n = 1, considering k-ary words that cyclically avoid 1m, the formula simplifies considerably.
After some computation, which we omit here, we arrive at the following.

Corollary 4.4. Let A be the set of nonempty k-ary words avoiding 1m. As above, let w be the weight
w(a1 · · · al) = xa1xa2 · · ·xal . Then

∑

W∈A
w(W ) =

k∑

i=1

x2mi −mxm+1
i + (m− 1)xmi

(xmi − 1)(xi − 1)
+

∑k
i=1

(m−1)xm+1
i −mxm

i +xi

(xm
i −1)2

1−∑k
i=1

xm
i −xi

xm
i −1

.

In the book by Heubach and Mansour (Heubach and Mansour, 2009), the authors define a cyclic Carlitz
composition as a Carlitz composition so that the first and last parts are not equal; they ask (Research
Direction 3.3) for the generating function for the number of cyclic Carlitz compositions. If we let k
approach infinity, m = 2, and xi = xi, we get the following.

Corollary 4.5. Let A be the set of cyclic Carlitz compositions. Then

∑

W∈A
xsum(W ) =

∑∞
i=1

xi

(1+xi)2

1−∑∞i=1
xi

1+xi

+
∞∑

i=1

x2i

1 + xi
.

Setting xi = x in Corollary 4.4 and simplifying gives the following formula.
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Corollary 4.6. Let A be the set of nonempty k-ary words that cyclically avoid 1m. Then

∑

W∈A
xlen(W ) =

1− xm−1
1− x

(
kx+ (k − 1)x

(
m− (m− 1)kx

1− kx+ (k − 1)xm
− m

1− xm
))

.

This was found by Burstein and Wilf (Burstein and Wilf, 1997). They go on to show that the number
of k-ary words of length n cyclically avoiding 1m is asymptotically βn, where β is the positive root of
xm+1 = (k − 1)(1 + x+ x2 + . . .+ xm); in fact, they extract an explicit formula when n is sufficiently
large.

We can also give a cyclic version of Theorem 2.1, which can be derived by extracting the coefficient of
a monomial xn1

1 · · ·xnk

k in the generating function from Theorem 4.2 for words cyclically avoiding 1m.

Corollary 4.7. Let n1, . . . , nk be positive integers, and let pm,n(t) be defined as before by
∑∞
n=0 pm,n(t)xn =

exp
(
t(x−xm)
1−xm

)
. Then

N · Φ
(
t−1 ·

k∏

i=1

pm,ni(t)

)

is the total number of k-ary words that use the letter i exactly ni times and cyclically avoid 1m, where
N =

∑k
i=1 ni is the total number of letters counted with multiplicity.

There are other variations. For example, if we would like to keep track of the length (number of parts)
of a composition instead of just the sum, we can replace each xi in Corollary 5.4 by yxi, so that the power
of y represents the number of parts. Furthermore, if we are interested in only words or compositions
whose symbols lie in a given set other than {1, . . . , k} or N, then we may sum over that set instead in the
above formulas.

5 Questions and future directions
There are a number of combinatorial applications of Laguerre series that might be pursued in the future.
One direction is to extend the work of Section 4, finding generating functions for words avoiding other
cyclic patterns. Another possibility would be to count the number of occurrences of a given pattern of
ones, which would amount to finding the appropriate generating function for factorizations on a single-
letter alphabet by the number of occurrences of this pattern. One might also look for a combinatorial
interpretation of some form of composition of Laguerre series; empirically, it seems that li(lj(t)) has
nonnegative integer coefficients in the lk-basis for j > 0. Finally, it would be useful to develop bijections
from sets of words with restrictions to other combinatorial objects that are not obviously described in terms
of words, using the methods outlined here to count sets that may be otherwise difficult to enumerate.
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The number of k-parallelogram polyominoes
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Abstract. A convex polyomino is k-convex if every pair of its cells can be connected by means of a monotone path,
internal to the polyomino, and having at most k changes of direction. The number k-convex polyominoes of given
semi-perimeter has been determined only for small values of k, precisely k = 1, 2. In this paper we consider the
problem of enumerating a subclass of k-convex polyominoes, precisely the k-convex parallelogram polyominoes
(briefly, k-parallelogram polyominoes). For each k ≥ 1, we give a recursive decomposition for the class of k-
parallelogram polyominoes, and then use it to obtain the generating function of the class, which turns out to be a
rational function. We are then able to express such a generating function in terms of the Fibonacci polynomials.

Résumé. Un polyomino convexe est dit k-convexe lorsqu’on peut relier tout couple de cellules par un chemin mono-
tone ayant au plus k changements de direction. Le nombre de polyominos k-convexes n’est connu que pour les
petites valeurs de k = 1, 2. Dans cet article, nous énumérons la sous classes des polyominos k-convexes qui sont
également parallélogramme, que nous appelons k-parallelogrammes. Nous donnons une décomposition récursive
de la classe des polyominos k-parallélogrammes pour chaque k, et en déduisons la fonction génératrice, rationnelle,
selon le demi-périmètre. Nous donnons enfin une expression de cette fonction génératrice en terme des polynômes de
Fibonacci.

Keywords: Convex polyominoes, L-convex polyominoes, Rational generating functions, Fibonacci polynomials

1 Introduction
In the plane Z × Z a cell is a unit square and a polyomino is a finite connected union of cells having no
cut point. Polyominoes are defined up to translations. A column (row) of a polyomino is the intersection
between the polyomino and an infinite strip of cells whose centers lie on a vertical (horizontal) line. A
polyomino is said to be column-convex (row-convex) when its intersection with any vertical (horizontal)
line is convex. A polyomino is convex if it is both column and row convex (see Figure 1 (a)). In a convex
polyomino the semi-perimeter is given by the sum of the number of rows and columns, while the area is
the number of its cells. For more definitions on polyominoes, we address the reader to [1].

†Supported by PRIN Project 2011: “Automi e Linguaggi Formali: Aspetti Matematici e Applicativi”

1365–8050 © 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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The number fn of convex polyominoes with semi-perimeter n ≥ 2 was obtained by Delest and Viennot
in [7], and it is:

fn+2 = (2n+ 11)4n − 4(2n+ 1)

(
2n

n

)
, n ≥ 0; f0 = 1, f1 = 2.

The study of this paper originates from the work on k-convex polyominoes by Castiglione and Restivo
in [5]. Their idea is to consider paths internal to polyominoes, where a path is simply a self-avoiding
sequence of unit steps of four types: north n = (0, 1), south s = (0,−1), east e = (1, 0), and west
w = (−1, 0), entirely contained in the polyomino. A path connecting two distinct cells, A and B, starts
from the center of A, and ends at the center of B (see Figure 1 (b)). We say that a path is monotone if it is
constituted only of steps of two types (see Figure 1 (c)). Given a path w = u1 . . . uk , each pair of steps
uiui+1 such that ui 6= ui+1 , 0 < i < k, is called a change of direction.

(a) (b) (c)

Figure 1: (a) a convex polyomino; (b) a monotone path between two cells of the polyomino with four changes of
direction; (c) a 4-parallelogram (non 3-parallelogram) polyomino.

In [5] the authors observed that convex polyominoes have the property that every pair of cells is con-
nected by a monotone path, and proposed a classification of convex polyominoes based on the number of
changes of direction in the paths connecting any two cells of a polyomino. More precisely, a convex poly-
omino is k-convex if every pair of its cells can be connected by a monotone path with at most k changes
of direction, and k is called the convexity degree of the polyomino.

For k = 1 we have the L-convex polyominoes, where any two cells can be connected by a path with
at most one change of direction. In recent literature L-convex polyominoes have been considered from
several points of view: in [5] it is shown that they are a well-ordering according to the sub-picture or-
der; in [2] the authors have investigated some tomographical aspects, and have discovered that L-convex
polyominoes are uniquely determined by their horizontal and vertical projections. Finally, in [3, 4] it is
proved that the number ln of L−convex polyominoes having semi-perimeter equal to n + 2 satisfies the
recurrence relation

ln+2 = 4ln+1 − 2ln, n ≥ 1, l0 = 1, l1 = 2 l2 = 7.

For k = 2 we have 2-convex (or Z-convex) polyominoes, such that each two cells can be connected by a
path with at most two changes of direction. Unfortunately, Z-convex polyominoes do not inherit most of
the combinatorial properties of L-convex polyominoes. In particular, their enumeration resisted standard
enumeration techniques and it was obtained in [8] by applying the so-called inflation method. The authors
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proved that the generating function is algebraic and that the sequence asymptotically grows as n4n, that
is the same growth of the whole class of the convex polyominoes.

However, the solution found for 2-convex polyominoes seems to be not easily generalizable to a generic
k, hence the problem of enumerating k-convex polyominoes for k > 2 is still open and difficult to solve.
Recently, some efforts in the study of the asymptotic behavior of k-convex polyominoes have been made
by Micheli and Rossin in [9].

In order to probe further, in this paper we tackle the problem of enumerating a remarkable subclass of
k-convex polyominoes, precisely the k-convex polyominoes which are also parallelogram polyominoes,
called for brevity k-parallelogram polyominoes.

We recall that a parallelogram polyomino is a polyomino whose boundary can be decomposed in two
paths, the upper and the lower paths, which are made of north and east unit step and meet only at their
starting and final points. Figure 1 (c) depicts a 4-parallelogram (non 3-convex) polyomino.

Moreover, it is well known [11] that the number of parallelogram polyominoes with semi-perimeter
n ≥ 2 is equal to the (n− 1)th Catalan number, where Catalan numbers are defined by

cn =
1

n+ 1

(
2n

n

)
.

The class of k-parallelogram polyominoes can be treated in a simpler way than k-convex polyominoes,
since we can use the simple fact that a parallelogram polyomino is k-convex if and only if every cell
can be reached from the lower leftmost cell by at least one monotone path having at most k-changes of
direction.

Using such a property, we will be able to enumerate k-parallelogram polyominoes according to the
semi-perimeter, for all k. More precisely, in the next sections we will partition the class of k-parallelogram
polyominoes into three subclasses, namely the flat, right, and up k-parallelogram polyominoes. We will
provide an unambiguous decomposition for each of the three classes, so we will use these decompositions
in order to obtain the generating function of the three classes and then of k-parallelogram polyominoes.
An interesting fact is that, while the generating function of parallelogram polyominoes is algebraic, for
every k the generating function of k-parallelogram polyominoes is rational. Moreover, we will be able to
express such generating function in terms of the known Fibonacci polynomials [6].

To our opinion, this work is a first step towards the enumeration of k-convex polyominoes, since it is
possible to apply our decomposition strategy to some larger classes of k-convex polyominoes (such as,
for instance, directed k-convex polyominoes).

2 Classification and decomposition of k-parallelogram polyomi-
noes

In this section we present some basic definitions which will be useful for the rest of the paper, we
provide a classification of k-parallelogram polyominoes, and then an unique decomposition for each class.

We start noting that to find out the convexity degree of a parallelogram polyomino P it is sufficient to
check the changes of direction required to any path running from the lowest leftmost cell (denoted by S)
to the upper rightmost cell (denoted by E).
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In order to use such a property, we define the vertical (horizontal) path v(P ) (respectively h(P )) as the
path - if it exists - internal to P , running from S, and starting with a north step n (respectively e), where
every side has maximal length (see Figure 2). In the graphical representation, we use a dashed line to
represent v(P ), and a solid line to represent h(P ). We remark that our definition does not work if the first
column (resp. row) of P is made of one cell, and then in this case we set by definition that v(P ) and h(P )
coincide (Figure 2 (d)).

Henceforth, if there are no ambiguities we will write v (resp. h) in place of v(P ) (resp. h(P )). As the
reader can easily check the numbers of changes of direction that h and v require to run from S to E may
differ at most by one. The following property is straightforward.

Proposition 1 A polyomino P is k-parallelogram if and only if at least one among v(P ) and h(P ) has
at most k changes of direction.

In our study we will deal with the class Pk of k-parallelogram polyominoes where the convexity degree
is exactly equal to k ≥ 0, then enumeration of k-parallelogram polyominoes will readily follow. Accord-
ing to our definition, P0 is made of horizontal and vertical bars of any length. We further notice that, in
the given parallelogram polyomino P , there may exist a cell starting from which the two paths h and v
are superimposed (see Figure 2 (b), (c)). In this case, we denote such a cell by C(P ) (briefly, C). Clearly
C may even coincide with S (see Figure 2 (d)). If such cell does not exist, we assume that C coincides
with E (see Figure 2 (a)).

(a) (c) (d)(b)

Figure 2: The paths h (solid line) and v (dashed line) in a parallelogram polyomino, where the cell C has been
highlighted (a) A polyomino in P3; (b) A polyomino in PU

3 ; (c) A polyomino in PR
4 ; (d) A polyomino in PU

3 where
C coincides with S.

From now on, unless otherwise specified, we will always assume that k ≥ 1. Let us give a classification
of the polyominoes in Pk, based on the position of the cell C inside the polyomino:

1. A polyomino P in Pk is said to be a flat k-parallelogram polyomino if C(P ) coincides with E (see
Figure 2 (a)). The class of these polyominoes will be denoted by Pk. According to this definition
all rectangles having width and height greater than one belong to P1.

2. A polyomino P in Pk is said to be up (resp. right) k-parallelogram polyomino, if the cell C(P )
is distinct from E and h and v end with a north (resp. east) step. The class of up (resp. right)
k-parallelogram polyominoes will be denoted by PUk (resp. PRk ). Figures 2 (b), (c), and (d) depict
polyominoes in PUk (resp. PRk ).
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The reader can easily check that up (resp. right) k-parallelogram polyominoes where the cell C(P ) is
distinct from S can be characterized as those parallelogram polyominoes where h (resp. v) has k changes
of direction and v (resp. h) has k + 1 changes of direction.

Now we present a unique decomposition of polyominoes in Pk, based on the following idea: given a
polyomino P , we are able to detect – using the paths h and v – a set of paths on the boundary of P , that
uniquely identify the polyomino itself.

More precisely, let P be a polyomino of Pk; the path h (resp. v), when encountering the boundary of
P , determines m (resp. m′) steps where m (resp. m′) is equal to the number of changes of directions of
h (resp. v) plus one. To refer to these steps we agree that the step encountered by h (resp. v) for the ith
time is called Xi or Yi according if it is a horizontal or vertical one (see Fig. 3). We point out that if P
is flat all steps Xi and Yi are distinct, otherwise there may be some indices i for which Xi = Xi+1 (or
Yi = Yi+1), and this happens precisely with the steps determined after the cell C(P ) (see Fig. 4 (b), (c)).
The case C(P ) = S can be viewed as a degenerate case where the initial sequence of north (resp. east)
steps of v (resp. h) has length zero. Therefore the definition of the steps Xi, Yi can be given as follows: if
the first column (resp. the lowest row) is made of one cell, then we set the step X1 (resp. Y1) to be equal
to the leftmost east (resp. lowest north) step of the upper (resp. lower) path of P , and all the other steps
Xi and Yi are determined as before (see Fig. 4 (b)).

6
X=

5
X

4®

1®

2®

3®

4¯

3¯

2¯

1¯

2X

4X

1X

1Y

2Y

3Y

5Y

4Y

3X

S

Figure 3: Decomposition of a polyomino of PU
4 .

Now we decompose the upper (resp. lower) path of P in k (possibly empty) subpaths α1, . . . , αk (resp.
β1, . . . , βk) using the following rule: α1 (resp. β1) is the path running from the beginning of Xk to end of
Xk+1 (resp. from the beginning of Yk to Yk+1); let us consider now the k− 1 (possibly empty) subpaths,
αi (resp. βi) from the beginning of Xk+1−i (resp. Yk+1−i) to the beginning of Xk+2−i (resp. Yk+2−i),
for i = 2 · · · k. We observe that these paths are ordered from the right to the left of P . For simplicity we
say that a path is flat if it is composed of steps of just one type.



1148 D. Battaglino, J. M. Fedou, S. Rinaldi, and S. Socci

=
4
Y=

3
Y

1¯

=
4
Y=

3
Y

1¯

3
X=

2
X

1
X

(c)

1
Y

2
Y

3¯

3®

2¯

1®

(b)(a)

2
Y

3
Y

4
Y

4
X

3
X

2
X

1®

3®

2®

3¯
1
Y

1
X

1¯

2¯

1
X

2¯

1®

3®

2
Y=

1
Y

;=3¯

;=2®
3

X=
2

X

5
X=

4
X

;=2®

5
X=

4
X

Figure 4: (a) A polyomino P ∈ P3 in which α1 and β1 are flat and each other path is non empty and non flat. (b) A
polyomino P ∈ PU

3 where: β3 is empty, α2 is empty and β1 is equal to a north unit step. (c) A polyomino P ∈ PU
3

where β3 is flat, α2 is empty and β1 is equal to a north unit step.

The following proposition provides a characterization of the polyominoes of Pk in term of the paths
α1, . . . , αk, β1, . . . , βk.

Proposition 2 A polyomino P in Pk is uniquely determined by a sequence of (possibly empty) paths
α1, . . . , αk, β1, . . . , βk, each of which made by north and east unit steps. Moreover, these paths have to
satisfy the following properties:

• αi and βi+1 must have the same width, for every i 6= 1; if i = 1, we have that α1 is always non
empty and the width of α1 is equal to the width of β2 plus one;

• βi and αi+1 must have the same height, for every i 6= 1; if i = 1, we have that β1 is always non
empty and the height of β1 is equal to the width of α2 plus one;

• if αi (βi) is non empty then it starts with an east (north) step, i > 1. In particular, for i = 1, if α1

(β1) is different from the east (north) unit step, then it must start and end with an east (north) step.

The semi-perimeter of P is obtained as the sum |α1|+ |α2|e+ . . .+ |αk|e+ |β1|+ |β2|n+ . . .+ |βk|n.

The reader can easily check the decomposition of a polyomino of PU4 in Figure 3. For clarity sake, we
need to remark the following consequence of Proposition 2:

Corollary 1 Let P ∈ Pk be encoded by the paths α1, . . . , αk, β1, . . . , βk. We have:

- for every i > 1, we have that αi (βi) is empty if and only if βi+1 (αi+1) is empty or flat;

- α1 (β1) is equal to the east (north) unit step if and only if β2 (α2) is empty or flat.

Figure 4 (a) shows the decomposition of a flat polyomino, (b) shows the case in which C(P ) = S, so
we have that β3 is empty, then α2 is empty, hence β1 is a unit north step. Figure 4 (c) shows the case in
which h and v coincide after the first change of direction and so we have that β3 is flat, then α2 is empty
and β1 is a unit north step.
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Now we provide another characterization of the classes of flat, up, and right polyominoes of Pk which
directly follows from Corollary 1 and will be used for the enumeration of these objects.

Proposition 3 Let P be a polyomino in Pk. We have:

i) P is flat if and only if α1 and β1 are flat and they have length greater than one. It follows that all αi
and βi are non empty paths, i = 2, . . . , k.

ii) P is up (right) if and only if β1 (α1) is flat and α1 (β1) is non flat.

The reader can see examples of the statement of Proposition 3 i) in Figure 4 (a), and of Proposition 3 ii)
in Figure 4 (b) and (c).

As a consequence of Proposition 2, from now on we will encode every polyomino P ∈ Pk in terms of
the two sequences:

A(P ) = (α1, β2, α3, . . . , θk) ,

with θ = α if k is odd, otherwise θ = β, and

B(P ) =
(
β1, α2, β3, . . . , θk

)
,

where θ = α if and only if θ = β. The dimension of A (resp. B) is given by |α1| + |β2|n + |α3|e + . . .
(resp. |β1|+ |α2|e + |β3|n + . . .). In particular, if C(P ) = S and P is an up (resp. right) polyomino then
B(P ) = (β1, ∅, . . . , ∅), (resp. A(P ) = (α1, ∅, . . . , ∅)) where β1 (resp. α1) is the north (resp. east) unit
step.

3 Enumeration of k-parallelogram polyominoes
This section is organized as follows: first, we furnish a method to pass from the generating function of
the class Pk to the generating function of Pk+1, k > 1. Then, we provide the enumeration of the trivial
cases, i.e. k = 0, 1, and finally apply the inductive step to determine the generating function of Pk. The
enumeration of k-parallelogram polyominoes is readily obtained by summing all the generating functions
of the classes Ps, s ≤ k.

3.1 Generating function of k-parallelogram polyominoes
The following theorem establishes a criterion for translating the decomposition of Proposition 2 into
generating functions.

Theorem 1
i) A polyomino P belongs to P2 if and only if it is obtained from a polyomino of P1 by adding two new
paths α2 and β2, which cannot be both empty, where the height of α2 is equal to the height of β1 minus
one, and the width of β2 is equal to the width of α1 minus one.

ii) A polyomino P belongs to Pk, k > 2, if and only if it is obtained from a polyomino of Pk−1 by adding
two new paths αk and βk, which cannot be both empty, where αk has the same height of βk−1 and βk has
the same width of αk−1.

The proof of Theorem 1 directly follows from our decomposition in Proposition 2, where the difference
between the case k = 2 and the other cases is clearly explained. We would like to point out that if P
belongs to Pk, then neither αk nor βk can be empty or flat. Following the statement of Theorem 1, to pass
from k ≥ 1 to k + 1 we need to introduce following generating functions:
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i) the generating function of the sequence A(P ). Such a function is denoted byAk(x, y, z) for up, and by
Ak(x, y, z) for flat k-parallelogram polyominoes, respectively, and, for each function, x+ z keeps
track of the dimensions of A(P ), and z keeps track of the width/height of θk alternately, according
to the parity of k.

ii) the generating function of the sequence B(P ). Such a function is denoted by Bk(x, y, t) for up, and
by Bk(x, y, t) for flat k-parallelogram polyominoes, respectively, and here y + t keeps track of the
dimensions of B(P ), and the variable t keeps track of the height/width of θk alternately, according
to the parity of k.

Now the generating functions GfUk (x, y, z, t), GfRk (x, y, z, t) and Gfk(x, y, z, t), of the classes PUk ,
PRk , and Pk, respectively, are clearly obtained as follows:

GfUk (x, y, z, t) = Ak(x, y, z) ·Bk(x, y, t) (1)
Gfk(x, y, z, t) = Ak(x, y, z) ·Bk(x, y, t) (2)
Gfk(x, y, z, t) = GfUk (x, y, z, t) +GfRk (y, x, t, z) +Gfk(x, y, z, t). (3)

Then, setting z = t = y = x, we have the generating functions according to the semi-perimeter. Since
GfUk (x, y, z, t) = GfRk (y, x, t, z), for all k, then starting from now, we will study only the flat and the up
classes.

The case k = 0. The class P0 is simply made of horizontal and vertical bars of any length. We keep this
case distinct from the others since it is not useful for the inductive step, so we simply use the variables
x and y, which keep track of the width and the height of the polyomino, respectively. The generating
function is trivially equal to

Gf0(x, y) = xy +
x2y

1− x +
xy2

1− y ,

where the term xy corresponds to the unit cell, and the other terms to the horizontal and vertical bars,
respectively.

¤)y+z(y

¤z zz

(b)

¤
t

t

t

z

+z

(a)

+
t

Figure 5: (a) A polyomino ∈ PU
1 and (b) a polyomino in P1.
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The case k = 1. Following our decomposition and Figure 5, we easily obtain

A1(x, y, z) =
z2y

(1− z − y)(1− z) , B1(x, y, t) = t+
t2

1− t .

We point out that we have written B1 as the sum of two terms because, according to Corollary 1, we have
to treat the case when β1 is made by a north unit step separately from the other cases. To this aim, we set
B̂1(x, y, t) =

t2

1−t . Moreover, we have

A1(x, y, z) =
z2

1− z , B1(x, y, t) =
t2

1− t .

According to (1) and (2), we have that

GfU1 (x, y, z, t) =
tyz2

(1− t)(1− z)(1− y − z) Gf1(x, y, z, t) =
t2z2

(1− t)(1− z) .

Now, according to (3), and setting all variables equal to x, we have the generating function of 1-parallelogram
polyominoes

Gf1(x) =
x4(2x− 3)

(1− x)2(1− 2x)
.

The case k = 2. Now we can use the inductive step, recalling that the computation of the case k = 2
will be slightly different from the other cases, as explained in Theorem 1. Using the pictures in Figure 6
we can calculate the generating functions

A2(x, y, z) = z ·A1

(
x, y,

x

1− z

)
=

x2yz

(1− x− y − z − yz)(1− x− z)

B2(x, y, t) =
y

1− t + t · B̂1

(
x, y,

y

1− t

)
=

y − y2
(1− y − t) = y +

yt

1− y − t

A2(x, y, z) = z ·A1

(
x, y,

x

1− z

)
=

x2z

(1− z)(1− x− z)

B2(x, y, t) = t ·B1

(
x, y,

y

1− t

)
=

y2t

(1− t)(1− y − t) .

We observe that the performed substitutions allow us to add the contribution of the terms α2 and β2
from the generating functions obtained for k = 1. Then, using formulas (1), (2) and (3), and setting all
variables equal to x, it is straightforward to obtain the generating function according to the semi-perimeter:

Gf2(x) =
x5(2− 5x+ 3x2 − x3)

(1− x)2(1− 2x)2(1− 3x+ x2)
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Figure 6: (a) A polyomino in P2, (b) a polyomino in PU
2 in which β1 has at least two north steps and (c) a polyomino

in PU
2 in which β1 is equal to an unit north step.

The case k > 2. The generating functions for the case k > 2 are obtained in a similar way. Here, for
simplicity sake, we set B̂k(x, y, t) = Bk(x, y, t)− y; this trick will help us treat separately the case when
β1 is made by a north unit step. Then we have

Ak(x, y, z) =
z

1− z ·Ak−1
(
x, y,

x

1− z

)
(4)

Bk(x, y, t) =
y

1− t +
t

1− t · B̂k−1
(
x, y,

y

1− t

)
(5)

Ak(x, y, z) =
z

1− z ·Ak−1
(
x, y,

x

1− z

)
(6)

Bk(x, y, t) =
t

1− t ·Bk−1
(
x, y,

y

1− t

)
. (7)

We remark that (4), (5), (6) and (7) slightly differ from the respective formulas for k = 2, according to the
statement of Theorem 1. Using the previous formulas we are now able to obtain an expression for Fk(x),
for all k > 2.

3.2 A formula for the number of k-parallelogram polyominoes
In this section we show a simpler way to express the generating function of Pk. First we need to define
the following polynomials:





F0(x, z) = F1(x, z) = 1
F2(x, z) = 1− z
Fk(x, z) = Fn−1(x, z)− xFn−2(x, z) .

These objects are already known as Fibonacci polynomials [6].
In the sequel, unless otherwise specified, we will denote Fk(x, x) with Fk. The closed Formula of Fk

is:

Fk =
b(x)k+1 − a(x)k+1

√
1− 4x

.
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where a(x) and b(x) are the solutions of the equation X2 − X + x = 0, a(x) =
(

1−√1−4x
2

)
and

b(x) =
(

1+
√
1−4x
2

)
.

Our aim is to express the functions Ak, Bk, Ak, and Bk in terms of the previous polynomials. In order
to do this we need to prove the following lemma:

Lemma 1 For every k

Fk

(
x,

x

1− z

)
=
Fk+1(x, z)

1− z .

The proof is easily obtained by induction. Placing y = x, we can write A1(x, z) = xz2

F2(x,z)F3(x,z)
and

iterating (4), and using Lemma 1, we obtain

Ak(x, z) =
zxk+1

Fk+1(x, z)Fk+2(x, z)
.

Performing the same calculations on the other functions we obtain:

Bk(x, z) =
xFk

Fk+1(x, z)

Ak(x, z) = Bk(x, z) =
zxk

Fk(x, z) · Fk+1(x, z)
.

From these new functions, by setting all variables equal to x, we can calculate the generating function of
the class Pk in an easier way:

Gfk(x) = 2Ak(x, x)Bk(x, x) + (Ak)
2(x, x) .

Then we have the following:

Theorem 2 The generating function of the whole class of k-parallelogram polyominoes is given by

Pk(x) =

k∑

n=0

Gfn(x) = x2 ·
(
Fk+1

Fk+2

)2

− x2 ·
(
Fk+1

Fk+2
− Fk
Fk+1

)2

.

As an example, the generating functions of Pk for the first values of k are:

P0(x) =
x2(1+x)

1−x P1(x) =
x2(1−2x+2x2)
(−1+x)2(1−2x)

P2(x) =
x2(1−x)(1−4x+4x2+x3)

(1−2x)2(1−3x+x2) P3(x) =
x2(1−2x)(1−6x+11x2−6x3+2x4)

(1−x)(1−3x)(1−3x+x2)2

In [6] it is proved that xFk/Fk+1 is the generating function of plane trees having height less than or equal
to k + 1. Hence, Pk(x) is the difference between the generating functions of pairs of trees having height
at most k+ 3, and pairs of trees having height exactly equal to k+ 2. It would be interesting to provide a
combinatorial explanation to this fact.

As one would expect we have the following corollary:
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Corollary 2 Let C(x) = 1−√1−4x
2x be the generating function of Catalan numbers, we have:

lim
k→∞

Pk(x) = C(x) .

Proof: We have that C(x) satisfies the equation C(x) = 1+ xC2(x), and a(x)b(x) = x, a(x) = xC(x),
so we can write

Fk =
1− xk+1C2(k+1)(x)

Ck+1
√
1− 4x

.

Now we can prove the following statements:

lim
k→∞

Fk
Fk+1

= C(x) , lim
k→∞

(
Fk
Fk+1

)2

=
C(x)− 1

x
, lim

k→∞
Fk
Fk+2

=
C(x)− 1

x
.

From Theorem 2, and using the above results, we obtain the desired proof. 2
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A t-generalization for Schubert
Representatives of the Affine Grassmannian

Avinash J. Dalal †and Jennifer Morse ‡
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Abstract. We introduce two families of symmetric functions with an extra parameter t that specialize to Schubert
representatives for cohomology and homology of the affine Grassmannian when t = 1. The families are defined
by a statistic on combinatorial objects associated to the type-A affine Weyl group and their transition matrix with
Hall-Littlewood polynomials is t-positive. We conjecture that one family is the set of k-atoms.

Nous présentons deux familles de fonctions symétriques dépendant d’un paramètre t et dont les spécialisations à
t = 1 correspondent aux classes de Schubert dans la cohomologie et l’homologie des variétés Grassmanniennes
affines. Les familles sont définies par des statistiques sur certains objets combinatoires associés au groupe de Weyl
affine de type A et leurs matrices de transition dans la base des polynômes de Hall-Littlewood sont t-positives. Nons
conjecturons qu’une de ces familles correspond aux k-atomes.

Keywords: k-Schur functions, Pieri rule, Bruhat order, Hall-Littlewood polynomials

1 Introduction
Affine Schubert calculus is a generalization of classical Schubert calculus where the Grassmannian is
replaced by infinite-dimensional spaces GrG known as affine Grassmannians. As with Schubert calculus,
topics under the umbrella of affine Schubert calculus are vast but now, it is the combinatorics of a family
of polynomials called k-Schur functions that underpins the theory.

The theory of k-Schur functions came out of a study of symmetric functions over Q(q, t) called Mac-
donald polynomials. Macdonald polynomials posses remarkable properties whose proofs inspired deep
work in many areas One aspect that has been intensely studied from a combinatorial, representation the-
oretic, and algebraic geometric perspective is the Macdonald/Schur transition matrix. In particular, in the
late 1980’s, Macdonald conjectured [Mac88] that the coefficients in the expansion

Hµ[X; q, t] =
∑

λ

Kλ,µ(q, t) sλ (1)

are positive sums of monomials in q and t; that is,Kλ,µ(q, t) ∈ N[q, t]. These coefficients have since been
a matter of great interest. For starters, they generalize the Kostka-Foulkes polynomials. These are given

†Partially supported by the NSF grant DMS–1001898.
‡Partially supported by the NSF grants DMS–1001898.

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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by Kλ,µ(0, t) and they appear in many contexts such as Hall-Littlewood polynomials [Gre55], affine
Kazhdan-Lusztig theory [Lus81], and affine tensor product multiplicities [NY97]. Moreover, Kostka-
Foulkes polynomials encode the dimensions of certain bigraded Sn-modules [GP92]. They were beauti-
fully characterized by Lascoux and Schützenberger [LS78] by associating a statistic (non-negative integer)
called charge to each tableau T so that

Kλ,µ(0, t) =
∑

weight(T )=µ
shape(T )=λ

tcharge(T ) . (2)

Despite having such concrete results for the q = 0 case, it was a big effort even to establish polynomiality
for general Kλ,µ(q, t) [GR96, GT96, Kno97, LV98, KN96, Sah96] and the geometry of Hilbert schemes
was eventually needed to prove positivity [Hai01]. A formula in the spirit of (2) still remains a mystery.

In one study of Macdonald polynomials, Lapointe, Lascoux, and Morse found computational evidence
for a family of new bases

{A(k)
µ [X; t]}µ1≤k (3)

for subspaces
Λ
(k)
t = span{Hλ[X; q, t]}λ1≤k

in a filtration Λ
(1)
t ⊆ Λ

(2)
t ⊆ · · · ⊆ Λ

(∞)
t of Λ. Conjecturally, the star feature of each basis was the

property that Macdonald polynomials expand positively in terms of it, giving a remarkable factorization
for the Macdonald/Schur transition matrices over N[q, t]. To be precise, for any fixed integer k > 0 and
each λ ∈ Pk (a partition where λ1 ≤ k),

Hλ[X; q, t ] =
∑

µ∈Pk

K
(k)
µ,λ(q, t)A(k)

µ [X; t ] where K
(k)
µ,λ(q, t) ∈ N[q, t] . (4)

It was conjectured in [LLM03] that for all k > 0, {A(k)
µ [X; t]}µ1≤k exists and forms a basis for Λ

(k)
t , and

that for k ≥ |µ|, A(k)
µ [X; t] = sµ. These conjectures and the decomposition (4) strengthen Macdonald’s

conjecture.
A construction for A(k)

µ [X; t] is given in [LLM03], but it is so intricate that these conjectures remain
unproven. However, pursuant investigations of these bases led to various conjecturally equivalent charac-
terizations. One such family of polynomials {s(k)λ } was introduced in [LM05] and conjectured to be the
t = 1 case of A(k)

λ [X; t]. It has since been proven that the s(k)λ refine the very aspects of Schur functions
that make them so fundamental and wide-reaching and they are now called k-Schur functions.

The role of k-Schur functions in affine Schubert calculus emerged over a number of years. The spring-
board was a realization that the combinatorial backbone of k-Schur theory lies in the setting of the affine
Weyl group. The k-Schur functions are tied to Pieri rules, tableaux, Young’s lattice, sieved q-binomial
identities, and Cauchy identities that are naturally described in terms of posets of elements in Ãk. For
example, K(k)

λ,µ(1, 1) is the number of reduced expressions for an element in Ãk. The combinatorial
exploration fused into a geometric one when the k-Schur functions were connected to the quantum coho-
mology of Grassmannians. Quantum cohomology originated in string theory and symplectic geometry.
It has had a great impact on algebraic geometry and is intimately tied to the Gromov-Witten invariants.
These invariants appear in the study of subtle enumerative questions such as: how many degree d plane
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curves of genus g contain r generic points? Lapointe and Morse [LM08] showed that each Gromov-
Witten invariant for the quantum cohomology of Grassmannians exactly equals a k-Schur coefficient in
the product of k-Schur functions in Λ. A basis of dual (or affine) k-Schur functions was also introduced
in [LM08] and Lam proved [Lam08] that the Schubert bases for cohomology and homology of the affine
Grassmannian GrSLk+1

are given by the dual k-Schur functions and the k-Schur functions, respectively.
Our motivation here is that the k-Schur functions s(k)λ are parameterless and the t is needed to connect

with theories outside of geometry. Unfortunately, the characterizations for generic t lack in mechanism
for proofs. We introduce a new family of functions that reduce to {s(k)λ } when t = 1. Our definition uses
a combinatorial object called affine Bruhat counter-tableaux (ABC’s), whose weight generating functions
are the dual k-Schur functions [DM12]. We associate a statistic (a non-negative integer) to each ABC
called the k-charge. From this, we use the polynomials

K
(k)
λ,µ(t) =

∑

shape(A)=c(λ)
weight(A)=µ

tk-charge(A) (5)

to define a t-generalization of s(k)λ . In particular, we show that the matrix (K
(k)
λ,µ(t)){λ,µ∈Pk} is unitrian-

gular and taking the inverse of this matrix to be K̃(k), a basis for Λkt is given by

s
(k)
λ [X; t] =

∑

µ

K̃
(k)
λ,µ(t)Hµ[X; t] ,

for all λ with λ1 ≤ k. We prove that s(k)λ [X; t] reduce to k-Schur functions when t = 1. When k =
∞, these are Schur functions, and thus (5) gives a new description for the Kostka-Foulkes polynomials.
Naturally, we conjecture that these functions are the A(k)

λ [X; t].

2 Related work
A refinement of the plactic monoid to a structure on k-tableaux that can be applied to combinatorial prob-
lems involving k-Schur functions is partially given in [LLMS12] by a bijection compatible with the RSK-
bijection. A deeper understanding of this intricate bijection is underway. Towards this effort, Lapointe
and Pinto [LP] have recently shown that a statistic on k-tableaux is compatible with the bijection. There
are now several statistics (on k-tableaux, elements of the affine symmetric group, and on ABC’s) whose
charge generating functions are the same. The ABC’s can be used to find the image of certain elements
under this bijection and we are working to put the ABC’s in a context that simplifies the bijection.

3 Background
We identify each partition λ = (λ1, . . . , λn) with its Ferrers shape (having λi lattice squares in the ith

row, from the bottom to top). For partitions λ and µ, we say λ contains µ, denoted µ ⊆ λ, if λi ≥ µi. A
skew shape is a pair of partitions λ, µ such that µ ⊆ λ, denoted λ/µ.

A semistandard tableau T is a filling of a Ferrers shape λ with positive integers that weakly decrease
along rows and strictly increase up the columns. The weight of a semistandard tableau is the composition
(µi)i∈N, where µi is the number of cells containing i. For a partition λ and composition µ, let SSY T (λ, µ)
be the set of semistandard tableaux of shape λ and weight µ.
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The hook-length of a cell (i, j) of any partition is the number of cells to the right of (i, j) in row i plus
the number of cells above (i, j) in column j plus 1. A p-core is a partition that does not contain any cell
with hook-length p. The p-degree of a p-core λ, degp(λ), is the number of cells in λ whose hook-length is
smaller than p. Hereafter we work with a fixed integer k > 0 and all cores (resp. residues) are k+ 1-cores
(resp. k+ 1-residues) and degk+1 will simply be written as deg. We let Pk denote the set of all partitions
λ with λ1 ≤ k. We also let Ck+1 denote the set of all k + 1-cores. We use a bijection given in [LM05]
c : Pk → Ck+1.

For n ≥ 0, an n-ribbon R is a skew diagram λ/µ consisting of n rookwise connected cells such that
there is no 2× 2 shape contained in R. We refer to the southeasternmost cell of a ribbon as its head, and
the northweasternmost cell of a ribbon as its tail.

A ribbon tableau T of shape λ/µ is a chain of partitions

µ = µ0 ⊂ µ1 ⊂ · · · ⊂ µr = λ

such that each µi/µi−1 is a tiling of ribbons filled with a positive integer. A ribbon counter-tableau A of
shape λ/µ is a ribbon tableau such that each skew shape µi/µi−1 is filled with the same positive integer
r − i + 1. We set the cell (i, j) of a ribbon counter-tableau to be the cell in row i, column j, where row
one is the topmost row and column one is the leftmost column. For more on partitions and tableaux see
[Mac95], [Sta99], [Ber09].

4 Schubert representatives for H∗(GrSLk+1
) and H∗(GrSLk+1

)
Despite the many characterizations for the Schubert representatives for the cohomology and homology of
the infinite dimensional affine Grassmannian spaces for SLk+1 (e.g. [LM05, LM08, Lam06, LLMS10,
DM12, AB12]), none have been shown to be the t = 1 case of functions conjectured to give a positive
Macdonald expansion (4). Our goal is to present functions with a t parameter which reduce to the k-Schur
functions as formulated in [DM12] when t = 1. The formulation is given in terms of a combinatorial
structure called ABC’s.

Recall that the strong (Bruhat) order on the affine Weyl group Ãk can be instead realized on k+1-cores
by the covering relation:

ρlB γ ⇐⇒ ρ ⊆ γ and deg(γ) = deg(ρ) + 1.

An important fact about strong covers is useful in our study.

Lemma 1 [LLMS10] Let ρlB γ be cores. Then

1. Each connected component of ρ/γ is a ribbon.

2. The components are translates of each other and their heads have the same residue.

A specific subset of ribbon counter-tableaux are those where each ribbon is of height one. An ABC
will be defined as such ribbon counter-tableaux where the skew shapes are a certain strip defined in terms
of strong order.

Definition 2 For 0 < ` ≤ k and k + 1-cores λ and ν, the skew shape (k + λ1, λ)/ν is a bottom strong
(k − `)-strip if there is a saturated chain of cores

ν = ν0 lB ν1 lB · · ·lB νk−` = (k + λ1, λ) ,
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where

1. (k + λ1, λ)/ν is a horizontal strip

2. The bottom rightmost cell of νi is also a cell in νi/νi−1, for 1 ≤ i ≤ k − `.

It turns out that if a skew shape is a bottom strong strip then there is a unique chain meeting the
conditions described in Definition 2.

Example 3 The skew shape (8, 3)/(4, 2) of 6-cores is a bottom strong 2-strip as there is the saturated
chain

lB lB .

Example 4 The skew shape (6, 3, 1, 1)/(4, 1, 1, 1) of 4-cores is a bottom strong 1-strip as there is the
saturated chain

lB .

Example 5 There are 4 saturated chains of 4-cores in the strong order from (3) to (5, 2, 1),

lB lB lB , lB lB lB ,

lB lB lB , lB lB lB .

Since none of these give a bottom strong strip, (5, 2, 1)/(3) is not a bottom strong strip.

Remark 6 Bottom strong (k − `)-strips are a distinguished subset of strong strips in [LLMS10] that
define the Pieri rule for the cohomology of the affine Grassmannian.

The iteration of bottom strong strips leads to the definition of an ABC. First let us set some notation.
Given a ribbon counter-tableau A, let A(x) denote the subtableau made up of the rows of A weakly higher
than row x. Let A>i denote the restriction of A to letters strictly larger than i where empty cells in a skew
are considered to contain∞. With this in hand, we are now ready to define the ABC’s.

Definition 7 For a composition α whose entries are not larger than k, a skew ribbon counter-tableau A
is an affine Bruhat counter-tableau (or ABC) of k-weight α if

(k + λ
(i−1)
1 , λ(i−1))/λ(i) is a bottom strong αi-strip for all 1 ≤ i ≤ `(α) ,

where λ(x) = shape(A
(x)
>x). We define the inner shape of A to be λ(`(α)).

The easiest method to construct an ABC of k-weight α is iteratively, from the empty shape λ(0), using
Definition 2 to successively add bottom strong strips that are a tiling of (k + λ

(i−1)
1 , λ(i−1))/λ(i) with

αi-ribbons at each step.
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Example 8 With k = 5, we construct an ABC of 5-weight (3, 3, 1) by

strong 3-strip : lB 1 lB 1 1

strong 3-strip : lB 2̄ 2̄ 2̄ lB
2

2̄ 2̄ 2̄ 2

strong 1-strip : lB
3

3 lB
3 3

3 3 lB
3 3

3 3 3̄ 3̄ lB
3 3

3
3 3 3̄ 3̄ 3 .

The black letters are ribbons of size one, red letters make a ribbon of size two and blue letters make
a ribbon of size 3 (or for those without color the ribbons are depicted with a bar). This can be more
compactly represented as

3 3 2 1 1
3 2̄ 2̄ 2̄ 2

3 3 3̄ 3̄ 3 .

Example 9 An example of an ABC of 6-weight (4, 4, 2, 1) with inner shape (8, 2, 2, 1) = c(6, 2, 2, 1) is

4 2 2 1 1
3 3 3 3̄ 3̄ 3̄ 2 2
4 4 4̄ 4̄ 4 4 3 3 3 3̄ 3̄ 3̄

4 4 4̄ 4̄ 4 4 .

Example 10 Two examples of ABC’s of k-weight (1, 1, 1, 1, 1, 1, 1) = (17) are

2 1 1
5 3 2 2

4 3̄ 3̄ 3
6 5 4 4

7̄ 7̄ 5̄ 5̄ 5
6 6̄ 6̄
7̄ 7̄ 7 ,

3-weight (17)

2 1 1 1 1 1 1
4 3 2 2 2 2 2 2
5 4 3 3 3 3 3̄ 3̄ 3
6 6 5 4 4 4 4 4 4

7 7 5 5 5 5 5̄ 5̄ 5
6 6 6 6 6 6̄ 6̄
7 7 7̄ 7̄ 7 7 7 .

7-weight (17)

The weight generating functions of the ABC’s turn out to be the dual k-Schur functions.

Theorem 11 [DM12] For any λ ∈ Ck+1, the dual k-Schur function can be defined by

S
(k)
λ =

∑

A

xA

where the sum is over all affine Bruhat counter-tableaux of inner shape λ, and xA = xk-weight(A).

These are symmetric functions, implying that

S
(k)
λ =

∑

µ:µ1≤k
K

(k)
λ,µmµ , (6)

whereK(k)
λ,µ is the number of affine Bruhat counter-tableaux of inner shape λ and k-weight µ. Then, using

the Hall-inner product defined by
〈hλ,mµ〉 = δλµ ,

we arrive at a characterization for k-Schur functions.

hµ =
∑

λ

K
(k)
λ,µ s

(k)
λ . (7)
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5 Kostka-Foulkes polynomials

Our goal is to introduce polynomials s(k)λ [X; t] that reduce to s(k)λ [X] when t = 1 using (4) as an in-
spiration. Our approach is to introduce a statistic on ABC’s. When k = deg(λ), both S

(k)
λ and s(k)λ

are simply the Schur function sλ. One advantage of using ABC combinatorics in the theory of k-Schur
functions is that known results concerning Schur functions can be reinterpreted in the ABC framework
with k large and this can shed light on the smaller k cases. With this in mind, we consider a reformulation
for the Kostka-Foulkes polynomials in terms of ABC’s. Our results enable us to give a characterization
for symmetric polynomials in an extra parameter t that reduce to S

(k)
λ and s(k)λ when t = 1.

Let us start by recalling the Hall-Littlewood polynomials {Hλ[X; t]}λ. These are a basis for Λ over the
polynomial ring Z[t], which reduces to the homogeneous basis when the parameter t = 1. These often are
denoted by {Q′λ[X; t]} in the literature ([Mac95]). Hall-Littlewood polynomials arise and can be defined
in various contexts such as the Hall Algebra, the character theory of finite linear groups, projective and
modular representations of symmetric groups, and algebraic geometry. We define them here via a tableaux
Schur expansion due to Lascoux and Schützenberger [LS78].

The key notion is the charge statistic on semistandard tableaux. This is given by defining charge on
words and then defining the charge of a tableau to be the charge of its reading word. For our purposes,
it is sufficient to define charge only on words whose evaluation is a partition. We begin by defining the
charge of a word with weight (1, 1, . . . , 1), or a permutation. If w is a permutation of length n, then the
charge of w is given by

∑n
i=1 ci(w) where c1(w) = 0 and ci(w) is defined recursively as

ci(w) = ci−1(w) + χ (i appears to the right of i− 1 in w) .

Here we have used the notation that when P is a proposition, χ(P ) is equal to 1 if P is true and 0 if P is
false.

Example 12 The charge, ch(3, 5, 1, 4, 2) = 0 + 1 + 1 + 2 + 2 = 6.

We will now describe the decomposition of a word with partition evaluation into charge subwords,
each of which are permutations. The charge of a word will then be defined as the sum of the charge of its
charge subwords. To find the first charge subword w(1) of a word w, we begin at the right of w (i.e. at
the last element of w) and move leftward through the word, marking the first 1 that we see. After marking
a 1, we continue to travel to the left, now marking the first 2 that we see. If we reach the beginning of
the word, we loop back to the end. We continue in this manner, marking successively larger elements,
until we have marked the largest letter in w, at which point we stop. The subword of w consisting of the
marked elements (with relative order preserved) is the first charge subword. We then remove the marked
elements from w to obtain a word w′. The process continues iteratively, with the second charge subword
being the first charge subword of w′, and so on.

Example 13 Given w = (5, 2, 3, 4, 4, 1, 1, 1, 2, 2, 3), the first charge subword of w are the bold elements
in (5,2, 3, 4,4, 1, 1,1, 2, 2,3). If we remove the bold letters, the second charge subword is given by the
bold elements in (3,4, 1,1, 2,2). It is now easy to see that the third and final charge subword is (1,2).
Thus we get that ch(w) = ch(5, 2, 4, 1, 3) + ch(3, 4, 1, 2) + ch(1, 2) = 8. Since w is the reading word of
the tableau T =

5
2 3 4 4
1 1 1 1 2 2 3

we find that the ch(T ) = 8.
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Equipped with the definition of charge, Hall-Littlewood polynomials are then defined by

Hµ[X; t] =
∑

λ

Kλ,µ(t) sλ , (8)

where Kλ,µ(t) = Kλ,µ(0, t) from (2).
Our first order of business to reformulate Kostka-Foulkes polynomials is to describe the reading word

of an ABC. To do so, we first modify a given ABC by lengthening the row sizes.

Definition 14 From a given ABC A of partition k-weight µ, the extension of A, ext(A), is the counter-
tableau constructed from A by adding k cells with letter i to each row i, where the first µi − si + ri + 1
added cells form a ribbon for si the sum of the size of the ribbons filled with the letter i in row i and ri
the number of such ribbons.

Example 15 Consider the following extension of an ABC with 5-weight (3, 3, 3, 1).

A =
4 2 1 1

4 3 2̄ 2̄ 2̄ 2

4̄ 4̄ 4 3̄ 3̄ 3
4 4 4̄ 4̄ 4

=⇒ ext(A) =
4 2 1 1 1̄ 1̄ 1̄ 1̄ 1

4 3 2̄ 2̄ 2̄ 2 2̄ 2̄ 2 2 2

4̄ 4̄ 4 3̄ 3̄ 3 3̄ 3̄ 3̄ 3 3
4 4 4̄ 4̄ 4 4 4 4 4 4

5.1 Reading word of standard ABC’s
As with tableaux, we first define the reading word of a standard ABC (one of k-weight 1n) and use this
to describe the general reading word. Standard ABC’s have a much more predictable structure than the
general case. Namely, a standard ABC A has only ribbons of size 1 or 2. In fact, if a row i in A has an
i-ribbon of size 2, then µi − si + ri = 1. Otherwise µi − si + ri + 1 = 2. Thus, each row i of ext(A)
has a unique i-ribbon of size 2.

Our construction of the word of an ABC A considers only a subset of the cells in ext(A). Namely,

VA = {(i, ci) ∈ ext(A) : (i, ci) is any cell in a i-ribbon of row i that is not its tail}. (9)

For standard A of k-weight 1n, VA is simply a set of n ribbon heads; the one in each row i of ext(A) that
contains i. Using VA, we define the reading word on this standard ABC A.

Definition 16 For a givenABC A of k-weight 1n, iteratively construct the reading word w(A) by insert-
ing letter i directly right of letter j where j < i is the largest index such that cj < ci and (j, cj) ∈ VA. If
there is no such j then i is placed at the beginning.

Example 17 Recall the ABC from example 10 of 3-weight (17) is

A =

2 1 1
5 3 2 2

4 3̄ 3̄ 3
6 5 4 4

7̄ 7̄ 5̄ 5̄ 5
6 6̄ 6̄
7̄ 7̄ 7

=⇒ ext(A) =

2 1 1 1̄ 1̄ 1
5 3 2 2 2̄ 2̄ 2

4 3̄ 3̄ 3 3 3 3
6 5 4 4 4̄ 4̄ 4

7̄ 7̄ 5̄ 5̄ 5 5 5 5
6 6̄ 6̄ 6 6 6

7̄ 7̄ 7 7 7 7

From ext(A), we see that VA = {(1, 5), (2, 6), (3, 4), (4, 7), (5, 5), (6, 6), (7, 5)}. From VA, we have
the iterative construction of the reading word of A as (1) → (1, 2) → (3, 1, 2) → (3, 1, 2, 4) →
(3, 5, 1, 2, 4)→ (3, 5, 6, 1, 2, 4)→ (3, 7, 5, 6, 1, 2, 4). This tells us that w(A) = (3, 7, 5, 6, 1, 2, 4).
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5.2 Reading words of ABC
Equipped with a method to obtain the reading word (permutation) of standard ABC’s, we now define a
way to construct a sequence of permutations from any ABC with partition k-weight.

Definition 18 Let A be an ABC of partition k-weight µ. For r = 1, 2, . . . , µ1, starting with r = 1, we
iteratively construct sets ErA from ext(A) as follows; put (1, k + µ1 + 2− r) ∈ ErA, and let (i, ci) ∈ ErA
if and only if (i− 1, ci−1) ∈ ErA and

(ci−1 − ci + k) mod (k + 1) = min{(ci−1 − x+ k) mod (k + 1)|(i, x) ∈ VA \ ∪r−1p=1E
p
A}.

Example 19 Recall the ABC A from example 15 of 5-weight (3, 3, 3, 1). From its ext(A), we see that

VA = {(1, 7), (1, 8), (1, 9), (2, 6), (2, 7), (2, 10), (3, 8), (3, 11), (3, 12), (4, 10)}.

We iteratively construct the sets ErA for each r = 1, 2, 3, using ext(A) and VA. For r = 1, begin by
setting E1

A = {(1, 9)}. Next, we see that (2, 7) ∈ E1
A , because (1, 9) ∈ E1

A and

1 = min{2 = (9− 6 + 5) mod 6, 1 = (9− 7 + 5) mod 6, 4 = (9− 10 + 5) mod 6}.

So the next iteration gives us that E1
A = {(1, 10), (2, 7)}. Next, we see that (3, 12) ∈ E1

A, because
(2, 7) ∈ E1

A and 0 = min{4 = (7− 8 + 5) mod 6, 1 = (7− 11 + 5) mod 6, 0 = (7− 12 + 5) mod 6}.
So the next iteration gives us that E1

A = {(1, 10), (2, 7), (3, 12)}. Finally since the (4, 10) is the only
element in VA from the fourth row of A, then we see that E1

A = {(1, 9), (2, 7), (3, 12), (4, 10)}.
For r = 2, to constructE2

A, we begin by settingE2
A = {(1, 8}, and repeat what we did to constructE1

A,
except this time we only consider elements from the set VA\E1

A = {(1, 7), (1, 8), (2, 6), (2, 10), (3, 8), (3, 11)}.
This gives us E2

A = {(1, 8), (2, 6), (3, 11)}.
Finally for r = 3, to construct E3

A, we begin by setting E3
A = {(1, 7)}, and we only consider el-

ements from the set VA \ (E1
A ∪ E2

A) = {(1, 7), (2, 10), (3, 8)}, which immediately gives us E3
A =

{(1, 7), (2, 10), (3, 8)}.
Using each set ErA, we construct a sequence of reading word wr for 1 ≤ r ≤ µ1.

Definition 20 Given an ABC A of partition k-weight µ, for 1 ≤ r ≤ µ1, the rth reading word of A,
wr(A), is constructed using the same procedure in definition 16, where VA is replaced by ErA.

Example 21 If we consider the ABC A from example 15, then we know from example 19 that E1
A =

{(1, 9), (2, 7), (3, 12), (4, 10)}, E2
A = {(1, 8), (2, 6), (3, 11)}, E3

A = {(1, 7), (2, 10), (3, 8)}. This tells
us from definition 20 that w1(A) = (2, 1, 4, 3), w2(A) = (2, 1, 3) and w3(A) = (3, 1, 2).

For partitions λ, µ with |λ| = |µ| = n, an ABC A is of n-weight µ and inner shape λ, has a charge
statistic associated to it.

Definition 22 Suppose λ and µ are partitions with |λ| = |µ| = n. For any ABC A of n-weight µ and
inner shape λ, the charge of A is ch(A) =

∑µ1

r=1 ch(wr(A)).

Example 23 The ABC A from example 15 has the reading words w1(A) = (2, 1, 4, 3), w2(A) =
(2, 1, 3) and w3(A) = (3, 1, 2). as described in example 18. Hence, we have that the charge of A is
ch(A) = ch((2, 1, 4, 3)) + ch((2, 1, 3)) + ch((3, 1, 2)) = 2 + 1 + 2 = 5.
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There is a direct connection between reading words of semi-standard Young tableaux and a certain set
of ABC’s.

Theorem 24 Suppose λ and µ are partitions with |λ| = |µ| = n. If the set

ABC(λ, µ) = {A| A is an ABC of n-weight µ and inner shape c(λ)} ,

then there is a bijection between the sets ABC(λ, µ) and SSY T (λ, µ), which is charge preserving.

From this theorem, we have the following corollary that gives the Kostka-Foulkes polynomials in the spirit
of ABC’s.

Corollary 25 For partitions λ and µ, the Kostka-Foulkes polynomial

Kλ,µ(t) =
∑

A∈ABC(λ,µ)

tch(A).

6 k -charge and k -Schur functions
We now look towards generalizing Corollary 25 by considering ABC’s of any partition k-weight. What
is needed is an extra concept of an offset of a given ABC. Any r-ribbon of an ABC is an offset if there
is a lower r-ribbon filled with the same letter as R whose head has the same residue as the head of R.

Definition 26 For any ABC A of partition k-weight µ, we set

off k(A) =
∑

R: offset inA

(size(R)− 1)

Definition 27 Let A be an ABC of partition k-weight µ and inner shape λ, and w1(A), . . . , wµ1
(A) be

the sequence of reading words that result from definition 18. Then, the k-charge of A

chk(A) =

µ1∑

r=1

ch(wr(A))− off k(A)− β(A)

where β(A) is the number of cells in λ whose hook-length exceeds k.

Example 28 Consider the ABC of 3-weight 15 A =
3 1 1

2 2̄ 2̄
4 3 3

5̄ 5̄ 4 4
5 5̄ 5̄

. Here we see that A has only one offset

5̄ 5̄ in the second row from the bottom. The only reading word for this A is w1(A) = (2, 5, 1, 3, 4). So we
get ch3(A) = ch((2, 5, 1, 3, 4))− 1− 1 = 5− 1− 1 = 3.

Definition 29 For any λ, µ ∈ Pk, we let

K
(k)
λ,µ(t) =

∑

A:ABC of k-weight µ,
inner shape c(λ)

tch
k(A).

Note that when k ≥ |λ|, the polynomials K(k)
λ,µ(t) are the Kostka-Foulkes polynomials of 2. Definition

29 generalizes the Kostka-Foulkes polynomials, and it also helps us to define a new set of symmetric
functions with parameter t. To see this, we only need the following claim.
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Lemma 30 The matrix [
K

(k)
λ,µ(t)

]
{λ,µ∈Pk}

is unitriangular.

Taking the inverse of the matrix in theorem 30, we form a basis for the subring Λ
(k)
t of the ring Λ.

Definition 31 For λ ∈ Pk, the k-Schur function with parameter t is

s
(k)
λ [X; t] =

∑

µ

K̃
(k)
λ,µ(t)Hµ[X; t],

where K̃(k)
λ,µ(t) are entries in the inverse of the matrix

[
K

(k)
λ,µ(t)

]
{λ,µ∈Pk}

.

These new symmetric functions exhibit properties which connect them to the k-Schur and the Schur
functions.

Property 32 As λ ranges over partitions inPk, s(k)λ [X; t] forms a basis for the subring Λ
(k)
t , s(k)λ [X; 1] =

s
(k)
λ , and s(∞)

λ [X; 1] = sλ.

Finally we make the following conjecture which ties the functions in Definition 31 to those described in
[LLM03].

Conjecture 33 For µ ∈ Pk, s(k)µ [X; t] = A
(k)
µ [X; t].

References
[AB12] S. Assaf and S. Billey. Affine dual equivalence and k-Schur functions. preprint, 2012.

[Ber09] F. Bergeron. Algebraic Combinatorics and Coinvariant Spaces. A. K. Peters/CRC Press,
2009.

[DM12] A. Dalal and J. Morse. The ABC’s of the affine Grassmannian and Hall-Littlewood polyno-
mials. DMTCS Proceedings, 2012.

[GP92] A. M. Garsia and C. Procesi. On certain graded Sn-modules and the q-Kostka polynomials.
Adv. Math, 87:82–138, 1992.

[GR96] A. M. Garsia and J. Remmel. Plethystic formulas and positivity for q, t-Kostka coefficients.
Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, pages 245–262, 1996.

[Gre55] J. A. Green. The characters of the finite general linear groups. Trans Amer Math Soc, 80:442–
407, 1955.

[GT96] A. M. Garsia and G. Tesler. Plethystic formulas for Macdonald q, t-Kostka coefficients. Adv
Math, , 123:144–222, 1996.

[Hai01] M. Haiman. Hilbert schemes, polygraphs, and the Macdonald positivity conjecture. J. Am
Math. Soc., 14:941–1006, 2001.



1166 Avinash J. Dalal and Jennifer Morse

[KN96] A. N. Kirillov and M. Noumi. q-difference raising operators for Macdonald polynomials and
the integrality of transition coefficients. Algebraic methods and q-special functions (Montreal,
QC, pages 227–243, 1996.

[Kno97] F. Knop. Integrality of two variable Kostka functions. J. Reine Agnew, 482:177–189, 1997.

[Lam06] T. Lam. Affine Stanley symmetric functions. Amer. J of Math, 128(6):1553–1586, 2006.

[Lam08] T. Lam. Schubert polynomials for the affine Grassmannian. J. Amer. Math Soc, 21(1):259–
281, 2008.

[LLM03] L. Lapointe, A. Lascoux, and J. Morse. Tableau atoms and a new Macdonald positivity
conjecture. Duke Math J, 116(1):103–146, 2003.

[LLMS10] T. Lam, L. Lapointe, J. Morse, and M. Shimozono. Affine insertion and Pieri rules for the
affine Grassmannian. Memoirs of the AMS, 208(977), 2010.

[LLMS12] T. Lam, L. Lapointe, J. Morse, and M. Shimozono. The poset of k-shapes and branching of
k-Schur functions. to appear in Memoirs of the AMS, 2012.

[LM05] L. Lapointe and J. Morse. Tableaux on k + 1-cores, reduced words for affine permutations,
and k-Schur function expansions. J Combin Theory Ser, 112(1):44–81, 2005.

[LM08] L. Lapointe and J. Morse. Quantum cohomology and the k-Schur basis. Trans Amer Math
Soc, , 360(4):2021–2040, 2008.

[LP] L. Lapointe and M. E. Pinto. Private communication. Private communication with Authors.

[LS78] A. Lascoux and M.-P. Schützenberger. Sur une conjecture de H.O. Foulkes. C.R. Acad. Sc.
Paris, 294:323–324, 1978.

[Lus81] G. Lusztig. Singularities, character formulas, and a q-analog of weight multiplicities. Analysis
and topology on singular spaces, II, III (Luminy, 101-102:208–229, 1981.

[LV98] L. Lapointe and L. Vinet. A short proof of the integrality of the Macdonald (q, t)-Kostka
coefficients. Duke Math J, 91:205–214, 1998.

[Mac88] I. G. Macdonald. A new class of symmetric functions. Séminaire Lotharingien de Combina-
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A lattice of combinatorial Hopf algebras:
Binary trees with multiplicities
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Abstract. In a first part, we formalize the construction of combinatorial Hopf algebras from plactic-like monoids
using polynomial realizations. Thank to this construction we reveal a lattice structure on those combinatorial Hopf
algebras. As an application, we construct a new combinatorial Hopf algebra on binary trees with multiplicities and
use it to prove a hook length formula for those trees.

Résumé. Dans une première partie, nous formalisons la construction d’algèbres de Hopf combinatoires à partir d’une
réalisation polynomiale et de monoı̈des de type monoı̈de plaxique. Grâce à cette construction, nous mettons à jour
une structure de treillis sur ces algèbres de Hopf combinatoires. Comme application, nous construisons une nouvelle
algèbre de Hopf sur des arbres binaires à multiplicités et on l’utilise pour démontrer une formule des équerres sur ces
arbres.

Keywords: Combinatorial Hopf algebras, monoids, polynomial realization, hook length formula, generating series,
binary trees

1 Introduction
In the past decade a large amount of work in algebraic combinatorics has been done around combi-
natorial Hopf algebras. Many have been constructed on various combinatorial objects such as parti-
tions (symmetric functions [Mac95]), compositions (NCSF [GKL+94, MR95]), permutations (FQSym
[MR95, DHT02]), set-partitions (WQSym [Hiv99]), binary trees (PBT or the LODAY-RONCO Hopf al-
gebra [LR98, HNT05]), or parking functions (PQSym [NT04, NT07]). A powerful method to construct
those algebras, called polynomial realization, is to construct the Hopf algebra as a sub algebra of a free
algebra of polynomials (commutative or not) admitting certain symmetries. Beside the contruction of
Combinatorial Hopf algebra, several recent papers investigate toward the formalization of combinatorial
applications such as hook formulas, or seek some structure in this large zoo.

This extended abstract, reports on a work in progress which proposes to formalize the construction of
Hopf algebras by polynomial realizations: starting with one of the three Hopf algebras FQSym, WQSym
or PQSym realized in a free algebra, we impose some relations on the variables. Under some simple
hypotheses, the result is again a Hopf algebra (Theorem 1). Two important examples are already known,

†jean-baptiste.priez@lri.fr

subm. to DMTCS c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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namely the POIRIER-REUTENAUER algebra of tableaux (FSym [PR95, DHT02]) obtained from the plac-
tic monoid [LS81] and the planar binary tree algebra of LODAY-RONCO obtained from the sylvester
monoid [LR98, HNT05].

We further observe that the construction transports the lattice structure on monoids to a lattice structure
on those Hopf algebras (Theorem 2). This structure was used implicitely by GIRAUDO for constructing
the Baxter Hopf algebra from the Baxter monoid as the infimum of the sylvester monoid and its image
under SCHÜTZENBERGER involution. The supremum of those two monoids is known as the hypoplactic
monoid which gives the algebra of quasi symmetric functions [Nov00].

As an application (Section 5) we take the supremum of the sylvester monoid and the stalactic monoid
of [HNT08a]. The result is a monoid on binary search trees with multiplicities leading to a Hopf algebra
on binary trees with multiplicities. Interestingly, there is a hook length formula for those trees (Theorem
3) and we prove it using the Hopf algebra as generating series.

Acknowledgements
I would like to thank Florent HIVERT and Nicolas M. THIÉRY for their patience and advice during the
preparation of this manuscript. Several examples in this paper were computed using the open-source
mathematical software Sage [S+12] and its extension: Sage-Combinat [SCc12]. The implementation
of several Hopf algebras is available at http://code.google.com/p/sage-hopf-algebra/
and will be available on Sage-Combinat soon and later in Sage. That code is due to Rémi MAURICE
and I.

2 Background
In this section, we introduce some notations and three specific maps from words to words: standardiza-
tion, packing, and parkization. These will be the main tool for polynomial realizations of Hopf algebras.

2.1 Lattice structure on Congruences
The free monoid A∗ on an alphabet A is the set of words with concatenation as multiplication. We denote
by 1 the empty word. Recall that a monoid congruence is an equivalence relation≡ which is left and right
compatible with the product; in other words, for any monoid elements a, b, c, d, if a ≡ b and c ≡ d then
ac ≡ bd. Starting with two congruences on can build two new congruences:
• the union ∼ ∨ ≈ of ∼ and ≈ is the transitive closure of the union ∼ and ≈; that is u ≡ v if

there exists u = u0, . . . , uk = v such that for any i, ui ∼ ui+1 or ui ≈ ui+1. It is the smallest
congruence containing both ∼ and ≈;
• the intersection ∼ ∧ ≈ of ∼ and ≈ is defined as the relation ≡ with u ≡ v if u ∼ v and u ≈ v.

2.2 Some ϕ-maps
Throughout this paper we construct Hopf algebras from the equivalence classes of words given by the
fibers of some map ϕ from the free monoid to itself. Our main examples are standardization and packing
functions which can be defined for any totally ordered alphabet A. We could easily extend these following
properties to parkization [NT04, NT07] if the alphabet A is well-ordered (any element has a successor).

In the following, we suppose that A is an totally ordered infinite alphabet. Most of the time we use
A = N>0 for simplicity. For w in A∗, we denote by part(w) the ordered set partition of positions of w
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letters obtained as follows: for each letter l ∈ A appearing in w, there is a part containing the positions
of each occurrence of l in w; the parts are ordered using the order on the alphabet A. For example:
part(13231) = [{1, 5}, {3}, {2, 4}] and part(1112) = [{1, 2, 3}, {4}].
Standardization std computes the lexicographically smallest word w which has same length and same
set of inversions. This map is used in the realization of the Hopf algebra FQSym of permutations [DHT02,
MR95]. The image std(A∗) is identified with the set S of all permutations.

Algorithm 1: Standardization std
Data: w = (a1, . . . , ak) a word of Ak

Result: σ = (σ1, . . . , σk) ∈ Sk ⊆ Ak

1 osp← part(w); i← 1
2 forall the set ∈ osp do
3 forall the p ∈ set do
4 σp ← i
5 increment(i)

6 return σ

Some examples:
w std(w)

(7, 2, 14, 3, 7) (3, 1, 5, 2, 4)
(23, 14, 5, 92) (3, 2, 1, 4)
(4, 2, 1, 3, 5) (4, 2, 1, 3, 5)

(1, 5, 1, 1, 5, 5) (1, 4, 2, 3, 5, 6)

Packing pack computes the lexicographically smallest word w which has same ordered set partitions.
This map is used in the realization of the Hopf algebra WQSym of ordered set partition or packed words
[Hiv99]. We identify tass(A∗) with the collection of ordered set partitions.

Algorithm 2: Packing pack
Data: w = (a1, . . . , ak) a word of A∗

Result: c = (c1, . . . , ck)
1 osp← part(w); i← 1
2 forall the set ∈ osp do
3 forall the p ∈ set do cp ← i
4
5 increment(i)

6 return c

Some examples:
w tass(w)

(3, 13, 3, 2, 13) (2, 3, 2, 1, 3)
(2, 2, 2, 5, 8, 2) (1, 1, 1, 2, 3, 1)
(4, 2, 1, 3, 5) (4, 2, 1, 3, 5)
(2, 3, 1, 1, 2) (2, 3, 1, 1, 2)

Those maps are used to realize some Hopf algebras like FQSym, WQSym, or PQSym. For each such
map ϕwe say that a wordw is canonical if ϕ(w) = w. For example, 1423 is canonical for std and 1121 is
canonical for pack. The set of canonical words for the standardization function is the set of permutations
set; for the packing function it is the set of packed words. The set ϕ(A∗) of canonical words is denoted
by canϕ. We call these maps the ϕ-maps.

3 Polynomial realizations and Hopf algebras
In this section we describe how, from a ϕ-map, one can construct a Hopf algebra such as FQSym,
WQSym, or PQSym, using two tricks: polynomial realization and alphabet doubling. Polynomial re-
alizations are a powerful trick to construct algebras as sub-algebras of a free algebra by manipulating
some polynoms having certain symmetries. Futhermore the alphabet doubling trick defines a graded al-
gebra morphism on a free algebra which endows it with a compatible coproduct, that is a Hopf algebra
structure.

3.1 ϕ-polynomial realization
The notion of polynomial realizations has been introduced and implicitly used in many articles of the
“phalanstère de Marne-la-Vallée” (France). See e.g. [DHT02, NT06a, HNT08a]. In the following, we
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call alphabet A an infinite and totally ordered (when appropriate, we assume furthermore that the total
order admits a successor function) set of symbols all of which are of weight 1. By an abuse of language,
we call the free algebra the graded algebra infinite but finite degree sum of words.

Definition 1 (Polynomial realization): Let A := ⊕n>0An be a graded algebra. A polynomial real-
ization r of A is a map which associates to each alphabet A an injective graded algebra morphism rA
from A to the free non-commutative algebra K〈A〉 such that, if A ⊂ B, then for all x ∈ A one has
rA(x) = rB(x)/A, where rB(x)/A is the sub linear combination obtained from rB(x) by keeping only
those words in A∗.

When the realization is clear from the context we write A(A) := rA(A) for short.

For a given ϕ, we consider the subspace Aϕ admitting the basis (mu)u∈canϕ defined on Aϕ(A):

rA,ϕ(mu) =
∑
w∈A∗;ϕ(w)=u w . (1)

The result does not depend on the alphabet. For ϕ = std, pack or park the linear span of (mu)u∈canϕ is
a sub-algebra of K〈A〉.
Example 1 (Realization of FQSym): If ϕ = std then canϕ is in fact the set of permutations and Aϕ is
the permutations Hopf algebra FQSym [DHT02, MR95]. It is realized by the std-polynomial realization
in K〈A〉: let Gσ(A) := rA,std(Gσ) such that, for example

G132(N∗) = 121 + 131 + 132 + 141 + 142 + 143 + · · ·+ 242 + 243 + · · · .

The realization is an algebra morphism: Gσ(A) · Gµ(A) = rA,std(Gσ × Gµ) where ”·” is the classical
concatenation product on words in the free algebra. For example,

G213 ×G1 = G2134 + G2143 + G3142 + G3241

which is equivalent to

rstd,N∗(G213 ×G1) = G213(N∗) ·G1(N∗) = (212 + 213 + 214 + · · · ) · (1 + 2 + 3 + 4 + · · · )
= 2121 + 2122 + 2123 + · · · 2131 + 2132 + 2133 + · · ·+ 3241 + · · ·

Proposition 1: If span((mu)u∈canϕ
) is stable under the product × then it is given by:

mu ×mv =
∑

w:=u′v′∈canϕ

ϕ(u′)=u;ϕ(v′)=v

mw . (2)

Remark 1: Let A,B be two totally ordered alphabets such that any element in A is strictly smaller than
any element of B. By definition we have the following isomorphisms, where t denotes the disjoint union:

A ' A(A) ' A(B) ' A(A tB) . (3)

3.2 Alphabet doubling trick
The alphabet doubling trick [DHT02, Hiv07] is a way to define coproducts. We consider the algebra
K〈A tB〉 generated by two (infinite and totally ordered) alphabets A and B such that the letters of A are
strictly smaller than the letters of B. The relation�make the letters of A commute with those of B. One
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identifies K〈A tB〉/� with the algebra K〈A〉 ⊗ K〈B〉. We follow here the abuse of language allowing
infinite but finite degree sum. We denote by rAtB(x)/� the image of rAtB(x) given by the canonical
map from K〈A tB〉 to K〈A tB〉/�. The map x 7→ rAtB(x)/� is always an algebra morphism from
A to K〈A〉 ⊗K〈B〉. Whenever its image is included in A(A)⊗A(B) this defines a coproduct on A.

Definition 2 (Hopf polynomial realization): A Hopf polynomial realization r of H is a polynomial re-
alization such that for all x:

rAtB(x)/� = (rA ⊗ rB)(∆(x)) . (4)

Example 2 (Coproduct in FQSym): We denote by Gσ(A t B) the std-polynomial realization of the
FQSym element indexed by σ in the algebra K〈A tB〉/�. Also we denote by 1, 2, 3, · · · the symbols
of A and in bold red 1,2,3, · · · the symbols of B ordered with 1 < 2 < 3 < · · · < 1 < 2 < 3 < · · · .
Then,

G132(A tB) = 121 + 131 + 132 + · · ·+ 111 + 112 + · · ·+ 121 + 131 + · · ·+ 121 + · · ·
= 121 + 131 + · · ·+ 11·1 + 11·2 + · · ·+ 1·21 + 1·31 + · · ·+ 123 + 132 + · · ·
= ∆(G132) = 1⊗G132 + G1 ⊗G21 + G12 ⊗G1 + G132 ⊗ 1 .

3.3 Good Hopf algebras
We call a Hopf algebra Hϕ good if it is defined by a Hopf polynomial realization rϕ. We call a function
ϕ good if it produces a good Hopf algebra Hϕ. Currently, we know three main good Hopf algebras:
FQSym, WQSym and PQSym are respectivly associated to the standardization, packing and parkization
functions.

4 Good monoids
In the previous section (Section 3), we realized some Hopf algebras in free algebras. In this section, we
give sufficient conditions on a congruence≡ to build a combinatorial quotient of a good Hopf algebra. We
call a monoid good if it statisfies these conditions. We give a sufficient compatibility between ϕ and ≡ to
ensure the product is carried to the quotient. The second condition ensures that the alphabet doubling trick
map. It is used to project the coproduct in the quotient. Under these conditions, a monoids is guaranted
to produce a Hopf algebra quotient (Theorem 1). Furthermore, these conditions on monoid are preserved
under taking infimum and supremum (Theorem 2).

4.1 Definition
The notion of Good monoids has been introduced by HIVERT-NZEUTCHAP [HN07] to build quotients
(sub-algebras) of FQSym. We could also mention PhD thesis.

A good monoid is a monoid which is similar to the plactic monoid [LS81, Knu73]. We consider a free
monoid A∗ with concatenation product ”·”, a congruence≡ on A∗ and a map ϕ : A∗ → A∗. We define the
evaluation ev(w) of a word w as its number of occurrences of each letter of w. For example, the words
ejajv and jjaev have the same evaluation: both have one a, one e, one v and two j. The free monoid
A∗/ ≡ is a ϕ-good monoid if it has the following properties:

Definition 3 (ϕ-congruence): The congruence ≡ is a ϕ-congruence if for all u, v ∈ A∗, u ≡ v if and
only if ϕ(u) ≡ ϕ(v) and ev(u) = ev(v).



1172 J.-B. Priez

This first compatibility is sufficient to build a quotient algebra of Aϕ.

Definition 4 (Compatibility with restriction to alphabet intervals): The congruence ≡ is compatible
with the restriction to alphabet intervals if, for all u, v ∈ A∗ such that u ≡ v one has u|I ≡ v|I for any I
interval of A, where w|A is word restricted to the alphabet A.

This second compatibility in association with the first ensures that alphabet doubling trick defines a quo-
tient coproduct. Both compatibilities give us an extended definition of a HIVERT-NZEUTCHAP’s good
monoid which one is defined only with ϕ the standardization map:

Definition 5 (ϕ-good monoid): A quotient A∗/ ≡ of the free monoid is a ϕ-good monoid if ≡ is a ϕ-
congruence and is compatible with restriction to alphabet intervals. We call such a congruence a ϕ-good
congruence.

In the following examples, we denote words of A∗ by u, v, w and the letters by a, b, c.

Example 3 (sylvester and stalactic monoids): The sylvester congruence: ≡sylv, defined by

u · ac · w · b · v ≡sylv u · ca · w · b · v whenever a 6 b < c , (5)

is std-compatible and compatible with the restriction to alphabet intervals. Thanks to the binary search
tree insertion algorithm the equivalence classes are in natural bijection with binary search trees. The
quotient monoid is a monoid on binary search trees called the sylvester monoid in [HNT05].

The stalactic congruence [HNT08a]: ≡stal, defined by

u · ba · v · b · w ≡stal u · ab · v · b · w , (6)

is compatible with packing but not with standardization. The quotient monoid is the stalactic monoid. It
is clear that any stalactic class contains a word of the form am1

1 am2
2 . . . amk

k , where the ai are distinct. We
call these words canonical.

51543151145312455 ≡stal 3215214356

4.2 Hopf algebra quotient
These differents good monoids tools was used to (re-)define several Hopf algebra quotients: FSym the
Free Symmetric functions Hopf algebra [DHT02], PBT [LR98, HNT05] or Baxter Hopf algebra [Gir11a,
Gir12]; the Hopf algebra associated with the stalactic monoid [HNT08a]; or CQSym [NT04, NT07] (a
PQSym quotient).

Lemma 1 (Algebra quotient): LetHϕ be a good Hopf algebra and≡ be a ϕ-good congruence such that
its free monoid quotient is a ϕ-good monoid. Then, the quotientHϕ/≡ is an algebra quotient whose bases
are indexed by canϕ/≡, identifying basis elements mu and mv whenever u ≡ v.

Example 4 (PBT and Hopf algebra stalactic): We go back to Example 3. The sylvester quotient of
FQSym is the Hopf algebra PBT [LR98, HNT05].

The stalactic monoid gives a quotient of WQSym. Let π be the projection of WQSym in WQSym/≡stal

and u := 112 and v := 11 two (packed) words. We denote by π the projection of Mu by Qs, with s the
planar diagram associated to the stalactic class of u.

π(M112 ×M11) = π(M11211 + M11222 + M11233 + M11322 + M22311)

= Q122 ×Q12 = Q214 + Q1223 + Q12232 + Q12322 + Q22312
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Lemma 2 (Coalgebra quotient): The quotientH/≡ is a coalgebra quotient.

SKETCH OF THE PROOF: The relation ≡ is compatible with the restriction to alphabet intervals, hence
the alphabet doubling trick ensures that coproduct projects to the quotient.

Example 5:

π(∆(M332122)) = π(1⊗M332122 + M1 ⊗M22111 + M2122 ⊗M11 + M332122 ⊗ 1)

= ∆(Q32123) = 1⊗Q32123 + Q1 ⊗Q2213 + Q123 ⊗Q12 + Q32123 ⊗ 1

Theorem 1 (Good monoid and good Hopf algebra): Let Hϕ be a good Hopf algebra and ≡ be a ϕ-
good congruence. The quotientH/≡ is a Hopf algebra quotient.

Corollary 1: The dual Hopf algebra (H/≡)# is a sub-algebra of the dual Hopf algebra H#, with basis
given by:

M
#

U∈canϕ/≡ =
∑
u∈U m

#
u . (7)

4.3 Operations

Previously we introduced some good functions ϕ: std, pack (and park). It is interesting to investigate the
connections between them:

Definition 6 (refinement): Let ϕ and π be two functions. We say that π refines ϕ, written ϕ ≺ π if
ϕ(π(u)) = ϕ(u) for all u ∈ A∗.

It is clear that refinement is an order.

Proposition 2 (std, tass, park and refinement): For these three functions: standardization std, pack-
ing pack and parking park we have the relation: std ≺ pack ≺ park.

Proposition 3 (Good functions and refinement): Let ϕ and π be two good functions such that ϕ ≺ π.
Then any ϕ-good monoid is a π-good monoid.

Propositions 2 and 3 give us, for example, that any std-good monoid is pack-good. Furthermore opera-
tions on two good congruences give good congruences.

Theorem 2 (∨, ∧ and good congruences): The union and intersection of two ϕ-good congruences ∼
and ≈ are ϕ-good congruences.

As an intriguing consequence the lattice structure on monoids is transported to Hopf algebras. Several
examples of this are know.

Example 6: The intersection (≡sylv ∧ ≡#sylv) of the sylvester relation (5) and its image under the
SCHÜTZENBERGER involution gives std-good monoid: the Baxter monoid [Gir11a, Gir11b].

The union (≡sylv ∨ ≡#sylv) of those relations gives the hypoplactic monoid [Nov00].

In the sequel, we study in detail another example.
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w := 45142234212





P(w) =

2, 4 4

1, 2 4, 3 ↔ 2 3

3, 1 5, 1 1 1

= Bm(w)

Q(w) =
[5, 6, 9, 11]

[3, 10] [1, 4, 8]

[7] [2]

Figure 1: We start by considering the packed word 45142234212, and insert it in a BSTM by the algorithm P; that
give us P(45142234212) above in the middle. On the right, there is the BTm (Bm(w)) associated with the BSTM
(P(w)) of WQSym/≡t . At the top of the figure there is the P -symbol given by P or Bm and below the Q-symbol is
given byQ.

5 The union of the sylvester and the stalactic congruences
As an application of the preceding construction, we consider the union (≡sylv ∨ ≡stal) of the sylvester
congruence (5) and the stalactic congruence (6); we call it the taı̈ga relation ≡t,

u · ac · v · b · w ≡t u · ca · v · b · w for a 6 b < c ,

u · ba · v · b · w ≡t u · ab · v · b · w
(8)

From Proposition 3 we know that the sylvester congruence (5) is a pack-good congruence and from
Theorem 2 we deduce that the taı̈ga monoid is a pack-good monoid.

5.1 Algorithm and taı̈ga monoid
The taı̈ga congruence can be calculated using an insertion algorithm similar to the binary search tree
insertion (see Algorithm 3 for a definition). This insertion algorithm uses a search tree structure:

Definition 7 (Binary search tree with multiplicity): A (planar) binary search tree with multiplicity (BS-
TM) is a binary tree T where each node is labelled by a letter l and a non-negative integer k, called the
multiplicity, so that T is a binary search tree if we drop the multiplicities and such that each letter appears
at most once in T . We denote by (l, k) a node label and for any node n, by l(n) its letter and by m(n) its
multiplicity.

We denote by P(w) the result of the insertion using Algorithm 3 of w from the right to the left in the
empty tree (cf. the left part of the figure 1).

Proposition 4: The taı̈ga classes are the fibers of P . That is for u and v two words: u ≡t v if and only if
P(u) = P(v).

The Q-symbol of w is the tree Q(w) of same shape as P(w) which records the positions of each inserted
letter. This gives us a ROBINSON-SCHENSTED like correspondance [LS81] (cf. Figure 1). As a corollary
of Theorem 2 we get the taı̈ga monoid is a tass-good monoid.

5.2 Quotient of WQSym: PBTm
As in [HNT05], we consider a binary trees with multiplicities without letters.
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Algorithm 3: insertion in a BSTM
Data: t a BSTM with Lt andRt its left and right subtrees, and l a

letter of A
Result: t with l inserted

1 if t is empty tree then
2 t← node labelled by (l, 1)
3 else
4 if l(t) = l then
5 incrementm(t)
6 else
7 if l(t) < l then insert recursively l in Lt

8
9 else insert recursively l inRt

10 return t

Insertion of word 541214 from the
right to the left in the empty tree :

4−−→ 4, 1
1−−→

4, 1

1, 1

2−−→
4, 1

1, 1

2, 1

1−−→
4, 1

1, 2

2, 1

4−−→
4, 2

1, 2

2, 1

5−−→
4, 2

1, 2 5, 1

2, 1

Definition 8 (BTM): A binary tree with multiplicities (BTM) is a (planar) binary tree labelled by non-
negative integers on its nodes. The size of a BTM T denoted by |T | is the sum of the multiplicities.

Let Tw be a BSTM associated to a packed word w, and T be the BTM obtained by removing its letters.
One can recover uniquely Tw from T : indeed each letter of Tw is deduced by a left infix reading of T . We
identify the set of words in pack(A∗)/≡t

of size k (for k > 0) with the set of BTM of size k. We denote
Bm the algorithm which computes the BTM associated to the BSTM computed by P (cf. Figure 1).

Let us denote by S(t) the generating series of these trees counted by size. The generating serie statisfies
the following functional equation S(t) = 1 + S(t)2(1− t)−1 (see A002212 of OEIS):

S(t) = 1−t−
√
5t2−6t+1
2t = 1 + t+ 3t2 + 10t3 + 36t4 + 137t5 + 543t6 + 2219t7 + . . . (9)

This structure is in bijection with binary unary tree structure. Here is the list of trees of size 0,1,2 and 3:

·, 1 ,
1

1
,

1

1
, 2 ,

1

1

1

,
1

1

1

,
1

2
,

1

1 1
,

1

1

1

,
1

1

1

,
1

2
,

2

1
,

2

1
, 3

With Lemma 1 and Theorem 1 we know that the quotient of WQSym(A) by the taı̈ga relations has
a natural basis indexed by tass(A∗)/≡t

identified by BTM. We call PBTm (planar binary tree with
multiplicities) that quotient. More precisely, we consider the basis (Mu)u of WQSym obtained by the
Hopf polynomial realization rtass. We denote by (Qmt )t the canonical projection by the map π of (Mu)u
in PBTm such that π(Mu) := Qmt if t = Bm(u). The product and coproduct are given by some explicit
algorithms. For brevity, we only give here some examples:

π(M1312 ×M1) = π(M13121 + M13122 + M13123 + M13124 + M14123 + M14132 + M24231)

= Qm
1

2 1

×Qm
1

= Qm
3

1

1

+ Qm
1

1

2 1

+ Qm
2

2 1

+ Qm
1

2 1

1

+ Qm
2

1

2

+ Qm
1

1 1

2

+ Qm
1

1

2 1

;

π(∆(M3112)) = π(1⊗M3112 + M11 ⊗M21 + M112 ⊗M1 + M3112 ⊗ 1)

= ∆(Qm
1

2 1

) = 1⊗Qm
1

2 1

+ Qm
2
⊗Qm

1

1

+ Qm
1

2

⊗Qm
1

+ Qm
1

2 1

⊗ 1 .
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We consider PBTm# the dual of PBTm. This is a sub-algebra of WQSym#. We denote by (Pmt )t :=
(Qmt )# its dual basis: 〈Qmt ,Pmt′ 〉 = δt,t′ . The product is given by:

Pmt′ × Pmt′′ =
∑
t〈∆(Qmt ),Pmt′ × Pmt′′〉Pmt . (10)

Here is an example,

Pm
3

1

× Pm
4

2

= Pm
3

1

4

2

+ Pm
3

4

1

2

+ Pm
3

4

2

1

+ Pm
4

3

1

2

+ Pm
4

3

2

1

+ Pm
4

2

3

1

.

If we consider only shape tree, the product is exactly the product of (Pt)t basis in PBT [HNT05].
Hence this product is a shifted shuffle on trees. The coproduct is given by: ∆#(Pmt ) =

∑
t′,t′′ 〈Qmt′ ×

Qmt′′ ,Pmt 〉 Pmt′ ⊗ Pmt′′ . Here is an example:

∆#(Pm
2

1

) = 1⊗ Pm
2

1

+ Pm
1
⊗
(
Pm

2
+ Pm

1

1

)
+

(
Pm

1

1

+ Pm
1

1

)
⊗ Pm

1
+ Pm

2

1

⊗ 1 .

6 The hook length formula
Its well known from [Knu73] (§5.14 ex. 20) that the number of decreasing labelling of a binary tree is
given by a simple product formula. [HNT05] remarks that this is also the number of permutations given
upon a tree by the binary search tree insertion. In this section we generalize this formula for trees with
multiplicities.

Proposition 5: The cardinal f(T ) of the taı̈ga class associated to T (i.e. the set of packed words giving
the tree T by the insertion algorithm Bm) is given by

f(T ) = |T |!
(∏

t∈T |t| (m(t)− 1)!
)−1

. (11)

where t ranges throwgh all the subtrees of T and |T | denotes the size of T (the sum of the multiplicities).

Example 7: The taı̈ga class of T :=
2

1 2
contains 12 packed words w:

23132, 33122, 31232, 32312, 13232, 33212, 23312, 32132, 21332, 31322, 12332, 13322 .

The class of
2

2 1

7 4 2

contains 23, 337, 600 = 18!
(18·9·7·7·4·2)(1!1!6!0!3!1!) packed words.

This formula is easily proven by induction. However, we prefer to give a generating series proof as
in [HNT08b]. Let A be an associative algebra, and consider the functional equation for power series
x ∈ A[[z]]:

x = a+
∑
k>1Bk(x, x) , (12)

where a ∈ A and for any k > 0, Bk(x, y) is a bilinear map with values in A[[z]]. We suppose such
that the valuation of Bk(x, y) is strictly greater than the sum of the valuations of x and y (plus k). Then
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Equation 12 has a unique solution:

x = a+
∑
k>1

(
Bk(a, a) +Bk(a,

∑
k′>1Bk′(a, a)) +Bk(

∑
k′>1Bk′(a, a)), a) + . . .

)
(13)

=
∑
T∈BTM BT (a) ,

where for a tree T , BT (a) is the result of evaluating the expression formed by labelling by a the leaves of
the complete tree associated to T and by Bk its internal node labelled by k.
For example: B

3

6 2

2

(a) = B3(B6(a,B2(a, a)), B2(a, a)).

So if we try to solve the fixed point problem:

x = 1 +

∫ z

0

esx(s)2ds = 1 +
∑
k>1

∫ z
0

sk−1

(k−1)!x(s)2ds = 1 +
∑
k>1Bk(x, x) , (14)

where Bk(x, y) =
∫ z
0

sk−1

(k−1)!x(s)y(s)ds. Then for a binary tree of non-negative integer T , BT (1) is the
monomial obtained by putting 1 on each leaf and integrating at each node n the product of the evaluations
of its subtrees and sk/k! with m(n) = k + 1.

For example:

3 z7

16×7

2 1 BT−−→ z4

8
z2

2

1 2 1 z z2

2
1 z

1 1 1 1 1 1

.

One can observe that BT (1) = f(T ) z
n

n! , where n = |T |.
To prove the hook length formula, following the same technique as in [HNT08b], we want to lift in

WQSym# the fixed point computation of Equation 14. From the multiplication rule [Hiv99] of the dual
basis Su (M#

u := Su), one easily sees that the linear map φ : Su 7→ zn

n! with n the length of u is a
morphism of algebras from WQSym# to K[[z]]. For u, v two packed words of respective size n− 1 and
m, set Bk(Su,Sv) :=

∑
w∈(u�1k−1�v)·n Sw. The crucial observation which allows to express the hook

length formula in a generating series way is the following theorem:

Theorem 3: For any binary tree with multiplicities BT (1) =
∑
Bm(u)=T Su.

In particular, BT (1) coincide with PmT , the natural basis of PBTm#.

Corollary 2: The number of packed words u such that Bm(u) = T is computed by f(T ).

7 Conclusion, work in progress and perspectives
In this paper, we unraveled some new combinatorics on binary trees with multiplicities from the union of
the sylvester and stalactic monoids. Using the machinery of realizations, we built a Hopf algebra on those
trees, allowing us to give a generating series proof of a new hook length formula. Following [HNT08b], it
is very likely that we will also be able to prove a q-hook length formula. On the other hand, the usual case
of the LODAY-RONCO algebra has a lot of nice properties. For example, the product and coproduct can
be expressed by the means of an order on the trees called the Tamari Lattice [LR98]. It would be good to
know if such a lattice exists for trees with multiplicities. This should also relate to N. READING work on
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lattice congruences [Rea05]. Also it could be interesting to study some other combinations in the lattice
of good monoids. For example, the union of the plactic monoid and the stalactic monoid should give a
Hopf algebra of tableaux with multiplicties. Finally, in our construction, it seems that std, tass and park
play some canonical role from which everything else is built. Are there some more examples? Is there a
definition for such a ϕ-map? Could we except to always have a hook formula as soon as we have a good
monoid?
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For a given sequence α = [α1, α2, . . . , αN , αN+1] ofN+1 positive integers, we consider the combinatorial function
E(α)(t) that counts the nonnegative integer solutions of the equation α1x1+α2x2+· · ·+αNxN+αN+1xN+1 = t,
where the right-hand side t is a varying nonnegative integer. It is well-known that E(α)(t) is a quasipolynomial
function of t of degreeN . In combinatorial number theory this function is known as the denumerant. Our main result
is a new algorithm that, for every fixed number k, computes in polynomial time the highest k + 1 coefficients of the
quasi-polynomial E(α)(t) as step polynomials of t. Our algorithm is a consequence of a nice poset structure on the
poles of the associated rational generating function for E(α)(t) and the geometric reinterpretation of some rational
generating functions in terms of lattice points in polyhedral cones. Experiments using a MAPLE implementation will
be posted separately.

Considérons une liste α = [α1, α2, . . . , αN+1] deN +1 entiers positifs. Le dénumérant E(α)(t) est la fonction qui
compte le nombre de solutions en entiers positifs ou nuls de l’équation

∑N+1
i=1 xiαi = t, où t varie dans les entiers

positifs ou nuls. Il est bien connu que cette fonction est une fonction quasi-polynomiale de t, de degré N . Nous
donnons un nouvel algorithme qui calcule, pour chaque entier fixé k (mais N n’est pas fixé), les k + 1 plus hauts
coefficients du quasi-polynôme E(α)(t) en termes de fonctions en dents de scie. Notre algorithme utilise la structure
d’ensemble partiellement ordonné des pôles de la fonction génératrice de E(α)(t). Les k + 1 plus hauts coefficients
se calculent à l’aide de fonctions génératrices de points entiers dans des cônes polyèdraux de dimension inférieure ou
égale à k.

Keywords: Denumerants, Ehrhart quasi-polynomials, partitions, polynomial-time algorithm

†Partially supported by PRIN project, MIUR
‡Partially supported by NSF grant DMS-0914107
§Partially supported by NSF-VIGRE grant DMS-0636297
¶Partially supported by NSF grant DMS-0914873
‖All authors are grateful for support received through a SQuaRE program at the American Institute of Mathematics

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



1182 V. Baldoni, N. Berline, J. A. De Loera, B. E. Dutra, M. Köppe, M. Vergne

1 Introduction
Let α = [α1, α2, . . . , αN , αN+1] be a sequence of positive integers. If t is a non-negative integer,
we denote by E(α)(t) the number of solutions in nonnegative integers of the equation

∑N+1
i=1 αixi =

t. In other words, E(α)(t) is the same as the number of partitions of the number t using the parts
α1, α2, . . . , αN , αN+1 (with repetitions allowed). This paper presents a new algorithm to compute indi-
vidual coefficients of this quasipolynomial function and uncovers new structure that allows to describe
their periodic nature. Let us begin with some background and history before stating the precise results:

The combinatorial function E(α)(t) was called by J. Sylvester the denumerant. The denumerant
E(α)(t) has a beautiful structure and it has been known since the times of Cayley and Sylvester that
E(α)(t) is in fact a quasi-polynomial, i.e., it can be written in the form E(α)(t) =

∑N
i=0Ei(t)t

i, where
Ei(t) is a periodic function of t (a more precise description of the periods of the coefficients Ei(t) will
be given later). In other words, there exists a positive integer Q such that for t in the coset q + QZ,
the function E(α)(t) coincides with a polynomial function of t. The study of the coefficients Ei(t), in
particular determining their periodicity, is a problem that has occupied various authors and it is the key
focus of our investigations here.

Sylvester and Cayley first showed that the function can be written in the form A(t) +U(t), where A(t)
is a polynomial in t of degree N and U(t) is a periodic function of period the least common multiple
of a1, . . . , ar (see [6, 7] and references therein). In 1943, E.T. Bell gave a simpler proof and remarked
that the period Q is in the worst case given by the least common multiple of the ai, but in general it can
be smaller. A classical observation that goes back to I. Schur is that when the list α consist of relatively
prime numbers, then asymptotically E(α)(t) ≈ tN

N !α1α2···αN+1
as the number t→∞.

Thus, in particular, there is a large enough integer F such that for any t ≥ F , E(α)(t) > 0 and there is
a largest t for which E(α)(t) = 0. Let us give a simple example:

Example 1.1. Let α = [6, 2, 3]. Then on each of the cosets q + 6Z, the function E(α)(t) coincides with
a polynomial E[q](t). Here are the corresponding polynomials.

E[0](t) = 1
72 t

2 + 1
4 t+ 1, E[1](t) = 1

72 t
2 + 1

18 t− 5
72 , E[2](t) = 1

72 t
2 + 7

36 t+ 5
9 ,

E[3](t) = 1
72 t

2 + 1
6 t+ 3

8 , E[4](t) = 1
72 t

2 + 5
36 t+ 2

9 , E[5](t) = 1
72 t

2 + 1
9 t+ 7

72 .

Naturally, the function E(α)(t) is equal to 0 if t does not belong to the lattice
∑N+1
i=1 Zαi ⊂ Z gen-

erated by the integers αi. So if g is the greatest common divisor of the αi (which can be computed in
polynomial time), and α/g = [α1

g ,
α2

g , . . . ,
αN+1

g ] the formula E(α)(gt) = E(α/g)(t) holds, and we
may assume that the numbers αi span Z without changing the complexity of the problem. In other words,
we may assume that the greatest common divisor of the αi is equal to 1.

Our primary concern is how to compute E(α)(t). This problem has received a lot of attention. Com-
puting the denumerantE(α)(t) as a close formula or evaluating it for specific t is relevant in several other
areas of mathematics. In the combinatorics literature the denumerant has been studied extensively (see
e.g., [6, 8, 14, 16] and the references therein). In combinatorial number theory and the theory of parti-
tions, the problem appears in relation to the Frobenius problem or the coin-change problem of finding the
largest value of t with E(α)(t) = 0 (see [12, 13, 15] for details and algorithms). Authors in the theory of
numerical semigroups have also investigated the so called gaps of the function, which are values of t for
which E(α)(t) = 0, i.e., those positive integers t which cannot be represented by the αi. For N = 1 the
number of gaps is (α1 − 1)(α2 − 1)/2 but for larger N the problem is quite difficult.
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Unfortunately, computing E(α)(t) or evaluating it are very challenging computational problems. Even
deciding whether E(α)(t) > 0 for a given t, is a well-known (weakly) NP-hard problem. Computing
E(α)(t), i.e., determining the number of solutions for a given t, is #P -hard. Computing the Frobenius
number is also known to be NP-hard [15]. Likewise, for a given coset q+QZ, computing the polynomial
E[q](t) is NP-hard. Despite the difficulty to compute the function, in some special cases one can compute
information efficiently. For example, the Frobenius number can be computed in polynomial time when
N + 1 is fixed [13]. At the same time for fixed N + 1 one can compute E(α)(t) in polynomial time as
a special case of a well-known result of Barvinok [3]. There are several papers exploring the practical
computation of the Frobenius numbers (see e.g., [12] and the many references therein).

These wonderful results for fixedN were achieved using a powerful geometric interpretation ofE(α)(t)
(which was the original way we encountered the problem): The function E(α)(t) can also be thought of
as the number of integral points in the N -dimensional simplex in RN+1 defined by

∆α = {[x1, x2, . . . , xN , xN+1] : xi ≥ 0,
N+1∑

i=1

αixi = t}

with rational vertices si = [0, . . . , 0, t
αi
, 0, . . . , 0]. In this context, E(α)(t) is a very special case of the

Ehrhart function (in honor of French mathematician Eugène Ehrhart who started its study [11]). Ehrhart
functions count the lattice points inside a convex polytope P as it is dilated t times. All of the results we
mentioned about E(α)(t) are in fact special cases of theorems from Ehrhart theory [5]. For example, the
asymptotic result of I. Schur can be recovered from seeing that the highest-degree coefficient of E(α)(t)
is just the normalized N -dimensional volume of the simplex ∆α. Our coefficients are just special cases
of Ehrhart coefficients.

This paper is about the computation of E(α)(t) and in particular its coefficients. Here are our main
results:

It is clear that the leading coefficient is given by Schur’s result. Our main theorem recovers explicit
formulas for other coefficients.

Theorem 1.2. Given any fixed integer k, there is a polynomial time algorithm to compute the highest
k + 1 degree terms of the quasi-polynomial E(α)(t), that is

TopkE(α)(t) =

k∑

i=0

EN−i(t)t
N−i.

The coefficients are recovered as step polynomial functions of t.

Note that the number Q of cosets for E(α)(t) can be exponential in the binary encoding size of the
problem, and thus it is impossible to list, in polynomial time, the polynomialsE[q](t) for all the cosets q+
QZ. That is why to obtain a polynomial time algorithm, the output is presented in the format of step
polynomials, which we now explain:

(i) We first define the function {s} = s− bsc ∈ [0, 1) for s ∈ R, where bsc denotes the largest integer
smaller or equal to s. The function {s+ 1} = {s} is a periodic function of s modulo 1.

(ii) If r is rational with denominator q, the function T 7→ {rT} is a function of T ∈ R periodic modulo q.
A function of the form T 7→ ∑

i ci{riT} will be called a step linear function. If all the ri have a
common denominator q, this function is periodic modulo q.
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(iii) Then consider the algebra generated over Q by such functions on R. An element φ of this algebra
can be written (not in an unique way) as

φ(T ) =
L∑

l=1

cl

Jl∏

j=1

{rl,jT}nl,j .

Such a function φ(T ) will be called a step polynomial.

(iv) We will say that the step polynomial φ is of degree u if
∑
j nj ≤ u for all set of indices I occurring

in the formula for φ. We will say that φ is of period q if all the rational numbers rj have common
denominator q.

It must be stress that evaluating these expressions can be done very fast. Moreover, one can also see
that the step polynomial representation is much more economical than writing the individual polynomials
for each coset of the period. For example instead of six polynomial “pieces” for E(α)(t) we can simply
write a single step polynomial:

1

72
t2 +

(
1

4
− {−

t
3}

6
− {

t
2}
6

)
t+

(
1− 3

2
{− t

3} −
3

2
{ t2}+

1

2

(
{− t

3}
)2

+ {− t
3}{ t2}+

1

2

(
{ t2}

)2
)

We must remark our results come after an earlier result of Barvinok [4] who first proved a similar theo-
rem valid for all simplices. Also in [2], the authors presented a polynomial-time algorithm of to compute
the coefficient functions of TopkE(P )(t) for any simple polytope P (given by its rational vertices) in the
form of step polynomials defined as above. We note that both of these earlier papers use the geometry
of the problem very strongly; instead our algorithm is different as it uses more of the number-theoretic
structure of the special case at hand. We must stress a marked advantage of our algorithms over the work
in [4]: We compute using the step polynomials all the possibilities of E[q](t) while [4] recovers a single
piece for given q. More important, our new algorithm is much easier to implement.

The new algorithm uses directly the residue theorem in one complex variable, which can be applied
more efficiently as a consequence of a rich poset structure on the set of poles of the associated rational
generating function for E(α)(t) (see Subsection 2.2). The other important ingredient used in the efficient
computation of the top coefficients is the reinterpretation of some generating functions in terms of lattice
points in cones. This allows us to apply the polynomial-time signed cone decomposition of Barvinok for
simplicial cones of fixed dimension k [3].

2 The Residue formula for E(α)(t)

Let us begin by fixing some notation. If ω(z) dz is a meromorphic one form on C, with a pole at z = ζ,
we write

Resz=ζ ω(z) dz =
1

2iπ

∫

Cζ

ω(z) dz

where Cζ is a small circle around the pole ζ. If φ(z) =
∑
k≥k0 φkz

k is a Laurent series in z, we denote
by resz=0 the coefficient of z−1 of φ(z). Cauchy’s formula implies that resz=0 φ(z) = Resz=0 φ(z) dz.
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2.1 A residue formula for E(α)(t).
Let α = [α1, α2, . . . , αN+1] be our list of integers. Define

F (α)(z) :=
1

∏N+1
i=1 (1− zαi)

.

Denote by P =
⋃N+1
i=1 { ζ ∈ C : ζαi = 1 } the set of poles of the meromorphic function F (α) and by

p(ζ) the order of the pole ζ for ζ ∈ P .
Note that because the αi have greatest common divisor 1, we have ζ = 1 as a pole of order N + 1, and

the other poles have order strictly less.

Theorem 2.1. Let α = [α1, α2, . . . , αN+1] be a list of integers with greatest common divisor equal to 1,
and let

F (α)(z) :=
1

∏N+1
i=1 (1− zαi)

.

If t is a non-negative integer, then

E(α)(t) = −
∑

ζ∈P
Resz=ζ z

−t−1F (α)(z) dz (2.1)

and the ζ-term of this sum is a quasi-polynomial function of t with degree less than or equal to p(ζ)− 1.

Proof. For |z| < 1, we write 1
1−zαi =

∑∞
u=0 z

uαi so that F (α)(z) =
∑
t≥0E(α)(t)zt.

For a small circle |z| = ε of radius ε around 0, the integral of zk dz is equal to 0 except if k = −1,
when it is 2iπ. Thus

E(α)(t) =
1

2iπ

∫

|z|=ε
z−tF (α)(z)

dz

z
=

1

2iπ

∫

|z|=ε
z−t

N+1∏

i=1

1

(1− zαi)
dz

z
.

Because the αi are positive integers, and t a non-negative integer, there are no residues at z =∞ and we
obtain equation (2.1) by applying the residue theorem.

WriteEζ(t) := −Resz=ζ z
−tF (α)(z)dz

z ; then the dependence in t ofEζ(t) comes from the expansion
of z−t near z = ζ. We write z = ζ + y, so that Eζ(t) = −Resy=0(ζ + y)−tF (α)(ζ + y) dy

ζ+y . As the
pole of F (α)(ζ + y) at y = 0 is of order p(ζ), to compute the residue at y = 0, we only need to
expand in y the function (ζ + y)−t−1 and take the coefficient of yp(ζ)−1. Now for k = t+ 1 the function
(ζ + y)−k = ζ−k − kζ−k−1y + · · · and we can easily check that the dependence in t of our residue is
quasi-polynomial with degree less than or equal to p(ζ)− 1. We thus obtain the result.

2.2 The poset of the high-order poles
Given an integer 0 ≤ k ≤ N , we partition the set of poles P in two disjoint sets according to the order of
the pole:

P>N−k = { ζ : p(ζ) ≥ N + 1− k }, P≤N−k = { ζ : p(ζ) ≤ N − k }.
According to the disjoint decomposition P = P≤N−k ∪ P>N−k, we write
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EP>N−k(t) = −
∑

ζ∈P>N−k
Resz=ζ z

−t−1F (α)(z) dz

and
EP≤N−k(t) = −

∑

ζ∈P≤N−k
Resz=ζ z

−t−1F (α)(z) dz.

The following proposition is a direct consequence of Theorem 2.1.

Proposition 2.2. We have
E(α)(t) = EP>N−k(t) + EP≤N−k(t),

where the function EP≤N−k(t) is a quasi-polynomial function of t of degree in t strictly less than N − k.

Thus for the purpose of computing TopkE(α)(t) it is sufficient to compute the function EP>N−k(t).
This function is computable in polynomial time, as stated in the following theorem that implies is Theorem
1.2

Theorem 2.3. Let k be a fixed number. Then the coefficient functions of the quasi-polynomial function
EP>N−k(t) are computable in polynomial time as step polynomials of t.

We prove the theorem in the rest of this section and the next.
We first rewrite our set P>N−k. Note that if ζ is a pole of order ≥ p, this means that there exist at least

p elements αi in the list α so that ζαi = 1. But if ζαi = 1 for a set I ⊆ {1, . . . , N + 1} of indices i, this
is equivalent to the fact that ζf = 1, for f the greatest common divisor of the elements αi, i ∈ I .

Now let I>N−k be the set of index sets that correspond to sublists of α of length greater than N − k.
Note that when k is fixed, the cardinality of I>N−k is a polynomial function of N . For each subset
I ∈ I>N−k, define fI to be the greatest common divisor of the sublist αi, i ∈ I . Let G>N−k(α) =
{ fI : I ∈ I>N−k } be the set of integers so obtained. Because I>N−k is stable by the operation of
taking supersets, the set G>N−k(α) is a set of integers stable by the operation of taking greatest common
divisors. Thus, G>N−k(α) can be considered as a poset (partially ordered set), where f � f ′ if f divides
f ′.

Using the group G(f) ⊂ C× of f -th roots of unity,

G(f) = { ζ ∈ C : ζf = 1 },

we have thus P>N−k =
⋃
f∈G>N−k(α)G(f); this is, of course, not a disjoint union. Then using the

inclusion–exclusion principle, we can write the characteristic function of the set P>N−k as a linear com-
bination of characteristic functions of the sets G(f):

[P>N−k] =
∑

f∈G>N−k(α)

µ(f)[G(f)],

where µ(f) are integers computed recursively. Such a function µ will be called as always a Möbius
function for the poset (see Chapter 3 [18] for details on posets).

For fixed k, all the data above can be computed in polynomial time in function of the data α. The
greatest common divisor of a set of integers is computed in polynomial time. Finally the Möbius function
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µ(f) is computed in polynomial time, because there are polynomially many levels of the poset being
considered.

Let us define for any positive integer f

E(α, f)(t) = −
∑

ζf=1

Resz=ζ z
−t−1F (α)(z) dz.

Proposition 2.4. Let k be a fixed integer, then

EP>N−k(t) = −
∑

f∈G>N−k(α)

µ(f)E(α, f)(t). (2.2)

Thus we have reduced the computation to the fast computation of E(α, f)(t). We will return to that in
a moment but before we continue with the proof of Theorem 1.2, there are some interesting consequences
for the classical theory of Denumerants.

Equation (2.2) provides explicit expressions for the coefficients of the denumerantE(α)(t). In the past,
researchers have discussed E(α)(t) in terms of its generating function (which belongs to the well-known
clan of rational generating functions [18]), formulas for E(α)(t) in terms of binomial coefficients can
be obtained using partial fraction decomposition. In [17] the authors propose another way to recover the
coefficients of the quasipolynomial by a method they named rigorous guessing. In [17] quasipolynomials
are represented as a function f(t) given by q polynomials f [1](t), f [2](t), . . . , f [q](t) such that f(t) =
f [i](t) when t ≡ i (mod q). To find the coefficients of the f [i] their method finds the first few terms
of the Maclaurin expansion of the partial fraction decomposition to find enough evaluations of those
polynomials and then recovers the coefficients of the f [i] as a result of solving a linear system. Our
approach appeals instead to the number theoretic and polyhedral geometric nature of the problem and
instead of f [i]’s we have a single expression whose coefficients are products of step polynomials.

3 Polyhedral reinterpretation of the generating function E(α, f)(t)

To complete the proof of Theorem 1.2 we need only to prove the following proposition.

Proposition 3.1. For any integer f ∈ G>N−k(α), the coefficient functions of the quasi-polynomial func-
tion E(α, f)(t) and hence EP>N−k(t) are computed in polynomial time as step polynomials of t.

By the previous proposition we know we need to compute the value of E(α, f)(t). Our goal now is
to demonstrate that this function can be thought of as the generating function of the lattice points inside
a convex cone. This is a key point to guarantee good computational bounds. Before we can do that we
review some preliminaries on generating functions of cones. We recall the notion of generating functions
of cones; see also [2].

Let V = Rr provided with a lattice Λ, and let V ∗ denote the dual space. A (rational) simplicial
cone c = R≥0w1 + · · · + R≥0wr is a cone generated by r linearly independent vectors w1, . . . ,wr

of Λ. We consider the semi-rational affine cone s + c, s ∈ V . Let ξ ∈ V ∗ be a dual vector such that
〈ξ,wi〉 < 0, 1 ≤ i ≤ r. Then the sum

S(s + c,Λ)(ξ) =
∑

n∈(s+c)∩Λ

e〈ξ,n〉
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is summable and defines an analytic function of ξ. It is well known that this function extends to a mero-
morphic function of ξ ∈ V ∗C . We still denote this meromorphic extension by S(s + c,Λ)(ξ).

Recall the following result.

Theorem 3.2. The series S(s + c,Λ)(ξ) is a meromorphic function of ξ such that
∏r
i=1 〈ξ,wi〉S(s +

c,Λ)(ξ) is holomorphic in a neighborhood of 0.

Let t ∈ Λ. Consider the translated cone t + s + c of s + c by t. Then we have the covariance formula

S(t + s + c,Λ)(ξ) = e〈ξ,t〉S(s + c,Λ)(ξ). (3.1)

Because of this formula, it is convenient to introduce the following function.

Definition 3.3. Define the function

M(s, c,Λ)(ξ) = e−〈ξ,s〉S(s + c,Λ)(ξ).

Thus the function s 7→M(s, c,Λ)(ξ) is a function of s ∈ V/Λ (a periodic function of s) whose values
are meromorphic functions of ξ.

The function is easy to write down for a unimodular cone, that is a cone u whose primitive generators
gu
i form a basis of the lattice Λ. We introduce the following notation.

Definition 3.4. Let u be a unimodular cone with primitive generators gu
i and let s ∈ V . Then, write

s =
∑
i sig

u
i , with si ∈ R, and define

{−s}u =
∑

i

{−si}gu
i .

Thus s + {−s}u =
∑
idsiegu

i . Note that if t ∈ Λ, then {−(s + t)}u = {−s}u. Thus, s 7→ {−s}u is a
function on V/Λ with value in V . For any ξ ∈ V ∗, we then find

S(s + u,Λ)(ξ) = e〈ξ,s〉e〈ξ,{−s}u〉
1

∏
j(1− e〈ξ,g

u
j 〉)

and thus
M(s, u,Λ)(ξ) = e〈ξ,{−s}u〉

1
∏
j(1− e〈ξ,g

u
j 〉)

. (3.2)

For a general cone c, we can decompose its characteristic function [c] as a signed sum of characteristic
functions of unimodular cones,

∑
u εu[u], modulo characteristic functions of cones containing lines. As

shown by Barvinok, if the dimension r of V is fixed, this decomposition can be computed in polynomial
time. Then we can write

S(s + c,Λ)(ξ) =
∑

u

εu S(s + u,Λ)(ξ).

Thus we obtain, using Formula (3.2),

M(s, c,Λ)(ξ) =
∑

u

εu e〈ξ,{−s}u〉
1∏

j(1− e〈ξ,g
u
i 〉)

. (3.3)

Here u runs through all the unimodular cones occurring in the decomposition of c, and the gu
i ∈ Λ are the

generators of the unimodular cone u.



Top Coefficients of the Denumerant 1189

Remark 3.5. For computing explicit examples, it is convenient to make a change of variables that leads
to computations in the standard lattice Zr. Let B be the matrix whose columns are the generators of the
lattice Λ; then Λ = BZr.

M(s, c,Λ)(ξ) = e−〈ξ,s〉
∑

n∈(s+c)∩BZr
e〈ξ,n〉

= e−〈B
>ξ,B−1s〉 ∑

x∈(B−1(s+c)∩Zr
e〈B

>ξ,x〉 = M(B−1s, B−1c,Zr)(B>ξ).

3.1 Back to the computation of E(α, f)(t)

After the preliminaries we will see how to rewrite E(α, f)(t) in terms of lattice points of cones. This
will require some suitable manipulation of the initial form of E(α, f)(t). So we introduce some notation.
Let k be fixed. For f ∈ G>N−k(α), define F(α, f, T )(x) =

∑
ζf=1

ζ−T∏N+1
i=1 (1−ζαieαix)

, E(α, f)(t, T ) =

− resx=0 e−txF(α, f, T )(x), and Ei(f)(T ) = resx=0
(−x)i

i! F(α, f, T )(x). Writing z = ζex and chang-
ing coordinates in residues, we obtain immediately:

E(α, f)(t) = E(α, f)(t, T )
∣∣
T=t

. (3.4)

The dependence in T ofF(α, f, T )(x) is through ζT . As ζf = 1, the functionF(α, f, T )(x) is a periodic
function of T modulo f whose values are meromorphic functions of x. Since the pole in x is of order at
most N + 1, we can rewrite E(α, f)(t, T ) in terms of Ei(f)(T ) and prove:

Theorem 3.6. Let k be fixed. Then for f ∈ G>N−k(α) we can write

E(α, f)(t, T ) =
N∑

i=0

tiEi(f)(T )

with Ei(f)(T ) a step polynomial of degree less than or equal to N − i and periodic of T modulo f . This
step polynomial can be computed in polynomial time.

For example EN is independent of T , thus it is a constant.
It is now clear that once we have proved Theorem 3.6, then the proof of Theorem 1.2 will follow. So

we now concentrate on writing the function F(α, f, T )(x) more explicitly.

Definition 3.7. For a list α and integers f and T , define meromorphic functions of x ∈ C by:

B(α, f)(x) :=
1∏

i : f |αi(1− eαix)
, S(α, f, T )(x) :=

∑

ζ : ζf=1

ζ−T∏
i : f -αi(1− ζαieαix)

.

Thus
F(α, f, T )(x) = B(α, f)(x)S(α, f, T )(x).

The expression we obtained will allow us to compute F(α, f, T ) by relating S(α, f, T ) to a generating
function of a cone. This cone will have fixed dimension when k is fixed.
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3.2 E(α, f)(t) as the generating function of a cone in fixed dimension
To this end, let f be an integer from G>N−k(α). By definition, f is the greatest common divisor of a
sublist of α. Thus the greatest common divisor of f and the elements of α which are not a multiple of
f is still equal to 1. Let I = I(α, f) be the set of indices i ∈ {1, . . . , N + 1} such that αi is indivisible
by f , i.e., f - αi. Note that f by definition is the greatest common divisor of all except at most k of the
integers αj . Let r denote the cardinality of I; then r ≤ k. Let VI = RI and let V ∗I denote the dual space.
We also define the sublist αI = [αi]i∈I of elements of α indivisible by f and view it as a vector in V ∗I .

Definition 3.8. For an integer T , define the meromorphic function of ξ ∈ V ∗I ,

Q(α, f, T )(ξ) =
∑

ζ : ζf=1

ζ−T∏
j∈I(α,f)(1− ζαjeξj )

.

Remark 3.9. Observe that Q(α, f, T ) can be restricted at ξ = αIx, for x ∈ C generic, to give
S(α, f, T )(x).

We find that Q(α, f, T )(ξ) is the discrete generating function of an affine shift of the standard cone
relative to a certain lattice in VI , which we define as:

Λ(α, f) =
{
y ∈ ZI : 〈αI ,y〉 =

∑

j∈I
yjαj ∈ Zf

}
. (3.5)

Consider the map φ : ZI → Z/Zf , y 7→ 〈α,y〉 + Zf . Its kernel is the lattice Λ(α, f). Because the
greatest common divisor of f and the elements of αI is 1, by Bezout’s theorem there exist s0 ∈ Z and
s ∈ ZI such that 1 =

∑
i∈I siαi + s0f . Therefore, the map φ is surjective, and therefore the index

|ZI : Λ(α, f)| equals f .

Theorem 3.10. Let α = [α1, . . . , αN+1] be a list of positive integers and f be the greatest common
divisor of a sublist of α. Let I = I(α, f) = { i : f - αi }. Let s0 ∈ Z and s ∈ ZI such that 1 =∑
i∈I siαi + s0f using Bezout’s theorem. Let T be an integer, and ξ ∈ V ∗I . Then

Q(α, f, T )(ξ) = f M
(
−T s,RI≥0,Λ(α, f)

)
(ξ).

Remark 3.11. The function Q(α, f, T )(ξ) is a function of T periodic modulo f . Since fZI is contained
in Λ(α, f), the element fs is in the lattice Λ(α, f), and we see that the right hand side is also a periodic
function of T modulo f .

of Theorem 3.10. Consider ξ ∈ V ∗I with ξj < 0. Then we can write the equality

1∏
j∈I(1− ζαjeξj )

=
∏

j∈I

∞∑

nj=0

ζnjαjenjξj . So Q(α, f, T )(ξ) =
∑

n∈ZI≥0

( ∑

f : ζf=1

ζ
∑
j njαj−T

)
e
∑
j∈I njξj .

We note that
∑
f : ζf=1 ζ

m is zero except if m ∈ Zf , when this sum is equal to f . Then we obtain that
Q(α, f, T ) is the sum over n ∈ ZI≥0 such that

∑
j njαj − T ∈ Zf . The equality 1 =

∑
j∈I sjαj + s0f

implies that T ≡∑j tsjαj modulo f , and the condition
∑
j njαj−T ∈ Zf is equivalent to the condition∑

j(nj − Tsj)αj ∈ Zf .
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We see that the point n − T s is in the lattice Λ(α, f) as well as in the cone −T s + RI≥0 (as nj ≥
0). Thus our function Q(α, f, T )(ξ) is equal to f e〈ξ,T s〉S

(
−T s + RI≥0,Λ(α, f)

)
(ξ) = f M

(
−T s +

RI≥0,Λ(α, f)
)
(ξ).

3.3 Unimodular decomposition in the dual space
The cone RI≥0 is in general not unimodular with respect to the lattice Λ(α, f). By decomposing RI≥0

in cones u that are unimodular with respect to Λ(α, f), modulo cones containing lines, we can write
M
(
−T s,RI≥0,Λ(α, f)

)
=
∑

u εuM(−T s, u,Λ), where εu ∈ {±1}. This decomposition can be com-
puted using Barvinok’s algorithm in polynomial time for fixed k because the dimension |I| is at most
k.

Remark 3.12. Although we know that the meromorphic function M
(
−T s,RI≥0,Λ(α, f)

)
(ξ) restricts

via ξ = αIx to a meromorphic function of a single variable x, it may happen that the individual functions
M
(
−T s, u,Λ(α, f)

)
(ξ) do not restrict. In other words, the line αIx may be entirely contained in the

set of poles. If this is the case, we can compute (in polynomial time) a regular vector β ∈ QI so that all
functions M

(
−T s + u,Λ(α, f)

)
(ξ) occurring can be evaluated on (αI + εβ)x.

Finally let us analyze the dependence in T of the functions M(−T s, u,Λ(α, f)), where u is a unimod-
ular cone. Let the generators be gu

i , so the elements gu
i form a basis of the lattice Λ(α, f). Recall that

the lattice fZr is contained in Λ(α, f). Thus as s ∈ Zr, we have s =
∑
i sig

u
i with fsi ∈ Z and hence

{−T s}u =
∑
i{−Tsi}gu

i with {−Tsi} a function of T periodic modulo f .
Thus the function T 7→ {−T s}u is a step linear function, modulo f , with value in V . We then write

M(−T s, u)(ξ) = e〈ξ,{T s}u〉∏r
j=1

1

(1−e〈ξ,gj〉)
, and hence finally

F(α, f, T )(x) = f M
(
−T s,RI≥0,Λ(α, f)

)
(αIx)

∏

j : f |αj

1

(1− eαjx)
.

This is a meromorphic function of the variable x. Near x = 0, it is of the form
∑

u exp{lu(T )x}h(x)/xN+1

where h(x) is holomorphic in x and lu(T ) is a step linear function of T , modulo f . Thus to compute

Ei(f)(T ) = resx=0
(−x)i

i!
F(α, f, T )(x)

we only have to expand the function x 7→ exp{lu(T )x} up to the power xN−i. This expansion can be
done in polynomial time. We thus see that as stated in Theorem 3.6, Ei(f)(T ) is a step polynomial of
degree less than or equal to (N − i), which is periodic of T modulo f . This completes the proof of
Theorem 3.6 and thus the proof of Theorem 1.2.
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Combinatorial topology of toric arrangements
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Abstract. We prove that the complement of a complexified toric arrangement has the homotopy type of a minimal
CW-complex, and thus its homology is torsion-free.
To this end, we consider the toric Salvetti complex, a combinatorial model for the arrangement’s complement. Using
diagrams of acyclic categories we obtain a stratification of this combinatorial model that explicitly associates genera-
tors in homology to the “local no-broken-circuit sets” defined in terms of the incidence relations of the arrangement.
Then we apply a suitably generalized form of Discrete Morse Theory to describe a sequence of elementary collapses
leading from the full model to a minimal complex.

Résumé. On démontre que l’espace complementaire d’un arrangement torique complexifié a le type d’homotopie d’un
complexe CW minimal, donc que ses groupes d’homologie sont libres. On considère d’abord un modèle combinatoire
du complementaire de l’arrangement: le complexe de Salvetti torique. On obtient une stratification de ce complexe qui
fait correspondre explicitement les génerateurs d’homologie aux “circuits-non-rompus locaux” associés aux relations
d’incidence de l’arrangement. On applique une forme generalisée de la théorie de Morse discrète pour obtenir une
suite de collapsements elementaires qui conduit à un complexe minimale.

Keywords: Combinatorial topology, Toric arrangements, Discrete Morse theory, Torsion-freeness in homology.

1 Introduction
A toric arrangement is a finite collection A = {K1, . . . ,Kn} of level sets of characters of the complex
torus, i.e., for all i there is a character χi ∈ Hom((C∗)d,C∗) and a ‘level’ ai ∈ C∗ so that Ki = χ−1

i (ai).
Toric arrangements play a prominent role in recent work of De Concini, Procesi and Vergne on the link

between partition functions and box splines (see e.g. De Concini and Procesi (2010)). A combinatorial
framework for this context (in the case where ai = 1 for all i) is given by the theory of arithmetic
matroids, studied by D’Adderio and Moci (2011) and Brändén and Moci (2012), leading to nice theoretical
constructions and strong enumerative results.

With the aim of improving these enumerative results towards a more structural description, we look at
the combinatorial topology of the complement M(A ) := (C∗)d \⋃A .

We consider the case of complexified toric arrangements, allowing |ai| = 1 for all i. It is known
that the Poincaré polynomial of M(A ) can be recovered from the associated arithmetic matroid. More-
over, De Concini and Procesi (2005) computed the algebra structure of the cohomology with complex
coefficients in the unimodular case. We prove that for any complexified toric arrangement A ,

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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• the space M(A ) is minimal, i.e., it has the homotopy type of a CW-complex whose cells in every
dimension k are counted by the k-th Betti number.

• Hence, the space M(A ) is torsion-free, that is, the modules Hk(M(A ),Z), Hk(M(A ),Z) are
torsion-free for every k.

The second item is the analogue for toric arrangements of the celebrated theorem by Brieskorn (1971)
paving the way for a combinatorial study of the “Orlik-Solomon Algebra” associated to hyperplane ar-
rangements. In this respect, our result is a step towards a “toric Orlik-Solomon algebra”.

From a combinatorial point of view, our core data is the face category F(A ), which encodes the
incidence relations of the induced stratification of the ‘real torus’ (S1)d ⊆ (C∗)d. As we explain in
Section 4, from F(A ) one can construct a combinatorial model for the homotopy type of M(A ) which
we call toric Salvetti complex because of its relation to the Salvetti complex of a complexified hyperplane
arrangement (see Moci and Settepanella (2011); d’Antonio and Delucchi (2011)). A presentation of the
fundamental group can also be obtained from F(A ) (d’Antonio and Delucchi (2011)).

We prove minimality by exhibiting a sequence of elementary collapses on the toric Salvetti complex that
leads to a minimal complex. To this end, we need to mildly generalize some elements of Discrete Morse
Theory in order to be able to work with nonregular CW-complexes or, correspondingly, face categories
that are not posets (see Section 5.3). Once this is done, we are left with finding an “acyclic matching” of
the face category of the toric Salvetti complex (the so-called Salvetti category) with the minimum number
of critical cells.

The construction of this matching is the bulk of our work. We use the fact that lower intervals in F(A )
are face posets of real arrangements and call this the “local” structure of F(A ). Correspondingly, the
Salvetti category is covered by face posets of Salvetti complexes of these ‘local’ arrangements.

In Delucchi (2008) it is shown how a particular total ordering of the topes of any oriented matroid
leads to a nice stratification of the associated “classical” Salvetti complex with explicitly described strata
that each admit a perfect acyclic matching. Here we construct a decomposition of the Salvetti category
- indexed by a special total ordering of the “local no-broken-circuits” (see Section 3.1) - which, on each
‘local’ piece, restricts to the above stratification of the “classical” Salvetti complex. We use diagrams
over acyclic categories to prove that every piece of this decomposition is in fact isomorphic to the face
category of the stratification of a (smaller dimensional) real torus by a suitable (real) toric arrangement.
This construction is explained in Section 5.2.

We are then left to prove that, for any complexified toric arrangement A , the face category F(A )
admits a perfect acyclic matching, as is explained in Section 5.4.

The final step is to patch together the acyclic matchings of the different pieces making sure that they
add up to an acyclic matching with the required number of critical cells (Proposition 54).

2 Basics
Definition 1 Let Λ ∼= Zd a finite rank lattice. The corresponding complex torus is TΛ = HomZ(Λ,C∗).
The compact (or real) torus corresponding to Λ is T cΛ = HomZ(Λ, S1), where S1 := {z ∈ C | |z| = 1}.

Remark 2 Consider a finite rank lattice Λ and the corresponding torus TΛ. Every λ ∈ Λ defines a
character of TΛ, i.e. the function χλ : TΛ → C∗, χλ(ϕ) = ϕ(λ). Under pointwise multiplication,
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characters form a lattice which is naturally isomorphic to Λ. Therefore in the following we will identify
the character lattice of TΛ with Λ.

Definition 3 Consider a finite rank lattice Λ, a toric arrangement in TΛ is a finite set of pairs

A = {(χ1, a1), . . . (χn, an)} ⊂ Λ× C∗.

A toric arrangement A is called complexified if A ⊂ Λ×S1. Correspondingly, a real toric arrangement
in T cΛ is a finite set of pairs A c = {(χ1, a1), . . . (χn, an)} ⊂ Λ× S1.

Remark 4 The abstract definition is clearly equivalent to the one given in the introduction via the
canonical isomorphism of Remark 2 and by Ki := χ−1

i (ai). Accordingly, we have M(A ) := TΛ \⋃{K1, . . . ,Kn} and, for a real toric arrangement A c, M(A c) := T cΛ \
⋃{K1, . . . ,Kn}.

Definition 5 Let Λ be a rank d lattice and let A be a toric arrangement on TΛ. The rank of A is
rk (A ) := rk 〈χ | (χ, a) ∈ A 〉. A character χ ∈ Λ is called primitive if, for all ψ ∈ Λ, χ = ψk only if
k ∈ {−1, 1}. The toric arrangement A is called primitive if for each (χ, a) ∈ A , χ is primitive. The
toric arrangement A is called essential if rk (A ) = d.

Remark 6 For every non primitive arrangement there is a primitive arrangement which has the same
complement. Furthermore, if A is a non essential arrangement, then there exist an essential arrangement
A ′ such that

M(A ) ∼= (C∗)d−l ×M(A ′) where l = rk (A ′).

Therefore the topology of M(A ) can be derived from the topology of M(A ′).

Assumption. From now on we assume every toric arrangement to be primitive and essential.

2.1 Layers
Let A = {(χ1, a1), . . . , (χn, an)} be a toric arrangement on TΛ. Following De Concini and Procesi
(2010) we call layer of A any connected component of a nonempty intersection of some of the subtori
Ki (defined in Remark 4). The set of all layers of A ordered by reverse inclusion is the poset of layers of
the toric arrangement, denoted by C(A ).

Definition 7 Let Λ be a finite rank lattice and A be a toric arrangement in TΛ. For every sublattice
Γ ⊆ Λ we define the arrangement AΓ = {(χ, a) ∈ A | χ ∈ Γ} and for every layer X ∈ C(A ) the
sublattice ΓX := {χ ∈ Λ | χ is constant on X} ⊆ Λ. Then, we can define toric arrangements

AX := AΓX
on TΓX

, A X := {Ki ∩X | X 6⊆ Ki} on the torus X.

Remark 8 Notice that for a layer X ∈ C(A ) and a hypersurface K of A , the intersection K ∩ X is
not necessarily connected. In general K ∩X consist of several connected components, each of which is
a level set of a character in the torus X . Thus, A X is a toric arrangement in the sense of Definition 3.

2.2 Face category
To any complexified toric arrangement is associated the stratification of the real torus T cΛ into chambers
and faces induced by the associated ‘real’ arrangement A c, as follows.
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Definition 9 Consider a complexified toric arrangement A = {(χ1, a1), . . . , (χn, an)}, its chambers
are the connected components of M(A c). We denote the set of chambers of A by T (A ).

The faces of A are the connected components of the intersections C ∩ X where C ∈ T (A ), X ∈
C(A ). They are the (closed) cells of a polyhedral complex, which we denote by D(A ).

The incidence structure of a (possibly non regular) polyhedral complexX is encoded in a category with
one object for every cell, and a morphism for every ‘face-relation’ among cells. This is called the face
category of the complex and is denoted by F(X) (see (d’Antonio and Delucchi, 2011, §2.2.2) for some
details on face categories). It is an acyclic category in the sense of Kozlov (2008).

Definition 10 The face category of a complexified toric arrangement A is F(A ) = F(D(A )), i.e., the
face category of the polyhedral complex D(A ).

2.3 Hyperplane arrangements
Throughout this section let V be a finite dimensional vector space over a field K. An affine hyperplane
H in V is a level set of a linear functional on V . A set of hyperplanes is called dependent or independent
according to whether the corresponding set of functionals is linearly dependent in V ∗ or not.

Definition 11 A arrangement of hyperplanes in V is a collection B of affine hyperplanes in V .

A hyperplane arrangement B is called central if every hyperplane H ∈ B is a linear subspace of V ;
finite if B is finite; locally finite if for every p ∈ V the set {H ∈ B | p ∈ H} is finite; real (or complex)
if V is a real (or complex) vector space.

For every central hyperplane arrangement B, the set L(B) of all nonempty intersections of hyper-
planes, ordered by reverse inclusion, is a geometric lattice and defines the matroid associated to B.

Definition 12 An arrangement B in Cd is called complexified if every hyperplane H ∈ B is the com-
plexification of a real hyperplane, i.e., if H = α−1

H (aH) for aH ∈ R and αH ∈ (Rd)∗ ⊂ (Cd)∗. The
real part of a complexified hyperplane arrangement B is BR = {H ∩ Rd | H ∈ B}, an arrangement of
hyperplanes in Rd.

A real hyperplane arrangement B induces a polyhedral decompositionD(B) of the real ambient space.
The face category of this polyhedral complex is denoted F(B) := F(D(B)). The top cells of this
decomposition are called chambers of B, the set of chambers is denoted T (B).

If B is a complexified hyperplane arrangement, we write F(B) := F(BR) and T (B) := T (BR).

2.4 Covering space
The preimage of a toric arrangement A under the covering map p : Cd ∼= HomZ(Λ,C)→ HomZ(Λ,C∗) =
TΛ, ϕ 7→ exp◦ϕ is a locally finite affine hyperplane arrangement on HomZ(Λ;C). Choosing coordinates
we can associate to the character χi an integer vector αi = α(χi) ∈ Zd so that χi(x) = x

αi,1

1 · · ·xαi,d

d

and then let

A � := {Hχ,a′ | (χ, e2πia′) ∈ A } where Hχ,a′ = {x ∈ Cn | 〈α(χ), x〉 = a′}.

Remark 13 If the toric arrangement A is complexified, so is the hyperplane arrangement A �.

The lattice Λ acts on Cn and on Rn as the group of automorphisms of the covering map p. Consider
now the map q : F(A �)→ F(A ) induced by p.
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Proposition 14 ((d’Antonio and Delucchi, 2011, Lemma 4.8)) Let A be a complexified toric arrange-
ment. The map q : F(A �)→ F(A ) induces an isomorphism of acyclic categories F(A ) ∼= F(A �)/Λ.

s

3 Combinatorics
In this section we define local no-broken-circuit sets and prove some combinatorial results about chambers
of real hyperplane arrangements.

Lemma 15 Let A be a toric arrangement, X ∈ C(A ) a layer. Then the subposet C(A )≤X is the
intersection poset of a central hyperplane arrangement A [X]. If A is complexified, then A [X] is, too.

Proof: This is implicit in much of De Concini and Procesi (2005).The proof follows by lifting the layer
X to A �. A precise definition of A [Y ] can also be found in Section 5.2.1 below. 2

3.1 No-broken-circuit sets, local and global
Recall the terminology of Section 2.3.

Definition 16 Let B be a central arrangement of hyperplanes with an arbitrary (but fixed) total order. A
circuit is a minimal dependent subset C ⊆ A . A broken circuit is a subset of the form C\{minC} ⊆ B
obtained from a circuit removing its least element. A no-broken-circuit set (or, for short, an nbc set) is a
subset N ⊆ B which does not contain any broken circuit. We will write nbc(B) for the set of no-broken-
circuit sets of B and nbck(B) = {N ∈ nbc(B) | |N | = k} for the set of all no-broken-circuit sets of
cardinality k.

Remark 17 For all k = 0, . . . , d, the cardinality |nbck(B)| does not depend on the chosen total order-
ing.

Definition 18 (De Concini and Procesi (2005)) Let A be a toric arrangement of rank d and let us fix a
total ordering on A . A local no-broken-circuit set of A is a pair

(X,N) with X ∈ C(A ), N ∈ nbck(A [X]) where k = d− dimX

We will write N for the set of local non broken circuits, and partition it into subsets

Nj = {(X,N) ∈ N | dimX = d− j}.

Local no-broken-circuit sets can be used to express the Poincaré polynomial of M(A ). The following
result was obtained in De Concini and Procesi (2005) by computing de Rham cohomology, in Looijenga
(1993) via spectral sequence computations.

Theorem 19 (see (De Concini and Procesi, 2005, Theorem 4.2)) Consider a toric arrangement A . The
Poincaré polynomial of M(A ) can be expressed as follows:

PA (t) =
∞∑

j=0

dimHj(M(A );C) tj =
∞∑

j=0

|Nj | (t+ 1)k−j tj .
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3.2 Combinatorics of real hyperplane arrangements
In this section we will discuss some of the combinatorics of affine arrangements of hyperplanes in real
space. Again, we refer the reader to standard references such as Björner et al. (1999); Orlik and Terao
(1992) for the basics.

If B is an arrangement in a real space V , then every hyperplane H is the locus where a linear form
αH ∈ V ∗ takes the value aH . This way we can associate to each H ∈ B, its positive and negative
halfspace: Hε := {x ∈ V | sgn(αH(x)− aH) = ε} for ε ∈ {+, 0,−}.

Definition 20 Consider a complexified locally finite arrangement B with any choice of ‘sides’ for every
H ∈ B. The sign vector of a face F ∈ F(B) is the function γF : B → {−, 0+} defined as: γF (H) := ε
if relintF ⊆ Hε.

Notice that chambers are precisely those faces whose sign vector maps B to {−,+}.

Definition 21 Let C1 and C2 ∈ T (B) be chambers of a real arrangement, and let B ∈ T (B) be a
distinguished chamber. We will write S(C1, C2) := {H ∈ B | γC1

(H) 6= γC2
(H)} for the set of

hyperplanes of B which separate C1 and C2.
For all C1, C2 ∈ T (B) write C1 ≤ C2 if and only if S(C1, B) ⊆ S(C2, B). This turns T (B) into a
poset T (B)B , the poset of regions of the arrangement B with base chamber B.

Remark 22 Let B0 be a real arrangement and B ∈ T (B0). Given a subarrangement B1 ⊆ B0, for
every chamber C ∈ T (B0) there is a unique chamber Ĉ ∈ T (B1) with C ⊆ Ĉ.

Definition 23 Let B0 be a real arrangement and let �0 denote any total ordering of T (B0). Consider a
subarrangement B1 ⊆ B0. The function

µ[B1,B0] : T (B1)→ T (B0), C 7→ min
�0

{K ∈ T (B0) | K ⊆ C}

defines a total ordering �0,1 on T (B1) by C �0,1 D ⇐⇒ µ[B1,B0](C) �0 µ[B1,B0](D) that we
call induced by �0.

Proposition 24 (Proposition 11 of d’Antonio and Delucchi (2012)) Let a base chamber B of B0 be
chosen. If �0 is a linear extension of T (B0)B , then �0,1 is a linear extension of T (B1)B̂ .

4 A combinatorial model for the topology of toric arrangements
In this Section we explain the construction of a combinatorial model for the homotopy type of the com-
plement M(A ) of a given complexified toric arrangement.

4.1 The homotopy type of complexified hyperplane arrangements
If B is a complexified hyperplane arrangement, one can use the combinatorial structure of BR to study
the topology of M(B). In fact, using combinatorial data about BR, Salvetti defined a cell complex
which embeds in the complement M(B) as a deformation retract (see Salvetti (1987)). We explain this
construction.
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Definition 25 Given a face F ∈ F(B) and a chamber C ∈ T (B), define CF ∈ T (B) as the unique
chamber such that

γCF
(H) =

{
γF (H) if γF (H) 6= 0
γC(H) if γF (H) = 0

The reader may think of CF as the one, among the chambers adjacent to F , that “faces” C.

Definition 26 Consider an affine complexified locally finite arrangement B and define the Salvetti poset
as follows:

Sal(B) = {[F,C] | F ∈ F(B), C ∈ T (B)F ≤ C},
with the relation [F1, C1] ≤ [F2, C2] ⇐⇒ F2 ≤ F1 and (C2)F1

= C1.
Let B be an affine complexified locally finite hyperplane arrangement. Its Salvetti complex is the order

complex S(B) = ∆(Sal(B)), i.e., the simplicial complex of all chains.

Theorem 27 (Salvetti (1987)) The complex S(B) is homotopically equivalent to the complementM(B).
More precisely S(B) embeds in M(B) as a deformation retract.

Remark 28 In fact, the poset Sal(B) is the face poset of a regular cell complex (of which S(B) is
the barycentric subdivision) whose maximal cells correspond to the pairs [P,C] with P ∈ minF(B),
C ∈ T (B). It is this complex which is described in Salvetti (1987).

4.2 The toric Salvetti category
In order to define the toric Salvetti category, we need an analogue of Definition 25 for toric arrangements.

Proposition 29 ((d’Antonio and Delucchi, 2011, Proposition 3.12)) Let Λ be a finite rank lattice, Γ a
sublattice of Λ. Let A a complexified toric arrangement on TΛ and recall the arrangement AΓ from
Definition 7. The projection πΓ : TΛ → TΓ induces a morphism of acyclic categories πΓ : F(A ) →
F(AΓ).

Consider now a faceF ∈ F(A ). We associate to it the sublattice ΓF = {χ ∈ Λ | χ is constant on F} ⊆
Λ.

Definition 30 Consider a toric arrangement A on TΛ and a face F ∈ F(A ). The restriction of A to F
is the arrangement AF := AΓF

on TΓF
.

We will write πF = πΓF
: F(A )→ F(AF ).

Definition 31 ((d’Antonio and Delucchi, 2011, Definition 4.1)) Let A be a toric arrangement on the
complex torus TΛ. The Salvetti category of A is the category Sal A defined as follows.

(a) The objects are the morphisms in F(A ) between faces and chambers:

Obj(Sal A ) = {m : F → C | m ∈ Mor(F(A )), C ∈ T (A )}.

(b) The morphisms are the triples (n,m1,m2) : m1 → m2, where m1 : F1 → C1,m2 : F2 → C2 ∈
Obj(Sal A ), n : F2 → F1 ∈ Mor(F(A )) and m1,m2 satisfy the condition πF1

(m1) = πF1
(m2).

(c) Composition of morphisms is defined as (n′,m2,m3) ◦ (n,m1,m2) = (n ◦ n′,m1,m3), whenever n
and n′ are composable.
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Remark 32 The Salvetti category is an acyclic category in the sense of Kozlov (2008).

Definition 33 Let A be a complexified toric arrangement; its Salvetti complex is the nerve S(A ) =
∆(Sal A ).

The following result generalizes (Moci and Settepanella, 2011).

Theorem 34 ((d’Antonio and Delucchi, 2011, Theorem 4.3)) Let A be a complexified toric arrange-
ment. The Salvetti complex S(A ) embeds in the complement M(A ) as a deformation retract.

Remark 35 As for the case of affine arrangements, the Salvetti category is the face category of a polyhe-
dral complex, of which the toric Salvetti complex is a subdivision.

For the local structure of the toric Salvetti complex see Remark 40 below.

5 Minimality and torsion-freeness
5.1 ‘Local’ minimality
In the case of complexified arrangements, explicit constructions of a minimal CW-complex for M(B)
were given in Salvetti and Settepanella (2007) and in Delucchi (2008). We review the material of (Deluc-
chi, 2008, §4) that will be useful for our later purposes.

Lemma 36 ((Delucchi, 2008, Theorem 4.13)) Let B be a central arrangement of real hyperplanes, let
B ∈ T (A ) and let� be any linear extension of the poset T (B)B . The subset of all X ∈ L(B) such that

S(C,C ′) ∩BX 6= ∅ for all C ′ ≺ C

is an order ideal of L(B). In particular, it has a well defined and unique minimal element we will call
XC .

Now recall the (cellular) Salvetti complex of Definition 26 and Remark 28. In particular, its maximal
cells correspond to the pairs [P,C] where P is a point and C is a chamber. When B is a central arrange-
ment, the maximal cells correspond to the chambers in T (B). In this case we can stratify the Salvetti
complex assigning to each chamber C ∈ T (B) the corresponding maximal cell of S(B), together with
its faces.

Definition 37 Let B be a central complexified hyperplane arrangement and write minF(B) = {P}.
Define a stratification of the cellular Salvetti complex S(B) =

⋃
C∈T (B) SC through

SC :=
⋃
{[F,K] ∈ Sal(B) | [F,K] ≤ [P,C]} .

Given an arbitrary linear extension (T (B),�) of T (B)B , for all C ∈ T (B) define

NC := SC\
( ⋃

D≺C
SD
)
, so that Sal(B) =

⊔

C∈T (B)

NC(B).
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Theorem 38 ((Delucchi, 2008, Lemma 4.18)) There is an isomorphism of posets

NC ∼= F(BXC )op

where XC is the intersection defined via Lemma 36 by the same choice of base chamber and of linear
extension of T (B)B used to define the subposets NC , while BXC = {H ∩ XC | H ∈ B} denotes the
arrangement in the subspace XC determined by restriction of B.

5.2 Stratification of the toric Salvetti category
We now work our way toward proving the minimality of complements of toric arrangements. We start by
defining a stratification of the toric Salvetti complex, in which each stratum corresponds to a local non
broken circuit.

5.2.1 Local geometry of complexified toric arrangements
Consider a rank d complexified toric arrangement A = {(χ1, a1), . . . , (χn, an)}. Choose coordinates
and, as usual, write χi(x) = xαi for αi ∈ Zd and Ki = {x ∈ TΛ | χi(x) = ai}.

We introduce some central hyperplane arrangements we will work with. Consider the arrangement

A0 = {Hi = ker 〈αi, ·〉 | i = 1, . . . , n}

in Rd and, from now on, fix a chamber B ∈ T (A0) and a linear extension ≺0 of T (A0)B .

Definition 39 For every face F ∈ F(A ) and every layer Y ∈ C(A ) define the arrangements

A [F ] = {Hi ∈ A0 | χi(F ) = ai}, A [Y ] = {Hi ∈ A0 | Y ⊆ Ki},

and let BF ∈ T (A [F ]), resp. BY ∈ T (A [Y ]), be such that that B ⊆ BF , resp. B ⊆ BY .

Remark 40 The Salvetti category is the colimit of a diagram over the index category F(A ), which
associates to every F ∈ F(A ) the poset Sal(A [F ]) (d’Antonio and Delucchi, 2012, Lemma 77).

Remark 41 The linear extension ≺0 of T (A0)B induces, as in Proposition 24, linear extensions ≺F of
T (A [F ])BF

and ≺Y of T (A [Y ])BY
, for every F ∈ F(A ) and every Y ∈ C(A ).

Definition 42 Given X ∈ C(A ) let X̃ ∈ L(A0) be defined as

X̃ :=
⋂

X⊆Ki

Hi.

Definition 43 Let Y ∈ C(A ) be a layer of A . For C ∈ T (A [Y ]) let X(Y,C) ⊇ Y be the layer
determined by the intersection defined by Lemma 36 from ≺Y . Analogously, for C ∈ T (A [F ]) let
X(F,C) be defined with respect to ≺F .

Let then
Y := {(Y,C) | Y ∈ C(A ), C ∈ T (A [Y ]), X(Y,C) = Y }.

Moreover, for i = 0, . . . , d let Yi := {(Y,C) ∈ Y | dim(Y ) = i}.
Lemma 44 Let A be a rank d toric arrangement. For all i = 0, . . . d, we have |Yi| = |Ni|.
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As a last preparation, we need to be able to map morphisms m : F → G of F(A ) to the corresponding
face of the arrangement A [F ].

Definition 45 Consider a toric arrangement A on TΛ
∼= (C∗)k and a morphism m : F → G of F(A ).

We associate to m a face Fm ∈ F(A [F ]) as follows.
First, fix an F � ∈ F(A �) such that q(F �) = F . From Proposition 29 and from the freeness of the

action of Λ it follows that there is a unique G� ∈ F(A �) such that q(F � ≤ G�) = m. Then, consider the
arrangement A �

F � = {H ∈ A � | F � ∈ H}. Clearly, up to translation, A �
F � = A [F ] and we can identify

the two arrangements. Now define Fm as the face of A [F ] which contains G�. That is, in terms of sign
vectors and identifying each H ∈ A [F ] with its unique translate which contains G�: γFm = γG� |A [F ].
In particular, when G is a chamber, then Fm also is.

5.2.2 Definition of the strata
Definition 46 Recall Definition 23. The assignment (Y,C) 7→ µ[A [Y ],A0](C) defines a function ξ0 :
Y → T (A0)B . Choose, and fix, a total order a on Y that makes this function order preserving.

Definition 47 Define the map θ : Sal(A )→ Y ; (m : F → C) 7→ (X(F, Fm), σA [X(F,Fm)](Fm)).

Through θ we can now define a filtration of Sal(A ).

Definition 48 Given a complexified toric arrangement A on (C∗)d, we consider the following strati-
fication of Sal(A ) indexed by Y : we write Sal(A ) = ∪(Y,C)∈Y S(Y,C) where S(Y,C) is the induced
subcategory with Ob(S(Y,C)) = {m ∈ Ob(Sal(A )) | ∃(m → n) ∈ Mor(Sal(A )), n ∈ θ−1(Y,C)}.
Moreover, recall the total ordering ` on Y and define

Ny := Sy\
⋃

y′ay
Sy′ .

We now come to the gist of our construction: everything has been arranged so that every stratum, as a
category, is isomorphic to the face category of a real toric arrangement.

Theorem 49 Consider a complexified toric arrangement A and for (Y,C) ∈ Y let N(Y,C) be as in
Definition 48. Then there is an isomorphism of acyclic categories

N(Y,C)
∼= F(A Y )op.

The details of the proof are very technical and quite lengthy. We believe that it is in the best interest of
the clarity of this extended abstract to refer the interested reader to the full treatment given in d’Antonio
and Delucchi (2012).

5.3 Discrete Morse Theory for acyclic categories
Our proof of minimality will consist in describing a sequence of cellular collapses on the toric Salvetti
complex, which is not necessarily a regular cell complex. We need thus to extend discrete Morse theory
from posets to acyclic categories. The setup used in the textbook of Kozlov (2008) happens to lend itself
very nicely to such a generalization - in fact, once the right definitions are made, even the proofs given
there just need some minor additional observation.

We will omit the technicalities in this extended abstract, and refer to (d’Antonio and Delucchi, 2012,
§3) for a more detailed account. We will only say that the notion of acyclic matching extends easily to
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acyclic categories so that an acyclic matching on the face category of a CW-complexX defines a sequence
of cellular collapses on X that preserve the homotopy type and leads to a complex with as many cells in
each dimension as there are corresponding critical (unmatched) cells in the original matching (d’Antonio
and Delucchi, 2012, Definition 50, Theorem 53). We will call an acyclic matching perfect if its number
of critical cells in dimension k is the k-th Betti number of X .

Moreover, the well-known Patchwork Lemma (Kozlov, 2008, Theorem 11.10) generalizes.

Lemma 50 (“Patchwork Lemma”, Lemma 52 of d’Antonio and Delucchi (2012)) Consider a functor
of acyclic categories ϕ : C → C′ and suppose that for each object c of C′ an acyclic matching Mc of
ϕ−1(c) is given. Then the matching M :=

⋃
c∈Ob C′ Mc of C is acyclic.

5.4 Perfect acyclic matchings for compact tori
Let A be a complexified toric arrangement in TΛ and let (χ1, a1), . . . , (χd, ad) ∈ A be such that
α1, . . . , αd (see Section 2.4) are (Q-) linearly independent. Then P = ∩iKi ∈ max C(A ). Up to a
biholomorphic transformation we may suppose that P is the origin of the torus. For i = 1, . . . , d let H1

i

denote the hyperplane of A � liftingKi at the origin of Hom(Λ,R) ' Rd. We identify for ease of notation
Λ ' Zd ⊆ Rd, and in particular think of αi as the normal vector to H1

i .
For j ∈ [d] we consider the rank j − 1 lattice Λj := Zd ∩⋂i≥j H1

i . It is a standard exercise in algebra
to find a basis u1, . . . , ud of Λ such that for all i = 1, . . . , d, the elements u1, . . . , ui−1 are a basis of Λi.

In particular, ui 6∈ H1
i , hence ui(H1

i ) 6= H1
i . Moreover, without loss of generality we may suppose

ui ∈ (H1
i )+ := {x ∈ Rd | 〈x, αi〉 ≥ 0}.

For i = 1, . . . , d, let (H2
i )+ := ui((H

1
i )+), and define Q :=

⋂d
i=1[(H1

i )+ \ (H2
i )+].

Then, Q is a fundamental region for the action of Λ on Rd (d’Antonio and Delucchi, 2012, Lemma 86).

Definition 51 Let A be a rank d toric arrangement, and let Bd be the ‘boolean poset on d elements’, i.e.,
the acyclic category on the subsets of [d] with the inclusion morphisms. Since Bd is a poset, the function
Ob(F(A )) → Ob(Bd), F 7→ {i ∈ [d] | F ⊆ Ki}, induces a well defined functor of acyclic categories
I : F(A )→ Bopd .

For every I ⊆ [d] define the category FI := I−1(I).

Lemma 52 (Lemma 89 of d’Antonio and Delucchi (2012)) For all I ⊆ [d], the subcategory FI is a
poset admitting an acyclic matching with only one critical element (in top rank).

Proposition 53 For any complexified toric arrangement A , the acyclic category F(A ) admits a perfect
acyclic matching.

Proof: Let A be of rank d. The proof is a straightforward application of the Patchwork Lemma (Lemma
50) in order to merge the 2d acyclic matchings described in Lemma 52 along the map I of Definition 51.
The resulting ‘global’ acyclic matching has 2d critical elements and is thus perfect. 2

5.5 Minimality
Let A be a (complexified) toric arrangement.

Proposition 54 The Salvetti category Sal A admits a perfect acyclic matching.
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Proof: Let P denote the acyclic category given by the |Y |-chain. We define a functor of acyclic categories

ϕ : Sal A → P ; m 7→ (Y,C) for m ∈ N(Y,C)

and with Theorem 49 we have an isomorphism of acyclic categories ϕ−1((Y,C)) = N(Y,C) ' F(AY ).
Then, by Proposition 53, ϕ−1((Y,C)) has an acyclic matching with 2d−rkX critical cells.

An application of the Patchwork Lemma 50 gives then an acyclic matching on Sal(A ) with
∑
j |Yj |2d−j =∑

j |Nj |2d−j = PA (1) critical cells, where the first equality is given by Lemma 44. This matching is
thus perfect. 2

Corollary 55 The complement M(A ) is a minimal space.

Corollary 56 The groups Hk(M(A ),Z), Hk(M(A ),Z) are torsion free for all k.
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