CLASSIFICATION DES CARTES POINTEES DE GENRE UN ET RELATION FONCTIONNELLE ASSOCIEE

Didier ARQUES & Isabelle JACQUES
Laboratoire d'Informatique de Besançon
Université de Franche-Comté
16 Route de Gray - 25030 BESANÇON Cedex.

ABSTRACT

Study of rooted planar maps has led to two different functional relations whose unique solution is the generating function counting rooted planar maps. The first one, given by W. T. Tutte in 1968, was obtained by deletion of the rooted edge, and was generalized to genus 1 maps. The second one, given by D. Arquès in 1985, uses a more complex geometrical decomposition (the contraction of the whole outer face into one vertex) and gives a new functional relation with a composition of functions, whose terms contain the searched generating function of rooted planar maps. Herein, we propose a generalization to genus 1 maps of this second relation, in association with a new classification of genus 1 rooted maps. This classification is realized with the help of new geometrical decomposition operations of these maps, allowing the achievement of 8 natural sub-classes of the torus rooted maps family.

INTRODUCTION

L'étude des cartes pointées de genre 0 a montré l'existence de deux relations fonctionnelles différentes liées à des décompositions géométriques distinctes. La première (cf [Tu68]) est obtenue par suppression de l'arête pointée. La seconde (cf [Ar85a]), met en jeu une décomposition géométrique plus complexe (contraction en un sommet de la face extérieure) et donne une relation fonctionnelle avec une composition de fonctions dont les deux termes invoquent la série génératrice des cartes planaires. La connaissance de telles relations liées à des décompositions géométriques, est importante pour l'énumération et pour la compréhension de la structure interne profondément riche des cartes.

Pour les cartes de genre supérieur ou égal à 1, seule est connue jusqu'à présent (cf [Ar87a,b]) la relation fonctionnelle du type de celle donnée par Tutte pour le genre 0. Nous obtenons ici une nouvelle relation fonctionnelle pour les cartes de genre 1, issue d'une décomposition et d'une classification très fine de ces cartes, relation généralisant à la seconde évoquée ci-dessus pour les cartes de genre 0.

Le lien entre opération géométrique d'ouverture du sommet pointé d'une carte et l'opération de composition de séries génératrices est explicité au paragraphe I. Au paragraphe II, une décomposition fine des cartes pointées de genre 1 est proposée, induisant la nouvelle relation fonctionnelle annoncée.

I. OUVERTURE D'UN SOMMET ET COMPOSITION DE SERIES GENERATRICES

I.1. DEFINITIONS ET NOTATIONS

Les définitions de carte topologique sur une surface orientable Σ_g de genre g, de genre d'une carte, de brin, d'isthme, de degré d'un sommet ou d'une face, de carte combinatoire, de cartes isomorphes ne sont pas rappelées ici, mais peuvent être trouvées dans [Ar85a], [Co75] ou [Tu68].

Rappelons qu'une carte est dite *pointée* si un brin b* est *pointé* (de sommet initial s* appelé sommet pointé). La face extérieure de la carte, est alors la face incidente à droite du brin pointé b*. Une carte planaire sera dite doublement pointée, si un second brin est pointé, de sommet initial différent du sommet pointé s*.

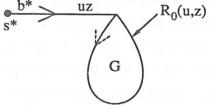
 $R_g(v,z)$ (resp. $D(v_1,v_2,z)$) est la série génératrice des cartes (resp. doublement) pointées de genre g, le degré de v (resp. les degrés de v_1 et v_2) donnant le degré du sommet pointé (resp. des deux sommets pointés), le degré de z donnant le nombre d'arêtes. *Par dualité* (cf [Co75]), $R_g(u,z)$ (resp. $D(u_1,u_2,z)$) est également la série génératrice des cartes pointées (resp. doublement pointées et dont les faces à droite des deux brins pointés sont différentes) de genre g, le degré de u donnant le degré de la face extérieure (resp. les degrés de v_1 et v_2 donnant les degrés de ces deux faces).

I.2. OPERATION D'OUVERTURE D'UN SOMMET

Soit $\mathfrak X$ une famille de cartes pointées (par exemple $\mathfrak X$ est la famille des cartes de genre 0 ou 1). On notera $\mathfrak X_r$ la sous-famille des cartes de $\mathfrak X$, dont le degré du sommet pointé $\mathfrak t^*$ est $\mathfrak r$ ($\mathfrak X_0$ étant soit vide, soit constituée de la carte réduite à un sommet si celle-ci appartient à $\mathfrak X$). On notera $d_1, ..., d_r$ les brins issus de $\mathfrak t^*$, à partir du brin pointé $\mathfrak d^* = d_1$, dans le sens contraire du sens positif (cf Fig. 2).

On considère la famille I des cartes planaires, dont le brin pointé est un isthme et le sommet pointé s* est de degré 1.

On note \mathfrak{g}^+ (resp. \mathfrak{g}^*) l'ensemble : $\sum_{k\geq 1}\mathfrak{g}^k$, (resp. $\{p\}+\sum_{k\geq 1}\mathfrak{g}^k$, où $\{p\}$ est la carte réduite à un sommet), défini comme la réunion disjointe pour $k\geq 1$ (resp. $k\geq 0$) des k-uplets de cartes de \mathfrak{g} .



Carte planaire pointée G quelconque (le brin pointé (en pointillés) est le premier brin de G, rencontré à partir de b*).

Figure 1 : Carte générique de 1.

<u>Définition 1</u>: Ouverture d'un sommet:

L'opération d'ouverture du sommet pointé t^* d'une carte de $\mathfrak X$ (cf Fig. 2) consiste à créer un nouveau sommet s^* , à insérer entre les extrémités initiales de d_i et d_{i+1} pour $1 \le i \le k-1$ (k étant le degré de t^*) et entre l'extrémité initiale de d_k et s^* une suite finie éventuellement vide (réduite à un sommet) de cartes de $\mathfrak I$, et à insérer entre s^* et l'extrémité initiale de d_1 une suite non vide d'éléments de $\mathfrak I$, dont le brin pointé b_1 de la première carte de $\mathfrak I$ insérée, sera le brin pointé (issu de s^*) de cette nouvelle carte.

On note y, la famille des cartes obtenues par l'ouverture des sommets pointés des cartes de x.

Proposition 1:

1. Si toutes les cartes de X sont de genre g, il en est de même des cartes de Y.

2. L'opération d'ouverture du sommet pointé est associée à la bijection : $\mathcal{Y} \leftrightarrow \mathcal{Y}^+ \times \sum_{r \geq 0} \mathfrak{T}_r \times (\mathcal{Y}^*)^r$

3.a) Si $\mathfrak{X} = \mathbb{R}_0$ est la famille de toutes les cartes planaires pointées, \mathfrak{Y} est la sous-famille \mathfrak{F}_0 des cartes planaires pointées dont le brin pointé n'est pas un isthme.

3.b) Si $\mathfrak{X} = \mathfrak{R}_g$ est la famille des cartes pointées de genre g, \mathfrak{Y} est la sous-famille \mathfrak{F}_g des cartes pointées de genre g dont le brin pointé n'est pas un isthme et dont la frontière de la face extérieure est contractible en un point sur le tore à g trous (c'est-à-dire ne contient pas de sous-circuit "qui fasse le tour d'un trou du tore").

<u>Démonstration</u>: généralise celle donnée dans [Ar85a].

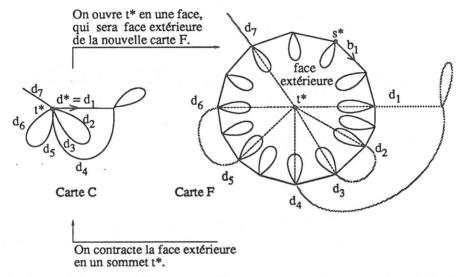


Figure 2 : Opérations réciproques d'ouverture d'un sommet et de contraction de la face extérieure.

I.3. TRADUCTION EN TERMES DE SERIES GENERATRICES

X(v,z) (resp. Y(u,z)) est la série génératrice des cartes pointées de $\mathfrak X$ (resp. $\mathfrak Y$) énumérées en fonction du degré du sommet pointé (v) (resp. degré de la face extérieure (u)) et du nombre d'arêtes (z).

Théorème 1 : On a l'égalité fonctionnelle

$$Y(u,z) = \frac{uzR_0(u,z)}{1 - uzR_0(u,z)} X \left(\frac{1}{1 - uzR_0(u,z)}, z \right)$$
(1)

Démonstration: généralise celle donnée dans [Ar87a].

Corollaire 1:

- 1. La série génératrice des cartes planaires dont le brin pointé n'est pas un isthme est : $Y_{\mid X=R_0}$
- 2. La série génératrice des cartes planaires pointées satisfait la relation fonctionnelle

(dans laquelle
$$R_0$$
 signifie $R_0(u,z)$): $R_0 = 1 + u^2 z R_0^2 + Y_{|X| = R_0}$ (2)

II. CLASSIFICATION DES CARTES POINTEES DE GENRE 1

Ce paragraphe présente une classification des cartes pointées de genre 1, dont la traduction au niveau "relation fonctionnelle" est donnée par le :

Théorème 2 : R_1 est solution de l'équation (où R_g est écrit pour $R_g(u,z)$) :

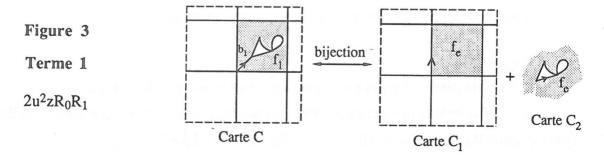
$$\begin{split} R_{1}\left(u,z\right) &= 2u^{2}zR_{0}R_{1} + u^{2}zD\left(u,u,z\right) \\ &+ \frac{uzR_{0}}{1-uzR_{0}}\,R_{1}\left(\frac{1}{1-uzR_{0}}\,,z\right) + R_{1}\left[\frac{\partial Y}{\partial R_{0}}\right]_{|X=R_{0}} \\ &+ D\left(u,u,z\right)\frac{1}{2!}\left[\frac{\partial^{2}Y}{\partial R_{0}^{2}}\right]_{|X=R_{0}} + \left[R_{0} + 2u\,\frac{\partial R_{0}}{\partial u} + \frac{1}{2!}\left(u^{2}\,\frac{\partial^{2}R_{0}}{\partial u^{2}}\right)\right]\frac{1}{3!}\left[\frac{\partial^{3}Y}{\partial R_{0}^{3}}\right]_{|X=R_{0}} \\ &+ \left[R_{0} + u\,\frac{\partial R_{0}}{\partial u}\right]^{2}\frac{1}{4!}\left[\frac{\partial^{4}Y}{\partial R_{0}^{4}}\right]_{|X=R_{0}} \\ &+ u_{1}\,\frac{\partial}{\partial u_{1}}\left[\frac{u_{1}zR_{0}(u_{1},z)}{1-u_{1}zR_{0}(u_{1},z)}\frac{u_{2}z}{1-u_{2}zR_{0}(u_{2},z)}D\left(\frac{1}{1-u_{1}zR_{0}(u_{1},z)}\,,\frac{1}{1-u_{2}zR_{0}(u_{2},z)}\,,z\right)\right]_{|u_{1}=u_{2}=u} \end{split}$$

DECOMPOSITION DES CARTES POINTEES DE GENRE 1

Les cartes pointées de genre 1 sont représentées en utilisant la figuration du tore sous forme d'un carré dont les côtés opposés (en pointillés pour les distinguer des arêtes) sont identifiés point par point.

1. LE BRIN POINTE EST UN ISTHME

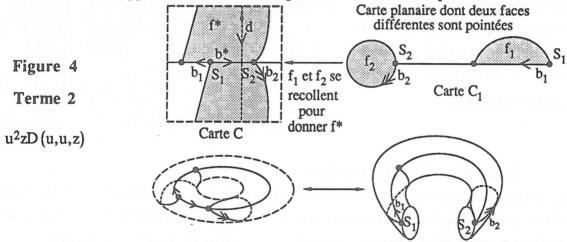
1.1. Le brin pointé est un isthme dont la suppression déconnecte la carte



La suppression du brin pointé b_1 (facteur u^2z) déconnecte la carte C en deux cartes C_1 et C_2 , dont l'une est de genre 0 (facteur R_0) et l'autre est de genre 1 (facteur R_1) (d'où le facteur 2).

1.2. Le brin pointé est un isthme dont la suppression ne déconnecte pas la carte

Dans la carte duale de C, l'arête d duale de l'isthme b* est une boucle. Si la suppression de b* ne déconnecte pas la carte alors la boucle d ne partage pas le tore en deux composantes connexes, et fait le tour d'un des trous du tore. On supprime b*, on coupe le tore le long de d et on recolle deux disques le long des cercles du bord de la surface ainsi découpée : on crée ainsi une sphère et la carte C_1 obtenue est planaire. Pour reconstruire C à partir de C_1 , il faut pointer $b_1 = \sigma(b^*)$ et $b_2 = \sigma \circ \alpha(b^*)$ issus des sommets S_1 et S_2 initial et final au brin b*. On a ainsi une bijection entre les cartes de genre 1 dont le brin pointé est un isthme dont la suppression ne déconnecte pas la carte et les cartes planaires doublement pointées.



On coupe le tore à travers b* et on obtient une carte dessinée sur la sphère.

La série génératrice associée à ces cartes est donc formée de u^2z , facteur associé au brin b*, et de $D(u_1,u_2,z)_{|u_1=u_2=u}$, série génératrice des cartes planaires doublement pointées, dont les variables u_1 et u_2 donnant les degrés des faces pointées f_1 et f_2 sont identifiées en une même variable u de façon à donner le degré de la face f* de C obtenue par recollement sur le tore de f_1 et f_2 .

2. LE BRIN POINTE N'EST PAS UN ISTHME

<u>Définition 2</u>: "Polygone" frontière P:

C'est l'unique sous-circuit $(b_1, ..., b_k)$ de la suite des brins constituant la frontière orientée $\overline{\sigma}^*(b^*)$ de la face extérieure, défini par (1) $b_1 = b^*$ et (2) pour $i \ge 1$: b_{i+1} est le premier brin dans $(\sigma^{-1})^*(\alpha(b_i))$ bordant à sa droite la face extérieure, c'est-à-dire le premier tel brin rencontré en tournant dans le sens négatif à partir du brin opposé à b_i (cf Fig. 5).

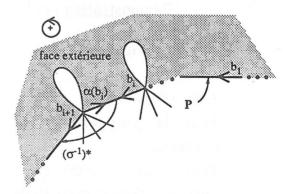
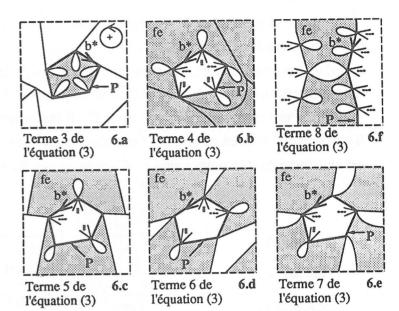


Figure 5: Construction du polygone P.

Figure 6

Dans ces 6 exemples (termes 3 à 8 du second membre de (3)), correspondant aux 6 cas de la classification des cartes pointées de genre 1, dont le brin pointé n'est pas un isthme, P est présenté en gras et la face extérieure en grisé.



Proposition 2 et Définitions: Propriétés de P

- 1. P est un circuit passant au plus une fois par tout brin de la frontière orientée de la face extérieure.
- 2. P est constitué de brins non isthmes (i.e. incidents d'un seul côté) de la face extérieure.
- 3. P peut passer plusieurs fois par un même sommet du bord de la face extérieure.

Définition: Un tel sommet s est appelé sommet multiple. Son ordre de multiplicité o(s) es degré de s dans P (nombre de brins de P issus de s).

3.a) Si s est un sommet multiple de P, c'est-à-dire si $P = (b_1,...,b_i,...,b_j,...,b_k)$, b_i et b_j étant les d premiers brins de P issus de s, alors :

.autour de s, dans le sens positif à partir de b_i , les 4 brins b_i , $\alpha(b_{i-1})$, b_j , $\alpha(b_{j-1})$ sont dans cet ordre .c = $(b_i,...,b_{j-1})$ est un circuit non contractible en un point sur le tore, i.e. c fait le tour d'un trou du to 3.b) Les 3 seules situations pour P sont (selon la figure 7) de posséder un sommet multiple d'ordre multiplicité 2 ou 3, ou 2 sommets multiples d'ordres de multiplicité 2.

3.c) Si P possède au moins un sommet multiple, P partage le tore en deux domaines ouverts conne appelés extérieur (celui qui contient la face extérieure) et intérieur.

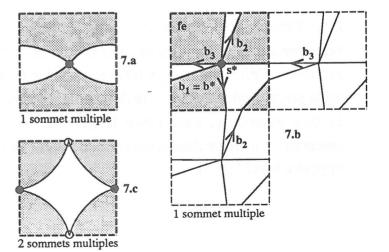
Démonstration : cf [AJ91].

Figure 7

3. de la Proposition 2:

Seul le polygone P est représenté.

Toute suite d'arêtes de P joignant 2 sommets multiples est remplacée par une arête unique. Les 2 domaines, intérieur et extérieur, sont en blanc et en grisé.



Remarque: Le 3. de la proposition 2 distingue le genre 1 du genre 0. Dans ce dernier cas, l'existence de P (cf [Ar85a]) est prouvée à l'aide du Théorème de König, P apparaissant alors comme un circuit élémentaire simple (c'est-à-dire ne passant pas deux fois par la même arête ou le même sommet : en effet, dans le cas de la sphère, il n'y a pas de trou : le circuit c du 3.a ne peut donc pas exister).

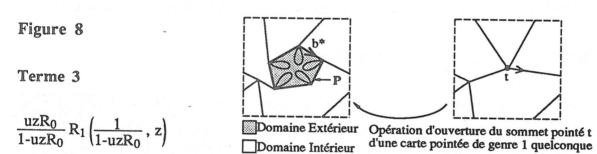
2.1. Le polygone P partage le tore en deux domaines ouverts connexes

<u>Définition 3</u>: Domaines extérieur et intérieur:

Si P partage le tore en 2 domaines ouverts connexes, le domaine extérieur (resp. intérieur) est celui de ces deux domaines contenant (resp. ne contenant pas) la face extérieure. Les brins inclus dans le domaine extérieur (resp. intérieur) et non sur le polygone P sont dits brins extérieurs (resp. intérieurs).

Les brins extérieurs forment des composantes connexes (par suppression de P et des brins intérieurs) dites sous-cartes extérieures incidentes aux sommets de P, pointées par le premier brin leur appartenant rencontré à partir de b* lors du parcours de la face extérieure orientée de la carte.

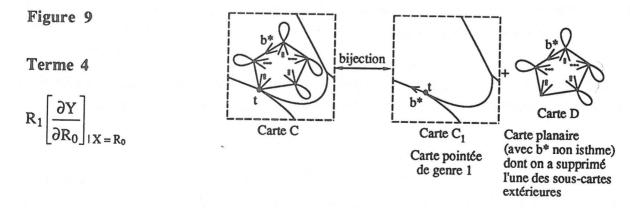
2.1.1. Les sous-cartes extérieures et P forment une carte planaire contractible en un point t sur le tore



? n'a pas de sommet multiple. On applique alors à une telle carte, l'opération de contraction du domaine extérieur de P. On déduit du \S I, que la série génératrice de ces cartes pointées de genre 1 est : $Y_{|X|=R_1}$.

2.1.2. Les sous-cartes extérieures et P forment une carte planaire non contractible en un point t sur le tore

2.1.2.1. L'une de ces sous-cartes extérieures C₁ est de genre 1



<u>Proposition 3</u>: Si l'une des sous-cartes extérieures C₁ est de genre 1, alors :

- 1. P n'a pas de sommet multiple.
- 2. La sous-carte de genre 1 est unique, a au plus un sommet commun avec P. Toutes les autres sous-cartes extérieures sont de genre 0 et contractibles en un point sur le tore.

Démonstration: cf [AJ91].

On décompose bijectivement la carte C en les carte C_1 de genre 1 et D de genre 0 (carte générique de la famille des cartes pointées de genre 0 dont le brin pointé n'est pas un isthme et dont on a choisi une des cartes de genre 0 extérieures pour la remplacer par C_1). Ce choix d'une carte de genre 0 se traduit par la dérivation de Y par rapport à R_0 , le remplacement par C_1 se traduisant par la multiplication par R_1 . D'où la série génératrice des cartes C: $R_1.[\partial Y/\partial R_0]_{|X=R_0}$

2.1.2.2. Aucune des sous-cartes extérieures n'est de genre 1

Pour que la carte globale C soit de genre 1, il est nécessaire que certaines (au nombre de k) des sous-cartes extérieures définies Définition 3 aient plus d'un sommet en commun avec P de façon "à faire le tour des trous du tore", ou que P ait des sommets multiples. Pour mettre en évidence les différents cas possibles, on définit une carte C', non pointée, simplifiée de C, et caractérisant la classe de C.

<u>DEFINITION DE C'</u>, carte simplifiée de C

A. Construction:

1. Supprimons les brins intérieurs, les sous-cartes extérieures ayant un seul sommet commun avec P et contractibles en un point et les brins non incidents à la face extérieure des sous-cartes extérieures restantes (cf Fig. 10.a,b). On obtient ainsi une nouvelle carte C₁ incluse dans la frontière extérieure de C. 2. La frontière extérieure de C₁, est constituée successivement: de sous-suites non vides : (1) de brins de P commençant et finissant en un sommet multiple ou commun avec une sous-carte extérieure; (2) de brins extérieurs (d'une sous-carte extérieure ayant plus d'un sommet commun avec P) joignant deux sommets de P (éventuellement confondus).

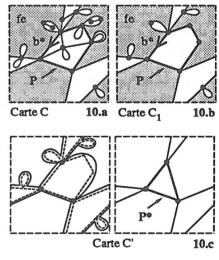


Figure 10

On remplace une telle sous-suite par une arête unique, topologiquement proche, plongée à sa droite dans la face extérieure, joignant les 2 sommets de P, extrémités de la sous-suite (cf Fig. 10.c).

B. Propriétés de la carte C' ainsi obtenue :

* Les sommets de C' sont les sommets multiples de P (au nombre de sm) ou les sommets non multiples de P, communs à P et à une sous-carte extérieure (au nombre de sc).

* Les arêtes de C' sont : (1) soit des arêtes issues des sous-suites de P (au nombre de ap, et constituant un polygone P*); (2) soit des arêtes joignant deux des sommets de P* (éventuellement confondus, et font alors le tour d'un trou du tore), naturellement regroupées en k paquets (un par souscarte extérieure) de a_i ($a_i \ge 2$ pour $1 \le i \le k$) arêtes, toutes incidentes à la face extérieure d'un seul côté (e.g. une sous-carte extérieure de C formée d'une arête isthme dans la face extérieure est remplacée de part et d'autre par 2 arêtes ayant les mêmes extrémités que l'arête de départ dans le passage de C₁ à C').

C. Inéquations caractérisant les cartes C':

Ces inéquations nous permettront de classer les cartes C' en fonction de a_p , sm, sc, k, a_i ($1 \le i \le k$).

* Soit $\mathcal{S} = \{s_1, ..., s_{sm}\}$ l'ensemble des sommets multiples de P. Tout sommet s_i $(1 \le i \le sm)$, a un ordre de multiplicité $o(s_i) \ge 2$. D'où : $2 \text{ sm} \le \sum_{s_i \in \mathcal{S}} o(s_i)$

* La carte C' est dessinée sur le tore, mais n'est pas nécessairement de genre 1 (Chacune des k sous-cartes extérieures, non contractible en un point, est remplacée par une face sur le tore limitée par a; arêtes. Mais ces faces ne sont pas nécessairement simplement connexes (cf Fig. 11.a) : il manque éventuellement des arêtes pour rendre ces faces simplement connexes et pour rendre la carte de genre 1). L'égalité résultant de la formule du genre (#arêtes=#sommets+#faces) est donc remplacée par l'inégalité:

$$\Sigma_{1 \le j \le k} a_j + a_p \le sm + sc + (k+1+1)$$
 (1)

 $.\Sigma_{1\leq j\leq k}a_{j}: nombre \text{ d'arêtes construites a partir des k sous-cartes extérieures non contractibles en 1 point;}$. (k + 1 + 1) correspondant au nombre de faces où l'intérieur de chacun des k paquets de a; arêtes donne une face remplaçant (topologiquement) la sous-carte extérieure associée, et les deux "1" correspondent à la face extérieure de la carte de départ et au domaine intérieur:

. sm + sc étant le nombre de sommets de C'.

Par ailleurs, l'inégalité:
$$a_j \ge 2$$
 pout tout j entraîne: $\sum_{1 \le j \le k} a_j \ge 2k$ (2)

* Par ailleurs, l'inégalité :
$$a_j \ge 2$$
 pout tout j entraîne : $\sum_{1 \le j \le k} a_j \ge 2k$ (2)
* On a l'égalité évidente sur le polygone P : $a_P = sc + \sum_{S_i \in \mathcal{S}} o(s_i)$ (3)

Si sm = 1 (un seul sommet multiple s), on déduit de (3):
$$a_P = sc + o(s)$$
 (3')

* De l'inégalité (0) et de l'égalité (3) on déduit l'inégalité :
$$a_P \ge sc + 2 sm$$
 (4)

* De tout sommet multiple sont issus au moins 4 brins de P* et d'un sommet commun sont issus exactement 2 brins de P* et 2 brins non sur P* obtenus par l'opération du A.2. pour la sous-carte extérieure incidente en ce sommet, donc : de tout sommet de C' sont issus au moins 4 brins, et l'on a :

$$2 \text{ sm} + 2 \text{ sc} \le \sum_{1 \le j \le k} a_j + a_p$$
 (5)

Si sm = 0, (5) est une égalité (l'inégalité est due aux sommets multiples) : $2sc=\sum_{1 \le i \le k} a_i + a_i$ (5')

* On déduit de (1), (2) et (4):
$$2 k + 2 sm + sc \le sm + sc + k + 2$$
, soit: $k \le 2 - sm$ (6)

* On déduit de (1), (4) et (2):
$$2k \le \sum_{1 \le i \le k} a_i \le k + 2 - sm$$
 (7)

* On déduit de (1) et (5) que :
$$sm + sc \le k + 2$$
, soit : $sc \le k + 2 - sm$ (8)

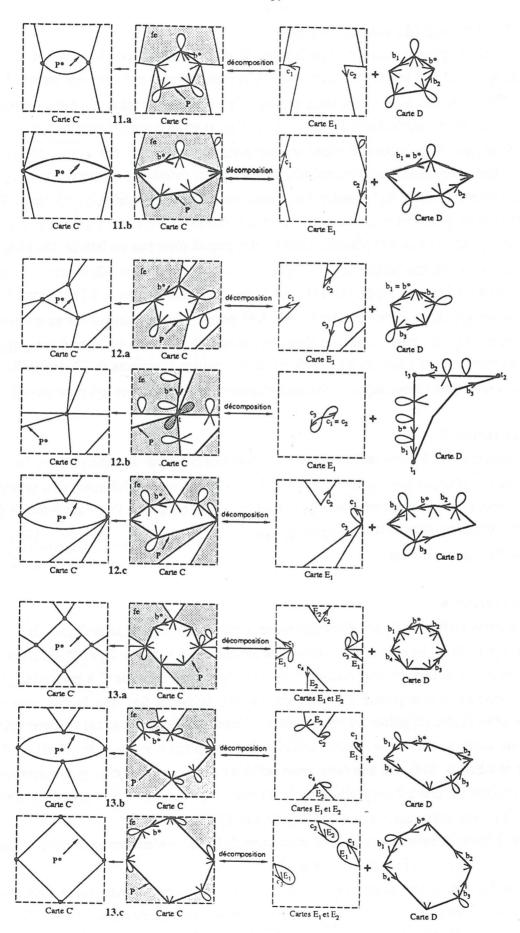
* D'après (1), (2) et (8) on déduit que : $a_P \le 4$

Par ailleurs, il y a au moins un sommet multiple, ou s'il n'y a pas de sommet multiple, au moins deux sommets communs, sinon nous n'aurions pas de carte de genre 1, donc : $a_P \ge 2$.

Soit:
$$2 \le a_P \le 4$$
.

D. Classification:

 $\underline{sm = 2}$: (4) \Rightarrow sc = 0 et (6) \Rightarrow k = 0 (cf Fig. 13.c) (cas limite de la Fig. 13.a)



Figures 11-12-13

E. Termes de l'équation (3) associés :

Trois cas sont apparus dans la classification du paragraphe D. respectivement associés à un polygone P^* de $a_P = 2$, 3 et 4 arêtes. Ces trois cas sont respectivement associés aux termes 5, 6 et 7 de l'équation (3). Dans chacun de ces cas, on a prouvé que la carte d'origine C se décompose en une (resp. deux) sous-carte(s) extérieure(s) E_1 (resp. E_1 et E_2), et en la carte D (pointée par le même brin que C^*) constituée par le polygone P (dont les sommets multiples ont été déconnectés), les brins intérieurs et les sous-cartes extérieures contractibles en un point, autres que E_1 (resp. E_1 et E_2).

Pour déterminer le terme de l'équation qui représente la série génératrice de ces cartes, il faut :

1). Déterminer la série génératrice des cartes D dont le polygone P* est associé à i = 2, 3 ou 4 arêtes. D est construite à partir d'une carte planaire dont le brin pointé n'est pas un isthme (de série $Y_{|X|} = R_0$, Corollaire 1 § II.2), en pointant le dernier brin b_j de chacune des sous-suites de brins de P ayant donné lieu aux $a_P = i$ arêtes de P* et en supprimant la sous-carte extérieure incidente à l'extrémité finale de b_j ($1 \le j \le i$). Ces i pointages d'une carte planaire dont le brin pointé n'est pas un isthme se traduisent par la dérivation d'ordre i (1 / i! exprime que ce choix est sans ordre, l'ordre $b_1,...,b_i$ étant i = mposé par la rencontre de ces brins lors du parcours à partir de b* de la frontière extérieure de C): $[\partial^i Y/\partial R_0^i]_{|X=R_0}$ / i!

2). Déterminer la série génératrice des sous-cartes extérieures E_1 (resp. E_1 et E_2) pour $a_P = 2$, 3 et 4.

$a_P = 2$: terme 5

Pour reconstruire C à partir de E_1 et D, il faut doublement pointer la carte planaire E_1 (cf Fig. 11: cette carte est rendue planaire par l'opération décrite Fig. 4) dont 2 faces différentes sont pointées par les deux premiers brins c_1 et c_2 rencontrés après b_1 et b_2 dans le parcours de la face extérieure de C. La série génératrice de ces cartes est $D(u_1,u_2,z)_{\|u_1=u_2=u\|}$ et le terme associé à $a_P=2$ est donc : $D(u_1,u_2,z)_{\|u_1=u_2=u\|} \frac{1}{2!} \left[\frac{\partial^2 Y}{\partial R_0^2}\right]_{\|X=R_0}$

$a_P = 3$: terme 6

La sous-carte extérieure E_1 est ici incidente aux sommets communs ou multiples de D, extrémités des $a_P=3$ brins pointés b_1 , b_2 et b_3 . Pour pouvoir reconstruire C à partir de E_1 et D, il faut pointer dans E_1 le premier brin c_i que l'on rencontre en parcourant la face extérieure de C à partir de b_i $(1 \le i \le 3)$ sauf si l'on rencontre le brin pointé b^* de P, c'est-à-dire si l'on a fini tout le parcours de la face extérieure. De cette façon, on pointe au maximum trois brins sur E_1 . Dans le cas où deux brins pointés sur E_1 sont confondus ou ont même sommet initial, cela implique que les deux sommets de P initiaux à ces brins sont confondus. Si E_1 n'a que deux brins pointés c_1 et c_2 , cela signifie que le sommet final du troisième brin pointé b_3 de P est confondu avec le sommet final du second brin pointé b_2 . Ces deux cas correspondent à un sommet multiple de P (cf Fig. 12.b et 12.c).

La série génératrice des cartes E_1 dont trois brins de la face extérieure au maximum sont pointés sans ordre est : $R_0 + 2u \cdot \partial R_0 / \partial u + u^2 \cdot (\partial^2 R_0 / \partial u^2) / 2!$

Le terme R_0 correspond au cas où la carte E_1 est réduite à un sommet (aucun brin n'est pointé : constante 1 dans R_0) ou au cas où un seul brin est pointé. Le premier des deux termes dérivés d'ordre un correspond au cas où deux brins sont pointés. Le deuxième terme dérivé d'ordre un correspond au

cas où trois brins sort pointés, les brins pointés b2 et b3 étant confondus. Le dernier terme correspond au cas où trois brins sont pointés, les brins pointés b2 et b3 étant distincts.

On obtient donc la série génératrice finale constituant le terme 6 de l'équation (3) :

$$\left[R_0 + 2u \frac{\partial R_0}{\partial u} + \frac{1}{2!} \left(u^2 \frac{\partial^2 R_0}{\partial u^2}\right)\right] \frac{1}{3!} \left[\frac{\partial^3 Y}{\partial R_0^3}\right]_{|X = R_0}$$

ap = 4 : terme 7

La carte C est décomposée en trois cartes E₁, E₂ et D, E₁ (resp. E₂) étant planaire et incidente en les extrémités finales des brins b₁ et b₃ (resp. b₂ et b₄) de D. Pour pouvoir reconstruire C, il faut pointer les premiers brins c1 et c3 de E1 (resp. c2 et c4 de E2) que l'on rencontre après b1 et b3 (resp. b₂ et b₄) en parcourant la face extérieure de C, sauf si l'on rencontre le brin pointé b* de P. De cette façon, on pointe au maximum deux brins sur E₁ (resp. E₂). Dans le cas où les deux brins pointés sur Ei sont confondus ou ont même sommet initial, cela implique que les deux sommets de P initiaux aux brins associés sont confondus. Si Ei n'a qu'un brin pointé, cela signifie également que les deux sommets associés de P sont confondus : ce sont les cas particuliers (cf Fig. 13,b et c).

La série génératrice des cartes E_i dont deux brins de la face extérieure au maximum sont pointés sans ordre est: $R_0 + u \cdot \partial R_0 / \partial u$.

Le terme R₀ correspond au cas où la carte E_i est réduite à un sommet (aucun brin n'est pointé : constante 1 dans R₀) ou au cas où un seul brin est pointé. Le terme dérivé d'ordre un correspond au cas où deux brins sont pointés.

On obtient la série génératrice finale constituant le terme 7 de (3), $\left[R_0 + u \frac{\partial R_0}{\partial u} \right]^2 \frac{1}{4!} \left| \frac{\partial^4 Y}{\partial R_0^4} \right|_{X = R_0}$

$$\left[R_0 + u \frac{\partial R_0}{\partial u}\right]^2 \frac{1}{4!} \left[\frac{\partial^4 Y}{\partial R_0^4}\right]_{|X = R_0}$$

2.2. Le polygone P ne partage pas le tore en 2 domaines ouverts connexes: "Il fait le tour de l'un des trous du tore" terme 8

Si l'on supprime le polygone P de la carte C, l'ensemble des brins incidents à la face extérieure se partage en un certain nombre de cartes associées aux composantes connexes. Toutes ces cartes ne sont pas contractibles en un point sur le tore : en effet, si c'était le cas, la face extérieure ne serait simplement connexe, que si le polygone P avait un sommet multiple d'ordre 3 (Fig. 7.b) ou 2 sommets multiples d'ordre 2 (Fig. 7.c) et donc délimiterait (cf Prop. 2, 3.c) 2 domaines : contradiction.

Il existe donc une carte D formée de brins non sur P et non contractible en un point sur le tore (Fig. 15).

Cette carte D n'a qu'un sommet commun (s sur la Fig. 15) avec P.

En effet, si D en avait un autre, ce second contact ne pourrait se situer ni sur la droite de P dans son sens de parcours, car les brins situés entre ces deux sommets sur P ne seraient plus extérieurs (cf Fig. 14.a), ni sur sa gauche, par définition de P: un contact sur la gauche de P (cf Fig. 14.b) conduit à un autre polygone P que l'on reconnait facilement associé à la figure 7.c (deux sommets multiples d'ordre 2).

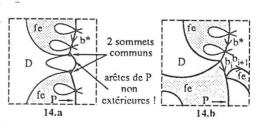
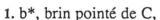


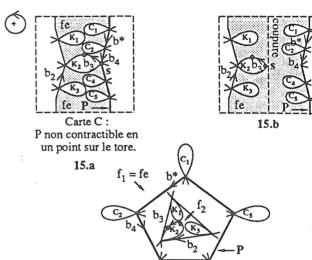
Figure 14

P faisant le tour d'un trou du tore, D fait nécessairement le tour du même trou (évident). Par suite, D est nécessairement unique : en effet, D et P délimitent un ouvert du tore contenant la face extérieure simplement connexe, toute autre carte issue de la suppression de P (cartes C_i, Fig. 15) est incluse dans ce domaine simplement connexe et est donc contractible en un point.

Décomposition de C:

Si l'on détache la carte D au point s selon la figure 15.b, on obtient en coupant le tore et en collant deux disques sur les ouvertures ainsi pratiquées, une carte planaire (cf Fig. 15.c) pointée de la façon suivante :





Carte planaire associée
15.c

Figure 15: P fait le tour d'un trou du tore (les parties non grisées représentent des cartes quelconques sur le tore).

- 2. b₄, brin de P dont l'extrémité finale s n'est incidente à aucune carte plongée dans la face extérieure (selon la figure 1),
- 3. la frontière de la carte D est, à présent (après l'ajout d'un disque), frontière d'une face f_2 et es du type présenté figure 2. On définit b_2 et b_3 sur K_2 pour garder la trace du raccrochement en s.

On a donc une bijection entre les cartes C dont le polygone fait le tour d'un trou du tore et les cartes planaires dont deux faces n'ayant pas de sommet commun sont pointées, ayant de plus une sous-carte extérieure manquante sur la première face et un brin pointé sur la sous-carte extérieure incidente à l'extrémité finale du brin pointé de la seconde face.

Les cartes planaires ayant deux faces pointées différentes, sans sommet commun, sont obtenue en réouvrant les deux sommets pointés d'une carte planaire doublement pointée et ont donc pour série génératrice (u_1 et u_2 décomptant les degrés respectifs de f_1 et f_2):

$$\frac{u_1zR_0(u_1,z)}{1-u_1zR_0(u_1,z)}\frac{u_2zR_0(u_2,z)}{1-u_2zR_0(u_2,z)}D\left(\frac{1}{1-u_1zR_0(u_1,z)}\,,\frac{1}{1-u_2zR_0(u_2,z)}\,,z\right)$$

.Choisir le brin b_3 sur la carte générique (Fig. 1) associée à b_2 revient à appliquer l'opérateur $u_2\partial(.)/\partial u_2$ au numérateur de la seconde fraction de cette série :

$$\frac{u_1zR_0(u_1,z)}{1-u_1zR_0(u_1,z)} \frac{u_2\frac{\partial}{\partial u_2}(u_2zR_0(u_2,z))}{1-u_2zR_0(u_2,z)} D\left(\frac{1}{1-u_1zR_0(u_1,z)}, \frac{1}{1-u_2zR_0(u_2,z)}, z\right)$$

. Choisir et supprimer une des sous-cartes extérieures de f_1 revient à dériver par rapport à R_0 (u_1,z):

$$\frac{\partial}{\partial R_0(u_1,z)} \left[\frac{u_1 z R_0(u_1,z)}{1 - u_1 z R_0(u_1,z)} \frac{u_2}{1 - u_2 z R_0(u_2,z)} \frac{\partial}{\partial u_2} \left(u_2 z R_0(u_2,z) \right) D\left(\frac{1}{1 - u_1 z R_0(u_1,z)} , \frac{1}{1 - u_2 z R_0(u_2,z)} , z \right) \right]_{\mid u_1 = u_2 = u}$$

L'identification de u₁ et u₂ en une même variable u exprime que dans le retour inverse de la carte anaire (cf Fig. 15.c) à la carte C (cf Fig. 15.a), les brins des 2 faces f₁ et f₂ se regroupent en la face térieure de la carte C.

Le terme 8 présenté équation (3) est différent et d'expression plus simple que celui obtenu -dessus. Il est issu d'une décomposition légèrement différente : un calcul formel relativement simple ontre que ces deux formules sont équivalentes.

CONCLUSION

L'obtention de l'équation (3) du Théorème 2, a mis en évidence 8 classes particulières de cartes sintées de genre 1. A l'aide du logiciel de calcul formel MAPLE, nous avons déterminé le nombre de rtes de chacune de ces 8 classes en fonction du degré de la face extérieure (degré de u) et du nombre ırêtes de la carte (degré de z, majoré par 10), cf [AJ91]. On peut constater que pour chaque valeur du mbre d'arêtes, le nombre total de cartes de genre 1 est celui donné par Walsh et Lehman (cf [WL72]). tons enfin d'autres travaux sur ce sujet : ceux de Bender et al (cf [BC87a,b]) permettent par des lculs analytiques d'étudier l'énumération des cartes non planaires et ceux de Brown (cf [Br66]) qui udient les cartes sur le plan projectif.

REFERENCES

[AJ91] D. ARQUES & I. JACQUES "Classification des cartes pointées de genre un et relation

nctionnelle associée", Rapport de recherche, Université de Franche-Comté.

[Ar85a] D. ARQUES, "Une relation fonctionnelle nouvelle sur les cartes planaires pointées", urnal of Combinatorial Theory, Series B, Vol. 39, No 1, Août 1985, 27-42.

[Ar85b] D. ARQUES, "Relations fonctionnelles et dénombrement des hypercartes planaires pintées", Lecture Notes in Mathematics, Vol. 1234, Springer-Verlag, 5-26.

[Ar87a] D. ARQUES, "Relations fonctionnelles et dénombrement des cartes pointées sur le re" Journal of Combinatorial Theory, Series B, Vol. 42, No 3, Décembre 1087, 252, 274

re", Journal of Combinatorial Theory, Series B, Vol. 43, No 3, Décembre 1987, 253-274.

[Ar87b] D. ARQUES, "Hypercartes pointées sur le tore : décompositions et dénombrements", urnal of Combinatorial Theory, Series B, Vol. 43, No 3, Décembre 1987, 275-286. [BC87a] E. A. BENDER, E. R. CANFIELD & R. W. ROBINSON, "The enumeration of maps

the torus and the projective plane", 1987, Submitted to Canadian Journal of Mathematical.
[BC87b] E. A. BENDER, E. R. CANFIELD & R. W. ROBINSON, "The asymptotic number

rooted maps on a surface", 1987, Accepted by Journal of Combinatorial Theory, Series A. [Br66] W. G. BROWN, "On the enumeration of non-planar maps", Mem. Amer. Math. Soc.,

' 65, 1966, 1-42.

[Co75] R. CORI, "Un code pour les graphes planaires et ses applications", Astérisque, Vol. 27, ciété Mathématique de France, 1975.

[Tu68] W. T. TUTTE, "On the enumeration of planar maps", Bull. Amer. Math. Soc., Vol. 74, 68, 64-74.

[WL72] T. R. S. WALSH & A. B. LEHMAN, "Counting Rooted Maps by Genus I", Journal Combinatorial Theory, Series B, Vol. 13, 1972, 192-218.