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Abstract

The purpose of this paper is two-fold. First we aim to unify previous work by the first
two authors, A. Garsia, and C. Reutenauer (see [1], [2], [4], [3] and [9]) on the structure of the

descent algebras of the Coxeter groups of type 4, and B.. But we shall also extend these results
to the descent algebra of an arbitrary finite Coxeter group w. The descent algebra, introduced

by Solomon in [13], is a subalgebra of the group algebra of w. It is closely related to the subring

of the Burnside ring B(w) spanned by the permutation representations w/w,, where the w, are
the parabolic subgroups of w. Specifically, our purpose is to lift a basis of primitive idempotents
of the parabolic Burnside algebra to a basis of idempotents of the descent algebra.

INTRODUCTION

Let (W, S) be a finite Coxeter system. That is to say, W is a finite group generated by a set S subject to the
fining relations
(sr)™r =1  foralls,r €S,

aere the m,, are positive integers and m,, =1 for alls € S.
As is well known, W is faithfully represented in the orthogonal group of an inner product space V which has
basis I = { a; | s € S} in bijective correspondence with S. The inner product is given by

(s, ar) = — cos(m/my,),

id the action of W by
s(v) = v —2(a,,v)a,

rall 7, s € S and v € V. Thus s acts as the reflection in the hyperplane orthogonal to a,, and as a consequence
is called the reflection representation of W. One easily checks that for all s,r € S we have o, = w(a;,) in V if
id only if » = wsw~?! in W.

We call the set ® = {w(a) | w € W, € I1} the root system of W, and II the set of fundamental roots.
is well known (see [6]) that & can be decomposed as ® = ®* W &, where every element of ®* (resp. ®~) is
linear combination of fundamental roots with coefficients all non-negative (resp. all non-positive). Moreover, if
€ W and [(w) denotes the length of a minimal expression for w in terms of elements of S, then £(w) equals the
rdinality of the set N(w), where =
Nw)={a€d* |w(a)e ® }.
ote that £(vw) = £(v) + {(w) if and only if N(vw) = w=}(N(v)) W N(w).

For each J C II the standard parabolic subgroup W, is the subgroup of W generated by

S,={s€S|a, €J}.
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Then (W,, S,) is also a Coxeter system. If V, is the subspace of V' spanned by J, then the W-action on V yields
a W,-action on V;,, which can be identified with the reflection representation of W,. The root system of W, is
®, =®NV,; and we write 1 for ®* NV, and &5 for &~ N V,. It is easily shown that N(w) C &7 if and only if
w e W,.

In this paper we study the descent algebra (or Solomon algebra) T(W) of a Coxeter group W. If w € W, then
the descent set of w is defined to be

D(w)=Nw)NMI={ac€ll |w(a)e d~}.
In terms of the generating set S this corresponds to {s € S | L(ws) < L(w)}. If J CI, let
Xy={weW|Dw)NJ=0}={weW|wlJ)C ot}
and let

Define (W) to be the subspace of Q(W) spanned by all such elements z,.

It has been shown by Solomon [13] that £(W) is a subalgebra of Q(W). More precisely, Solomon has shown
that

T,Tp = Z QyrrTe, (1'1)
LCK
where

ae={weEX; NXx |wl(J)NK =L}

In Section 2 we shall prove these facts using techniques that will be developed further in later sections. It is easily
shown (Solomon [13]) that the z x’s are linearly independent; thus they form a basis of S(W).

In [9] A. Garsia and C. Reutenauer have given a decomposition of the multiplicative structure of the descent
algebra of the symmetric group (the Coxeter group of type A;,). This decomposition exploits the action of the
symmetric group on the free Lie algebra in a manner reminiscent of the Poincaré-Birkoff-Witt Theorem. In [1] and
[4] we showed that a similar decomposition, as well as related results, also holds for the hyperoctahedral group
(type Bpn). The object of this paper, and ongoing work, is to extend these results to the descent algebra of any
finite Coxeter group.

For a general descent algebra ©(W) we shall exhibit a new basis consisting of elements ey, K C II, defined by
€x = E ﬁf\'l’u
LCK

for some constants 8%, such that each e is a scalar multiple of an idempotent, and 3 xcnéx = 1. Furthermore, for
all J, M C II, when e,e,, is expressed as a linear combination of the e xS, the only non-zero coefficients correspond
to subsets K of M that are equivalent to J, in the sense that J = w(K) for some w € W. As a consequence we
obtain a set of idempotents Ex = Y, x €x indexed by equivalence classes A of subsets of II, such that

0 ifA ,
E)‘E = :léﬂ (1'2)
Ex ifA=p,

and ), Ex = 1. In fact, the E)’s form a decomposition of the identity into primitive idempotents. Furthermore,
the Ey’s induce a decomposition of the action of S(W) on Q(W) by left multiplication:

Q(W) = P H,
A

where I{y = E) - Q(1V). From the formula for e,ex given in Section 7 it can be seen that e, — e, is in the radical
of S(W) whenever J is equivalent to i, and therefore

éim(\/E(W)) = 2151 - |A],
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where A is the set of equivalence classes of subsets of II.

These constructions have already been carried through for all indecomposable finite Coxeter groups of type
An (see [9]), and of type By (see [1] and [4]). Part of the study of the descent algebra has been carried through
with extensive use of the computer algebra system Maple [2].

2. THE SOLOMON ALGEBRA

We start by proving some basic facts concerning the elements z, defined in Section 1. Proofs of results we
assume can be found in §2.7 of Carter [6]. '

If J C 11, then each element of W is uniquely expressible in the form du with d € X, and u € W,, and here
we have £(du) = {(d) + £(u). Thus X, is a set of representatives of the cosets wW, in W. Likewise, if K C J C 1I,
then X, N1V, is a set of representatives of the cosets wi¥, in W,. In this situation we define

r, = E w
weEW NXyg

and note that £ = z,. The next two lemmas provide analogues of induction and restriction for Solomon algebras.
The connection with induction and restriction of permutation characters will be given in detail in Section 4.

Lemma 2.1. IfK CJCII, then X, = X,(W, N Xx) and thus zx = z,z}.

Proof. 1fd € X, and w € W, N Xy, then w(K) C &%, whence dw(K) C d(®+) C ®*. It follows that dw € Xx
and this shows that :
{dw|deX,, we W,NXx}C Xx.

Comparing cardinalities we see that equality holds; and, on taking sums, we have z, = Z,T5. =

Lemma 2.2. Forall K CS
cXe= [ W0 Xonao)d,

dEX K
where X ;;c = X7 N Xy ; and thus
= J
Tr = Z thd(K)d'
de€EX sk

Proof. First note that if d € X,x and u € W, N Xsneck), then d € X_,‘1 and u € W,; so an element of W can
arise as a product ud in at most one way. Let w € X, and write w = ud with d € X3! and v € W,. Since
£(ud) = £(u) + £(d) we have N(d) C N(ud) = N(w), and so d € X,. Thus d € X,x, and furthermore

u(J Nd(K)) C ud(K) = w(K) C &+,

so that u € W, N Xsndk)- It remains to prove that ud € X, whenever d € X, and u € W; N X nax). Since a
fundamental root cannot be nontrivially expressed as a positive linear combination of positive roots we see that
Knd=}(®}) = K nd=!(J). But d(K) C &+ (since d € X,) and so d(K) C (®+ \ @F) U (J Nd(K)). It follows
that ud(K') C u(®* \ @) Uu(J Nd(K)) C &+, and therefore ud € Xy, as required. =

Lemma 2.2 shows that each element of W is uniquely expressible in the form udw with w € Wy, d € X,
and u € W, N X;n4x). Moreover, in this situation £(udw) = £(u) + £(d) + £(w). It follows readily that each double
coset W,wiVy contains a unique d € X,x, and that W, NdWyd~! = Winax)-

For J, K C Tl we write J ~ K whenever w(J) = K for some w € W (that is, J and K are equivalent) and
J =% K whenever J is equivalent to a subset of K. The next lemma shows that this equivalence relation is the one
used by Solomon in [13].
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Lemma 2.3. IfJ, K CI, then J ~ K if and only if W, and Wy, are conjugate, and J X K if and only if
is conjugate to a subgroup of Wy.

Proof. Suppose that w € W satisfies w™!W,w C Wy. If d is the shortest element in W,wWy, then d-'W,dCV
and therefore

Winaxy = W, NdWxd™! = W,.
Thus J Nd(K) = J and therefore d~!(J) C K. All assertions of the lemma now follow.

Lemma 2.4. IfJ CIl andd e W withd~1(J) C1I, then X,d = X,-1(,.
Proof. For w € X,-1(,, it is clear that wd~! € X,, and conversely for w € X, that wd € X,-1,,.

Theorem 2.5. Forall J,K C1I

;T = E AT

LCK
Proof .
T,T =T, E Zinaxyd by Lemma 2.2
deEX sk
= E T sra)d by Lemma 2.1
deX sk ‘
= Z T4-1(nnk by Lemma 2.4
deX sk

= E ATy
e .

Obviously @,x, = 0 when L € K. Thus the theorem is proved.

Proposition 2.6. Let a],, denote the structure constants of the descent algebra £(W,) corresponding to

z]. basis. If L, K C II, then
Tplp = Z(Z aKJMa):.’”,p)xP,

. PCL MCJ
for all J C II such that L C J. Thus the structure constants satisfy the identities
aKLP = Z aKJMa}.:pry
MCJ

for all J containing L.

Proof. We have
Tl = TxTHZ]

o E: 7
= ( aKJMxM):CL

MCJ -

—— J J
= E QresmT 3 TH,T;
MCJ

_— § : E : J J
14 Arm T 5 ( A pT P)

MCJ PCL

_ 7
= Z A smApg pTp-
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This proves the first assertion of the theorem, and comparison with

TrZT, = E :aKLPzP
PCL

completes the proof. =

3. REDUCTION TO INDECOMPOSABLE FINITE COXETER GROUPS

We shall now give a decomposition of the descent algebra of a product of two Coxeter groups. For a given
Coxeter system (W, S), let Wy denote the subgroup generated by a subset K of S. This subgroup is also a Coxeter

group.

One has the following

Lemma 3.1. Let J and K be subsets of S such that all elements of J commute with all elements of K , then

zZUK = xinﬂfnx (3'2)

Proof. We might as well suppose that J UK = S since this does not change the argument. Hence we now want
to show that z, = 2], ,z%,,.. Given w € X,, there exists a unique decomposition w = w,wy, with w, € W, and
wy € Wg. It follows immediately that

D(w,)=D(w)NJ, and D(wx)= D(w)NK. (3.3)

Whence w, € X, "W, and w, € X, N Wy. Moreover every pair (w,, wx) satisfying (3.3) gives rise to a unique w
in X,. This proves the lemma. B

It follows that

Proposition 3.4. If S =S, US,, where all elements of S; commute with all elements of S,, then the function
P E(st) ® E(Wsz):-’z(WS))

defined as
P(a®p) = ap, (3.5)

is an isomorphism of algebras.

Proof. Since the product of two basis elements in £(Ws,) ® £(Ws,) is by definition

(a:l\'x ® 1'1\',)(1'1,, ® zbz) = (1?;\-11‘1_‘) ® (‘t’\’zzf-z)’
we shall prove that ¢ is a morphism if we show that

S1 252 251952 — 2S1 »S1 nS2 nS2
K,xx,xl.,zl., - xkiznlzx,x}\',' (*)

z

But every element of 1¥s, commutes with all elements of Ws,, thus

s 1w 'S S
TRT = TLNTR
and () follows. Morover, ¢ is clearly bijective. This proves the proposition. ]

Thus we can reduce our discussion to indecomposable finite Coxeter groups.
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4. THE PARABOLIC BURNSIDE RING

For each J C II we have a permutation representation of 1V on the set W/ w, of cosets W,w. The orbits of W
on VV/WJ X W'/n,rK have representatives of the form (W,d, W), where d € X, ; and the stabilizer of (W,d, Wy
in Wis d"‘W_,dﬁ Wy = Wd—l(J)nK. Thus

VV/W’J X W/WK = Z a'”\'LVV/I‘VL’ (4,1
LCK

where the a,,,’s are defined as in Section 1. This proves that the representations W/ W, span a subring PB(W
of the Burnside ring of W. We call this the parabolic Burnside ring of W. On comparing (4.1) and (1.1) we se:
that there is a homomorphism 8 : £(1W) — PB(W). Note that 6 is not in general an isomorphism, because W/,
and W/y  represent the same element of 'PB(VV ) whenever J ~ K. '

A subgroup of TV is said to be parabolic if it is conjugate to a standard parabolic subgroup W, for some J C II
For each v € V, the stabilizer in W of v,

Staby (v) = {w e W |w(v) =v},
is a parabolic subgroup. Indeed, the set
C={u€eV|(xu)>0forallacll}

is a fundamental domain for the action of W, and we may choose t € W such that ¢(v) € C. Then (see Steinber,
[14)) _

t Staby, (v)t~! = Stabw(t(v)) =Ww,,
where J = {a € II | (a,1(v)) =0}.

Since W, stabilizes J* it follows that w € W, stablhzes v € V if and only if it stabilizes the orthogone
projection of v in V,. Hence Stabw,(v) is a parabolic subgroup of W,. It follows by induction that the pointwis
stabilizer, Stab,,(P), of an arbitrary subset P of V, is a parabolic subgroup of W. Since Stab,, (P U Q) =
Staby,(P) N Stab,, (Q) we see that the intersection of two parabolic subgroups is again parabolic; this also follow
from the fact, mentioned in Section 2, that W, N dWxd~! = W,nsx, whenever d € X ,«.

If g is an arbitrary orthogonal transformation on V, define .

Vigl={(1-9)(v) |lveV}
and
Cv(g)={veV]gv)=v}

and let 7(g) = dim[V, g]. Tt is easily checked that [V, g] is the orthogonal complement of Cy(g) in V. Furthermore
if 0 # v € V and r is the reflection in the hyperplane orthogonal to v, then

T(rg)z{T(g)'*'l ifvé[V,g]
m(g)—1 ifvel[V,g]

Thus 7(g) is the length of a minimal expression for g as a product of reflections. In [6] Carter proves that ever,
element w € W can be written as a product of 7(w) reflections in W. (We include a proof in Lemma 4.3 below.)
Following Solomon [13], for w € W, we define

Aw)={yeW|VycViul}={yeW|Cv(w) CCv(v)}.

Equivalently, A(w) = Staby (Cy(w)). In particular, A(w) is a parabolic subgroup of W. We say that w is of typ
J if A(w) is conjugate to W,. We shall sometimes say that w is of type A, where ) is the equivalence class of J
since (by Lemma 2.3) J is determined by w only to within equivalence. It is clear that A(fwt~!) = tA(w)t~?, an
hence conjugate elements have the same type.

Observe that the maps P +— Stabw(P) and H — Cy(H), where H is a subgroup of W, form a Galoi
connection between the partially ordered set of subspaces of V and the partially ordered set of subgroups of W, i

(4.2
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the sense that P C Cy (H) if and only if H C Stab,,(P). The parabolic subgroups are the closed subgroups of W
for this Galois connection; that is, H is parabolic if and only if H = Staby (Cv(H)). Thus if H is any subgroup
of W, then Stab,, (Cyv(H)) is the smallest parabolic subgroup of W containing H. In particular, if w € W, then
A(w) is the smallest parabolic subgroup containing w, and so w is of type J if and only if J C II is minimal subject
to W, containing a conjugate of w.

Lemma 4.3. Let J C II and suppose that w € W is of type J. Then
(1) if K C 1T and Wy contains a conjugate of w, then J X K,
(2) m(w) =1J,

(3) w can be written as a product of |J| reflections in W.

Proof. Replacing w by a conjugate of itself, we may assume that w € ;. Since w has type J it is not contained
in any proper parabolic subgroup of W,. If t € W and t~'wt € Wy, then w € W, NtWyt~!, a parabolic subgroup
of W,. It follows that W, NtW,t~! = W,. Now Lemma 2.3 gives J < K, proving (1). The generators of W, all fix
J+ pointwise, and so J* C Cy(w). Taking orthogonal complements gives [V, w] C V. If [V,w] # V,, we deduce
that V, contains a nonzero v € Cyv(w), and hence that w € Stabw,(v), a proper parabolic subgroup of W,. This
is a contradiction, and therefore [V, w] = V,. Thus

7(w) = dim[V,w] = dimV, = |J|,

proving (2).

Since [V, w] = V, it follows from (4.2) above that 7(sw) = 7(w) — 1 whenever s € S,. Hence sw has type K
for some K C Il with |K| = |J|— 1. Arguing by induction we deduce that sw is a product of |J| — 1 reflections in
W, and therefore w = s(sw) is a product of |J| reflections. =

For J C S, let ¢, be the product of the reflections s, s € S,, taken in some fixed order. The conjugacy class of
¢, in W, is independent of the order, and the elements of this class are called the Cozeter elements of W,. Since
J is & linearly independent set it is clear that [V,¢,] = V;, and so ¢, has type J. We note as a consequence that
the parabolic subgroups of W are precisely the subgroups A(w).

Proposition 4.4. IfJ, K C1I, then ¢, is conjugate to cx if and only if J ~ K.

Proof. 1If ¢, and cy are conjugate, then they are of the same type—that is, J ~ K. Conversely, if J = d(X) for
some d € W, then dS,d~! = Sx, and so dc,d™!, being a product of the reflections in Sk, is conjugate to cx. u

Let ¢, = Indtzl 1, the character of W induced from the trivial character of W,. In other words, ¢, is the
character corresponding to the permutation representation W/ W,-

Theorem 4.5. The assignment W/ W, &= ¥ defines an isomorphism © from PB(W) to the ring of Q-linear
combinations of the ¢,. Thus we may identify PB(W) with this ring of class functions.

Proof. If J ~ K, the representations W /y; and W/yy  are equal in PB(W) and hence

v, =0(W/w, )=0(W/w,)=¢x-

This makes it legitimate to write ¢y instead of ¢, where A is the equivalence class of J. For each equivalence
class p choose an element c, of type u: for example, a Coxeter element. Since W, contains an element of type
K if and only if K < J it is clear that p(c,) # 0 if and only if 4 < A. For a suitable ordering of the rows and

columns, the matrix (<p;\(c,,)))\,” is upper triangular with non-zero diagonal entries. Therefore the ¢, are linearly
independent. ]

Induction and restriction of characters give rise to maps between PB(IV,) and PB(W). The permutation
representation W, /1Vy induced to PB(1V) is simply W/WK' By Lemma 2.1 the analogue of induction for the



- 60 -

Solomon algebras is left multiplication by z,. The restriction of W/ W, to PB(W,) is obtained by considering the
orbits of W, on the cosets Wyd. Thus

Rest(W/W,\.);‘ Z W’/Wmd(x)'
deEX  k

and the analogue of restriction for £(W) is given by Lemma 2.2. Combining these two observations we see that
Theorem 2.5 is the Solomon algebra analogue of the Mackey formula for the product of induced characters.

5. DIHEDRAL GROUPS

We shall now study in particular the descent algebra of dihedral groups W = I»(p), that is, Coxeter groups
with only two generators S = {s, r} satisfying
(sr)P =1.

The corresponding descent algebra is of (linear) dimension 4. Its generators are

Soir} =1
z{,}=1+r+sr+rsr+srsr+...
zipy=l4s+rs+srs+rsrs+...

:L‘g:E w.
w

The summation for z{s} (resp. z{(r}) is over the set of all w € W with only one reduced expression, this unique
expression must also end in r (resp. s). In order to simplify notation, we shall write z,, (resp. z,, z,) instead
of z(,,,} (resp. z(,), z{r}). The multiplication table for T(W) is easy to compute explicitly in this case. It is as
follows ¥

Tsr T Ty To
Lsr Tsr Ts Zr Ze
T, Zs 2z, + 2:1,—2-::0 %.‘tg pTy
z, zy 7] 2z, + E;—z:cg pTy
Ty ) pTy pTo 2pzy

Table 1, p EVEN

when p is even. Whereas for p odd it is

Typ T, z, T
Tor Tyr z, . z, Ty
T T, zs + %lxo z, + .&_,l:ta pPTy
T, T, Ty + L;—l:ra T, + ?;;-l-zo DT
To Zo pTy pZo 2pzy

Table 2, p oDD
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Using these tables, one can verify that for even p

1 1 p—1

€sr = Tyr — 5-’3: - ixr + 2 Zop
1
A %(:r, - 529)
‘ (5.1)
= 5(er = 520) |
er = 5(zr — 520
1,
€p = 217 8,

are idempotents such that exe, = 0, for all X, L distinct subsets of S = {s,r}. Since the equivalence classes of
subsets of II coincide in this case with subsets of II, we obtain a set of idempotents

Ex(sr) = €5
Exey = ¢s
Exry=er
E)‘(g) = é€p.

satisfying condition 1.2, moreover the sum of these idempotents is 1.

In the p odd case, the following are idempotents

= -l—x +p—1r
esr—zsr 22:: 2 T 2p 0
1
€ =23—°2-§L'0
- (5.2)
e,:z,-—-ixg
€p = 11.‘
fie= 217 0-

But there are now only three conjugacy classes of subsets of S: {{s,7}}, {{s},{r}} and {0}. The non trivial
products between two different e,’s are

eser =€, and ere; = €.
Hence we can set

Ex(sr) = €51

Ex¢y=Exgy = %(e, +er)

Exp) = eq.

These also satisfy condition 1.2 and sum to 1. In this case, the radical of the descent algebra is generated by the
ilpotent e, — e,..

In preparation for Section 7, we shall now reconsider part of this construction in the context of a general
Coxeter system (W, S). For two elements s and r of S, let us compute the product z,z,. A direct application of
1.1) gives

T,z = ajz, + [z, - (5.3)
vhere of = {w | w™! € z,, w € z,, w=isw = r}|. Observe that for any R = 3~ Ry,w in Q(W), one has
zg = zoR = (}°, Ry)zp. From Lemma 2.1 it follows that

i w
Sig=

2 4



= 6D =

since zy = 1+ . Thus we obtain

1 w
z,z, = al(z, — §z¢) + -Iq—lxo. (5.4)
Identity (5.4) suggests that we set for any Coxeter group
1 1
€s = ;:-(zs == 53'0):
for then e, is clearly an idempotent since
(zs — -;—xg)z =22 - 2z,29 + 2}

1
=aj(zs — -2-:cg).

Moreover a similar computation implies that
#

— s
€€y = —’e,.
g

Clearly if s and r are not conjugate, of = 0. But if they are conjugate then we maintain that of = cj. In fac
this results from the fact that both these quantities are equal to half the cardinality of the centralizer C(s)={we
W | w=lsw = s}. This last assertion results from the observation that for w € C(s), either w € X; 1N X, o
ws € X;71 N X, since evidently £(ws) = £(sw). Whence

e, if s and r are conjugate
esep =
0 otherwise.

From this we conclude that

Proposition 5.5. In any Coxeter group, for all s € S, the

1
EA(J):: lA(s)l Z €r,

) rex(s)
are idempotents, and if s and r are not conjugate, then
Exs)Exr) = 0.

We shall generalize this result to all descent algebras in Section 7.

6. IDEMPOTENTS IN THE PARABOLIC BURNSIDE RING

The Q-algebra PB(W) is isomorphic to an algebra of functions, and therefore it has a basis of idempoter
elements. Specifically, if we define

&Hr= Z UxpPu,
m
where the coefficient matrix (v»,) is the inverse of the matrix (¢a(cu)) which appears in the proof of Theorem 4.¢
then
0 ifrx#p
E(en) = 6.1
(RSN g sy " (

and it follows that &, is idempotent. The next theorem shows that (6.1) holds when ¢, is an arbitrary element ¢
type p. *
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Theorem 6.2. LetJ, K C I and let c € W be any element of type J. Then ¢x(c) = ax,;, the number of
d € Xk, such that d(J) C K.

Proof. Without loss of generality we may suppose that ¢ € W,. By Mackey’s formula, the restriction of Yx to
Wy is

Resw, (Indjy, 1) = Y Indjy’

a=1(k)ns
deXKy
But since c is not contained in any proper parabolic subgroup of W,, the character Indw:_l(x)m 1 vanishes on ¢

inless d~1(K)NJ = J, in which case it takes the value 1. =

For JCI,let N, ={weWwW | w(J) = J}. Then N, is the intersection of X ; and the normalizer of W,,

vhence |N,;| = a,,, is the index of W, in its normalizer.

For convenience we define ¢, = &x and v, = vy, whenever J € ) and K € p. For J C K C I, let £¥ be the
>rimitive idempotent of PB(Wk) that takes the value 1 on elements of type J relative to Wi.

The next two propositions describe the effect of the restriction and induction maps on these idempotents.

2roposition 6.3. Let J, K C I and let Jy, J,,

.-+, Jn be representatives of the Wy-equivalence classes of
wubsets of K which are W-equivalent to J. Then

h
Resw, &, = ij‘.

i=1

n particular, Resw, €, = 0 if J is not equivalent to any subset of K

’roposition 6.4. IfJ C K C I, then

W ek _ INJI
Bidg, €5 = IWKnN,lg"

'roof. Suppose at first that J = K a-,nd that ¢ € W, is an element of type J. Then A(c) = W, and therefore
~lcz € W, if and only if z is in the normalizer of W,. So (Ind}y, ,€1)(c) = |N,|. It is clear that Ind%, &7 vanishes

verywhere except at elements of type J, and therefore Ind% , &3 = IN,IE.
In general, we have

1 N
Indy, €¥ = Indll, (m Indy% ¢7) = IW,,(TJIAM&'

For the purposes of calculation, the following theorem is sometimes more useful than Theorem 6.2. The
1antities |V,|/ |Wi NN, | can be obtained from the tables in Howlett [10].

heorem 6.5. Let J X K C 1l and let Jy, J,, .-+, Jn be representatives of the Wy-equivalence classes of
bsets of K which are W-equivalent to J. If ¢ € W is of type J, then

Pr(c) = Zh: .-
- i=1 IWK n N""'.

0of. By definition, Y€K =1, where L runs through representatives of the Wx-eqivalence classes of subsets
K. Inducing to W and using Proposition 6.4 gives

o [N, |
pr= ZL: mfu
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Since §.(c) = 1 if and only if L ~ J; for some i, evaluation at ¢ completes the proof.

This theorem is also a consequence of the fact that |N,|/ |Wx AN, | is the number of d € Xk, such t
d(J) C K and d(J) is Wx-equivalent to J;. '

Let C(J) be the set of elements of type J and note that C(J) depends only on the equivalence class of J.

The main result of this section yields a remarkable formula for the coefficients v, in the case K = 0.

Theorem 6.6.  If my, my, ..., m, are the exponents of W, then
.. m
Vne = (-l)n L ML

Wi

Proof. If ¢ is the sign character of W, then by Frobenius reciprocity
1 J=0
(‘»01,5)':{0 J#0
and therefore vy = (€n,€). By definition of the inner product,

(Enre) = W[ 3 (=1)"¢n(w)

weW
= (=D)*lc(m)|/1w].

A well-known formula of Shephard and Todd [11] (see also Solomon [12]) states that
30 ) = (L myt)(1 4 mat) - (1 4+ mat).
weWw

Lemma 4.3 (2) shows that 7(w) = n if and only if w is of type II. Thus, mym;y---m, is the number of eleme
of type II in W. This completes the proof.

Corollary 6.7.  Let J C Il with |J| = k and let m;, my, ..., my be the exponents of W,. Then

Emimg .- -mg

vio = (SO R

where N, (W,) is the normalizer in W of W,.

Proof. To see this, apply Theorem 6.6 to W, and then use Proposition 6.4.

It is also interesting to observe that

WD vsu = lC(J)].

The proof is obtained by taking the inner product of ¢, = Y Vsupu with the trivial character and using
fact that (¢4, 1) =1 for all u. -

A similar calculation, but taking the inner product of £, with the sign character of W, induced to W give

c(J)nw,
2 Vonuns = <—1>""(|—5m“".
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7. ID=nPOTENTS IN THE SOLOMON ALGEBRA

The parabolic Burnside ring is commutative and semisimple and consequently it has a unique set of primitive
idempotents which sum to 1. These are the £, determined in the previous section. The descent algebra L(W) is
not semisimple but we have (W)/{/Z(W) ~ PB(W) and therefore we may find primitive idempotents of (W)
by lifting the &,. ’

We begin by defining certain constants p} forall K C J CII

pr = Hw € X, | w(K) C I} (7.1)
This implies that, for all K C II, u% = 1 and p¥ = |X«|. Moreover

Lemma 7.2. For K CJ C L CII we have

J - n
By = Z Puxyr-
weWLNX;

w(K)CL

Proof. Using the definit’on of K xys the above expression becomes the cardinatity of the set

L—lj {ve X, | vw(K)CI}.
weEWLNX,
w(K)CL

fve€EX, weW,NX,; and vw(K) C II, then w(K) C w(J) C &} and so w(K) C L. Thus by Lemma 2.2 this
set is

{we X, | wX)cC},

whose cardinality is p,. m
Lemma 7.3. IfK CJ andd(J)CII, then pil) = pi.

Proof. Lemma 2.4 states that w € X, is equivalent to wd/inX,, hence multiplication (on the right) by d
>stablishes a bijection between the scts {w € X, | w(K) C II} and {w € Xy, | wd(K) C I}. This proves the

emma. n
Now, for each J C II, define e’ € £(W,) recursively by
prel =1- E prake™. (7.4)
KcJ

By induction we have
zyeX € Z(W,).

Lemma 7.5. Ifv~!(J) CII, then e’v = ve* ™',

Proof. We argue by induction on |J|, the case J = @ being trivial. First observe that v=1W,v = W,-1(, and if
K CJand de€ W, N Xy, then

v~ ldv)v™(K) C v~ (@) C o,
. J

vhence v=1dv € Wo-1y N X -1(xy. Thus z}v = vx:::gg).
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Now suppose that J # 0. Then

prelv=v— E Wzt by (7.4)

KcJ

=v-— Z plzlver ) by induction
KcJ

-7 e "(J) v=1(K)
KcJ

Z py  DygyT ek by Lemma 7.3

v(K)cJ

= ulve””' O,

This proves the lemma.

Theorem 7.6. IfJ, M CII, then

z e’z = Z Inzne™,
NCM

where vy = [{v € X\ | v(N) = J }|.

Proof We argue by induction on |J|. If J = 0, it is straightforward to check that both sides of the equality reduc
to (u8)~|Xa|ze. Suppose that J # 0. Then by (7.4) and Lemma 2.1

przse’zy = 2,20 — E BrZxe™z,,.
KcJ
and by Lemma 2.2 we have
piz e’Th = 2,20 — E Bl zce® E T X ne(ary?-
® KcJ veEXKkMm
If KNnv(M K, then zeXzX = 0 by induction and therefore the expression becomes
’ Knv(M) Yy P
Pr2,€° Ty = 2,20 — Z Brzxe™ E .

KcJ vEX M
v=Y{(K)CM

By Lemma 7.5 and the fact that zxv = 2,1, this can be written as

o1
pizielzy =z,20 — E B 2 AR
KcJ vEX M

v (K)CM

Writing N = v~!(K), and rearranging, this becomes

piTe’Tyy =T ,20 — Z E /1",(”) zneN. (7.7
NCM vEX M -
v(N)cJ

In order to evaluate the inner sum we apply Lemma 2.2 to obtain

Z Powy = E Z Havny-

vEX teEXsm EWINX jae(ar)
v(N)CJ t(N)CJ ut(N)CII



Using Lemma 7.2 and 7.3 this last expression gives

z l‘:(N)= Z l‘{(?s;)(M)

vEX M t€EX M
v(N)CJ t(N)CT
P t=1(nHnm
= ). pyon
teXsm
NCJ

Writing P for t=1(J) N M and using the definition of a s, this last identity becomes

Z ”:(N) = E Z I

vEXM NCP teEXim
v(N)CJ t~Y(J)nM=P
= E aJMPI‘Z-
NCP

Now using Theorem 7.6 applied to W, we have

LT pr — Z _S_ #J(N)3N5N= Z ArmpTp — E E aJMPI‘:xNeN
NCM NCP

NCM veXp PCM
v(N)CJ
= Z Aysts | 1= E prale™
PCM NCP
=0 by (7.4).
Returning to (7.7) we find that
wslee= 3, 3 myene®,
NCM veXp
v(N)=J
whence )
zse’zi = 3 {0 € Xor | o(N) = T Hane",
NCM
as required. m

Let us write e, for z,e", and set p, = [{v € X, | v(K) = N }|. We further need the inverse (8%) of the
matrix (u). Notice that
z;= E Brex

KCJ
and also
. Ca— J
Bie= Y Hin
N~K
whence
> P, = e
J,N
J~P
Then -

Proposition 7.8. Forall J, M CII

s E : E: M N
€slm = IHN/‘LPJ €p.

PCM \PCNCM
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Proof. Simply write ex = Y ncpr Onzn and use the previous theorem. m

Notice that when J ~ K, this propsition implies that

1
= ———exk. 7.9
€€k |’\(1{)| €k ( )
This suggests that we should define
EA = Z €7,
JeA

for th
or then ex K€
E;\eM=

0  otherwise.
And now we have (as announced in (1.2))

(1) 1=3, B,
(2) EAE‘, = 6A”EA.

These E’s clearly correspond (through 6 : X(W) — PB(W)) to the primitive idempotents &, of PB(W). Moreover,
for each conjugacy class A and any choice of constants by, K € ), such that o ex bx =0, it follows from 7.9 that
Y xex bxex is in the radical of Z(W).
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