A Decomposition of the Descent Algebra of a Finite Coxeter Group

F. Bergeron ${ }^{1}$, N. Bergeron ${ }^{2}$, R. B. Howlett ${ }^{3}$ and D. E. Taylor ${ }^{3}$
(1) Dép. de Math. et Info., UQAM, C.P. 8888, Succ. A, Montréal H3C 3P8.
(2) Dept. of Math., Princeton Univ., Fine Hall, Washington Rd, Princeton, New Jersey, 08544-1000 USA.
(3) Dept. of Pure Math., Univ. of Sydney, NSW 2006, Australia.

Abstract

The purpose of this paper is two-fold. First we aim to unify previous work by the first two authors, A. Garsia, and C. Reutenauer (see [1], [2], [4], [3] and [9]) on the structure of the descent algebras of the Coxeter groups of type A_{n} and B_{n}. But we shall also extend these results to the descent algebra of an arbitrary finite Coxeter group w. The descent algebra, introduced by Solomon in [13], is a subalgebra of the group algebra of w. It is closely related to the subring of the Burnside ring $B(W)$ spanned by the permutation representations $W_{/} W_{J}$, where the w_{J} are the parabolic subgroups of W. Specifically, our purpose is to lift a basis of primitive idempotents of the parabolic Burnside algebra to a basis of idempotents of the descent algebra.

Introduction

Let (W, S) be a finite Coxeter system. That is to say, W is a finite group generated by a set S subject to the fining relations

$$
(s r)^{m_{s r}}=1 \quad \text { for all } s, r \in S,
$$

were the $m_{s r}$ are positive integers and $m_{s s}=1$ for all $s \in S$.
As is well known, W is faithfully represented in the orthogonal group of an inner product space V which has basis $\Pi=\left\{\alpha_{s} \mid s \in S\right\}$ in bijective correspondence with S. The inner product is given by

$$
\left(\alpha_{s}, \alpha_{r}\right)=-\cos \left(\pi / m_{s r}\right),
$$

id the action of W by

$$
s(v)=v-2\left(\alpha_{s}, v\right) \alpha_{s}
$$

r all $r, s \in S$ and $v \in V$. Thus s acts as the reflection in the hyperplane orthogonal to α_{s}, and as a consequence is called the reflection representation of W. One easily checks that for all $s, r \in S$ we have $\alpha_{r}= \pm w\left(\alpha_{s}\right)$ in V if id only if $r=w s w^{-1}$ in W.

We call the set $\Phi=\{w(\alpha) \mid w \in W, \alpha \in \Pi\}$ the root system of W, and Π the set of fundamental roots. is well known (see [6]) that Φ can be decomposed as $\Phi=\Phi^{+} \uplus \Phi^{-}$, where every element of Φ^{+}(resp. Φ^{-}) is linear combination of fundamental roots with coefficients all non-negative (resp. all non-positive). Moreover, if $\in W$ and $\ell(w)$ denotes the length of a minimal expression for w in terms of elements of S, then $\ell(w)$ equals the rdinality of the set $N(w)$, where

$$
N(w)=\left\{\alpha \in \Phi^{+} \mid w(\alpha) \in \Phi^{-}\right\} .
$$

ote that $\ell(v w)=\ell(v)+\ell(w)$ if and only if $N(v w)=w^{-1}(N(v)) \uplus N(w)$.
For each $J \subseteq \Pi$ the standard parabolic subgroup W_{J} is the subgroup of W generated by

$$
S_{J}=\left\{s \in S \mid \alpha_{s} \in J\right\}
$$

Then $\left(W_{J}, S_{J}\right)$ is also a Coxeter system. If V_{J} is the subspace of V spanned by J, then the W-action on V yields a W_{J}-action on V_{J}, which can be identified with the reflection representation of W_{J}. The root system of W_{J} is $\Phi_{J}=\Phi \cap V_{J}$; and we write Φ_{J}^{+}for $\Phi^{+} \cap V_{J}$ and Φ_{J}^{-}for $\Phi^{-} \cap V_{J}$. It is easily shown that $N(w) \subseteq \Phi_{J}^{+}$if and only if $w \in W_{J}$.

In this paper we study the descent algebra (or Solomon algebra) $\Sigma(W)$ of a Coxeter group W. If $w \in W$, then the descent set of w is defined to be

$$
D(w)=N(w) \cap \Pi=\left\{\alpha \in \Pi \mid w(\alpha) \in \Phi^{-}\right\}
$$

In terms of the generating set S this corresponds to $\{s \in S \mid \ell(w s)<\ell(w)\}$. If $J \subseteq \Pi$, let

$$
x_{J}=\{w \in W \mid D(w) \cap J=\emptyset\}=\left\{w \in W \mid w(J) \subseteq \Phi^{+}\right\}
$$

and let

$$
x_{J}=\sum_{w \in X_{J}} w
$$

Define $\Sigma(W)$ to be the subspace of $\mathbf{Q}(W)$ spanned by all such elements x_{J}.
It has been shown by Solomon [13] that $\Sigma(W)$ is a subalgebra of $\mathbf{Q}(W)$. More precisely, Solomon has shown that

$$
\begin{equation*}
x_{J} x_{K}=\sum_{L \subseteq K} a_{J_{K} L} x_{L} \tag{1.1}
\end{equation*}
$$

where

$$
a_{J K L}=\left|\left\{w \in X_{J}^{-1} \cap X_{K} \mid w^{-1}(J) \cap K=L\right\}\right| .
$$

In Section 2 we shall prove these facts using techniques that will be developed further in later sections. It is easily shown (Solomon [13]) that the x_{κ} 's are linearly independent; thus they form a basis of $\Sigma(W)$.

In [9] A. Garsia and C. Reutenauer have given a decomposition of the multiplicative structure of the descent algebra of the symmetric group (the Coxeter group of type A_{n}). This decomposition exploits the action of the symmetric group on the free Lie algebra in a manner reminiscent of the Poincaré-Birkoff-Witt Theorem. In [1] and [4] we showed that a similar decomposition, as well as related results, also holds for the hyperoctahedral group (type B_{n}). The object of this paper, and ongoing work, is to extend these results to the descent algebra of any finite Coxeter group.

For a general descent algebra $\Sigma(W)$ we shall exhibit a new basis consisting of elements $e_{K}, K \subseteq \Pi$, defined by

$$
e_{K}=\sum_{L \subseteq K} \beta_{K}^{L} x_{L}
$$

for some constants β_{K}^{L}, such that each e_{K} is a scalar multiple of an idempotent, and $\sum_{K \subseteq \Pi} e_{K}=1$. Furthermore, for all $J, M \subseteq I I$, when $e_{J} e_{M}$ is expressed as a linear combination of the e_{K} 's, the only non-zero coefficients correspond to subsets K of M that are equivalent to J, in the sense that $J=w\left(K^{\prime}\right)$ for some $w \in W$. As a consequence we obtain a set of idempotents $E_{\lambda}=\sum_{\kappa \in \lambda} e_{K}$ indexed by equivalence classes λ of subsets of Π, such that

$$
E_{\lambda} E_{\mu}= \begin{cases}0 & \text { if } \lambda \neq \mu \tag{1.2}\\ E_{\lambda} & \text { if } \lambda=\mu\end{cases}
$$

and $\sum_{\lambda} E_{\lambda}=1$. In fact, the E_{λ} 's form a decomposition of the identity into primitive idempotents. Furthermore, the E_{λ} 's induce a decomposition of the action of $\Sigma(W)$ on $\mathbf{Q}(W)$ by left multiplication:

$$
\mathbf{Q}(W)=\bigoplus_{\lambda} H_{\lambda}
$$

where $H_{\lambda}=E_{\lambda} \cdot \mathrm{Q}(W)$. From the formula for $e_{J} e_{\Lambda \mathcal{A}}$ given in Section 7 it can be seen that $e_{J}-e_{K}$ is in the radical of $\Sigma(W)$ whenever J is equivalent to K°, and therefore

$$
\operatorname{dim}(\sqrt{\Sigma(W)})=2^{|S|}-|\Lambda|
$$

where Λ is the set of equivalence classes of subsets of Π.
These constructions have already been carried through for all indecomposable finite Coxeter groups of type A_{n} (see [9]), and of type B_{n} (see [1] and [4]). Part of the study of the descent algebra has been carried through with extensive use of the computer algebra system Maple [2].

2. The Solomon Algebra

We start by proving some basic facts concerning the elements x_{y} defined in Section 1. Proofs of results we assume can be found in $\S 2.7$ of Carter [6].

If $J \subseteq \Pi$, then each element of W is uniquely expressible in the form $d u$ with $d \in X_{J}$ and $u \in W_{J}$, and here we have $\ell(d u)=\ell(d)+\ell(u)$. Thus X_{J} is a set of representatives of the cosets $w W_{J}$ in W. Likewise, if $K \subseteq J \subseteq \Pi$, then $X_{\kappa} \cap W_{J}$ is a set of representatives of the cosets $w W_{\kappa}$ in W_{J}. In this situation we define

$$
x_{K}^{J}=\sum_{w \in W_{J} \cap X_{K}} w
$$

and note that $x_{\kappa}^{\mathrm{n}}=x_{\kappa}$. The next two lemmas provide analogues of induction and restriction for Solomon algebras. The connection with induction and restriction of permutation characters will be given in detail in Section 4.

Lemma 2.1. If $K \subseteq J \subseteq \Pi$, then $X_{K}=X_{J}\left(W_{J} \cap X_{K}\right)$ and thus $x_{K}=x_{J} x_{K}^{J}$.
Proof. If $d \in X_{J}$ and $w \in W_{J} \cap X_{K}$, then $w(K) \subseteq \Phi_{J}^{+}$, whence $d w(K) \subseteq d\left(\Phi_{J}^{+}\right) \subseteq \Phi^{+}$. It follows that $d w \in X_{\kappa}$ and this shows that

$$
\left\{d w \mid d \in X_{J}, w \in W_{J} \cap X_{K}\right\} \subseteq X_{K} .
$$

Comparing cardinalities we see that equality holds; and, on taking sums, we have $x_{K}=x_{J} x_{\kappa}^{J}$.
Lemma 2.2. For all $J, K \subseteq S$

$$
X_{\kappa}=\biguplus_{d \in X_{J K}}\left(W_{J} \cap X_{\operatorname{J\cap d}(K)}\right) d,
$$

where $X_{J K}=X_{J}^{-1} \cap X_{K}$; and thus

$$
x_{K}=\sum_{d \in X_{J K}} x_{J \operatorname{In}(K)}^{J} d .
$$

Proof. First note that if $d \in X_{J K}$ and $u \in W_{J} \cap X_{J \cap_{d}(K)}$, then $d \in X_{J}^{-1}$ and $u \in W_{J}$; so an element of W can arise as a product $u d$ in at most one way. Let $w \in X_{k}$ and write $w=u d$ with $d \in X_{J}^{-1}$ and $u \in W_{J}$. Since $\ell(u d)=\ell(u)+\ell(d)$ we have $N(d) \subseteq N(u d)=N(w)$, and so $d \in X_{K}$. Thus $d \in X_{J_{K}}$, and furthermore

$$
u(J \cap d(K)) \subseteq u d(K)=w(K) \subseteq \Phi^{+},
$$

so that $u \in W_{J} \cap X_{J \cap d(K)}$. It remains to prove that $u d \in X_{K}$ whenever $d \in X_{J K}$ and $u \in W_{J} \cap X_{J \cap d(\mathcal{K})}$. Since a fundamental root cannot be nontrivially expressed as a positive linear combination of positive roots we see that $K \cap d^{-1}\left(\Phi_{j}^{+}\right)=K^{\prime} \cap d^{-1}(J)$. But $d\left(K^{\prime}\right) \subseteq \Phi^{+}$(siace $\left.d \in X_{\kappa}\right)$ and so $d(K) \subseteq\left(\Phi^{+} \backslash \Phi_{J}^{+}\right) \cup(J \cap d(K))$. It follows that $u d(K) \subseteq u\left(\Phi^{+} \backslash \Phi_{J}^{+}\right) \cup u(J \cap d(K)) \subseteq \Phi^{+}$, and therefore $u d \in X_{\kappa}$, as required.

Lemma 2.2 shows that each element of W is uniquely expressible in the form $u d w$ with $w \in W_{\kappa}, d \in X_{J_{K}}$ and $u \in W_{J} \cap X_{\text {Jnd(} K)}$. Moreover, in this situation $\ell(u d w)=\ell(u)+\ell(d)+\ell(w)$. It follows readily that each double coset $W_{J} w W_{K}$ contains a unique $d \in X_{J K}$, and that $W_{J} \cap d W_{K} d^{-1}=W_{J \cap d(K)}$.

For $J, K \subseteq \Pi$ we write $J \sim K$ whenever $w(J)=K$ for some $w \in W$ (that is, J and K are equivalent) and $J \preceq K$ whenever J is equivalent to a subset of K. The next lemma shows that this equivalence relation is the one used by Solomon in [13].

Lemma 2.3. If $J, K \subseteq \Pi$, then $J \sim K$ if and only if W_{J} and W_{K} are conjugate, and $J \preceq K$ if and only if is conjugate to a subgroup of W_{K}.

Proof. Suppose that $w \in W$ satisfies $w^{-1} W_{J} w \subseteq W_{K}$. If d is the shortest element in $W_{J} w W_{\kappa}$, then $d^{-1} W_{J} d \subseteq I$ and therefore

$$
W_{J \cap d(K)}=W_{J} \cap d W_{\kappa} d^{-1}=W_{J}
$$

Thus $J \cap d\left(K^{*}\right)=J$ and therefore $d^{-1}(J) \subseteq K$. All assertions of the lemma now follow.

Lemma 2.4. If $J \subseteq \Pi$ and $d \in W$ with $d^{-1}(J) \subseteq \Pi$, then $X, d=X_{d^{-1}(J)}$.

Proof. For $w \in X_{d^{-1}(J)}$, it is clear that $w d^{-1} \in X_{J}$, and conversely for $w \in X_{J}$, that $w d \in X_{d^{-1}(J)}$.

Theorem 2.5. For all $J, K \subseteq \Pi$

$$
x_{J} x_{K}=\sum_{L \subseteq K} a_{J K L} x_{L}
$$

Proof.

$$
\begin{array}{rlrl}
x_{J} x_{K} & =x_{J} \sum_{d \in X_{J K}} x_{J \cap d(K)}^{J} d & & \text { by Lemma } 2.2 \\
& =\sum_{d \in X_{J K}} x_{J \cap d(K)} d & & \text { by Lemma } 2.1 \\
& =\sum_{d \in X_{J K}} x_{d-1}(J) \cap K & & \text { by Lemma } 2.4 \\
& =\sum_{L} a_{J K L} x_{L} &
\end{array}
$$

Obviously $a_{J_{K L}}=0$ when $L \nsubseteq K$. Thus the theorem is proved.

Proposition 2.6. Let $a_{M L P}^{J}$ denote the structure constants of the descent algebra $\Sigma\left(W_{J}\right)$ corresponding to x_{K}^{J} basis. If $L, K \subseteq \Pi$, then

$$
x_{K} x_{L}=\sum_{P \subseteq L}\left(\sum_{M \subseteq J} a_{K J M} a_{M L P}^{J}\right) x_{P},
$$

for all $J \subseteq \Pi$ such that $L \subseteq J$. Thus the structure constants satisfy the identities

$$
a_{K L P}=\sum_{M \subsetneq J} a_{K J M} a_{M L P}^{J}
$$

for all J containing L.

Proof. We have

$$
\begin{aligned}
x_{K} x_{L} & =x_{\kappa} x_{J} x_{L}^{J} \\
& =\left(\sum_{M \subseteq J} a_{K J M} x_{M}\right) x_{L}^{J} \\
& =\sum_{M \subseteq J} a_{K J M} x_{J} x_{M}^{J} x_{L}^{J} \\
& =\sum_{M \subseteq J} a_{K J M} x_{J}\left(\sum_{P \subseteq L} a_{M L P}^{J} x_{P}^{J}\right) \\
& =\sum a_{K J M} a_{M L P}^{J} x_{P} .
\end{aligned}
$$

This proves the first assertion of the theorem, and comparison with

$$
x_{K} x_{L}=\sum_{P \subseteq L} a_{K L P} x_{P}
$$

completes the proof.

3. Reduction to indecomposable finite Coxeter groups

We shall now give a decomposition of the descent algebra of a product of two Coxeter groups. For a given Coxeter system (W, S), let W_{K} denote the subgroup generated by a subset K of S. This subgroup is also a Coxeter group.

One has the following
Lemma 3.1. Let J and K be subsets of S such that all elements of J commute with all elements of K, then

$$
\begin{equation*}
x_{L}^{J U K}=x_{L \cap}^{J} x_{L \cap K}^{K} \tag{3.2}
\end{equation*}
$$

Proof. We might as well suppose that $J \cup K=S$ since this does not change the argument. Hence we now want to show that $x_{L}=x_{L \cap J}^{J} x_{L \cap \kappa}^{K}$. Given $w \in X_{L}$, there exists a unique decomposition $w=w_{J} w_{K}$, with $w_{J} \in W_{J}$ and $w_{K} \in W_{K}$. It follows immediately that

$$
\begin{equation*}
\widetilde{D\left(w_{J}\right)}=D(w) \cap J, \quad \text { and } \quad D\left(w_{K}\right)=D(w) \cap K . \tag{3.3}
\end{equation*}
$$

Whence $w_{J} \in X_{L} \cap W_{J}$ and $w_{K} \in X_{L} \cap W_{K}$. Moreover every pair (w_{J}, w_{K}) satisfying (3.3) gives rise to a unique w in X_{L}. This proves the lemma.

It follows that
Proposition 3.4. If $S=S_{1} \cup S_{2}$, where all elements of S_{1} commute with all elements of S_{2}, then the function

$$
\varphi: \Sigma\left(W_{S_{1}}\right) \otimes \Sigma\left(W_{S_{2}}\right) \sim \Sigma\left(W_{S}\right),
$$

defined as

$$
\begin{equation*}
\varphi(\alpha \otimes \beta)=\alpha \beta, \tag{3.5}
\end{equation*}
$$

is an isomorphism of algebras.

Proof. Since the product of two basis elements in $\Sigma\left(W_{S_{1}}\right) \otimes \Sigma\left(W_{S_{2}}\right)$ is by definition

$$
\left(x_{K_{1}} \otimes x_{K_{2}}\right)\left(x_{L_{1}} \otimes x_{L_{2}}\right)=\left(x_{K_{1}} x_{L_{1}}\right) \otimes\left(x_{\kappa_{2}} x_{L_{2}}\right),
$$

we shall prove that φ is a morphism if we show that

$$
\begin{equation*}
x_{K_{1}}^{s_{1}} x_{K_{2}}^{s_{2}} x_{L_{1}}^{s_{1}} x_{L_{2}}^{s_{2}}=x_{K_{1}}^{s_{1}} x_{L_{1}}^{s_{1}} x_{K_{2}}^{s_{2}} x_{K_{2}}^{s_{2}} . \tag{*}
\end{equation*}
$$

But every element of $W_{S_{1}}$ commutes with all elements of $W_{S_{2}}$, thus

$$
x_{\kappa_{2}}^{s_{2}} x_{L_{1}^{\prime}}^{s_{1}}=x_{L_{1}}^{s_{1}} x_{K_{2}}^{s_{2}^{2}},
$$

and (*) follows. Morover, φ is clearly bijective. This proves the proposition.
Thus we can reduce our discussion to indecomposable finite Coxeter groups.

4. The parabolic Burnside ring

For each $J \subseteq \Pi$ we have a permutation representation of W on the set W / W, of cosets W, w. The orbits of W on $W / W_{J} \times W / W_{\kappa}$ have representatives of the form $\left(W_{J} d, W_{\kappa}\right)$, where $d \in X_{J K}$; and the stabilizer of $\left(W_{J} d, W_{\kappa}\right.$ in W is $d^{-1} W_{J} d \cap W_{K}=W_{d^{-1}(J) \cap K}$. Thus

$$
W / W_{J} \times W / W_{K}=\sum_{L \subseteq K} a_{J K L} W / W_{L},
$$

where the $a_{J K L}$'s are defined as in Section 1. This proves that the representations W / W span a subring $\mathcal{P B}(W$ of the Burnside ring of W. We call this the parabolic Burnside ring of W. On comparing (4.1) and (1.1) we se that there is a homomorphism $\theta: \Sigma(W) \rightarrow \mathcal{P B}(W)$. Note that θ is not in general an isomorphism, because W / W. and W / W_{K} represent the same element of $\mathcal{P B}(W)$ whenever $J \sim K$.

A subgroup of W is said to be parabolic if it is conjugate to a standard parabolic subgroup W, for some $J \subseteq \Pi$ For each $v \in V$, the stabilizer in W of v,

$$
\operatorname{Stab}_{w}(v)=\{w \in W \mid w(v)=v\}
$$

is a parabolic subgroup. Indeed, the set

$$
C=\{u \in V \mid(\alpha, u) \geq 0 \text { for all } \alpha \in \Pi\}
$$

is a fundamental domain for the action of W, and we may choose $t \in W$ such that $t(v) \in C$. Then (see Steinber [14])

$$
t \operatorname{Stab}_{w}(v) t^{-1}=\operatorname{Stab}_{w}(t(v))=W_{J}
$$

where $J=\{\alpha \in \Pi \mid(\alpha, t(v))=0\}$.
Since $W_{\text {, }}$ stabilizes J^{\perp} it follows that $w \in W_{J}$ stabilizes $v \in V$ if and only if it stabilizes the orthogone projection of v in V_{J}. Hence $\operatorname{Stab}_{W_{J}}(v)$ is a parabolic subgroup of W_{J}. It follows by induction that the pointwis stabilizer, $\operatorname{Stab}_{w}(P)$, of an arbitrary subset P of V, is a parabolic subgroup of W. Since $\operatorname{Stab}_{w}(P \cup Q)=$ $\operatorname{Stab}_{w}(P) \cap \operatorname{Stab}_{w}(Q)$ we see that the intersection of two parabolic subgroups is again parabolic; this also follow from the fact, mentioned in Section 2, that $W_{J} \cap d W_{K} d^{-1}=W_{J \cap(K)}$ whenever $d \in X_{J_{K}}$.

If g is an arbitrary orthogonal transformation on V, define

$$
[V, g]=\{(1-g)(v) \mid v \in V\}
$$

and

$$
C_{v}(g)=\{v \in V \mid g(v)=v\}
$$

and let $\tau(g)=\operatorname{dim}[V, g]$. It is easily checked that $[V, g]$ is the orthogonal complement of $C_{V}(g)$ in V. Furthermor ϵ if $0 \neq v \in V$ and r is the reflection in the hyperplane orthogonal to v, then

$$
\tau(r g)= \begin{cases}\tau(g)+1 & \text { if } v \notin[V, g] \\ \tau(g)-1 & \text { if } v \in[V, g]\end{cases}
$$

Thus $\tau(g)$ is the length of a minimal expression for g as a product of reflections. In [6] Carter proves that ever: element $w \in W$ can be written as a product of $\tau(w)$ reflections in W. (We include a proof in Lemma 4.3 below.)

Following Solomon [13], for $w \in W$, we define

$$
A(w)=\{y \in W \mid[V, y] \subseteq[V, w]\}=\left\{y \in W \mid C_{v}(w) \subseteq C_{v}(y)\right\}
$$

Equivalently, $A(w)=\operatorname{Stab}_{w}\left(C_{v}(w)\right)$. In particular, $A(w)$ is a parabolic subgroup of W. We say that w is of typ J if $A(w)$ is conjugate to W_{J}. We shall sometimes say that w is of type λ, where λ is the equivalence class of J since (by Lemma 2.3) J is determined by w only to within equivalence. It is clear that $A\left(t w t^{-1}\right)=t A(w) t^{-1}$, an hence conjugate elements have the same type.

Observe that the maps $P \mapsto \operatorname{Stab}_{w}(P)$ and $H \mapsto C_{v}(H)$, where H is a subgroup of W, form a Galo connection between the partially ordered set of subspaces of V and the partially ordered set of subgroups of W, i
the sense that $P \subseteq C_{V}(H)$ if and only if $H \subseteq \operatorname{Stab}_{w}(P)$. The parabolic subgroups are the closed subgroups of W for this Galois connection; that is, H is parabolic if and only if $H=\operatorname{Stab}_{w}\left(C_{V}(H)\right)$. Thus if H is any subgroup of W, then $\operatorname{Stab}_{W}\left(C_{V}(H)\right)$ is the smallest parabolic subgroup of W containing H. In particular, if $w \in W$, then $A(w)$ is the smallest parabolic subgroup containing w, and so w is of type J if and only if $J \subseteq \Pi$ is minimal subject to W, containing a conjugate of w.

Lemma 4.3. Let $J \subseteq \Pi$ and suppose that $w \in W$ is of type J. Then
(1) if $K \subseteq \Pi$ and W_{κ} contains a conjugate of w, then $J \preceq K$,
(2) $\tau(w)=|J|$,
(3) w can be written as a product of $|J|$ reflections in W.

Proof. Replacing w by a conjugate of itself, we may assume that $w \in W_{J}$. Since w has type J it is not contained in any proper parabolic subgroup of W_{J}. If $t \in W$ and $t^{-1} w t \in W_{K}$, then $w \in W_{J} \cap t W_{K} t^{-1}$, a parabolic subgroup of W_{J}. It follows that $W_{J} \cap t W_{K} t^{-1}=W_{J}$. Now Lemma 2.3 gives $J \preceq K$, proving (1). The generators of W_{J} all fix J^{\perp} pointwise, and so $J^{\perp} \subseteq C_{V}(w)$. Taking orthogonal complements gives $[V, w] \subseteq V_{J}$. If $[V, w] \neq V_{J}$, we deduce that V_{J} contains a nonzero $v \in C_{V}(w)$, and hence that $w \in \operatorname{Stab}_{W_{J}}(v)$, a proper parabolic subgroup of W_{J}. This is a contradiction, and therefore $[V, w]=V_{J}$. Thus

$$
\tau(w)=\operatorname{dim}[V, w]=\operatorname{dim} V_{J}=|J|
$$

proving (2).
Since $[V, w]=V_{J}$ it follows from (4.2) above that $\tau(s w)=\tau(w)-1$ whenever $s \in S_{J}$. Hence sw has type K for some $K \subseteq \Pi$ with $|K|=|J|-1$. Arguing by induction we deduce that $s w$ is a product of $|J|-1$ reflections in W, and therefore $w=s(s w)$ is a product of $|J|$ reflections.

For $J \subseteq S$, let c, be the product of the reflections $s, s \in S_{J}$, taken in some fixed order. The conjugacy class of c, in W, is independent of the order, and the elements of this class are called the Coxeter elements of W_{J}. Since J is a linearly independent set it is clear that $\left[V, c_{J}\right]=V_{J}$, and so c_{J} has type J. We note as a consequence that the parabolic subgroups of W are precisely the subgroups $A(w)$.

Proposition 4.4. If $J, K \subseteq \Pi$, then c_{J} is conjugate to c_{K} if and only if $J \sim K$.

Proof. If c_{J} and c_{k} are conjugate, then they are of the same type-that is, $J \sim K$. Conversely, if $J=d(K)$ for some $d \in W$, then $d S_{J} d^{-1}=S_{K}$, and so $d c_{J} d^{-1}$, being a product of the reflections in S_{K}, is conjugate to c_{K}.

Let $\varphi_{J}=\operatorname{Ind}_{W_{J}}^{W} 1$, the character of W induced from the trivial character of W_{J}. In other words, φ_{J} is the character corresponding to the permutation representation W / W_{J}.

Theorem 4.5. The assignment $W / W, \mapsto \varphi$, defines an isomorphism Θ from $\mathcal{P B}(W)$ to the ring of Q -linear combinations of the φ_{J}. Thus we may identify $\mathcal{P B}(W)$ with this ring of class functions.

Proof. If $J \sim K$, the representations W / W_{J} and W / W_{K} are equal in $\mathcal{P B}(W)$ and hence

$$
\varphi_{J}=\Theta\left(W / W_{J}\right)=\Theta\left(W / W_{K}\right)=\varphi_{K}
$$

This makes it legitimate to write φ_{λ} instead of φ_{J} where λ is the equivalence class of J. For each equivalence class μ choose an element c_{μ} of type μ : for example, a Coxeter element. Since W_{J} contains an element of type K if and only if $K \preceq J$ it is clear that $\varphi_{\lambda}\left(c_{\mu}\right) \neq 0$ if and only if $\mu \preceq \lambda$. For a suitable ordering of the rows and columns, the matrix $\left(\varphi_{\lambda}\left(c_{\mu}\right)\right)_{\lambda, \mu}$ is upper triangular with non-zero diagonal entries. Therefore the φ_{λ} are linearly independent.

Induction and restriction of characters give rise to maps between $\mathcal{P B}\left(W_{j}\right)$ and $\mathcal{P B}(W)$. The permutation representation W_{J} / W_{κ} induced to $\mathcal{P B}(W)$ is simply W / W_{K}. By Lemma 2.1 the analogue of induction for the

Solomon algebras is left multiplication by x_{J}. The restriction of W / W_{κ} to $\mathcal{P B}\left(W_{J}\right)$ is obtained by considering the orbits of W_{J} on the cosets $W_{k} d$. Thus

$$
\operatorname{Res}_{W_{J}}\left(W / \dot{W}_{\kappa}\right)=\sum_{d \in X_{J K}} W_{J} / W_{J \cap d(K)}
$$

and the analogue of restriction for $\Sigma(W)$ is given by Lemma 2.2. Combining these two observations we see that Theorem 2.5 is the Solomon algebra analogue of the Mackey formula for the product of induced characters.

5. Dihedral groups

We shall now study in particular the descent algebra of dihedral groups $W=I_{2}(p)$, that is, Coxeter groups with only two generators $S=\{s, r\}$ satisfying

$$
(s r)^{p}=1
$$

The corresponding descent algebra is of (linear) dimension 4. Its generators are

$$
\begin{aligned}
x_{\{s, r\}} & =1 \\
x_{\{s\}} & =1+r+s r+r s r+s r s r+\ldots \\
x_{\{r\}} & =1+s+r s+s r s+r s r s+\ldots \\
x & =\sum_{w} w .
\end{aligned}
$$

The summation for $x_{\{s\}}$ (resp. $x_{\{r\}}$) is over the set of all $w \in W$ with only one reduced expression, this unique expression must also end in r (resp. s). In order to simplify notation, we shall write $x_{s r}$ (resp. x_{s}, x_{r}) instead of $x_{\{s, r\}}$ (resp. $\left.x_{\{s\}}, x_{\{r\}}\right)$. The multiplication table for $\Sigma(W)$ is easy to compute explicitly in this case. It is as follows

	$x_{s r}$	x_{s}	x_{r}	x_{θ}
$x_{s r}$	$x_{s r}$	x_{s}	x_{r}	x_{\emptyset}
x_{s}	x_{s}	$2 x_{s}+\frac{p-2}{2} x_{\emptyset}$	$\frac{p}{2} x_{\emptyset}$	$p x_{\emptyset}$
x_{r}	x_{r}	$\frac{p}{2} x_{\emptyset}$	$2 x_{r}+\frac{p-2}{2} x_{\emptyset}$	$p x_{\emptyset}$
x_{\emptyset}	x_{\emptyset}	$p x_{\emptyset}$	$p x_{\emptyset}$	$2 p x_{\theta}$

Table 1, p EVEN
when p is even. Whereas for p odd it is

	$x_{s r}$	x_{s}	x_{r}	x_{0}
$x_{s r}$	$x_{s r}$	x_{s}	x_{r}	x
x_{s}	x_{s}	$x_{s}+\frac{p-1}{2} x_{0}$	$x_{r}+\frac{n-1}{2} x_{0}$	$p x_{0}$
x_{r}	x_{r}	$x_{s}+\frac{n-1}{2} x_{0}$	$x_{r}+\frac{p-1}{2} x_{\emptyset}$	$p x_{0}$
x_{0}	x_{0}	$p x_{0}$	$p x 0$	$2 p x$

Table 2, p ODD

Using these tables, one can verify that for even p

$$
\begin{align*}
e_{s r} & =x_{s r}-\frac{1}{2} x_{s}-\frac{1}{2} x_{r}+\frac{p-1}{2 p} x_{\emptyset} \\
e_{s} & =\frac{1}{2}\left(x_{s}-\frac{1}{2} x_{\emptyset}\right) \\
e_{r} & =\frac{1}{2}\left(x_{r}-\frac{1}{2} x_{\emptyset}\right) \tag{5.1}\\
e_{\emptyset} & =\frac{1}{2 p} x_{\emptyset}
\end{align*}
$$

are idempotents such that $e_{K} e_{L}=0$, for all K, L distinct subsets of $S=\{s, r\}$. Since the equivalence classes of subsets of II coincide in this case with subsets of Π, we obtain a set of idempotents

$$
\begin{aligned}
E_{\lambda(s r)} & =e_{s r} \\
E_{\lambda(s)} & =e_{s} \\
E_{\lambda(r)} & =e_{r} \\
E_{\lambda(\theta)} & =e_{\theta} .
\end{aligned}
$$

satisfying condition 1.2 , moreover the sum of these idempotents is 1 .
In the p odd case, the following are idempotents

$$
\begin{align*}
e_{s r} & =x_{s r}-\frac{1}{2} x_{s}-\frac{1}{2} x_{r}+\frac{p-1}{2 p} x_{\theta} \\
e_{s} & =x_{s}-\frac{1}{2} x_{\emptyset} \\
e_{r} & =x_{r}-\frac{1}{2} x_{\emptyset} \tag{5.2}\\
e_{\emptyset} & =\frac{1}{2 p} x_{\emptyset} .
\end{align*}
$$

But there are now only three conjugacy classes of subsets of $S:\{\{s, r\}\},\{\{s\},\{r\}\}$ and $\{\emptyset\}$. The non trivial products between two different ϵ_{K} 's are

$$
e_{s} e_{r}=e_{r} \quad \text { and } e_{r} e_{s}=e_{s} .
$$

Hence we can set

$$
\begin{aligned}
E_{\lambda(s r)} & =e_{s r} \\
E_{\lambda(s)} & =E_{\lambda(r)}=\frac{1}{2}\left(e_{s}+e_{r}\right) \\
E_{\lambda(\theta)} & =e_{\theta} .
\end{aligned}
$$

These also satisfy condition 1.2 and sum to 1 . In this case, the radical of the descent algebra is generated by the ailpotent $e_{s}-e_{r}$.

In preparation for Section 7, we shall now reconsider part of this construction in the context of a general Zoxeter system (W, S). For two elements s and r of S, let us compute the product $x_{s} x_{r}$. A direct application of 1.1) gives

$$
\begin{equation*}
x_{s} x_{r}=\alpha_{s}^{r} x_{r}+\beta_{s}^{r} x_{\theta}, \tag{5.3}
\end{equation*}
$$

where $\alpha_{s}^{r}=\left|\left\{w \mid w^{-1} \in x_{s}, w \in x_{r}, w^{-1} s w=r\right\}\right|$. Observe that for any $\aleph=\sum_{w} \aleph_{w} w$ in $\mathrm{Q}(W)$, one has $\checkmark x_{\emptyset}=x_{\phi} \aleph<=\left(\sum_{w} \aleph_{w}\right) x_{\emptyset}$. From Lemma 2.1 it follows that

$$
\frac{\alpha_{s}^{r}}{2}+\beta_{s}^{r}=\frac{|W|}{4}
$$

since $x^{r}=1+r$. Thus we obtain

$$
\begin{equation*}
x_{s} x_{r}=\alpha_{s}^{r}\left(x_{r}-\frac{1}{2} x_{\emptyset}\right)+\frac{|W|}{4} x_{\emptyset} . \tag{5.4}
\end{equation*}
$$

Identity (5.4) suggests that we set for any Coxeter group

$$
e_{s}=\frac{1}{\alpha_{s}^{s}}\left(x_{s}-\frac{1}{2} x_{\emptyset}\right),
$$

for then e_{s} is clearly an idempotent since

$$
\begin{aligned}
\left(x_{s}-\frac{1}{2} x_{\emptyset}\right)^{2} & =x_{s}^{2}-2 x_{s} x_{\emptyset}+x_{\emptyset}^{2} \\
& =\alpha_{s}^{s}\left(x_{s}-\frac{1}{2} x_{\emptyset}\right)
\end{aligned}
$$

Moreover a similar computation implies that

$$
e_{s} e_{r}=\frac{\alpha_{s}^{r}}{\alpha_{s}^{s}} e_{r}
$$

Clearly if s and r are not conjugate, $\alpha_{s}^{r}=0$. But if they are conjugate then we maintain that $\alpha_{s}^{r}=\alpha_{s}^{s}$. In fac this results from the fact that both these quantities are equal to half the cardinality of the centralizer $C(s)=\{w \in$ $\left.W \mid w^{-1} s w=s\right\}$. This last assertion results from the observation that for $w \in C(s)$, either $w \in X_{s}^{-1} \cap X_{s}$ o. $w s \in X_{s}^{-1} \cap X_{s}$, since evidently $\ell(w s)=\ell(s w)$. Whence

$$
e_{s} e_{r}= \begin{cases}e_{r} & \text { if } s \text { and } r \text { are conjugate } \\ 0 & \text { otherwise }\end{cases}
$$

From this we conclude that
Proposition 5.5. In any Coxeter group, for all $s \in S$, the

$$
E_{\lambda(s)}=\frac{1}{|\lambda(s)|} \sum_{r \in \lambda(s)} e_{r}
$$

are idempotents, and if s and r are not conjugate, then

$$
E_{\lambda(s)} E_{\lambda(r)}=0
$$

We shall generalize this result to all descent algebras in Section 7.

6. Idempotents in the parabolic Burnside ring

The Q-algebra $\mathcal{P B}(W)$ is isomorphic to an algebra of functions, and therefore it has a basis of idempoter elements. Specifically, if we define

$$
\xi_{\lambda}=\sum_{\mu} \nu_{\lambda \mu} \varphi_{\mu}
$$

where the coefficient matrix $\left(\nu_{\lambda \mu}\right)$ is the inverse of the matrix $\left(\varphi_{\lambda}\left(c_{\mu}\right)\right)$ which appears in the proof of Theorem $4 .!$ then

$$
\xi_{\lambda}\left(c_{\mu}\right)= \begin{cases}0 & \text { if } \lambda \neq \mu \\ 1 & \text { if } \lambda=\mu\end{cases}
$$

and it follows that ξ_{λ} is idempotent. The next theorem shows that (6.1) holds when c_{μ} is an arbitrary element c type μ.

Theorem 6.2. Let $J, K \subseteq \Pi$ and let $c \in W$ be any element of type J. Then $\varphi_{K}(c)=a_{K J J}$, the number of $d \in X_{K J}$ such that $d(J) \subseteq K$.

Proof. Without loss of generality we may suppose that $c \in W_{J}$. By Mackey's formula, the restriction of φ_{K} to
W_{J} is

$$
\operatorname{Res}_{W_{J}}\left(\operatorname{Ind}_{W_{K}}^{W} 1\right)=\sum_{d \in X_{K J}} \operatorname{Ind}_{W_{d-1}(K) \cap J}^{W_{J}} 1
$$

But since c is not contained in any proper parabolic subgroup of W_{J}, the character $\operatorname{Ind}_{W_{d-1}(K) \cap J}^{W_{J}} 1$ vanishes on c mless $d^{-1}(K) \cap J=J$, in which case it takes the value 1 .

For $J \subseteq \Pi$, let $N_{J}=\{w \in W \mid w(J)=J\}$. Then N_{J} is the intersection of X_{J} and the normalizer of W_{J}, whence $\left|N_{J}\right|=a_{J J J}$ is the index of W_{J} in its normalizer.

For convenience we define $\xi_{J}=\xi_{\lambda}$ and $\nu_{J K}=\nu_{\lambda_{\mu}}$ whenever $J \in \lambda$ and $K \in \mu$. For $J \subseteq K \subseteq \Pi$, let ξ_{J}^{K} be the orimitive idempotent of $\mathcal{P B}\left(W_{K}\right)$ that takes the value 1 on elements of type J relative to W_{K}.

The next two propositions describe the effect of the restriction and induction maps on these idempotents.
Proposition 6.3. Let $J, K \subseteq \Pi$ and let $J_{1}, J_{2}, \ldots, J_{h}$ be representatives of the W_{K}-equivalence classes of ubsets of K which are W-equivalent to J. Then

$$
\operatorname{Res}_{W_{K}} \xi_{J}=\sum_{i=1}^{h} \xi_{J_{i}}^{K}
$$

n particular, $\operatorname{Res}_{W_{K}} \xi_{J}=0$ if J is not equivalent to any subset of K.

'roposition 6.4. If $J \subseteq K \subseteq \Pi$, then

$$
\operatorname{Ind}_{W_{K}}^{W} \xi_{J}^{K}=\frac{\left|N_{J}\right|}{\left|W_{K} \cap N_{J}\right|} \xi_{J}
$$

'roof. Suppose at first that $J=K$ and that $c \in W_{J}$ is an element of type J. Then $A(c)=W_{J}$ and therefore ${ }^{-1} c x \in W_{J}$ if and only if x is in the normalizer of W_{J}. So $\left(\operatorname{Ind}_{W_{J}}^{W} \xi_{J}^{J}\right)(c)=\left|N_{J}\right|$. It is clear that $\operatorname{Ind}_{W_{J}}^{W} \xi_{J}^{J}$ vanishes verywhere except at elements of type J, and therefore $\operatorname{In} d_{W_{J}}^{W} \xi_{J}^{J}=\left|N_{J}\right| \xi_{J}$.

In general, we have

$$
\operatorname{Ind}_{W_{K}}^{W} \xi_{J}^{K}=\operatorname{Ind}_{W_{K}}^{W}\left(\frac{1}{\left|W_{K} \cap N_{J}\right|} \operatorname{Ind}_{W_{J}}^{W_{K}} \xi_{J}^{J}\right)=\frac{\left|N_{J}\right|}{\left|W_{K} \cap N_{J}\right|} \xi_{J}
$$

For the purposes of calculation, the following theorem is sometimes more useful than Theorem 6.2. The antities $\left|N_{J}\right| /\left|W_{K} \cap N_{J_{i}}\right|$ can be obtained from the tables in Howlett [10].
heorem 6.5. Let $J \preceq K \subseteq \Pi$ and let $J_{1}, J_{2}, \ldots, J_{h}$ be representatives of the W_{K}-equivalence classes of bsets of K which are W-equivalent to J. If $c \in W$ is of type J, then

$$
\varphi_{K}(c)=\sum_{i=1}^{h} \frac{\left|N_{J}\right|}{\left|W_{K} \cap N_{J_{i}}\right|}
$$

oof. By definition, $\sum_{L} \xi_{\Sigma}^{K}=1$, where L runs through representatives of the W_{K}-eqivalence classes of subsets K. Inducing to W and using Proposition 6.4 gives

$$
\varphi_{J}=\sum_{L} \frac{\left|N_{L}\right|}{\left|W_{K} \cap N_{L}\right|} \xi_{L}
$$

Since $\xi_{L}(c)=1$ if and only if $L \sim J_{i}$ for some i, evaluation at c completes the proof.
This theorem is also a consequence of the fact that $\left|N_{J}\right| /\left|W_{K} \cap N_{J_{i}}\right|$ is the number of $d \in X_{K J}$ such t $d(J) \subseteq K$ and $d(J)$ is W_{K}-equivalent to J_{i}.

Let $\mathcal{C}(J)$ be the set of elements of type J and note that $\mathcal{C}(J)$ depends only on the equivalence class of J. The main result of this section yields a remarkable formula for the coefficients $\nu_{J K}$ in the case $K=\emptyset$.

Theorem 6.6. If $m_{1}, m_{2}, \ldots, m_{n}$ are the exponents of W, then

$$
\nu_{\mathrm{n} \theta}=(-1)^{n} \frac{m_{1} m_{2} \cdots m_{n}}{|W|}
$$

Proof. If ε is the sign character of W, then by Frobenius reciprocity

$$
\left(\varphi_{J}, \varepsilon\right)= \begin{cases}1 & J=\emptyset \\ 0 & J \neq \emptyset\end{cases}
$$

and therefore $\nu_{\Pi \theta}=\left(\xi_{\Pi}, \varepsilon\right)$. By definition of the inner product,

$$
\begin{aligned}
\left(\xi_{\mathrm{\Pi}}, \varepsilon\right) & =|W|^{-1} \sum_{w \in W}(-1)^{\tau(w)} \xi_{\Pi}(w) \\
& =(-1)^{n}|\mathcal{C}(\Pi)| /|W| .
\end{aligned}
$$

A well-known formula of Shephard and Todd [11] (see also Solomon [12]) states that

$$
\sum_{w \in W} t^{\tau(w)}=\left(1+m_{1} t\right)\left(1+m_{2} t\right) \cdots\left(1+m_{n} t\right)
$$

Lemma 4.3 (2) shows that $\tau(w)=n$ if and only if w is of type Π. Thus, $m_{1} m_{2} \cdots m_{n}$ is the number of elem of type Π in W. This completes the proof.

Corollary 6.7. Let $J \subset \Pi$ with $|J|=k$ and let $m_{1}, m_{2}, \ldots, m_{k}$ be the exponents of W_{J}. Then

$$
\nu_{J \ominus}=(-1)^{k} \frac{m_{1} m_{2} \cdots m_{k}}{\left|N_{W}\left(W_{J}\right)\right|}
$$

where $N_{W}\left(W_{J}\right)$ is the normalizer in W of W_{J}.

Proof. To see this, apply Theorem 6.6 to W_{J} and then use Proposition 6.4.
It is also interesting to observe that

$$
|W| \sum_{\mu} \nu_{J \mu}=|\mathcal{C}(J)| .
$$

The proof is obtained by taking the inner product of $\xi_{J}=\sum \nu_{J \mu} \varphi_{\mu}$ with the trivial character and using fact that $\left(\varphi_{\mu}, 1\right)=1$ for all μ.

A similar calculation, but taking the inner product of ξ_{J} with the sign character of W_{L} induced to W give

$$
\sum_{\mu} \nu_{J \mu} a_{L \mu \emptyset}=(-1)^{|J|} \frac{\left|\mathcal{C}(J) \cap W_{L}\right|}{\left|W_{L}\right|} .
$$

7. IDempotents in the solomon algebra

The parabolic Burnside ring is commutative and semisimple and consequently it has a unique set of primitive idempotents which sum to 1 . These are the ξ_{λ} determined in the previous section. The descent algebra $\Sigma(W)$ is not semisimple but we hav $\in \Sigma(W) / \sqrt{\Sigma(W)} \simeq \mathcal{P B}(W)$ and therefore we may find primitive idempotents of $\Sigma(W)$ by lifting the ξ_{λ}.

We begin by defining certain constants μ_{K}^{J} for all $K \subseteq J \subseteq \Pi$

$$
\begin{equation*}
\mu_{K}^{J}=\left|\left\{w \in X_{J} \mid w(K) \subseteq \Pi\right\}\right| . \tag{7.1}
\end{equation*}
$$

This implies that, for all $K \subseteq \Pi, \mu_{K}^{\Pi}=1$ and $\mu_{\theta}^{K}=\left|X_{K}\right|$. Moreover
Lemma 7.2. For $K \subseteq J \subseteq L \subseteq \Pi$ we have

$$
\mu_{K}^{J}=\sum_{\substack{w \in W_{L} \cap X_{J} \\ w(K) \subseteq L}} \mu_{w(K) L}^{\Pi} .
$$

Proof. Using the definit on of $\mu_{w(K)}^{L}$, the above expression becomes the cardinatity of the set

$$
\biguplus_{\substack{w \in W_{L} \cap X_{J} \\ w(K) \subseteq L}}\left\{v \in X_{L} \mid v w(K) \subseteq \Pi\right\}
$$

If $v \in X_{L}, w \in W_{L} \cap X_{J}$ and $v w(K) \subseteq \Pi$, then $w(K) \subseteq w(J) \subseteq \Phi_{L}^{+}$and so $w(K) \subseteq L$. Thus by Lemma 2.2 this set is

$$
\left\{w \in X_{J} \mid w(K) \subseteq \Pi\right\}
$$

whose cardinality is μ_{κ}^{J}.

Cemma 7.3. If $K \subseteq J$ and $d(J) \subseteq \Pi$, then $\mu_{d(K)}^{d(J)}=\mu_{K}^{J}$.
Proof. Lemma 2.4 states that $w \in X_{d(J)}$ is equivalent to $w d / i n X_{J}$, hence multiplication (on the right) by d sstablishes a bijection between the sets $\left\{w \in X_{J} \mid w(K) \subseteq \Pi\right\}$ and $\left\{w \in X_{d(J)} \mid w d(K) \subseteq \Pi\right\}$. This proves the emma.

Now, for each $J \subseteq \Pi$, define $e^{J} \in \Sigma\left(W_{J}\right)$ recursively by

$$
\begin{equation*}
\mu_{J}^{J} e^{J}=1-\sum_{K \subset J} \mu_{K}^{J} x_{K}^{J} e^{K} \tag{7.4}
\end{equation*}
$$

By induction we have

$$
x_{K}^{J} e^{K} \in \Sigma\left(W_{J}\right)
$$

Cemma 7.5. If $v^{-1}(J) \subseteq \Pi$, then $e^{J} v=v e^{v^{-1}(J)}$.

Proof. We argue by induction on $|J|$, the case $J=\emptyset$ being trivial. First observe that $v^{-1} W_{J} v=W_{v^{-1}(J)}$ and if $K \subseteq J$ and $d \in W_{J} \cap X_{K}$, then

$$
\left(v^{-1} d v\right) v^{-1}(K) \subseteq v^{-1}\left(\Phi_{J}^{+}\right) \subseteq \Phi^{+}
$$

whence $v^{-1} d v \in W_{v^{-1}(J)} \cap X_{v^{-1}(K)}$. Thus $x_{K^{J}} v=v x_{v-1(K)}^{v^{-1}(J)}$.

Now suppose that $J \neq \emptyset$. Then

$$
\begin{array}{rlrl}
\mu_{J}^{J} e^{J} v & =v-\sum_{K \subset J} \mu_{K}^{J} x_{K}^{J} e^{K} v & & \text { by (7.4) } \tag{7.4}\\
& =v-\sum_{K \subset J} \mu_{K}^{J} x_{K}^{J} v e^{v-1}(K) & & \text { by induction } \\
& =v-\sum_{K \subset J} \mu_{K}^{J} v x_{v-1(K)}^{v^{-1}(J)} e^{v^{-1}(K)} & & \\
& =v-\sum_{v(K) \subset J} \mu_{K}^{v-1(J)} v x_{K}^{v-1(J)} e^{K} & & \text { by Lemma 7.3 } \\
& =\mu_{J}^{J} v e^{v-1(J)} . &
\end{array}
$$

This proves the lemma.

Theorem 7.6. If $J, M \subseteq \Pi$, then

$$
x_{J} e^{J} x_{M}=\sum_{N \subseteq M} \gamma_{N} x_{N} e^{N}
$$

where $\gamma_{N}=\left|\left\{v \in X_{M} \mid v(N)=J\right\}\right|$.

Proof. We argue by induction on $|J|$. If $J=\emptyset$, it is straightforward to check that both sides of the equality reduc to $\left(\mu_{\emptyset}^{\theta}\right)^{-1}\left|X_{M}\right| x_{\oplus}$. Suppose that $J \neq \emptyset$. Then by (7.4) and Lemma 2.1

$$
\mu_{J}^{J} x_{J} e^{J} x_{M}=x_{J} x_{M}-\sum_{K \subset J} \mu_{K}^{J} x_{K} e^{K} x_{M}
$$

and by Lemma 2.2 we have

$$
\mu_{J}^{J} x_{J} e^{J} x_{M}=x_{J} x_{M}-\sum_{K \subset J} \mu_{K}^{J} x_{K} e^{K} \sum_{v \in X_{K M}} x_{K \cap v(M)}^{K} v .
$$

If $K \cap v(M) \neq K$, then $x_{K} e^{K} x_{K \cap v(M)}^{K}=0$ by induction and therefore the expression becomes

$$
\mu_{J}^{J} x_{J} e^{J} x_{M}=x_{J} x_{M}-\sum_{K \subset J} \mu_{K}^{J} x_{K} e^{K} \sum_{\substack{v \in X_{M} \\ v^{-1}(K) \subseteq M}} v
$$

By Lemma 7.5 and the fact that $x_{K} v=x_{v^{-1}(K)}$ this can be written as

$$
\mu_{J}^{J} x_{J} e^{J} x_{M}=x_{J} x_{M}-\sum_{K \subset J} \mu_{K}^{J} \sum_{\substack{v \in X_{M} \\ v^{-1}(K) \subseteq M}} x_{v}-1(K) e^{e^{-1}(K)}
$$

Writing $N=v^{-1}(K)$, and rearranging, this becomes

$$
\mu_{J}^{J} x_{J} e^{J} x_{M}=x_{J} x_{M}-\sum_{N \subseteq M}\left(\sum_{\substack{v \in X_{M} \\ v(N) \subset J}} \mu_{v(N)}^{J}\right) x_{N} e^{N}
$$

In order to evaluate the inner sum we apply Lemma 2.2 to obtain

$$
\sum_{\substack{v \in X_{M} \\ v(N) \subseteq J}} \mu_{v(N)}^{J}=\sum_{\substack{t \in X_{J M} \\ t(N) \subseteq J}} \sum_{\substack{u \in W_{J} \cap X_{J \cap t(M)} \\ u t(N) \subseteq \Pi}} \mu_{v t(N)}^{J} .
$$

Using Lemma 7.2 and 7.3 this last expression gives

$$
\begin{aligned}
\sum_{\substack{v \in X_{M} \\
v(N) \subseteq J}} \mu_{v(N)}^{J}= & \sum_{\substack{t \in X_{J M} \\
t(N) \subseteq J}} \mu_{t(N)}^{J \cap t(M)} \\
= & \sum_{\substack{t \in X_{J M} \\
N \subseteq J}} \mu_{N}^{t^{-1}(J) \cap M} .
\end{aligned}
$$

Writing P for $t^{-1}(J) \cap M$ and using the definition of $a_{J M P}$, this last identity becomes

$$
\begin{aligned}
\sum_{\substack{v \in X_{M} \\
v(N) \subseteq J}} \mu_{v(N)}^{J} & =\sum_{N \subseteq P} \sum_{\substack{t \in X_{J M} \\
t^{-1}(J) \cap M=P}} \mu_{N}^{P} \\
& =\sum_{N \subseteq P} a_{J M P} \mu_{N}^{P}
\end{aligned}
$$

Now using Theorem 7.6 applied to W_{L} we have

$$
\begin{aligned}
x_{J} x_{M}-\sum_{N \subseteq M} \sum_{\substack{v \in X_{M} \\
v(N) \subseteq J}} \mu_{v(N)}^{J} x_{N} e^{N} & =\sum_{P \subseteq M} a_{J M P} x_{P}-\sum_{N \subseteq M} \sum_{N \subseteq P} a_{J M P} \mu_{N}^{P} x_{N} e^{N} \\
& =\sum_{P \subseteq M} a_{J M P} x_{P}\left(1-\sum_{N \subseteq P} \mu_{L}^{P} x_{N}^{P} e^{N}\right) \\
& =0
\end{aligned}
$$

Returning to (7.7) we find that

$$
\mu_{J}^{J} x_{J} e^{J} x_{M}=\sum_{N \subseteq M} \sum_{\substack{v \in \lambda_{M} \\ v(N)=J}} \mu_{v(N)}^{J} x_{N} e^{N}
$$

whence

$$
x_{J} e^{J} x_{M}=\sum_{N \subseteq M}\left|\left\{v \in X_{M} \mid v(N)=J\right\}\right| x_{N} e^{N}
$$

as required.
Let us write e_{J} for $x_{J} e^{\Pi}$, and set $\mu_{K N}^{J}=\left|\left\{v \in X_{J} \mid v(K)=N\right\}\right|$. We further need the inverse (β_{K}^{J}) of the matrix (μ_{K}^{J}). Notice that

$$
x_{J}=\sum_{K \subseteq J} \mu_{K}^{J} e_{K}
$$

and also

$$
\mu_{K}^{J}=\sum_{N \sim K} \mu_{K N}^{J}
$$

whence

$$
\sum_{\substack{J, N \\ J \sim P}} \beta_{N}^{M} \mu_{P J}^{N}=\delta_{M P}
$$

Then
Proposition 7.8. For all $J, M \subseteq \Pi$

$$
e_{J} e_{M}=\sum_{P \subseteq M}\left(\sum_{P \subseteq N \subseteq M} \beta_{N}^{M} \mu_{P J}^{N}\right) e_{P} .
$$

Proof. Simply write $e_{M}=\sum_{N \subseteq M} \beta_{N}^{M} x_{N}$ and use the previous theorem.
Notice that when $J \sim K$, this propsition implies that

$$
\begin{equation*}
e_{J} e_{K}=\frac{1}{|\lambda(K)|} e_{K} \tag{7.9}
\end{equation*}
$$

This suggests that we should define

$$
E_{\lambda}=\sum_{J \in \lambda} e_{J}
$$

for then

$$
E_{\lambda} e_{M}= \begin{cases}e_{K} & \text { if } K \in \lambda \\ 0 & \text { otherwise }\end{cases}
$$

And now we have (as announced in (1.2))
(1) $1=\sum_{\lambda} E_{\lambda}$,
(2) $E_{\lambda} E_{\mu}=\delta_{\lambda \mu} E_{\lambda}$.

These E_{λ} 's clearly correspond (through $\theta: \Sigma(W) \rightarrow \mathcal{P B}(W)$) to the primitive idempotents ξ_{λ} of $\mathcal{P B}(W)$. Moreover, for each conjugacy class λ and any choice of constants $b_{K}, K \in \lambda$, such that $\sum_{K \in \lambda} b_{K}=0$, it follows from 7.9 that $\sum_{K \in \lambda} b_{K} e_{K}$ is in the radical of $\Sigma(W)$.

Acknowledgments

The authors are indepted to A. Garsia and C. Reutenauer for their invaluable contribution during the research portion of the work presented here. They are also thankfull for the help of the computer algebra system Maple without which many of the ideas of this research would not have been born (see [2]).

References

[1] F. Bergeron and N. Bergeron, A Decomposition of the Descent Algebra of the Hyperoctahedral Group I, J. Algebra (accepted 1990).
[2] F. Bergeron and N. Bergeron, Symbolic Manipulation for the Study of the Descent Algebra of Finite Coxeter Groups, J. of Symbolic Computation (accepted 1990).
[3] F. Bergeron, A. Garsia, and C. Reutenauer, Homomorphisms Between Solomon's Descent Algebras, submitted.
[4] N. Bergeron, A Decomposition of the Descent Algebra of the Hyperoctahedral Group II, J. Algebra (accepted 1990).
[5] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4,5 et 6, Éléments de Mathématiques, Masson, 1981.
[6] R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters John Wiley and Sons, 1985.
[7] R. W. Carter, Conjugacy Classes in the Weyl Group, Composito Math. 25, 1972, 1-59
[8] A. M. Garsia, Combinatorics of the Free Lie Algebra and the Symmetric Group, Analysis, Et Cetera, Research papers published in honour of Jurgen Moser's 60th birthday, ed: Paul H. Rabinowitz and Eduard Zehnder, Academic Press, 1990.
[9] A. Garsia and C. Reutenauer, A Decomposition of Solomon's Descent Algebras, Adv. in Math. 77, No 2, 1989, 189-262.
[10] R. B. Howlett Normalizers of Parabolic Subgroups of Reflection Groups, J. London Math. Soc. 21, 1980, 62-80.
[11] G. C. Shephard and J. A. Todd, Finite Unitary Reflection Groups, Canadian J. Math. 6, 1954, 274-304.
[12] L. Solomon, Invariants of Finite Reflection Groups, Nagoya Math. J. 22, 1963, 57-64.
[13] L. Solomon, A Mackey Formula in the Group Ring of a Coxeter Group, J. Algebra 41, 1976, 255-264.
[14] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc., 80, 1968, 1-108.

