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Abstract

The purpose of this paper is two-fold. First we aim to unify previous work by the first
two authors, A. Garsia, and C. Reutenauer (see [I], [2], [4], [3] and [9]) on the structure of the
descent algebras of the Coxeter groups of type A» and Bn. But we shall also extend these results
to the descent algebra of an arKltrary finite Coxeter group w. The descent algebra, introduced
by Solomon in [13], is a subalgebra of the group algebra of w. It is closely related to the subring
of the Byrnside ring B(W) spanned by the permutation representations w/Wj, where the Wj are
the parabolic subgroups of w. Specifically, our purpose is to lift a basis of primitive idempotents
of tlie parabolic ffurnside algebra to a basis of fdempotents of the descent algebra.

INTRODUCTION

Let (W, 5) be a finite Coxeter system. That is to say, W is a finite group generated by a set S subject to the
fining relations

(sr)m" = 1 for all s, r   5,

lere the m, r are positive integers and m,, = 1 for all s e S.
As is well known, W is faithfully represented in the orthogonal group of an inner product space V which has

basis r[={a', |s 5}in bijective correspondence with S. The inner product is given by

(Q',, Q'r)= -C0s(fl-/m.r),

id the action of W by
s(v) =u-2(a,, v)a',

r all r, s65 and v   V. Thus s acts as the reflection in the hyperplane orthogonal to a,, and as a consequence
is called the reflection representation of W. One easily checks that for all s, r   5 we have o:r = ±w(o', ) in V if
id only if r = wsw"1in W.

We call the set $ ={ w(a) | ic G IV, C(  II} the root system of W, and II the set of fundamental roots.
is well known (see [6]) that $ can be decomposed as $ = $+ lt)$-, where every element of <^+ (resp. $-) is
linear combination of fundamental roots with coefficients all non-negative (resp. all non-positive). Moreover, if

  
W and ((u;) denotes the length of a minimal expression for u; in terms of elements of 5, then £{w) equals the

.rdinality of the set N(w), where
7V(w) = {ae ̂ + | w(a)   $- }.

ote that £(vw) = C(v) + C(w) if and only if N(vw) = w-l(.V(v)) li) 7V(w).
For each ,7 C n the siandard parabolic subgroup Wj is the subgroup of W generated by

- s, ={seS\a, eJ}.
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Then (Wj, Sj) is also a Coxeter system. If Vj is the subspace of V spanned by J, then the W-action on V yields
a Wj-a.ctwn on Vj, which can be identified with the reflection representation of Wj. The root system of Wj is
^j = $ n V., ; and we write $J- for $+ n V/ and $7 for $- n Vj. It is easily shown that N(w) C ^ if and only if
w eWj.

In this paper we study the descent algebra (or Solomon algebra) S(IV) of a Coxeter group W. If w   W, then
the descent set of w is defined to be

D(w)=7V(u»)nn={aen |w(a) $-}.

In terms of the generating set S this corresponds to {s  5 | C(ws) < t{w)}. If J C H, let

A'/ ={weW\ D(w) nJ=0}={w W| w(J) c $+}
and let

-=E w.

w A'j

Define S(1'l/') to be the subspace of Q(W) spanned by all such elements a-j.
It has been shown by Solomon [13] that E(IV) is a subalgebra of Q(TV). More precisely, Solomon has shown

that

where

XjX, QJKI.XL,
LCK

(1. 1)

a^-L= |{w A-71n^. |w-l(J)nA'=£}|.
In Section 2 we shall prove these facts using techniques that will be developed further in later sections. It is easily
shown (Solomon [13]) that the a-^. 's are linearly independent; thus they form a basis ofS(W).

In [9] A. Garsia and C. Reutenauer have given a decomposition of the multiplicative structure of the descent
algebra of the symmetric group (the Coxeter group of type An). This decomposition exploits the action of the
symmetric group on the free Lie algebra in a manner reminiscent of the Poincare-BirkofF-Witt Theorem. In [1] and
[4] we showed that a similar decomposition, as well as related results, also holds for the hyperoctahedral group
(type Bn). The object of this paper, and ongoing work, is to extend these results to the descent algebra of any
finite Coxeter group.

For a general descent algebra S(W) we shall exhibit a new basis consisting of elements e^, K C H, defined by

e, = ^ /?^,,
LCK

for some constants 0^, such that each e^. is a scalar multiple of an idempotent, and SA-CH eK = 1. Furthermore, for
all J M C II, when CjC^ is expressed as a linear combination of the e^. 's, the onlynon-zerocoefficients correspond
to subsets A' of AI that are equivalent to J, in the sense that J = u/(A') for some w  W. As a consequence we
obtain a set of idempotent.s Ex = Eh-e» e^ indexed by equivalence classes A of subsets of H, such that

ExE,=
'0 if A 9"^,
Ex if A = /,, (1. 2)

and T-, \ E> =1- In fact, the E\'s form a decomposition of the identity into primitive idempotents. Furthermore,
the E\'s induce a decomposition of the action of E(IV) on Q(IV) by left multiplication:

QW=©^,
A

w £re-/^ = Ex' ^(I7)- From tl he 1'ormula for 0, 6^, given in Section 7 it can be seen that Cj - e^- is in the radical
ofS(W} wlicncver J is equivalent to A', aiid (.hercfore

dim(v/S(IV)) = 2'<;1 - |A|,
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where A is the set of equivalence classes of subsets of H.
These constructions have already been carried through for all indecomposable finite Coxcter groups of type

An (see [9]), and of type Bn (see [1] and [4]). Part of the study of the descent algebra has been carried through
with extensive use of the computer algebra system Maple [2].

2. THE SOLOMON ALGEBRA

We start by proving some basic facts concerning the elements Xj defined in Section I. Proofs of results we
assume can be found in §2.7 of Carter [6].

If J C H, then each element of W is uniquely expressible in the form du with d e Xj and u e Wj, and here
we have />(du) = £{d) + ̂ (u). Thus A'^ is a set of representatives of the cosets wW, in W. Likewise, if K CJ C H,
then XK n \Vj is a set of representatives of the cosets W\VK in Wj. In this situation we define

c^= E
w^WjnXK

w

and note that x^ = XK. The next two lemmas provide analogues of induction and restriction for Solomon algebras.
The connection with induction and restriction of permutation characters will be given in detail in Section 4.

Lemma 2. 1. If K CJCH, then A\. = X, (W, n X^. ) and thus x^ = x, x^.

Proof. If d e X, and w   W/ nA\., then w(/<) C $^-, whence dw(7<) C d(^J-) C ^+. It follows that dw   X^
and this shows that

{dw\dex,, we \v, n x^} c x^.
Comparing cardinalities we see that equality holds; and, on taking sums, we have XK = ZjX-^. .

Lemma 2. 2. For all J, K C S

wAere Xj^ = Xj1 D A\-; and (Aus

- ^-= |±) (w. nx^^H
deXjK

x^= S x^^d.
d^XjK

Proof. First note that if d e X, K and u   ^ n Xjn<^), then d   A'71 and u  Wj; so an element of W can
arise as a, product u. c? in at most one way. Let w   A\. and write w = ud with d ^ Xjl and u ^. Wj. Since
£{ud) = £(u) + <?(d) we have N{d) C N(ud) = N(w), and so d 6 ^-. Thus d e X, ^, and furthermore

u(J n d(A')) C ud(/<) = w(K) C $+,

so that u QW, n Xjn^K). It remains to prove that ud   XK whenever d   X, K and u   ̂  n -Y^, (^). Since a
fundamental root cannot be nontrivially expressed as a positive linear combination of positive roots we see that
K n d~.l(?t) =-A', n d~,l(>7^ But d(A'). c ^+ (SL"lce d  ^)and so d(/<)c (^+ \ $1') u (^ n <f(/<)). It follows
that urf(A') C u($+\ $ J-) U u( Jnd(A'))C<&+, and therefore udeA\., 'as'required. ' " ' ' " »

Lcmma 2. 2 shows that, each element of W is uniquely expressible in the form udw with w  \VK, d e XJK
and u^w^^j^w- Moreover, in this situation C(udw) = t(u) + f(d) + £(w). It follows readily that each double
coset^VjwWK contains a unique d   XjK, and that Wj n dW^d-^ = W,^'^-

For J, K C n we write J ~ K whenever w(J) = K for some w   W (that is, 7 and K are equivalent) and
^. ^vhenever J is equivalent to a subset of K. The next lemma shows that this equivalence relation is the one

used by Solomon in [13].
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Leinina 2. 3. If 7, /\ C H, (Aen J ~ A" if and only if W^ and WK are conjugate, and J -^ K if and only if
is conjugate to a subgroup of WK-

Proof. Suppose that w eW satisfies w~lWjW C WK. Ifrfis the shortest element in WjwWK, then d~lWjd C V
and therefore

w,n^=w, r\dw^d-l=w:.
Thus J n d{K} = J and therefore d-l(J) C K. All assertions of the lemma now follow.

Lemma 2.4. IfJCIlandd^W with d-l(J) C H, (Aen X^c? = X, -i^).

Proof. For w   A^-I(J), it is clear that wd-l   Xj, and conversely for w e A''j, that we?   A^-I(J).

Theorem 2. 5. For a.11 J, K CU
X]XK = ^ , QjKz.a'r

LCK

Proof.
XjXfc = Xj ^ . l;}n<l(K)

d XjK

.Cjn<l(K)<
d^XjK

a;<l-»(J)nK
deXjK

O-JKL^L-

, d by Lemma 2.2

d by Lemma 2.1

by Lemma 2.4

Obviously O]KL = 0 when L g K. Thus the theorem is proved.

Proposition 2. 6. Let a^p denote the structure constants of the descent algebra S(Wj) corresponding to
xj^ basis. If L, K C H, then

XK^L = Z^IZ-/ aK M<lMLp)XP^
P^L MCJ

for aJJ J C H sucA tAat L C J. Thus the structure constants satisfy the identities

aA'LP = ^ ^ OKJM^MLPI
M;J

for all J containing L.

Proof. We have
a-K.i-2. = XKXJX^

aKjM-CM) xi
M£J

= ^ a^x, xj,, xi
M^J

= ^a^, x, (^a^xj^
MgJ P£Z,

= '^OKJMO^l. pXp-
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This proves the first assertion of the theorem, and comparison with

XK^L = ^ , OKLpXp
P£I.

completes the proof.

3. REDUCTION TO INDECOMPOSABLE FINITE COXETER. GROUPS

We shall now give a decomposition of the descent algebra of a product of two Coxeter groups. For a given
Coxeter system (W, S), let WK denote the subgroup generated by a subset K of S. This subgroup is also a Coxeter
group.

One has the following

Lemma 3. 1. Let J and K be subsets ofS such that all elements of J commute with all elements of K, then
3. JUK ̂  .f^..cK_

L - "Lnj^z. nK (3. 2)

Proof. We might as well suppose that JUK = S since this does not change the argument. Hence we now want
to show that x^ = x^jX^^. Given w e X^, there exists a unique decomposition u; = WjW^, with Wj   Wj and
WK   WK- It follows immediately that

D(wj) = D(w) n J, and D(w^. ) = D(w) n K. (3. 3)
Whence^,   A^ n IVj and w^   X;. n WK. Moreover every pair (w/, w^. ) satisfying (3. 3) gives rise to a unique w
in XL. This proves the lemma. - . . - .
It follows that

Proposition 3.4. Jf5' = 5i U 5'2, w'Aere all elements ofSi commute with all elements of St, then the function
f : S(W5j ® £(W5, )^E(W5),

defined as

y>(a(8>^)=a^, (3. 5)
is an isomorphism of algebras.

Proof. Since the product of two basis elements in E(WS, ) ® £(^5, ) is by definition
(a-'K, ® a-A-, )(a-L, ® ZL, ) = (XK, X^) ® (.c^a-L, ),

we shall prove that y is a morpliism if we show that

^^^^=^^:^^. (*)
But every element of Ws, commutes with all elements of Ws,, thus

. S, ySi _ yS;
K'3A2. 1 - . iL\-CK\^

and (*) follows. Morovcr, y is clearly bijective. This proves the proposition.
Thus we can reduce our discussion to indccomposable finite Coxeter groups.
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4. THE PARABOLIC BURNSIDE RING

For eacli J C II we have a permutation representation of 17 oil the set V^/^ ofcosets WjW. The orbits of W
on W/iv, x ^V/\V^. have representatives of the form (Wjd, WK), where d   Xj^; and the stabilizer of (Wjd, WK
in W is d-lWj dnWK = Wa-^j^K- Thus

wiw, x^lw^= E"^w/^, (4.1
LCK

where the aj ^L's are defined as in Section 1. This proves that the representations W/\. y span a subring PB(W
of the Burnside ring of W. We call this the parabolic Burnside ring of W. On comparing (4. 1) and (1. 1) we sei

that there is a homomorphism 0 : E(W) -> 'PB(W). Note that 6 is not in general an isomorphism, because W/^y
and W/iy represent the same element of'PB{W) whenever J ~ A'.

A subgroup of W is said to be parabolic if it is conjugate to a standard parabolic subgroup Wj for some 7 C II
For each v G. V, the stabilize? in W of v,

Stab,v(v) = {w eW \ w(v) = v},

is a parabolic subgroup. Indeed, the set

C= {u  ^ I (a, u)^ Ofor all a  H)

is a fundamental domain for the action of W, and we may choose t GW such that t(v) £ C. Then (see Steinber;
[14]) _ .... ..

t Stabw(v)<-l = Stabw(((i;)) = Wj,
where J={o-  H | (a, ((v)) = 0 }. ;:'

Since Wj stabilizes J-L it follows that w   Wj stabilizes v S V if and only if it stabilizes the orthogonz
projection of v mVj. Hence Stabiv^(v) is a parabolic subgroup of Wj. It follows by induction that the pointwis
stabilizer, Stabw(P), of an arbitrary subset P of V, is a parabolic subgroup of W. Since Staby^(P U Q) =
Stabw(P) n Stabiv(Q) we see that the intersection of two parabolic subgroups is again parabolic; this also follow

from the fact, mentioned in Section 2, that Wj n dI'V'Kd"1 = W]ni(K) whenever d 6 X]K-
If g is an arbitrary orthogonal transformation on V, define

and

[V, g]={(l-g)W\veV}

Cv(g)={vGV\g(v)=v},
and let r(g) = dim[V, $r]. It is easily checked that [V, g] is the orthogonal complement ofCv(ff) in V. Furthermore
if0^ v   V and r is the reflection in the hyperplane orthogonal to v, then

r(rg) =
r(ff)+l \!vi[V, g}
r(5)-l i{ve[V, g}.

(4.2

Thus r(g) is the length of a minimal expression for y as a product of reflections. In [6] Carter proves that ever:
element w e. W call be written as a product of r(iu) reflections in W. (We include a proof in Lemma 4.3 below.)

Following Solomon [13], for w   W, we define

A(w) ={yeW\ [V, y}C[V, w}}={yeW\ Cv(w) C Cv(y)}.
Equivalently, A(w) = Stabw(Cv(w)). In particular, A(w) is a parabolic subgroup of W. We say that w is of iyf
J if A{w) is conjugate to Wj. We shall sometimes say that w is of type A, where A is the equivalence class of J
since (by Lemma 2. 3) J is determined by w only to within equivalence. It is clear that A(<w(-l) = <A(w)(-l, an
hence conjugate elements have the same type.

Observe that the maps P .-> Stab,v(.P) and H i-r Cv(H), where H \s a. subgroup of W, form a Galoi
connection between tlic partially ordered set ofsubspaces of V and the partially ordered set ofsubgroups of W, i
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the sense that P C Cy{H') if and only if Jf C Stab>v(P). The parabolic subgroups are the closed subgroups of W
for this Galois connection; that is, // is parabolic if and only if J/ = St&bw(Cv(H)). Thus if H is any subgroup
of W, then Stabiv(Cv(//)) is the smallest parabolic subgroup of W containing H. In particular, if w   W, then

A(w) is the smallest parabolic subgroup containing w, and so w is of type J if and only ifJ C II is minimal subject
to W., containing a conjugate of w.

Lemma 4. 3. Let J C II and suppose th&t w   W is of type J. Then
(1) if K C n and WK contains a conjug&te of w, then J -^ K,
(2) r(w) = \J\,
(3) w can be written as a. product of\J\ reflections in W.

Proof. Replacing w by a conjugate of itself, we may assume that w   \Vj. Since w has type J it is not contained
in any proper parabolic subgroup of Wj. If (   W and <-lw( 6 WK, then w £ Wj HtWKt'1, a parabolic subgroup
of Wj. It follows that WjCitWKt''1 = Wj. Now Lemma 2. 3 gives J -^ K, proving (1). The generators of IVj all fix
JL pointwise, and so J1- C Cv^w). Taking orthogonal complements gives [V, w\ C Vj. If [V, w\ 7^ Vj, we deduce
that Vj contains a nonzero v   C'v(w), and hence that w   Stabiv^(v), a proper parabolic subgroup of Wj. This
is a contradiction, and therefore [V, w] = Vj. Thus

r(w) = dim[V, w] = dim V, = |J|,

proving (2).
Since [V, w] = Vj it follows from (4.2) above that r(sui) = r(w) - 1 whenever s   Sj. Hence sw has type Ji"

for some A' C H with [A'| = |^|- 1. Arguing by induction we deduce that sw is a product of |J| - 1 reflections in
W, and therefore w = s(siu) is a product of |J| reflections. .

For J C S, let Cj be the product of the reflections s, s   Sj, taken in some fixed order. The conjugacy class of
Cj in Wj is independent of the order, and the elements of this class are called the Coxeter elements ofWj. Since
J is a, linearly independent set it is clear that [V, Cj] = Vj, and so Cj has type J. We note as a consequence that
the parabolic subgroups of W are precisely the subgroups A(w).

Proposition 4.4. I! J, K C II, then Cj is conjugate to CK if and only ifj ~ K.

Proof. If Cj and c^ are conjugate, then they are of the same type-that is, J ~ /<. Conversely, if 7 = d(7<) for
some d 6 W, then dSjd-l = SK, and so dcj d-l, being a product of the reflections in SK, is conjugate to CK- .

Let y?j = Ind^j 1, the character of W induced from the trivial character of Wj. In other words, y>j is the
character corresponding to the permutation representation W/^y .

Theoreni 4. 5. TSw assignment W/^y i-> iflj defines an isomorphism Q from PB{W) to the ring of Q-linear
combinations of the if j. Thus we may identify PB(W) with this ring of class functions.

Proof. If J ~ K, the representations W/yy and W/^y are equal in T>B{W) and hence

^ = eov/^) = G(W/^. ) = ^..
This makes it legitimate to write <f>\ instead of y,, where \ is the equivalence class of J. For each equivalence
class fi choose an element c^ of type fi: for example, a Coxeter element. Since IV/ contains an element of type
7\ if and only if A' ^ J it is clear that v\(c^) 9^ 0 if and only if /i ̂  A. For a suitable ordering of the rows and
columns, the matrix (v>(cii)}\^ is upper triangular with non-zero diagonal entries. Therefore the y\ are linearly
independent. .

Induction and restriction of cliaracters give rise to maps between T'B{Wj) and PB{W). The permutation
representation Wj/W^ induced to T'B(W) is simply ̂ V/^y . By Lemma 2. 1 the analogue of induction for the
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Solomon algebras is left multiplication by Xj. The restriction of W/yy to 'PB(Wj ) is obtained by considering the
orbits of Wj on the cosets WK^. Thus

ReswAW/w^)= E }V^W.
dexjK

Jnd(K)'

and the analogue of restriction for E(W) is given by Lemma 2. 2. Combining these two observations we see that
Theorem 2. 5 is the Solomon algebra analogue of the Mackey formula for the product of induced characters.

5. DlHEDRAL GROUPS

We shall now study in particular the descent algebra of dihedral groups W = I^W, that is, Coxeter groups
with only two generators 5 = {s, r} satisfying

(sry = i.
The corresponding descent algebra is of (linear) dimension 4. Its generators are

x{',r] = 1
a;{, } = 1 +»'+ sr + rsr + srsr + ...
a;{r} = 1 +s + rs+ srs + rsrs + ...

.r»=^w.
w

The summation for x^ (resp. x^r}) is over the set of all w £ W with only one reduced expression, this unique
expression must also end in r (resp. s). In order to simplify notation, we shall write a-, r (resp. x,, a-r) instead
of.C{,, r} (resp. a;{, }, a;{r}). The multiplication table for S(W) is easy to compute explicitly in this case. It is as
follows

2-r

.C0

X,

a-r

.i-a

X.

2x, + e^zg
?.ra

pa-e

Xr

Xr

^
2^ + E^lxt
pa-0

a-e

Xf
PX0

pa-e
2pa-e

Table 1, p EVEN

when p is even. Whereas for p odd it is

XT

a-e

X,r

X,

Xf

X,

2-, + £yi.ce
X, + ^-X^
P-CB

Xr

XT

Xr + E^1 .C(|
xr + e^zg
P.CB

3-e
a-e

P-re

pa-e

2p.c,

Table 2, p ODD



- 61 -

Using tliese tables, one can verify that for even p
1_ 1 , p-1

C, r = X, r - ^X, - ^Xr + '-^-X^
e» = ^{x, - J^o)

1/_ 1
er = ^(xr - ja-g)

ee = Tpx^

(5. 1)

are idempotents such that e^-e^ = 0, for all K, L distinct subsets of 5 = {5, r}. Since the equivalence classes of
subsets of I! coincide in this case with subsets of H, we obtain a set of idempotents

^\(sr) = e,r
E\(, ) = e,
Ex(r) = Cr
E\w = eg.

satisfying condition 1. 2, moreover the sum of these idempotents is 1.

In the p odd case, the following are idempotents
1_ 1_. , p-1

e,. =^-^, -^+^-^
1

e, = x, - ^
1

Cr = 3-r - -^Xf

£e = 2p'e-

(5. 2)

But^there arc now only^three, conjugacy-classes of subsets of 5: {{s, r}}, {{s}, {r}} and {0}. The non trivial
between two different e^. 's are

e, er = Cr and CrC, = e,.

Hence we can set
E\(sr) == C,r

E>(.) = £'A(r) = j(e, + er)
.E'A(e) = ee-

These also satisfy condition 1. 2 and sum to 1. In this case, the radical of the descent algebra is generated by the
ailpotent e, - Or.

--.. -I.n-p.rep.arati/^ f^r s^ection 7'. we sha11 now reconsider part of this construction in the context of a general
^o.xeter system (IV, 5). For two elements s and r of 5, let us compute the product x, Xr. A direct apolication'of
; 1. 1) gives

X, Xr=Qr, Xr+/3r, X^ - (5. 3)
vhere a^= |{^ |^w-i G^,, y, e 3T, ^-lsu; = r}|. Observe that for any N = ^^w in Q(1V), one has
^Xf = Xf^ = (^, Nu, ).ce. From Lemma 2. 1 it follows'that ' z_. w -»~ - -. v- y,

^^^-lly!
.. T+^=-T'
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since a;; = 1 +r. Thus we obtain
1 \w\

X, Xr = Otr. {Xr - ^a;() + '-T-XZ. (5. 4)

Identity (5.4) suggests that we set for any Coxeter group

e' = ^(a;s - ^<)'

for then e, is clearly an idempotent since

(x. - ^a-a)2 = ^ - 2a-, a-0 + ^
= oi'. (x' - ^a;a)-

Moreover a similar computation implies that
a;

e.er = ^-e..
Clearly if s and r are not conjugate, ar, = 0. But if they are conjugate then we maintain that a; =^a^. In^fao
this results from the fact that both these quantities are equal to half the cardmalityo^thece^tralizel' ^^ ̂  ̂ w ^
ty I w lsw= s}. This last assertion results from the observation that for w   C'(s), either w   -X',"1 nX, o:
ws   X,-1 OX,, since evidently i(ws) = £(sw). Whence

e, er -{Cr if s and r are conjugate

0 otherwise.

From this we conclude that

Proposition 5.5. In any Coxeter group, for all s   5, the

E^
1

a) = H7T>T 2^ cr>1^)1 r A(»)

are idempotents, and its and r are not conjugate, then

EX(,)E^) = 0.

We shall generalize this result to all descent algebras in Section 7.

6. IDEMPOTENTS IN THE PARABOLIC BURNSIDE RING

The Q-algebra PB{W) is isomorphic to an algebra of functions, and therefore it has a basis of idempoter
elements. Specifically, if we define

^=^V^Vt"
c

where the coefficient matrix (v\,, ) is the inverse of the matrix {y\(c^) which appears in the proof of Theorem 4.;
then / . ..

0 if A ^/<
^(c")=<!; ^'-r~.. (6J

1 if A = ^,

and it follows that $A is idempotent. The next theorem shows that (6. 1) holds when c^ is an arbitrary element <
type p..
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Fheorein 6.2. Let J, K CV. and let c G. W be any element of type J. Then y>K(c) == a^jj, the number of
; G XKJ such that d(J) C K.

Proof. Without loss of generality we may suppose that ce. Wj. By Mackey's formula, the restriction ofyj< to

VjlS
Res^(Ind^l)= ^ Ind^_^^l.

d^XK)

But since c is not contained in any proper parabolic subgroup of Wj, the character In<i^J,,.,, _. 1 vanishes on c
d

inless d"1 (A") nj = J, in which case it takes the value 1. .
For JC n, Iet ^ ={w  W | w(J) = J}. Then Nj is the intersection of Xj and the normalizei of Wj,

whence \Nj\ = Ojjj is the index of Wj in its normalizer.
For convenience we define $j = ^ and i/j^ = i/\ft whenever 7 £ A and K & p.. For JC A" C II, Iet^ be the

primitive idempotent of'PB(W/c) that takes the value 1 on elements of type J relative to WK-
The next two propositions describe the effect of the restriction and induction maps on these idempotents.

Proposition 6.3. Let J, K CIl and let J\, 3^, ..., Jh be representatives of the WK-equivalence classes of
.'ubsets ofK which are W-equivaient to J. Then

Resw^$, =^^.
. =1

n particular, Resw-K ̂ j = 0 if J is not equivalent to any subset of K,.

'roposition 6.4. IfJCKCll, then

,w^W fK _ 1^1Ind^^=|pv;n^|^-

'roo/. Suppose at first that J = K and that c ^. Wj vs an element of type J. Then A(c) == l4<, and therefore
-lc. c e Wj if and only if a; is in the normalizer of Wj. So (ind^ ^J)(c) = |^Vj|. It is clear that Ind^j $J vanishes

rerywhere except at elements of type J, and therefore Ind^ ^ = |^j|^j.
In general, we have

^^=ln^^^^^ = ^^(,.
For the purposes of calculation, the following theorem is sometimes more useful than Theorem 6.2. The

xantities |-^jt/|py p ^- | can be obtained from the tables in Hewlett [10].

heorem 6. 5. Let J ^ K CTl and let J\, Ji, ..., Jh be representatives of the V^K-equivaJence classes of
bsets of K which are W-equivalent to J. If c   W is of type J, then

VK'. (<.) =5: _\N_.\
f^l^n^. l-

.oo f. By definition, ^$^ = 1, where L runs through representatives of the Wx-eqivalence classes of subsets
K. Inducing to W and using Proposition 6.4 gives

y/=£ 1^1
l^n^l ;£>



64 -

Since ̂ (c) = 1 if and only if Z. ~ J, for some i, evaluation at c completes the proof.

This theorem is also a consequence of the fact that \Nj\/\yy n ;v. | is the number of d   XKJ such 1
d{J) C K and d(J) is lVj<-equivalent to J,.

Let C(J) be the set of elements of type 7 and note that C(J) depends only on the equivalence class of J.
The main result of this section yields a remarkable formula for the coefficients V]K in the case 7< = 0.

Theorem 6.6. If mi, ma, ..., nin are the exponents of W, then
inmlm2 ... "»"^. =(-1)"^ W[

(yj >e) {
0̂ J

Proof. If c is the sign character of W, then by Frobenius reciprocity

7=0
7^0

and therefore i/n, = ($n, f). By definition of the inner product,

(^, £)=M-l^(-l)r(u'^n(w)
wew

=(-!)" |C(H)|/|W|.
A well-known formula of Shephard and Todd [11] (see also Solomon [12]) states that

^ tr(w) == (1 + mif)(l + msf).. . (1 + mn<).
uieiy

Lemma 4.3 (2) shows that r(w) = n if and only if w is of type H. Thus, mimg . . -mn is the number of elemc
of type H in W. This completes the proof.

CoroUary 6.7. Let J C H with \J\ = k and let mi, m^, ..., mk be the exponents ofWj. Then
^mimz ... mk^. =(-!)* T^(^)l '

where Nw(Wj) is the normalizer in W ofWj.

Proof. To see this, apply Theorem 6.6 to Wj and then use Proposition 6.4.

It is also interesting to observe that
I^IE^=IC(J)I-

/*

The proof is obtained by taking the inner product of ̂ j = Y. Vj^,, with the trivial character and using
fact that (y^, 1) = 1 for all fz.

A similar calculation, but taking the inner product of ̂ j with the sign character of W^ induced to W give

E^a^==(-i)M \c(J)nw^\
1^1 '
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7. iDjfc^POTENTS IN THE SOLOMON ALGEBRA

The parabolic Burnside ring is commutative and semisimple and consequently it has a unique set of primitive
idempotents which sum to 1. These are the ̂  determined in the previous section. The descent algebra E(W) is
not semisimple but we have S(W)/\/S(W) ^ 'PjP(l^) and therefore we may find primitive idempotents of E(W)
by lifting the ̂ .

We begin by defining certain constants fi^ for alIJ< C JC II

^=\{wex, |w(7<)cn}|.
This implies that, for all K C II, ̂  = 1 and {i^ = \XK\. Moreover

Lemma 7.2. ForK CJ C LCV. we have

flK = ) ^ //w(K)I."
wgWrnXj

w(A-)££

(7. 1)

Proof. Using the definit'. on of/i^^.,, the above expression becomes the cardinatity of the set

y {vex^ \ vw(K) c n}.
vi^Wi.nXj
w(K)CL

[fv ex^, u; e w^, nx^ and vw(K) c n, then w(K) C w(J) C ^ and so w{K) C L. Thus by Lemma 2. 2 this
set is

{w e x, | w(/<) c n},
whose cardinality is p.^. a

Lemma 7. 3. If K C J and d{J) C R, tAeii /<^^ = ^.

proof- Lemma 2.4 states that w   X^j) is equivalent to wd/inXj, hence multiplication (on the right) by d
istablishes a bijection between the sets {w e Xj | w(J<) C H} and {w   X^j) | wd{K) C H}. This proves the
!emma.

Now, for each J C H, define e'7   S(tVj) recursively by

By induction we have

rieJ =l-^^xJ,eK.

KCJ

xJ, eK   S(^).

(7. 4)

Lemma 7. 5. Ifv-l(J) C Tl, then ej v = vev~1^.

Proof. We argue by induction on |J[, the case J == 0 being trivial. First observe that v~lWjV = W,-i(^ and if
FfC J and de PV^n XK, then

(v-ldv)v-l(K) C t/-l(^) C ^+,
whence v-ldv   W.-i^ nX. -i^,. Thus xĵ v = w::;^,.
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Now suppose that J 7^ 0. Then

{ij, e/v^v- ^fi/^eKv
KCJ

= v - £ IJlJKXJKVe'~ (K)

KCJ

=f-E^va;:%))c1 '~lw

KCJ

=^- E ^
v(K)CJ

= ^ve'-'w.

-1(J),,».-1(/)<K'vx

This proves the lemma.

by (7. 4)

by induction

by Lemma 7.3

Theorem 7.6. If J, M CTl, then

where 7^ = |{v ^ I v(N) = J }\.

x, eJ XM = ^ 7^irNew,
NCM

Proof. We argue by induction on \J\. If 7 = 0, it is straightforward to check that both sides of the equality reduc
to (/i§)-l|XM|a:». Suppose that 7^0. Then by (7.4) and Lemma 2.1

and by Lemma 2.2 we have

^x,eJ XM = Xjx^ - ^ P^XK KXM.
KCJ

fij, x,ejx^ = x, x^ - ^ ̂ a;KCK ^ a;^n. (^)V.
KCJ veXKM

If K n v(M) ^ K, then a"KeKa:^n, (^, = 0 by induction and therefore the expression becomes

^x, eJ XM = a-ja-Af - ^ ftJKXKCK ^ v.

KCJ V^XM
v-l(K)CM

By Lemma 7.5 and the fact that XKV = X.-IIK) this can be written as

fij, x, ej x^, = X, XM - S ̂  S a;.-lwe*'
KCJ V^XM

u-l(K-)CM

(K)

Writing N = v~l(K), and rearranging, this becomes

l. iJ, XjeJ XM=XjXM- ^
NCM

V" .,'
jL^

V^XM
^w 2-//e".

\v(N)CJ I

In order to evaluate the inner sum we apply Lemma 2.2 to obtain

^(. N) = ^ ^ /<^W
«£XM «eXjM u6Wjn^jn, (M)

v(N)CJ t(N)CJ utWCTI

(7. -;
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Using Le"ima 7.2 and 7.3 this last expression gives
ij. . - V^ ,,Jn'(M)
'"(N) = Z-c //<'W'

V XM teXjM
v(N)CJ i(N)CJ

= E ^-l(J)nM-
t6^7M
NCJ

Writing P for <-1(7) n M and using the definition of a/^p, this last identity becomes

E ^)=E E
UCA-M NCP « XJM

^

v(N)CJ t-l(J)nM=P
== \^

Now using Theorem 7. 6 applied to W,. we have

^ QJMP^.
NCP

Xjx^ - ^ ^ ^(N)XNeN = ^ a^Mpa-p - 1^ 1^ a^p^. c//ew
NCM VG. XM PCMATCM V^XM

v(N)CJ

Returning to (7.7) we find that

whence

EIS required.

= E^^jl-^^^e-
PCM \ NCP

=0 by (7. 4).

lij, x, ej x^= ^ ^ ^(jv)^e//,
NCM U AM

v(N)=J

^, ej x^= ^ \{veX^\v{N)=J}^eN,
NCM

Letus^wntee, for x, en, and set fi^ =\{v ^ X, \ v(K) = ^}|. We further need the inverse (/3i) of the
rix (fi^). Notice thatmatrix

and also

whence

Then

Proposition 7.8. For all J, M CTl

*'=.?-
KCJ

f^JKeK

, J - v^ ".'
^-^

N~K
^ = ^ ^

E^^=^p.
J,N
J~p

e^ = E I E ^^} ̂ -
PCM \PCNCM



68 -

Proof. Simply write e^ = EJVCM Wa;w and use the previous theorem.
Notice that when J ^ K, this propsition implies that

1
CjCK =

This suggests that we should define

for then

\>w\'

^= EC,,

CK. (7. 9)

Je\

E^M
CK i

, 0 c

if7< A

otherwise.
And now we have (as announced in (1.2))

(i) i=E. ^,
(2) E^E, = S^E^.

These E^'s clearly correspond (through e : S(IV) -+ TB{W)) to the primitive idempotents ̂  o!PB(W). Moreover,
for each conjugacy class A and any choice of constants IK, K   A, such that i^^ex 6K = 0, it follows from 7.9 that
z-^Ke\ &K<°K is in the radical of E(W).
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