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Abstract. Intervals in the factor ordering of a free monoid are investigated. It was shown by
Farmer [6] that such intervals (8, @) are contractible or homotopy spheres in case B is the empty
word. We observe here that the same is true in general. This implies that the Mobius function of
factor order takes values in {0,41,—1}. A recursive rule for this Mébius function is given, which
allows efficient computation.

The Mobius function of subword order was studied in [2]. We give here a simpler proof (a
parity-changing involution) for its combinatorial interpretation.

1. Introduction.

Let A* denote the free monoid over an alphabet A. The elements of A* are finite strings of
elements from A called words. The length |a| of a word a = aja; - - - a,, is the number of letters
n. There is a unique word A € A* of length zero, the empty word.

We will say that B is a factor of a if a = v36, for some v, § € A*. Furthermore, 8 is a left
factor (or prefix) in o if § = A and a right factor (or suffix) if ¥ = X\. The relation of being
a factor, written B < a, gives a partial ordering of A*. As an ordered set A* has unique least
element ), and all maximal chains in an interval [3,a] = {y € A* : B < v < a} have length
I(8,) := |a| - |B].

Let @ = ajaz---an € A*. We will say that B is a subword of a if 8 = a;, ai, - - - a;, for some
sequence 1 <73 <3 < --- < i < n. So, a factor is a particular kind of subword. The subword
ordering of A* is discussed in Section 3. See [10] for further general information concerning
words.

To be able to state the rule for computing the Mdbius function of factor order we need a few
more definitions. Let @ = ajas---an, n > 2. Then ta = azas---a,_y is the dominant inner
factor in a. All factors of ia are called inner factors in a. The dominant outer factor pa is
the longest B # « which is both a left factor and a right factor of a (possibly wa = A). The
word a is trivial if a; = a3 = -+ = a,.

As an illustration of these definitions, let a = aabcabb. Then, ia = abcab, o = A, pia = ab.
Note that {(pa,a) = 1 iff « is trivial, and I(pa,a) = 2 iff @ = (ab)* or a = (ab)*a for some
a, be A.

The Mébius function of a poset with finite intervals [z, y] is the ZZ-valued function on intervals

recursively defined by
Z (2,72) { 1, f g=1
iz, 2) = .
soay 0, if z<uy.

For general information concerning Mobius functions see Rota [12] and Stanley [13].
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Theorem 1. The Mébius function of factor order is for all B < a in A* given by:
[ w(B,pa) , ifl(B,a)>2 and B < pa £ ia,

if I(B,a) = 2, a is nontrivial
and B =ta or B = pa,

(_1)1([3,0) ’ ‘l,f l(ﬂ>a) < 2)

L 0 , n all other cases.

ﬂ(ﬂsa):ﬁ ' ’

Corollary. u(B,a) € {0,41,—1}, for all B <a in A*.

Other classes of posets (actually, lattices) whose Mébius function has the {0, +1, —1}-property
have been studied by Bjorner [1], Greene [7] and Kahn [8]. Note that factor order is not a lattice.
We exemplify the the rule with the following computations using a = abracadabra and
pa = abra:
wla, ) = p(a,pa) = p(a,a) =1
p(b,a) = p(b,pa)=0
p(br,a) = p(brypa) =1
p(bra,a) = p(bra,pa) = —1.

The pattern matching algorithm of Knuth, Morris and Pratt [9] shows that 8 < « can be
decided in O(|a|) time. Their algorithm contains a preprocessing step which gives a linear time
algorithm for computing ¢a (for this, see also p.14 of [10]). Hence, Theorem 1 shows that
p(B,a) can be computed in quadratic time using these algorithms.

Corollary. u(B,a) can be computed in O(|a|?) steps.

Theorem 1 is implied by the next result, which describes the topology of open intervals in
factor order up to homotopy type. The proof given in Section 2 is easy to convert to a purely
combinatorial proof of Theorem 1, see Remark 4A.

From now on we will assume some familiarity with the topology of posets, see e.g.[3] for
background. All topological statements about a poset P will refer to its order complez, i.e., the
simplicial complex of chains (totally ordered subsets), although stronger statements are possible
(see Remark 4B).

Define a function s from the intervals 8 < « of factor order to the set {—c0, -2,-1,0,1,2,3,---
by the following recursive rule:

(i) U(B,0) =0 <= s(B,a) = -2,
(11) l(,B,Ol) =1 3(1330) = _1a

if a is nontrivial and

(iii) U(B,a) =2 = s(B,a) = % B =iaor B = pa,
—00, otherwise,

(iv) I(B,a) >2 = s(B,a) = { 24 5(B,pa), HBS< pa £ ia,
— 0, otherwise.

For instance, using our previous example a = abracadabra we compute: s(a,a) = 2, s(b,a) =
—00, s(br,a) =2, s(bra,a) = 1.

Theorem 2. For all 3 < a n factor order, the open interval (B,a) ={y€ A*: B<v< a}
has the homotopy type of the s(B,c)-dimensional sphere if s(B,a) > 0, and is contractible
otherwise.

For the case when f is the empty word this was shown by Farmer [6], and the proof given
in the next section is a straight-forward extension. Since the Mobius function u(8,a) is the
reduced Euler characteristic of the open interval (8, a) we deduce the following corollary, of
which Theorem 1 is a simplified restatement.
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Corollary. For all B < a in A*:

(=1)*B) | ifs(B,a) > —2
0 , otherwise.

w(B,a) = {

2. Proofs.

The analysis of the structure of lower intervals [A,a] to be given here is implicit in Farmer
[6]. The general case will follow by restricting attention to an upper part [3, a] of such a lower
interval.

For a trivial word & = aa- - - a the lower interval [\, a] is a chain of length |a|. If « is nontrivial
then it covers exactly two words o' and o, the left and right factors of length |a| — 1. (Clearly:
every nontrivial word covers 2 elements and is covered by 2|A| elements.) More generally, we
have:

Lemma 1. Suppose o is nontrivial. Then [\, a] = [\, ia]U [pa,al. Furthermore,

Case 1: If pa £ ia, then [A,ia] N [pa,a] = 0 and (pa,a) consists of two nonempty disjoint
chazins with no crosswise relations (see Figure 1a).

Case 2: If pa < ia, then (A @)\ () ia] consists of two nonempty disjoint chains with no
crosswise relations (see Figure 1b).

Figure 1.

Proof. Suppose that 8 < « is not an inner factor. Then B is a left or right factor in a, let’s
say a left factor. If || < |pal, then B is a proper left factor in pa, which (using the right factor
smbedding of pa in «) would make # an inner factor in a. Hence, 18] > |pa|, which implies
that pa < 8.

Let oo = v < Yp41 <+ < Yp_1 = @142 -+ An_y = ' and po =0 <bpy1 < -+ < 6p_q =
2203 -+ an = o' be the two unique chains of proper left and right factors of a = ajay---a,
ascending from ¢a, |v;| = |§;] = j. Then the two chains y44; < -+ < v,_; and 041 < -+ <
Sn—1 satisfy the description in Case 1. In Case 2 one must take the portions of these chains that
wre outside ), ia]. O
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An element z of a poset P is called irreducible if either x is covered by exactly one element
or z covers exactly one element. After removing some irreducibles, elements that previously
were not irreducible may become so, and conversely. We will say that P is dismantlable to a
subposet Q if Q can be obtained by successive removal of irreducibles from P. This terminology
is due to Rival [11]. A poset with a unique least or a unique greatest element (a cone) is clearly
dismantlable to a point.

Lemma 2. Let B < a, with [(8,a) > 3 and o nontrivial.
Case 1: B £ pa. Then (B3,a) is dismantlable to a point.
Case 2: pa < ia. Same conclusion as in Case 1.
Case 3: 8 = pa £ ia. Then (B,a) is dismantlable to the subposet {a!,a"}.

Case 4: 8 < pa £ ta. Then (B, a) is dismantlable to the subposet (B,pa)U{pa,ia,d',a"}.

Proof. We begin with Case 2 (see Figure 1b). If 8 £ ia then by Lemma 1 the interval (8, @)
is a chain, and the conclusion is obvious. Suppose that 8 < ta. From Lemma 1 we deduce that
(B,a) \ (B,ic] consists of two unrelated chains. These can be removed by deleting irreducible
elements from bottom to top. Hence (8, a) is dismantlable to (8,4a], which (being a cone) is
further dismantlable to a point.

For the remainder of the proof we assume that pa £ ia (see Figure 1a). If 8 £ pa (i.e., Case
1), then either (i) 8 > wa, or (ii) B € [A,ia] \ [\, pa]. In subcase (i) the interval (8,a) is a
chain, and in subcase (ii) one sees from Lemma 1 that (8, a) \ (8,%a] consists of two unrelated
chains. Hence, in Case 1 irreducibles can be removed in exactly the same way as was described
for Case 2.

Case 3 .. easy, since (8,a) = (pa,a) consists of two unrelated chains with o' and " at the
top.

Consider finally Case 4. The elements on the two chains strictly between pa and o/, resp. a",
are irreducible and can be removed in any order. After their removal, the maximal elements of
(B,ia) \ (B, pa) have become irreducible and can be removed. Continuing from top to bottom,
all elements of (3,ia)\ (B, pa) eventually become irreducible (being covered only by ¢a) and can
successively be removed. At the end of this process only the subposet (3, pa)U {pa,ia,a',a"}
remains (see Figure 2). O

Figure 2.

The join of two posets P and Q , denoted P x @, is the poset on the set P U @ in which P
and Q retain their internal orders and all elements of P are below all elements of Q. Let A
denote the 2-element antichain, and A% the join of k copies of A;. (For example, Figure 2 shows
a poset isomorphic to (3, pa) x A2.)
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Lemma 3. Suppose that 8 < a. If s(8,a) > 0, then (B,a) is dismantlable to a subposet
1somorphic to A;(ﬁ’a)ﬂ. If s(B,a) = —o0, then (B,a) is dismantlable to a point.

Proof. We will use induction on {(8,a) > 2. If I(B,a) = 2 then (B, ) is either a 2-element
antichain or a singleton (since a covers at most 2 elements). These two cases correspond exactly
to whether s(8,a) = 0 or s(8,a) = —o0, according to the definition (iii) of the function s.
Suppose that {(8,a) > 2 and that « is not trivial. If B < pa ¢ ia we have by definition
(iv) that s(8,a) = s(B,pa) + 2, and Lemma 2 shows that (B, a) is dismantlable to a subposet
isomorphic to (8, pa) * A2. By induction, if s(B,pa) > 0 then (B,¢pa) is dismantlable to a
subposet isomorphic to A3#¥* ! 1t follows that (B, a) is dismantlable to a copy of Ag(ﬂ wa)+l

A2 = A;(ﬂ"’)“. If, on the other hand, s(3, pa) = —co then by induction (8, pa) is dismantlable
to a point. It follows that (f,a) is dismantlable to a copy of {pt} * A3, which is further
dismantlable to a point (being a cone). The degenerate case when s(B,pa) = —1,ie. I(B,pa) =
1 and (B, pa) = 0, is easily checked to be consistent.

Keep the assumptions from the preceding paragraph, except let § = pa. Then s(8,a) =
s(B,8) + 2 =0, and by Lemma 2 (8, @) is dismantlable to {a',a"} ~ A,.

Suppose now that {(8,«) > 2, and that « is trivial, or 8 £ pa, or pa < ia. In each of these
cases s(3,a) = —co, by definition. If « is trivial then (B, @) is a chain, and hence dismantlable
to a point. For the other two cases the conclusion follows from Lemma, 2. O

Proof of Theorem 2. It is well-known, and easy to see, that if z is an irreducible element in
a poset P then P — {z}is a strong deformation retract of P (the retraction is the simplicial
map that sends z to the unique element covering or covered by z and all other elements to
themselves, cf. Corollary 10.12 of [3].) Hence, if P is dismantlable to @ then @ is a strong
deformation retract of P, and in particular P and @ are homotopy equivalent.

The theorem is therefore a direct consequence of Lemma 3. For this, note that the order
complex of A§+1 is homeomorphic to the k-sphere, being the k-fold suspension of the 0-sphere
As. ]

3. The Mobius function of subword order.

We start with a few definitions. Given a word a = ajay ---an € A* its repetition set is
R(a) = {i: aicy = a;} C {2,---,n}. An embedding of fin a is a sequence 1 < 73 < iy <
+++ <tk < nsuch that 8 = a;, 0, -+ a;,. It is a normal embedding if R(a) C {¢1,-++ ,ix}. For
a,fB € A* let

(g) = number of normal embeddings of 3 in a.

For instance, (“Zzzc)n =2

The following combinatorial rule for the Mbius function of subword order was given in [2].
The original proof using lexicographic shellability, as well as a later algebraic proof in [4], are
not as simple and elementary as the formula itself. However, both these proofs yield additional

information. Here a short and elementary proof (giving no additional information) will be given.

Theorem 3. The Mébius function of subword order is given by:

u(B,a) = (~1)eH+1e] (;)

for all a, B € A*.
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Proof. Suppose that v < a =aja;---a,, and let
S = {1 <ty <ig<---<tg<n: R(a) C {1, - ,ix} and v < a;, ---a,-k}.

(In this section “<” of course denotes subword order.) Then,

Z (_.]_)laH'lﬂl (;) = (_l)n(useven ‘_ ﬂSodd)-

v<BLa

Thus, if we show for v < « that S has as many members of even as of odd length (so that t!
sum equals zero), we will have verified the defining recursion for the Mobius function. To «
this we construct a simple parity-changing involution ¢ on S.

Given I = (i1,--- ,ix) € S let f = fr be the minimal number in {1,--- ,n} such that af
not in the final embedding of v in a;, ---a;,. The final embedding of 7 in § is the embeddi
(J1,- -+ ,Jg) uniquely characterized by j! < j., 1 < e < g, for every other embedding (ji,--- ,J

of v in §. Then define:
¢(I)={Iu{f1}a lffI¢Ia
I—-{f1}, if frel.

It is clear that ¢(I) € S in the first case. In the second case we see that v is a subwo
of a;, ---a;, also after ay is erased (the final embedding remains), and that R(a) C (1)
f € R(a) then ag_y = ay, which is impossible if as_; but not ay lies in the final embedding
so that also here p(I) € S.

Along the same lines one sees that f, ;) = f1, because the final embedding of v remains t!

same after adding or deleting ay. This implies that ¢?(I) = I, for all I € S.

As an illustration of the involution ¢ constructed in the proof, let v = ab and a = abea
Then

a b «— a - - a b
a - ¢ + b > a b c - b
a b - a b «— - b - a b

4. Final remarks.

A. The Mé&bius number of a poset is the number of odd cardinality chains minus the numb
of even cardinality chains (see [13], p.119). It is easy to see directly that this difference doesr
change when an irreducible is removed. Therefore, if P is dismantlable to @ it follows th
#(P) = p(Q).

Consequently, Theorem 1 can be directly deduced from Lemma 3 with no mention of topolog
One needs only to check that u(A5*!) = (—1)* and u(pt.) = 0.

B. If a poset P is dismantlable to a subposet @, then @ is a strong deformation retract of
in the “ideal topology”, a finite topology studied by Stong [14], Farmer [5] and others. Henc
one can from Lemma 3 deduce an “ideal topology” version of Theorem 2, which with knov
implications is strictly stronger than the stated “order complex topology” version. Farmer |
takes this point of view in his study of the # = A case.

C. Kahn [8] uses the method of “non-evasiveness” to prove that u(z,y) = 0 in certain poset
It is known that “dismantlable to a point” implies “non-evasive” (see [3]), so Kahn’s methc
could be used also here.

D. In [4] it is shown that for subword order the formal power series Z a and Z (B, a

B<a p<a
are rational for all # € A*. For factor order the first series is rational (a finite automaton c:
recognize the language of all words containing 3 as a factor), but the rationality of the secor
series seems doubtful.
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