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Abstract. Intervals in the factor ordering of a free monoid are investigated. It was shown by
Farmer [6] that such intervals (^, a) are contractible or homotopy spheres in case /3 is the empty
word. We observe here that the same is true in general. This implies that the Mobius function of
factor order takes values in {0, +1, -1}. A recursive rule for this Mobius function is given, which
allows efficient computation.

The Mobius function of subword order was studied in [2]. We give here a simpler proof (a
parity-changing involution) for its combinatorial interpretation.

1. Introduction.

Let A* denote the free monoid over an alphabet A. The elements of A* are finite strings of
elements from A called words. The length \oc\ of a word ec = ajaz ... Qn is the number of letters
n. There is a unique word A 6 A* of length zero, the empty word.

We will say that /? is a factor ofo; if a == 7,?^, for some 7, 8 ^ A*. Furthermore, /3 is a ^c^
factor (or prefix) in aif^ = A and a right factor (or sufRx) if 7 = A. The relation of being
a factor, written ? < a, gives a partial ordering of A*. As an ordered set A* has unique least
element A, and all maximal chains in an interval [^, 0;] = {76 A* : /?< 7 < o;} have
^, a):=H-|^|.

Let a; = aiaz ... an   A*. We will say that ^ is a subword of aif /3 = a^a^ . . . a^ for some
sequence 1 <zi <z'2 <... < u- ^ n. So, a factor is a particular kind of subword. The subword
ordering of A* is discussed in Section 3. See [10] for further general information concerning
words.

To be able to state the rule for computing the Mobius function of factor order we need a few
more definitions. Let a = a^a-i---an, n ^ 2. Then ia = 0203 ... an_i is the dominant inner
factor in a. All factors of ia are called mraer factors in ct. The dominant outer factor yoc is
the longest ft ̂  Ot which is both a left factor and a right factor of ec (possibly yo: = A). The
word a is trivial ifai =02 = ... = On-

As an illustration of these definitions, let a = aabcabb. Then, ia = abcab, ya = \, yia = ab.
Note that l(yoc, a) = 1 ifFo; is trivial, and l(yoi, 0t) =2 iff a = {ab}k or oc = {ab}ka for soinc
a, 6   A.

The Mobius function of a poset with finite intervals [x, y] is the ZZ-valued function on intervals
recursively defined by

.

E. ^-)=(i: ^
x<z^y if

x^y;
x <y.

For general information concerning Mobius functions see Rota [12] and Stanley [13].
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Theoreni 1. The Mobius fiinction of factor order is for all /3 < a in A* given by:

^(/3, y;cr) , if l(P, a) > 2 and ^ < yoc ̂ ia,

1
^, a)==^

if l(/3, a) = 2, o: is nontrivial
and /3 = ia or /3 = ya,

(-l)'(^) , ifl{/3, a)<2,
0 , in all other cases.

Corollary. ^/3, a)   {0, +!, -!}, for all f3 < a in A*.
Other classes ofposets (actually, lattices) whose Mobius function has the {0, +1, -l}-property

have been studied by Bjorner [I], Greene [7] and Kahn [8]. Note that factor order is not a lattice.
We exemplify the the rule with the following computations using cr = abracadabra and

ycr = abra:
fJ, (a, a) = ^(a, ya) = /^(a, a) == 1
^(6, 0;) =fJ, (b, ya)=0
ju(6r, a) = //(&r, ycf) = 1
p, (bra^a) = fJ, (bra, ya') = -1.

The pattern matching algorithm of Knuth, Morris and Pratt 9] shows that ft < a can be
decided in 0(|cr|) time. Their algorithm contains a preprocessing step which gives a linear time
algorithm for computing yo; (for this, see also p. 14 of [10]). Hence, Theorem 1 shows that
/^(^, a) can be computed in quadratic time using these algorithms.
Corollary. /x(/3, o;) can be computed in 0(|o;|2) steps.

Theorem 1 is implied by the next result, which describes the topology of open intervals in
factor order up to homotopy type. The proof given in Section 2 is easy to convert to a purely
combinatorial proof of Theorem 1, see Remark 4A.

From now on we will assume some familiarity with the topology of posets, see e. g. [3] for
background. All topological statements about a poset P will refer to its order complex^ i.e., the
simplicial complex of chains (totally ordered subsets), although stronger statements are possible
(see Remark 4B).

Define a function s from the intervals ̂  < oc of factor order to the set {-oo, -2, -1, 0, 1, 2, 3, . . .
by the following recursive rule:

5(^, a)=-2,
6(/?, Q)=-1,

0,

(i) /(^a)=0
(") ^, ")=1

(hi) /(/?, a)=2==^^/?, a)=
-00,

if a is nontrivial and
f3 =iaoi ,3 = tpa,
otherwise,

(iv) /(/?, a) > 2 =. .(^ a) = { 2+ s^- ̂  if ,̂  ^a^ ia'
-oo, otherwise.

For instance, using our previous example oc = abracadabra we compute: s(a, cr) = 2, 5(&, a) =
-oo, s{br, oe) = 2, 5(6ra, Q;) = 1.

Theorem 2. For all /? < a in factor order, the open interval (^, a) = {7  A* : /3< 7 < a}
has the homotopy type of the s(/3, oc~)-dimensional sphere if s{^a) > 0, and is contractiblc
otherwise.

For the case when /3 is the empty word this was shown by Farmer [6], and the proof given
in the next section is a straight-forward extension. Since the Mobius function ^f3, cr) is the
reduced Euler characteristic of the open interval (^, a) we deduce the following corollary, of
which Theorem 1 is a simplified restatement.
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Corollary. For all f3 < a in A* :

^ , ")={ (_l)^, o) , z/^, a)^-2
otherwise.

2. Proofs.

The analysis of the structure of lower intervals [\, a] to be given here is implicit in Farmer
[6]. The general case will follow by restricting attention to an upper part [/3, a] of such a lower
interval.

For a trivial word a = aa.. .a the lower interval [A, a] is a chain of length |a|. If a is nontrivial
then it covers exactly two words a' and cf", the left and right factors of length |o;[ - 1. (Clearly:
every nontrivial word covers 2 elements and is covered by 2|A[ elements. ) More generally, we
have:

Lemma 1. Suppose oc is nontrivial. Then [A, a] = [A, m] U [yoi. a]. Furthermore,
Case I'. Ifya ̂  ia, then [\, ia\C\[fOi, a\ = 0 and (<^a, Q') consists of two nonempty disjoint
chains with no crosswise relations (see Figure la).
Case 2: If y a <, ia, then (\, a) \ {\, ia} consists of two nonempty disjoint chains with no
crosswise relations (see Figure Ib).

\

b

Figure 1.

Proof. Suppose that /? ̂  a is not an inner factor. Then ̂  is a left or right factor in a, let's
say a left factor. If |/?| < \ya\ then /3 is a proper left factor in ya, which (using the right factor
embedding of ya in cr) would make /3 an inner factor in a. Hence, |/?[ ^ |^a|, whidi implies
that ycr <: /3.

Let yo; = 7fc < 7fe+i < .. . < 7"-i = 01^2 . . . cin-i = a' and ya = <?fc < Sk+i < .. < ^-i =
t2CE3 ... an = a" be the two unique chains of proper left and right factors of a = a^a'i-- . a.n
ascending ̂ from 9?a, \^, \ = |^. | = j. Then the two chains 7^+1 <-... < ^_^ and 6k+[ <... <
?n-i satisfy the description in Case 1. In Case 2 one must take the portions of these chains that
zrc outside [A, to']. [-1



106 -

An element a; of a poset P is called irreducible if either x is covered by exactly one element
or x covers exactly one element. After removing some irreduclbles, elements that previously
were not irreducible may become so, and conversely. We will say that P is dismantlable to a
subposet Q ifQ can be obtained by successive removal of irreducibles from P. This terminology
is due to Rival [11]. A poset with a unique least or a unique greatest element (a cone) is clearly
dismantlable to a point.

Lemma 2. Let ̂  < a, with l{P, Qt) >. 3 and a nontrivial.
Case 1: /? ̂  yo;. T^en (^, 0;) ̂  dismantlable to a point.
Case 2: (^Q; ̂  t'cr. Same conclusion as in Case 1.
Case 3: ̂  = ya ̂  ioc. Then (/?, cr) is dismantlable to the subposet {a', a;"}.
Case 4: /3 <ya ̂  ia. Then (/3, a) is dismantlable to the subposet (^, y>a)U {ya, ioc, oc', 0:"}.

Proof. We begin with Case 2 (see Figure Ib). If ̂  ^ ia then by Lemma 1 the interval (/3, o;)
is a chain, and the conclusion is obvious. Suppose that ^ <: ia. From Lemma 1 we deduce that
(^, a) \ (/?, icr] consists of two unrelated chains. These can be removed by deleting irreducible
elements from bottom to top. Hence (^, 0;) is dismantlable to (/9, m], which (being a cone) is
further dismantlable to a point.

For the remainder of the proof we assume that y?Q; ̂  ia (see Figure la). If P ^ ya (l. e., Case
1), then either (i) ^ > ya, or (ii) /3   [\, ia] \ [A, (^a]. In subcase (i) the interval (^, o') is a
chain, and in Sub case (li) one sees from Lemma 1 that (/3, o') \ ^, ia] consists of two unrelated
chains. Hence, in Case 1 irreducibles can be removed in exactly the same way as was described
for Case 2.

Case 3 !-> easy, since (^, a) = ((^ct, a) consists of two unrelated chains with a' and a" at the
top.

Consider finally Case 4. The elements on the two chains strictly between y>o; and o;', resp. cr",
are irreducible and can be removed in any order. After their removal, the maximal elements of

t, ioc) \ (/3, y50!) have become irreducible and can be removed. Continuing from top to bottom,
all elements of (/3, m) \ (^, (/?Q') eventually become irreducible (being covered only by m) and can
successively be removed. At the end of this process only the subposet (/3, y>of ) U {y?o;, ioc, a', a"}
remains (see Figure 2). 1-1

v\-, \^ ^:!tv^^ ->A^vA^ s*"

(^aLj--:
vMwyvifMMfV^ /w.W^-s

Figure 2.

The join of two posets P and Q , denoted P*Q, 'is the poset on the set P U Q in which P
and Q retain their internal orders and all elements of P are below all elements of Q. Let A^
denote the 2-element antichain, and A^ the join of k copies of As. (For example, Figure 2 shows
a poset isomorphic to (f3, (f0i] * A|.)
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Lemma 3. Suppose that 0 < a. If s(f3, a) > 0, then (/?, a) is dismantlable to a subposet
isomorphic to As^'ol)+l. Ifs(P, a) = -oo, then (/3, a) is dismantlable to a point.
Proof. We will use induction on /(^, a) > 2. If Z(/?, a) - 2 then (^, a) is either a 2-element
antichain or asingleton (since a covers at most 2 elements). These two cases correspond exactly
to whether s(P, a) = 0 or 5(/?, a) = -oo, according to the definition (iii) of the function s.

Suppose that l(/3, a) > 2 and that a is not trivial. If ft < ya ̂  ia we have by definition
(iv) that s(/3, a)= A(/3, y>a) + 2, and Lemma 2 shows that (/?, a) is dismantlable to a subposet
isomorphic to (^, yo') * Aj^. By induction, if s{0, ya) > 0 then {/3, ya) is dismantlable to a
subposet isomorphic to A^'ya)+l. It follows that (/9, o') is dismantlable to a copy of A^/?-v'a)+1 *
Aj = A^p'a^+l. If on the other hand, s(/3, <^a) = -oo then by induction (/3, ya) is dismantlable
to a point It follows that (/3, a) is dismantlable to a copy of {pt} * Aj, which is further
dismantlable to a point (being a cone). The degenerate case when s(^, ya) = -1, i.e. l(P, ya) ==
1 and (^, ̂  a) = 0, is easily checked to be consistent.

KeeP the assumptions from the preceding paragraph, except let /9 = 970;. Then ̂ (/9, cr) =
^(^^) + 2 == 0, and by Lemma 2 (^, a) is dismantlable to {a', a;"} ̂  Az.

Suppose now that /(/?, a) > 2, and that a is trivial, or ̂  ^ ycr, or (^cr < m. In each of these
cases .s(^, a) = -oo, by definition. If a is trivial then (/?, a) is a chain, and hence dismantlable
to a point. For the other two cases the conclusion follows from Lemma 2. D
Proof of Theorem 2. It is well-known, and easy to see, that if x is an irreducible element in
a poset P then P - [x}-'\s a strong deformation retract of P (the retraction is the simplicial
map that sends x to the unique element covering or covered by x and all other elements to
themselves, cf. Corollary 10. 12 of [3]. ) Hence, if P is dismantlable to Q then Q is a strong
deformation retract of P, and in particular P and Q are homotopy equivalent.

The theorem is therefore "a direct consequence of Lemma 3. For this, note that the order
complex of A^'+l is homeomorphic to the ̂ --sphere, being the A;-fold suspension of the 0-sphere
A2- - ~ ' D

3. The Mobius function of subword order.

We start with a few definitions. Given a word a = a^a-i-. . an C A*, its repetition set is
7?.(of ) = {i : a, _i = a, } C {2,... , n}. An embedding of /3*in o; is a sequence 1 ^ t"i < ^ <
. . . < zk ̂ n such that 0 =a^a^.. . a^. It is a normal embedding if '^(cr) C {z'i,... , ̂ . }. For
a;, ̂  6 A* let

= number of normal embeddings of ft in cr.
n

For instance, fa a6ac)_ = 2.
V aac /n "'

The following combinatonal rule for the Mobius function of subword order was given in [2].
The original proof using lexicographic shellability, as well as a later algebraic proof in [4], are
not as simple and elementary as the formula itself. However, both these proofs yield additional
information. Here a short and elementary proof (giving no additional information) will be given.
Theorem 3. The Mobius function of subword order is given by:

^, a)=(-l)l"H^lQ
for alia, f3 ̂  A*.
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Proof. Suppose that 7 < a = ajaz '""n, and let

S = {1 <ii <i-i < ... <ik <n: 7?.(a) C {ii, --- , u} and 7 < a, i ... a,^}.

(In this section "<" of course denotes subword order. ) Then,

E (-l)laH/?l(^) = (-l)"(tt5even - tt^odd).
f<ft<a ^/ "7<<9<c

Thus, if we show for 7 < cr that 5" has as many members of even as of odd length (so that tl
sum equals zero), we will have verified the defining recurslon for the Mobius function. To <
this we construct a simple parity-changing involution y on 5'.

Given I = (?i, . . . , u-)   5'let /= /j be the minimal number in {1, . . . , n} such that a/
not in the final embedding of 7 in a, ^ ... a, ^ . The final embedding of 7 in ^ is the embeddii
Oi» . . . ?J?) uniquely characterized by j'^ <^'e, 1 <e < 9, for every other embedding (j[, - . . ,j
of 7 in 8. Then define:

y(^) -!;"-IU{/j}, if//^J,
-{/r}, if A  J.

It is clear that <^(J) C 5" in the first case. In the second case we see that 7 is a subwo
of a,^ . . . a,,, also after a/ is erased (the final embedding remains), and that 7^. (o:) C y>(J) i
/   ̂ (a) then a/-i = a/, which is impossible if a/-i but not a/ lies in the final embedding
so that also here (p{I)   5'.

Along the same lines one sees that fif(i) = /j, because the final embedding of 7 remains tJ

same after adding or deleting a/. This implies that f {I) = I, for all I ^ S.
As an illustration of the involution y constructed in the proof, let 7 = a6 and ec = abcc

Then
a b <-> a . . ab

a- c . b <-> ab c . b
ab . a b <-> . b . ab

4. Final remarks.

A. The Mobius number of a poset is the number of odd cardinality chains minus the numb
of even cardinality chains (see [13], p. 119). It is easy to see directly that this difference doesr
change when an irreducible is removed. Therefore, if P is dismantlable to Q it follows th
^(P) = /^(O).

Consequently, Theorem 1 can be directly deduced from Lemma 3 with no mention of topolog
One needs only to check that ̂ (A^+l) = (-l)fc and f-t^pt. ) = 0.

B. If a poset P is dismantlable to a subposet Q, then Q is a strong deformation retract of
in the "ideal topology", a finite topology studied by Stong [14], Farmer [5] and others. Henc
one can from Lemma 3 deduce an "ideal topology" version of Theorem 2, which with knov
implications is strictly stronger than the stated "order complex topology" version. Farmer [
takes this point of view in his study of the ? = X case.

C. Kahn [8] uses the method of "non-evasiveness" to prove that ju(3-, y) = 0 in certain poset
It is known that "dismantlable to a point" implies "non-evasive" (see [3]), so Kahn's metht
could be used also here.

D. In [4] it is shown that for subword order the formal power series ^ a and ^ p. (f3, oc>
/?<a /3<a

are rational for all /3   A*. For factor order the first series is rational (a finite automaton ci
recognize the language of all words containing /3 os a factor), but the rationality of the secoi
series seems doubtful.
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