THE MÖBIUS FUNCTION OF FACTOR ORDER

Anders Björner Department of Mathematics Royal Institute of Technology S - 100 44 Stockholm, Sweden

Abstract. Intervals in the factor ordering of a free monoid are investigated. It was shown by Farmer [6] that such intervals (β, α) are contractible or homotopy spheres in case β is the empty word. We observe here that the same is true in general. This implies that the Möbius function of factor order takes values in $\{0, +1, -1\}$. A recursive rule for this Möbius function is given, which allows efficient computation.

The Möbius function of subword order was studied in [2]. We give here a simpler proof (a parity-changing involution) for its combinatorial interpretation.

1. Introduction.

Let A^* denote the free monoid over an alphabet A. The elements of A^* are finite strings of elements from A called *words*. The *length* $|\alpha|$ of a word $\alpha = a_1 a_2 \cdots a_n$ is the number of letters n. There is a unique word $\lambda \in A^*$ of length zero, the *empty word*.

We will say that β is a factor of α if $\alpha = \gamma \beta \delta$, for some γ , $\delta \in A^*$. Furthermore, β is a left factor (or prefix) in α if $\delta = \lambda$ and a right factor (or suffix) if $\gamma = \lambda$. The relation of being a factor, written $\beta \leq \alpha$, gives a partial ordering of A^* . As an ordered set A^* has unique least element λ , and all maximal chains in an interval $[\beta, \alpha] = \{\gamma \in A^* : \beta \leq \gamma \leq \alpha\}$ have length $l(\beta, \alpha) := |\alpha| - |\beta|$.

Let $\alpha = a_1 a_2 \cdots a_n \in A^*$. We will say that β is a subword of α if $\beta = a_{i_1} a_{i_2} \cdots a_{i_k}$ for some sequence $1 \leq i_1 < i_2 < \cdots < i_k \leq n$. So, a factor is a particular kind of subword. The subword ordering of A^* is discussed in Section 3. See [10] for further general information concerning words.

To be able to state the rule for computing the Möbius function of factor order we need a few more definitions. Let $\alpha = a_1 a_2 \cdots a_n$, $n \ge 2$. Then $i\alpha = a_2 a_3 \cdots a_{n-1}$ is the dominant inner factor in α . All factors of $i\alpha$ are called *inner factors* in α . The dominant outer factor $\varphi \alpha$ is the longest $\beta \neq \alpha$ which is both a left factor and a right factor of α (possibly $\varphi \alpha = \lambda$). The word α is trivial if $a_1 = a_2 = \cdots = a_n$.

As an illustration of these definitions, let $\alpha = aabcabb$. Then, $i\alpha = abcab$, $\varphi \alpha = \lambda$, $\varphi i\alpha = ab$. Note that $l(\varphi \alpha, \alpha) = 1$ iff α is trivial, and $l(\varphi \alpha, \alpha) = 2$ iff $\alpha = (ab)^k$ or $\alpha = (ab)^k a$ for some $a, b \in A$.

The Möbius function of a poset with finite intervals [x, y] is the \mathbb{Z} -valued function on intervals recursively defined by

$$\sum_{\substack{\leq z \leq y}} \mu(x, z) = \begin{cases} 1, & \text{if } x = y; \\ 0, & \text{if } x < y. \end{cases}$$

For general information concerning Möbius functions see Rota [12] and Stanley [13].

x

Theorem 1. The Möbius function of factor order is for all $\beta \leq \alpha$ in A^* given by:

 $\mu(\beta, \alpha) = \begin{cases} \mu(\beta, \varphi \alpha) &, & \text{if } l(\beta, \alpha) > 2 \text{ and } \beta \leq \varphi \alpha \nleq i \alpha, \\ 1 &, & \text{if } l(\beta, \alpha) = 2, \ \alpha \text{ is nontrivial} \\ 1 &, & \text{and } \beta = i \alpha \text{ or } \beta = \varphi \alpha, \\ (-1)^{l(\beta, \alpha)} &, & \text{if } l(\beta, \alpha) < 2, \\ 0 &, & \text{in all other cases.} \end{cases}$

Corollary. $\mu(\beta, \alpha) \in \{0, +1, -1\}$, for all $\beta \leq \alpha$ in A^* .

Other classes of posets (actually, lattices) whose Möbius function has the $\{0, +1, -1\}$ -property have been studied by Björner [1], Greene [7] and Kahn [8]. Note that factor order is not a lattice.

We exemplify the the rule with the following computations using $\alpha = abracadabra$ and $\varphi \alpha = abra$:

$$\mu(a, \alpha) = \mu(a, \varphi\alpha) = \mu(a, a) = 1$$

$$\mu(b, \alpha) = \mu(b, \varphi\alpha) = 0$$

$$\mu(br, \alpha) = \mu(br, \varphi\alpha) = 1$$

$$\mu(bra, \alpha) = \mu(bra, \varphi\alpha) = -1.$$

The pattern matching algorithm of Knuth, Morris and Pratt [9] shows that $\beta \leq \alpha$ can be decided in $O(|\alpha|)$ time. Their algorithm contains a preprocessing step which gives a linear time algorithm for computing $\varphi \alpha$ (for this, see also p. 14 of [10]). Hence, Theorem 1 shows that $\mu(\beta, \alpha)$ can be computed in quadratic time using these algorithms.

Corollary. $\mu(\beta, \alpha)$ can be computed in $O(|\alpha|^2)$ steps.

Theorem 1 is implied by the next result, which describes the topology of open intervals in factor order up to homotopy type. The proof given in Section 2 is easy to convert to a purely combinatorial proof of Theorem 1, see Remark 4A.

From now on we will assume some familiarity with the topology of posets, see e.g. [3] for background. All topological statements about a poset P will refer to its *order complex*, i.e., the simplicial complex of chains (totally ordered subsets), although stronger statements are possible (see Remark 4B).

Define a function s from the intervals $\beta \leq \alpha$ of factor order to the set $\{-\infty, -2, -1, 0, 1, 2, 3, \cdots$ by the following recursive rule:

(i) $l(\beta, \alpha) = 0 \iff s(\beta, \alpha) = -2,$ (ii) $l(\beta, \alpha) = 1 \iff s(\beta, \alpha) = -1,$ (iii) $l(\beta, \alpha) = 2 \implies s(\beta, \alpha) = \begin{cases} 0, & \text{if } \alpha \text{ is nontrivial and} \\ \beta = i\alpha \text{ or } \beta = \varphi\alpha, \\ -\infty, & \text{otherwise,} \end{cases}$ (iv) $l(\beta, \alpha) > 2 \implies s(\beta, \alpha) = \begin{cases} 2 + s(\beta, \varphi\alpha), & \text{if } \beta \leq \varphi\alpha \nleq i\alpha, \\ -\infty, & \text{otherwise.} \end{cases}$

For instance, using our previous example $\alpha = abracadabra$ we compute: $s(a, \alpha) = 2$, $s(b, \alpha) = -\infty$, $s(br, \alpha) = 2$, $s(bra, \alpha) = 1$.

Theorem 2. For all $\beta < \alpha$ in factor order, the open interval $(\beta, \alpha) = \{\gamma \in A^* : \beta < \gamma < \alpha\}$ has the homotopy type of the $s(\beta, \alpha)$ -dimensional sphere if $s(\beta, \alpha) \ge 0$, and is contractible otherwise.

For the case when β is the empty word this was shown by Farmer [6], and the proof given in the next section is a straight-forward extension. Since the Möbius function $\mu(\beta, \alpha)$ is the reduced Euler characteristic of the open interval (β, α) we deduce the following corollary, of which Theorem 1 is a simplified restatement. Corollary. For all $\beta \leq \alpha$ in A^* :

$$\mu(\beta, \alpha) = \begin{cases} (-1)^{s(\beta, \alpha)} &, & \text{if } s(\beta, \alpha) \ge -2\\ 0 &, & \text{otherwise.} \end{cases}$$

2. Proofs.

The analysis of the structure of lower intervals $[\lambda, \alpha]$ to be given here is implicit in Farmer [6]. The general case will follow by restricting attention to an upper part $[\beta, \alpha]$ of such a lower interval.

For a trivial word $\alpha = aa \cdots a$ the lower interval $[\lambda, \alpha]$ is a chain of length $|\alpha|$. If α is nontrivial then it covers exactly two words α' and α'' , the left and right factors of length $|\alpha| - 1$. (Clearly: every nontrivial word covers 2 elements and is covered by 2|A| elements.) More generally, we have:

Lemma 1. Suppose α is nontrivial. Then $[\lambda, \alpha] = [\lambda, i\alpha] \cup [\varphi\alpha, \alpha]$. Furthermore,

Case 1: If $\varphi \alpha \nleq i \alpha$, then $[\lambda, i\alpha] \cap [\varphi \alpha, \alpha] = \emptyset$ and $(\varphi \alpha, \alpha)$ consists of two nonempty disjoint chains with no crosswise relations (see Figure 1a).

Case 2: If $\varphi \alpha \leq i\alpha$, then $(\lambda, \alpha) \setminus (\lambda, i\alpha]$ consists of two nonempty disjoint chains with no crosswise relations (see Figure 1b).

Figure 1.

Proof. Suppose that $\beta \leq \alpha$ is not an inner factor. Then β is a left or right factor in α , let's say a left factor. If $|\beta| < |\varphi\alpha|$, then β is a proper left factor in $\varphi\alpha$, which (using the right factor embedding of $\varphi\alpha$ in α) would make β an inner factor in α . Hence, $|\beta| \geq |\varphi\alpha|$, which implies that $\varphi\alpha \leq \beta$.

Let $\varphi \alpha = \gamma_k < \gamma_{k+1} < \cdots < \gamma_{n-1} = a_1 a_2 \cdots a_{n-1} = \alpha'$ and $\varphi \alpha = \delta_k < \delta_{k+1} < \cdots < \delta_{n-1} = a_2 a_3 \cdots a_n = \alpha''$ be the two unique chains of proper left and right factors of $\alpha = a_1 a_2 \cdots a_n$ ascending from $\varphi \alpha$, $|\gamma_j| = |\delta_j| = j$. Then the two chains $\gamma_{k+1} < \cdots < \gamma_{n-1}$ and $\delta_{k+1} < \cdots < \delta_{n-1}$ satisfy the description in Case 1. In Case 2 one must take the portions of these chains that are outside $[\lambda, i\alpha]$.

An element x of a poset P is called *irreducible* if either x is covered by exactly one element or x covers exactly one element. After removing some irreducibles, elements that previously were not irreducible may become so, and conversely. We will say that P is *dismantlable to* a subposet Q if Q can be obtained by successive removal of irreducibles from P. This terminology is due to Rival [11]. A poset with a unique least or a unique greatest element (a *cone*) is clearly dismantlable to a point.

Lemma 2. Let $\beta < \alpha$, with $l(\beta, \alpha) \ge 3$ and α nontrivial.

Case 1: $\beta \nleq \varphi \alpha$. Then (β, α) is dismantlable to a point.

Case 2: $\varphi \alpha \leq i \alpha$. Same conclusion as in Case 1.

Case 3: $\beta = \varphi \alpha \nleq i \alpha$. Then (β, α) is dismantlable to the subposet $\{\alpha', \alpha''\}$.

Case 4: $\beta < \varphi \alpha \nleq i \alpha$. Then (β, α) is dismantlable to the subposet $(\beta, \varphi \alpha) \cup \{\varphi \alpha, i \alpha, \alpha', \alpha''\}$.

Proof. We begin with Case 2 (see Figure 1b). If $\beta \nleq i\alpha$ then by Lemma 1 the interval (β, α) is a chain, and the conclusion is obvious. Suppose that $\beta \le i\alpha$. From Lemma 1 we deduce that $(\beta, \alpha) \setminus (\beta, i\alpha]$ consists of two unrelated chains. These can be removed by deleting irreducible elements from bottom to top. Hence (β, α) is dismantlable to $(\beta, i\alpha]$, which (being a cone) is further dismantlable to a point.

For the remainder of the proof we assume that $\varphi \alpha \nleq i \alpha$ (see Figure 1a). If $\beta \nleq \varphi \alpha$ (i.e., Case 1), then either (i) $\beta > \varphi \alpha$, or (ii) $\beta \in [\lambda, i\alpha] \setminus [\lambda, \varphi \alpha]$. In subcase (i) the interval (β, α) is a chain, and in subcase (ii) one sees from Lemma 1 that $(\beta, \alpha) \setminus (\beta, i\alpha]$ consists of two unrelated chains. Hence, in Case 1 irreducibles can be removed in exactly the same way as was described for Case 2.

Case 3 is easy, since $(\beta, \alpha) = (\varphi \alpha, \alpha)$ consists of two unrelated chains with α' and α'' at the top.

Consider finally Case 4. The elements on the two chains strictly between $\varphi \alpha$ and α' , resp. α'' , are irreducible and can be removed in any order. After their removal, the maximal elements of $(\beta, i\alpha) \setminus (\beta, \varphi \alpha)$ have become irreducible and can be removed. Continuing from top to bottom, all elements of $(\beta, i\alpha) \setminus (\beta, \varphi \alpha)$ eventually become irreducible (being covered only by $i\alpha$) and can successively be removed. At the end of this process only the subposet $(\beta, \varphi \alpha) \cup \{\varphi \alpha, i\alpha, \alpha', \alpha''\}$ remains (see Figure 2).

Figure 2.

The join of two posets P and Q, denoted P * Q, is the poset on the set $P \cup Q$ in which Pand Q retain their internal orders and all elements of P are below all elements of Q. Let A_2 denote the 2-element antichain, and A_2^k the join of k copies of A_2 . (For example, Figure 2 shows a poset isomorphic to $(\beta, \varphi \alpha) * A_2^2$.) **Lemma 3.** Suppose that $\beta < \alpha$. If $s(\beta, \alpha) \ge 0$, then (β, α) is dismantlable to a subposet isomorphic to $A_2^{s(\beta,\alpha)+1}$. If $s(\beta, \alpha) = -\infty$, then (β, α) is dismantlable to a point.

Proof. We will use induction on $l(\beta, \alpha) \ge 2$. If $l(\beta, \alpha) = 2$ then (β, α) is either a 2-element antichain or a singleton (since α covers at most 2 elements). These two cases correspond exactly to whether $s(\beta, \alpha) = 0$ or $s(\beta, \alpha) = -\infty$, according to the definition (iii) of the function s.

Suppose that $l(\beta, \alpha) > 2$ and that α is not trivial. If $\beta < \varphi \alpha \nleq i\alpha$ we have by definition (iv) that $s(\beta, \alpha) = s(\beta, \varphi \alpha) + 2$, and Lemma 2 shows that (β, α) is dismantlable to a subposet isomorphic to $(\beta, \varphi \alpha) * A_2^2$. By induction, if $s(\beta, \varphi \alpha) \ge 0$ then $(\beta, \varphi \alpha)$ is dismantlable to a subposet isomorphic to $A_2^{s(\beta, \varphi \alpha)+1}$. It follows that (β, α) is dismantlable to a copy of $A_2^{s(\beta, \varphi \alpha)+1} * A_2^2 = A_2^{s(\beta, \alpha)+1}$. If, on the other hand, $s(\beta, \varphi \alpha) = -\infty$ then by induction $(\beta, \varphi \alpha)$ is dismantlable to a point. It follows that (β, α) is dismantlable to a copy of $\{pt\} * A_2^2$, which is further dismantlable to a point (being a cone). The degenerate case when $s(\beta, \varphi \alpha) = -1$, i.e. $l(\beta, \varphi \alpha) =$ 1 and $(\beta, \varphi \alpha) = \emptyset$, is easily checked to be consistent.

Keep the assumptions from the preceding paragraph, except let $\beta = \varphi \alpha$. Then $s(\beta, \alpha) = s(\beta, \beta) + 2 = 0$, and by Lemma 2 (β, α) is dismantlable to $\{\alpha', \alpha''\} \simeq A_2$.

Suppose now that $l(\beta, \alpha) > 2$, and that α is trivial, or $\beta \nleq \varphi \alpha$, or $\varphi \alpha \le i\alpha$. In each of these cases $s(\beta, \alpha) = -\infty$, by definition. If α is trivial then (β, α) is a chain, and hence dismantlable to a point. For the other two cases the conclusion follows from Lemma 2.

Proof of Theorem 2. It is well-known, and easy to see, that if x is an irreducible element in a poset P then $P - \{x\}$ is a strong deformation retract of P (the retraction is the simplicial map that sends x to the unique element covering or covered by x and all other elements to themselves, cf. Corollary 10.12 of [3].) Hence, if P is dismantlable to Q then Q is a strong deformation retract of P, and in particular P and Q are homotopy equivalent.

The theorem is therefore a direct consequence of Lemma 3. For this, note that the order complex of A_2^{k+1} is homeomorphic to the k-sphere, being the k-fold suspension of the 0-sphere A_2 .

3. The Möbius function of subword order.

We start with a few definitions. Given a word $\alpha = a_1 a_2 \cdots a_n \in A^*$, its repetition set is $\mathcal{R}(\alpha) = \{i : a_{i-1} = a_i\} \subseteq \{2, \dots, n\}$. An embedding of β^* in α is a sequence $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ such that $\beta = a_{i_1} a_{i_2} \cdots a_{i_k}$. It is a normal embedding if $\mathcal{R}(\alpha) \subseteq \{i_1, \dots, i_k\}$. For $\alpha, \beta \in A^*$ let

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix}_n$$
 = number of normal embeddings of β in α .

For instance, $\binom{aabac}{aac}_n = 2$.

The following combinatorial rule for the Möbius function of subword order was given in [2]. The original proof using lexicographic shellability, as well as a later algebraic proof in [4], are not as simple and elementary as the formula itself. However, both these proofs yield additional information. Here a short and elementary proof (giving no additional information) will be given.

Theorem 3. The Möbius function of subword order is given by:

$$\mu(\beta,\alpha) = (-1)^{|\alpha|+|\beta|} \binom{\alpha}{\beta}_n,$$

for all $\alpha, \beta \in A^*$.

Proof. Suppose that $\gamma \leq \alpha = a_1 a_2 \cdots a_n$, and let

$$S = \left\{ 1 \leq i_1 < i_2 < \dots < i_k \leq n : \mathcal{R}(\alpha) \subseteq \{i_1, \dots, i_k\} \text{ and } \gamma \leq a_{i_1} \cdots a_{i_k} \right\}.$$

(In this section " \leq " of course denotes subword order.) Then,

$$\sum_{\gamma \leq \beta \leq \alpha} (-1)^{|\alpha| + |\beta|} {\alpha \choose \beta}_n = (-1)^n (\sharp S_{\text{even}} - \sharp S_{\text{odd}}).$$

Thus, if we show for $\gamma < \alpha$ that S has as many members of even as of odd length (so that the sum equals zero), we will have verified the defining recursion for the Möbius function. To α this we construct a simple parity-changing involution φ on S.

Given $I = (i_1, \dots, i_k) \in S$ let $f = f_I$ be the minimal number in $\{1, \dots, n\}$ such that a_f not in the final embedding of γ in $a_{i_1} \cdots a_{i_k}$. The final embedding of γ in δ is the embedding (j_1, \dots, j_g) uniquely characterized by $j'_e \leq j_e$, $1 \leq e \leq g$, for every other embedding (j'_1, \dots, j'_g) of γ in δ . Then define:

$$\varphi(I) = \begin{cases} I \cup \{f_I\}, & \text{if } f_I \notin I, \\ I - \{f_I\}, & \text{if } f_I \in I. \end{cases}$$

It is clear that $\varphi(I) \in S$ in the first case. In the second case we see that γ is a subwo of $a_{i_1} \cdots a_{i_k}$ also after a_f is erased (the final embedding remains), and that $\mathcal{R}(\alpha) \subseteq \varphi(I) = f \in \mathcal{R}(\alpha)$ then $a_{f-1} = a_f$, which is impossible if a_{f-1} but not a_f lies in the final embedding so that also here $\varphi(I) \in S$.

Along the same lines one sees that $f_{\varphi(I)} = f_I$, because the final embedding of γ remains that same after adding or deleting a_f . This implies that $\varphi^2(I) = I$, for all $I \in S$.

As an illustration of the involution φ constructed in the proof, let $\gamma = ab$ and $\alpha = abca$. Then

4. Final remarks.

A. The Möbius number of a poset is the number of odd cardinality chains minus the numb of even cardinality chains (see [13], p.119). It is easy to see directly that this difference doesn change when an irreducible is removed. Therefore, if P is dismantlable to Q it follows th $\mu(P) = \mu(Q)$.

Consequently, Theorem 1 can be directly deduced from Lemma 3 with no mention of topolog One needs only to check that $\mu(A_2^{k+1}) = (-1)^k$ and $\mu(pt.) = 0$.

B. If a poset P is dismantlable to a subposet Q, then Q is a strong deformation retract of in the "ideal topology", a finite topology studied by Stong [14], Farmer [5] and others. Henc one can from Lemma 3 deduce an "ideal topology" version of Theorem 2, which with know implications is strictly stronger than the stated "order complex topology" version. Farmer [takes this point of view in his study of the $\beta = \lambda$ case.

C. Kahn [8] uses the method of "non-evasiveness" to prove that $\mu(x, y) = 0$ in certain poset It is known that "dismantlable to a point" implies "non-evasive" (see [3]), so Kahn's metho could be used also here.

D. In [4] it is shown that for subword order the formal power series $\sum_{\beta \leq \alpha} \alpha$ and $\sum_{\beta \leq \alpha} \mu(\beta, \alpha)$

are rational for all $\beta \in A^*$. For factor order the first series is rational (a finite automaton carecognize the language of all words containing β as a factor), but the rationality of the second series seems doubtful.

References

- 1. A. Björner, Orderings of Coxeter groups, in "Combinatorics and Algebra" (ed. C. Greene), Contemporary Math., Vol. 34, Amer. Math. Soc., 1984, pp. 175–195.
- A. Björner, The Möbius function of subword order, in "Invariant Theory and Tableaux" (ed. D. Stanton), The IMA Volumes in Appl. Math. and its Applic., Vol. 19, Springer, 1990, pp. 118-124.
- 3. A. Björner, *Topological Methods*, in "Handbook of Combinatorics" (ed. R. Graham, M. Grötschel, L. Lovász), North-Holland, to appear.
- 4. A. Björner and C. Reutenauer, Rationality of the Möbius function of subword order, Theor. Computer Sci., to appear.
- 5. F. D. Farmer, The homology of reflexive relations, Math. Japon. 20 (1975), 21-28.
- 3. F. D. Farmer, Homotopy spheres in formal language, Studies in Appl. Math. 66 (1982), 171-179.
- C. Greene, A class of lattices with Möbius function ±1, 0, Europ. J. Combinat. 9 (1988), 225-240.
- 3. J. Kahn, On lattices with Möbius function ± 1 , 0, Discrete Comput. Geom. 2 (1987), 1-8.
- D. E. Knuth, J. H. Morris and V. R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1977), 323-350.
 M. Letherer "Computer of the string of the str
-). M. Lothaire, "Combinatorics on Words", Addison-Wesley, Reading, Mass, 1983.
- I. Rival, A fixed point theorem for finite partially ordered sets, J. Combinatorial Theory, Ser. A 21 (1976), 309-319.
- C. Rota, On the foundations of Combinatorial Theory I. Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete 2 (1964), 340-368.
 P. D. Stanlag, WD.
- R. P. Stanley, "Enumerative Combinatorics, Vol. 1," Wadsworth, Monterey, Cal., 1986.
- . R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325-340.

