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Abstract

In this paper we study a balanced probability model defined over simple families of trees,
which from the point of doing statistics on trees, behave in quite a different way from the
uniform distribution.

Using the new model, the analysis itself is more complex, but feasible. We illustrate our
point by working out some particular simple cases of study : the computation of occupancy
(a measure of the degree of balancing in trees), and the average size of the intersection of
two m-ary trees. The development of the last analysis involves the use of sophisticated tools,
such as Riemman’s method to solve partial differential equations.

These average complexities are then compared with the ones obtained if the uniform
model is assumed.

Introduction

e uniform probability model for the input is a current assumption in many average-case analysis,
: to several reasons. Among others there are many applications where this model accurately
ugh approximates the actual probability distribution of the input. Moreover, the assump-
1 has been historically used to cope with uncertainty situations, such as the one that arises if
actual distribution is unknown. On the other hand, because of the limitations of our tech-
ues [Kar86, Sed83], only in a few cases we are able to carry on the analysis for probabilistic
dels other than the simplest : the uniform probability model. Finally, even if the derived results
ng the uniform model might not always be considered of relevance in absolute terms, they can
of much value in order to compare the performance of different algorithms, which solve the
en problem.
Nevertheless, it would be interesting to do these analysis for other reasonable probability
dels, and compare the differences, if any, existing between the average complexities deduced
the different models. Also, it would be interesting to compare “discriminative” powers of
se models, that is, how different are the relative comparisons of the complexities of distinct
orithms. '
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In this paper, we propose what we call the balanced probability model for various families of
trees. In this model, probabilities are high for well balanced trees and low for those which are
poorly balanced.

This model is introduced in Section 2, where we also show the particular models for binary
trees, m-ary trees, etc. and how can be defined the probability of a r-tuple of trees drawn from a
given family of trees.

It turns out that the balanced probability model corresponding to binary trees coincides with
that of the binary search trees, when the permutations from which they are built are assumed to
be equally likely.

Sections 3 and 4 are devoted to show the kind of problems which arise in the average-case
analysis of some algorithms and characteristics of the trees under the proposed model, as well as
the ready tools to try to solve them. The first one covers the analysis of occupancy under the new
assumption. Occupancy is a complexity measure of the “completeness” of trees, being maximum
for complete trees and minimum for linear-list like trees. Our second case of study deals with the
average size of the intersection of m-ary trees. While these analysis lead to algebraic functional
relations for the generating functions defined if the uniform model is adopted, differential (partial
and ordinary) equations arise for the balanced model.

Finally, in Section 5 main conclusions and further research are discussed.

2 The Balanced Probability Model

Let S be a set of symbols and v : $ — Nan arity application defined over S. Let s(T1, ..., Ti(s))
be the tree whose root is labelled s and its subtrees are left-to-right : Ty, ..., T,(s)-
Then the set of trees F recursively defined by

Vse S “u(s)=0=>s€.7:
Vs € S VT],...,T,,(S) eEF S(Tl,...,Ty(,)) e F

is a simple family of trees, generated by S, if and only if
IMeIN VYn #vl(n)<M

where v~1(n) denotes the set of symbols of arity n.

Simple families of trees were first defined in [MM?78], but the definition and notation used here
is that of [Ste84].

Furthermore, we shall consider probability distributions over the sets of symbols of the same
arity. Let p(s) be the probability of the symbol s € S. We impose that,

Vk>0 Y. pls)=1, if v~ 1(k)#0

sev—1(k) R

If v(s) = 0 then we say that s is a leaf (0-ary symbol). The size of a tree T is the total number
of nodes it contains, and will be denoted |T'|. In the particular case of m-ary trees (m > 1) we
define the size to be the number of internal nodes (those which are not leaves) since the total
number of nodes depends only of the number of internal nodes.

Now, we are ready to define the balanced probability model. To start with, the weight measure
w over F is recursively defined by
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finition 2.1

def p(s) fT=sand v(s) =0
wiT) = { p(8) - w(Ty) - - w(Tk) - ]%T if T = 8(Ty,s:5T3) and v(s)=k

And in order to obtain a probability measure over F, we define the probability of a tree T' as

finition 2.2

def w(7T)
jef=ir w(t)
cing it to verify Kolmogorov’s axioms.
Note that p(T') greatly varies depending on how balanced the tree is, being maximum for
nplete trees and minimum for linear list-like trees (see Figure 1).

p(T)

w(T)=1/352

w(T>=1/3991680

Figure 1: The Balanced Probability Model : An Example.
The above definitions can be extended to k-tuples of trees from a simple family by
finition 2.3
w(Ty, ..., Te) Cw(Ty) - w(Ti)

1 then define a probability measure over k-tuples (74,...,T) of size [T1| + -+ + |Tx| = n as it
. been done previously,
finition 2.4
‘U)(Tl, sy Tk)
Dolta|4-+tx|=n w(tyy. .. tk)

p(T,...,T) &
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Family d(u) W(z)
unary trees 14u e?
binary trees (B) 1+ u? i

m-ary trees, m >1 (T,) | 1 +u™ | (1 — (m —1)z)~V/(m-1)
general trees 1_-1-2 1—-+v1-=-22

Table 1: Weight Characteristic Series and Generating Functions.

Given a family F let its weight characteristic series be

O(u) =Y p(s) v = > o
sES n€lmy

where Imv denotes the set of arities for which there are symbols in S having them. Let W(z) =
Crerw(T) 2ITl. Then the n** coefficient of W(z) is the normalizing constant needed to get the
probability distribution for trees of size n (see Definition 2.2). We will call W(z) the weight
generating function of the family F.

Now, we have the following functional relations for W(z), depending on the definition of the
size of a leaf. If we impose |s| = 0 for all 0-ary symbols s, we get,

daw

whereas if |s| = 1 for s € v~1(0) , then W (z) satisfies,
aw
- = o(W), W(0) =1

Note that the weight characteristic series ®(u) does not depend on the symbols of S. Moreover,
it does not depend on the number of symbols of a given arity, but on the existence or not of symbols
of the given arity, and consequently, W(z) has the same properties.

Some interesting characteristic series and weight generating functions are given in Table 1,
where in the three first ones we have assumed that the size of a tree is the number of internal
nodes (leaves have null size) and in the last family each node, of whatever arity, contributes to
the total size. 7

In the particular case of binary trees,where only symbols of arity 0 and 2 exist, say (J and o,
it is obvious that p(T) = w(T), since [z"]W(z) = 1 for all n > 0 ([z"]W(z) stands for the n**
coefficient of W (z)). Therefore, p(T') adopts a nice simple form :_

. 1 tT=[ 24)
p(T) = E(ﬂllq;”l@ if T =o(Th,T2) = /O\Tz |

For this case, the balanced model coincides with that of binary search trees built from random
equiprobable permutations (see [BCDM89, Flag88b, Knu73]). This probability distribution also
applies to heap-ordered trees [Fla88b] and k-d-trees [Ben75, FP86]. Nevertheless, our balanced
model for m-ary trees is not that of m-ary search trees. In fact, these families are not isomorphic,
except for m = 2.
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A useful way to view this random tree model for binary trees is the underlying splitting
process [F1a88b] : Suppose we have defined the balanced distribution for binary trees of sizes 0
ton — 1. In order to construct a binary tree T with n internal nodes, select randomly the size of
its left subtree, say ¢, from 0,...,n — 1. Then pick a tree 7 of size i with probability p(7}), pick
another tree T, of size n — 1 — ¢ with probability p(T3) and set T; and T} as the left and right
subtrees respectively of the tree T'. This protocol defines recursively the balanced distribution as
can be found in Definition 2.2, for binary trees, and reformul.tes the classical characterization of
random binary search trees, which states that the size of the left subtree (or of the right subtree)
of a tree of size n is a randem discrete variable X taking value in the range [0,...,n — 1] such
that Pr(X =¢)=1/n, ¢=0,...,n—1.

Notice also that for pairs of binary trees, Definition 2.3 implies

(1, 1) = AL g A (2.2

3 Average Occupancy of m-ary Trees

By occupancy of a tree we mean the sum of the ratios between the number of internal nodes and
the maximum number of nodes at a given level. This characteristic can be defined for any simple
family of trees with bounded arity (i.e. there exists some K such that v=1(k) =0 for all k > K)
and gives indication of the degree of balancing of the tree. As far as we know, this measure has
not appeared in previous literature. Without loss of generality we will examine the behavior of
occupancy for m-ary trees. From now on this family will be denoted 7;, and we shall assume that
it is generated by S = {{J,0}, where v(0J) = 0 and v(o) = m. Moreover, we assume that leaves do
not contribute to the size of an m-ary tree.
The occupancy for an m-ary tree T is,

Ni(T)

mk

oceT)=%

k>0

where Ni(T) is the width of T at level k, i.e. the number of internal nodes (not leaves) of T at
level k£, and is recursively defined as
0 it T =0
N(T) = .
k( ) { Nk_l(T1)+°"+Nk_1(Tm) lfT_—'O(Tl,...,Tm)

and

0 fT=0Q

1 otherwise

Let OCCumin(n) and OCChrax(n) denote the minimum oc&upancy and maximum occupancy
achieved by m-ary trees of size n. No much effort is needed to get,

m m™" m
m—-—1 m-—1 m—1

OCCumax(n) = d+ ;f—d < [log,,(n + 1)]

OCCumin(n) =

wheren =mé — 1424, 0 < £ < md.



- 138 -

3.1 Average Occupancy for the Uniform Probability Model

We start computing the average occupancy OCC(n), for m-ary trees of size n supposing that al
them are equiprobable. Let

0CC(z) = Tz; 0CC(T) 2!
€Tm

The average occupancy is therefore,

[z"]OCC(2)

n,m

OCC(n) =
where t,, , stands for the number of m-ary trees of n nodes.
From the definition of OCC(T) is not difficult to verify that,
zF™(z)
1 = zFm-1(z)

where F(2) = Ypsotam 2" =1 + 2F™(2).
Applying Lagrange-Bilirmann inversion formula [Hen77], we have

0OCC(z) = = F*(2) — F(2)

0CC(z) = nzzjl %",— [;3;; ((2y = 1)y™) 1
et = (ﬂ:) ' (2(mn s ;)(tnln D) mn = T 1)

And using the same inversion formula, it turns out that,

) =t = ()

n mn—n+1
Hence,

Theorem 3.1 The average occupancy of m-ary trees of size n, if the uniform probability mod
s assumed 18

mn + 1 1zm+1+0(7_17:)

OCC(n)zQ(m—l)n+2_ m—1

From the above theorem is easy to see that

OCC(n) = 2-OCCumin(n)

3.2 Average Occupancy for the Balanced Probability Model

If, on the other hand, we use the balanced probability model defined in Section 2 for m-ary tree:
the average occupancy is now given by

AAATT [z"] Erex,, OCC(T) w(T) 27!

0CC(n) = oCcC(T)p(T) = m

(W)= ¥ 0CC(T)pT) e

IT|=n

Denoting by OCC(z) the generating function in the numerator, the relationships for the occupanc
translate into a first-order ordinary differential equation,
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d_ 1 1
EOCC - mOCC = (1 = (m — l)z)’"/(m"l), OCC(O) =0

whose solution is,

0CC(z) = —W(z) (ﬁ—_l)z)

Therefore, using the appropriate transfer lemmas [Fla88a], [2"]OCC(z) is asymptotically,

1 m=2

[z"oCC(2) ~ (—m—_m -n~m=1.lnn. m (1 +0 (;1;))

Theorem 3.2 The average occupancy for m-ary trees, under the balanced probability model is

OCC(n) ~

1lnn

The relationship of the average occupancy to the extremal values is now

OC’C’(n) ~ ™ 1_ 1 Inm - OCCMAx(n)

4 Average Size of the Intersection of Two m-ary Trees

In this section we examine a clear example, the intersection of a pair of trees, where the balanced
model marks an important difference with respect to the uniform model.

Intersection of trees appears in a natural way in a certain number of algorithms, such as tree
matching [SF83] or unification [CDS89]. It turns out that, if the uniform model is assumed, the
average size of the intersection is O(1), independently of the size of the trees and its arity. The
average size of intersection of binary trees using a balanced model has been covered in [BCDM89].

Now, given trees T',T" € T,, we wish to compute the average size of the intersection of the
two trees, where the intersection of T and T” is a m-ary tree given by :

0 fT"=gorT'=(
TI N T” ’ " ’ " lf T = O(Tll’ B T’In)
o((TyNTy )""’(TmnT’")) and T" = o(TY,...,T")

The size of the intersection of two trees 7" and T”, is thus null if any of the trees is a leaf, and
the sum of the intersections of the subtrees, otherwise, and it will denoted by s(T', 7).
Let S(n) be the average value of s(T, T") over all the pairs (T",T") € 7,2 with |T'|+ |T"| = n.

We have, by application of standard generating function techniques[GJ83, VF90],

S(n) = Y s(T,T")-p(T',T") =
[T |+|T"|=n
e ST T - w(T T [7)5(2,2) "
Z BmeTn w(Ty) - w(T3) [z ]W2(2)
where
Sz, y) = E s(T',T”)w(T')w(T")ar:|T'|y'T"I (4.2)

(T",T7)eT2
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and

W)= > w(T)T = (1 - (m - 1)z)~Y/m-1) (4.3)
T

The asymptotic behavior of the nt* coefficient (n — 00) of W?(z) can be easily derived by
means of Darboux’s theorem [Hen77] which yields :

m=3 1

[zn]W2(z) ~ (m - l)n T meT I‘—(2—/(m——l_)$

where I'(-) denotes Euler’s gamma function.
Differentiating Eq. (4.2) and using the previous definitions of w(T") and s(T", T") together with
Eq. (4.3) we get the following hyperbolic partial differential equation

9’5(z,y)
0z 0y
subject to the boundary conditions: for all z and y, S(z,0) = 0 and 5(0, y) =0.
A particular solution to Eq. (4.5) is —=.;W ()W (y). Therefore, it can be rewritten as

m=-1

S(a,9) = ¥(a,y) ~ ——=W(@W() )

-(14+0(1/n)) (4.4)

=[W(z)- W™+ [W() W)™ -m-S(z,y) (4.5)

where ¥(z,y) satisfies the homogeneous equation
0*¥(z,y) _ m¥(z,y)
dzdy — (1-(m—1z)(1 —(m—1)y)
with boundary conditions ¥(z,0) = -:5W(z) and ¥(0,y) = —L_W(y). This last differential

equation can be transformed into a simpler form, making the change of variables

X =—-Y"1n(1 - (m—1)z)
Y = —% In(1 — (m — 1)y)

and making H(X,Y) be ¥ (;—n—l_—l(l — e'x%), L-(1- e_y%;"l), we finally obtain the hyperbolic
differential equation

OH

0XoY
subject to boundary conditions H(X,0) = m—l—exlﬁ, H(0,Y) = Lye¥/vVm,

= m-1

This system can be solved by the method of Riemann [Cop75] thus yielding
1 X v ( : )
= — m -1 dt
HXY) = 1)ﬁ/<) eV Jo (20 /(X — )Y ) dt +
L Vv ( N, )
—— mJo | 2 —t)X ) dt
(m — 1)¢Fﬁ/<> Vo (BY(Y — )X ) di +

L j(@ivXY).

m-—1
where J, denotes the Bessel function of the first kind and order 0.

Since we are interested in obtaining asymptotics for S(n), we shall deduce an asymptotic valu
for the nt® coefficient in the Taylor series expansion of ¥(z,z2) :
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sy - 2M¥(z2) 1
S(n) = [MW2(z)  m -1 4 ht)

It we denote H(Z,Z) = A(Z) + =L5Jo(2iZ), from the series expansion of the Bessel function
we get

- L B (o)

m_

R
And straightforward manipulation of the coefficients of [Z")A(Z) yields,

mHlo@iz)+ Y4 geiz)

Hi%d) = s (m—1)2dZ

so we can conclude
Lemma 4.1

Jm

- -z'-ln(l—(m—l)z))

[2"]¥(2,2) = ¢ - [2")Jo (—2

> p — m4+2y/m+1
where ~ stands for asymptotical equivalence, and ¢; = 4

On the other hand, using singularity analysis (when z — 1, the modulus of the argument of J,
becomes infinite) and the appropriate transfer lemmas [AS64, Fla88a], we derive the asymptotics
for the nt* coefficient in the expansion of the Bessel function,

Lemma 4.2

n \/ﬁ : : - nnfn-m_l 1
("1 o(=225 i ln(1 = (m = 1)2) m ez (m = 1) - (14 0()

where the value of constant c, is given by

m—1

Cy =
C T omiayr T(2E)

Lemma 4.1 together with Lemma 4.2 give the following result,

2 Y™

n m:nl =
Vinn
In the light of Eq. (4.7), and using Eq. (4.4) we can conclude

1
[2"]¥(z,2) = c1-cp- (m—1)" -

Theorem 4.1 Under the distribution defined in Section 2, the average size of the intersection of
two m-ary trees behaves asymptotically as

'ﬂﬁ;_z 1
————— n m—

S e T (1+0)
where the constant ¢ has value

Lo _mt2ym+l Tk
= 2ﬁm1/4(m-—1)3/2 I\(%énlz)
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5 Conclusions. Further Research.

The cases of study can be extended to other families of trees, by using the adequate weight
generating function, as presented in Section 2.

The present analysis suggests that the apparition of hyperbolic partial differential equations in
analysis involving pairs of trees, is rather independent of the nature of the problem and that relies
on the underlying probability distribution, in the same way as ordinary differential equations arise
everywhere when dealing with an algorithm which has a unique tree as input.

Further continuation of the present work will explore the uses of the balanced probability
model to analyze other well known algorithms on trees, and the effects of the probability models
with respect to average measures.

We are also interested in the development of tools which simplify the analysis of the problems
to be faced.
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