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Abstract — In this paper, we propose the concept of formal functions over an alphabet and
a formal derivative based on a set of substitution rules. We call such a set of rules a context-free
grammar because these rules act much like a, context-free grammar in the sense of a formal lan-
guage. Given a context-free grammar, we can associate each formal function with an exponential
formal power series. In this way, we obtain a grammatical interpretation of the operations addi-
tion, multiplication and functional corrposition of formal power series. A surprising fact about the
grammatical calculus is that the composition of two formal power series has a very simple gram-
matical representation. We also apply this method to obtain a simple demenstration of Faa di
Bruno’s formula, Bell polynomials, Stirling numbers and symmetric functions. In particular, the
Lagrange inversion formula has a simple grammatical representation. From this point of view, we

can show that Cayley’s formula on labeled trees is essentially equivalent to the Lagrange inversion
formula.

1. Introduction

Let A be an alphabet whose letters are regarded as independent commutative indeterminates. A
formal function over A is defined as follows:

. Every letter in A is a formal functjon.
. If v and v are formal functions, then u + v and uv are also formal functions.

- If f(z) is an analytic function in z, and u is a formal function, then f(u) is a formal function.

W D

- Every formal function is constructed as above in a finite number of steps.

We can also define the formal derivative of a letter or a formal function by a sct of substitution
rules. Such a set of substitution rules can be regarded as a context-free grammar in the sense of
context-free grammars in the theory of formal langanges. In this paper, an alphabet is allowed to
contain infinitely many letters. For this reason, J. Goldman introduced the term formal schema
© distinguish context-free grammars having infinite alphabets from those having finite alphabets.
Siven a formal derivative and a formal function, we may associate an cxponential formal power
series. This is different from the well-known approach to formal languages which use the ordinary
ormal power series. Tt is interesting that the common opcrations on exponential formal power
eries have simple grammatical explanations. The Lagrange inversion formula has a very simple
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grammatical representation, which leads to a short combinatorial proof of this formula. In fact,
we show that the Lagrange inversion formula is equivalent to Cayley’s formula on labeled trees.
We also give other examples of grammatical calculus including Bell polynomials, Stirling numbers,
and some classical identities on symmetric functions.

2. Context-free Grammar and Formal Derivative

A contezt-free grammar G over A is defined as a set of substitution rules which replace a letter
in A by a formal function over A. A rule in a context-free grammar is also called a production
as in the theory of formal languages. For example, let A = {f,9,h}, then the following set of
productions form a context-free grammar:

G={f—-2fg, 9— 9}

We then consider an operator with respect to a context-free grammar G over A. Any formal
function over A can be regarded as a function h(ay,az,..-,ax), where aj, a, . .., a, are letters in
A. Since all the letters are independent, we may treat them as abstract symbols for functions in
variable z (where z is not a letter in A). Thus, the derivative of a letter in A could be defined as
a formal function (we may even denote such a formal function by a new symbol) in order to make
the common differential rules still work for formal functions. Thus, we have the following

Proposition 2.1 The following operator D on formal functions over an alphabet A is well-defined:

1. For two formal functions u and v, we have
D(u+v) = D(u)+D(v) and D(uv)= D(u)v + uD(v).
2. For any analytic function f(z), and any formal function w, we have
Df(w) = a—fé%v-)—Dw.

9. For a letter v in A, if there is a production v — w in the grammar, where w is a forma
function, then Dv = w; otherwise Dv = 0 and we call such an element v a constant or «
terminal.

We call the above operator D the formal derivative with respect to the grammar G. It is clea
that Leibniz’s formula still holds for a formal derivative:

D'(f9) =% (’Z) D*(f) D™ *(g).-

Let’s consider a special case where the grammar G is a context-free grammar of a formse
language (i.e., every production is a substitution rule of replacing a letter by a word over th
alphabet). Let u and v be two words over A, then we must have

D(uv) = D(u)v + uD(v),

because the substitution must be done in cither the word u or v. For example, let A = {a,b,c¢
and

G ={a—ab, b—obec. c— ca}.
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Then we have

D(ab) = ab® + abc,
D*(ab) = ab’+ 3ab’c+ abc® + a2bc

In the above definition of formal functions, we have assumed that the letters in the alphabet
A are commutative indeterminates. However, we may similarly define the formal derivative for
noncommutative algebras and define a formal function alternatively as a formal power series over
alphabet A of non-commutative indeterminates. For convenience, we shall sometimes identify a
letter @ with the letter ao, ¢ with ¢, and so on.

Example 2.2 Let ao,a1,as,... and by, by, by, ... be two sequences. Then we have the followina

inversion pair:
i = Z (n) by and b, = Z <n> (-——l)n_kak. (2.1)
k k=0 k

k=0

Proof. Let G be the following grammar:

{f—’ f, ¢— Cz‘+1}-

Denote b; by c;f. Then the first identity in (2.1) can be rewritten as a, = D*(cf). Suppose it is
true, then we have Df~! = —f~2Df = —f-1, and

b = fD(c)
= fDcff™)

= f Z( )D‘ (ef)D" (57

k
n
= 2|, (=) e
k=0 (k)
The converse can be proved similarly. 0

The next example will be a grammar which will be used throughout this paper:

fi 3 f£+191,
g — Giy1.

We shall call this grammar the Fad di Bruno grammar. The next proposition gives a connection
between this grammar and the lattice of partitions of a finite set.

Definition 2.3 (Type of a Partition) Let 7 = {By,B,,..., B} be a partition of an n-set.
Suppose By has i, elements, By has i elements, ..., By has i, elements. Then we define the type
of by '

A(ﬂ-) = fkgi] g12 S5 e R glk &

Proposition 2.4 Let D be the formal derivative of the Fad di Bruno grammar and E be a set of
n elements. Then D™([) is the sum of types of all partitions of E.

Proof. Consider a general term T = figi, g, - gi, in D*(f). Note that each g; is obtained by
a substitution on an f; to get gi, and 7 — 1 substitutions on g;. Thus, cach ¢; corresponds to an
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i-subset of {1,2,---,n}. When we substitute f; by f;+191, we may always put g, at the end of the
current term. For example, D(f192919392) contains the term fsg2919392¢1. By this imposed order
on g;’s, the above term T will always correspond to a partition {B1, B,,..., B} of {1,2,...,n}
whose blocks are ordered in the'increa,sing order of their minimum elements. Since any partition
can be uniquely written in such a form, this completes the proof. O

We shall call the above proof the “partition argument”. It is easy to see that the number of
partitions of {1,2,---,n} with k; 1-blocks, k, 2-blocks, ..., k, n-blocks is

n!
kytkyl oo kpt 11k 22 o plkn”

Therefore, the above proposition can be restated as follows:

n |
D(f)=>fr = gy g, (2.2)

e kol - B 111k Olkz ... Ik
k=0  ky ko, rkn kitkg! ookt 1R 21 nlkn

where the second summation runs over all nonnegative integers k;, ko, ..., k, such that k; + k; +
.ky=kand ky + 2k, +...nk, =n.

Example 2.5 (Faa di Bruno’s Formula) Let F(t) = f(g(t)) be a composite function. Let D,
be the differential operator d/du and set

Fo=D}F(t), fo=DEf(u)luzgeyy & = Dig(t):
Then we have

n!
=0 Kydekn kylkat oo k1 1k 2tk Lo plkn

ky _k k
992" 9n" s
where the range of the second summation is the same as in (2.2).

Proof. Since the Faa di Bruno grammar simulates the procedure to compute the nth derivative
F,, it follows that D"(f) has the same expression as Fy,. O

The above proof can be easily extended to the generalized Faa di Bruno’s formula for a function
of several functions [2].

3. Formal Power Series

In this section, we shall consider the formal power series of a formal function with respect to
a formal derivative. Let G be a context-free grammar on an alphabet A, and D be the formal
derivative corresponding to the grammar G. For simplicity, if f is a formal function on an alphabet
A and G is a context-free grammar on A, then we may say that f is a formal function on G.

Definition 3.1 (Evaluation of a Formal Function) Let A be an alphabet and [ be a formal
function over A. An evaluation on f is a lincar function which maps a lctter to a rcal number.
We shall use |f| to denote an evaluation on f. The regular evaluation is the evaluation which
maps cvery letter to 1.
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Let w be a formal function over an alphabet A and |w| be an evaluation on w. Then we define

Gen(w,t) = 3 D"(w) =

n!’
7>0 :

gen(w,t) = X 1D"(w)| =,

n>0

tﬂ
Gent(w,t) = Y D™(w) i

n>1

gent(w,t) = ’; | D™ (w)] fz_' :
The formal power series Gen*(w, t) and gen* (w, t) are called the delta series of w. Note that the
variable ¢ is not in the alphabet A, namely ¢ is a constant with respect to the derivative defined by
a context-free grammar. We shall use D, to denote the differential operator in the variable ¢, for
convenience, we shall use the common notation ’ for D;. For example, we may write Gen'(w, t) for

D;(Gen(w, t)). The following proposition relates a formal derivative to the ordinary differentiation
of a formal power series.

Proposition 3.2 We have

Gen'(w,t) = Gen(D(w),t),

gen'(w,t) = gen(D(w),t).
We define an integration on a formal function as follows: Let w be a formal function over an
alphabet A, and D be the formal derivative corresponding to a context-free grammar over A. If

there exists a formal function u such that D(u) = w, then we say that u is an integration of w,

denoted u = [wdG. Note that if u is an integration of w, then u + ¢ is also an integration of w
provided that c is a constant.

Proposition 3.3 We have
/Gen(w,t) di = Gen(/de,t),

/gen(w,t) dt = gen(/de’,t).
Proposition 3.4 We have

Gen(u + v,t) = Gen(u,t) + Gen(v,1),
Gen(uv,t) = Gen(u,t)Gen(v,1).

Definition 3.5 (Disjoint Grammars) Let G, and G, be two context-free grammars on alpha-
bets A and B. Then Gy and G, are said to be disjoint if A and B are disjoint.

Let Gy and G, be two disjoint grammars. Let w be a formal function on G,. We define the
composition of G; and G, at w as follows:

Definition 3.6 (Composition of Grammars) Let Gy and G be two disjoint context-frce gram-
mars on A and B. Let w be a formal function on G;. Then we denote by GyD(w) the grammar
obtained from Gy by replacing every rule w — v in Gy with u — vD(w), where D is the for-
mal derivative corresponding to grammar G,. Then the union of these two grammars (as the
union of productions) Gy D(w) and G, is called the composition of Gy and G, at w, denoted by
7= GGy w).
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Note that the above definition can also be stated as G1(G2,w) = G1 D(w) U G2. The followi:
proposition gives the relationship between the composition of two disjoint grammars and t
composition of two formal power series. '

Proposition 3.7 Let G; and G, be two disjoint contezt-free grammars, f and g be two forn
functions on Gy and G, respectively. Let H(t) be the composition of the formal power series o]
and the delta series of g, i.e.,

H(t) = Gen(f, Gen™(g,1)).
Then H(t) is the formal power series of f with respect to the grammar G1(Ga, g).

Proof. Let F(t) = Gen(f,t), G(t) = Gen%(g,t) be the formal power series of f and g with respe
to grammars G; and G,. Then H(t) = F(G(t)). Let D be the formal derivative with respect
the union of the two disjoint grammars G; and G,. Set

0" F(u)

LT W

Iy, =

G. = D}(G(t)), H.= D}(H(1)),

and

= Dn(f)’ gn = Dn(g)'
By the differentiation rules for formal power series, we know that H, can be obtained as E™(1
where E is the formal derivative with respect to the following grammar G

{F: = FiaG1, Gi— Gin}

Since G(0) = 0, we have
0" F(u)) _O"F(t) _;
Gur u=G(t)=0 atr t=0 "
We also have g, = Gnli=0, hn = Hp|i=o. Therefore, h, can be obtained as h, = D*(f) in f

following induced grammar from E by setting ¢t = 0:

{fi =3 fi+191, gi — gi+1}-

Clearly the rules f; — fiy191 are equivalent to the grammar G- D(g), and the rules g; — gi41
equivalent to the grammar G». Since G; and G, are disjoint, the proof is complete.

It should be noted that the above proposition and the “partition argument” for Faa di Bru
grammar imply a combinatorial interpretation of the composition of two formal power series
Joyal’s theory of species. Given two formal power series

=% fay and g(t)= 3 gurr

n2>0 ’ n>1

let
h(t ,;) hn 5
Then the above proposition implies that h, = D"(f), where D is the formal derivative of the 1
di Bruno grammar.
Another consequence of the above proposition is a derivation of the formula (2.2) and the ]
di Bruno’s formula for composite functions without using the “partition argument”. Let D be
formal derivative for the Faa di Bruno grammar. Then the above proposition gives the follow:

n glt+92t2—2'+!13§—3-+---)k
> D (fn' > fx — .

|
n>0 k>0 k!
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By expanding the above formal power series, the coefficient of t;;l, gives (2.2) and Fai di Bruno’s
formula.

Example 3.8 Let
a(eb‘-l)
Z Q"n'

n>0

Then we have the following recursion
Quir = a3 ( )b"“Qk (31)
k=0

Proof. Let G; be the grammar {f — a f}, and G, be the grammar {g — bg}. Then it is obvious
that

Gen(f,t) = fe*, Gen't(g,t) =g (eb‘ = 1) .

Thus the composition of Gen(f,t) and Gen™(g,1) is fe®9(¢*-1), The composition of G; and G, at
g is

{f — abfg, g— bg}.
[t follows that

-D"(f) = D"(abfg) = abD"(fg)

abZ( ) ) D" *(g)
= abZ( )D‘ (f)b**g

Setting f and g to 1 in the above identity, we have (3.1) ]

When a = b = 1, @n becomes the Bell number B,, i.e., the number of partitions of an n-set.
Thus, (3.1) gives the known recursion for B,:

Bot1=)_ (Z) Bi.
k=0

et @ = z and b = 1. Then @, will become the generalized Bell number ¢,(z) (see [19] or (4.2)
or definition) and we have the following recursion for ¢,(z):

Pns1(z) =2 Z ( )9’51.(1
Example 3.9 Let
ele'-1 1
€ Z T L

Then T, satisfies the following recursion

Topi= Y ( " A-)T‘Bf’ (3.2)

i+jk=n \1 ]2 &

chere B; is the Bell number.
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Proof. The formal power series e " ~1 can be obtained as f(g(h(t))), where g(t) = h(t) =
e!—1and f(t) = €'. By Proposition 3.7, f(g(h(t))) is the formal power series of f for the following
grammar: ’

{f = fgh, g—gh, h—h}.

Thus we have
DY) = Dr(foh)
R AR EGEOED

i+j+k=n

- ¥ (2 )rooen

i+j+k=n
Since T, = |D™(f)| and B, = |D"(g)|, it follows (3.2). o

We note that that T, is the number of double partitions of an n-set. A double partition of a
set S is a partition whose underlying set is a partition of S.

4. Examples

In this section we shall give some examples of the utility of the grammatical calculus in deriving
certain combinatorial identities. We also give a simple combinatorial proof of the Lagrange inver-
sion formula based on its grammatical representation and using Cayley’s formula on the number
of rooted trees with a given degree sequence.

4.1 Bell Polynomials

Recall that the Bell polynomials are defined as follows:

!
n. s ke k
)n(ylvy% ’yn)— Z y}"y2...y"
. 1 e s ki 91k kn J1 72 n
ky gk kylkyl -kl 11k 2tk2 L. plkn

where the summation ranges over all nonnegative integers ki, ko, ..., kn satisfying k; + 2k, +
nk, = n. Define the grammar G as

{f - fy, yi — yi+1}-

Then it follows immediately from the partition argument that

Dn(f) = fYﬂ(ylsyZﬁ’ L] 7yn)-

We shall use the evaluation on D"(f) by setting f to 1. We first give a grammatical proof of the
following recursion for Bell polynomials:

n

Yn+1(yhy27"'syn+l Z( ) n—k Jla./?’ "ayn—k)yk-{-l- (11)

=0
Proof. Since Yay1(y1,¥2y-- -+ ¥ns1) = |D™(f)| = |D*(f11)l, the above identity (4.1) follows
immediately from the Leibniz formula. o

In his classic book [17], Riordan used a rather mysterious symbolic method invented in the
last century to derive Faa di Bruno’s formula. The ideca of his symbolic proof is to cstablish a
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lifferential equation on symbols, then solve the equation by treating it as an ordinary differential
'quation. The symbolic calculus has proven to be a very efficient tool in invariant theory and
-ombinatorial enumeration. A rigorous foundation of such symbolic calculus was first found by
lota in his theory of umbral calculus. By using Rota’s general theory, Roman [18] eventually
ound a rigorous explanation of Riordan’s symbolic proof of the Fai di Bruno formula. However,
Yoman’s interpretation is not as simple as the symbolic computation itself, so it does not seem to
1ave ;cally explained why it should work. However, it is somehow surprising that our grammatical
alculus can give a completely clear and faithful explanation of Riordan’s symbolic computation.
et D be the formal derivative of the above grammar G, and

tn

Gen(f,t) = ZD"(f) 1—7: = f Zyn(yx,yz,--»,yn)

=
n>0 . n>0 e

3y differentiation, we have

Di(Gen(f,t)) = Gen(D(f), t))
S Gen(fyh t)
= Gen(f, t) Gen(yi, t).

“hat is,
Dy(log Gen(f,t)) = Gen(yy, t).
; follows that

Gen(f,t) = eGen(fyxdG,t)+c
cGeny, o)+e

eGell+(y,t)+c .
y setting ¢t = 0, we have f = e and
2 3
Gen(f,t) = felrt T V2 T yazg + ...
stting f = 1, we get the formal power series of Bell polynomials, i.e.,

" id £
Zm(y],yz,...,yn)m —_— gen(f’t) — eylt+y22! +y33! + e oo

n>0

Note that the above grammatical proof involves neither the “partition argument” nor the

‘oposition on composition of grammars. It also suggests the study of formal differential equations
1ised on a context-free grammar.

.2 Stirling Numbers

2call that the Stirling number S(n, k) of the second kind is the number of partitions of {1,2,...,n}
th & blocks, and the Stirling number s(n, k) of the first kind is defined such that (=1)"*+*s(n, k)
the number of permutations on {1,2,... ;n} with k cycles. We shall call ¢,(z) the generalized
Il number of order n which is defined as

on(7) = Zn: S(n, k)a*k. (4.2)

k=0
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The following properties of Stirling numbers S(n, k) can be proved grammatically.

S(n+1,k) = S(n,k—1)+kS(n,k), (4.3)
Sn+1,k) = Y (’?) SG, k — 1), (4.4)
i=o0 \J
2, 3 (Al (et - l)k \
2SR = (4.5
zkkn \
bale) = X (46
k>0
(H)stmi+i = 2 (5080w a1
k=0
Proof. Let G be the following grammar:
{f—fg, 99}
From the “partition argument”, it follows that
D(f) = S(n,k)fg". (4.8
k=0

Hence we have
D™(f) = D(D™(f))
= D (z S(n,k)fgk)

k=0

= S, B)(fdH + kfgb).

k=0

Thus, (4.3) follows by comparing the coefficients of g*. Also,
D™i(f) = D"(f9)
" [n )
= 2, ( .>D’(f )g

s=0 \J
_ f;(’?)z:su,l)fg’“.
3=0 )/ 1=o

Comparing the coefficients of g*, we may get (4.4). From the composition theorem for grammar
we have

Gen(f,1) = 30 D(f) = = feste-D. o
k=0

n!

Combining (4.8) and (4.9), (4.5) follows immediately by comparing the coeflicients of g¥. Ther
{ore, (4.6) is immediate from (4.9) by setting g to « and then expanding as follows

t_ _ t
er(e 1) _ e—TeTe

k

» e-zz %‘_cm

k>0

-~z (55§

-
50 \k50 n!
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s is noted in [19], (4.7) follows from the fact that ¢,(z) is of binomial type. Here we shall give
proof by using the following grammar.

G:c+y=GxUGy={f_')f(x+y)’ r— T, y_)y}

define G, as the grammar by replacing g with z in the above grammar G and define G, similarly.
€t Dzyy, Dz and Dy be the corresponding derivatives of Gz4y, Gz and G,. Since Dy, = D+ D,,
re have

D3, (f) = ). S(n,m)f(z+y)"
m=0
- E oo
k=0
- (1)1 Sstene 5=l
k=
‘hen (4.7) follows by comparing the coefficients of z'y/. o

It would be interesting to compare the above grammatical proof with the more classical proofs
‘hich use generating functions and the umbral calculus (see [17, 19]). The identity (4.6) is called
he generalized Dobinski’s formula. From the operator identity D™*" = D™ D", we may obtain
n identity on Stirling numbers of the second kind which seems to be new. This identity unifies
lentities (4.3) and (4.4).

’roposition 4.1 (Vandermonde Convolution for Stirling Numbers)

Sm+nk)= 3 (m) i3 S(n,5) SG, k — 9).

i+j>k

Let G be the following grammar

{f - fq, gi— —i9i+1}-

Ve define the evaluation |D™(f)| by setting g; to g. By the “partition argument”, it is easy to see

hat
n

|D™(f Z (n,k) fg", (4.10)

'here s(n, k) the the Stirling number of the first kind. All the basic identities on s(n, k) can be
erived grammatically. We shall also use the above grammar to derive some classical identities on
ymmetric functions.

.3 Symmetric Functions

et’s recall the following definitions of some basic symmetric functions:

A By s Bgss s sy Bm) = Z Ty Dig = v v Ty
15i1<i2<...<i,lsnl
ho(21, 29,00 ,2m) = Z By B 4 g

Al — . -l vn
Sk L1l 2yns onlm) = Iy F7F okl
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We shall use M to denote a set of m variables {z,y,...,2}. For a variable z in M, we shall associate
it with a sequence of letters zo, z1, T2, ..., and call the following grammar E, the Waring grammar

of the first kind:
f - fl'l,
T; — —1Tip1-
The following grammar H, is called the Waring grammar of the second kind:
f = fxlv
T; — 1Tiy1.

We define the Waring evaluation of a formal function by setting f to 1, z; to z¢, y; to y*, and so on.
Similar to the “partition argument” , it is easy to prove the following proposition combinatorially
since we know that the number of permutations on {1,2,...,n} is n! and the number of even
permutations is equal to the number of odd permutations on {1, 2, ..., n} for n > 1.

Proposition 4.2 In the Waring grammar E, of the first kind, we have

|D(f)| = =, |ID™"(f)] =0, for n>1. (4.11)
In the Waring grammar H, of the second kind, we have
|D™*(f)| = n!lz™. (4.12)

From the above proposition, we can easily obtain a grammatical proof of Waring’s formulas.
From now on, we shall assume that the symmetric functions an, h, and s, are on the finite set
M. Tt is not difficult to see that may make this assumption without loss of generality.

Proposition 4.3 (Waring’s Formulas) Let a,, hn and s, be the symmetric functions on M as
before. Then we have

12 3
Zantn - eslt—32-2—+33§—..., (413)
n>0

X 2
Zhntn — 681t+32?+33'§+-..' (4.14)
n>0

Proof. Let G, Gy, ..., G. be the Waring grammars of the first kind corresponding to variables
z,9,...,zand let D, Dy, ..., D, be the formal derivatives with respect to Gz, Gy, ..., G.. Set

Cegpdos = WGy Wayr Wi .
Denote by D 4y+..+- the formal derivative for Griy+..+:- Then it is clear that
Devypote=De+ Dy +...+D..
Since |D(f)| = 0 for any k > 1 and |D.(f)| = =, it follows that

n

1Dz (Al = (k o
ky+ka4Akm=n \F19 K250 fm

) D5 D= - 1D

= nla,(z,y,...,2).
This proves (4.13). (4.14) can proved similarly. 0o

Newton's formulas can also be simply proved grammatically. A combinatorial proof of New-
ton’s formulas has been given by Zeilberger [20].
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Proposition 4.4 (Newton’s Formulas) Let a,, h, and s, be the symmetric functions on M
as before. Then we have

n

(m+1)an = > (=1)"*arsn_is1, (4.15)
k=0

(n+1)h, = Z hi Sn—ks1- (4.16)
k=0

Proof. First we prove (4.15). Let D be the formal derivative D:yyt..+2 for the Waring grammar
G:UG,U...UG, of the first kind. Thus,

D™ = ID"(f@r+y+... 4 2))
= [n :
= 2, (k) ID*NND™ (21 + 91 + ... + 1))
k=0
. (n
= 3 (}) IO = Bt
k=0 k
From the Waring’s formula we see that n!a, = |D"(f)|, therefore, we have (4.15). The grammat-
ical proof of (4.16) is similar to that of (4.15). O

Newton’s formulas are usually stated as follows

Sn —@18n-1+a28n-2 — 383+ ...+ (=1)"na, =0,

Sn+h13n-1+h23n_2+h33n_3+...—nhn =

1.4 The Lagrange Inversion Formula

I'he Lagrange inversion formula is an important technique in combinatorial enumeration. The first
“ombinatorial proof of this formula was given by Raney(15]. Many other combinatorial proofs have
>een found since. Here we shall give a grammatical formulation of the Lagrange inversion formula,
showing that it is essentially equivalent to Cayley’s formula on labeled rooted trees. This leads to
v simple combinatorial proof of the Lagrange inversion formula.

roposition 4.5 (The Lagrange Inversion Formula) Letv(z) and R(z) be two formal power
ieries satisfying v(z) = zR(v(z)). Let

xn
v(z) =) Un

n>1
lhen we have forn > 1,
n-1 B
v, = coefficient of 1) in R(z)".
We now give a grammatical formulation of the Lagrange inversion formula. Let A be the
Iphabet {vq,v,v3,...,70,71,72,.. .}, and S be the formal derivative with respect to the grammar:

ri = ri, 120,
Ui = vy, 121
¢t D be the formal derivative with respect to the Faa di Bruno grammar:
Ty = Tiy U1, 1 >0,
P —%  Uigny £ 21

hen the Lagrange inversion formula is cquivalent to the following form.
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Proposition 4.6 (Grammatical Version of the Lagrange Inversion Formula) Let S anc
D be the formal derivatives as above. Suppose v, =n D" (r) for n > 1, then we must have

vn = ™71 (r"),

Now we need to recall some properties of labeled rooted trees. Let T be a rooted tree with
vertex set {ry,z2,...,2,}. For any vertex z; in T, we shall use d; to denote the outdegree of z.
— the number of vertices covered by z;. The type of T is defined as

/\(T) = H Td; -
zi€T

We shall use R, to denote the set of all rooted trees on X = {z;,zs,...,z,}. By the Priifer corre
spondence, or a modified version of Priifer correspondence for rooted trees, it follows immediatel;
that

X, & zd2 Lzl = (ry 2.+ 3e)"L (4.17

TeR,

Equivalently, the number of rooted trees on X with outdegree sequence (d;,da,...,d,) is

If we treat ™ as a word w = rr ...r (here r stands for ro), then the derivative S becomes ar
operator which increases the index of a letter by 1. Suppose we always write a polynomial i
Z1,Z2,..., T, in the standard form zizi2 .. .zin, Then the operation of multiplying a polynomia
by (z1+22+...+z,) is the same as increasing the power of one of the z;’s by 1. Hence we obtair
that S™~1(r™) is the sum of types of all rooted trees on n vertices.

Proof of the Lagrange Inversion Formula. Since v; = ro, we may assume that vy = S¥~1(r*
for k = 1,2,...,n. Because we have the condition v,4; = (n + 1)D"(r), we need to show th
following identity:

(n+1)D*(r) = S™(r™*1). (4.18

The right hand side of (4.18) is the sum of types of all rooted trees on {z1, 2, ..., Tnt1}. Sinc
there are n + 1 ways to choose the root, it suffices to show that D"(r) is the sum of types o
all rooted trees on {z;, T2, ..., Tny1} With root z,4;. For a partition {Xi, Xz, ..., X} of th
vertex set {z1, 2, ..., Tn}, let T; be a rooted tree on X; for 1 <7 < k. From the rooted trees 1
(1 <1 < k), we may construct a rooted tree T by joining all the roots of T;’s to z,41 and specif;
Tp41 as the root of T'. Since the outdegree of z,41 in T is k, it follows that

MT) = re MT)MT2) ... M(Tx).

From the “partition argument’, it follows that D™(r) is the sum of types of all the rooted trees o1
{z1, 2, ..., Tu41} With root z,4;. This completes the proof. O

Finally, we note that the above proof also shows that Cayley’s formula (4.17) follows from th
Lagrange inversion formula. Thus, we have shown that these two formulas are equivalent.
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