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- In this paper, we propose the concept of formal functions over an alphabet and
a formal derivative based on a set of substitution rules. We call such a set of rules a context-free
grammar because these rules act much like a context-free grammar in the sense of a formal lan-
guage. Given a context-free grammar, we can associate each formal function with an exponential
formal power series. In this way, we obtain a grammatical interpretation of the operations addi-
tion, multiplication and functional conpposition of formal power series. A surprising fact about the
grammatical calculus is that the composition of two formal power series has a very simple gram-
matical representation. We also apply this method to obtain a simple demenstration of Faa, di
Bruno's formula, Bell polynomials, Stirling numbers and symmetric functions. In particular, the
Lagrange inversion formula has a simple grammatical representation. From this point of view, we
can show that Cayley's formula on labeled trees is essentially equivalent to the Lagrange inversion
formula.

1. Introduction

Let A be an alphabet wlwsc letters are regarded as independent commutative indeterminates. A
formal function over A is defined as follows:

1. Every letter in A is a formal function.
2. If u and u are formal functions, then u + v a,nd uv are also formal functions.

3. If f(x) is an analytic function in .T, and u is a formal fimction, then f(u) is a formal function.
4. Every formal function is constructed as above in a finite number of steps.

We ca,n also define the form. al derivative of a letter or a. formal function by a set of substitution
rules. Such a set of substitution rules can be regarded as a context-free grammar in the sense of
context-free grammars ill tlie tlieory of formal langanges. Ill tliis paper, an a.lpha. bet is allowed to
:ontain infinitely many lctt. crs. For tliis reczson, J. Goldman introduced tlic term formal {. chema
,0 distinguish context-free grammars having infinite alpliabets from those having finite alplia-bets.
3ivcn a formal derivative and a formal fiinction, we may associate an exponential formal power
icrics. This is difTcrcnt from the well-known approacli to fonnal langiiages whidi use tlie ordinary
brmal power series. U is interesting that the commoii operations on exponential formal power
.eries have simple grammatical explanations. Tlie I.agrangc inversion formul? has a very simple
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grammatical representation, which leads to a short combinatorial proof of this formula In fact,
we show that the Lagrange inversion formula is equivalent to Cayley's formula on labeled trees.
We also give other exampfes of grammatical calculus including Bell polynomials, Stirling numbers,
and some classical identities on symmetric functions.

2. Context-free Grammar and Formal Derivative

A context-free grammar G over A is defined as a set of substitution rules which replace a letter
in A by a formal function over A. A rule in a context-free grammar is also called a production
a.s in the theory of formal languages. For example, let A = {/, &, /?. }, then the following set of
productions form a context-free grammar:

G={f-. 2fg, g^g}.

We then consider an operator with respect to a context-free grammar G over A. Any formal
function over A can be regarded as a function ,1(01, 02, ... ,0n), where ai, 02, ..., On are letters in
A. Since all the letters are independent, we may treat them as abstract symbols for functions in
variable x (where x is not a letter in A). Thus, the derivative of a letter in A could be defined as
a formal function (we may even denote such a formal function by a new symbol) in order to make
the common differential rules still work for formal functions. Thus, we have the following

Proposition 2. 1 The following operator D on formal functions over an alphabet A is well-defined:

1. For two formal functions u and v, we have

D{u +v)= D{u) + D{v) and D{uv) == D{u)v + uD{v).

2. For any analytic function f{x), and any formal function w, we have

DW = 8M^.
3. For a letter v in A, if there is a production v -^ w in the grammar, where w is a forma

function, then Dv = w; otherwise Dv .= 0 and we call such an element v a constant or <
terminal.

We call the above operator D the formal derivative with respect to the grammar G. It is clea
that Leibniz's formula still holds for a formal derivative:

^n(^)=E [n, }Dk{f)Dn-k{g).
fc=0

Let's consider a special case where the grammar G is a context-free grammar of a formz
language (i. c., every production is a substiliition rule of replacing a, letter by a. word over tli
alpliabct). Let u and v be two words over A, then we must have

D(uv} = D{u)v + uD(v),

because the substitution miist be done in either the word n or v. For example, let A = {o, &,c
and

G = {a-^ ab, b-» be. c-»ca].
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Then we have

D(ab) = ab2 + abc,

D2(ab) = ab3 +3ab2 c+abc2+a2bc.

In the above definition of formal functions, we have assumed that the letters in the alphabet
A are commutative indeterminates. However, we may similarly define the formal derivative for
noncommutative algebras and define a formal function alternatively as a formal power series over
alphabet A of non-commutative indeterminates. For convenience, we shall sometimes identify a
letter a with the letter ao, c with CQ, and so on.

Example 2. 2 Let ao^a-i, ^,... and bo, bi, bi,... be two sequences. Then we have the followinn
inversion pair:

U. =E^)''* ^ '.. =E^)(-irt ^- (2. 1)

Proof. Let G be the following grammar:

{/-^/, c. -»c, +i}.

Denote 6, by c;/. Then the first identity in (2. 1) can be rewritten as a^ = Dn(cf). Suppose it is
true, then we have jD/-l = -f~2Df = -/-1, and

bn = fDn{c)
= fDn(cff-1)

= fI;{n^Dk{cf)Dn-k(f-1)
fc=0

=E (;)(-!)
k=0

, n-k Uk.

The converse can be proved similarly.

The next example will be a grammar which will be used throughout this paper:
D

/<.
9i

/>+1^1.
5f.+i .

We shall call this grammar the Faa di Bruno grammar. The next proposition gives a connection
between this grammar and the lattice of partitions of a finite'sct.

Definition 2. 3 (Type of a Partition) Let TT = {B^B-i,... , Bk} be a partition of an n-set.
Suppose Bi has z"i elem. enfs, By has t'z elements, .... Bk has ?\. elements. Then we define the type
O/TT by

W = fkgi. gi, ... g,,.

Proposition 2. 4 Let D be the formal derivative of the Fad di Bnino grammar and E be a set of
n elcinents. Then Dn{f) is the sum of types of all partitions of E.

Proof. Consider a general term T = }kgi, g^ . . -<7;, in Dn{f}. Note that each (7; is obtained by
a. substitution on an fj to get, g^ and ?" - 1 substit. utions on r/i. Thus, each g, corresponds to ail
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z-subset of {1, 2, - . . , n}. When we substitute fj by /j+i51 i, we may always put gi at the end of the

current term. For example, D{fAg'ig\g3g-i) contains the term }s9igig39-i9\- By this imposed order

on 5, 's, the above term T will always correspond to a partition {Bi, ̂ 2,..., Bk} of {1, 2,... , n)
whose blocks are ordered in the increasing order of their minimum elements. Since any partition
can be uniquely written in such a form, this completes the proof. D

We shall call the above proof the "partition argument". It is easy to see that the number of
partitions of {1, 2, . . . , n} with fci 1-blocks, ^2 2-blocks, ..., fcn n-blocks is

n!

k, \k^. ... ^!l!fci2!fc2 ... 7z!fc""

Therefore, the above proposition can be restated as follows:

n\
fln(/) = Eo/\,, E,». wy... y 2..... ^ ^^ . . .̂  . <2-2'

where the second summation runs over all nonnegative integers fci, fcz? . . ., kn such that k-i + k^ +
.. . kn = k and /;i + 2^2 + ... nkn = n.

Example 2. 5 (Faa di Bruno's Formula) Let F{t) = f(g(t)) be a composite function. Let Du
be the differential operator d/du and set

Fn=D^F(t), /, = ^ )L=,«), 9k=D^g(t).
Then we have

Fn = Eo fk 
k, , E.,.

n 
fci '^!... A:J1^2!^ ... n!^ ^^ ̂ 2 " . ^n '

where the range of the second summation is the same as in (3. 2).

Proof. Since the Faa di Bruno grammar simulates the procedure to compute the nth derivative
Fn, it follows that Dn{f} has the same expression as Fn. D

The above proof can be easily extended to the generalized Faa di Bruno's formula for a function
of several functions 2].

3. Formal Power Series

In this section, we shall consider the formal power series of a formal function with respect to
a formal derivative. Let (7 be a context-free grammar on an alpha. bet A, and D be the formal
derivative corresponding to the grammar G. For simplicity, if / is a formal function on an alphabet
A and G> is a context-free gra.mmar on A, then we may say that / is a formal function on G.

Definition 3. 1 (Evaluation of a Formal Function) Let A be an alphabet and f be a formal
function over A. /In evaluation on f is a linear function which maps a letter to a real number.
We fthall use j/1 to denote an evaluation on f. The regular evaluation is the evaluation which
map f: every letter to 1.
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Let w be a formal function over an alphabet A and |wj be an evaluation on w. Then we define
tn

Gen(w, <) = EDn(w)'T^
n>0 n!

tn
gen(w^) = EIJD"HI^.

n>0 n!

Gen+(w, f) = E^"(w)^,
7^1 n:

gen+(w, <) = ^|Z)"(w)|^.
n>l ?z!

The formal power series Gen+(w, <) and gen+(w, f) arc called the deJta series of w. Note that the
variable t is not in the alphabet A, namely t is a, constant with respect to the derivative defined by
a. context-free grammar. We shall use jD< to denote the differential operator in the variable f, for
convenience, we shall use the common notation / for Di. For example, we may write Gen'(w, <) for
D<(Gen(w, t)). The following proposition relates a formal derivative to the ordinary differentiation
of a formal power series.

Proposition 3. 2 We have

Gen'(w, t) = Gen(D{w), t),
gen'{w, t} = gen(D(w), t).

We define an integration on a formal function as follows: Let w be a formal function over an
alphabet A, and D be the formal derivative corresponding to a context-free grammar over A. If
there exists a formal function u such that D(u) == w, then we say that u is an integration of w,
denoted u = fwdG. Note that if u is an integration of w, then u + c is also an integration of w
provided that c is a constant.

Proposition 3. 3 We have

Proposition 3.4 We have

Gen{w, t}dt = Gen(lwdG, t),

gen(w, t)dt = gen( wdG, t).

Gen(u+v, t) = Gen(u, t)+Gen(v, t),
Gen{iiv, t) = Gen(u^t)Gen(v, t).

Definition 3. 5 (Disjoint Grammars) Let d and Gy be two context-free grammars on alpha-
bets A and B. Then G\ and G^ are said to be disjoint if A and B are disjoint.

Let Gi and G'z be two disjoint grammars. Let w be a formal function oil G-^. We define the
composition of G\ and G-i at w as follows:

Definition 3. 6 (Composition of Grammars) Let G] and G^ be two dipjoint context-free gram-
mars on A and B. Let. w be a formal function on G^. Then we dcvofe by G\D{w} ihc grammar
obtained from G\ by replacing every rule u -^ v in G^ iinfh u -> vD(iu), where D is the for-
ma! (lcrivaiivc corrcspovf!ivg to grammar Gi. Then the zinion of these two grammars {as the
union of productions) G\D{zu} and G-z if called the coinposition of G-[ and G-z at w, denoted by
7 = Gi(G'2, w).
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Note that the above definition can also be stated as C?i(G'2, w) = GiD(w) U C?2. The follow!:
proposition gives the relationship between the composition of two disjoint grammars and t
composition of two formal power series.

Proposition 3. 7 Let G\ and G-i be two disjoint coniext-free grammars, f and g be two forrr
functions on Gi and G-i respectively. Let H{t) be the composition of the formal power series oj
and the delta series of g, i. e.,

H(t)=Gen(f, Gen+{g, i)).

Then H{t) is the formal power series of f with respect to the grammar G^GiiSY

Proof. Let F(t) = Gen(/, (), G(t) = Gen+(^, f) be the formal power series of / and g with resp(
to grammars G'i and Gt. Then H{t} = F{G{t)). Let D be the formal derivative with respect
the union of the two disjoint grammars G'i and G'2. Set

9nF(u)\
Fn= 9ur- Gn = A"(G(<)), Hn = D^{H{t)),

u=G(t)

and

/n =£>"(/), 9n=Dn{g}.
By the diiFerentiation rules for formal power series, we know that Hn can be obtained as En(l
where E is the formal derivative with respect to the following grammar G:

{F. -^ F. +iG'i, G. -^ C7, +i}.

Since G(0) = 0, we have
)nFr?^M <9ni^l =°-^'-\ =/".9nF(u))

Qun
9nF(t)

9tn (=0lu=G(()=0

We also have gn = G'n|(=o, ^n = ^n|<=o. Therefore, hn can be obtained as hn = Dn{f) in 1
following induced grammar from E by setting t = 0:

{/.--> ,. +151.  ->^+l}-

9i+1Clearly the rules /, -> fi+igi are equivalent to the grammar G: P(g), and the rules gi
equivalent to the grammar G-i. Since G\ and Gi are disjoint, the proof is complete.

It should be noted that the above proposition and the "partition argument" for Faa d5 Bri;
grammar imply a combinatorial interpretation of the composition of two formal power series
Joyal's theory of species. Given two formal power series

fW-Efn ^ and 9W=E9n^.
n>0

let
n>l

tn
^)=/(^))=£^^.

n>0 n\

Then the above proposition implies that /?, n = Dn{f), where D is the formal derivative of the I
di Bruno grammar.

Another consequence of the above proposition is a clerivation of the formula (2. 2) and the 1
di Bruno's formula for composite functions without using the "partition argiiment". Let D be
formal derivative for the Faa. di Bruno grammar. Tlien the above proposition gives tlie followi

(git+g^ + 93^ + .. -)k
k\

tr
E^(/)^=EA
n>0 ". k>0
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By expanding the above formal power series, the coeflficient of -] gives (2. 2) and Faa di Bruno's
formula.

Example 3.8 Let

Then we have the following recursion

"-"=EQ^.
n>0

tn
7Z!

Q^=ab^{n^]bn-kQk.
k=Q

-(3. 1)

Proof. Let G'i be the grammar {/ -^ af], and G'2 be the grammar {g -» bg}. Then it is obvious
bhat

Gen(/, <) = /ea<, Gen+(^, <) = g (ebt - l) .
Thus the composition of Gen(/, <) and Gen+(^, <) is /eas(e -1). The composition of Gi and Gi at
g is

{/ -^ abfg, g ->b(j}.
[t follows that

-Dn+l(f) = Dn(abfg)=abDn(fg)

= ^(^}Dk(f)Dn-k{g)
k=0

= ^^(n^]Dk(f)bn-kg.
k=0

setting / and 5r to 1 in the above identity, we have (3.1) D
When a= b= 1, Qn becomes the Bell number Bn, i. e., the number of partitions of an n-set.

Thus, (3. 1) gives the known recursion for Bn:

n^=£1;:)^.
k=0

5et a = a- and b = 1. Then Qn will become the generalized Bell number ^n(a-) (see [19] or (4. 2)
'or definition) and we have the following recursion for ̂ n(.r):

Example 3.9 Let

<^n+l(a-) =3- ̂  ( ;. )^-(^) .
k=0

,^'-) -l , y-^ rl.
-=^J"^'

Then Tn satisfi es the following rccursion

n

r>+'=.. ? (,. L. )^B"i+j^~k=n \^3^K,
(3. 2)

.rhere Bj is the Dell. number.
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Proof. The formal power series ee( ~ 1 can be obtained as f{g{h{t))), where g{t) = h{t) =
e( - 1 and f(t) = et. By Proposition 3. 7, f{g{h{t))) is the formal power series of / for the following
grammar:

Thus we have

{f^fgh, g-^gh, h-^h}.

£»n+l(/) = Dn{fgh)
nE (, "J^(/)^(5)^W

..+.,TZ=n V'^'
n

= .^. ^)IywDl(9}h-

Since Tn = \Dn{f)\ and Bn = |Pn(<?)|, it follows (3.2). a
We note that that Tn is the number of double partitions of an n. set. A double partition of a

set 5 is a partition whose underlying set is a partition of S.

4. Examples

In this section we shall give some examples of the utility of the grammatical calculus in deriving
certain combinatorial identities. We also give a simple combinatoria. 1 proof of the Lagrange inver-
sion formula based on its grammatical representation and using Cayley's formula on the number
of rooted trees with a given degree sequence.

4. 1 Bell Polynomials

Recall that the Bell polynomials are defined as follows:

Vn(yi, y2,... , yn ) = E 
^^ ^, ^, . . . ^, I,., 2!^ ... n^ y?yy "'y'nn'

where the summation ranges over all nonnegative integers fci, fcz, ..., kn satisfying h + 2A-2 +

... nkn = n. Define the grammar G as

{/ -» /yi. y. ^ y'+i)-

Then it follows immediately from the partition argument that

£>"(/) =/K(yi, y2,..., yn ).

We shall use the evaluation on Dn{f) by setting / to 1. We first give a grammatical proof of the
following recursion for Bell polynomials:

r^ In
K+i (yi , ?/2,..., yn+i) = E CJ y"-^yi ^2,..., yn-fc) yfc+i .

k=0

(.1. 1)

Proof. Since yn+i(yi, !/2,... , !/n+i) = |£>n+l(/)| = \0n{fyi)\, the above identity (4. 1) follows

immediately from the Lcibniz formula. a
In his classic book [17], Riorclan used a rather mysterious symbolic method invented in the

last century to derive Faa di Bnino's formula. The idea of liis symbolic proof is to establish ?
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iifFerentiaI equation on symbols, then solve the equation by treating it as an ordinary differential
squation. The symbolic calculus has proven to be a very efficient tool in invariant theory and
:ombinatorial enumeration. A rigorous foundation of such symbolic calculus was first found by
^ota in his theory of umbral calculus. By using Rota's general theory, Roman [18] eventually
ound a rigorous explanation of Riordan's symbolic proof of the Faa di Bruno formula. However.
loman's interpretation is not as simple as the symbolic computation itself, so it does not seem to
lave really explained why it should work. However, it is somehow surprising that our grammatical
;a.Iculus can give a completely clear and faithful explanation of Riordan's symbolic computation.
-.et D be the formal derivative of the above grammar G, and

n>0

tn
n\

tn

n>0 7?!
Gen(/, <) = E^"(/)^, = / E7n (yi, t/2,..., yn )^.

iy differentiation, we have

"hat is,

t follows that

A(Gen(/, <)) = Gen(^(/), <))
= Gen(fy^t)
= Gen(/, <)Gen(yi, <).

A(logGen(/, f))=Gen(yi, ().

Gen(/, f) = gGen(;</, dG, <)+c
^ Gen(3/, ()+c

, Gen+(y, <)+<-

.y setting t = 0, we have / == ec and

Gen(/, f) = feV^ + ^JT +2/3J7 + .. .^

siting /= 1, we get the formal power series of Bell polynomials, i. e.,

^Yn^y^..., y^t-^=gen(f, t)=e^t+y4+y4+---.
n>0 n!

Note that the above grammatical proof involves neither the "partition argument" nor the
.oposition on composition of grammars. It also suggests the study of formal diff-erential equations
i,sed on a context-free grammar.

. 2 Stirling Numbers

-cal that the Stirling number S(n, k) of the second kind is tlie number of partitions of {1, 2,... , 7?.}
th k blocks, and the Stirling number s(n, k) of the first kiiid is defined such that (-l)n+ks(iz, k)
the number of permutations on {1, 2,..., ,2} with k cycles. We shall call ̂ (x) the generalized
?11 number of order n which is defined as

^(.r)=^6'(n, ^).rA-.
k=0

(4. 2)
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The following properties of Stirling numbers S{n, k) can be proved grammatically.
5(n+l, fc) = 5(n, fc-l)+fc5(n, fc),

5(n+l, fc) = E(n)50''fc-1)'
J'=0

00 fn (f.t_-[}k^S(n, k)^ = (e^1
n=0 k\

xkkn
<Pn{x) = e-x^'-^-.

k>0 '*-.

(it-'')s(",. +j) = ^(^(fc, ')S(r, -t, j),
Proof. Let G be the following grammar:

{f-^fg, 9^9}-

From the "partition argument", it follows that

Dn(f)=ZS^k)fgk.
fc=0

Hence we have

Dn+\f) = £>(£>"(/))

= D[^S(n, k)fgk}
<k=0

= ^S(n, k)(fgw+kfgh).
fc=0

Thus, (4. 3) follows by comparing the coefficients of gk. Also,
Dn+\f} = Dn{fg}

= t(", )D'W',
j=0

= E(")S;S(,, ()/, '+'.
j=o \J / ;=o

Comparing the coefficients ofgk, we may get (4. 4). From the composition theorem for grammai
we have ^, ^

Gen(/, <)=E^a)^=^(et-l)- (4-
fc=0

Combining (4. 8) and (4. 9), (4. 5) follows immediately by comparing the coefficients of gk. Ther
fore, (4. 6) is immediate from (4. 9) by setting g to x and then expanding a.s follows

^(e'-l) ^ p-r^re'

e ^-.k7TC
.. kt

k>0 k.\

1-" \ /"= .-TE(E^)!;T.
n>0 \(;>0

k\ ] n\'
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is is noted in [19], (4. 7) follows from the fact that <^n(.z-) is of binomial type. Here we shall give
proof by using the following grammar.

G^+y=G^UGy= {f-^ f(x+y), x-^x, y-^y].

)efine Gx as the grammar by replacing g with x in the above grammar G and define Gy similarly.
,et jD^+y, Dx and Dy be the corresponding derivatives of Ga. +y, Gx and G'y. Since D^+y = Dx+Dy,
/e have

Dn^y(f) = E5(", m)/(.r+y)m
m=0

- E(^)^^-'(/)
k=0

= E(n. ]f'ES^p)xi^S(n-k, ^.
A=0 \r"/ i j

'hen (4. 7) follows by comparing the coefficients of x'yj. D

It would be interesting to compare the above grammatical proof with the more classical proofs
/hich use generating functions and the umbral calculus (see [17, 19]). The identity (4. 6) is called
he generalized Dobinski's formula. From the operator identity Z)m+" == DmDU, we may obtain

n identity on Stirling numbers of the second kind which seems to be new. This identity unifies
ientities (4. 3) and (4. 4).

)ropositlon 4. 1 (Vandermonde Convolution for Stirling Numbers)

S(m+n, k)= ^ {m]im-'S{n, i)S(j, k-i).
i+j>k \3

Let G be the following grammar

[f-^ f 9\, 9i-^-igi+i}-

Ve define the evaluation \Dn(f)\ by setting gi to 5. By the "partition argument", it is easy to see
hat

\Dn{f)\=Z^k)fgk, (4. 10)
A-=0

'here s(ii, k) the the Stirling number of the first kind. All the basic identities on s(n, k) can be
erived grammatically. We shall also iise the above grammar to derive some classical identities on
^mmetric functions.

:. 3 Symmetric Functions

et s recall the following definitions of some basic symmet. ric functions:

a"(-cll-r2,...,. Tm) = ^ . r,,.C,,....T^,
l<'l<i2<...<i,i<m

/'n(.Tl,.T2,...,.Tn, ) = ^ , (.".!. "... .C,̂ ,
1 <'I <t;<... <i, i <in

.S>(.T, ,. r2,..., .r,,, ) = ,r^ + .r;1 + ... + .r^.
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We shall use M to denote a set of m variables {a-, y,..., 2-}. For a variable x in M, we shall associate
it with a sequence of letters a-o, a:i, .1-2,. . ., and call the following grammar Ex the Waring grammar
of the first kind:

/ - f^
a;, -^ -zxi+i.

The following grammar Hx is called the Waring grammar of the second kind:
/ -^ , 2-1,
x, -» i a', +1.

We define the Waring evaluation of a formal function by setting / to 1, .T, to x\ y; to yl, and so on.

Similar to the "partition argument" , it is easy to prove the following proposition combinatorially
since we know that the number of permutations on {l, 2,..., n} is n! and the number of even
permutations is equal to the number of odd permutations on {1, 2, ..., n} for n> 1.

Proposition 4. 2 In the Waring grammar Ex of the first kind, we have

\D(f)\=x, |D"(/)|=0, for n>l.
In the Waring grammar Hx of the second kind, we have

\Dn{f)\=n\xn.

(4. 11)

(4. 12)

From the above proposition, we can easily obtain a grammatical proof of Waring's formulas.
From now on, we shall assume that the symmetric functions an, hn and Sn are on the finite set
M. It is not difficult to see that may make this assumption without loss of generality.

Proposition 4. 3 (Waring's Formulas) Let a^, h.n and Sn be the symmetric functions on M as
before. Then we have

^a^n = e51f-52^+-s3^----,
n>0

E^^n =" _ ^i<+52^+53^-+...

(4. 13)

(4. 14)
n>0

Proof. Let G'r, Gy, ..., G^ be the Waring grammars of the first kind corresponding to variables
x, y, ..., z and let £)^, Z)y, ..., -D; be the formal derivatives with respect to G^, Gy, .. ., G^. Set

G^+,+.... = G^U C?,/U ... UG, .

Denote by D^y^.... ^^ the formal derivative for G'^+y+... +;. Then it is clear that
£>z+!/+... +z = £>r+^, +... +£)..

Since |^(/)| = 0 for any k > 1 and \D^(f)\ = x, it follows that

\D. ln
3-+S/+... +2

71

...^(/)1 = , , E, l^, ^, "., ^,
fcl+fc3 +-+fcm=n V'l, "2,. -., '>"!

7?. !an(.r, y,..., ^) .

1^(/)11^2(/)1... l^m(/)l

This proves (4. 13). (4. 14) can proved similarly. D
Newton's formulas can also be simply proved grammatically. A combinatorial proof of Ncw-

ton's formiilas has been given by Zcilbergcr [20].
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Proposition 4. 4 (Newton's Formulas) Let a^, hn and Sn be the symmetric functions on M
as before. Then we have

(n+l)an = E(-l)n-fc°^"-^i,
k=0
n

{n+l)hn = ^kkSn_k+l.
fc=0

(4. 15)

(4. 16)
Proof. First we prove (4. 15). Let D be the formal derivative £>, +y+... +, for the Waring grammar
C?^ UGy U ... UG', of the first kind. Thus,

l^n+l(/)l = p"(/(a-l+yl+... +^))l

= E(l}^k(f)\\Dn-k(x, +y, +... +^\
k=0

= E(^)l^(/)l(-l)n-fc("-^)!^-^i.
k=0

From the Waring's formula we see that n! On = |Z?"(/)|, therefore, we have (4. 15). The grammat-
ical proof of (4. 16) is similar to that of (4.15). . - ^

Newton's formulas are usually stated as follows

Sn-dlSn-l +G25n-2 - <X35n-3 + .. . + (-l)nnan = 0,
Sn + ^ 5n-l + k'2 Sn-t + kj5n-3 + ... - nkn =0.

4. 4 The Lagrange Inversion Formula

Fhe Lagrange inversion formula is an important technique in combinatorial enumeration. The first
;ombinatorial proof of this formula was given by Raney[15]. Many other combinatorial proofs have
?een found since. Here we shall give a grammatical formulation of the Lagrange inversion formula,
showing that it is essentially equivalent to Cayley's formula on labeled rooted trees. This leads to
i, simple combinatorial proof of the La.grange inversion formula.

Proposition 4. 5 (The Lagrange Inversion Formula) Letv(x) and R(x) be two formal power
series satisfying v{x) = xR{v(x)). Let

X-VW=^vn^-
n>l

Fhen we have for n > 1,

Vn = coefficient of
x, n-l

in R(x)n.("-!)'
We now give a grammatical formulation of the Lagrange inversion formula. Let A be the

Iphabet {ui, u;, ̂ 3,..., 7-0, ri, rz, ... }, and 5' be the formal derivative with respect to the grammar:
r< -> r;+i, i>0,

Vi -^ V,+i, i^\.
.ct D l)c the formal derivative with respect to llie Faa di Bnino grammar:

r, -^ r;+i i>i, ?: > 0,

Vi -4 U;+l, ? ^ 1.

'hen the Lagrange invc-rsion formiila is equivalent, to the following form.
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Proposition 4. 6 (Grammatical Version of the Lagrange Inversion Formula) Let S anc
D be the formal derivatives as above. Suppose Vn = nZ)n-l(r) for n > 1, then we must have

^=5"-l(rn).
Now we need to recall some properties of labeled rooted trees. Let T be a rooted tree witl1

vertex set {.ri, a-2i . . . , 3'n}. For any vertex Xi in T, we shall use d, to denote the outdegree of a-..
- the number of vertices covered by x,. The type of T is defined as

A(T) = n ^,.
i, T

We shall use Rn to denote the set of all rooted trees on X = {a-i, a;2r . . »3'n}- By the Prufer corre
spondence, or a modified version of Priifer correspondence for rooted trees, it follows immediatel;
that

^ Xd^ ̂ 2 ... a;^n = (.r, +.T2+ ... + xnr-\ (4. 17:
TeRn

Equivalently, the number of rooted trees on X with outdegree sequence (<fi, c?2,..., c?n) is

,
"-1 . }.

^1, C?2, . . ., ^n,

If we treat rn as a word w = rr ... r (here r stands for ro)i then the derivative S becomes ai
operator which increases the index of a letter by 1. Suppose we always write a polynomial ii
a;i,.F2, . . ., 3-n in the standard form x^x^ ... x^. Then the operation of multiplying a polynomia
by (a"i +2-2+ . . . + 3'n) is the same as increasing the power of one of the . c, 's by 1. Hence we obtaii
that S (rn) is the sum of types of all rooted trees on n verticcs.

Proof of the Lagrange Inversion Formula. Since v-i = ro, we may assume that Vk = Sk~l{rk
for k = l, 2,..., n. Because -,ve have the condition Un+i = (" + l)£>"(r), we need to show th'
following identity:

(4. 18(n+l)Dn(r)=Sn{r5n(r"+l).
The right hand side of (4. 18) is the sum of types of all rooted trees on {a:i, a-zi . . . -i 3"n+i}. Sino
there are n + 1 ways to choose the root, it suffices to show that Dn{r) is the sum of types o
all rooted trees on {a;i, x^ ..., 2-n+i} with root a-n+i- For a. partition {X-i, A^, ..., Xk} of th.
vertex set {a-i, xi, ..., 2;n}, let T, be a rooted tree on Xi {or \ <i <k. From the rooted trees 2
(1 ^ i ^ fc), we may construct a rooted tree T by joining all the roots of T. 's to a;n+i and specif
a-n-ci as the root of T. Since the outdegree of a-n+i in T is A-, it follows that

\(T)=rk\{T, )\(T, )... \{Tk}.

From the "partition argument', it follows that P"(r) is the sum of types of all the rooted trees 01
{a;i, 3-2, ..., a'n+i) with root a-n+i. This completes the proof. D

Finally, we note that the above proof also shows that Cayley's formula (4. 17) follows from th
Lagrange inversion formula. Thus, we have shown that tliese two formulas are eqiiivalent.
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