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Introduction and discussion

Of the values of the binomial coefficients (1>000^00.000), for integer fc, how many fall into
each of the residue classes 1, 2, 3, 4, 5, 6 module 7? Our answer to questions of this form is the
following.

Theorein. Let p be a prime, let a be a primitive root inodulo p, let

n >. 0 be an integer and let tj = <j(n) be the number of times the
digit j appears in the p-ary expansion of n (0 ̂  j <, p-l). Finally, for
each i let r, (n) be the number of integers k, 0 ^ k <. n, for which the

binoinial coe&cient Q) = a* mod p, and let Rn(x) = Sf=o2 r«(n)a;t be
their gene-ating function. Then *

p-1

Rn{x) = ]T[ ̂ -(z)^' modulo (xp-1 - 1).
J=l

(*)

In the sequel we will write G'(a-) = G!p,n(a;) = R^i RjW'.
We mention two methods by which one can carry out, in practice, the reduction of Gp, n{x)

modulo (a;p-l - 1). First, one can simply take the remainder of the division Gp,n{x)/{xp~1 -1).
Second, one might observe that the division algorithm

Gp,n{x) = (^-1 - IWX) + Rn{x) (deg(^n) < ? - 1) (**)

implies that the values of the unreduced polynomial G and of the reduced polynomial Rn agree
with each other at all of the (p - l)st roots of unity. But since R^ is of degree < p- 1, it is

uniquely determined by those vzdues. Hence we have the 'explicit' formula

^)=(^^(^)^, "("). (***)

* Supported in part by the United States Office of Naval Research
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The first method is preferred for specific polynoinials Gr, while the second may be better suited

to obtaining general formulas for the coefficients.

Example. We will now answer the question that appears in the first sentence above. Since

n = (lOOOOOOOOO)io = (33531600616)7, the di^t-counts are

(<i,..., t6)=(2, 0, 3, 0, l, 3),

and we choose the primitive root a = 3. From (*),
G'7, iooooooooo(a;) = {2}2{2 + 2x}3{2 +2x+ 2x5}{4 + 3x3}3

= 64(1 + a-)3(l + a- + a;5)(4 + 3a;3)3.
If we divide by a;6 - 1 the remainder is

^iooooooooo(a-) = 87808 + SSOOOa; + SSOOOa;2 + 87808a;3 + 87616a;4 + 87616a;5.

The coefficients of R are the numbers of blnoinial coefficients that belong to the respective

residue classes 3° = 1, 31 =3, 32 = 2, 33 = 6, 34 = 4, 35 = 5. Hence in the possibly more natural
ordering 1, 2, 3, 4, 5, 6 the occupancy numbers are

87808, 88000, 88000, 87616, 87616, 87808.

It is well known, from Lucas theorem, that the niimber of nonzero binomial coefficients is

I~[(l + n, ) where the n, are th^ p-ary digits of n. In this case that product is

J](l + Q(i == 22436173 = 526, 848
I

which is the sum of the displayed occupancy numbers, g

We remark that the distribution depends only on the numbers of each p-ary digit that

appear in (n)p, but not on the placement of those digits. The theorem therefore tells us how

to use the data in the first p lines of binomial coefficients in order to deduce the complete
distribution into residue classes of any Une n of those coefiicients, where n is given only by the
counts of its p-ary digits.

Our results are closely related to work of Hexel and Sachs [2,3] who were primarily interested
in the number of occurrences of each residue class summed over the first n+1 lines of Pascal's

tnEingle. For a single line of the triangle they gave results in two forms, both of which are explicit

formulas for the occupancy numbers rather than generating functions. One of these (Theorem

3 of [3]) involves suins over roots of unity of certain cyclic matrices, and the second (Theorem
4 of [3]) is essentially the formula that woiild result if one were to equate the coefficients of like

powers of x on both sides of our (*) above. These results can be obtained from our generating
function by using either of the two methods that we discussed just below the statement of our

theorem.
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Proof of the theoreni

In the generating function (*) one sees that the digits of n act independently of each other:

ezich digit contributes a polynomial from its line of Pascal's triangle to the product. This

independence is characteristic of phenomena related to Lucas' theorem (see below) on whidi
oiir theorem rests.

The independence can be cast in the following terms. Let S be the set of all finite words over

an alphabet 0, 1,... , p - 1, made into a semigroup by concatenation. Let P be the semigroup

Z[x} mod (xp~1 - 1) of polynomials under multiplication mod {xp~1 - 1). Consider the mapping
/ = fp,a :S -^P that is given by

/(<r)=^r. (n^
t"=0

where n^ is the integer whose p-ary digit string is a. We will show that / is a semigroup

homomorphism, and therefore its action on any string o- is the product of its actions on the

individual digits of <r, which is exactly what our theorem asserts.

To prove that / is a homomorphism we use the theorem of Lucas (e.g. [I], pp. 78-79) which
states that

(:)-n(:;) <^)
where the n» s and the fc, s are the p-ary digits of n and of k, respectively. We follow the

conventions that (^) =0ifn^ 0 is an integer and fc<0or A; > n, and that our sequence {r,}
is defined for all integer i ajid is periodic in i of period p - 1.

Now if a , o- are two given strings, we have
P-2

f{ala")=^{n^., )xi
«=0

p-2

='E|{^(T) ='.. }[-
t=0

=gl<-(";. )(";;')-. }p
=E{g|{^ft)-j}||{^fr)-i-'i|}-i

j>-2 fp-2

= S<! Srj(n^')r'-. »'(n^") }xi
i=0 vj=0

p-2p-2
= EE(r^n'T')a'J)^-l+-^n(T");cp-l+'-J) modular-1 - 1)

t=0 j=0

= /(a')/(<7") modulo (xP-1 - 1).
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sameFollowing the third sign of equality above, k' is the integer whose digit string occupies the
positions in the full string o! k os the substring or' occupies in the full string of n, and similarly
for k", a".

Blnomlal coefRclents as quadratic residues

Our theorem has an interesting application to the quadratic character of the values of the
binomial coefficients modulo p.

Definition. Say that an integer n is p-balanced if, among the nonzero values of the binomial
coe&cients {(3}^o (mo(l P) moduJo p there are equal numbers of quadratic residues and
quadratic nonresidues module p.

For example, the integers 0, 1, 2 are never p-balanced, whatever the prime p may be; the
integer 3 is p-balanced precisely when p= 5 or 7 modiilo 12, and so forth.

The relevance of our theorem to such questions is the following. If we evaluate the generating
function Rn(x) at x = -1,

- -R"(-i)=Er. (n)(-l)t
»"=0

we see that it counts the excess of the number of quadratic residues over the number of quadratic
nonresidues among the nonzero values of the binomial coefficients of order n. Thus n is p-
balanced if and only if Rn(-l) = 0. However since by (**) R^x) and Gp,n(x) agree with each
other at all of the (p- l)st roots of unity, we see that n is p-'balajiced if and only if Gp, n(-l) = 0.
Since Gf is a product, this can happen if and only if at least one of its factors vanishes, and we
have proved the following.

Corollary. Let p be prime and let Tp be the set of integers n, 0 ^n < p-1, that are p-
balanced. JfTpis empty then no integer n>0 is p-balasced. IfTp is non-empty then an integer
n is p-balajiced if and only if its p-ary expansion contains a diyt d^Tp. g

Thus ifp= 5 or 7 module 12 then every integer that contains a digit 3 is p-balanced.
The numerical data that we have are as follows. The sets Tz, TS and Tii are empty. Hence

there are no integers n > 0 that are 2-, 3-, or 11-balanced. AU other Tp for p < 227 are nonempty.
Dr. Andrew Odlyzko has extended these calculations to primes < 106, and no other nonempty
Tp exist for such p. A few of the sets Tp are: ̂  = {3}, Tr = {3}, ̂ 3 = {7, 11}, T^ = {3, 15},
Ti9 = {3}, Tzs == {7}, T29 = {3, 23, 27}. For these primes there are infinitely many p-balanced
n. It would be interesting to know if any other empty Tp exist.

We thank Dr. Eduardo Friedman for helpful disciissions that have clarified the ideas in this
paper.
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