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Introduction

Several techniques have recently been introduced in order to compute approximate
soludons to forced nonlinear diffrendal equadons. The aim of this paper is to briefly review two
of these methods which are of different nature but leads to the same approximations. The first
method is based on the combinatorial notion of L-species introduced by Leroux and Viennot
[13-15] and the second is based on automata representations due to Hespel and Jacob [8, 9].
Both of these methods are intimately related to the algebraic appraoch of nonlinear functional
expansions introduced by Fliess[4, 5]. Strong connections should also appear with the work
of Grossman[7].
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The relevance of these combinatorial and syntacric approaches is that they provide a
clear iterative scheme in order to find the functional expansion of the solution. They lead to
efficient computer tools for analyzing the behavior of the soludon around equilibrium points.
See Martin [16] for a first attempt. Moreover any choice of an iterated truncation procedure
provides a family of bilinear approximations, that can be viewed as a family of noncommutative
Pad6-type approximants. For example, bounding the possible widths of trees and hedges at the
order p in the first approach (see Lamnabhi-Lagamgue, Leroux and Viennot [12]) or truncating
structural JR-ciutomaton at height p in the second approach (see Hespel and Jacob [10]) lead to
the well known Brockett's approximations by bilinear systems based on a Carleman
linearization [3]. More precisely, in this case, the Volterra series associated with the nonlinear
forced differential equation coincides up to order p with the Volterra series of the ouput of a
bilinear system.

The algebraic approach is briefly recalled in the first part of the paper . Also the
derivadon of the Volterra kernels using Brockett bilinear approximations is translated in this
context. The second part is devoted to the combinatorial representation and the last part to the
syntacdc approach.

I. Algebraic representation: The generating power series approach

Let us recall first some definitions and results from the Fliess algebraic approach [4,
5]. Let ui(t), U2(t),..., ujt) be some inputs and X= {XQ, x^,..., x^} be a finite set called
alphabet. We denote by X* the set of words generated by X. The algebraic approach
introduced by Fliess may be sketched as follows. Let us consider the letter Xg as an operator
which codes the integration with respect to time and the letter Xp i = 1, ..., m, as an operator
which codes the integration with respect to time after multiplying by the input u;(t). In this
way, any word w e X* gives rise to an iterated integral, denoted by I (w), which can be

defined recursively as follows: It{0} = 1 andforw = x^v e X*, I(w} = | riT r(v} if a
t

=0 and r{w}= | Ui(T)dTlT {v} if a=i.

Now, let us consider the control system
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m

q(t) = fo<q) + £ u,(t)fi(q) ,
y(t) = h(q) ,

i=l (1. 1)

where the state q belongs to a finite-dimensional IR-analytic manifold M, the vector fields fg,
f,. .... f_ : M-^ M and the output function h : M-» E are analytic and defined in a

' ""' *m '

neighborhood of the initial state q(0). Using a local coordinates chart, q = (q\ ..., qN )T , (1. 1)

can be written in the following form

m

qk(t) = f^(q1, ..., qN) + £ u^(q1, ..., qN ), 1 <k <N ,
i=l (1. 2)

y(t) = h(q1, ..., qN ),

where the functions fk: RN -^ E are analytic in a neighborhood of q(0) = (Yl,..., 'yN).

The solution y(t) of the control system is given by [4]

m

y(0 = y(0) + S S
V20 Jo'---'Jv = °

fj. - fj0- "^ I'lXjo... M. (1. 3)

q=y

This functional expansion is called the Fliess expansion of the solution. The associated power
senes

m

s=y(0)+S ^ S fjv-fjo-h^
V>0 JQ'---'Jv = °

XJO-XJv (1. 4)
q=y

is called the Fliess series associated with the control system (1. 1).

Let us now consider the Carleman bilinearization technique introduced by Brockett.
Let us express the analytic functions ̂  and h as Taylor expansions

k,i^(q',..., qN )=. £.. >^:...,V<11)J-... «1N))N.
JI,... JN>O

h(ql,..., qN)= S^^,..., J^l)Jl-(qN )JN-
J1.....JN20

(1. 5a)

(1. 5b)
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in a neighborhood ofyi=q*(0), i = 1,..., N. If y is an equilibrium point of the system (1. 1)
then the Brockett bilinear system which has the same Volterra series up to order p than the
Volterra senes of the nonlinear system (1. 1) is obtained by introducing new states

<p>.,. = (ql)Jl... (qN )JN -
'Jl>-'J

Jl +-+JN ^ P '

<p>with initial conditions q^> ,. (0) = (yl)Jl... (7N)JN . If q<p> , ,
*JI.-JN . . - . -J^ ,..., -I,..., JN

J\,... JN^O and q^p>.^=0 if j^ + ...+JN >P, we obtain

= 0 for all

N

C.. JN 
= sjk(ilu i ^ > oair-'iN qlp >. ii, ... ^ -^ - >k. -JN - 'N)'

(1. 6)

y<P> =^. £ " h^,...,^ q^.P>^^ ,
JI.-.JN

This system may be interpreted in the algebraic context by defining the generating
. series g<p> ," associated with qfp> i\,:"JI'-JN ----- ^1»-I

N

C... JN 
= £jk(lo 

i^,...,̂  > 0 
^". 'iN xig<JP>^ >!' -'Jk -1 + ik. .... JN + IN)'

(1. 7)

g<p>=,.....?, >. h'l--JN  .., JN-
JI.-.JN £'

The rational power series g<P> may be seen as a non commutative Pade-type

approximant for the forced differential system (1. 1) which generaUzes the notion ofPade-type
approximant obtained by Brezinski [2] for free differendal systems. The effective computation
of the rational power series g<P> has been derived using formal languages and applied to the

analysis of nonlinear electronics circuits [1, 11]. However the computations become quikly
unwieldy. The two representations described in the next parts lead a better understanding of
these powers series and therefore allow to carry further the study of this wide class of nonlinear
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systems. For instance equation (1.7) will receive a clear interpretation using one method or the
other. Moreover any choice of an iterated truncation procedure of these representations will
produce a new family of bilinear approximations.

For the sake of simplicity we will consider in the following the two dimensional
nonlinear system

Y(t) = A(Y, Z) + u(t)B(Y, Z) ,

Z(t) = C(Y, Z)+ u(t)D(Y, Z) ,

Y(0) = y,

Z(0) = 8,
(1. 8)

with only one input u(t). All the results below may be generalized to nonlinear system (1. 1)
without adding any complexity.

II. Combinatorics representations: L-species.

2. 1 Generalities[13].

Let E and L denote respectively the category of finite sets and functions and the
category of finite linearly ordered sets and order preserving bijections. Recall that a species of
structures M called a L-species is a functor M : L -> E . This means that to each linearly
ordered finite set I, M associates a finite set, denoted by MM, whose elements are called M-
structures on /and to each order preserving bijecdon (p : ^ -^^ <a funcdon

M[(p]: M[^] -^M[^]

called the transport of structures, in a functorial way, that is such that

M[(po <|)] = M[<j)] o M[<!)] and M[l^] = IM[/]

A convenient and useful graphical representation of a generic or typical M-structure on a
linearly ordered set is given by figure 2. 1, where the curved arrow indicates the linear order on
the set of points and the label M represents the M-structure:
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Figure 2. 1. Generic M-structure

Definition 2. 1: Two 1L -species M and N are isomorphic if there exists a natural
isomorphism of functors a: M -» N. In other words there should exist a bijecrion a^ : M[l\
-> N[^] , for each ̂  e L, such that for any increasing bijection <p:/ ̂ A , the following
diagram commutes:

MM

i
M[A]

a2

-^

«A

->

NN

^
N[A]

Let us define now some operations on M-structures. In the following, the operations

+ (and ̂  ) and x (and Ti ) on sets are the disjoint union and r f?sian product respectively.
We let min(^) denote the new minimum element to^ and 1 +/ denote the ordered set obtained
by adjuncdon of a new minimum element.

Let M and N be species, and ̂  be a linearly ordered set. The following operations are
defined,

addition: M + N by (M + N)N = M[/] + N[^],

product: M.N by (M. N)[^]= Z^, ^, ^ M[^] x M[^] ,
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Figure 2.2 : Generic M.N-structure

substitution: M(N) , when N[0] = 0, by

(M(N))[/] = I p , ^fl M^/P] x rl. e 2/p M[c]peNM

Figure 2. 3 : Generic M(N) - structure

The operation of substitution for L-species is closely related to the concept of compose
partitionnel introduced by Foata and Schutzenberger[6].
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Derivation: M' (also denoted by dM/dT) by M'[/]=M[^+1]

Figure 2.4 : Generic M'-structure.

Integration: F(T) = F = J M(X)dX by
0

F[0]=0 and F[fl = M[^\min{^}], for ̂ 0.

Figure 2. 5 : Generic | M(X)dX -structure.

All the elementary properties, associativity, commutativity, distributivity, linearity, etc.,
of the operations are true at the combinatorial level, including the Leibnitz rule and the
Chain rule for the derivative, (M. N)' = M.N' + M'. N and M(N)' = M'(N). N'
where equality means isomorphism of L-species.

Let us now consider the generating power series

F(t) = S I Ftn] I 4n
n > 0
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The following properties are easily verified,

(F + G)(t) = F(t) + G(t), (F.G)(t) = F(t) G(t), (F o G)(t) = F(G(t))

andF(t)=^F(t).
T

Finally if F = J M(X)dX then F(t) = J M(x)dx .

2. 2 Arborescences.

Eclosions Type

0

y

D

8

u

B

D

TA(y, 5)^-
-3y

JU(X)dX. B(y, 5) ̂ -
3y

TC(y, 5)^

J U(X)dX. D(y, 5) as

Figure 2.6: Eclosions associated with (1.8).
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Let us consider now equation (1. 8) in its integral fomi,

J-Y(t) = y + | u(T)A(Y(T), Z(T))dT + I u(T)B(Y(T), Z(T))dTJ-
J-Z(t) =§+| u(T)C(Y(T), Z(T))dT + I u(T)D(Y(T), Z(T))dTJ" (2. 1)

By virtue of the definition of the integradon and substitution, the integral equadon (1.9) leads to
the definition of the eclosions visualized in figure 2.6.

It now suffices to iterate this process to obtain a canonical combinatorial solution of (1. 8), that
is the L-species of enriched increasing trees, generically described by figure 2.7.

Figure 2.7: Generic Y(T)-structure.

We denote by V the set of all these trees and by 0'y (rcsP- yz) the set of trees whose
root is a Y-vertex (resp. a Z-vertex). With each tree T e Ty' we associate the weight v(T)
defined as the product of the weights of the verrices of T, and the word wQT) = w^w^. -. w^,
where w; = x; if the vertex labelled i is a leaf and w; = Xy otherwise. For example the tree T of
figure 2.7 has weight v(T) = yt52 and the associated word is w(T) = X^XQX^XOX^X, XQ .

From the general theory [14], the solution Z(t) of the equation (1. 8) is given by

y(0= ^v(d)It{w(d)} (2-2)
de 3-,
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where It{w(d)} denotes the iterated integral associated with Ae word w(d) (see §1).
The formal power series

g= ^v(d)w(d) (2. 3)
de ^

in non commuting variables XQ, xi, is the Fliess series of the system and (2.2), the Fliess
expansion of the solution Z(t).

2.3 Bilinear approximants.

We now describe a truncation-process of the arborescences which leads to an
approximation process for the soludon of (1. 8). To do this we need to introduce the concept of
width of trees. The width of a tree T, denoted by wit(T) is defined as the maximun number of
buds of the trees that appear at any stage of the growth of T. For example, the tree T of figure
2.7 has witfT) = 7, see figure 2.8 where the "squelette" of T is represented. This notion can be
extended to the nodon of hedges of trees . We say that a row of weighted plane rooted trees
T is a hedge H of trees T if

i) the labels (1,2,..., n) for the n labelled vertices are distributed freely among the trees
but should be increasing from the root to the leaves within each tree and,

ii) the trees with a Y-root precede the trees with a Z-root.

Let us denote by 7^ the set of hedges consisting of a row of i trees with Z-roots
followed by j trees with Y-roots. In particular we have

9'y = ^'1, 0 and ^rz = ^o.1

The weight v(H) and the word w(H) of a hedge H are defined in exactly the same way as
for trees. Similarly, the width wit(H) of H e y;j is defined as the maximum number of
buds that appear at any stage in the growth of H, using the same eclosions as before, but
starting with a row of i Y-buds followed by j Z-buds, if H e ^ ;j .The proposed
approximants are then obtained by imposing a bound on the possible hedges of trees. More
precisely, we denote by y<P> the set of trees T such that wit(T) < p and 7 "^ the set of

hedges H such that wit(H) < p. We define the pth-approximants Z<P>(t) and Z'v\ (t) as the

corresponding Fliess expansions, with V ^ = <^^g:
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Z<P>(t) = S v(T) It{wCT)) ,
TeU-r

(2. 4)

q^p>(t) = £ v(H) It{w(H)} .
'"" He^

(2. 5)

Now let consider the Taylor expansion of each function appearing in (1. 8).

A(Y, Z)= S a^(Y)r(Z)s ; B(Y, Z)= £ b^(Y)r (Z)s ;
r, s>0 ' r. s>0

C(Y, Z) = S c,., (Y)r (Z)s ; D(Y. Z) = S d^(Y)r (Z)s ;
r, s20 r. s>0

The bilinear state system satisfied by the functions ̂ (t) , for 1 <i +j ̂ pis simply
obtained by examining what can happen when the vertex with minimum label is removed from
a hedge, i.e. what is the nature of the very first eclosion.

Proposition 2. 1: Given p S 1, for l<i+j<p, the pA - approximants q^(t) satisfy

the differential equations,

q?P> = i S(a,,, + ub^)q^. ^j^(t) + j ^_(cr. s + udr, s)q%+s-i
l'J T^>0 "" -.----.. - ^^

(t)

(2. 6)

with initial conditions q,j(0) = 'yi5i where we have set q. ij = q;, -i = 0 for all i, j, and
qij=0 if i+j>p.

Proof: The initial condition q;j(0) corresponds to a row of buds, which gives gldJ . The first

term of the right hand side of (2. 6), i ^ (a^g + u4^)qSp^j^ , corresponds to the case
r, s>0

where the minimum label is a Y-vertex: there are i possibilities for its position, it appeared as a
type 1 and 2 eclosion and hence its removal leaves a (]i+pr. ij+s -structure. A similar discussion,
where eclosions of type 3 and 4 can occurr, explains the second term.
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Proposition 2.2: Assume that the point (0, 0) is an equilibrium point. Then the functionals
(Y(t))l(Z(t))J and q^>(t) have the same Volterra kernels up to order p.

Remarks: i) Note the proposed combinatorics appraoch allows to derive equation (2. 6) directly
from (1. 8).

ii) Any other process of truncature of the arborescences would lead to a different type
of approximations.

iii) This appraoch allows also to pick easily a particular coefficient in the Fliess series
or in the fonnal equivalence of the associated Volterra series expansion[16].

2 _7 .?_ 9 n . 13
"V'. ^^.V^

1 346 8 1014

xl X0 xl xl X0 1 0

Figure 2.8

III. Automata representation: A geometric E- automata.

3. 1 Generalities[8, 9].

Let us associate to the system (1. 1) the following infinite geometrical R-automaton Q

^=CE, V, ^^) (3. 1)

where fL is the vector space generated by (ql)Jl... (qN) , ji, ..., JN > 0, V is the initial vector

associated to the observation h,
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h(ql,..., qN)= S_^,..,Vql)jl-(qN )jN '
JI.....JN>O

p, is the linear mapping {E->tL, such that

, 1^1 ^N^N l^1 /.N^NiKXj) : (ql )Jl... (qN F ^ f, ((ql )Jl... (qND

where f, is a vector field, see (1. 3). Finally X is a linear form defined by the row vector whose

components are the evaluations of the final states evaluated at t= 0.

From this definition it not difficult to see that the power series associated with the IR-
automaton (3. 1) is precisely the Fliess power series (1.4b),

g= ^ ^(w)V)w
weX*

Endeed, if w is the word x,̂  ... x;.. then ^, (p. (w)V) is equal to f,..... f;n.h('y).

In particular for the system (1. 8), we can associate the infinite geometnc E-automaton

-S=(<E, V, ^, ?L)

with the vector fields, fo and f^ given respectively by,

[ £^^(Y)r (Z)s] ̂ + [ ^c^(Y)r (Z)s] ^
r, s>0 " * r, sSO

and

[£^. smr (z)s]^+[£d^Y)r(z)s]^.
r, s>0 '- r, s>0 ''- ~

The cell of this automaton is represented on the figure 3.1
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l\

r. s^I

Action off, Action off,

Figure 3.1: Cell of an automaton.

3.2 Bilinear approximations.

Now from the theorem of Schiitzenberger[17], recall that a power series g e R«XS(;»

is said to be rational, (or regular) if and only if it can be recognized. i.e. if there exists a finite
dimensional E-automaton ̂  over X,

^=(Q, Y, ^^)

where Q is a finite dimensional E-vector space, y is the initial state , ̂ (x;) is a linear map: Q
-^ Q and the observation ̂  isa linear map: Q ̂  K, satisfying

§=_ £ ^V--^xjv)Yxjo-xjv.
XJO- XJ"v x -
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Now let us consider again the infinite geometric R-automaton tS. Let us truncate this
automaton to the states YlZi of degree not more than p, i +j < p. We obtain a finite E -
automaton A<P>. Then ̂ <P> is represented by a rational power series and the. state equations
satisfy a bilinear system.

Proposition 3. 1: Assume that the point (0, 0) is an equilibrium point. In this case ^L<P> is
the Volterra automaton at the order p, i.e., the associated bilinear system corresponds to the
Brockett bilinear system (1.7).

Remarks: i) Note that ^ .. from the combinatorial approach and ^[<P> from the syntactic

approach are two equivalent representations of the same differential equation (1. 6) or in its
algebraic form (1.7).

ii) Any finite truncation of the infinite automaton Q furnishes a finite automaton,
describing a bilinear system approximadng the given nonlinear analytical system. For instance
one may consider only the states Y1Z), i +j ̂  p and i ̂  j . See [10].

iii) In this context also, the derivadon of the associated bilinear system is evident from
the differential equations.
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