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Abstract
In this paper, we firstly introduce the enlarged problems on chromatic and dichrom&tic

sums for general gf&phs &ad m&pa. Thftn, the Tutte'a contribution to the problem for pl&n&r
tri&ngul&tfci ns is briefly aurvcyed. In the m&in part, the recent progress made by the author

for outerplanar, cubic and general maps Ss explained. Meanwhile, & new result on dichromatic
sumsofoutcrplanar maps is also provided. Finally, some problems for further research on this
topic are proposed.

1. A few words on graphs

Two kinds of polynomials of graphs or maps as their embeddlngs on a surface are
particularly concerned in this paper. The Hrst one is the chromatic polynomials which were
firstly created by G.D. Birckhoff [l] in 1912 for the intention of solving the Four Colour
Problem. And, the other is the dichromatic polynomials of graphs or maps, which were
firstly discovered by W.T. Tutte as a new development of the first. 181 More interestingly,
the later can be applied to find'mg a topological invarant from which a new progress has be
made for the knot problem in topology. I21

*The author was supported by the Italian National Research CounciL He is also very grateful to the
Dipartimento di St&tisticti, ProbabiHta e St&tistiche Applicate, Univeraita di Roma 'La S&pienza'' for the
hospitality when he was there.
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2. The statements of the problems

The most general problem is as follows. Let ^ be a set of graphs, R(G) be a polynomial
of graph G. Our purpose is to find

E
<? 5

R(G) (2. 1)
»,(», [G)^»i^O

which is called the R-sum of G, for a set of given values ni, ri2»'" of the corresponding
members in a fixed set of combinatorially invariants {ni(G), n^(G), . '. } of G.

In order to do. this, we have to investigate the following function as a whole

rs{xz, x^.. ;R) = ^ A(G) H^'(<?) (2. 2)
<? 5 i^l

which is said to be the A-sum function of the set $ of graphs.
Our problems in what follows are divided into two stages: first, to find the functional

equation satisfied by rg(xi, x'i, -" ;R)', then, to solve the equation by determining all the
terms, or all the coefficients of the terms in the power seies of rg{xi, x^, "- ;R).

Here, we are only restricted ourselves to discuss the cases when R represents the chro-
matic polynomial and the dichromatic polynomlal of a map. By a map, we shall mean an
embedding of a graph on a surface. Naturally, the chromatic and dichromat'ic polynomlals
of a map are defined to be the same as the ones of the underlying graph of the map. Further,
we also only consider the surface to be the sphere, or equivalently the plane in the whole
paper.

Because of the symmetry which has to be explored for eacii map, we are not allowed now
to investigate general maps for this problem directly without consideration of automorphic
groups. Moreover, we have known a number of kinds ofplanar maps including 3 - connected
ones in each of which almost all maps are asymmetric.

That means that it is allowed to treat all those kinds ofplanar maps without symmetry.
What could we do for asymmetric maps? One might think of choosing a suitable rooting
rule. That is surely right. We may mark an edge by a direction as the root-edge in a map.
Meanwhile, we also have to define the vertex wtuch is incident to the starting end of the
root-edge to be the root-vertex, and the face which is incident to the root-edge on the right
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hand side when one moves along the root-edge in the direction to be the root-face. All the
maps which have been rooted by the rooting rule are said to be rooted maps. For rooted
maps, we may prove that all of them are without symmetry. And for an asymmetric map,
we may also show that there are exactly four times its edge number distinct rooted ones.
This leads us to observe rooted maps for the problem first.

Even the maps which have been selected as rooted ones, the problem is also by no
means accessible at least by now for any choice of the set of combinatori&l, or topologlcal
for maps, invariants {ni(G'), nt(G), ... }. We now take {ni(G), n2(G1 ), .. . } = {p(G), q(G},

r((?), »((?)} where p(G), q{G), r(G) and »(G) are the number ofnon-root-vertices, the num-
ber ofnon-root-faces, the valency of the root-face, and the valency of the root-vertex of G,
a rooted map respectively. Thus, OUT restricted problem here can be described precisely as
follows.

Let S be a set of rooted planar maps.

^(p, ?, '->»;-R)= £
p(M)=p, »(M)=»7f(Af)=r. <(M)=4

R(M) (2.3)

is said to be the chromatic sum, or dichromatic sum of S for p(Af) = p, q(M) = q, r(M) = r,
and »(Af) = » according as R is chosen to be the chromatlc polynomial P, or dichromtic
polynomial Q of maps. Of course, p, q, r and » are chosen to be natural numbers.

Our purpose in this paper is to find the functional equation satisfied by the chromatic
sum fiiactlon, or dichromatlc sum function

Mx, y, z, t', R) = ^ RW x^y^hr(M)tsW (2. 4)
Me s

according as R. is the chromatlc, or dichromatlc polynomial of M, and to solve the equations
for a number of kinds of rooted planar maps. .;

8. Tutte's contributions to the problem

The earliest work of Professor Tutte related to the problem is on dichromatic sums for
rooted planar maps. It was published in 1971 [8]. The dichromatic polynomial of a map M,
which is denoted by Q(M;ft, i/), can be defined as
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Q{M;^, ^ = ^ (/»- 1)CO(M! S)-<!°(M)(^_ I)C. (M' s}
seE

(3. 1)

where E is the edge set of the underlying graph of M, M : S is the resultant map of
deleting all the edges not in 5 except for their ends; Co(N) and ci(N) represent the number
of connected components and the number of inner faces of a map N.

Characterizing a polynomial of two variables to be a dlchromatic one is no doubt a
very difficult problem. Only a few kinds of maps whose dichromatic polynomials have
been known. However, the following two relations are useful for finding the dichromatlc
polynomial of a map. The Hrst one is that for a map M if e is an edge which is neither an
isthmus nor a loop, then we have

Q(M; it, v) = Q(M - y, ft, i/) + Q{M . e; M, v} (3. 2)

where M - & and M . e, are the resultant maps of deleting e except for the two ends and
contracting e into a vertex in Af. The second one is that for a map Af, if Af = Mi-4- Afg
that means that Af = Afi UAfs provided Mi n Ms = {v}, t/ is a vertex, then we have

Q(M;^v}=Q(M^it, v) Q(M^, ii, v). (3.3)
Let U be the set of all general root planar maps, of course, connected. The adjective

"general" meaus that loops, multl-edges, isthmus and cut vertlces are allowed in a map of
u.

For a fanction 4 = ^(a;»y» ̂ i t)i let us write

^=^, y, l;l);^=^, y, z, l); ̂ =^, y, l, t).
And, for a variable u = x, y, z, or *, let us write

_ t^«==l -^. f ^_^«=1-^^="T-\y; ^=rf=^r-
Then, we may state the Tutte s result as follows.

Theorem t. l For rooted general planar maps, the dtchromatic «um funetlon
/a =ftt(x, y, z, t;Q)=fu(x, y, z, t;{i, v)

satisfies the functional eqnation a»

4 + X2i(^ y -Sf (t^)) + yzt^ ̂  - ^(^)) = 1 + ^t+ vyzt1

(3. 4)

(3. 5)

(3. 6)

(3. 7)
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where ̂  »"< the unknown function.

Since 1973, Tutte published a series of papers to discuss the chromatic sums for rooted
planar triangulations. As known, triangulations suffice to the Four Colour Problem. The
chromatic polynomial of a map, as mentioned above, was created by G. D. B'u-khoflF. For
a map M, let P(M;\) be the chromatic polynomial of M. That is to say that P(M;\) is
the number of ways of colouring the vertices of M such that adjacent vertices have different
colours by using at most A diflferent colours. Here, two ways of colouring are said to be
difEerent if there is a vertex which has diflFerent colours. That means without the effect of
the symmetry even for non-rooted maps. The topic on chromatic polynomials is still very
active today.

Many absorbing results have been found. Of course, the characterization of chromatic
polynomial of a map is difficult as well[l]. There is the unimodal conjecture on chromatic
polynomials which is also well known in graph theory. We similarly have two kinds of
recursive relations which are useful for finding the chromatic polynomial of a map. The first
one is that for any edge e of M, isthmus is allowed here, we always have

P(M; A) = P(Af - e; A) - P(M . &;A). (3. 8)

The second one is that if M = Mi UM2 provided Mi nMg = ^(, the complete graph
of order (, for planar maps, only 1 <« 4 are allowed, then we have

P(Mi;A)P(Af2;A)P(M;A) = ^(V:';)';:;(;_-y+/i)- (3, 9)

Let T be the set of all rooted nearly planar triangulations, that means that only the
root-face is allowed to be not 3-valent, which are, of course, assumed to be non-separable.
Tutte introduced the chromatic sum function as

/, =/T(,, v,. ;A)= E P(M.^"M'!--M'. "M'
M T

and found the following general result [9].

(3. 10)

Theorem 8.2 The function given by (3. 10) satisfies the functional equation as follows:

x^+x^y^8^=\(\-l)x3y+^y^'l+yz(^-^^ (3-u)
where $ *'< (/»e unfenown /uncit'on, f* = ^y=i(^, y, ^) <i"<f ̂ 2 " ^<? eoeffieient of the term
with a;2 t'n (/ie power eeries form of ̂ .
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We usually employ the notation that [xi}f represents the coefficient of x{, ». > 1, ina
function / which is expressed as a power series of x. By this notation, we have ̂ 2 = [z2]^.

Because of the complicatedness of the equation (3. 11) to be treated, Tutte could not
solve the equation directly at that time.

He investigated a number of specific cases. Especially, for A = 2, 3 and r+l, r is
the golden ratio, he obtained perfect successful results by showing the explicit formulae of
the chromatic sum functions with only one variable which is related the number of non-
root. faces. Then, he concentrated to observe the equation (3. 11) itself [10]. Let fc(^;A) =
1r2(I, ^;A) for A being a real or a complex and introduce

7=7(^;A) = A-^u2^;A) + ̂ 2« + ^u2

where u=z2, v= 4(em2^)-1. We may describe the Tutte's results as follows.
(3. 12)

Theorem t.S For A ^ 4, 7 <a(»^e< the differential equation a»
d^
iut

where ¥ »'< (Ac unAnown function.

(1 - z^ ̂ )(-^2» + 12»2 + lO^r) = -6«^-d^f d2
du du2 (3. 13)

Theorem (. 4 For A = 4, A fatwfies the differential equation with » a» the unknown function
a» follows:

d2
^(«2xP)(2u + 5y2¥ - 3«^-(u2^)) = 48«. (3. 14)

Because there is a 1-to -I correspondence between nearly planar triangulations with 2»
non-root-faces when the valency of the root-face is 2 and planar triangulations with 2» faces
including the root-face, we may see that h is surely the chromatic sum function of rooted
planar triangulations with the face number as a parameter.

This quadratic differential equation looks simpler. However, we have not found the
explicit solution up to now yet. I have only known that the first fifty terms of the solution
have been determined by using computers.

4. Recent progress on the problem
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In 1984, the Tutte's theory on the chromatic sums for rooted planar triangulations was
further developed to the more general case: for rooted non-separable planar maps [3].

Theorem 4. 1 Let Unona be the set of all rooted noneeparable planar maps. Then the ehro-
matic <um function fu^ defined by (2. 4) when S = Unan. wd R = P, the chromatie
polynomial, satisfies the following functwnal equation:

(^ - \(\ - l)^2t)(l - ^ ̂ ir t)(l - ^< ^ )

= yzt9^(l - ^9, ̂ ) - xzt9^(l - ^9^ )
(4. 1)

where ̂  is the unkuown function. ^ . . , ^ , ____. _. _ _. i-^.. _« :^
'Because? = 2p - r'from the Euler formula In the case ofplanar tringulations, it we

introduce the substitution of variables

{ u = xt y;

v = x^ z
(4. 2)

then /y^». will be transformed into a function of u, v, and t, which is just the chromatic
sum fimction /T defined by (3. 10). Therefore, the equation (3. 11) is surely a special case
which can directly be derived from the equation (4. 1).

One might think that for rooted cubic planar maps which also suffice to the Four Colour
Problem, the functional equation satisfied by the corresponding chromatlc sum function can
be deduced without much complication. However, it is not the case. Here, we can see that it
.is surely rather complicated. In this case, we have to mtroduce the chromatic sum function
as

/c=y p(M;A)^M)yr(M^4(M) (4. 3)
Me c

where C is the set of all rooted nearly cubic planar maps in each of which only the root-
vertex is with the degree which is allowed to be rather than 3. If we treat }c as a power
series of z as

/c = E F< (4. 4)
. >1
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then Fs is just the chromatic sum function of the set of all rooted cubic planar maps. Of
course, F,, i >. I, are all functions of two variables: x and y which are related to the nmnber
ofnon-root-vertlces and the valency of the root-face respectively.

Theorem 4.2 The following functional equation eystem with a = a(x, y), ft = ft(x, y), C =
f(x, y}, v = v(z, y), an<f (. = f(ac, y) a< unAuoion funetiona has a sofution a< or = Fj, ft =
^3, ^=^4, 1=^6, and^Fe:

A-l
a(l- x2y2&)=(\-2)xyfl+{\-l)x2y^;

a+xy0- (A - 1)(A - 2)x2y2 (y + ^a+ ^)^axy,

=(\-l)2x2y^\y+xy(ft+2p)+^+
\

^+£?
\(\ - 1) 'A

+ ^^+ I"2)] + ^ (a+a+xy(fi+2ft))ft
+^+,^^ yf?;

f+xy(ii+^+^&ft)={y+a+ xyft)9^

a+
A-ll-x2y2 (\y+(l+x^&)a+xyft)s^

=(A - 2}xy(ft + ^&») +(A - 1) ̂  ̂2y2 + ^a) a
+x-p{a-&)ft+ x2y(l + y)^ + x^-aa
+.rV(, -t. ̂ )+ _^. ((A-2)a+(A- 1)^)
^-2)(ft+ft)+(\-l)x((+yf+^&(&-ya)^;

(4.5)

(4.6)

(4. 7)

(4. 8)
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/»+.y2 (l+^2y( +-^-xy((+ j&oi)j6^i
=(A - 2).rytf+ ̂aa) + (A - l)^ [\y + y^ (4. &)

^^^^^Jlyl&ll+^ih
-^^+>>+A(0T)((A-2^
+ (A - l)xy^+ ̂aa)) [(A - 2)(ft +ft)+{\- l)x
(C+yf+^+ya))]}

wherea=a(x, l), ft= P(x, l), f= f(x, l), ^ =iy(z, l)andf =?(as, l).

In fact, for finding the equation system (4.5-9), the first dlfl&culty we encountered is
that we have to End a new recursive relation on chromatic polynomials, which is closed in
the set C considered here. Before explaining the formula, we have to Introduce five kinds of
operations which are closed in C, denoted by H(+, +)» rl(-. +)' II(+, -)' rl(-. -) and II(T, T)' as
shown in the following manner.

For a map M   C, let A=<0, ot>be the root-edge of M; 0 be the root-vertex; ^, 7
be the two vertlces adjacent to cr; and < a', 7 > be on the boundary of the outer face, the
root-face, with the same direction as A. And, let M = M-cr be the resultant map of
deleting a with all its incident edges but rema'm'mg all ends rather than a from M. Now,
we define the operations ?!(«.,, ) on M in accordance with K and r?, where K= "4- , or "-
denotes that 9 and ̂  are joined by a new edge, or identified with one another, and r?= a+ ,
or " . " denotes the same as for K except that 7 replaces j8 here. Moreover, H(T, T) Af stands

^.

for the resultant map of joining an edge (^, 7) on M. Thus, the recursive formula for the
chromatlc polynomial on M   C can be written as

(4. 10)
P(M;A) = (A- I)[P(H(, +)M;A) +P(H(+, )^;A)

^s - -^

+ P(n(., )M; A)] + (A - 2)P(H(+, +)M; A)
^N,

-P(H(T, T)M;A).
Now, the main difficulty is how to decompose C such that (4. 10) can be applied for

finding the equations. Here, we need severeal dozens oflemmas which were shown in [4,5].
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We may see that all the chromatic sum equations mentioned above have not been solved
to find an explicit expression of the corresponding chromatic sum function for each case.
However, very recently, we have found the chromatic sum equations for rooted outerplanar
maps, non-separable of course, by which the explicit expressions of several chromatic sum
functions have been determined^].

Let 0 be the set of all rooted non-separeble outerplanar simple maps. And for conve-
nience, let the chromatic sum function for 0 be as

fa= y^ P(M;\)xm^yr^zs^ (4. 11)
Afeo

where m(M) is the number of edges in M.

Theorem 4.8 The fo flowing functional equation with ̂ f = ^f(x, y, z;\) a» the unknown
function and ̂  == (x, y, 1;A),

^ ^ , y
~xs![^y~^~\(\-l)y+T~z) ^

xyz'=A(A-1)^2^-^-^
- z

has a sofutwn which is the ehromatie sum function defined by (4. 11).

(4. 12)

Although Eq (4. 12) has a linear form, there is another unknown function y, which is
related to ~9, involved in it. However, we may imagine that ̂  = ^(x, y) = ^ is a function of
x and y. If the following two equations

1-'?[^-^, F+A]=»;
\(\-l)xy^-'^9=0

(4. 13)

can be solved simultaneously to find the expressions of x and $" with the parameter ̂  and
the variable y, then we may find ¥*, which is a function of x and y, from the expressions by
employing the Lagrangian inversion. This is just the case. In consequence, we obtain the
following theorem.
Theorem 4.4 The chromatic sum function f^ and ho == /o == /o(i, l, l;A) /or rooted non
-separab(e outerplanar maps have the following explicit forms:
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24-m-l

where

/$=A(A-l)y{. Ty+^ ^ ^
m^23=[-^J.-] j=0

(m-!)!(»-2)!x (-iy- »!(m - »)!y!(2» -m-j - !)!(» - ;. - 2)!

'.< A^(2»-m-;-l;A)yn^m};
24-m-l

ha=\(\-l)(x+^ ^ ^
m>2 a=fsJ-i^ j=0

A(A-l)(m-l)!(»-2)!x(-l)y »!(m - »)!(» - ;. - 2)!(2» - m-j - 1)!

X A^Z^-m-j-l;\)xm)

^('. ;^)=E Ar-^(A-l)'>-»(A-2)^
J=0

p\(q+r - j - l)\r\
x

(4. 14)

(4. 15)

(4. 16)

(p-;. )!(?-l)!y'(r-;. )!.
On the dichromatic sum equations, we obtain the result for rooted non-separable planar

maps which is independent of the one for rooted general planar maps as shown by Eq (3. 7).

(4. 17)

Theorem 4. 5 The functional equation with ̂  a» the unknown function

^-^xz2t - vyzt2)(l - 9,f)(l - 9, ̂ )
= yzt9^(l - 9, ̂ ) + xztQ^{l -Qf)

has a solution which »'» the chromatie sum function for rooted nonseparabfe planar maps
/u^^, (a;, y, 2', t;(?) defined by (2. 4) u»Aen S = Unona and I? = Q, the dichromatiac polynomial
[7].

Let On be the set of all nonseparable outerplanar maps. The link map and the loop map
are defined in On excluding the vertex map. And, let

/o»=/o»(^y^;<3)= E 9(Af;M, ^m(M)yr(M)^(M)
Me On

(4. 18)
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be the dlchromatic sum function for On. Then, by decomposing the set On such that (3. 2)
and (3.3) can be employed, we may find

Theorem 4.6 The functional equation of ̂  = ^{x, y, z;y., v} with tff" = ^(x, y. \:fi, v) as
unknown aa

^ - vxys'^ , 5^
^= xyz{vzf. ty+ + :) (4. 19)

y+vxy -^' 1 - i/xz

ie well defined on the domain of all the power series with polynomials of ft and v as coeffi-
dents of the nionotds of undeterminates x, y and z. And, the folution w ^ = fon-

The form ofEg. (4. 19) suggests that the characteristic method as described in (4. 13) for
the Lagrangian im'ersi'pn caa be applied to finding an explicit expression of fon{x, 1, !, <?)
and then fo^(x. y. l', Q\. The detail will be seen in the forthcoming paper.

6. Discussions

Here, we have to discuss a few points on the topic.

1. The crucial step nere for determinln? the functional equation satisfied by the chro-
matic, or dichromatic sum function of a set of maps, especially planar maps given is to find
a suitable way to decompose the set of maps into parts such that each part can be generated
from the given set of maps.

However, there is no universal way to do so. This is one of the main dif&cultles.
Generally speaking, the equation obtained is usually dependent on not only the unknown
function itself but also a partial function of the unknown. If the equation can be transformed
into an equation which has the only one unknown, the partial function. Then, we are allowed
to apply the methods in equation theory. In this case, by no means the equation can always
be solved. Sometime, it is still very difficult to solve. Eqs. (3. 13) and (3. 14) are such
examples.

2. The general clue for solving the equations appearing here is to find parametric
expressions of the partial function of the unknown and the variable involved in the partial
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function 'in order to employ the Lagrangian inversion.
However, by no means we can always Bnd the parametric expressions. Moreover, even

the parametric expressions available for the inversion, the calculation is usually very com-
pllcated. Therefore, we have to find suitable expressions by experience for the inversion
simpler enough If it does exist.

This is another main difficuty we meet here for solving the equations such as Eqs. (4. 1),
(4. 5-8), and (4. 17).

t. For the case of rooted non-separable outerplanar maps, the chromatic sum equation
is solved by following the clue described in 2 from showing the chromatic sum functions in
explicit expressions as power series as (4. 14-15)

Of course, there Is still a problem ofdetemining all the coefficents in (4. 14) and (4. 15)
by summation free forms, or the summation forms with all the terms positive if possible.

4. For planar trlangulations, the dlchromatlc sum equation can probably be found
without much difficulty.

However, it can be imagined that the equation is also difficult to solve. Similarly, for
rooted outerplanr maps, we may find the functional equation satisfied by the dichromatic
sum fanction and solve It in the way of showing the explicit expression in the power series
form.

It seems that the main thing we have to do is to find a new kind of recursive formula
for the dichromatlc polynomial "in the 2-separable case.

6. All the equations we have found above can be shown to be well defined in the domain
which consists of all the power series with non-negatlve mteger coefSclents by constructing
a reciirsive relation determined by the first few terms.
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