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Abstract

We provide combinatorial proofs of two hook generating functions for skew plane partions.
One proof involves the Hillman-Gr?. ".sl algorithm [H-G 76] and the other uses a modification
of Schutzenberger's jeu de taquin [Scii 63, Scu 76] due to Kadell [Kad pr]. We also provide a
bijection showing directly that these two generating functions are equal. Analogous results
for skew shifted plane partitions are proved. Finally some open questions are discussed.

1 Preliminaries

Stanley [Stn 71] was the first to derive the hook generating function for reverse plane partitions
and a combinatorial proof of this result was given by Hillman and Grassl [H-G 76]. In an earlier
paper [Sag 82] we showed how their algorithm could be generalized to give bijective proofs of
other generating functions for partially ordered sets with hooklengths. It turns out that there are
two hook generating functions for skew plane partitions, also first demonstrated algebra. ica.lly by
Stanley [Stn msj. We will show that one can be proved using Hillman-Grassl and the other by a
modified version of the Schiitzenberger jeu de taquin [Scii 63, Scii 76] created by Kadell [Kad pr].
We also give a bijection which shows directly that these two product generating functions are
equal. These proofs will be found in Section 2.

Similarly, shifted reversed'plane partitions are enumerated by a hook generating function, as
was first proved by Gansner [Gan 78]. We show that shifted plane partitions also have a. pair

of generating functions and use analogous techniques to derive the associated bijections. See
Section 3. The shifted results as well as their proofs are new. The last section contains some open

questions.

Many of these proofs have been discovered independently by Kevin Kadell [private cominuni-
cation]. We appreciate his permission to include them here. First, however, we must give some
definitions and notation.

'Supported in part by NSF grant DMS 8805574
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Consider the plane

A={(z, j)|z, ^l}

viewed as an. infinite array of boxes or cells arranged matrix-style in left-justified rows. Let

A = (AI,..., A() be a fixed partition considered as a Ferrers diagram sitting in the upper-left
corner of A. This gives rise to the skew shape

A/A={(z, ^)|(z, j) A, (z, j)^A}

A skew plane partition of shape A/A is a filling, P, of A/A with non-negative integers called parts
such that rows and columns weakly decredse. For example, ifA = (3, 1) then one such skew plane
partition (0 parts omitted) is

... 44

P= m 3 32

4331

If P. j denotes the part of P in cell (?, j), then we say that P is. a skew plane partition of n if
S(ij) A/A Pi, j = It'- OUT example is a skew plane partition of 4+4+3+3+2+4+3+3+1= 27.
Let

PP\/\{n) = number of plane partitions of n having shape A/A.

We will be interested product forms for the generating function of pp/, /), (n). For this, we need to
define two types of hooks.

If (z, j)   A then this cell has the usual hook of all cells directly to the right or directly below,

^.J = {(iJl)   A |/ > j} U {{fj) e>\i'> i}

If, instead, (ij)   A/A then we take the reflection of a normal hook in an anti-diagonal ?" +
j =constant , i. e., using those cells to the left or above {i, j),

^.J = {(^/)   A/A | / ^ j} U {{i'J)   A/A | z/ ̂  Q

In either case, the hooklength of cell {ij) is /i. j = \Hij\, where | . | denotes cardinality. For
example, if A = (4, 4, 3, 1) then the cells in the hooks of (2, 2)   A are shown as circles in

. .

. .

. .



371 -

while those of (4, 6) ^ A are the circles in

.. . . Do D

HE n . D oD

. B eDDo a

. oo o o oD

DDD a DD a

Thus /is.? = 4 and ,14,6 = 8-

2 Plane partitions

We will give combinatorial proofs of the two product formulae for the generating function for skew
plane partitions. We will also show by a direct bijection that the two products are equal.

Theorem 2. 1 If \ is a fixed shape, then

EWA/A^" = , n«rr^
n>0 («,.?)6A/.\

= H n-^)fc/.%. i-^...

(1)

(2)
-k\k

fc>i \J-~-L > (ij)e>

Proof of (1). We merely use a reflection of the normal Hillman-Grassl algorithm in an anti-
diagonal. (This corresponds to the fact that the associated algebraic proof derives (1) as a limiting
case of the ordinary hook generating function for reverse plane partitions. ) Since details of this
approach have already appeared in [Sag 82] for the case A = 0, and the general case is virtually
the same, we will only sketch the proof here for completeness.

It suffices to find a bijection

P<-»K==(/l,, ^, /l., ^,...)

where P is a plane partition of shape A/A and K is a partition all of whose parts are hooklengths
of A/A szich that

E ^=E^J.
('.J)6P k

We will define a path pmP and then siibtract one from every part on the path. The definition
of p is as follows.

HG1 Start p at (a, 6), the rightmost highest cell of P containing a nonzero entry.
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HG2 Continue by iterating

(,,, )ep^|(i+l^ " .^^=P,,,
(tiJ - 1)   P otherwise

In other words, move left unless forced to move down in order not to violate the weakl}^
decreasing condition along the rows (once the ones are subtracted).

HG3 Terminate p when the preceding induction rule fails. At this point we must be at the left
end of some row, say row r.

It is easy to see that after subtracting one from the elements in p, the array remains a. plane
partition and the amount subtracted is hr^.

For example, the following diagram shows an array P with the cells of the path p enclosed in
boxes, as well as the resulting plane partition P' after subtraction.

. .

. . .

p=
.

l4l

. |5| |4| |4| 2

5 4 . 3 3 2

. nn . 3 2

.... 22

^=... 322
. 4 3 3 2

54332

In this case (a, 6) == (1, 6) and r = 4 so the number of ones subtracted is ,14,6 = 8. Make hr,b
the first part of K and continue the process by finding a path in P/, subtracting ones to find the
second part of K, etc. The algorithm terminates when every entry of P has been zeroed out.

To reverse the process, given a partition of hooklengths, we must rebuild the plane partition.
First, however, we must know in what order the hooklengths were removed. The following lemma,
whose proof is omitted, answers that question

Lemma 2. 2 In the decomposition of P into hooklengths, h^ was removed before hi,,,, if and only
if

j > j , or j = j' and i < i'. .

Now arrange the hooklengths in K according to the total order given in the lemma and start adding
them back, starting with the last hooklength and the plane partition of all zeros. In general to
add h. r^b to P, we construct a reverse path q along which to add ones.

GH1 Start q at the leftmost cell in row r

GH2 Continue by

(^j)   9 (»-1, J')£9 ifP. -i,, =P,,,
(i-, J + 1)   9 otherwise
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GH3 Terminate q when it passes through the highest cell of A/A in column b.

This is a step-by-step inverse of the construction of the path p, as can be verified in the previous

example. Thus to finish the proof it suffices to show that r is well defined-i. e., that it must pass

through the highest cell in column b. We leave this verification to the reader.

Proof of (2). First we must describe the modified version ofjeu de taquin that we will need.

Pick any cell c = (i, j)   A which is at the end of its row and column. If P is a plane partition

of shape A/A, then we can perform a backward jeu de taquin slide into cell c using the following

algorithm.

Bl While P..., +i ̂  0 or P.+i,,- ^ 0 do

B2 if Pi, j+i > Pi+ij then slide Pi, j+i into cell c

else slide P.+ij - 1 into cell c. fi

B3 Let c := the cell of the element that slid in step B2. od

Of course, the coordinates (i, j) of c also get changed by the assignment statement in step B3.

Note, also, that 1 is subtracted from every element that moves up during the slide. If the result

of a slide on P into c is P' and the total amount subtracted is d, then we will write P' = jc(P)

and d = dc{P}. It is easy to verify that P' is still a plane partition.

To illustrate, we have boxed the elements on the path of a slide into c = (2, 2) on the following

partition and displayed the result after the slide is complete.

p=

. . 4

. B 3
4 |4| |3|

3 3 |2|

2 2 |l|

1 1

p' = j(2'2\p) =

B . 4

. 33

4 3 1

3 3

2 2

1 1

In this case dc(P} = 3.

Now to the proof of (2). By theorems of MacMahon [Mac 15] and Stanley [Stn 71] the two

products on the right side of the equality count normal plane partitions (those where A = 0) and

reverse plane partitions of shape A (arrays obtained by replacing the boxes of A by noii-iiegativc

inf.egers such that rows and columns weakly increase), respectively. Thus it suflices to find a,
bijection

P^-(Q, R)
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where P is a plane partition of shape A/A, Q is a normal plane partition and A is a reverse plane
partition of shape A, such that

E ^= E ^. j + E ^'j
(«J) A/A (. J) A (., j)6A

First we discuss the map P - ^ (Q, R}. The basic idea is that we will use slides on P to obtain

the normal array Q while R keeps track of the amount subtracted at each stage. Specifically, let
ci,.. ., Cn be the cells of A = (Ai,.. ., A;) listed in the order

(3)(/, A, ), (^A, -l),..., (/, l), (/-i, A,_, ),..., (i, i)

-i. e., list each row from right to left, starting with the lowest row and working up. Define

Q=^"(... (^(P)))

Further, let pk be the path corresponding to the slide into cell Ck. Finally, after performing jc on
some intermediate partition P' where c = (z', j), then we let

^, A, -,+i = dc(P'}

-i. e., we fill R by rows from left to right starting with the lowest row and working up. Using the
previous example for our initial P, we make the following computation.

Q:

. . 4

. . 3

443

332

2 2 1

1 1

. B 4

. 33

4 3 1

3 3

2 2

1 1

. . 4

333

3 2 1

3 1

2

1

. 42

3 3

3 2

3 1

2

1

422

3 1

3

3

2

1

R:
. .

Thus

n .

4

3

443

332

2 2 1

1 1

3 4

422

3 1

3

3

2

1

3 4

2 3

3 4

2 3

3 4
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We must show that this map is well-defined. It is easy to see that Q is a normal plane partition
a.nd that R has the right shape. We need to verify that the rows and columns of R are weakly
increasing This will follow from Lemmas 2. 3 and 2.4, respectively.

Lemma 2. 3 Let p = pk and p' == pk+i be the paths corresponding to backward slides into adjacent
cells Ck and c^+i in the same row. If{iJ) is the rightmost cell of p in row i then the righlmost
cell of p' in row i lies in a column < j, i. e., pf lies to the left of p.

Proof. Since Ck+i lies directly to the left of Cfc, it suffices to verify that if p' reaches (i, j - 1), then
its next step will be down. Let x and y be the elements in cells {i + 1J - 1) and (i + l, j) before
the slide into Cfe, see Figure l(a). So a; > y since this array is a skew plane partition.

J-l J-l

f+1

D D

x y . +1

D y-1

x a

(a) Before pk (b) After pk

Figure 1. Slide situations

Now, by the hypothesis on p, after the Ck slide we have x and y - 1 in cells (?'+ 1, ^" - 1) and
{ij), respectively, see Figure l(b). Thus when p' reaches {ij -1) it must continue to (i +1J- 1)
since x> y -1. a

Lemma 2. 4 Let p = pk and p' = pi be the paths corresponding to forward slides into cells CA. and
c;, respectively, where Ck = (Ar, Ar - ^) o"<^ ci = (Ar-i, Ar-i - s) for some r, 5. //(?', j) is the lowest
cell of p in column j then the lowest cell ofp' in column j lies in a row < i, i. e., p' lies above p.

Proof. We will induct on k. Since ci lies above and right of cjc, it suffices to verify that if;./ reaches
{i - l, j), then its next step will be right. Let m be the largest integer such that cell [ij +1) is
the lowest cell on path pk-t forO < « m. Let x and y be the elements in cells (i- l, j +m+ 1)
and (ij +m+ 1), respectively, just before sliding along the path pk-m- So we have the situation
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in Figure 2(a). Thus x >y.

J+m+1 J+m+1 J J+l

.-1 D ...

D ...

(a) Before pk-r

x .-1 D ...

y « y ...

a;

D

(b) After pk

,-i a x'

y' D

(c) Before pi

Figure 2. More slide situations

By our assumption about the pfc-t's, the situation after completion of pk must look like Figure

2(b). Further slides from the same row as pk can change the entry in cell (z, j) to some y/, but since
the elements passing through a given cell weakly decrease, we must have y' <: y. Also, because of

the previous lemma, x does not change with such slides.

As for the slides from row Ar_i, those before pi-rn. cannot change x or y' by induction and

Lemma 2. 3 applied to pk-m+i- For similar reasons, no slide before pi can chajige y'. To see how

the slides pi-mi . . . , Pl-i effect the elements in row i - 1, note that, by the previous lemma, no

element that moves up a row during a given slide can be moved again by subsequent slides starting

in the same row as the given one. Thus the element x' that occupies the (z- l, j + 1) cell before

pi (see Figure 3(c)) must either have come from cell (i, j + 1) or from row i. The first case ca.n't

happen since p;_i and previous slides from that row are above pk-i- In the second case, since an

element can be moved a maximum of t times in t slides, x/ must have occupied a cell weakly to

the left of x in Figure 2(b). Thus x' > x. Putting everything together, we have

x'^x^y^y'

Hence x' will move left into cell (ii j) during the slide pi and we are done with the proof of the

lemma. B

We now need to create the inverse map

(Q, R)-^P

First we formulate the inverse of a backward slide, called (oddly enough) a forward slide. For

such a, slide we are given a skew plane partition Q of shape A/A and a cell c = (i, j), which is the

leftmost zero cell of Q in row i. Now perform the following steps.

Fl While (ij - 1)   A/A or (i - l, j) 6 A/A do

F2 if P, j_i < P._ij then slide P, j_i into cell c
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else slide P, -i,j- + 1 into cell c. fi

F3 Let c := the cell of the element that slid in step F2. od

If only one of the two elements of the if clause above is defined, then that one automatically slides
into c (with 1 added if necessary). The reader can check that a forward slide into cell (5,3) of
P' in the example after the definition of a backward slide restores P. It is easy to see that,, in
general, forward slides can be used to reverse backward slides and vice versa.

Now suppose the pair (Q, R) is given. Order the cells of A as in (3) and perform forward slides
on Q associated with c,, c.-i,... ,Ci in turn: if c^ = (z, j) then the associated slide will be into
the leftmost zero cell which lies in row i + Ri, >,-j+i in the current version of Q. The final version
of Q will be the image of the pair, P.

It is clear that the composition of our previous map with this one is the identity. To make sure
that the other composition is too, we need to verify that the forward slides made on Q vacate the
cells Cn, Cn_i,... , d in that order. This is accomplished by analogs of Lemmas 2. 3 and 2.4. Since
their proofs are similar to what we have already seen, we will merely state the results.

Lemma 2. 5 Let p = pk and p' = pfc-i be the paths of forward slides corresponding to adjacent
cells Ck and c,._i in the same row. If (ij) is the leftmost cell of p in row i then the leftmost cell
of p' in row i lies in a column > j, i. e., p' lies to the right of p. a

Lemma 2. 6 Let p = pk and p' = pi be the paths of backward slides corresponding to cells Ck and
c,, respectively, where Ck = (Ar, Ar - 5) anrf c, = (\r+i, \r+i - s) /or some r, s. If (i, j) ̂  the
highest cell ofp in column j then the highest cell of p' in column j lies in a row > i, i. e., p' lies
below p. .

Proof of (1)=(2). To show directly that the two products are equal, we merely need to
demonstrate that the same exponents appear in both denominators. Clearly, it suffices to find an
injection

/: A -^ A/A

such that

fl for all cells (z, j) G A we have hij = /i/(,, j), and

f2 the multiset ("set" with repetitions) of hooklengths for the cells in A and A/A
the same.

To define this injection, it will be convenient to introduce the notion of a row-strip.

f{\) are
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The r-th row strip of \ is the set of all cells of the shape \ that are ; cells from the bottom
of tlicir respective columns. For example, we have marked the cells of the r-th row-strip in the
following diagram with an r.

4332

3221

2 1 1

1

Similarly, the r-th row strip of A/A is the set of all cells of A/A that are r cells from the top of
their respective columns. Marking a skew shape with r's gives the following figure.

.... 111...

.... 2 2 2 ...

... 1 33 3 ...

. 1 1 2444...

1 2 23555 ...

Let o-r and T^ denote the r-th row-strips of A and A/A respectively. We will define the injection
f by defining it on each row-strip

f -. CTr-^Tr

Specifically, let the cells of Or be (t"i, 1), (t;, 2), (?3, 3),... and inductively define

f{ijJ) = (i'J>) iQ' > 1 where [i'J') is the rightmost box of Tr
to the left of (ij + r, A.. ) which is not already in (4)
the image of /.

as j successively takes on the values 1, 2, 3, etc. For example, if A = (9, 8, 6, 2) and r == 2 then we
have marked (t", j)   0-2 and f(ij)   TZ with the same letter in the following diagram.

»»»sa»gh»

»»cdefs»

. . . BDD

DDDD rf c a

aa/e AaDDD

D/fDDDDDDD

Note that /(?i, l) = (?'i + r, A;i) is indeed in r^ and has the same hooklength as (?", j) by
coiistniction. We niust show that the rest of / is well-defined in that the cell (?:', /) exists (ill wliicli
caxe / is clearly injective), and that conditions fl and f2 are satisfied. This will be taken care of bv

t ]i<> following lcmma a.iid the fact. that, t, he r-th row-strip of A has hooklengths {r, r+ 1, 7-+ 2,... }.

a b

B n

D

9
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Lemma 2. 7 The function defined by equation (4) is well-defined and satisfies

1. for all cells (z, j) £ <7r we /zaue /i,-, j = ^/(. j), a"^

Q. ihe hooklengths of the cells of Tr -/(o-r), read from left to right, are precisely {r, r + \, r+
2,... }.

Proof. We induct on the number of rows of A. If A = (Ai,..., A;), then let A = (As,... , A;). No\v
tlie row strips and their images in columns j ^ A; of A and A (for i > 2) are exactly the same. So,
by induction, / is well-defined and preserves hooklengths there. Also, |/(o-r H A)| = Ar+i. So there
are As - Ar+i elements of Tr in columns ;" ̂  As which are not in f{ffr n A). Thus, by incliict. ion
a.ga.in, the hooklengths of these cells must be r, r+ l,..., r + A; - Ar+i - 1.

As far as the columns j with \^< j < >r, induction and the previous sentence combine to
show that there Tr has hooklengths from r + ^2 - ^r+i to

r+\2- \r+l +(^1 -As)- 1 = T-+AI - Ar+l - 1

, 11Tlnis the hooklengths available in columns j ^ Ai make f^ n Ai) well-defined and hooklcngtli
preserving if we use the rule (4). Furthermore, there are \r - \r+i elements of Or in row 1. So the
hooklengths unused by / in columns j < \i form an interval from r to

?. + Ai - Ar+i - 1 -(Ar - Ar+i) =r+Ai - A^ -1

FinaJly, the cells of -r in columns j > \i clearly have hooklengths

r+ Ai - Ar, r+ \i - \r +1,...

so we are done.

3 Shifted plane partitions

Consider the shifted plane

A-={(z, j) A|t<j-}

so that now each row is shifted over one box from the row above. Let A" = {\\,..., \'[} be a

strict partition, i.c., one where X'^ > ... > \]. Then \' can be viewed as a. shifted shnpc 111 tlic
u[)]->cr-lcft corner of A* via

A-={(?. j)eA* |?'^j<?+A, -l}

Now \\-c liave a, skew sliifted sliapc This gives risc to tlic skew shape

A-/A-={(z, j)|(?-, ;) A-, (?-, j)^A"}
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A skciu plane partition of n with shape A*/A*, P', is defined in the obvious way. For example, if
A = (3, 1) then one such skew shifted plane partition is

... 44

-P*= . 32
3 1

Let

PPA'/\-{n) = number of shifted plane partitions of n having shape A*/A*.
Shifted hooks are defined as follows. If (ij}   A* then

^ = {(^/) I / ^ j} u {(^, y) l i' ̂  i] u {a +1, /) i / >j+i]

where a.ll sets are contained in \\ This is just the normal hook i! j >l = the number of parts of
\' (i. e., (i, j) is not over the left staircase). I! j < I then the vertical portion of H^ does a right
turn and picks up all elements in row ̂  + 1. In the case {ij) e A/A, we again take reflections to
give

HI, = {O", /) I/ < 3} U {(z^-) |^ < Q U {(z^- - 1) \i! <i-\}
where all sets are now in A*/A*. Of course, the shifted hooklength of cell (ij) is h^ = |^,-, |. For
example, if A* = (6, 5, 3, 1) then the cells in the hooks of (1, 2)   A" are shown as circles in

. .. . .

. . .

while those of (7, 8) ̂  A* are the circles in

a o D

D o D

. o D o D

Do D o D

o D

o D

D o D

o D

So /i].^ = 9 and /i;g = 12.

The way to motivate the definition of these hooks is as follows. Given the sliift. ccl sli.ipc \-
Id A denote the left-justificd shape obtained by gluing together \~ and its tra.nsposc, i. c..

^ = {(^J") I ? <^" <z+A^- 1 or^'+l <i <j+ A;}
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To illustrate, if A' = (6, 5, 3, 1) as before, then

A=

. . .. B

. . .. n

. . . .

. . . .

. . .

where the circles now indicate the cells of A*'s transpose. It's easy to see that if (?', ;')   ;\"/A"

then /^ . = hij where the normal hooklength is calculated in A/A. Similarly if {i. j) G \~ then
/?7 . = hj+i, i where the normal hooklength is in \. This is because, in both cases, the shiltecl hook

is just the normal hook with one of its appendages bent.

We can now state the analog of Theorem 2. 1.

Theorem 3. 1 If \" is a fixed shifted shape, then

E^A>/^(n)3'n = n
n>0 (t, j)6A*/A . 1 - xh^

= n n

(0)

(6)^^-x^W^l-^
Proof of (5). Again, we are just reflecting the shifted Hillman-Grassl algorithm (see [Sag 82])
in an anti-diagonal. Because of the similarity with the proof of (1), we content ourselves with

defining the path p" along which to subtract ones in a given shifted skew plane partition P'. The

reader who has made it this far will find no difficulty in filling in the details of the rest of the
a,lgorit.hm.

SHGl Start p" at (a, 6), the rightmost highest cell of P* containing a nonzero entry.

SHG2 Continue by iterating

(z+l, j)£p- if^,, =^.
(?\J - 1) Cp* otherwise

SIIG3 The incluctioii rule in SHG2 will fail at some cell (r,.s) at the left aid of a row, so

subtact ones along this portion of p*.

SIIC1 If r <s then stop

else (now r=s) continue p' by (r- l, r- 1)  p* and it. cratc

(^j)ep'

(i-J}^P'
(?., ;. +1) 6 p" if ̂ i =?.. -,
(z- l. j) G p* otherwise fi
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SHG5 Now the induction rule in SHG4 will fail at some cell (<, u) at the top of a column.

It is easy to see that after subtracting one from the elements in p*, the array remains a shifted plane

partition and the amount subtracted is /i^ or , 1^4. 1 ;> depending on whether the path terminates
in step SPIG3 or SHG5, respectively. (The crucial observation is that the second half of ;?', if it

exists, cannot intersect the first half because of the subtraction in SHG3. ) .

Proof of (5)=(6). We obtain the analog of the map / of the proof that (1)=(2) as follows.

Using column-strips (rather than row-strips) define an injection

f:\-^A/\

A siinple argument shows that if we restrict the domain of / to A* then the range also l^ecomcs

included in the shifted plane. Furthermore, those cells in A* - /(A*) have hooklengths given by

the first product in (6). .

4 Open questions

First of all, the reader will have noticed that we gave no direct proof that the product (6) counts

shifted skew plane partitions. There is a shifted version of the jeu de taquin [Sag 87, Wor 84], but
it is not clear how to apply it in this case.

The main problem is finding a combinatorial interpretation of the second product in (6) since

it only contains half the hooklengths in A. If A* = (A^,..., A(*) then the following two multisets
are the same.

{{hij I {ij)   A*}} = {{^,, | (^j)   \\j +1}} U {{2^ | (z, 0   A*}}
.*(-

Also the second multiset in the union (which is really just a set) can also be expressed as

{2\', \l^i^l}

St. a.nley [private communication] has suggested factoring the corresponding terms of (6) as a difrer-

ence of squares and bringing the binomials with positive signs over to the left side of the cqiintioii.

Maybe tills will help.

In [Sag 82] we a.lso consider a. third family of partitions with hooklengths: rooted trees. A

rooted tree, T, is a finite partially ordered set with a unique niinimal element (ca. llccl tlic root)
whose IIasse diagram is a tree in the graph-theoretic sense of the term. A reverse T-piu'tit. ion is

an assignment, T, of non-negative integers to the vertices of r, such that if v < iu in (lie ])<irti<>l

order in r then T(v) <^ T(iu) as integers. This is the tree analog of reverse plane parlilioii or <i
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reverse sliifted plane partition. The hooks in this case are just

Hy= {w G. T \ W>^v}

Ill all three cases, the generating function for those reverse partitions summing to n is a. finite

product in terms of hooklengths. However, we have been unable to define a notion of skewness

for trees that will yield a nice generating function for the corresponding (non-reverse) partitions.

Perhaps one of our readers will have better luck.
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