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ABSTRACT. In this paper a new plethysm operation is proposed and a technique for
coefficient extraction for a fairly general class of symmetric power series (e. g. multiplicative
sequences of the theory of characteristic classes) is developed, together with various applications.

1. INTRODUCTION

Many problems in combinatorics, representation theory of symmetric and linear groups,
K-theory and topology can be stateu purely in terms of the theory of symmetric functions:
counting 0-1 matrices with given row and column sums corresponds to expressing products of
elementary symmetric functions in terms of monomials; the decomposition of the composition of
exterior powers At(A'?) of vector bundles corresponds to the plethysm of elementary symmetric
functions and is one of +.he most dijfficult problems left in the theory of the synunetric and
linear groups. The problem of describing the Chern classes of Ai{A3), At{Sj), Si{Aj), Si{Sj) is
even more difficult. For example, ^Sn(S2) = n.</l - xiXj)-1 is equal to the sum of all Schur
functions indexed by even partitions (c. f. [M], I. 5. Ex5). The corresponding function for Chem
classes Ecn(5' ) is n.-<j(l - (a-, + a;,-))"1 which now involves multiplicites which are binomial
determinants instead od being 0 or 1 (see[L]).

The general problem for describing En Cn(Ar), the Chern classes of the r-th exterior power,
leads to the following purely combinatorial problem: express the function T[i<ii<^<... <i^+(x^ +
a;,, +. . .+ a;,v)) in an appropriate basis of symmetric functions. Instead of Chern classes, we will
use Chern character ch(Ar) = ^ chn (Ar), which is more convenient in K-theory, corresponding
to the following syinmetric function involving exponentials od a;, : Ei<. i<,2<... <ir exp(2-^ + x^ +
. . . + x^) = r-th elementary summetric function of the power series f{x) = exp(a-). A difficulty
arising from nonstabilit-'r of the operations Ar (or 5>r) (in formulas coefRcients may depend
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on the number of variables) can be easily circumvented by considering so called K-theoretlc
Chern classes c, (0 = E^o(-l)f(N:;)At^ N = rank(Q for which ch(c, (0) = r-th elementary
symmetric function of the power series /o(a-) == 1 - exp(a;). Note that /o has compositional
inverse /o~ (^) = ln(l - 3;). Now let / be any (invertible) formal power series. The expansion
of the associated elementary symmetric functions Zi,<...<^ f{x^)... f{x^) m the power sum
basis of symmetric functions is given compactly (Main Theorem) in terms of the powers of the
compositional inverse of /. As a consequence, for ch(cr(^)) we get a formula Involving Stirling
numbers of the second kind (arising from the Taylor coefficients of the (negative) powers of
ln(l + a;)). The formula for ch(A^) is thenobtained by the blnomal inversion.

2. SYMMETRIC FUNCTIONS

We recall some basic definitions and facts about symmetric functions, with notation and
terminology following Macdonald's. treatise on symmetric functions [M]. We work mainly with
symmetric functions (power series) in the infinitely many indeterminates x^x-i, .... We shall be
concerned with the following particular symmetric functions:

The elementary symmetric function  n is the sum of all products of n distinct variables 2;,-
that eo = 1 and

so

e" = S ^^...^
«l<t2<... <»n

ivefor n ^ 1. If Q; == (Q'1, 0'2,... ,a/) is a partition, i.e., a nonincreasing sequence of nonnegative
integers we define e^ = e^e^ ... e^.

The complete homogeneous symmetric function hn defined by

hn= ^ X^X^... X^
tl<t2$... <»"n

is the sum of aU monomials of total degree n in the variables x^x^ ... {ho = 1, h^ = ei. ) It is
convenient to define h» to be h^ h^ . :. h^ for any sequence a = (01, 02,... ,Q() of nonnegative
integers not necessarily a partition. We set h = E^g h^ and e = E^°=o ̂ n. We also define An to
be 0 for n < 0.

The generating function for e^'s and h^s are

e(<) = ^ e^n = H(l + ^, t), h(() = ^ A^" = JJ(1 _ .,, ()-!
n>0 «>1 n>0 ;>1

(2. 1)
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The monomial symmeiric function m,y is the sum of all distinct monomials of the form s^ s^ .
where t"i,..., if are distinct.

The power sum symmetric function pn is defined by

?. =E»?
t

If a = (ai, a';,... , Q!() is a partition, we define pa, = paiPaz . . . Par

The Schur function s^ is the determinant . det(/ia, -«+j)i<«j<fc = det(ea;-, 4.,-), where a' is the
partition conjugate to a.

Let us only mention that e^, An, 5a correspond to exterior power (An), symmetric power
(5'n) and irreduclble (5'°') representations of the general linear groups respectively, while pn

corresponds to a (virtual) representation ^n (or the Adams operation in K-theory).

It is known that each of the sets {e^}, {/la}, {ma} and {so, }, where o; ranges over all

partitions of n, form a Z-basis, and {pa} form a Q-basis of the homogenous symmetric functions
of degree n.

It is convenient to use notation (lal2°2. .. n°") for the partition with a, parts equal to
i. If a = (lal2a2.. . nan) then we define ^ to be lal2a2.. . nan . a^\ . a^.... a^!, £" = sign of a
permutation of the cycle type o;. (a in £a may also be a multiindex of naturals) We also identify

partitions which differ only in the number of zero parts. The empty partition we denote by 0.

There is a symmetric Z-valued (nondegenerate) bilinear form (u, v} defined on symmetric

functions by requiring that the bases {ha} and {m^} should be dual to each other

{ha, mp} = 8^ (2. 2)

Then (pa, ?/?) = 2-a^a/?, (<Sa, 5/?) = ^a/3 l.e. {pa} IS an orthogonal, and {sa} an orthonormal bzisis.

These facts are equivalent to the following identities:

H(i -a;, y, )-1 = Ez:lp"^)p"(y); H(i +^. ^-) =: E^2;lp. (^)p°(y) (2. 3)
i,j a i,j . 01

U(l-z;!/j)-l = ^5a(a;)5a(y) (Cauchy determinant identity) (2. 4)
<J

Finally we recall the operation of composition (also called plethysm) for symmetric functions.
To motivate the general definition, first suppose that / is a symmetric function which can be

expressed in the form <i +<2+- . . where each term tj is of the form x\l x^ ... x^ (the terms tj need
not be distinct). Then for any symmetric function g = g{x^, x-t,... ) we define the composition
9 ° f = 9{f) to be ̂ (<i, f2> . . .)> called the plethysm of g and /.
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3. NEW PLETHYSM OPERATION ON SYMMETRIC
FUNCTIONS

canLet / be a symmetric function with separated variables (and zero constant tenn) i.e. /
be written ast[+i1̂ ... where each term (;. depends only on the z'-th variable x,, tf, = ^(a;, ) for

some power series <^,. The function / being symmetric Implies that ̂ 1=^2=... =:^. Observe
that y(x) = /(zi = 2;, 0, 0,.. .) is uniquely determined by /, and is called the characteristic power
series of /; such / is called primitive.

Definition. For any symmetric functions g and /, / primitive, we define a new phthysm
^. /by

g. f:= g{t[, t'^ ...}= g{y{x^ ̂3:2),...)

where ̂  is the characteristic power series of /, f{x,, x,, ... ) = y(x, ) + y{x,) +.... We shall also
write g 9ff> instead o{ g » f.

In the sequel we shall see the relevance of such an operation to several different problems.
For g we take now the elementary symmetric functions e = En>oen = n.->i(l + x,\ and

let y{x) = a^x + a^x2 + ...   K[[x}] be any invertlble formal power series (ai ̂  0). Then the
generating function for e^ay, n > 0, can be written as

(e . y>) (<) = ^(e, . <,>) <n
n>0

= II(1 + y(a;. )<) = II ̂(a;. ) where $(i): = 1 + y{x')t.
«>l (3. 1)

By interpreting the coefficients of $(z) w. r. t. variable x as elementary symmetric functions
of some "formal roots" rjf of $ i.e. by writing a formal factorization:

^(a;) = 1 + <air + ta^x2 +... = ^[(1 + ̂ rc)
3

we can continue (3. 1):

(3. 2)

(e. y,)(()=H(l+^,)
«,J

=E^Z:1P^(^) (by 2. 3)

The following Lemma is fundamental and seems to be new:

(3. 3)
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KEY LEMMA. The power sums p^ = Ej^i(^)n associated to the power series $(z) = l+y{x')t
are given by the following formula

p: = res (1 - tz)-\-y-\-z)rn t dz (3. 4)

where y»-l is the compositional inverse of y, and where resf{z)dz denotes the residue of f at
2- = 0 (i. e. the coefficient of z~v in f{z)).

Proof: By applying the logarithmic derivative to both sides od (3. 3) we have:

^ = (-l)»-l[a;"-1] ̂  log$(a;) (Cauchy's identity)
= (-l)"-lRes x-n^<ftl{x}_, dx (chain rule)

2'

(3. 5)
l+ty{x)

where <ft\x) denotes the derivative of ip. Since <f is invertible, we can use a new variable
Z = -<f{x} (=^ 3; = <y9-l(-2), dz == -^'(a;) da;) in (3. 5) and the Lemma follows.

Combining (3. 3) and the Key Lemma we get the following:

MAIN THEOREM. Let y be any inveriible formal power series, and e = ^>o Cn the elementary
symmetric function. Then the new plethysms  " . 9? = en(y(a;i),... , y>(a;n)) decompose in the
power sum basis {pg, |o'= (0:1 > ... ^o'/ > 0) a partition } with the coefflcients given by the

following formula:

[p,'a] (en*^)=£^;lres<"-l( nres(l-fz)-l(-^-l(-z))-c'td^]
t=l

dt

where y>-l is the compositional inverse of <p, (Co = (-l)lal~'a, Za = lai2°2 ... kak ' a^. a-i\ ... ajc!,
a, = Card {j \ ocj = i}, lo, = length of a).

Proof: By pluglng ̂  = p^ .p^ ... p^ into (3.3) and using (3.4).

4. APPLICATIONS

4. 1. Chern character of exterior and symmetric powers

We recall that the Chern character ch(^) = Echfc(0 of an !7(7V)-bundle ^ over a (para-
compact) topological space X is defined by ch(Q = Eexp(2;, ) e ffcve"(A'; Q), where EC;(O<I =
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n(l + Xit) is a "formal" factorizatlon of a generating function for Chern classes c,-(^) G HV{X}
in temis of the formal "Chern roots" a;i, 3:2,... XN (lying in an extension of the cohomology of

the base space and corresponding to line bundles via splitting principle). This link between
characteristic classes and symmetric functions is known as Borel - Hirzebruch formalism. Via

this formalism one has various formal factorization formulas for the chetracteristic classes of the

associated bundles, like exterior powers, symmetric powers: (c. f. [H])

E c. (ArO<t = II (1 + ̂  +^+-"+ ̂ irW
Kfl<»"2<... <«r<N

2: c, (5rof = n (i + {x,, +2;., + ... + a;.., )<)
K»"l<«2<... <»r<N

I:ch(ArO<r =n(l+exp^, )<)
r>0

^ch(Aror=n(i-exp(^)-1

(4. 1)

(4. 2)

(4. 3)

(4. 4)

This formalism solves the problem only in principle, since everything expressed only in

terms of "Chern roots may require even in smaU cases a lot of computational work. Hence it

arises a natural

GENERAL PROBLEM: Find a "reasonable" (or "satisfactory") fonnulas for the characteristic

classes of the associated bundles in terms of the characteristic classes of the original bimdle.

In order to attack the problem of finding formulas for the Chern character of exte-

rior/symmetric powers we first recall so called K-theoretic Chem classes (c. f. [K],p. 253)

c.(0 = E(-i)i(^J,tlAt(o, ^ = rank(0
1=0 \' ~

Using the fact that

(4. 5)

ch(c^(^)) = r-th elementary symmetric function of 1 - exp(a;i),... ,. 1 - exp(a:^)

we can take y{x) = 1 - exp(a;)   Q[[a;]] and by the Main Theorem we get:

THEOREM 1. The Ckern character of the r-th K-theoretic Chern class of ̂  expressed in terms

of the components of the Chern character of ̂  is given by

Ch(c. (0) = E (pJ- ̂Aa(0 (4. 6)

where for a partition a=(o'i ^ ... > a; > 0), ||a'|| == aiia;!..., a. = Card{j | o'j = i},
Ca = Ec6N', c$a, |(?l=r ^-S{ot, 6'), W/ierC 5(o;, ̂ ) = H^i 5(a'., £><. ) " </ie product of the Stirling
numbers of the second kind, Q= (pi - 1, ^2 - I,..., ?/ - 1), cha(0 = Y[\^ cha, (^).
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Proof. Immediate from the Main Theorem by using the identity: (c. f. [G-K-P], (7. 51))

(.(^rs §^m.m-n)/(mn-1) ^
The relation (4. 5) in K{X) is invertlble so we can express exterior powers in terms of

K-theoretic Chern classes:

Ar^E(-i)ip:;)'. (0 (4. 8)

Now, additivity of the Chem character together with (4. 6) gives the formula for ch(Ar^) in terms
of ch(0.

THEOREM 2. The Chern character of the r-th exterior power of the U{N)-bv. ndle ^ is
given by the following formula

A(A'0=£^(g.. (^l)^«,, ri)ch. (o (4. 9)

where Q   Na. f/a = Zen^^ o/o:^

Let us now illustrate the Theorem 1 and Theorem 2 as identities in symmetric functions.

Let P^ and C^ be the following symmetric functions:

53 (a-.-i +a:,2 + ... + z.Jfe
Kfl<...<lr<^
Sk,o , r = 0

Cf = E(-iri (^:^^(=*!(-l)rAt(c, (0))
Then by the binomial inversion we get

Pl'N = ^ Kii<Z<ir<N ( = fc!ch, (Ar(^))) (4. 10)

(4. 11)

p'tN=t^~-'^
The Teorem 1 gives the following identity:

(4. 12)

^=E|!|f E ^Wa,^
ahfc L"J v/36N'<>,/?$a,|/?|=r

where ,9= (/?i - 1, ^2 - I, -- .). Substitiiing in (4. 12) we get the identity:

(4. 13)

^^[^s(^: E «
<? N'<>,<?<0, |/?|=.

^(a, ^)) Pa+[~J^,0 (4. 14)
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k
where a \- k means a is a partition of k, and ^ : = pfcl a, = Card {j | aj == i (the
incidence coefficient) equivalent to the Theorem 2.
For example:

^''=(AT-2'. -'),, +| J: (^TO.
t'J>0,«+J=fc

^= [(^) -w .2t-l + 3t-']M +1,,. S ,_. (ki)(f'- v~l - l)m- +
; i, j>S^. j=k \t/

(4. 15)

+ i.....?... . [ill ]pipjpl
{j, l>Q, i+]+l=k \^^1

(4. 16)

COROLLARY 1. ([S-S]) Suppose X is a finite complex and $ an U{N)-bundle over X. Suppose
iha.t all products in H"{X, Q) are zero (e. g. X a suspension). Then

ch^(c, (0) = (-l)r-l(r - l)!5'(^, r)ch^(0, (4. 17)

where S{N, r) = ^E^i(-l)r-'(3^ " the Stirling number of the second kind.
Note that in [S-S] a sign (-1)' 1 is missing in the Theorem 1. 1., because (-I)""1 is inissing

in the second line of page 210.

COROLLARY 2. The coefficient of the primitive part in chfc(Ar) is given by

[^] ch, (Ar) = A(fc, r, ^) = [xr}{! + x)N-kA^{-x) = E(-irl (^^'fc-1, (4. 18)

where Ak-i(x) is the Eulerian polynomial.

Now we can add one more formula to our list of P^' :

P^N = A(&, 4, ^)pfc + . E, |^| (A(^, 3, ^ - 1) + (2a-1 - l)(2a-1 - l))p., p.,+
a=[oii, oi^)t-h t- J

+ E
Q;

A(Qi, 2, ^-2)p^j)^p^+
C(=(ofi, or2, or3)hA;

with A{k, r, N] defined in (4. 18).

.... L.^}
a=(ai ,C(2, o;3,c»4)K;

(.4. 19)
PaiPa-tPasPcit

THEOREM 3. Let A(Q = C^oAr(0 be the total exterior power of a vector bundle ^ of rank
N. Then for the Chern character we hawe the following formula

2Ar-l°l
ch(A(0) = E ̂ jp (1 + tanh)(a-l)(0)ch, (Q (4. 20)

where (1 + tanh)(a-1): = /(°i-l)(0). /(a'-l)(0). .. /(°'-1)(0) denotes the product of deriva. tives of
/(a;) == 1 + tanh(a;) at 0.
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COROLLARY 3. J/Jf2(X, Q) = 0 = H4k(X, Q) = 0, k > 1, <Aen /or any ̂  the total exterior
power A(^) represents a torsion element of K{X}. In particular, if K{X} has no torsion then
the inverse of ̂  in K-theory is given by -[^} = ®r>2[Ar^].

COROLLARY 4. For any U{N)-bundle $ over a {4k + 2)-sphere S4k+'t, & ^ 1, A^ ^ 5<a6Zy
trivial.

In a similar manner, as in Theorem 2, we get the following results for the symmetric powers

s^:

THEOREM 4. The Chern character of the r-th symmetric power Sr^ of an U{N) bundle ̂  is
given by

^)^M^(ffr+-rw)y-s^)dt'w (4. 21)

COROLLARY 5.

[^] ch, (5r^) = A(r, fc, ^) = [xr](l - xrN-kA^(x} (4. 22)

where

-^^-i(N-^-jy)=EfJV-.l+r-JV-~~^A N-l )J
and Afe_i(a;) is the Eulerian polynomial.

The Theorem 4 is equivalent to the following identity for symmetric functions:

^=E(JV,+:,-1)E[;|(.,, £,. /->^,^.
.=1 \ ' - J- / ah LQ!J x/?6N'o,/?$a,|/3|=.

(4. 23)

where

PrkN = E (^. i +^ + ... + x^\= A:!chfc(5r^))
l$tl$... $. r$W

(4. 24)

In particular

py=(N+2k-l)p, +1^ E ik}p^
i,j>oT+j=k V.

' = [(^2+1) +JV .2fc-l + 3fc-11pfc +J.. ?. . (fc) ̂  + 2t+l + 1)  +
, j>o7i-j=fc V^

(4. 25)

^3,N_ \fN +l
k

+ j.,_E , , [u. i)pipjpt{j, l>0~^-j+l=k V'^''
(4. 26)
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4.2. Chern classes and Stiefel-Whitney classes of the second exterior
power A2^

Let E^N be the polynomial corresponding to the fc-th Chern class of the second exterior
power A2^ i.e.

El'N = efc(x. -}-x, \Ki<j<N) (= c, (A20) (4. 27)

where e& is the fc-th elementary symmetric function. By using the Newton relations between
ElN and the P^'N(= 2!ch, (A2(^))) and the Girard formula, which expresses power sums p^'s
in terms of the elementary symmetric functions, we obtain the following results.

PROPOSITION 1. 1) LetQ^a< k/2. Then for ike Chern classes of A^, cjk(A20 = JS^
have:

we

[c?Cfc-J c, (A2Q = E(-l)a-r [^ - 2fc-r-1 + E ffc ~ r

'.=0 L t=l \ (
k-r-l\]fN-l>

r

-(-<\-2). <-.. Ejr-/)-(-^-'-(^-1)] (4. 28)

where c, = c, (^).

2) For Stiefel-Wkitney classes Wr(A2^) we have

Kaw,_Jw,(A^)=(^-l)(^;2) + (N~k+a\mod2)fN-2\ , fN-k+a}
a j . \ a

[w^wk-a] Wfc(A2Q = ^. [ ^~3) (mod 2) (for 0 <a < ^)
a ) ~ 3

Proof. The proof consists of four steps:

Step 1. Use the formula (4. 15).

Step 2. Use the Girard formula in the following form:

n=k. ^., J-lr"^(a+ab)e^+-a,b>o^+jb=k' ' a+b\ a j l~J

Step 3. Use the Newton formulas (for E^'N)

(4. 29)

(4. 30)

efc = £ £c, 2^Pc, = S
ohfc m, 01, 0<r<m

(l)(m-l)t _,.,,/^m-pm er'efc (4. 31)

where e/^ corresponds to terms pa such that o'i <, ^{oij | a'j < a'i}.
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Step 4. Use the identity (for part 2)}

S(-l)'(:) »(-!)'(", 1) (4.3.)
and diagonal summation in getting the second formula in (4. 28).

Remark. Our result for [w^wjb_2]wA(A2^) settles the following Conjecture of Korbas [K2]:

CONJECTURE (Korbc. --): Let ak = ^(7^), ^ = ^(A27^r). Then

^41 = "o(l + "l)o-^0'4<-2 + other terms

0'4/+1 == (1 + "0"l)o"^0-4;-l + . "

or4;+2 = (1 + ^o(l + ni))o-^o-4; + . . .
^

^4;+3 = n0"l0'l'0'4(+l + . . .

where no = " mod 2, n^ = [.n~nol mod 2 are the last two binary digits of n.

This conjecture implies the following formulas for the Stiefel-Whitney classes of the Grass-
mann manifold

COROLLARY 6. Iffc > 1 then

W8k(Gn, N) = (M + no)(^2 + no + "1)^^-2 + ^o^sfc + (^i + "o)w^ +

+ (1 + Ni+ no^w^wsk-i + ...

W8fc+2(C?n, ^) = [(1 + (^l + no)(^i + JV; + "l)]w^W^_i + N^Wsk+2 +...

W8k+4{Gn, N) = [(1 + (7^i + no)(^2 + "o + ni)]w^w^ + . - .

W8fc+6(Gn, ^) = (M + "o)(M +Nt+ ni)]w^w^, + . . .

Note that the four casses of the conjecture can be unified in a single formula

o'fc = (no("i +^o + 1) + ^o + ki)cr^k-2 +

following easily from (4. 29).

(4. 33)

Let us recall that the Stiefel-Whitney classes of the Grassmann manifold Gn, N = Gn(RN)
can be written as

KI+^I /( n (i+.. +z,)2)
. «=l J / VK.<j<n

(4. 34)

corresponding to the Whitney sum decompsition

r©Hom(7, 7)^^. 7', Hom(7, 7) ^ 7 ® 7, 7-^7 (4. 35)
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(r = the ta-ngent bundle, 7 == +, he canonica. 1 bundle). By iisin.e; the Whitney siim formiilas for

Nj and by observing that the Sticfcl - Whitncy classes of 7^7 arc the Biim offiqi iarcs of those of

A27, one gets a number of informations like in the Corollary 6 about the cocfficlcnts of tlic S-W
classes of grassmannians. In [Kl] a number of formulas is obtained by using Steenrod squares
and an algorithm which deals with formal roots, what makes computations quite difficult.

Remark. The research reported here was motivated by the Problem of Bredon [B], for
which an explicit solution is given in the autor's Ph. D Thesis [S] and which led to the Theorem 3.

The Theorem 3 was first proved in [S] directly by a long argument which used Hopf algebra
structure of the ring A of symmetric functions, Mobius inversion on partition lattices and which
required solving a system of partial differential equations. In [S] several recursions for the Chem
character polynomials are also obtained.
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