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In the following, we describe in terms of a simple card game the problem of sorting a permu-
tation on a stack, and obtain the well-known result for the number of stack-sortable permuations
of length n. This problem has been generalized in a number of ways; some of these were collected
by Knuth. [2] Our description of the problem in terms of a game suggests a natural-sounding
generalization to k stacks which has apparently not previously been considered.

Consider playing the following game with a deck of n cards, numbered 1, 2, 3,.. ., n. Shuffle
the deck and hold it faceup in your left hand. You can see only the top card of the deck, which
we will call the new card. On the table in front of you, you will maintain two piles. Every card
must first be placed faceup on the first pile, called the stack, then later moved facedown onto the
second pile, called the output.

The first card is placed onto the stack, becoming the top stack card, thus exposing the second
card. From now on, there may be two choices of move: (1) if there are still cards in your hand,
you may place the new card on top of the stack, or (2) if there are cards on the stack, you can
move the top stack card to the output.

You consider that you have won the game if all the cards are moved to the output pile m
order. It should be clear that you will not be able to win if you cover any card in the stack with a
higher numbered card. For the larger card on top would be moved to the output before the card
it is covering. Therefore, adopt the following strategy: compare the card in your hand (if any) to
the card on top of the stack (if any). Always place the new card on the stack if it is smaller than
the top stack card. If the new card is greater than the top stack card, move the top stack card to
the output.

This simple strategy is the best one for playing this game, as it simply avoids making losing
, moves. It is always a losing move to cover a smaller card by a larger one. Similarly, it is always a
losing move to move a larger card to the output if there is a smaller one yet to come.

If our deck contains n cards, how many of the n! starting positions for this game result in
winning games using this strategy? The answer has been well known for at least 20 years, and
appears in [2]. Let the cards be represented by the permutation TT, so that the top card is card
number 7r(l), etc. If we can win the game from the starting position TT, we will say TT is stack-
sortable.

Let a subsequence 7r(t), 7T(j"), 7r(^), with i < j < k, of the permutation TT be called a wedge if
7T(j) > 7T(t) > 7T(A;)

Lemma 1. A permutation TT is stack-sortable if and only if v contains no wedge.
Proof: Vi<j and 7r(t) < v{j) then 7r(i) must be removed from the stack before TT^") is put

on. Ifi < k and 7r{i) > Tr{k) then 7r(Q must be remain on the stack until after 7r(fc) is added.
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So ifi <j < k and 7r{k) < v(i) < 7r(j), 7T(z") must be removed before the addition of 7r(j) but
after that of v{k). But this is impossible, as Tr(j) must be added before v{k). So a stack-sortable
permutation cannot contain a wedge. Conversely, if a permutation avoids 231, it can be sorted
according to the strategy above. The algorithm will fail to sort only if it forces us to remove an
element from the top of the stack which is not the largest element which has yet to be removed.
Then the top element of the stack is smaller than the next element to be added, but larger than
some later element. These three elements constitute a wedge. D

It remains to count the permutations which contain no wedges. Let Cn be the number of
wedge-free permutations of length n.

Assume by induction that we have enumerated Cm for m < n, and consider an arbitrary
wedge-free permutation. Let j be the position such that TT(J) == n. Then the substring TTL =
(7r(l), 7r(2),... , 7r(j - 1)) must consist of the elements (1, 2,... , j - 1). For if not, it must contain
some element Tr{i) ̂  j, while the substring TTR = [v{j + l), 7r(j +2),..., 7r(n)) would contain some
Tr{k) < j. But then we would have a wedge, since i <j < k and Tr{k) < x(z') < v{j) = n.

So the elements of the left substring and the right substring are determined by the position of
n. But the permutations VL and TT^, being subsequences of TT, must themselves be wedge free. It
is also sufficient that they are, since if all the elements of VL are less than all those of TTR there
cannot be any subsequence of type 231 with elements in both the left and right substrings. But
since an admissible left substring is just a wedge-free permutation of j cards, and the admissible
right substrings are permutations sequences likewise counted by the wedge-free permutations of
n- j cards, we can invoke the induction hypothesis.

Using the induction hypothesis and summing over j, we thus establish that
n-1

Cn =. Cn-l + ^Cj_iCn_j + Cn-l = SCJ-1C"-
J=2 j-=l

]V (1)

2n

n

where weset co = 1.

This is the famous recurrence relation for the Catalan numbers [1]. That is, Cn = -^

In the context of formal power series, if we let C = E^oc«a;'\ then C satisfies the equation
- C-l

~x~-
We present a second, more direct, way to enumerate the stack-sortable permutations. This

is of interest both for its elegance and because it provides a natural derivation of the Catalan
numbers in terms of a difference.

If a given permutation can be sorted, then we have seen that there is a unique procedure for
sorting it: if the next element to be added to the stack is larger than the element on top of the
stack, remove the top element from the stack; if it is smaller, add it to the stack; if the stack is
empty, add to it; ifpn has been added clear the stack. Consider the sequence of operations which

must be performed to sort a given permutation, writing '(' if an element is added to the stack and
')' if one is removed.

Then we have a sequence of n open and n closed parentheses, since each p; must be added
to the stack once and removed once. Also this sequence must be well-formed in the sense that,
working from left to right, there will always be a surplus of open parentheses, so whenever we
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encounter a ')' we will be able to supply it with a mate somewhere to its left. This is so because
we can never remove more elements from the stack than have been added to it.

Andre gave, in 1878, an enumeration of the well-formed sequences. To enumerate the well-
formed sequences of n open and n closed parentheses, observe that there is a bijection between all
sequences of n - 1 open and n+l closed parentheses and those sequences of n open and n closed
parentheses which are not well-formed. If a sequence is not well-formed, there must be a leftmost
occurence of a ')' which ha5 equally many '('s and ')'s to its left. Replace each '(' to the right of
this by a ')' and each ')' to its right by a '('. We thus obtain a sequence of n - 1 open and n + 1
closed parentheses. Similarly, given a sequence of n - 1 open and n + 1 closed parentheses, there
must be a leftmost ')' which has as many '('s as ')1s to its left. Invert each parenthesis to the right
of this location to obtain a sequence with n of each type of symbol, which is not well-formed.

The number of well-formed sequences of n open and n closed parentheses is simply the total
number of sequences of n '('s and n ')'s, less the number of such sequences which are not well-
formed. This number is seen to be, as before in (1),

Cn=

The idea of the first proof above was to characterize those permutations which can be sorted
with a stack, by showing a pattern which appears in a permutation if and only if it cannot be
sorted. This idea, of characterizing with a list of forbidden subpatterns the set of permutations
which can be sorted by a given procedure, is quite general.

For T = (r(l), r(2),. -.., r(fc))   5fc, a permutation TT = (7T(l), 7T(2),..., 7r(n))   S'n is r-
avoiding iff there is no 1 < i^) < i^) < ... < ir(k) < n such that 7r(^) < v{i-i) < ... < v(ik).
Such a (7T(z"T(i))i v{lT(2))i ... i 7r(?T(*))) is called a subsequence of type r.

For instance, a wedge is simply a subsequence of type 2, 3, 1 and our theorem above charac-
terized the stack-sortable permutations as those which are 2, 3, 1-avoiding.

Given r   5'fc, let us write S>n(r) for the set of r-avoiding permutations of length n.
As an example of the generality of forbidden-subsequence classifications, the permutations

which can be sorted using a double-ended queue are characterized by Pratt [4], who finds an
infinite family of restrictions, with 4 restrictions of each odd length greater than or equal to 5.

Now consider the following extension of our card game. Shuffle the cards and play exactly as
before, using the same simple strategy. This time, when all the cards have been placed on the
output pile, pick up the output, turn it faceup and begin the game again. Now how many of the
n\ starting positions result in wins after the second pass?

Our first thought is to precede, as in Knuth's treatment of a single stack or in Pratt's treatment
of a double-ended queue, to characterize the winning positions in terms of forbidden subsequences.
This we can do, after making a few more definitions. First, if we play the game with v as our
input, let us call the resulting output TI(7T). We ask for how many permutations TT of length n is
n(n(7r)) equal to the identity. Let us call a permutation TT two-stack sortable if n(n(7r)) is the
identity permtation.

We will say that an element p precedes an element g in a permutation p if /)-l(p) < /?-1(?)-
For instance, in /? = (3, 5, 2, 4, 1), the element 5 precedes 4 because /?-1(5) = 2 and p-l(4) = 4.
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Lemma 2. //TT   5'n, ararf 1 <, a <b <n, and if a precedes b in TT then a precedes b in H(7r).
Proof: Since a precedes & in TT, a enters the stack before b. When b is processed, either a

ha-s already been removed from the stack, in which case a will precede b in n(7r), or a must be
removed from the stack to accomodate the larger element b. D

Lemma 3. //IT   Sn, and 1 <a<b <n, and if b precedes a in TT, then b precedes a in n(?r)
if there exists c> b such that b precedes c and c precedes a in v. If there is no such c, a precedes
b in n(n-).

Proof: If there is a c satisfying the given conditions, then &, c and a form a wedge. In this
case, 6 must be removed from the stack before c is placed on. Since c is placed on the stack before
a, this will cause b to precede a in II(TT).

On the other hand, if there is no c satisfying the given conditions, then b remains on the stack
until a is processed. Since a < 6, a will be placed on the stack above 6, and so a precedes b in
H(7r). D

Lemma 4. If b and a form an inversion in n(7r), that is ifb precedes a in n(7r) but b > a
then there is a wedge b, c, a in TT for some c> b.

Proof: An easy consequence of the two previous lemmata. If 6 > a, either b precedes a in TT
or vice versa. Only in the case that b precedes a and a larger element c is interposed between the
two might b precede a in H(7i"). D

We are now ready to present a characterization of the two-stack sortable permutations. This
theorem appeared in [9] as part of a more general result.

Theorem. A permutatiori v Q Sn fails to be two-stack sortable if it contains a subsequence of
type 2341, or a subsequence of type 3241 w/ii'cA is not part of a subsequence of type 35241. If it
contains no such subsequence, TT is two-stack sortable.

Proof: The proof is an exercise in the application of the basic lemmata.
First suppose TT has a subsequence of either of the given forms, and consider n(7r). First

consider a subsequence of type 2341, consisting of the elements b, c, d, a where a <b< c< d.
Since b precedes c in TT and b < c, it follows that b will precede c in n(7r), regardless of the other
elements of TT. Also, because c, d, a form a wedge in TT, c will precede a in n(7r). Therefore, the
elements 6, c, a appear in that order in n(7r), where they form a wedge. Since therefore n(7r) is
not one-stack sortable by lemma 1, it follows that TT is not two-stack sortable.

Second, consider a subsequence of type 3241, say consisting of the elements c, 6, c?, a, where
there is no element larger than d which follows c but precedes b. There are two cases: either there
is an element x > c which follows c but precedes 6, or there is no such element. If there is such
an T, by assumption c< x < d, and consequently c, a:, d, a is of type 2341 and we are back in the
case of the preceding paragraph. Otherwise, if there is no such element . r > c, then b precedes c
in n(7r). And since c, c?, a is a wedge in TT, c precedes a in n(7r). Once again, fc, c, a form a wedge
in H(7T).

It follows that if ?r has one of the forbidden subsequences, then TT fails to be two-stack sortable.
Conversely, we can show that if n(7r) fails to be one-stack sortable; that is, if it contains a
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wedge, then TT must contain one of the two forbidden subsequences.
Suppose that 6, c, a form a wedge in n(7r). We look at two cases; either b precedes c in TT or

vice versa.

First suppose b precedes c in v. Lemma 4 guarantees a wedge c, a;, a in TT. But then 6, c, 2;, a is
a subsequence of type 2341.

If c precedes b in TT, then there can beno a; > c such that c precedes a; and x precedes b in TT.
But since c precedes a in II(TT), there is some wedge c, y, a in ?r. Since y > c, y cannot precede &
in TT, by the remark in the first sentence of this paragraph. Therefore b precedes y, and c, 6, y, a is
a sequence of type 3241. Again by the remark in the first sentence, this subsequence is not part
of a subsequence of type 35241.

Thus if 6, c, a is a wedge in n(7r), we see that TT has a subsequence of one of the two forms given
in the statement of the theorem. So if TT is not two-stack sortable, it has one of the forbidden
subsequences. D

The above theorem does not, strictly speaking, give a characterization in terms of forbidden
subsequences, in the usual sense. That is, it does not permit us to write the class of two-stack
sortable permutations as an intersection of sets of the form 5'n(r), because of the unusual restriction
that "forbidden" subsequences of type 3241 are permitted if each is mitigated by being part of
a 35241. Nevertheless, it has much the same flavour of our characterization of one-stack-sortable
permutations as 5'n(231).

We should like to exploit this characterization to enumerate the two-stack-sortable permuta-
tions. Unfortunately, we have not been able to do so. Enumerative problems involving forbidden
subsequences are notoriously hard. [5] [9] But there is a simple closed form which is consistent
with the known data. In the table below we give known values of the number of two-stack-sort able
permutations (2) and, for comparison, the Catalan numbers (1).

n

14
22

42
91

132
408

429
1938

8

1430
9614

4862
49335

10

16796
260 130

11

58786
1 402 440

The data in this table permit us to make the following conjecture.

Conjecture. The number of permutations of length n which are two-stack-sortable is
2

(n+l)(2n+l)

The form of this conjecture strongly suggests a proof in terms of formal power series. In fact,

the sequence 6(n) = , J -, has appeared before as the result of an argument involving
n

power series. This was in a paper of Tutte counting the number of non-separable planar graphs.
[8] [6] In what follows, we give a brief summary of Tutte's work as it pertains to our conjecture.

Following an intricate graph-theoretic argument in [7], Tutte reveals the following formula for



402 -

the number an of rooted maps with n edges:

2(2n)!3r
n!(n+2)!

He shows, by an application of Lagrange's theorem [10], that the generating function A{x) =
En=i anXn satisfies the following parametric equations:V^ 00
<-^1\

^ = 1+3^2

A(x) = J(3-0(^-1).
He next lets B{x) = E^=i b^xn be the generating function for the non-separable rooted maps with n
edges, and concludes, after showing how each planar map has a uniquely determined nonseparable
core, and can be built up from this core by a process of edge splitting, that A(a-) and B{x) satisfy
the following functional equation:

A{x) = B(x{l + A{x)]2)

Tutte solves this equation by writing u = x{l + A(z)}2 and performing the following algebraic
manipulations:

u = x{l+a(x)}2

u = ^1{1+^3-0^-I)}2
{1+J(3-0({-1)+^-3)2(^-1)2}

3^2.
" = c-<

3^2

27U = i^l{9+6(3-0(^-l)+^-3)2(^-l)2}
27u = ^{9-6^+24^-6+^-8^+22^-24^+1}
27U = i^l{^2-8C3+^}
27u = -(1-^)(4-^)2

He then sets 77= 1 -^, so that

A(a-)=B(u) = -|7?(2+77)
-27u

77 = OT^F'
and finally applies Lagrange's theorem again, to obtain:

B{u) = ^ (-27u)n [" dn-1 1 ^-2(1 + a)'
^ Tz! [rfa"-i t(3+a)2"^3

'dn-1 {3+a-2t
3^ n! [^»-i ^ (3 + a)2"

</n-1

2 ^ (~27u)n
3^~~nT

2 ^ (-27u)n
3^-^T

a=0

a=0

c?a'
1^-______1.
-l[(34-a)2"-i--(3T^JJ^



2^(27u)n f(2n
~ 3^-nT
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- l)(2n)... (3n - 3) 2(2n)(2n + 1) ... (3n - 2)

33n-l33n-2 i
s ^g^^f3'2"-1'-2'3"-2"

00

= 2E: (3n - 3)!
\^n!(2n-l)!u

The coefficients of this final power series are the terms of our conjecture. Can any application
of these generating function results be made to our stack-sorting problem?

At a simple level, it might be possible to use the identity
3n

nn+1 (n+l)(2n+l)

implicit in the last step of the Tutte derivation, as an analogue for
\ f 2n\ ( 2n\ { 2n

n+1 n n n+1

by making appropriate definitions about well-formed and not-well-formed sorting operations with
two stacks. But a complete understanding of the relevance of generating functions would give
more insight into the problem, and might suggest information about the general case of repeated
sorting through k stacks.

The data for k stacks, through permutations of length 11, is given in the table below. The
number in the fc-th row and n-th column is the number of permutations of length n which sort
after k passes but not after fc -1. Let us call such permutations exactly k-sortable. Thus the two
rows of the previous table represent the partial sums down each column of respectively the first
two, and the first three rows.

fc\n 11 1 I 2 |3

9

10

13 41
49
23

6

6

1

131
276
198

90
24

7

1

428
1509
1556
982
444
120

1

1429
8184

11812
9678
5856
2640

720

1

4861
44473
88566
91959
68820
40800
18360

5040

10 11
1

16 795
243 334
662 732
863 296
775 134
555 828
325 200
1461 60
40320

1

58785
1 343 654
4 975 378
8 093 662
8 618 740
7 201 188
5 033 952
2 918 160
1 310 400

362 880

It is evident from this table that no permutation of length n requires n passes to sort, but that
some do require n - 1 passes. The number of these appears to be (n - 2)!. We prove this result
by characterizing these permutations.

If TT e 5n is given by TT = (01, 02, ... ,afc-i, "^ii62>-.. i6"-fc)' and 7r ::= ("1^2,... ,0^-1),
7TR = (61, &2,. . . i ^n-fc)i then we write TT = vLnvR. In abbreviating a permutations in this fashion,
we use greek letters for permutations and permutation sequences, and reserve roman letters and
arabic numerals for individual elements of a permutation.
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Lemma 5. If for T ^Sn, TT = vLmrR, then H(7T) = n(7TL)n(7T/?)n.
Proof: Consider the application of the sorting algorithm to TT. When the element n is

reached, all the elements of TTL and none of 7rfi have been processed. Some may remain on the
stack. The element n is larger than every element on the stack, and so the stack is cleared. Thus
the elements of TTL are output as H(7TL), exactly as though an end-of-input had been reached.
Next the element n is entered onto the stack. As it is larger than every element of TTR, n remains
on the stack until the end-of-input is reached. So n does not interfere with the processing of TTR,
which is output as Il{rR) Finally, an end-of-input is reached, and n is removed from the stack.
a

As evidently the largest element must appear in some position of the permutation TT, the sorted
permutation n(7r) has the largest element occupying the final position. Since after one pass, the
largest element has been shifted to the end, two passes will shift the largest two elements to the
end, and so on. We prove this in the following lemma.

Lemma 6. If p --- nfe(?T) for any TT 6 5n, then p{j) = j, forn - k+1 <j <n.
Proof: The proof is by induction. The statement is vacuously true for k = 0, and true for

& = 1 by lemma 5.

It p = nfc+l(?T), then p = n(Hfc(7T)). By the induction hypothesis, H^TT) has its k largest
elements in order in the final k positions. When the first of these is encountered, it will clear the
stack, being larger than. any previous input. The rest of the elements are encountered in increasing
order, and so are simply passed through.

SoifHfc(7T)= (^, 02,..-., an-fc, "-^+l,..., n), wecantakea=(ai, a2,..., an_fc)   5n_fc. By
the remarks of the previous paragraph, n(;+l(7r) = Tl{T[k[v)) = T]. {a{n -k+l)... {n- l)(n)) =
n(o;)(n - fc+ l)... (n - l)(n). By lemma 5, H(o) has n - fc for its final element. Hence Hfc+l(7r)
has (n - fc, n - &+ 1,... , n -l, n) for its final elements. D

These observations lead to the observation that the sorting process always terminates, after at
most n iterations. Actually, n -1 iterations will do, for if the last n-l positions of a permutation
of length n are occupied by 2, 3,... , n, then clearly the first element is 1.

Conversely, we prove that for every n there are some permutations of length n which actually
require n-l passes through the stack. At the same time, we find the number of these permutations.

We have noted that a pass through the stack moves the largest element to the end of the
permutation. In other words, for all TT   Sn \t is the case that H(7T) = an for some a   Sn-i.
Since then H^TT) = n<:-l(n(7r)) == nfc-l(an) = n<E-l(a)n, it is true that TT is exactly fc-stack
sortable if and only if cf is exactly {k - l)-stack sortable.

We use this observation in the following inductive proof.

Theorem. A permutation TT   5'n is exactly (n - l)-stack sortable if and only if TT = pnl for
some p G 5n-2.

Proof: The statement is true for n = 3 as the only permutation in 83 which is exactly
two-stack sortable is 231. (It is also true for n = 2.)

Now assume the truth of the given statement for n - 1. A permutation TT   5'n is exactly
(n - l)-stack sortable if and only if R(7T) = an where a   5n-i is exactly (n - 2)-stack sortable.
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We check that likewise v has the form pnl if and only if a has the form /3, (n - 1), 1.
The proof will then follow by induction. The two classes, of permutations having the given

form, and of permutations requiring the maximum number of passes to sort, are equivalent for
n - 1 by the induction hypothesis. The arguments of the previous paragraph will show them also
to be equivalent for n.

First let v = pn\. Then n(7r) = H(p)ln. Since H(/?) will have the form <r, n - 1, we can write
n(7r) = an, where a == <r, n - 1, 1. This is the desired form.

Conversely, suppose

(2)

(3)

II(TT) =<r, n-l, l,n

Write TT in the form 7rLn7TR, so that

H(7T) = n(7TL)n(7TJ R)n

Since both H(7TL) and n(7TR) must end with an ascent if they have length greater than 1, a
comparison of the forms 2 and 3 reveals that n(7TR) = 1. Then TT = 7TLnl, the desired form. a

It is immediate from this classification theorem that the number of exactly (n - l)-sortable
permutations of length n is (n- 1)!.

By similar techniques, we have also been able to enumerate the permutations of length n which
are exactly (n - 2)-sortable. There are j(n - 2)! + (n - 3)! of these.
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