THE RANDOM GENERATION OF UNDERDIAGONAL WALKS

E. Barcucci, R. Pinzani, R. Sprugnoli
Dipartimento di Sistemi e Informatica

Universita di Firenze, Firenze (Italy)

ABSTRACT
In this paper, we propose an algorithm for the random generation of
underdiagonal walks. We consider the plane walks which are made up of
different kinds of east, north-east and north steps and which start from the
origin and remain under the main diagonal. The algorithm is very simple: it
randomly generates plane walks and refuses the walks crossing the diagonal.
We prove that the algorithm works in linear time with respect to the walks’
length when the number of different kinds of east steps is greater than, or
equal to, the number of different kinds of north steps. Finally, some results
of our experiments are reported in order to support our theoretical results

with empirical evidence.

1. INTRODUCTION

Various studies (see, for instance, [5, 6, 7]) have been made on one-dimensional
walks made up of three kinds of unitary steps: right (r), left () and in-place (s).
Particular attention has been given to walks that begin at the origin O and never go
to its left. This means that in each subwalk which begins at the origin O, the number
of right-hand steps must be greater than, or equal to, the number of left-hand steps.

These walks can be codified by means of some words defined on an alphabet
having three symbols, such as {r, I, s}. If we denote the number of letters r (J) in
word wby |w|y (| w]}), then the language of the words codifying the walks is:

L={we {r,] s}*| |w]|yr > | w’|; for each w’ prefix of w}

The words w € £ are also called Motzkin left factors because they are the prefixes of
the Motzkin words, i.e., words w € {r, [, s}*, such that |w|,= |w]| jand |w'|y >
| w’ | for each w’ prefix of w. This kind of walk has been very thoroughly studied
because these walks correspond biunivocally to single-rooted directed animals [6].

17

18

The walks on the line can also be represented two-dimensionally by recording
the time on the abscissa and the moves on the ordinates. As a result, the elementary
steps corresponding to the right, left and in-place steps are north-east, south-east and
east, respectively. For example, the rrslsrl walk can be represented as in Figure 1. In
this case, the condition that a one-dimensional walk mustn’t go to the left of the
origin means that it mustn’t go under the z axis.

z

Fig. 1 - The 7-walk corresponding to rrsisrl

Another way of representing this kind of walk on a plane is to consider the
east, north, and north-east steps as elementary steps corresponding to r, I, s. In this
case, the walk corresponding to the preceding example is represented in Figure 2.

z

Fig. 2 - The underdiagonal walk corresponding to rrsisrl

In this case, the condition that the one dimensional walk mustn’t go to the left of O
means that the walk mustn’t go over the y = z diagonal. This is why these walks are
also called underdiagonal walks.

In [1] we introduced a linear algorithm for the random generation of single-
rooted directed animals whose first step is to generate a word in the £ language. In
the present study, we examine a more general class of underdiagonal walks made up
of several kinds of east, north and north-east steps and we introduce an algorithm
that generates them randomly. This algorithm is shown to be linear when the number
of east steps is greater than, or equal to, the number of north steps.

2. UNDERDIAGONAL WALKS

We examine underdiagonal walks in which @ kinds of east steps, b kinds
of porth-east steps and ¢ kinds of north steps can be used. This type of walk
is usually called coloured walk. Walks made up of n steps, (nlong walks
or nwalks), can be codified by nlong words (n-words) on the alphabet
A={z), 23, - - -, Ty 215 - - 42 Y1» - - -» Yc}, in Which the z;, z; and y; represent the
east, north-east and north steps.

For a walk to be underdiagonal, the number of north steps in each subwalk
beginning at the origin must be less than, or equal to, the number of east steps.
Consequently, if w € A* is a word that codifies an underdiagonal walk, we obtain

c a

for each w’ prefix of w.

It is then relatively simple to provide a non-ambiguous context-free grammar
that generates the language ¥ of the words codifying the underdiagonal walks. The
non-terminal symbol D corresponds to the underdiagonal walks ending on the main
diagonal; as noted previously, the z and y symbols should balance. The non-terminal
symbol F corresponds to the walks not ending on the main diagonal; each of these
walks can be uniquely decomposed into a sequence of D-walks joined together by
some positive number of z steps. The total number of these z steps represents the
distance of the ending point of the walk from the main diagonal. Finally, the non-

terminal symbol S corresponds to all the underdiagonal walks, each of which may end -

on the main diagonal (a D-walk) or not (an F-walk).

S:=D| F

F ::= DAD | DAF
D:=e¢| BD | ADCD
A=z || ... | 25"
Bu=z|z|...|z
C=y |yl ---| 5

By applying Schutzenberger’s method [8], we obtain the following system:

S(t) = D) + F()
Ri) = AL + AQDHFY)
D(t) = 1 + B(§)D(t) + A(§)C())D(3)

19

20

A(t) = at
B(t) = bt
t)=ct

from which we can get D(t) and S(£). The expression for () is the following:

_1-bt+A
Dty = 2act®

in which A = (1—(b—2vag)t) (1—(b+2vae)).

D(t) = X ,dyt* is the generating function of the words that codify the
underdiagonal n-walks that end on the diagonal, that is, the w words, such that:

c a
Ehll"'lyﬁ: Ehlh”lzk and
Z;llw'lyk < 2;l|w'|zl_foteachw'preﬁxofw

It is worth noting that in the D(#) function, a and c only appear as the product ac.
This implies that the number of n-walks with a east steps, b north-east steps and ¢
north steps is equal to the number of n-walks with c east steps, b north-east steps and
a north steps. In order to verify this, it is sufficient to run the walks backwards.

For the generating function of the underdiagonal n-walks we obtain the
following expression:

St =L 1—(b42a)t+A
" 24t (at+btc)t-1
Because of this generating function, when a, b, ¢ > 0 there is no closed form
for s, = [¢"] 5(t). Therefore, we now determine an asymptotic expression for s, which
will be important for our remarks on the random generation of underdiagonal walks

in Section 3. Since:
in Section ince 1—(b+20) A

sn =2 [t*H]] C = (2.1)

let us consider this last function. It presents three singularities: a pole at
t = (a+b+c)’! and two algebraic singularities at ¢ = (b+2vae) ! and t = (b—2vae)l.
By our hypothesis on a, b, c, the last singularity cannot have minimum modulus;
besides, since a+c—2vac = (Va—¢c)?2 > 0, we always have atb+c > b+2vae, and the
equality holds if and only if a = ¢. So ¢t = (a.+b+c)'l is the singularity of minimum
modulus unless a = c. We have:

| c—al

VB |41 flatbre) = aFbFe

and when ¢ > a the numerator in (2.1) is annulled for ¢ = (a+b+¢)’. Hence, for
¢ > a, this quantity is not a pole for the function S(f). We thus have three different
cases, according to whether a is greater than, equal to or less than c.

casea > ¢

Since in this case t = (a+b+c)'l is a first order pole, we can apply Darboux’s
method and we immediately obtain:

2 — —

% ™ _2171(1— ab-l-l-b-ll-lc B a-‘ll-b-f- (a+b+e)™H! = £2€ (atbto)" (2.2)
We could now remove the pole from the generating function and obtain a more
precise approximation for s, by the method of subtracted singularities. However, as
we shall see in Section 3, formula (2.2) is usually sufficient for our purposes.

casea=c¢
In this case, a+b+c = b+2Vae = b4+2a and A = (1—(b—2a)t)(1—(242a)t). The
function S() simplifies to:

1—(5—2a)t
S = 5 (\%;‘t -1)

The minimum modulus singularity is now the algebraic singularity at h(b+2a)‘1. In
this case, we need a more precise approximation of s, and, therefore, instead of
applying the Darboux’s method, we develop S(t) around the dominating singularity
and obtain an asymptotic development:

1—(b—2a)t
1—(H2ae)t

tS(t) ~ 2171\

_ b—2a)?
~1 |—Hf2a (A—(s+2a)y /24 B520 (1—(b+2a))/2— %(1-(1&2.;)03/2)
We can now extract the coefficient of £*1! from this expression:

1 (2™ 1642352
" {a(b+20) {x(nt1) (= Tty * F120ms1)?) (23)

When a = b = ¢ = 1, this formula coincides with the one found in [1], which

21

22

approximates the number of single-rooted directed animals having n+1 nodes.

casea < ¢

This is the most difficult case. As observed before, the dominating singularity
is the algebraic singularity at ¢ = (b4+2v@c)’l. As in the case a = ¢, the best way to
obtain an asymptotic approximation for s, is to develop S(£) around this singularity.
The use of a formal system, such as MAPLE [3], may help in performing the
necessary computations. In any case, we obtain the following asymptotic

development:
yae 4 21_c 1/ b—2~J_c a+b+c
tS(t —t 1

(a+b+o) | b—2vae atbic _(b—2~ra—c)z) Y
(e + R - G Jat -

where 7 denotes the reciprocal of the dominating singularity, i.e., 7 = b+2vac. In
order to simplify our notations, let us set:

_ 4yac {b+2vae C. = 2@, atbic
a(Ye—a)? 17O8E T (yoa)?

02—(“+"+°)2 b-2vac _atbtc _ (b—2vac)?
- (ﬁ —ﬁ)4 8vac (17-‘—‘171)2 128ac

We then find the asymptotic approximation:

) (! 3C; 15 .
o2 =25 CO (- 3t + gy + 00 =

b+2vae)*l , 1+12C, }
- 5 T (- 5+ o) 24

The main value will be used in Section 3, whilst the corrections will be useful in the
remarks of Section 4.

3. RANDOM GENERATION OF UNDERDIAGONAL WALKS

In order to generate a random underdiagonal n-walk, we only have to generate
a random n-word in ¥. We propose the following algorithm:

1) The letters of the word are generated one after another by taking them out of
{21, 25 - - » Ta> 21y - + +» 2 Yp» - - -» Ye} (for example, by generating a random integer
number k included between 1 and a+b+c and then by taking z; if k<@g, 7, if
a<k<atband yp . ;if k> atd);

2) The difference 37, | v| 5= 2;:1 |w] y; is taken into account;

3) If this difference becomes negative before generating n letters, the prefix generated
up to then is discarded and we start from the beginning again;

4) ¥ n letters are generated before the difference is less than zero, they constitute the

word desidered.

We want to calculate the average number of generated letters necessary for
obtaining an n-word (i.e., the expected number of calls to a random number
generation routine random). It will be shown that if a > ¢, the algorithm is linear and
that it isnot so if a< c.

Generally speaking, if we want to obtain an n-word in ¥, some words shorter
than n not belonging to ¥ are generated first and then an n-word in ¥ is generated.

Let p, ; be the probability that k (k> n) calls to random must be made to
generate an n-word in ¥. If we determine the probability generating function
P(t)=X £Pn, ktk for each n € N, we are able to evaluate the average number avg,
of characters generated in order to obtain an n-word in ¥ because avg, = P, (1).
By using the same method, we could also calculate the variance because
vary = Py (1)+P5 (1)—~(Pa (V)™

We use D; for denoting the language of the words that codify the k-walks
ending on the diagonal, that is the k-words whose number of z letters is equal to its
number of y letters. We now go on to examine the languages Ny, Ny, Ny, . . . of the
negative words, that is, the k-words (k< i for N;) that interrupt the generation of a

word in ¥. We have:

C:=yp |l wl.-.-| %
Nu=C
N2::=C| DlC

Nu:I=C| chl D2CI PP I D”_IC

from which we get
N()=¢ E”k':lodktk"'l where d; = [#] D(%)

23

24

When we want to generate a word in ¥ by means of the algorithm, we generate
a (possibly empty) sequence of words in N, followed by a word in ¥. As a result, the
language Ly, of the sequence of letters generating the codifications of underdiagonal

n-walks is defined by:
R, :=¢ | N,R,
L,:=R,S,

in which Sy, is the language of n-words in ¥. We thus get:

Ryt =—L1 = 1
A =1NE 1—cy i gl
and ot

Bal) =yt g

Since every letter of A is generated with a probability of 1/(a+b+c), we can obtain
the probability generating function as follows:

s,, "

Py(t) = Ly(t/(at+b+c)) = (a+5+0)"—c 3= T d (atbo) F1#1

We now prove that Py(1) = 1. We can write

S(t) = 1 1- (b+2a)t—4_ 1 —ctl_btﬂ 1
2at " (atbtc)i-1 1—(atbto)t 2act (at+bt+o)t-1

From this it follows that:
= (a+b+c)"—c2 dk(a+b+c)"""'1

and therefore Py(1) = 1.

If we indicate Q,(f) = (a+b+c)"—c2,~=odk(a+b+c)"""1 1 we can write
Pp(t) = 3,t"/ Qu(t). Therefore Q,(1) = s, and:

’ n3,Qn(1)— 3nQu (1) “3%“3:;Q1'z (1) — erl (1)
AO=""g0 & o=

From the preceding formula for Q,(f) we immediately find:

avgy =

Qn(1)= —cz: J(FHD) d(atbro™Hl = g,

This allows us to go on to the generating function ¢(t) = E:’:oq,,t", which is the
convolution of the derivative of D(#) with the geometric series (1—(a+b+c)t). In
fact:

—=bt— A
o) = et L(tD(8)) 1—(a—}1-b+c)t = 2@(51 (li(afHC)t) ¢

Here we used the explicit formula for D(t) found in Section 2 and a great deal of

routine computations performed by computer.

As for S(t), here again we have three singularities and since the numerator of
¢(%) is not annulled for ¢ = (a+b+c)l, it may seem that we only have two cases.
Actually, the remarks to be done and the exact results obtained for ¢ > cand a < ¢
differ from each other very significantly and we are now going to examine the three

different cases, as we did in Section 2.

casea > ¢

The dominating singularity for ¢(t) is a first order pole at ¢ = (a+b+¢)L. The
residual at this point is easily found and we have:

tn ~ ey (atbr™

This value is to be divided by s,, as computed for the corresponding case in Section

2. We immediately find:
c(atbdtc)

o (3.2)

avg, ~ n+
that is, the expected number of calls to random is n plus a constant per generation.

case a= ¢

In this case, the dominating singularity is the algebraic singularity at
t = (b+2a) ", and the formula for ¢(#) simplifies as follows:

ata(f) = 1—bt - 1
2 tfl(t) (1—(b+2a)t)3/2(1—(b—26)t)1/2 1—(a+b+c)t

Again, we develop the first term around the singularity and find:

(1—(b+2a)t)31/;(b1t_(b_2a)t)1/2 = \Im (1—(b+2a)t)3/2 (1+

(6a+5b)(b—2a)

TR (1—(b+20)8)% + ...)

+ 3828 (1_(p12a)1)

25

26

We can now extract the coefficient of t**! and obtain:

o _2n43 (2 b+2a nt1 14 _3b+2a (6a+5b)(b—2a))+
2{a(b-+20) 8a(2n+3) ' 1284%(2n+3)(2n+1) =
(b+2a)"+l

T 2

At this point, obtaining avg, by formula (3.1) is routine procedure:

avg, =2n — 5 \I bt2a 7 (n+1) +6a+b + o(1) (3-3)

This means that the expected number of calls to random is something less than 2n
per generation.

casea < ¢

As in the case of @ > ¢, the dominating singularity is the first order pole at
t = (a+b+c)’], but the condition @ < c implies some difference in the constant. In
fact, we have:

(a+b+c)"+1
~ T e —

By using the value of s, found in formula (2.4), we have:

n+l Y7 2a(ve—a)> i 1+1201)

~ atbtc
avg, 'n+(‘n+1)‘l_ b+2‘4_ 4{a—c4b+2m (c_a) 8n

(3.4)

Consequently, the expected number of calls to random grows exponentially with n,
and our method cannot be used to randomly generate this kind of underdiagonal
walks in an efficient way.

It may be interesting to observe that by using the method of subtracted
singularities it is possible to obtain a more accurate approximation of g, This
explicitly shows that the error introduced by the value of g, also introduces an error
in the order of O((5+2vac)"™), which is exponentially smaller than the main value:

(a+b+c)"+1 JWac+2ac b+2 @c ""‘1(2
e 2a(ve—a)? nt+l

+ (c+a)(b+2vac)3/ (b+2 ac\"Hl 1 {2n+2)
4a 4{_0 (T—ﬂ_)'; 4 2n+1\ n41

217

4. EXPERIMENTAL RESULTS

We performed a series of experiments both to check the validity of our
approach to the random generation of underdiagonal walks and to give empirical
evidence that we can actually generate random walks in linear time when a > ¢. In

our experiments, we use the average value of the difference:

as an indicator to prove the randomness of the generated words; §(w) corresponds to
the distance from the main diagonal (measured on the z axis) of the end point of the
walk codified by w. We computed the average value of §(w) for the n-words in ¥, that
is
bg= Z 6('”)/ Sn
weS,

by using another application of Schutzenberger’s method to the grammar of Section
2. We introduce a new indetermimate u, which counts every z symbol positively and
every y symbol negatively and we obtain:

S(t,u) = D(t,u) + F(i,u)
F(t,u) = A(t,u) D*(t,u) + A(t,u)D(t,u) F(t,u)
Dt,u) =1 + B(t)D(t,u) + A(t,u)C(t,,u)Dz ()

A(t,u) = atw
B(#) = bt
tu) = ctul

In this way, the coefficient s, ; of ok in S(t,u) represents: the number of n-walks
ending at a distance k from the main diagonal and it is easy to evaluate S(¢,u):

S(tw) = 1—(b+2au)t—'\l(1—bt)2—4act2

- 2at(atu®+btu+ct—u)

What we need is the sum ZLobu, b Tepresenting the total distance from the
main’ diagonaliof all the n-long walks. The simplest way to obtain this quantity is to
note that:

I GF = COI

By performing the necessary computations, we eventually find:

28

(1—(b+2a)t)(1—(5+20)t—A)
1
Ebﬂ n,k (1—(at+btc)t 241.15(1—(a—i-b—l-c)t)2) (41)

At this point, we only need to extract the coefficient of t® from this generating
function. The singularities are the same as for S(f), and, therefore, we have three
different cases according to whether a is less than, equal to, or greater than c. We
discuss these three cases separately.

casea > ¢

The dominating singularity of (4.1) is ¢ = (a+b+c)"!, a second order pole. By
using Darboux’s method, we easily obtain:

Y b oksar ~ %7€ (4™ (n41) + (atbo)”

and, therefore, by dividing by s

o= a+b+c(n+1) + a—c + 0(1)

a quantity linearly increasing with n.

We performed a series of experiments by generating 100,000 n-words for
n = 1000 and various combinations of @, b, ¢ (¢ > ¢). The results are summarized in
Figure 3, and the experimental data agree with the expected values to a large extent.

calls to random distance from the diagonal

e b ¢ expected| experim. expected| experim.
2 1 1 1004 1004.38 252.25 252.89
3 1 1 1001.25 1001.25 401.9 401.07
3 1 2 1012 1012.07 169.83 170.70
3 2 2 1014 1014.18 146 146.80
4 1 1 1000.67 1000.67 501.83 500.73
4 2 3 1027.00 1026.88 115.22 117.27
4 3 2 1004.50 1004.52 224 .44 224.17
5 1 1 1000.44 1000.44 573.25 571.96
5 3 4 1048 1047.91 88.42 91.38
5 4 3 1085 1009.04 169.33 169.78

Fig. 3 - Experimental results for a > ¢

We wish to point out that, by formula (3.2), when the constant
K= c(a+b+c)(a—c)‘2 is high, and we limit ourselves to experiments with n =~ K, we

obtain seemingly erroneous results. In Figure 4 we show some examples of this.

calls to random distance from the diagonal
a b ¢ n expected| experim. expected| experim.
20 20 17 1000 1107.67 1101.81 59.35 63.71
10000 10107.67 10107.61 533.04 537.88
20 10 18 1000 1216.00 1180.06 51.71 58.18
10000 10216.00 10213.46 426.81 436.62
20 20 18 1000 1261.00 1207.61 44.52 50.29
10000 10261.00 | 10259.92 354.86 363.03
20 1 19 1000 1760.00 1369.73 45.03 50.94
10000 10760.00 | 10729.70 270.03 290.13
20 10 19 1000 1931.00 1401.69 40.43 44.75
10000 10931.00 10880.27 224.10 243.65
20 20 19 1000 2121.00 1433.90 36.97 39.63
10000 11121.00 | 11072.43 189.51 206.81

Fig. 4 - Experimental results for a > ¢

case a=c¢c

As we already know, when a = c we have a+b+c = b+2Vac = b+2a, and (4.1)
has an algebraic, dominating singularity at ¢ = (b+2a)'1. The same formula (4.1)
simplifies and we obtain:

E:zoksn,k = [t"] (m - S(t)) = (b+2a)"_s,,

Then we divide by s, (formula (3.3)):

_ (6+2q)" T (atD) b 5621642
bp="g 1~ \|b+2a r(n+1)(1 + 16a(n+1) + 512a%(n+1)>2 -1

and this time the average distance from the main diagonal only increases as Y@ does.
This is also the case of Motzkin words, and the previous formula for §, coincides with

the one given in [1] when weset a=b=c=1.

In this case, too, the experimental results agree with the expected values, as
shown in Figure 5. It is worth noting that the words in the first two lines in the table
correspond to the directed animals over the square and triangular lattices [7]

29

30

respectively.
calls to random distance from the diagonal
e b ¢ expected| experim. expected | experim.
1 1 1 1953.19 1956.65 31.38 31.37
1 2 1 1945.92 1846.10 27.04 26.15
1 4 1 1933.82 1926.40 21.90 22.12
1 8 1 1914.83 1914.24 16.74 16.84
10 1 10 1960.90 1959.30 37.70 37.84
10 5 10 1957.30 1945.50 34.47 34.52
10 10 10 1953.19 1955.86 31.38 31.44
10 15 10 1949.42 1948.94 28.98 29.04
20 15 20 1955.20 1946.96 32.82 32.87
20 20 20 1953.19 1948.79 31.38 31.47
Fig. 5 - Experimental results for a = ¢
casea < ¢

As usual, this is the most difficult case. Formula (4.1) can be written as:

2at{1—(a+b+0)t) — (1~(b+20)t)(1—(b+2a)t—A)
2at(1—(a+b+c)t)?

where the numerator is annulled for ¢ = (a+b+c)!. By using de I’Hospital’s rule, we
discover that t = (a.+b~l~c)‘1 is not a simple pole either, and, therefore, the dominating
singularity is ¢t = (b—|-2\|a_c)’1. We can now either expand everything around this point
or use the implicit function method as described by Bender (see [2], theorem 5). This
only gives the main term but it also somewhat reduces the number of necessary
computations, which could be performed by computer. In any case, we find:

T ks~ 4yae {br2vae (b+2vae)™H!
=0 Ge—a@)?3 (ntl){n(ntl)

Therefore, we divide by s, and obtain:

2
8n =72z + o(1)
This means that the average distance from the main diagonal tends to become
constant. In Figure 6, we summarize some of our experiments. Obviously, avg,

increases exponentially with n and the generation time may become rather

prohibitive. Moreover, we can see in Figure 6 that experimental data are significantly
different from expected values but this however is not particularly surprising.

calls to random distance from the diagonal
e b ¢ expected| experim. expected| experim.
5 6 39916.4 56133.3 20.95 14.99
7 8 8 9557.0 14736.6 28.97 17.79
9 1 10 8227.9 12767.5 36.97 22.28
9 10 10 4984.7 7978.0 36.97 19.91
14 1 15 3312.5 5370.5 56.98 26.54
14 15 15 2589.7 4210.6 56.98 23.09
19 1 20 2350.4 3833.0 76.99 29.22
19 10 20 2150.2 3502.9 76.98 26.90
19 20 20 2002.7 3315.8 76.98 24.86
19 30 20 1898.4 3140.6 76.99 23.36

Fig. 6 - Experimental results for a < ¢

Let us consider the correction introduced in formula (3.4); it gives us an idea
of the values of n, for which it is possible to obtain some agreement between

experimental data and both expected values.

We can claim that experimental data and expected values agree when, for
example, the relative error is within 12.5% or 1/8. So we should have:

12041 4
8n < 8

and we can define n_,;, as the minimum value of n for which this inequality holds. So
T,in T€PTesents the minimal length of the words to be generated in order to achieve
the agreement required. By feeding n,;, into formula (3.4), we find the average
number of calls to random necessary for generating a word of length n_,;,.
min

but in this case the quantity (a+b+c)/(5+2v@c) is maximized and we have to perform
a large number of calls to random. For example, let us consider the case a = b = 1.
When ¢ = 2, we find n,_,;, = 279 but we also have avg, > 262,000,000. Consequently,
it is practically impossible to generate a single word, not to say 10,000 words. If we
min = 32 (a very small quantity!) but avg, > 216,000,000.
The (relatively) best situation is achieved for ¢ = 4 when we have n_,;, = 71 and avg,

Unfortunately, n_. = [12Cl+1] is minimized when c is much larger than a,

increase ¢ to 9, we find »,

31

32

something more than 112,000,000 calls to random. In any case, we must conclude that

it is actually impossible to provide empirical evidence for our formula (3.4).

5. CONCLUSIONS

We have shown that a very simple algorithm allows us to generate a random
underdiagonal walk with a kinds of east steps, b kinds of north-east steps and c¢ kinds
of north steps in expected linear time, whenever @ > c¢. This actually means that m
generations of n-walks are performed in time O(mn). Besides, no extra space is
required by the generation routine, except for the space required for the string to be
produced.

When a < ¢, the same algorithm works in exponential time and hence it is of
no practical interest. This is so because there are some general methods for randomly
generating n-strings in context-free languages, which perform in polynomial time (see
Cohen and Hickey [4]). Therefore, finding out a linear time algorithm for generating
random underdiagonal walks with @ < ¢ is still an open question.

REFERENCES

[1] E. Barcucci, R. Pinzani, R. Sprugnoli, “Génération aléatoire des animaux dirigés”,
Atélier Franco-Québecois de Combinatoire, Bordeaux, 1991.

[2] E. A. Bender, “Asymptotic methods in enumeration”, SIAM Rev., 16 (1974),
485-514.

[3] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, S. M.
Watt, Maple V: Language Reference Manual, Springer-Verlag, New York, 1991.

[4] J. Cohen, T. Hickey, “Uniform random generation of strings in context-free
languages”, SIAM J. Comput., 12 (1983), 645-655.

[5] R. Donaghey, L. W. Shapiro, “Motzkin numbers”, Journal of Combinatorial
Theory A, 23 (1977), 291-301.

[6] D. Gouyou-Beauchamps, G. Viennot, “Equivalence of the two-dimensional
directed animals problem to a one-dimensional path problem”, Advances in
Applied Mathematics, 9 (1988), 334-357.

[7] J. G. Penaud, “Une nouvelle bijection pour les animaux dirigés”, Rapport LaBRI
89-45, Bordeaux.

[8] M. P. Schutzenberger, “Context-free languages and pushdown automata”,
Information and Control, 6 (1963), 246-264.

