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Extended Abstract

Let x = (z1,%2,...) and ¥ = (¥1,¥2,...) be two sequences of independent variables
and ) be a partition. We denote by

sa(z1, %2, .. [Y1,Y2,- . )

the super-Schur function corresponding to X in the variables x and y. These func-
tions arise naturally in the representation theory of Lie superalgebras [6] and were
also defined, independently, by Metropolis, Nicoletti, and Rota in [8], under the
name of bisymmetric functions. Since then, they have been studied extensively and
we refer the reader to [1], [2], or [4] for their definition (they can be defined in several
equivalent ways) and further information about them.

The purpose of the present work is to give combinatorial interpretations to the
minors of the infinite matrix

S(x,y) def (s)(Z1y-- -1 Zn/Y15 -+ - Yn))mkeN -

Our main results (Theorems 1.1 and 1.3) are proved combinatorially using lattice
paths and are stated in terms of dotted and diagonal strict plane partitions, respec-
tively. They also have many applications. As special cases we obtain combinatorial
interpretations of determinants of homogeneous, elementary, and Hall-Littlewood
symmetric functions, Schur’s Q-functions, g-binomial coefficients, and q-Stirling
numbers of both kinds. Other applications include the solution of a problem posed
by Yahory in [10] and the combinatorial interpretation of a class of symmetric func-
tions first defined, algebraically, by Macdonald in [7]. Many of our results are new
even in the case ¢ = 1. Others are g-analogues of known results. Our main theorem
also has several interesting applications to the theory of total positivity. These are
treated in [3].

In order to state the main results we need to define some notation, and termi-
nology. Given an infinite matrix M = (Mni)nkeN (Where M, ; is the entry in the
n-th row and k-th column of M) and {ni,...,n.}<, {k1,..., k- }< C N we let

Nyyerey Ny de
M( bk, ) & det (M 1si i<
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Given an infinite sequence {a;};en we let
Niyeeey Ny ) def Nlyeeey Ny
a;}i A
{t}tEN(kl,...,k,-) (kl,...,k,.)

where A & (a,._k),, reN (and a; ¥oifi < 0).

A dotted partition is a partition A = (A1, Ag,..., ) where, for each i € P such
that m;(A) > 0, the rightmost occurrence of ¢ in A may be dotted. Given two
(possibly) dotted integers we will write a = b to indicate that they are equal as
dotted mtegers and a = b if they are only equal as integers (so that, for example,
2=122=2 2=23). We will also write (a + b) instead of the more cumbersome

m Given a partition A = (Ay,..., ;) a shifted dotted plane partition of shape
A is an array of (possibly dotted) posxtlve integers ™ = (0 ;)1<i<r,i<j<i+ri—1 Where
each row is a dotted partition and m;; > miyy 4 Whenever 7;; and m;y; ; are both
defined and 74, ; is not dotted. Note that we do not require the parts of A to be
distinct. Let 7 be a shifted dotted plane partition as above. For k = 1,...,); we

let
di ()

(7'.) o Z Tiitk—1 (1)

i=1

where di () & |{i e P : Tii+k—1 > 0}], and
di(r) ¥ |{ieP : Tii+k—1 18 dotted }|.
Also, given 7 as above we let # & (Tiirgi<r;i<i<i+ri—2- We also let
() ¥ (ta(r),...,t5(),0,0,...),

d(r) ¥ (dy(x),...,dr(7),0,0,...),
and

d() ¥ (dy(7),...,dr(7),0,0,...).

Given a set of variables x = (z1,23,%s,...) and a vector d = (dy,d3,ds,...) of
integers we let
x¢ & II=%.

i1
and S(d) & (d3,ds, ...). Finally, we define the weight of 7 to be
w(r) & yd®) @ =dR)-(t(r)

Our main results are the following.
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Theorem 1.1 Let {ni,...,n:}s, {k1,.-.,kr}> € N. Then
NyyeoeyN Fmd(7)— . i
S(X7Y) ( kr,---,kll ) =in( )—=d(#)—S(t( ))yd( ) (2)

where the sum is over all shifted dotted plane partitions = of shape (n1+1,..., n,+1)
in which the i-th row has smallest part = 1 and largest part = k;+1 fori=1,...,r.

Theorem 1.2 Let {m,...,m.}<, {k1,...,kr}< € N and m,n € P, m > maz{m,,k.}.
Then

Myyee.yMy #)=d(7)— (7
{s(k)(zl’---axn/yla'--,yn)}kEN( k::.:kr ) =th( ) J( ) S(t("))yd(ﬂ) (3)

where the sum is over all shified dotied plane partitions = of shape ((n + 1)7) in
which the i-th row has smallest part = (m — k; + 1) and largest part = m — m; +1,
fori=1,...,r.

Since the minor in the last theorem is just the skew super-Schur function correspond-
ing to the skew shape (m—my+1,...,m—m,+r)/(m—k +1,...,m—k,+r), this
theorem gives a combinatorial interpretation for these skew super-Schur functions.
Other combinatorial interpretations have been obtained by Berele and Regev [2],
Balantekin and Bars [1], Dondi and Jarvis [4], and Stanley [9].

It is also possible to state the preceding results in terms of diagonal strict plane
partitions (i.e., plane partitions in which parts decrease strictly along each diagonal,
from upper left to lower right). Let T be a shifted ( or skew) plane partition. For
i € P we let ¢;(T) (respectively r;(T')) be the number of columns (respectively rows)
of T that contain at least one part equal to i, and m;(T) be the number of parts of
T that are equal to i. We then let

o(T) ¥ (ar(T),ex(T),...),

r(T) & (ry(T),ra(T), . ),

and
m(T) & (my(T), my(T),...).

Theorem 1.3 Let {ni,...,n:}s, {k1,...,kr}> C N. Then

S(x, y) < 7]:” oo :le ) — Zym(T)—c(T) xm(T)—r(T) (y + x)r(T)+c(T)—m(T)
g e =
where the sum is over all diagonal strict shifted plane partitions T of shape (ki,..., k)

in which the i-th row has largest part < n; and > nyy1 + 1, fori =1,...,r (where

Nr41 d=ef —1)
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Theorem 1.4 Let {my,...,m,}<, {k1,...,k}c CNandm,ne P, m > maz{m,, k. }.
Then

. ‘. . mr m —cl \ -— r -m
(5@ 12011 ym) ren ( T ) = Syl D) (y o) OHelT)m(T)
cosy Ry T

where the sum is over all diagonal strict plane partitions T of shape (m—m +
Lo.oom—m,+r)\(m—Fk +1,...,m—k, +r) with largest part < n.

In the case that k; = i, for i = 1,...,r, the preceding theorem first appeared,
though without proof, in [9, Theorem 5.2].

In the second part of this work the preceding results are specialized to several
interesting cases. In particular, using the fact that

ek(yl’ cee ’yn) = S(k)(o/yly cee yn) ’

hi(z1,. .., 20) = 3(y(21, . .., 20/0),
a(1,. .., Tp50) = s (z1y. .-y Zn/ — amy,..., —azy,) (4)
and
qk(mla cee9Tnj —1) = Q(k)(xh ceey :l!,,,) )
we can interpret combinatorially several determinants of elementary and complete
homogeneous symmetric functions, Hall-Littlewood symmetric functions, and Schur’s
Q-functions. In some cases we obtain the classical Jacobi-Trudi identity, in others
analogs of it. We give two examples of such results here.
Let T = (T; ;)1gicr, i<i<i+n; be a shifted plane partition of shape (i +1,...,n.+

1). We call a part Tjj, of T, free if Tiy; > Tij > T;jp (the inequalities being
vacuously satisfied if either one of T;_; ; and T; 4, are undefined). We let

F(T)¥ (¢,7) € sh(T): T:;is free},
and call F(T) the free set of T. Given T as above we define
U(T) E {(5,4) € sh(T): (i —1,5) € sh(T), Ties; = Tij},
and call Y(T) the upper set of T.

Theorem 1.5 Let {ny,...,n,}s, {ki,...,kr}> CN. Then
(gr(21, - ., Tn; @) peN ( le:: ) = ;xm(r) ()@ (1 — DI (5)

where the sum is over all diagonal strict shifted plane partitions T' of shape (ky, ..., k)

in which the i-th row has largest part < n; and 2ni+1, fori=1,...,r (where
def
Nyl = —1)
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Theorem 1.6 Let {my,...,m,}<, {k1,...,k-}< C N and m,n € P, m > maz{m,,k.}.
Then

{gr(21, ..., Zn; @) }ren ( ",:”Z‘ ) = 3" %D (—)HD (1 - o) FD (6)
geeryir T

where the sum is over all diagonal strict skew plane partitions T of shape (m —mq+
L,....m—=m,+7r)\(m—k1+1,...,m— k. +7) with largest part < n.

Note that the symmetric function on the LHS of (6) is just the symmetric function
Sy/u(x; @) defined (in the case that g = @) by Macdonald in [7, p.116, eq. (4.5)],
where A & (m—m;+1,...,m—m,+r) and p ' (m—ky+1,...,m—k,+r). Therefore
Theorem 1.6 gives a combinatorial interpretation of these symmetric functions.

Finally, by suitably specializing our main results we can give combinatorial in-
terpretations of determinants of g-binomial coeflicients, and of g-Stirling numbers
of both kinds.

For example, using the fact that
[:]q =hn—k(1’q1q21""qk)) (7)

we can obtain the following result (where B(q) denotes the infinite matrix of g-
binomial coeflicients).

Theorem 1.7 Let {ny,...n.}s, {k1,...,k}> € N. Then

B(q) ( 7’:;:: ’ 7]:1 ) — q~n((k1+1,...,kr+l)') zT: q|T]

s 1

where the sum is over all row strict shifted plane partitions T of shape (k1+1,...,k+
1) in which the i-th row has largest part equal to n; + 1, for i =1,...,r (where for

a partition A = (A1, Az,...), n(A) oo Tis1(E = 1) X).

In the case ¢ = 1 the preceding theorem was first proved (though stated in a slightly
different way) by Gessel and Viennot [5, Corollary 11].

Given a permutation o € S, having k cycles C4, ..., Ci we let S(o) &ef {min (C}),
...,min (Cx),n + 1}, and {c®,...,oc+)}, def S(o). We say that o is written in
normal form if:

i) each cycle of o is written with its smallest element first;
ii) the cycles are written in increasing order of their first elements.

The normal representation of o is the word obtained from the normal form of o
by erasing all the parentheses. The number of inversions of o, denoted by inv(c),
is the number of inversions in the normal representation of . Given an r-tuple of
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permutations (oy,...,0,) and a partition g = (y,... ,p,') we associate to them a
shifted skew array, denoted ST, (o1, ...,0,), by letting a,(’) be its (3,2 + p; +75—1)
entry, fori = 1,...,r, j = 1,...,k + 1 (where k; is the number of cycles of a;, for
t=1,...,r). Using the fact that

C[n +1,k+ 1]9 = eﬂ-k([l]qa [2]11, teey [n]q) .

it is possible to deduce the following result ( where C(q) denotes the infinite matrix
of g-Stirling numbers of the first kind).

Theorem 1.8 Let {n,,...,n.}s, {ki,...,k}> CN. Then
C’(q) ( Ny, . ,7,:1 ) = Z Hqinv(a;)
1 (01y0emor) i=1

where the sum is over all r-tuples (01,...,0,) € Sp41 X ... X Sp.41 such that
ST (o1,...,0v) is a shifted plane partition of shape (ky +2,...,k, +2).

Theorem 1.9 Let {my,...,m.}¢, {k,...,k:}< € N andm,n € P, m > maz{m,,k,}.

Then .
{c[n+11k+1]q}keN ( ";l,-.-,;cnr ) = Z Hqinu(oi)
1y ooy Ky (01yeem0r) =1
where the sum is over all r-tuples (oy,...,0,) € (Sn41)" such that ST(oy,...,0,)

is a skew plane partition of shape (m —my +3,....m —m, +r +2)\ (m — k; +
1L,...,m—k. +r).

Let m,n € P, m < n. Given a partition 7 = {B,, ..., By} of [m,n] into k blocks
we let S(r) ¥ {max (B,),..., max(B;),m—1} and {7r(1) . 7r(’°+1)} & S(x). Let
now 7; be the (unique) block of 7 containing 7, for i = 1 ., k. We define the
height of 7 to be the number

k
ht () & 2= 1) (Il - 1).

Given an r-tuple of partitions (y,. .., ) we associate to it a shifted array ST (71y-..7,)
by lettlng the elements of S(w;) (in decreasing order) be the i-th row of it, for
i=1,...,r, and then shifting the resulting array. Using the fact that

Sn+ 1L,k +1] = hai([1]g [2g, - - -, [k +1]).

it is possible to deduce the following results (where S(g) denotes the infinite matrix
of g-Stirling numbers of the second kind).



93

Theorem 1.10 Let {ni,...,n;}s, {k1,...,k}> CN. Then
U '} i -
so (e )= T e,
Ty ey ("1 ,""ﬂr) =1

where the sum is over all r-tuples (m1,...,m,) € II([ny +1]) x ... x I([n, + 1]) such
that ST(my,...,n,) is a shifted plane partition of shape (k1 +1,...,k +1).

Theorem 1.11 Let {my,...,m.}<, {k1,...,k }< C N and m, k € P, m > maz{m,,k,}.

Then )
{S[n+1,k+1]3}nen ( n’:::;r:, ) = E HQM("")

(1 goueymry) =1

where the sum is over all r-tuples (wy,...,7,) € ([m—ki+1,m—m;+1]) x... X
([m — k. + 1,m — m, + 1]) such that ST(71,...,,) is a shifted plane partition of
shape ((k + 2)7).

The last four results are new even in the case ¢ = 1.
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