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RECENT PROGRESS
on
THE MACDONALD q,t-KOSTKA CONJECTURE

A. M. Garsia

ABSTRACT. In this lecture I shall present recent progress, in a joint effort with Mark Haiman, toward
proving the Macdonald q,t-Kostka conjecture. The main thrust of our work has been towards the construc-
tion of a representation theoretical setting for the Macdonald basis { P, (X, q,t)},. The original goal was to
obtain new methods for attacking some of the problems and conjectures arising from Macdonald work [14].
This effort has been met with success beyond our best expectations. In particular, it has already brought to
light some truly remarkable properties and facts concerning these polynomials. It has also opened up a new
area of investigation with a wide variety of exciting algebraic and combinatorial problems and conjectures.
The feeling prevails that this is only the the tip of a mathematical iceberg that could keep many investigators
occupied for a few years to come. I can give here only a sample of the results and problems that stem from
this development. We refer to [3], [4] and [5] for a more complete treatment.
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We recall that Macdonald in [14] shows the existence of a family of polynomials {Ps(z; g,t)}
which are uniquely characterized by the following conditions
a) Pa=5S2+ Z Su ur(a,t)
B<A (1)
b) (Px,Pulge = 0 for A#p
Where Sy denotes the Schur function indexed by A and (, )4, denotes the scalar product of
symmetric polynomials defined by setting for the power basis {p,}
1=9| ifpy = po =
(Pov s Poa Yot = {z,, pe[ 3] i =p2=pand @)
0 otherwise
Here we use A-ring notation and z, is the integer that makes n!/z, the number of permutations

with cycle structure p. There are a number of outstanding conjectures concerning these polynomials
(see [14]). Here we shall be dealing with those involving the so called integral forms J,(z;g,t) and
their associated Macdonald-Kostka coefficients K,(q,t). We shall use the same notation as in [14].
In particular {Qx(z;q,t)} denotes the basis dual to {Py(z;g,t)} with respect to the scalar product
(', )qu- Clearly, (1) b) gives

Qr\(z; q, t) = dA(q» t) Pk(z; q, t) ’ (3)
(*) Work carried out under NSF grant support.
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for a suitable rational function dy(q,t). However in [14] it is shown that

hA(Qv t)

dA(Qvt) = hf\(q,t)

with

Mt = JJA-g»@h)  R(g1) = JI - g+
8EX 8€EX

where s denotes a generic lattice square and ay(s), Ix(s) respectively denote the arm and the leg of
8 in the Ferrers’ diagram of ).

We recall from [14] that

Ju(zia,t) = hu(g,t)Pu(ziqt) = hy(q,t)Qu(ziqnt) , (4)
and the coefficients Kx,(q,t) are defined through an expansion which in A-ring notation may be
written as

Ju(@ig,t) = Y S\X(1-1)] Kxula,t) (5)
A

Macdonald conjectures that these coefficients are polynomials in ¢ and t with non-negative integer
coefficients. We shall refer to this here and after as the MPK conjecture. Macdonald derives a
number of properties of the K, (g,t); in particular he shows that for any partition x

Kaw(1) = fo (6)

where f) denotes the number of standard tableaux of shape A. This given, the MPK conjecture
is equivalent to the statement that for each u there exists an S,-module M, yielding a bigraded
version of the left regular representation whose character has the expansion

char M, = ) x* Kx(at) . (7)
A

More precisely, if Hp,x(M,) denotes the submodule of M, consisting of its bihomogeneous
elements of bidegree (h, k) and we set

P'at) = ) g"t*char Hau(M,) ®)
h,k20

then (7) should hold true with char M,, = p#(q,t). In this vein, the symmetric polynomial

Hy(mgt) = ) SiKlet) = JX/(1-t)g1] ©)
A

may be viewed as the Frobenius characteristic of M,,, while the expression

Fu(a,t) = Y i Kou(at) (10)
A
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should give its Hilbert series, that is the polynomial

Fuat) = ) "tFdimHu(M,) . (11)
h,k>0

For technical reasons it is preferable to work with the modified versions of H,(z;q,t) and F,(qg,t)
obtained by setting

I?,,(:c;q,t) = H,,(a:;q,l/t)t"(“) , F‘,,(q,t) = Fp(q,l/t)t"(“) . (12)

It will also be convenient to set
RNJ(Q! t) = Kkp(qs I/t)tﬂ(“) ’

where, for p = (g1 2 p2 2 -+ 2 px)
k
a(p) = > (- . (13)
i=1

In the fall of 1989 I set myself the task of finding a module M,, whose bigraded character, as defined

by (8), has the expansion
char M, = Y x* Kxu(a,t) (14)
A

Since setting ¢ = 0 in K,(g,t) yields the Kostka-Foulkes coefficients K,(t) a good starting point
appeared to be some early work of the algebraic geometers (see [6] and the references quoted there)
which yielded the first proof of the analogous positivity result for Ky,(t). The basic ingredient
that may be extracted from this literature is a certain graded S,-module R, in whose character
the coefficients K ,(t) appear as t-multiplicities of irreducibles. To be precise, let p#, denote the
character of the action of S,, on the m*? graded component of R, and set

) = )tk (15)

m>0

Expanding in terms of the the irreducible characters x* we may also write

PO = 3 x0lt) (16)
A

where C»,(t) is the polynomial whose coefficient of t™ gives the multiplicity of x* in p#. Now a
sequence of deep developments (see [13] I §3 ex. 1 p. 92 and III §7 ex. 9 p.136) yields that

Kau(t) = Canu(t™2)en® | (17)

However, although R, was later shown by Kraft [7] and DeConcini-Procesi [2] to have an
elementary direct definition as a quotient of the polynomial ring Q[z,,...,Zx], the relation in (17)
had only been established in & setting that not only required ¢ to be the power of a prime, but also
relied on some of the deepest results and tools of Algebraic Geometry. This given, I set myself the task
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of providing a purely representation theoretical setting for the study of R, and its graded character
p*(t). This program was successfully carried out in joint work with Procesi in [6]. In particular a new
proof of (17) was obtained which only used elementary representation theoretical tools. In an earlier
work (8]-[12] Lascoux and Schiitzenberger stated without proof that that a suitable submodule R, [X]
of the S,-harmonic polynomials had also the same graded character. Subsequently, Bergeron and
Garsia [1] were able to provide a proof of this fact that used only elementary tools of commutative
algebra. This done, the next task was to try and see to what extent these methods could be applied
to the q,t-case. This program is in the process of being carried out in joint work with Mark Haiman.
The starting point is the brilliant idea of Haiman to try and construct the desired bigraded module
by working in an analogous manner with polynomials in two sets of variables X = {z,,...,z,} and
Y = {y1,...,yn}. This viewpoint led to the construction of an S,-module Mp|[X, Y] which yields a
bigraded version of the left regular representation of Sy, for each lattice square diagram D. During
more than a year we have been involved in an intensive study of the module Mp and the various
problems that have arisen from our efforts to compute its character. During this period we have
gathered overwhelming evidence that when D is the Ferrers’ diagram of a partition y the resulting
module M,[X,Y] has a bigraded character given by (14). To describe this evidence we need some
notation. For a given diagram D we let pP(q,t) denote the bigraded character of Mp, and let
G|[D](z; g,t) be its Frobenius characteristic. We also set

PP(at) = D x* Cro(a,t) - (18)
A
Clearly we must also have then
G[D)(ziq,t) = Y Sa(z) Can(:t) - (19)
A

When D is the Ferrers’ diagram of a partition u, pP(g,t), G[D)(z; ¢, t) and C\p(g, t) will be
simply represented by p#(g,t), G.(z;q,t) and C»,(g,t) respectively. Our efforts have been directed
towards proving that

CA#(‘J: t) = RA#(Q, t) (20)

So far this has now been proved by Garsia and Haiman ([4],[5]) in the following cases

(1) For all u when X is a hook,

(2) For all A when p is a hook,

(3) For all A when u any two row or two column partition,
(4) For all A when p is a partition of n < 6.

(5) Verified by computer for all A when 4 a partition of n < 7

The completion of this work, and a proof of the conjecture in full generality, hinges on
the establishment of a number of properties of the modules R,[X,Y] which have emerged from
theoretical considerations combined with computer data. I can give a brief view of some the work
that has been done. In the one parameter case, the modules R, and R,[X] studied in [1] and
[6] respectively have different definitions but they are shown in [1] to be equivalent as graded S,-
modules. The module R, studied in [6] is a quotient of the ring of polynomials in 1, z2, . .., Zn, While
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R,[X] is defined in [1] as the linear span of the derivatives of the Garnir polynomials corresponding
to standard tableaux of shape y. The module R,[X,Y] referred to above is a natural bigraded
extension of R, [X]. It may be defined as the linear span of the derivatives of a single bihomogencous
polynomial A,(z,y) in the variables X and Y. Extending the definition of the ring R, given in [6]
to the two variable case, leads to two separate constructions and two additional spaces YR, and
89R,. Both these spaces are obtained by working on polynomials in X and Y. While ¥R, is
bigraded, it is not defined as a quotient ring, in contrast *R, is a quotient ring but only known to
be singly graded. All three spaces R,[X,Y], YR, and *9R, are S, modules under the diagonal
action of S,,. This is the action defined by setting, for 0 = ay---0, € Sp:

UP(Illzm Ty Y1, Y2, --,yn) = P(-‘"‘a,.$cm--,-'Ba..;ya;.ya,.--,yo.‘) . (21)

The first task is to prove (as in the one parameter case), that these three spaces are equivalent
as graded Sp-modules. All evidence gathered so far supports this conclusion. It is interesting to
have a look at some of the properties that have been established concerning these three spaces. We
shall also agree to use the same notation for the bigraded characters of R,[X,Y] and *9R,. Let
us keep in mind that (due to (6)) the validity of (20) implies that R,[X,Y] and %R, should be
bi-graded versions of the left regular representation of S,,. In particular, all the three spaces should
have dimension n!. Under this conjecture, the polynomial

Fu(g,t) =) fr Kau(a,t) (22)
by

should give a bigraded version of the Hilbert series of these two modules, while

Fu(‘]) = Fu(q,Q) = Zﬂ\ kAu(Q:Q)
by

should give the Hilbert series of *9R, and the singly graded one for R,[X,Y] and %R,.
Macdonald also shows a number of identities relating the coefficients K,(q,t) for various
values of A, u, q,t. For instance, from the results in [14] it can be derived that

1) F,(g,t) is symmetric, that is F,(g,t) = F,(¢7,t7)g s t".
2) {(,\,_,(O,t) = {_{)‘P(t)»

3) If)‘“(q,t) = K)‘u’(th))

4) Knu(gt) = g™'t™ Kyu(g~h,t7?),

where, priming a partition here represents conjugation. This given, the following table summarizes
some of the results presented in [4] and [5], which yield further evidence in support of (20).

PROPERTY R.[X,Y] bR, YR,
Symmetric Hilbert series ................. yes yes ?
Quotient ring ......ocvvvviiiiiiiiiiiinen = ? yes

Regular representation ................... ? yes yes
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Dimension n! .......coviiiiiiiiiiiiiian, - ? yes yes
Bigraded ........cooiiiiiiiiiiiiiiiinee, yes yes ?
Cou(@1) =EKnu(@s1) cvenenenenennanenn. ? yes =
Cu(3:0) = K3u(,0) cvvvenenenenenennnn. yes yes

Conu(@,t) = Copr(t,9) vvvvnvnvnenennnnanes yes yes =
Coulg,t) = g™'t™ Cryu(g~h,t7?) ..eeee. yes yes <

The symbol < is to signify here that the property in question is not applicable to the given
module. The question mark “?” represents the conjecture that we should have a yes. Note that each
property holds true for at least one of the modules. Remarkably, it can be shown that the removal
of a single question mark “?” (that is replacing it by a yes) in this table removes them all and forces
all three constructions to yield the same bigraded S,-module.

However the strongest evidence supporting the validity of (20), is that the modules Mp[X, Y]
have suggested us identities involving the polynomials G[D](z;q,t) which we were in fact able to
prove within the theory of Macdonald polynomials. We shall only give a brief view of this develop-
ment and refer the reader to [3] for a more detailed presentation.

We shall say that two lattice square diagrams Dy and D are equivalent and write D, = D;
if and only if D, can be obtained from D, by a sequence of row and column rearrangements. If D
is a lattice square diagram, the diagram obtained by reflecting D across the diagonal line z = y will
be called the conjugate of D and denoted by D’. Similarly, the reflection of a lattice square s across
z =y, will be denoted by s'. Finally, if D may be decomposed into the union of two diagrams D,
and D, in such a manner that no square of D is in the rook domain of a square of D, then we shall
say that D is decomposable and we write D = Dy x Da. This given, the construction of the module
Mp suggests that the family of polynomials {G[D](z;q,t)}p has the following basic properties

(1) C[Di(z;4,t) = G[Da)(z;4,t) if Dy~ Dy
(2) G[Di)(ziq,t) = G[Do)(x;t,q) if D= Dj (23)
(3) G[D)(z;q,t) = G[D:](x:9,9)G[D2)(z; q,) if D= DyxDp
The validity of (20) yields the further relation
G[D)(z;q,t) = Hu(z;q,t) if D is the diagram of p (24)

which may be interpreted as an initial condition. Moreover, a study of the behavior of the Sy-
module Mp under restriction to S, suggests recursions for some of the polynomials G[D](z; g, t)
which, together with equation (24) above completely determine them as linear combinations of the
polynomials H,(z;q,t). This permits the study of the the polynomials G[D](z; q,t) independently
of the validity of (20). In particular by recursing through this extended family, in (3], we were able to
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rederive some of the Stanley-Macdonald [15]-[14] Pieri rules in & manner which unravels their original
intricacy as a combination of successive, simple elementary steps. The remarkable agreement of the
resulting identities with those that can be derived from the theory of Macdonald polynomials, offers
what is so far the best evidence of the validity of (20). In our lecture we shall present some of the
latter developments in a Viennotique of lattice square diagrams manipulations.
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