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Extended Abstract

Let R be a (reduced, crystallographic) root system with Weyl group W = W(R) and
Coxeter complex Ag. This talk will be concerned with a certain representation p® of
W that has been largely ignored until recently. It can be succinctly described as the
representation carried by the cohomology of the toric variety of Ag, although it can also
be given a purely algebraic definition as the representation carried by a certain quotient of
the face ring of Ag. It should be emphasized that this is not the representation one obtains
from the homology of the Coxeter complex itself; this latter representation has received
considerably more attention, thanks to the work of Bjorner [B], Garsia-Stanton [GS], and
Stanley [St1].

Our main result is the fact that pF is, for no easily explainable reason, a permutation
representation; i.e., there exists a basis for p® such that the Weyl group acts by permuting
this basis. Unfortunately however, there are two senses in which we regard our proof of
this result as unsatisfying. First, it must be applied to each root system on a case-by-case
basis. Second, it is non-constructive—we lack an explicit basis for pF that is permuted by
W, even for the root systems of type A. Even more vexing is the fact that we can exhibit
a number of beautiful properties that come close to characterizing p? as a permutation
module, but we are unable to explicitly construct (except in particular cases) a simple set
of combinatorial objects permuted naturally by W in a manner isomorphic to p®. In fact,
since dim p® = |W|, this means that W itself is an obvious choice for the set of objects.

It is hard to imagine that there could exist a natural permutation action of W upon itself
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that does not admit a simple description, such as left-multiplication or conjugation, but
that is the state we are in.

On the positive side, in the course of proving this theorem we did make a number of
interesting combinatorial discoveries, mostly involving descent numbers (i.e., the Weyl
group generalization of the Eulerian numbers). Another byproduct of this work is a
collection of Maple procedures we created for manipulating Weyl groups and root systems.
Aside from the easy case R = (3, our proofs for the cases involving the exceptional root
systems rely on these procedures, and thus are computer-based.
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Origins

The original motivation for this work can be found in Stanley’s discussion of some in-
teresting combinatorial properties of the special case R = A, in [St2, pp.524-529]. This
provoked me into studying this particular case in more detail [Ste]. More recently, Dol-
gachev and Lunts proved a nice character formula for p® in the general case [DL]. This

reawakened my interest in the subject, and led to the discoveries I will report on here.

Some Details about the Representation

Let V be an n-dimensional real Euclidean space and let R be a root system in V.
Associated with R there is a hyperplane arrangement Hr = {a' : @ € R}. The Coxeter
complex ARg can be defined geometrically as the simplicial decomposition of the unit sphere
S"~1in V induced by Hg.

The Coxeter complex can also be regarded as a (complete, simplicial) fan in V' with
respect to the weight lattice P. That is, it is a decomposition of V' into strongly convex
(simplicial) cones, each generated by certain integral weights in P. As is the case with any
fan, there is a toric variety Xg naturally associated with Ag [O]. The Weyl group acts
naturally on Ag, and therefore also on Xg and the cohomology ring H*(Xg, C).

Let f; denote the number of i-dimensional faces of Ag (with f—; = 1), and define

PR(‘I) = Z": fi-—l(q - 1)"_i = Z h;q"—i.

The first equality serves to define the polynomial Pr(g), and the second equality serves to
define the h-vector h(R) = (ho,...,h,) of Ap. By a theorem of Danilov and Jurkiewicz
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[D], one knows that

dim H%¥(Xg,C) = hi(R),  dim H**+}(Xg,C) =0,

8o Pg(q) is essentially the Poincaré polynomial of Xp.

In particular, it follows that p®, the W-representation carried by H*(Xg), has n + 1
(nonzero) graded components, and the total dimension of pF is Pr(1) = fa—1(R) = |W|.
Let xf denote the graded character of p%; i.e., for w € W,

X (w) = 3 (¥ (Xn), w)d

i=0
where tr(U, w) denotes the trace of w on U.

Theorem (Dolgachev-Lunts [DL]). For w € W, let §(w) = dim{v € V : wv = v} and
¥ ={F € Ag : w(F) = F} (a subcomplex of Ar). We have

Xf('w) = PR,w(‘I)(ti_t(_lgj%’

where (1) Prw(q) denotes the Poincaré polynomial of A%, and (2) the determinant is
evaluated with respect to the reflection representation.

It is also possible to give a purely algebraic definition of the cohomology ring H*(Xr, C)
and the representation p® it carries. To describe this, let v; € V' denote the set of vertices
of AR, with 7 ranging over some suitable index set I. Recall that the face ring (or Stanley-
Reisner ring) Fr of Ag is the quotient C[z; : ¢ € I]/¥, where ¥ is the ideal generated by
monomials whose supports (i.e., subset of vertices with nonzero exponent) are not faces
of Ag. If we define

6= (vi,e5)zi,
sel
where €1, ... ,€, is some basis for V, then © = (64, ... ,6,) forms a system of parameters

for Fr. By a theorem of Danilov [D], it is known that
H*(Xr,C) = Fr/©

is an isomorphism of graded rings (as well as W-modules). This isomorphism, together
with the fact that Fg is Cohen-Macaulay, can be used to give an alternative proof of the

Dolgachev-Lunts formula.
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The Main Result

First consider some generalities about permutation representations.

Suppose G is some finite group acting by permutations on a finite set X. Let X =
X1 U---UX; be the partition of X into G-orbits. The action of G on X; is isomorphic to
left multiplication on the cosets of H; in G, where H; denotes the stabilizer of some z € X;.
Thus the permutation module for G on X is determined up to isomorphism by the list of
point-stabilizers Hy, ..., H;. In general, there exist non-isomorphic permutation represen-
tations of finite groups G that become isomorphic once they are linearized (i.e., once one
permits linear changes of basis). Thus in the following, the assertion that the character
of p® agrees with the character of some permutation representation does not necessarily
imply that there is only one such isomorphism class of permutation representations (even
after allowing for conjugacy).

To state the main result, let S = {s1,...,8,} denote the set of simple reflections
for W(R). Define x® to be the specialization of xf at ¢ = 1; i.e., the W-character of
H*(XRr, C), or equivalently of Fr/©, with the grading ignored.

Theorem.

(a) xF is the character of some permutation representation 7% of W.

(b) The degree of 7® is |W|, and the number of orbits is 2".

(¢c) The point-stabilizers of 7% are generated by reflections, but not necessarily by

simple reflections.
(d) If R is reducible; say, R = Ry ® Ry, then 7F = nF1 @ nfs (outer tensor product).
From now on, assume R is irreducible. In that case, R has a unique highest root aq.

Let so denote the corresponding reflection across af, and set S’ = SU {so}. For any
nonempty subset J of S, let W(J) denote the subgroup of W generated by S' — J. (If
J includes sg, then W will be a parabolic subgroup, but not otherwise.) Note that if
|J|=r+1, then W(J) is a reflection group of rank n — r.

(e) The point-stabilizers are all of the form W(J) for various J (@ # J C S').

. 1
(f) The number of point-stabilizers that are reflection groups of rank n—r is ( 2’; -:_ 1) .

(g) For each (2r + 1)-subset J of S', it is possible to choose an (r + 1)-subset J' of J
so that the point-stabilizers of #® are precisely {W(J') : |J| odd}; i.e.,

XF= Y Wa, *)
7] odd

REMARKS.
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(1) The reflections S’ are the W-images of the simple reflections for the affine Weyl
group W attached to W.

(2) By (f), the smallest possible rank of any point-stabilizer is n/2.

(3) Unfortunately, the only rules we have for choosing J’ from J are ad hoc. For example,
for the root systems of types A or C, it is possible to linearly order the reflections S’ so
that if J = {f1 < --- < Bar41}, then J' = {B1, B3, ..., Par+1}. This rule does not seem to
generalize.

(4) The permutation representation 7% depends on R itself, not just W(R). Indeed,
even though W(B,) = W(C,) and the corresponding representations p* are isomorphic,
the highest roots of B,, and C,, are different, and the corresponding decompositions in (*)
are not equivalent.

(5) For a given root system R, there may be several possible ways to choose J' from
J so that (*) is satisfied. However, in the special case r = 0, the constraints of (g)
are unambiguous—if J is a singleton, then J' = J. In other words, the rank n point-
stabilizers that occur in 7% are (with multiplicity) the n + 1 subgroups of W generated by
the n-subsets of S’.

(6) For some root systems (notably types A and C), one can show that the decom-
position of xf implied by this result is consistent with the grading of H*(Xg,C) (or
equivalently, Fr/©). That is, it is possible to assign a grading to the orbits of 7 so that
xf is the graded character of 7®. For other root systems, such as type D, one can show
that xf is the character of a graded permutation representation, but not one whose point-
stabilizers are all generated by reflections in W(D,) (in violation of (c)). For still other
root systems, such as Gg, the grading of H*(Xg, C) is not consistent with any grading of
any permutation representation of W(G3).

(7) If an explicit construction of a permutation representation 7% satisfying all of (a)—(g)
can be found, it is reasonable to expect that this should be accompanied by a combinatorial
bijection explaining the evaluation of (¥) at w = 1; i.e.,

Wi= Y WI/IW()l.
|J| odd
This is non-trivial even for type A (see [Ste]).
(8) The complex Apg is known to be shellable [B]. Therefore by a result of Garsia

[B, Thm.1.7], one can construct from the shelling a canonical basis for r/©, and hence

for pf. However, this basis is not permuted by W(R).

Descent Numbers
As in the previous section, let S = {s1,..., sn} denote the set of simple reflections. The
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descent set of any w € W is defined to be D(w) = {i : &(ws;) < £(w)}, where £(-) denotes
the length function with respect to S. The shellability of Ag leads to a nice combinatorial
interpretation of the Poincaré polynomial Pr(g), or equivalently, of the h-vector for Ag.

Theorem (essentially [B, Thm.2.1]). Pr(q) = Z g!Pl,
weW
In the case R = A,_;, h;(R) is thus the number of permutations in S,, with 7 descents.
These are the classical Eulerian numbers and qP4,_,(q) is the classical Eulerian polyno-
mial. Although these numbers do not have simple explicit formulas, there is a well-known
closed formula for the exponential generating function:

z PA,._x(‘I) w_

1-¢g)t
n>0 qe( 9

Likewise for the B/C-series, there is a similar formula that is widely known (but seemingly
unpublished):

A ) S
B (1) = "S-
,Z;) n! 1-— qe2(1 qn

For the D-series, it turns out that there is also a closed formula for the exponential
generating function. It is an easy consequence of the following surprising relationship.

Proposition 1. Pg,(q) = Pp,(g) + 2" 'ngPa,_,(9).

We have two proofs, including a bijective one.

In another direction, the following result applies to all root systems except types D
and E. In particular, it applies to the non-crystallographic cases Ip(m), Hs, and Hs. We
write Wj; ;) for the parabolic subgroup of W generated by {si, si4+1,...,5;}.

Proposition 2. If S can be linearly ordered so that s; and s; commute for |i — j| > 1

(i.e., the Dynkin diagram of R has no forks), then we have

Pr(q) = |W|- det[aij]i<i,j<n+1,

where a;;j =0 fori—j>1,a;5=1—qfori—j=1, and a;; = 1/|W,j-1| fori < j.

In analyzing the character of H*(Xg, C), one needs to know the Poincaré polynomials
of not just the Coxeter complexes Ag, but also the various fixed-point subcomplexes
% (cf. the Dolgachev-Lunts formula). Usually these restrictions turn out to be Coxeter
complexes of smaller rank, but not always. Among the classical cases, the only new
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simplicial complexes that arise in this way are (the complexes associated with) the following
simplicial hyperplane arrangements:

Hin={et:1<i<k}U{(site)t:1<i<j<n} (0<k<n).

Note that we recover the Coxeter complexes for D, and B, at & = 0 and n, respec-
tively. The Poincaré polynomials P, x(g) for these complexes satisfy a simple relationship
generalizing Proposition 1.

Proposition 3. P, (¢) = Pp,(g) +2" 'kqPa._,(q).

In the general case, it is possible to give explicit (but more complicated) formulas for
the Poincaré polynomials of the fixed-point subcomplexes. Up to isomorphism, these
complexes are indexed by J C S. More precisely, any AY, is conjugate under the Weyl
group to some A%’, where w; denotes a Coxeter element for the parabolic subgroup Wy
generated by some J C S. Using Pg,s(q) to denote the corresponding Poincaré polynomial,
the following result gives a formula for Pg s(1), the number of maximal faces in AR”.

|N(W3)l
|Ws|

the normalizer of Wy in W, and ~ denotes conjugacy of subgroups.

Proposition 4. Pg (1) = -{K C S : W ~ W;}|, where N(Wj) denotes
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