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A SURVEY OF POLYOMINO ENUMERATION

Xavier Gérard Viennot 1

LaBRI & CNRS 2
Université Bordeaux I

Abstract. In this talk I will give a survey of the state of the art in the enumeration of polyominoes and
lattice animals. A visual walk is given through the zoo of families of polyominoes which can be
enumerated, among the garden of related bijections, with some glimpses on various related topics.

Keywords: Classical analytic methods (recurrence relations, continued fractions, g-series, ...),
transition matrix, Temperley methodology, DSV and q-DSV methodology, theoretical computer science
(automata, algebraic languages, Dyck words, attribute grammars), bijections, heaps of pieces,
commutations rules, Cartier-Foata trace monoids, trees (binary, ternary, colored, "guingois", ...), basic
hypergeometric functions, Ehrhart' theory for convex polytopes, random generation, fractal dimension,
braids, computer algebra, critical exponents, phase transition , statistical mechanics.

1. Introduction.

An elementary cell is a square [i,i+1]X[j,j+1]1cR%R with i and j integers. A polyomino is a
connected union of elementary cells such that the interior is also connected. Polyominoes are defined up
to a translation. Two main parameters are defined for polyominoes. The area is the number of
elementary cells. The perimeter is the number of edges (of the lattice ZxZ ) on the border of the
polyomino. A major open problem in combinatorics (and also in statistical physics) is to give a formula
for the enumeration of polyominoes according to the area or to the perimeter (or to both parameters). To
the knowledge of the author, not a single formula of any kind (recurrence for the number of

polyominoes, explicit or implicit equation for the generating function, ...) is known.
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Fig. 1. A polyomino and its associated animal.
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In the past few years, there have been an intense activity for the search of enumerative formulae
for subclasses of polyominoes. About a dozen families are known with explicit enumeration formula.
Some formulae are surprisingly simple, some are very complicated. Most families are enumerated
according to both parameters area and perimeters. Many g-series and algebraic generating functions
appear. Slowly, some patterns begin to emerge. In this survey I try to put some order in this jungle of
formulae disseminated into about 90 papers listed below. I have classified the methods used into six
classes: transition matrix, "Temperley methodology”, "DSV methodology", heaps methodology,
classical analytic (recurrences, continued fractions,...), pure bijective. Of course this is not a rigid
classification, there are many overlaps. Many concepts, tools, models, and bijections of other parts of
enumerative and algebraic combinatorics appear here.

The problem takes its roots in physics where polyominoes are incarnate under the equivalent
notion of lattice animals. An animal is obtained from a polyomino by taking the center of each cell (see
Fig. 1). In other words, an animal (on the square lattice) is a set o of points of Z*Z such that any two
points can be connected by a path having “elementary steps" North, South, East or West. The physics
is the study of models for phase transition and critical phenomena, with computation of the so-called
critical exponents and partition function. For each family of polyominoes (or animals), the asymptotic
behavior of the number ap of polyominoes in the class usually define a critical exponent 6 in the form
an~vu" n9, This exponent is analog to the one defined in thermodynamic models (for some models,
this analogy can be the identity). Moreover, it appears that some partition functions are exactly the
generating function for some classes of animals. Other parameters are also introduced: width, height, ...
of the animal; various other lattices are also considered (hexagonal, triangular, "checkerboard", ..),
leading to an avalanche of enumeration problems. Thermodynamic models and families of polyominoes
are classified in physics by "universality classes”, according to their critical exponents. Physical
methods can give some approximations to these exponents, or even explicit values (but with no rigorous
mathematical proof).

A famous related problem is the enumeration of the so-called self-avoiding paths (also
completely open). In the case of polygons (i.e. closed loops on ZXZ), the problem is equivalent to
enumerate simply connected (i.e. having no "holes” ) polyominoes according to the perimeter. A huge
literature exists in physics and theoretical chemistry for animals and related paths (walks) problems.
Here we will not be concerned with asymptotic considerations and universality classes, although de
Gennes says that identification of universality classes for various connected cluster models is crucial in
the scaling theory of branched polymer configurations (de Gennes 1979). We limit our interest to the
classification and understanding of formulae giving the exact number of polyominoes or the associated
generating function. Also, we will not consider here another active area of research around
polyominoes: tilings problems with polyominoes where many people bring contributions (J.H.
Conway, M.Gardner, S.Golomb, Gordon, D. Klarner, J.C. Lagarias, ... , and the active french school
around D.Beauquier and M.Nivat). Note that other connections exist with computer science as for
example the appearance of directed animals in binary search networks (Barcucci, Pinzani, Rodella
1990).

2. The polyominoes zoological garden.

Most of the families of the zoo can be defined by combining two main and simple concepts:
"convexity" and "directed".

Let denote by Sqr the square lattice whose vertices are ZxZ and whose edges are the edges
of elementary cells. Denote by Full the (highly non planar) lattice obtained by adding the two diagonal
edges of each elementary cells of Sqr. The triangular lattice Tri and hexagonal lattice Hex can be
identified as sub-lattices of Full. A path (or walk) on alattice La isa sequence of vertices
® =(80,.-, Si» Si+1» ..., Sn) such that each pair (sj, sij+1) of consecutive vertices (i.e. elementary
steps) are connected by an edge in the lattice. An animalon the lattice La will be a finite ‘connected’
set of vertices, that is a set such that each pair of vertices of the animal can be joined by a path of La
contained in the animal. Usually, Sqr is referred with 4-connexity and Full with 8-connexity.
Altough some papers deal with animals on other lattices, here we will only consider animals on the
square lattice Sqr.
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Fig. 2. Lattices

Sqr Full Tri

We will denote by V, H, D, A respectively the vertical axis, horizontal axis, main diagonal and
anti-diagonal (diagonal perpendicular to the main diagonal) of RXR.Let L be any one of these four
lines. An animal 0&éZxZ of the square lattice Sqr is said to be L-convex iff the intersection of a
with any line parallel to L is a connected set of the lattice Full. Let T be one of the 8 oriented
possible cardinal directions(East, .., North-East, .. ) denoted respectively E, N, W, S, NE, NW, SW,
SE. A path of the lattice Sqr is said to be T-directed iff its projection on a line parallel to the direction
L never goes backward in the reverse direction to L. An animal o (subset of ZxZ) is said to be -
directed iff any point of the animal can be reached from a single point (called source point) by a directed
path contained in the animal. For example, a NE-directed animal (here called for short directed animal)
is an animal such that each point can be reached from the origin (0,0) by a path contained in the animal
and having elementary steps only North or East. These qualities will be also defined for polyominoes
via their underlying animal.

We can also extend the definition of directed animals with several sources points. We will
say that the animal is L-cs-directed (compact source directed animal) iff there exist a set of points (callf_rd
source points) on the lattice Sqr which are on a line M perpendicular to the line L associated to L,
which are connected for the connexity in Full (8-connexity), and such that every point of the animal
can be reached from one of these source points by a directed path in the square lattice Sqr.

The square lattice zoo.

We can combine the different conditions and define plenty of polyominoes families. All of them
can be defined by various combination of H, V, D, A -convex, NE, NW, SE, SW -directed, and cs-
directed properties. For ‘name' = 'convex', 'directed ‘or ‘cs-directed’, we will use the notations "X-Y-
..-Z-name" to say that the family of polyominoes has the property 'name' relatively to X, Y, ..., and
Z. The zoo of polyominoes is the set of all the possible families of polyominoes obtained by various
combination of these properties (at least one !) and classified by non-isomorphic classes (i.. up to the
group of symmetries acting on the square and up to the relations existing between these different
properties). For example the properties A-convex and NE-SE-directed imply V-H-convex
(parallelogram polyominoes). Also for L= E, N, W, S, 'L-directed' is equivalent to 'L-cs-directed'.
The total theoretical number of possible families is 28 34 - 1.

In the case of directed animal, the property "convex" is sometimes called in the literature
"compact" or "fully compact”. The E-directed animals are also called partially directed animals, and no
formula is known. I will called the friendly zoo the family of polyominoes of the zoo not using in their
definition one of the X-directed (or X-cs-directed) for X=N, E, S, or W. The total theoretical number of
families of the friendly zoo becomes 64 - 1. T have not listed the number of non trivial, non isomorphic
classes. What I know, is that all the families of polyominoes (square lattice) appearing in the ninety
papers listed below giving some explicit enumeration formulae belong to the friendly zoo. Only 14 of
these families appear. In some papers appear for technical reasons some secondary sub-families which
are some slight modification of the main family. Here are the 14 families.
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i i Fig. 13. Ferrers polyomino. Fig. 14. Rectangle
Fig. 12 Stack polyomino. ( .
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= V-H-convex + NE-NW directed) (€ SENW-S 0 o~

Q
> e OOO:

7
Fig. 15. Ciﬁlzs-wall polyomino Fig. 16(. ‘c,iglgs-zmck polyomino
(= V-H-A-convex = V-H-D-A-convex
+ NE-SE-directed + NW-cs-directed ) + NE-SE-directed + NW-cs-directed)

A convex polyomino is a polyomino which is both row- and column-convex. A characteristic
property is that the perimeter is equal to the perimeter of the minimum rectangle containing the
polyomino. There are five non-isomorphic classes of convex polyominoes: Ferrers diagram, stack ,
parallelogram (also called stair-case, and corresponding to skew Ferrers diagrams) , directed convex
and convex. Parallelogram polyominoes are usually defined as . polyomino”ontained between two
paths, each path having only North and East elementary steps, and such that the paths are disjoint,
except at their common ending points. For the particular case where the lower path is an "enlarged
staircase"”, we have the polyominoes displayed on Fig. 15. A subclass is in bijectiog with Andrews's
quasi-partitions (Andrews 1981) and with "wall of circles" as considered in Privman, vraki¢ 1989.

Each of these 14 families have at least one explicit enumeration formula. In many cases various
formulae exist giving the triple generating function according to both area, perimeter and width. For the
convex polyominoes, this distribution is equivalent to the distribution according to area, width and
height. The only main problem which remains unsolved is the enumeration of the directed animals
according to the perimeter. In fact 'perimeter’ should be here replaced by 'directed perimeter'. Two
perimeters exist for polyominoes: the one defined above is the bond perimeter, the site perimeter is the
number of points outside of the animal which are neighbour (in the square lattice) to a point of the
animal. More generally if F is a family of animals, the F-perimeter of an animal o of the family F is
the number of points x outside the animal o, such that o U{x} still belongs to the family F. For F
= {directed animals}, the F-perimeter is called the directed perimeter.
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Here are two examples of non trivial enumeration formulae.

N= (-1)____"“'4(’) . N= M)_, 3n
= (@).09). S @).. 09,

med
xqu a2 (_l)- q( 2 )
R=y T3 .
Z{ (r9). .Z.o @.(re™), .., Fig. 18. The number of NE-cs-directed animals,

es it is reall !
Fig. 17. Generating fucntions for directed convex polyominoes yesitt y3n ()

( according to width x , height y and area q)

The first of the two formulae is not the most complicated. Just have a look at the paper Tzeng,
Lin 1991, giving a four variables enumeration of column-convex animals (refinement of the enumeration
according to the perimeter) to know what I mean. The second above formula is certainly the most simple
non-trivial formula of the garden. Fig. 37 shows a bijection in action (between word of length n on the
alphabet {A,B,C} and such cs-directed animals. Try to guess the construction !

If you take a guided tour among the known formulae, methods, technics, bijections related to
the friendly zoo, may be you will make the suggestion, as I do, that all polyominoes of the friendly zoo
should be enumerated (at least for one parameter) with the same kind of tools.

Curiously, some a priori unrelated regular patterns may appear. For example, look at the
appearance of the radical A in the following four formulae enumerating, according to width and length

respectively, the parallelogram, directed convex, convex polyominoes and a special type of convex
polyominoes.

l-x-y-~A y=2 A=1-2x-2y- 1,0
X= 2 , TA. X-2y-2xy+x +y?.
. =XY(1-3,- 23,2 3 42’ y?
Z=40 (1 3x-3y+327 +3y* +5xy—1x —y’—x’y-xy’-xy(x‘Y)z)'A_Y{.

(l—x)(l—x—2y+y’—xy)
(1-x-y)a '

Generating functions for parallelograms, divected convex,
convex and convex type B (width and height).
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3. Technics and methodologies for polyominoes enumeration.

I have classified the different methods and tools used in the ninety papers listed below into six
main classes. Of course, this is not a rigid classification and many papers uses several methods at the
same times.

a) Transfer matrix methodology.

This method is very classical in statistical mechanics (see for example Baxter 1982). The
combinatorial objects are put in bijection with some paths on a finite graph {1,..., p}, such that the
enumerative generating function becomes the generating function of weighted paths on the graph.
Denote by A isthe p p matrix with term (i,j) equal to the weight of the edge joining i to j. Then
apply the inversion matrix formula for (I - At) and get a rational generating function. This method fits
for animals on a bounded strip, as for example directed animals on a bounded strip (Fig. 19). Here is a
formula for them (conjectured in Nadal, Derrida,Vannimenus, (1982) and proved in Hakim, Nadal,
(1983)

]
’__J_..Lk;—l ) o up:(zp»,l) 1'2E
& k=1 sinl(i+5)a ]\ i
M RO =31 DP sing TT|—2 B | " (1420080 )L
0 - P =1\ 0 .;E P
N i L
9 i
\ ~ ]
RS
| "o 4= Fig 19. Directed animal on a strip
! NI i with enumerating formula
« D (fixed sources points).

b) Temperley methodology.

__. This methodology has been introduced in Temperley (1956). It fits well with the different
families of convex polyominoes. It has been used intensiyely used in the papers of Brak, Enting,
Guttmann, Lin, Chang, Tzeng, Wu, Privman, Forgacs and g’vraki&

If tx,y, .. are the different "edges" parameters as perimeter, width, height,.. and q is the
parameter referring to the area, then the generating function f is decomposed into a sum of partial
generating functions fi satisfying a recurrence relation of the following type:

ak fk +(ak+1 fk+1) +..... (ak+r fk+r ) =0,

where ak, ..., ak+r are polynomials in the variables txy, ..., q. Usually, fk is the generating

function for the polyominoes of the family under consideration having the first "machin” of size k,

where "machin” means something like first row, first column or first diagonal. In general, for g=1, the

polynomials ak+ in the variables t,x,y, .. depends only upon i . The degree in the variable q of the

monomials depends upon k. Of course, the resolution of the above recurrence may be not be easy and
-each case may take a lot of work. Continued fractions expansions may help.
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¢) DSV-methodology.

This methodology was introduced (and named "DSV") by M.P. Schutzenberger (1962, 1963)
thirty years ago, in relation with his work with N. Chomsky on the theory of algebraic languages (i.e.
context-free). The background comes from linguistic and theoretical computer science (automata and
languages theory). It fits very well in the case of an algebraic generating function. The principle is the
following.

Denote by A* the Jfree monoid generated by A (or set of words on the alphabet A). A subset of
A iscalleda language. Let Z<<A>> be the algebra of non-commutative power series in variables A

and coefficients in Z. To each language L CA*, we define the non-commutative generating function
L of L as the formal sum of all the words of L. For the reader not familiar with the (classical in
Computer science) notions of algebraic and rational language, algebraic grammar and non-ambiguous
grammar, we give a simple (and fundamental) example.

The Dyck language D is the set of words w of {x,X}* satisfying the two following conditions:

@G) the number |wjx of occurrences of the letter x in w
is equal to the number \w| 5 of occurrences of the letter X,
(ii) for any left factor u of w=uv, |wx >wix.
-n= 8,

~(Bb) = (3, 4,3,4,4,2,2,2),

-(q,..a)=3,3,3,3,1,2,2).
L'image de ce polyomino par g est le mot associé
au chemin de Dyck ci-dessous.

1

N 7\
INL  NN7 N7

Fig. 20. Bijection between parallelogram polyominoes and Dyck words.

Such words are visualized by the so-called Dyck paths (see Fig. 20). Then D can be generated by
applying several times the following substitutions rules:
D->xDXD or D-e,

where e _denote the empty word. This two rules define a "non-ambiguous grammar". The
corresponding non-commutative generatin g function is

D =1+ xX + XXxX + XXXX + XXXKXK + XTXXRK + XXXXXX + XXXXXX +XXXXXX + ...
and satisfies the following algebraic equation in Z<<{x,X}>>:

D= 1+xDxD.

. .. This equation appears as a "linearization" of the non-ambiguous grammar. If we send all
variables x and X onto t, then we go back to the classical commutative case giving the generating
function for Catalan numbers: D becomes the generating function y for the number ap of words of

D length n, the algebraic equation becomes y=1 + t2y2,
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__ Another classical algebraic language is the bilateral Dyck language, i.e. words of (xX}*
satisfying only condition (i) of Dyck words. A visualization is given with path in Fig. 21. They are
enumerated by the binomial coefficient (Znn)
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Fig. 21. Bijection between directed convex polyominoes and bilateral Dyck words.

The DSV methodology is in three steps. Let F be a class of combinatorial objects. The most
simple form of the problem is to enumerate the objects having "size” n (size means any enumerative

parameter). Let f(t) = Zps0 an t?  be the corresponding generating function.

- (DSV1) Construct a bijection between the class F and some words of an algebraic language L cA*
defined by a non-ambiguous grammar such that the the size of the combinatorial objectsis the length of
the corresponding words (or a linear function of it).

- (DSV2) Write a non-ambiguous algebraic grammar and "translate” it into an algebraic system of
equations in the algebra Z<<A>>.

- (DSV3) Applying the morphism sending the letters onto t, we get an algebraic equation for (1),
which can be possibly simplified or computed.

Example: the appearance of the common radical A in the four formulae shown at the end of
section 2 can be better understood with the DSV methodology. The coding and the corresponding
formulae for the perimeter enumeration (obtained by identifying the width and height parameter into a
single variable) are the following (respectively parallelogream, directed convex, convex, convex type
"B" polyominoes).
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Proposition.- (i) Le nombre de polyominos parallélogrammes de périmétre 2n+2 est le

X 1
niéme nombre de Catalan, soit m( f,") .

(ii) Le nombre de polyominos convexes dirigés de périmétre 2n+4 est (’;") .
(iii) Le nombre de polyominos convexes de périmetre 2n+8 est (2n+11)4" - 4(2n+ 1)( f")
(iv) Le nombre de polyominos de B de périmétre 2n+8 est 6.4" + 2",

If the problem contains several enumeration parameters, the method is exactly the same if the
coding can be done such that each letter corresponds to one of the parameters, with a linear relation
between the length of the word and the "size" of the combinatorial objects. In the last step, we just
commute the variables and get the multivariate generating function.

DSV methodology was first illustrated by R. Cori and his students with planar maps (Cori 1975,
Cori, Vauquelin 1981, for example), explaining the reason of the algebricity of various Tutte's
formulae. After, DSV methodology was used to solve open problems in combinatorics, as for example a
problem posed by M. Waterman: enumeration of secondary structures of single stranded nucleic acids
having a given complexity (Vauchaussade de Chaumont, Viennot, 1985). The first open problem in
polyominoes enumeration solved by this method is the number of convex polyominoes according to the
perimeter (Delest, Viennot, 1984). The reader will find a survey in Viennot, 1985.

In the case of a language accepted by a finite automaton (recognizable or rational langage) , then
the ordinary generating function will be rational and DSV methodology is similar to transition matrix
method.

For all the families of the friendly polyominoes zoo , DSV methodology can be applied (at least
for one of the parameter area or perimeter) as shown by Gouyou-Beauchamps and the bordelais group
(see papers of Betrema, Bousquet-Mélou, Delest, Dulucq, Fedou, Lalanne, Penaud, Viennot, ..) where
DSV is very popular. For the double generating function, a g-analog of DSV can be introduced (see
papers of Delest, Fedou and Bousquet-Melou). The area is coded by some powers of the variable q
which appears in the algebraic grammar of the language. These "g-grammars" have some analogy with
the so called attribute grammars introduced by Knuth. A recent survey of DSV and q-DSV
methodology applied to polyominoes enumeration is given in Delest 1991.

d) Heaps of pieces and Cartier-Foata commutation monoid.

Let P be a set (called set of basic pieces). Let C be a binary symmetric and reflexive relation on
P called concurrency relation. Thus the pair (P,C) defined a graph, cailed the concurrency graph.

A heap is finite set E of pairs o= {p,j} with p€P, jEN satisfying the two following relations:
@) if {p,j} and {q,k} are two elementsof E with p Cq, then j #k.
(i) if {p,j} isin E and j =0, then there exist {q,k} in E such that pCq and k=j-1.

The elements {p, j} of E are called pieces. The basic piece p is called the projection of {p,j}, while i
is called the level of the piece {p, j}. The set of all heaps on (P,C) is denoted by Heap(P,O),

This concept was introduced in Viennot (1985), and has been useful in various part of
combinatorics including combinatorial proof in classical linear algebra, combinatorial theory of general
orthogonal polynomials, algebraic graph theory, and combinatorial problems related to statistical
physics, in particular animals enumeration. The intuitive idea behind the heap concept 1is better
understood in the case of heaps of subsets. Here the set P is a certain collection of subsets of a set B.
The concurrency relation C is defined by: aCb iff aflb # }X .
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Suppose B is RXR and represented by an horizontal board, and that each piece. &X' is
represented by a solid piece of wood with small constant width, and projection a on B. Then the
concept of heap corresponds to the picture obtained by putting one by one solid pieces on B. See Fig.
23, 24, where the basic pieces are respectively dominos (polyominos with two cells) of the chessboard
or hexagons of the triangular lattice. Another example is displayed on Fig. 25. Here B =Z, the basic
pieces are segments [i,j] of Z, the concurrency relation is the same as defined above. A ]?artlally order
relation, called “fo be below” can be defined for any heap. Intuitively o is bployv B iff one pas to
remove first P in order to remove o . The Hasse diagram of the order relptipn is displayed on Fig. 28.
Conversely, any poset can be represented as a heap of pieces. A pyramid is a heap having only one
maximal piece.

Fig. 23. Heap of "solid dimers" over R R.

Fig. 24 Heaps of "solid" hexagons.

In fact one can defined a product of two heaps E and F: intuitively put F far above E and let
it fall down on E. The set Heap(P,C) becomes a monoid, and this monoid can be defined by some
partial commutation rules. Let =C be the congruence on the free monoid P* generated by the
commutation ab = ba for each pair of basic pieces which are not in concurrence. Then the heap
monoid Heap(P,C) is isomorphic to the quotient monoid P*/=C . Such monoids have been
introduced in Cartier, Foata 1969. They have been intensively used in theoretical computer science as a
model for concurrency and parallelism problems. They are called trace monoids (also commutation
monoid). Conversely every trace monoid is a heap monoid and the two concepts are equivalent. The
advantage of heaps is to provide a geometric interpretation of the equivalence classes of words (called
traces) with a powerful spatial intuition.

b

Rt

O .
Empilement F r l

Empilement ERF

i heaps.
Empilement E Fig. 25. Product of two heap:
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abcad —abcd<
acbad abdca
l
ad=da achda
bc=cb
cd=dc
Fig. 27. A trace
(equivalence class)

Fig 26. Commutation relation

Fig. 28. Realization as a heap and
associated Hasse diagram

Heaps have been very useful in polyominoes enumeration. Some families of polyominoes can be
put in bijection with some heaps. In particular the parallelogram polyominoes are in bijection with
pyramids of segments of N such that the projection of the maximal piece is a segment [0,j]. The
directed animals are in bijection with certains pyramids of dimers on Z , and through another bijection
with pyramids of momers and dimers on Z (dimers are segments [i,i+1], while monomers are
segments [i]).

i\ 7~
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8 —e ! -—e
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Fig. 30. Bijection between directed animal and heap of dimers.
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Three basic facts on heaps are used. These lemma can be summarized schematically by the
following:

Paths=Heaps; Pyramids= d/dt(Heaps); Heaps= 1/D and Heapé*) = N/D.

The first lemma described a bijection between paths (on any lattice) and heaps. The three others
identities are generating functionsof weighted heaps: each basic piece a is given a weight v(a) and the
weight of a heap is the product of the weight of the projection of its pieces. The last equation represents
the generating function for weighted heaps such that the projection of the maximal pieces are in a given
fixed set M € P. The numerator N and the denominator D are the generating function for trivial heaps
(i.e. all the pieces are at level 0). For more details see Viennot, 1985.

In the case of convex polyominoes (parallel_o%rams, directed convex and convex), heaps of

segments are considered with weight v([i,j]) =t u(-1) gi. Trivial heaps of segments generate the g-
Bessel fuunctions (see Fig. 31) appearing in Fig. 18. In the case of trivial heap of dimers, left hand side
of Rogers-Ramanujan identies appear (see Fig. 32. in relation with Fig. 15 and 16). (see Bousquet-

Mélou 1991 and Bousquet-Mélou, Viennot 1992)
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Fig. 31. Trivial heap of segments over Z
(g-Bessel fonctions).
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Fig. 32. Trivial heap of dimers over Z
(left hand sides of Rogers-Ramanujan identities).

i i f for the
er example of the power of heap methodology is a very comprehensive proo
numberpg}od?rccted anIi’mals on a%ounded circular strip. The formula given in Fig 19 cgrrequ;d; et: z;
heaps generating function N/D, where N and D are respectively the generating function for tnvll1 % gf
of dimers (here q = 1) on a disjoint union of segments and on a circle (i.e. , up to a chang
variable, Tchebycheff polynomials of first and second first kind).
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e) Classical analytic methods.

In this category I would list the classical analytic tools used in combinatorial problems:
recurrence relations, g=Lagrange inversion, continued fractions expansions, .....

f) Bijective methods

Here I would list enumeration formulae obtained from the construction of explicit bijections
between animals and other combinatorial objects which are easier to enumerate. We have already
mentioned such bijections with words of algebraic languages and with heaps. Another families of
bijections which appear in many papers involve bijections between polyominoes and various families of
trees. Fig. 35, 36, 37 show binary trees in the case of parallelogram polyominos, colored binary trees
for convex polyominoes, “guingois"” trees for directed animal. In fact algebraic equation on trees can be
defined, analogous to algebraic grammars of words. A surprise is the existence of a bijection between
ternary trees and directed diagonally convex animals (enumerated according to the directed perimeter).

g) Experimental combinatorics.

A few words about experimental hunting for finding or proving enumeration formulae. Here the
tools are a computer with a symbolic algebraic package (as for example your favorite
MATHEMACSYMAPLE) and the Sloane'book (thank's to Simon Plouffe, a new version is coming
with more than 4000 sequences). Some formulae have been discovered or guessed with these tools.
Some technics have been developed in order to guess from the first terms of the sequence (20 to 100) a
possible explicit expression for the generating function. In case of a rational power series, excellent
algorithms are used based on Pade approximants theory, you cannot miss it . For P-recursive generating
functions, the so-called differential Pade method have been introduced in Joyce, Gubitmann (1972) and
is popular in statistical mechanics for experimental asymptotic results. In the case of algebraic power
series, see Brak, Guttmann, (1990a). Contrarily to the case of rational fractions, the method is rather
brute force. Névertheless, some algebraic functions have been guessed this way. The generating
function for convex polyominoes was guessed in Guttmann, Enting (1988a), independently of the
paper Delest, Viennot (1984). Of course such experimental methods give only mathematical conjectures
and have not to be compared with the six methods exposed above. Usually, in the physics literature, the
distinction between establishing a formula from computer experiments and giving a mathematical proof
is not clearly stated. The experiments can be fundamental for guessing the formula. When the number of
known elements of the sequence is much bigger that the number of elements needed to guess the exact
formula, the probability that the formula is wrong is infinitesimal, and thus the formula can be
considered as an experimental true statement. But mathematically it is just a conjecture waiting for a
proof, and may be more: a crystal-clear understanding. Remark that some rigorous proof for
polyominoes enumeration, need some huge computation on a computer. The computer is used at an
other level, as part of the proof.

4) A nice example: parallelogram polyominoes

All the methodologies mentioned above can be
applied for parallelograms polyominoes. The enumeration
according to the perimeter gives the classical Catalan
numbers. There is plenty of related bijections involving Dyck
words, binary trees, heaps of segments, .. Some magic
coincidences appears on Fig, 33. Penaud has used similar
bijections with parallelogramm polyominoes in order to give
a bijective proof of a formula of Riordan-Touchard giving the
moments of some q-Hermite polynomials. (see Penaud,
1992 at this collue)
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5) The garden of polyominoes bijections.

After the guided tour in the zoo, and the magic network of bijections for parallelograms
polyominoes, here are some example of polyominoes bijections. Some are sophisticated.

o
O

Fig. 34. A bijection for 38 (compact source directed animals).
try to guess the construction !

(Gouyou-Beauchamps - Viennot, 1988)
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Fig. 35. Bijection between directed
animals and "guingois” trees.

Fig. 36. Bijection between colored heaps
of segments and convex polyominoes
with projection on acolored binary tree.

Fig. 38. Penaud's operator for directed animal.
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6) Related topics

One of the advantage of using bijective methods in polyominoes enumeration is to show
connections with some other apparently completely unrelated topics. For example, we quote here:
Ehrhart' theory for counting points with integers coordinate in a convex polytope (see Stanley 1986,
Fedou 1989, Delest-Fedou 1991b); basic hypergeometric functions (in particular some g-Bessel
functions); the computation of the directed percolation probability (see Fig. 39 and Bousquet-Melou,
1990b); Roger-Ramanujan identidies and continued fractions apppearing in the special class of
parallelograms polyominoes displayed on Fig. 15, 16, (in bijection with Andrew's quasi-partitions
(Andrews, 1981) and "circles wall" animals (Privman, §vraki 1989)).

B B

Fig. 39 Modified parallelogram polyominoes appearing in the directed percolation problem.

Another advantage of bijective methods is in the random generation of polyominoes. For example, using
the bijection with "guingois" trees (Betrema, Penaud, 1991) and an algorithm of Barcucci, Pinzani,
1991, random animals can be generated in linear time. This means that each directed animal having n
points appears with same probability (as soon as one can generate equiprobably a number between 1 and
k). This operation is supposed to be a primitive with a cost O(1). Fig. 40 shows some random animals.
Their fractal dimensions seems to be related to the critical exponents for width and length.

Fig. 40 Random directed animals (size 1000 and 2000).

i ish with a last surprise. The generating function for parallelogram polyominoes
accordiIn;v :lol tE: I:Ie:, and having artl':xed number of columns is a rationnal fraction of the following

form: (b)"q/ (9;9),(3:9),-, wheve  (GDn= (1-)(1-q2)...(1-q").

i ial wi itive i i dou 1989). Fedou
The numerator by (q) is a polynomial with positive integers coefficients (Fedou )
has just proved (see Fedou 1992 at this colloque) that these coefficients enumerate certain braids of the
braid group Bp accordingtoa certain parmeter analog to a Markov trace.

A

2 2 X s ¢
G\G e N
Fig. 41. Heaps and Braids . ‘
&
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