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Abstract

We associate to a simple matroid (resp. a geometric lattice) a partially ordered set whose
upper intervals are set partition lattices. Indeed for some important cases they are exponential
structures in the sense of [Sta78]. Our construction includes the partition lattice, the poset of
partitions whose size is divisible by a fixed number d, and the poset of direct sum decompositions
of a vector space. If we start with a modularly complemented matroid the resulting poset is
CL-shellable. This generalizes results of B. Sagan [Sag86] and M. Wachs and settles the open
problem of the shellability of the poset of direct sum decompositions. Finally we give a formula
for the Mdbius number of the poset of direct sum decompositions of a vector space.

1 Matroids, Flats and Exponential Structures

The notation of exponential structures was introduced by Stanley [Sta78]. It provides a general
setting for the treatment of a wide class of interesting posets. The poset of set partitions and the
poset of partitions whose block sizes are divisible by a fixed number d [Sta78], [Sag86] are well studied
examples. Another example, also mentioned by Stanley, is the poset of direct sum decomposition of
vector spaces. This example led us to a more general approach to ”decompositions” of matroids by
which we retrieve some important classes of exponential structures.

For a finite matroid M of rank r = rank(M) we denote by F(M) the geometric lattice of its flats.
We write V and A for the join and meet in F(M). We call a subset {Fy, ... ,Fi} of flats (of rank > 1)
of F(M) a decomposition of M if

k
(A) Y- rank(F;)=r and

i=1

(B) FiV---VFy=M.

1partially supported by the Mittag-Leffler Institute
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We order the set D(M) of decompositions of M by refinement. This means that for two decom-
positions F' = {F,...,Fi} and E = {E,,...,E;} of M the inequality F < E holds if and only if
for all 1 < j < k there exists an 1 < ¢ < ! such that F; < E;. Since in general there does not
exist a decomposition which refines all the others, we will always add a least element 0 to D(M) in
order to make D(M) to a bounded poset. It is easy to see (Proposition 1.2) that D(M) carries for
some important cases the properties of elements of exponential structures. Because we also want to
cover the poset of set partitions where each block is divisible by a certain number d we define a type
selected subposet of D(M). More precisely we write D(M)4 for the poset of all elements E of D(M)
such that either E = 0 or each block of E is a flat in F(M) whose rank is divisible by d. For d = 1
we simply retrieve the original poset D(M). Obviously it makes no sense to look for flats of rank
greater then r in a matroid of rank r. Therefore we restrict d to the interval [r] := {1,...,r}. For a
d € [r] which does not divide r the poset D(M) consists only of the single element 0. Hence we can
further restrict our considerations to the case when d divides r.

It turns out that quite a lot of exponential structures investigated so far arise by this construction
from a series of matroids. In particular for the projective geometry P"F, of dimension r over the field
with g elements the poset D(P"F,) is the poset of direct sum decompositions of the vector space F}+!.
The shellability of D(P"F,) has been left as an open problem in the paper of Sagan [Sag86). More
generally we prove that D(M)g is shellable if F(M) is a modularly complemented geometric lattice.
A geometric lattice (resp. a matroid) is called modularly complemented if there is a base of the
matroid such that each subset of the base generates a modular element. Modularly complemented
geometric lattices have been introduced by Stonesifer [Sto80]. Their classification by Kahn and Kung
[KK86] shows that they are actually not too far away from being a modular geometric lattice. But
they enlarge the class by some interesting examples such as the Dowling lattices [Dow73].

For a poset P and two elements a,b € P we denote by [a,b] = {c | ¢ € P.a < ¢ < b} the interval
of all elements between a and b. We call a poset P exponential of rank n if

Ezp,) P is graded of rank n and P has a greatest element 1.
Ezp,) For every atom a of P the interval [a, 1] is isomorphic to the lattice II,, of set partitions.

Ezp;) If a is an atom of P and if b € P is an element of the interval [a,1] & II, then the type
(M1y..+,A%) of bin II,, does not depend on the choice of a. Furthermore there are graded posets
Qo; - - - \Q@r41 such that Q; has rank i and if b € P has type (\;,...,\¢) then {c€ P | c < b}
Qxn Xt X Quye

According to Stanley we call a sequence (Py,...,P,...) of posets an exponential structure if each
P; is an exponential poset of rank i + 1 and Q; & P; for the posets in Exps of the definition of an
exponential poset.

Lemma 1.1 Let M be a finite matroid of rank r = d-n for some divisor d of r. Then D(M)y — {0}
satisfies Exp, and Exp,.

Proof : From the fact that r = n - d and the fact that F(M) is a geometric lattice it follows that
there exist flats Fy,...,F, of rank d in F(M) such that rank(Fy V.--V F,) = d - n. Moreover
since the intervals of the geometric lattice F(M) are also geometric we can refine each nontrivial
element {Fy,...,F} of D(M)4 to a decomposition of M into n flats of rank d. Hence all atoms of
D(M)q are of the form {F,...,F,} where each F; is a flat of rank d in F(M). Now we fix an atom
F ={F,...,F.} of D(M)4. Then the mapping which assigns to each partition 7 = A; + -+ + A in
II, the element { \/ Fj,..., \/ F;} establishes an isomorphism between II, and the interval [F,1].
J€A JEAx
This facts follows immediately from Fy V ---V F, = M and rank(\/ F;) =d-|Ail. u
JEA;
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Proposition 1.2 Let M be a finite matroid of rank r = d-n for some divisor d of r. Then D(M)4—
{0} is an ezponential poset of rank n if and only if for any fized i, 1 < i < n the posets F(N), are
isomorphic for all (d -i)-flats N of M.

Proof : Let b = {B,...,B:} be an element of Dy(M) — {0}. Obviously any refinement a < b
corresponds bijectively to a k-tuple of elements of the decompositions posets Dy(B;) — {0} of the
matroids determined by the flats B;. Hence the interval [0,5] in D(M), is isomorphic to the direct
product (Dd(Bl)d - {0}) X eeo X (Dd(B),) - {0})

If b contains only one flat then condition Exps is trivially satisfied by b. If b contains more than
one flat then by induction D(B;)s depends up to isomorphy only on the rank of B;. Hence condition
Ezp; holds.

On the other hand assume that Exps; holds. Then assume that there is are flats B and B’ of the
same rank in F(M) for which F(B), and F(B'), are not isomorphic. Since B and B’ are different flats
of the same rank their rank is not 0 and not maximal. Hence there exists a decomposition b (resp.
b') in D(M)q which consist of the block B (resp. B’) and some blocks of rank d. By construction the
interval [0, 8] (resp. [0, b']) is isomorphic to D(B)4 (resp. D(B')4). But this contradicts Ezps and we
are done. ]

Before we show, that if F(M) is modularly complemented then D(M)g is shellable, we give some
examples :

i) Let M = U,, be the uniform matroid of rank r on an n-element set. For this matroid the
poset D(M) is the disjoint union of (:‘) partition lattices II, where the greatest elements are
identified and an extra 0 is added. For an integer d dividing r = k - d the poset D(U,,)a is
isomorphic to the poset II{?) of partitions of r whose block sizes are divisible by d.

ii) If M = P'F, is the projective geometry of dimension r over the field F, then D(M) is isomorphic
to the poset of direct sum decompositions of the vector space F;*! ordered by refinement.

iii) f M = II, is the partition lattice then every nontrivial element b = [+ [m € D(I,)
represents a family of partitions such that only (1---r) is a partition coarser than all ;.
Additionally for all proper subsets of the set {m,...,m:} there is a partition different from
(1---r) which is coarser than all ;.

In contrast to examples i) and ii) D(II,) is not an exponential poset for r > 4.

We saw that for r < n the proper part of D(U, ) is a disconnected poset of rank r — 2. Hence
D(Uy,) is not shellable for r > k > 2. But we will prove in the next section that D(M)yq is shellable
for a suitably sized class of matroids.

2 Shellable decomposition posets

For this section we assume that M is a modularly complemented matroid of rank r. We assume
further that F = {F},...,F,} is a base of M such that each subset of the base generates a modular
element. Such a base exists by the definition of modularly complemented. For a subset J C [r] we
set 7 := \/ F; ; for J = 0 we simply denote by F” the least element of F(M). By A(M) we denote

i€t ‘
the atoms of F(M). For our purposes we can restrict ourselves to simple matroids. Therefore the
set LA(M) is just the set on which the matroid M is defined.
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Having this notation fixed we define a mapping v from the set .A(M) into the set of vectors {0,1}".
We set v(E) := (vy,...,v,) where v; = 1 if and only if E £ FI-{}, We write v(E); to denote the
I-th entry v; in v(E). By the usual linear order 0 < 1 on {0,1} we can define the reverse lexicographic
<i order on {0,1}". Via the map v the order <; defines a partial order .A(M). For this order we
write also <. and we set E <, G :& v(E) <; v(G). Now we order the bases of the k-flats of
F(M) by an arbitrary (but fixed) linear extension <g of the lexicographic order on the k-tuples
(Er <« -+ <u Ei). We omit an additional index k for the order <g.

Furthermore we will use an extension of <g to compare decompositions which correspond to integer
partitions d+d+---4d = r. Here we associate to a decomposition {E;,...,E;} the integer partition
rank(E;) + --- + rank(Ey) = r of r. The necessity of ordering decompositions which correspond
to partitions of integers in equal parts of size greater 1 arises since we will have to order the atoms
of D(M)q also in the case d # 1. We impose the order in the following way. We order the flats of
the same rank simply by comparing the associated least bases by <g. In order to keep the notation
for this relation consistent with order relation on the atoms ( = 1-flats) we will denote the order
relation also by <,. So far we have transformed a decomposition into parts of rank d into an ordered
decomposition. Now we can order decompositions into blocks of rank d by the lexicographic order
induced by the order <g on the blocks of the decomposition. For the atoms of D(M) we simply get
the old order. Hence we can use <g unambiguously for the atoms of D(F), for all d dividing the
rank of F.

Now the main aim of this section is to show that the order <z induces a recursive atom order for
D(M)4. To verify this we have to prove the following two properties [BW83] :

i) Let E <g G be two atoms of D(M),. Let I be another element of D(M),4 such that E < I
and G < I holds in D(M),. Then there is an atom of the interval [G, I] which covers an atom
of D(M), preceding the atom G in the order <g.

ii) For every atom E of D(M)y there is a recursive atom order of [E, 1] such that the atoms of
[E, 1] which cover an atom of D(M)4 preceding E come first.

Our first two lemmas characterize the least base of a k-flat with respect to <g.

Lemma 2.1 Let G be a k-flat in F(M). Let E = {E; <, +-+ <. E,} be the least base of G with
respect to <. For 1 < i < k let j; be the greatest index for which v(E;);, is nonzero. Then the
following two assertions hold :

i) For 1 <1< i<k the ji-th entry in v(E;) is zero.
it) The inequalities j; < --- < ji are strict.
Proof : Let 1 <1< i <k be integers. Now let J be the set

[ = ({#} U {5 | j < i and o(E); = 0}).

The fact that E; <. Ei41 certainly implies j; < ji;1. Hence J does not contain j;. If the ji-th entry
in v(E;) is not zero then E; £ F’/. We also know by construction that E; £ F”. Since F’ V E; =
FIV E;V E; = F/*{i} we deduce from the modularity of F/ the fact that rank(F’ A (E; V E)) = 1.
Hence there is an atom Eo < F’ which is also an atom in Ej, V Ej. By construction v(E;)=0
implies v(Eo); = 0 for ¢ > j;. On the other hand we infer from Ey < F that v(Ey); = 0. Hence the
atom Eqg precedes Ej; in the order <,. But from the fact that Eo V E; = Eo V E; we conclude that
replacing Ej; by Eo in the base E we can construct another base. Since Ey <. E;, the constructed
base of G' precedes the base E. But this contradicts the assumptions.

By the fact that E; <, E;y, implies j; < ji31 (which we have already used in the first part of the
proof), the second assertion is an immediate consequence of the first one. [ ]
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Lemma 2.2 Let G be a k-flat in F(M). For a base E = {E, <, --- <. E}} of F the following four

conditions are equivalent :
i) The base E is the least base of G with respect to <g.

ii) For all integers d, 2 < d < k, and for all all d-element subsets J of [k] the base {E; | j € J}
is the least base of E' with respect to <g.

iti) There is an integer d, 2 < d < k, such that for all d-element subsets J of [k] the base {E; | j €
J} is the least base of EY with respect to <g. :

iv) For i € [k] let j; be the greatest index such that v(E;);, is nonzero. Then E; < FJ for J =
il = {41, - -Jim1}. Furthermore E; is the least atom in the flat F7 A G.

Proof : First we prove the implication i) = ii). Let J be a d-element subset of [k]. Then any base
of E7 can be extended to a base of F by the elements E; for j ¢ J. Hence any base of E’ preceding
the base {E; | € J} would allow the construction of a base of G which precedes E = {E, ... ,E;}.
Since E is the least base of F' we are done by assumption.

Obviously the implication i) => ii7) is true.

Now consider the implication ¢77) = iv). Let us take a d-element subset of [k] which contains 1.
By assumption {E; | j € J} is the least base of E/. Now we apply Lemma 2.1 to G = E’. Hence
v(E;); =0 for all I € JN[i —1]. Since d > 2 there exists for every pair of elements of [k] a d element
subset of [k] which contains it. Now the preceding reasoning shows the first part of the claim. The
second part of iv) follows immediately by the arguments used for the implication i) = ii).

So it remains to prove the implication iv) = i). Assume that the least base I = {I; <. --- <. I}
of G is strictly smaller than the base E with respect to <g. Let i be the first index such that
E; # I,. Let s be the greatest index for which v(I;), = 1. Since I; <. E; the inequality j;_; < s < j;
follows from the choice of I;. Hence EW = El-1v E; and I = [-11y I, are contained in G A FUi,
First we treat the case s = j;. The equality s = j; implies Il = El]. Since I is the least base of
G the truncation {Iy,...,I;} is the least base of Ill. For this conclusion we can argue in the same
way as for the implication i) = ii). Hence Lemma 2.1 shows that v(I;); = 0 for I € [i — 1]. Since
rank(E; V I;) = 2 we deduce from the modularity of Ef~1 = Jl-1 that there is an atom I in the
meet I~ A (E; V I;). From the fact v(E;); = v(Ii);, = 0 for I € [i — 1] we infer that Io is contained
in Fl-{a-i}, But then Iy cannot be contained in E¥-1 = It-11, Hence {I,,...,I;, Io} is another
base of G. By construction v(lp);; = 0 and therefore Ip <. I;. But this contradicts the fact that
{Io,...,I} is the least base of I, What is still left is the case j;_; < s < j; where all inequalities are
strict. Let [ be the least index such that I] < El. Hence by the modularity of E” for J = {i,... .1}
we have

I = rank(E") = rank(I% v E7) =
= rank(I) + rank(E’) — rank(I A EN)y=i+(—i+1)—rank(I A E%).
This shows that rank(I¥1 A E’) = 1. But for every atom Ep in Il the entry v(Ejo), is 0 for ¢ > s

whereas v(Eo); = 1 for an atom Eg in E” for j; > t. So we have deduced a contradiction from the
assumption also in the case that s < j;. Therefore E is the least base of G, which shows i). [ |

To deal with the poset D(M)4 uniformly we introduce the notion of a d-base. Let G be any flat in
the lattice (M) whose rank [ = d - l; is divisible by d. A set of I; flats of rank d is called a d-base
of G if their join is G. For d = 1 we simply have reintroduced the notion of a base. As indicated at
the beginning of the section it proves to be useful to identify each d-flat with its least 1-base. Since
1-bases are ordered by <g their lexicographic order induces a linear order on the d-bases.
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Theorem 2.3 Let M be a finite modularly complemented matroid of rank r = n-d. Then the order
<g is a recursive atom order for D(M)4. In particular the poset D(M)q is CL-shellable.

Proof : By Proposition 1.1 and by the definition of an exponential posets we know that D(M), is
a graded poset and that each interval is isomorphic to II,.

It is well known that II, is a geometric lattice and hence upper semimodular. Since every order on
the atoms of an upper semimodular lattice is a recursive atom order [BW83, Theorem 5.1] is suffices
to show C} for the order <g [Sag86, Lemma 3].

Let E = {E <. -+ <. E,} and G = {G; <. -+ <« Gy} be two atoms of D(M), for which
E <g G holds. Let I = {f,,...,Ii} be an element of D(M)4 such that E < I and G < I (here <
is the order relation in D(M)). Since E <g G there is a flat in I for which E contains a d-base
strictly preceding its d-base contained in G. We may assume that I is this flat. Hence G does not
contain the least d-base for I;. Now by Lemma 2.2 ii) there is a flat H of rank 2 * d contained in I
such that G does not contain the least d-base for I;. Let G, G, be the d-base of I; contained in G.
By construction the decomposition {H, Gs,...,Gx} is an atom of [G, 1] which is contained in I. Let
H,, H, be the least d-base of H; then {H;, Hz,Gs,...,Gi} is a d-base of M and hence an atom in
D(M)q which is covered by {H,Gs,...,Gx}. Again by construction the atom {H,, Ha,Gs,...,Gi}
precedes the atom G and hence we have verified C; for the order <g. [ ]

Actually we do not know whether the decomposition poset of a modularly complemented matroid
D(M)4 is EL-shellable or not. In a recent paper by M. Wachs [Wac] it is proved that this is true for
the free matroid.

Finally we give an example of a not modularly complemented line configuration for which it is
easy to verify that the decomposition poset D(M) of the associated matroid is shellable (even EL-
shellable). Figure 1 depicts the line configuration of a geometric lattice which is not modularly
complemented. Obviously the corresponding matroid has rank 3. Hence any base of M consist of
3 points. But there are only two modular hyperplanes (the 3-point lines) in the lattice. Therefore
there must be two of the base elements which do not generate a modular line. This shows that the
matroid is not modularly complemented.

On the other hand the associated decomposition poset is depicted on the right side of Figure 1. It
is easily seen that the poset is bounded of rank 3 and moreover its proper part is connected. This
implies that the decomposition poset is shellable. But we would like to remark that the described
matroid is supersolvable. Indeed we know of no supersolvable matroid for which the decomposition
poset is not shellable and we know of no non supersolvable matroid with shellable decomposition
poset.
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Figure 1

3 The Mobius numbers

For the free matroid M on r = n - d elements the Mobius number u(D(M))a = /t(Hf'dd) cquals
the number of permutations with descent set {d,2d,...,nd} [Sta78]. But in the case of projeclive
geometries P'F, it seems that the Mobius number of D(P'F,) has not been investigated so far. We
will denote the Mébius number of D(P'F,) by str41(g). The shilt in the dimension is for the sake of
a more convenient formulation of the formulas. Morcover we will provide some general tools which
can be useful for the determination of the Mébius numbers for arbitrary decomposition posets which
arise from a modularly complemented matroid.

It is well known that the conditions given Proposition 1.2 are true for P'F, and therefore D(P'F,)
is an exponential structure. Ience we can apply the results of Stanley [Sta78] for an analysis of the
cxponcntial generating function of ji,41(g). It will Lurn out that a Lransformation of the generating

=) r2

series lcads to a nice formula for the logarithm of the g-hypergcometric scrics Z —r-—gi——q'.)z".
Additionally we would like to point out that for a prime number p congrucnt 1 mor(Islo Iq—ghe Mobius
number of D(P""'F,) is the same as the Mébius number of the posct S,(GL(r,q)) of nontrival
p-subgroups of GL(r,q). Since the order complex of D(P"~'F,) is even homotopy equivalent to
Sp(GL(r,q)) [Qui78, Theorem 12.4] we obtain by |s.(q)] the dimension of the (r — 1)-th homology
group of the order complex of Sp(GL(r, q)) which is regarded as an analog of the Steinberg module
[AS91]. Of course an analysis of the homotopy cquivalence cventually shows that also the G/.(r,q)-
module structure is preserved. But the determinalion of this representation will not be done here. In
his proofl D. Quillen shows that S,(GL(r,q)) is homolopy cquivalent to a subposet which is Cohen-
Macaulay. The subposet is given by the elementary abelian p-subgroups. But although by Theorem
2.3 the poset D(P"~'F,) is CL-shellable it remains open whether the poset of clementary abelian
p-subgroups of this GL(n, q) is itself shellable. :

Lemma 3.1 The Mébius number p.(q) is a polynomial of degree v(r—1) in q. The lcading cocfficient
. (=1)"
is T
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Proof : The assertion is trivially fulfilled for r = 1. In this case we have p,(¢) = —1. Now assume
r > 1. By definition we have

_ (€ =) (= e
W) == sssisen—ion (@ = Do (@ — 1) g ) T

Here we denote by P, the integer partitions of r and for an integer partition A € P, the number j} is
the number of blocks of size 7 in A. The fraction (first factor of each summand) counts the number
of direct sum decompositions of F} into blocks of sizes Ay, ...,Ax. The last two factors stem from
the direct decomposition (Ezps) of the lower intervals in D(M) — {0}. The factor (—1)*¥~! comes up
by the fact that the decomposition only exists if the least element is removed. First all factors are
easily seen to be polynomials. After the cancellation of the all (q — 1)’s the first factor has degree

( ) 25k, ( ) and the second part has by induction degree 2 - Z ( 2) Summing up the degree
i=1

we obtain as the maximal total degree r(r —1). It remains to show that the coefficient is correct.

The first factor has leading coefficient —'—. The second one has by induction leading coefficient

ﬁ;—)T‘ Hence the coefficient for q(2) is
i=1 "

al J!

(=1)*

A=(uz-203neP—{( St Ir s A e

Substituting in the power series expansion of ezp(¥{2, &) the variable z; by —2' we obtain

(=1)*

Ouzesmanep, Jitr gl A A

as the coefficient of z™. Since

exp(d (——-) =ezxp(log(l—2)) =1~z

i=1

the assertion follows immediately for r > 1. ]

Now we will show that for the analysis of u(D(M)) for an modularly complemented matroid it
suffices to investigate the (0 — 1)-matrices (v(E;););,j) associated to bases E = {E; <, -+ <. E,} of
M. Of course v(E;) denotes the (0—1)-vector introduced in the second section. In the sequel we mean
by a descending chain in the decomposition poset D(M) of a modularly complemented matroid M
a maximal chain which has descending labels [BW83] in an arbitrary but fixed CL-shelling induced
by <g.

Before we can give a more detailed analysis of the Mdbius number p,(g) we will derive some
general properties of the recursive atom order presented in Theorem 2.3 and properties of CL-shellings
induced by that atom order.

Lemma 3.2 Let E = {E; <. :+- <. E,} be a base of a modularly complemented matroid M. Then
the number of descending chains in D(M) passing through E depends only on (v(E;);)i ;). The atoms
of the interval [E, 1] which cover an atom of D(M) preceding E in <g correspond to the lines for
which E does not contain the least base.
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Proof : By the definition of <g it remains to prove that the number of descending chains passing
through E does not depend on the choice of the linear extension of the lexicographic order on the
bases induced by <.. Assume that E <g F are two bases for which (v(E:);)j) = (v(Fi)i)i.5)-
Assume that there is an atom of [E, 1] which covers F but no other atom of D(M) preceding E
in <g. Hence there is a 2-flat for which F contains not the least base with respect to <g. This
statement actually includes the second assertion of the lemma. Hence one of the equivalent conditions
of Lemma 2.2 is violated. But this conditions depend only on the entries of the matrix (v(F);): ;).
Therefore by assumption E does also not contain the least base for this 2-flat. Replacing the two
base elements of this 2-flat in E by its least base gives a base preceding E in the order <g which is
also covered by the crucial atom of [F, 1]. Hence the set of atoms of [E, 1] meeting condition ii) on the
recursive atom order is independent on the choice of the linear extension. Therefore the construction
of a CL-labeling derived from the recursive atom order shows that the number of descending chains
starting in E is also independent of the choice of the linear extension. ]

In the next step we investigate the configurations in a matrix (v(E;);)(;,;) which are conducive to
descending chains for a certain induced CL-shelling. To do this we need some more insight into the
structure of descending chains generated by different recursive atom orders of the partition lattice.
Here we would like to remind the reader of the trivial fact that an atom in the lattice II, of set
partitions of the set [r] consists of a 2-block and r — 2 blocks of size 1. Here we say that a set of
atoms E of a geometric lattice generates the chain m; < -+ < my if all 7; are joins of atoms from E.
At first we give a lemma which applies even to all geometric lattices.

Lemma 3.3 Let {E,,...,Ex} be a set of atoms of a geometric lattice L. Let {E,,...,Ex} be an
initial segment of a recursive atom order of L. Then the number of descending chains generated by
{E1,...,Ei} s independent of the linear order within the set.

Proof : Let L’ be the set of all elements of L which are joins of elements of {E,,...,E;}. Let E be the
greatest element of L'. If E is not the greatest element of L then no maximal chain in L is generated
by {Ei,...,Ex}. Obviously this statement is independent of the linear order on {Ej,...,E:}.

Now assume that E is the maximal element of L. Therefore L' is another geometric lattice. Since
all atom orders of a geometric lattice are recursive atom orders the linear order on {E,...,E:} is
a recursive atom order for L’. The number of descending chains counts the absolute value of the
Mébius number [Sta86). Hence the number of descending chains generated by {E,...,Ey} in L' is
independent of the actual linear order. Now it remains to show that the descending chains in L'
generated by {E,,...,E:} correspond to the descending chains generated by {Ei,...,E;} in L. But
the labeling induced by a recursive atom order on an edge in L which actually lies in L’ does only
depend on elements of L'. This follows from that fact that the labeling is determined by the position
of the top element of an edge relative to the elements prior to the bottom element in the recursive
atom order. .

The next step is to figure out how we can describe the descending chains generated by a subset
{E\,...,Ex} of the set of atoms of the partition lattice IT,. Here we would like to remind the reader
of the fact that the modular elements of the partition lattice II, are just the partitions with at most
one nontrivial block. An element a of a geometric lattice L is called modular if for all b € L the
equation rank(a V b) + rank(a A b) = rank(a) + rank(b) holds.

Lemma 3.4 Let {Ey, E,,...,E;} be a set of atoms of Il,. Let i € [r] be a number such that there
ezists a modular coatom of Il which is generated by {E,,...,E;} and for which i is not contained
in the nontrivial block of this coatom. Then there exzists a CL-shelling of Il, such that a descending
chain generated by E,,... ,E) satisfies :
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i) Each element of the chain is a modular element of II,.

it) The nontrivial block of every member of the chain contains .

Proof : If B, V:--V E # (1---r) then no maximal and in particular no descending chain can be
generated by Ey,...,Ey. Therefore we may assume that E; V---V E = (1---r). But then there
exists at least one maximal chain of modular elements generated by {Ey,...,Ex}. After a suitable
renumbering we may assume that (1)---(r) < (12)(3):-+(r) < ++- < (1++er=1)(r) < (1::+7)
is a chain of modular elements generated by {Ey,...,Ex}. It is well known that a maximal chain
of modular elements in a graded lattice induces an EL-shelling. Indeed in this case the lattice is
supersolvable. Since an EL-shelling is also a CL-shelling there is a recursive atom order corresponding
to that CL-shelling. Now we order the atoms {Ej,...,E;} according to this recursive atom order.
We put the atoms {Ej,...,E;} in the described order as the initial segment of another recursive
atom order of II,. Now a recursive argument will prove that every descending chain in an induced
CL-shelling is a chain of modular elements whose nontrivial block contains r. Hence the descending
chains generated by {Ey,...,E;} in the chosen atom order correspond to chains of modular elements
generated by {Ey,...,E} whose nontrivial block contains r. Hence the assertion is fulfilled for ¢ = r.
n

Now we can give a preliminary description of the descending chains in a specific CL-shelling induced
by <g. We will give a more detailed description in Proposition 3.7.

Lemma 3.5 Let M be a modularly complemented matroid. Then there is a CL-shelling of the poset
D(M) such that a descending chain 0 < G1 < --- < G, satisfies :

Let {Fy,...,F;} be the atoms of [G1,1] which cover an atom of D(M) preceding Gy = {Ey,...,E.}
in the order < B. Let i be the greatest index such that there is a modular coatom of [Gy,1] generated
by a subset of {Fy,...,Fy} for which E; is not contained in its nontrivial block.

i) Then Gy < :+- < G, is a chain of modular elements of the interval [Gy,1) which is generated
by {F,...,Fi}.

ii) The element E; is contained in the nontrivial block of every decomposition G;.

Proof : In a CL-shelling induced by <g the chain 0 < G; < G is descending if and only if G,
covers an atom of D(M) preceding G, in <g. Now the assertion follows immediately from the fact
that [Gy,1] = II, and Lemma 3.4. u

Finally we can classify the bases E of D(M) such that there are descending chains in the CL-shelling
constructed in the preceding lemma which pass through E.

Lemma 3.6 There is a CL-shelling of D(M) for a modularly complemented matroid M such that
for a base E = {Ey <. ‘- <. E,} of M the following conditions are equivalent :

i) There is a descending chain passing through E.
ii) For all 2 < i < r there is an index t # i such that {E;, E;} is not the least base for E; V E;.

iti) Let j; be the greatest index such that the entry v(E;);; in the vector v(E;) is nonzero. Then for
all 2 <i < r there is an index t # ¢ such that the entry v(E;);, is nonzero.
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Proof : The equivalence i¢) ¢ iiz) follows immediately from Lemma 2.1. The equivalence of ii) and
iii) can also be deduced along the lines of the proof of Lemma, 2.1 ]

Now we give a final necessary condition on a chains in to be descending. We would like to remark
here that it is possible to give a condition which exactly characterizes the descending chains.

Proposition 3.7 Let M be a modularly complemented matroid. Then there is a CL-shelling of D(M)
induced by <g such that a descending chain 0 < Gy < -+ < G, satisfies the following conditions :

i) The base G = {E) <. --- <. E,} satisfies one of the conditions of Lemma 3.6.
it) All decompositions G; are modular elements of the interval [Gy,1] = I,.

i) Let j be the greatest index such that for each index 1 < ¢ < r and i # j there is an index t # i,
for which that {E;, E;} is not the least base of E; V E;. Then E; is contained in the nontrivial
block of every decomposition G;.

Proof : One easily sees that CL-shelling referred to in Lemma 3.5 is the same as in Lemma 3.6. By
the construction of j in condition iii) of the assertion there is a modular coatom in [Gy,1] such that
E; is not contained in its nontrivial block. Now the result follows immediately from Lemma 3.5 and
Lemma 3.6. .

Having control over the descending chains allows us to identify the absolute value of the Mébius
number of D(P"~'F,) with combinatorial objects.

Theorem 3.8 The Mébius number u.(q) factors in a monic polynomial f.(q) of degree (;) with

r—1
posttive integral coefficients and the polynomial g'—rl):]__]t(c,yi -1).

i=1

Proof : (Sketch !) Since <g is a recursive atom order the absolute value of the M6bius number is
given by the number of descending chains in D(P"~'F,) in a CL-shelling induced <g [Sta86).

In the sequel we will be concerned with a CL-shelling induced by <g which fulfills the conditions
of Proposition 3.7.

Now let 0 < G < - < G, be a descending chain, Then G; = {E; <. :-- <. E,} is a base of M.
Assume j is the index defined in condition iii) of Proposition 3.7. Now the nontrivial blocks B; of
the decompositions G; determine a sequence j = ty,...,t, for which B; = E;, V---V E;,. The crucial

point is to show that by some projective transformations which preserve E; = E; one generates
r—1
II(¢* — 1) other descending chains. Counting the multiplicity of the occurrence of each descending
i=1
chain in this enumeration explains the factor 1. Finally Lemma 3.1 proves the assertions on the
degree of f.(g) and the fact that f.(q) is monic. ]

In the following corollary we deduce a surprising relation between a series involving the polynomials
f+(q) and the logarithm of one of the basic g-hypergeometric series. For the formulation of the
r

corollary we abbreviate H(l — ¢') as usual by (g, q),-

i=1
Corollary 3.9 The following equation holds
o (_1)r T - ()
S % . l‘l_r (B .(1/q) - 2 = ~log( 3

T,
-_—2 ).
= -q = (a,9)- )

2
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Proof : By a general result on the Mébius functions of exponential structures [Sta78, (8)] it follows
that

ur(g)- 2 - .l

- M(r ) 109(1 + Z - M(r), )

r=1
r=1

Here M(r), = r"!;o(q_:l%z is the number of atoms in D(P"~'F,). Replacing z by u := (¢~ 1)z we

easily obtain

X (;) . x. (2)
q__w)__ ¢ -w
; t—l(q (,go 1_1(q - 1))

Now an application of Theorem 3.8 shows

(=1y ¢®)- fr(q) W = ql).w
x5 =loo( L)

Replacing g by 1/q proves the desired equation after some easy calculations. ]

We are indebted to D. Stanton for providing an easy transformation which proves that the exponen-
(=]

tial of 3 -:: f+(q) equals the Rogers-Ramanujan continued fraction [Sta90] and hence the exponential
r=1

of the generating series of the ¢-Catalan numbers C,(g) [Sta90]. R. Stanley pointed out to us that

by a theorem [Sta86, Proposition 4.7.11] about the generating series of very pure monoids this also

allows us a more explicit combinatorial interpretation of the coefficients of f.(q). Vice versa going

the other way round the described argumentation would give another proof of Theorem 3.8. But this

would certainly not enable us to characterize the descending chains in D(P'F,).
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